CN114057981A - 聚氨酯硬泡及其使用的组合聚醚 - Google Patents

聚氨酯硬泡及其使用的组合聚醚 Download PDF

Info

Publication number
CN114057981A
CN114057981A CN202111320154.5A CN202111320154A CN114057981A CN 114057981 A CN114057981 A CN 114057981A CN 202111320154 A CN202111320154 A CN 202111320154A CN 114057981 A CN114057981 A CN 114057981A
Authority
CN
China
Prior art keywords
isocyanate
polyol
polyether
polyurethane
toluene diisocyanate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111320154.5A
Other languages
English (en)
Other versions
CN114057981B (zh
Inventor
邢益辉
吴一鸣
张蒙蒙
张志杰
王金祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Hongbaoli Polyurethane Co ltd
Hongbaoli Group Co ltd
Original Assignee
Nanjing Hongbaoli Polyurethane Co ltd
Hongbaoli Group Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Hongbaoli Polyurethane Co ltd, Hongbaoli Group Co ltd filed Critical Nanjing Hongbaoli Polyurethane Co ltd
Priority to CN202111320154.5A priority Critical patent/CN114057981B/zh
Publication of CN114057981A publication Critical patent/CN114057981A/zh
Application granted granted Critical
Publication of CN114057981B publication Critical patent/CN114057981B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6629Compounds of groups C08G18/42, C08G18/48, or C08G18/52 with compounds of group C08G18/36 or hydroxylated esters of higher fatty acids of C08G18/38
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4018Mixtures of compounds of group C08G18/42 with compounds of group C08G18/48
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4205Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups
    • C08G18/4208Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4266Polycondensates having carboxylic or carbonic ester groups in the main chain prepared from hydroxycarboxylic acids and/or lactones
    • C08G18/4269Lactones
    • C08G18/4277Caprolactone and/or substituted caprolactone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/44Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4804Two or more polyethers of different physical or chemical nature
    • C08G18/482Mixtures of polyethers containing at least one polyether containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/487Polyethers containing cyclic groups
    • C08G18/4883Polyethers containing cyclic groups containing cyclic groups having at least one oxygen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/50Polyethers having heteroatoms other than oxygen
    • C08G18/5021Polyethers having heteroatoms other than oxygen having nitrogen
    • C08G18/5024Polyethers having heteroatoms other than oxygen having nitrogen containing primary and/or secondary amino groups
    • C08G18/5027Polyethers having heteroatoms other than oxygen having nitrogen containing primary and/or secondary amino groups directly linked to carbocyclic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/142Compounds containing oxygen but no halogen atom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/143Halogen containing compounds
    • C08J9/144Halogen containing compounds containing carbon, halogen and hydrogen only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/143Halogen containing compounds
    • C08J9/144Halogen containing compounds containing carbon, halogen and hydrogen only
    • C08J9/146Halogen containing compounds containing carbon, halogen and hydrogen only only fluorine as halogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/149Mixtures of blowing agents covered by more than one of the groups C08J9/141 - C08J9/143
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2101/00Manufacture of cellular products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0025Foam properties rigid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • C08J2203/146Saturated hydrocarbons containing oxygen and halogen atoms, e.g. F3C-O-CH2-CH3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/16Unsaturated hydrocarbons
    • C08J2203/162Halogenated unsaturated hydrocarbons, e.g. H2C=CF2

Abstract

本申请提出了一种聚氨酯硬泡,其原料包含组合聚醚、物理发泡剂和异氰酸酯组分,所述组合聚醚含有蔗糖基聚醚多元醇,所述异氰酸酯组分中含有异氰酸酯A、或同时含有异氰酸酯A和异氰酸酯B,所述异氰酸酯A为甲苯二异氰酸酯或改性的甲苯二异氰酸酯,所述异氰酸酯B为多亚甲基多苯基多异氰酸酯。本申请还提出了用于生产上述聚氨酯硬泡的组合聚醚。利用本申请,能够提高聚氨酯泡沫的充填性能;提高聚氨酯材料的生物降解性;以及降低产品报废后所产生的废弃泡沫的相对数量。

Description

聚氨酯硬泡及其使用的组合聚醚
技术领域
本发明属于高分子材料领域,具体涉及聚氨酯硬泡及其使用的组合聚醚。
背景技术
聚氨酯硬泡从原材料提取和加工,到生产、使用、再循环和最终废弃物处理的生命周期过程中,均会涉及材料和能源的消耗,并对环境产生影响。
首先,原材料方面。目前用于制备聚氨酯硬泡的异氰酸酯主要为多亚甲基多苯基多异氰酸酯(简称为聚合MDI),用量占聚氨酯原料总量的50%以上,且用量越多越有利于硬泡强度的增加。但是聚合MDI为石油基原料,这意味着在制备聚氨酯硬泡的过程中需要消耗大量的石化材料,这不利于能源和资源的节约。通常,为了减少石油原料的消耗,可使用生物基材料,但是生物基材料会使泡沫的性能降低。
其次,聚氨酯硬泡作为一种性能优良的保温隔热材料,是节能降耗的关键一环。不管是在冰箱、热水器、冷藏集装箱,还是在建筑物、保温管道中,均会对能耗产生直接影响。聚氨酯硬泡的导热系数越低,则保温隔热效果越好,越有利于降低产品的能耗。同时,在最终应用时,冰箱、冷藏集装箱等产品的保温隔热性能的好坏还与聚氨酯材料的填充效果有关,若聚氨酯泡沫不能将产品的空腔完全充满,则空洞处形成热桥,会使产品的保温隔热效果变差。另外,随着各国家电产品能效标准的逐年提高和市场产品结构的快速升级,真空绝热板的使用越来越普遍,但真空绝热板的使用会使空腔体的结构更复杂,供聚氨酯泡沫流动的通道更窄小,因此更容易产生空洞多、填充不完全、密度分布不均匀等现象,最终影响家电等产品能效的提升。
第三,随着聚氨酯的广泛应用,不可避免会产生大量的废弃物。而现有的聚氨酯废弃物的处理方法主要是填埋或焚烧。显然,焚烧会带来二次环境污染,而填埋会占用大量的空间,且大部分废弃泡沫很难降解。因此,废弃聚氨酯材料对生态环境的压力不容忽视,还需从源头解决废弃聚氨酯泡沫的增长量问题以及泡沫的降解问题。
综上所述,在绿色、循环、低碳的发展理念下,亟需开发相关技术,减少聚氨酯硬泡从生产到废弃处理的生命周期过程中对环境的负面影响,从而为碳达峰、碳中和等目标提供有力支撑。
发明内容
本发明所要解决的问题在于:减少聚氨酯硬泡在生命周期过程中对环境的负面影响,具体目的表现在以下几个方面:(1)提高聚氨酯泡沫的充填性能;(2)提高聚氨酯材料的生物降解性;(3)降低产品报废后所产生的废弃泡沫的相对数量。
为了达到上述目的,本发明首先提出了一种聚氨酯硬泡。
该聚氨酯硬泡的原料包含组合聚醚、物理发泡剂和异氰酸酯组分,所述组合聚醚含有蔗糖基聚醚多元醇,所述异氰酸酯组分中含有异氰酸酯A、或同时含有异氰酸酯A和异氰酸酯B,所述异氰酸酯A为甲苯二异氰酸酯或改性的甲苯二异氰酸酯,所述异氰酸酯B为多亚甲基多苯基多异氰酸酯。
研究发现,当一定的异氰酸酯A与蔗糖基聚醚多元醇组合使用时,可显著提高聚氨酯泡沫的充填性能,特别是可大幅增强流过窄通道的能力,减少空洞及表面气孔的产生,对复杂空腔结构的填充效果好。另外,由于甲苯二异氰酸酯中的活性成分较高,其使用量较聚合MDI低,这样可相对提高生物基材料在聚氨酯泡沫中的占比,从而提高聚氨酯泡沫的生物降解性能。同时,异氰酸酯A与蔗糖基聚醚多元醇的组合使用,还可以将聚氨酯硬泡的交联度保持在需求水平,从而实现较好的尺寸稳定性,兼顾泡沫性能。
本发明中所述的蔗糖基聚醚多元醇,即以蔗糖作为唯一起始剂或者以蔗糖作为混合起始剂之一与环氧化合物经开环聚合制得的聚合物多元醇。其中,环氧化合物优选为氧化丙烯与氧化丁烯的混合物或单独使用氧化丙烯。蔗糖基聚醚多元醇的羟值优选为350~540mgKOH/g。当采用混合起始剂时,蔗糖在混合起始剂中的质量占比≥60wt%,以兼顾泡沫性能。混合起始剂中的其他组分可选自二甘醇、丙二醇、乙二醇、山梨醇、甘油等。为了兼顾低密度下泡沫的尺寸稳定性,进一步优选蔗糖基聚醚多元醇在组合聚醚中的占比为20~75wt%。
工业上的甲苯二异氰酸酯通常为2,4-甲苯二异氰酸酯与2,6-甲苯二异氰酸酯的混合物,简称为TDI。根据混合物中2,4-甲苯二异氰酸酯的质量占比不同,通常有TDI-65、TDI-80、TDI-100等,均可用于本发明。同时,甲苯二异氰酸酯用量的增加有利于优化聚氨酯泡沫的流动性,但是用量太高会使聚氨酯泡沫在后期的交联程度受限,影响泡沫性能,因此,进一步地,优选甲苯二异氰酸酯在异氰酸酯组分中的重量占比为3~50wt%。
改性的甲苯二异氰酸酯即采用多元醇与甲苯二异氰酸酯发生反应制得,所采用的多元醇可以是以甘油、乙二醇、二甘醇、季戊四醇等为起始剂的聚醚多元醇,或者是苯酐聚酯多元醇,也可以采用生物基多元醇。生物基多元醇即以大豆油、蓖麻油、菜籽油、小桐子油、橄榄油、棕榈油或上述物质的衍生物等为原料而制备的多元醇化合物,如蓖麻油多元醇、橄榄油多元醇、棕榈油多元醇、蓖麻油衍生物多元醇等。优选改性的甲苯二异氰酸酯在异氰酸酯组分中的重量占比为20~100wt%,以兼顾低密度条件下泡沫的综合性能,特别是尺寸稳定性。进一步地,为了改善改性的甲苯二异氰酸酯的粘度,优选所使用的多元醇的官能度为2~3,如甘油、二甘醇、乙二醇等;为了提高聚氨酯硬泡的生物降解性能,优选所使用的多元醇为皂化甘油、生物基多元醇。
异氰酸酯B即多亚甲基多苯基多异氰酸酯,简称为聚合MDI,优选平均官能度为2.7~2.9,以兼顾聚氨酯硬泡的导热系数。其中,平均官能度为2.7的异氰酸酯B可选自
Figure BDA0003344896220000031
PM200、
Figure BDA0003344896220000032
44v20L、
Figure BDA0003344896220000033
M20s、
Figure BDA0003344896220000034
PM2010的任意一种,平均官能度为2.9的异氰酸酯B可选自
Figure BDA0003344896220000035
M50、
Figure BDA0003344896220000036
PM400、
Figure BDA0003344896220000037
44V40L、
Figure BDA0003344896220000038
2085的任意一种。当选用两种以上异氰酸酯时,可以采用其任意比例的混合。
进一步地,为了兼顾聚氨酯原料的混合效果,提高聚氨酯泡沫的密度分布均匀性,所述改性的甲苯二异氰酸酯在25℃的粘度≤1200mPa·s,进一步优选粘度为500~1000mPa·s。
进一步地,所述改性的甲苯二异氰酸酯的NCO%范围为25wt%≤NCO%≤38wt%,以兼顾低密度条件下的泡沫性能,并满足窄通道填充的工艺需求。
进一步地,所述物理发泡剂中含有烷烃类发泡剂、甲酸甲酯和氟烯烃类发泡剂中的至少一种。烷烃类发泡剂可选自环戊烷、正戊烷、异戊烷、正丁烷、异丁烷中的至少一种,氟烯烃类发泡剂可选自顺式-1,1,1,4,4,4-六氟-2-丁烯、反式-1,1,1,4,4,4-六氟-2-丁烯、反式-1-氯-3,3,3-三氟丙烯、顺式-1-氯-2,3,3,3-四氟丙烯、反式-1,3,3,3-四氟丙烯、2,3,3,3-四氟丙烯中的至少一种,也可以使用全氟烯烃类。上述发泡剂的臭氧消耗潜能(ODP)值为零或近似为零,且全球变暖潜能(GWP)值均较低,可减少对温室效应的影响,对环境友好。除了上述环保型发泡剂外,本申请中,还可以使用一氟二氯乙烷、二氟乙烷、四氟乙烷等氢氟烃类发泡剂,由于氢氟烃类发泡剂的GWP值较高,对环境不利因此,在本申请中,不建议采用上述一氟二氯乙烷、二氟乙烷、四氟乙烷等氢氟烃类发泡剂。
其次,本发明还提出了用于制备上述任意一项所述的聚氨酯硬泡的组合聚醚。
组合聚醚即多种原料混合而成的含有大量羟基的组合物,通常含有聚醚多元醇、聚酯多元醇、催化剂、泡沫稳定剂,另外还可根据需要加入发泡剂、成核剂、抗氧化剂、紫外线吸收剂、无机填料、阻燃剂、天然高分子材料等。其中,天然高分子材料可选应用淀粉、纤维素、木质素等,以增强聚氨酯的生物降解性能。
研究发现,对于使用了甲苯二异氰酸酯的聚氨酯物料体系,组合聚醚的粘度对注料量的影响较大。优选所述组合聚醚在不含有物理发泡剂时,25℃时的粘度为3000~12000mPa·s。所述组合聚醚在含有全部物理发泡剂时,25℃的粘度可以低于100mPa·s,也可以高于1000mPa·s,但粘度过低容易漏料,粘度过高则不利于搅拌,优选25℃时的粘度为200~700mPa·s,以改善混合效果提高泡沫性能,实现降低聚氨酯原料的注料量,进而使得产品在报废后,产生的泡沫废弃物的数量相应降低。
进一步地,为了从原料端减少碳排放,所述组合聚醚中含有生物基聚醚多元醇和/或生物基多元醇,生物基聚醚多元醇即起始剂中使用了蔗糖、皂化甘油、山梨醇、木糖醇、甘露醇中的一种或几种而制备的聚醚多元醇。更进一步地,所述组合聚醚中还含有芳胺聚醚多元醇,即由芳胺类化合物为起始剂的聚醚多元醇,如苯二胺聚醚多元醇、甲苯二胺聚醚多元醇,以优化体系综合性能。
进一步地,为了兼顾聚氨酯物料流过窄通道的能力,保证低密度条件下的稳定性等综合性能,所述组合聚醚包括如下重量份组分:
62~95wt%聚醚多元醇、0~30wt%聚酯多元醇、1.7~4.6wt%泡沫稳定剂、1.5~5wt%催化剂、0.8~2.5wt%水。
其中,聚醚多元醇包括生物基聚醚多元醇、生物基多元醇、芳胺聚醚多元醇,进一步地,组合聚醚的原料组成优选为35~75wt%生物基聚醚多元醇、0~34wt%生物基多元醇、12~27wt%芳胺聚醚多元醇、0~30wt%聚酯多元醇、1.9~4.5wt%泡沫稳定剂、1.5~3.7wt%催化剂、0.9~2.2wt%水,以实现芯密度、尺寸稳定性、生物降解等性能的兼顾。
进一步地,所述聚酯多元醇通常包括常规聚酯多元醇、聚己内酯多元醇和聚碳酸酯多元醇。其中,常规聚酯多元醇是指由多元酸与多元醇等通过缩聚反应得到的聚酯多元醇,如苯酐聚酯多元醇。聚己内酯多元醇是由ε-己内酯与起始剂在催化剂作用下经开环聚合而成。聚碳酸酯多元醇可以通过酯交换反应制得,也可以使用二氧化碳为原料制备而得。为了促进二氧化碳废弃的消耗,本申请中,聚酯多元醇优选为聚碳酸酯多元醇和/或苯酐聚酯多元醇,更为优选使用二氧化碳为原料制备的聚碳酸酯多元醇,如聚碳酸亚丙酯二醇或聚碳酸亚乙酯二醇。
本发明可以采用不同的方法制备聚氨酯硬泡,比如,可以将物理发泡剂全部与组合聚醚混合,然后再与异氰酸酯组分进行发泡反应;也可以将物理发泡剂的一部分与组合聚醚混合,另一部分与异氰酸酯组分混合,然后再进行发泡反应;还可以将物理发泡剂全部与异氰酸酯组分混合,然后再与组合聚醚进行发泡反应。
本发明总体上的有益效果为:
(1)聚氨酯物料具有极高的流动性,能够充填满复杂的空腔体,并进一步提高了冰箱、集装箱等产品的节能降耗效果;
(2)密度低且尺寸稳定性好,可减少聚氨酯物料使用量,并进一步降低了产品在报废后所产生的废弃泡沫的相对数量;
(3)降低了组合聚醚与异氰酸酯组分的比例,增加了泡沫中生物基质材料的占比,提高了聚氨酯泡沫的生物降解性能;
(4)使用环保型发泡剂,对环境友好。
综上所述,本发明在聚氨酯的生命周期过程中,从原材料消耗、生物解性、节能降耗、报废处理等方面,降低了对环境的负面影响,充分发挥了其对节能减排的积极作用,有利于现阶段减少碳排放,实现碳达峰与碳中和。
附图说明
图1为兰芝模的结构示意图。
图2为图1的左视图。
具体实施方式
本发明的术语和定义如下:
模塑芯密度:即在模具中获得的聚氨酯泡沫的芯密度;
聚氨酯物料流过窄通道的能力:采用带挡块的兰芝模进行测试,具体的方法为:将内腔尺寸为20cm(长)×3cm(宽)×200cm(高)的兰芝模垂直放置,即高度方向为垂直方向。在兰芝模中加入三个挡块,挡块I和挡块II的尺寸相同,均为15cm(长)×3cm(宽)×5cm(高),挡块III的尺寸为20cm(长)×1.5cm(宽)×10cm(高),将挡块I置于距兰芝模底部120cm处,并与兰芝模内腔左侧面贴合;将挡块II置于距兰芝模底部130cm处,并与兰芝模内腔右侧面贴合;将挡块III置于距兰芝模底部150cm处,并与兰芝模内腔后侧面贴合,上述各挡块的布置请参阅图1和图2,其中表示方位的左侧面、右侧面以及后侧面均以图1中所示的方位为准。从兰芝模底部的注料口将聚氨酯发泡原液注入内腔,熟化后,取出泡沫,考察注料量、填充效果和表面气孔。若注料量、填充效果好且表面气孔少,则说明聚氨酯物料流过窄通道的能力强。
填充效果:即对兰芝模内腔是否被完全填充,局部是否存在空洞,以及空洞大小等的考察,将填充效果分为五个等级,五级标记为“○○○○○”,表示兰芝模内腔被完全填充且无空洞,填充效果好;四级标记为“○○○○”,表示仅在挡块周围出现直径小于5mm的空洞;三级标记为“○○○”,表示仅在挡块周围出现直径5~10mm的空洞,填充效果一般;二级标记为“○○”,表示仅在挡块周围出现直径大于10mm的空洞,填充效果差;一级标记为“○”,表示兰芝模内腔未被完全充满。
生物降解性能:向3L的镂空容器中加入100g聚氨酯泡沫样块和600g堆肥,将其埋于地下,并保证堆肥环境温度为58℃±2℃,环境相对湿度为50%,每个聚氨酯泡沫样块的大小为:1cm×1cm×1cm,分别记录不同的聚氨酯泡沫样块在堆肥1个月、3个月、6个月后的外观变化和质量损失。
密度分布均匀性:即沿高度方向自下而上每20cm取样一次,共获得9个样品,计算9个样品芯密度的样本标准差。
芯密度、导热系数和尺寸稳定性按照《GB/T 26689-2011冰箱、冰柜用硬质聚氨酯泡沫塑料》中的方法进行。
本发明中所使用的部分原材料如下:
蔗糖基聚醚多元醇I以蔗糖为起始剂,与氧化丙烯开环聚合,羟值为490~520mgKOH/g;
蔗糖基聚醚多元醇II以蔗糖和山梨醇为起始剂,与氧化丙烯和氧化丁烯开环聚合,羟值为510~540mgKOH/g,蔗糖在混合起始剂中的质量占比为60%;
蔗糖基聚醚多元醇III以蔗糖和甘油为起始剂,与氧化丙烯开环聚合,羟值为440~470mgKOH/g,蔗糖在混合起始剂中的质量占比为70%;
蔗糖基聚醚多元醇IV以蔗糖和二甘醇为起始剂,与氧化丙烯和氧化丁烯开环聚合,羟值为405~435mgKOH/g,蔗糖在混合起始剂中的质量占比为90%;
蔗糖基聚醚多元醇V以蔗糖和乙二醇为起始剂,与氧化丙烯开环聚合,羟值为350~380mgKOH/g,蔗糖在混合起始剂中的质量占比为80%;
山梨醇聚醚多元醇,羟值为395~425mgKOH/g;甘油聚醚多元醇,羟值为150~170mgKOH/g;菜籽油多元醇,羟值为465~490mgKOH/g;小桐子油多元醇,羟值为315~350mgKOH/g;大豆油多元醇,羟值为403~433mgKOH/g;甲苯二胺聚醚多元醇,羟值为310~370mgKOH/g;
苯酐聚酯多元醇,羟值为300~330mgKOH/g;聚碳酸亚丙酯二醇,羟值为25~35mgKOH/g;聚碳酸亚乙酯二醇,羟值为47~67mgKOH/g;聚己内酯多元醇,羟值为410~440mgKOH/g。
改性的甲苯二异氰酸酯:
TDI-A,采用甘油聚醚多元醇和苯酐聚酯多元醇对TDI-65进行改性,NCO%为38%,25℃的粘度500~700mPa·s;
TDI-B,采用皂化甘油聚醚多元醇对TDI-80进行改性,NCO%为25%,25℃的粘度800~1000mPa·s;
TDI-C,采用蓖麻油衍生物多元醇对TDI-100进行改性,NCO%为38%,25℃的粘度500~700mPa·s;
TDI-D,采用二甘醇聚醚多元醇和甘油聚醚多元醇对TDI-65进行改性,NCO%为38%,25℃的粘度300~500mPa·s;
TDI-E,采用二甘醇聚醚多元醇对TDI-80进行改性,NCO%为33%,25℃的粘度500~700mPa·s;
TDI-F,采用甘油聚醚多元醇对TDI-100进行改性,NCO%为28%,25℃的粘度500~700mPa·s;
TDI-G,采用蓖麻油多元醇对TDI-100进行改性,NCO%为25%,25℃的粘度800~1000mPa·s;
TDI-H,采用乙二醇聚醚多元醇对TDI-65进行改性,NCO%为38%,25℃的粘度300~500mPa·s;
TDI-I,采用季戊四醇聚醚多元醇对TDI-100进行改性,NCO%为28%,25℃的粘度1000~1200mPa·s;
TDI-J,采用苯酐聚酯多元醇对TDI-65进行改性,NCO%为30%,25℃的粘度25℃的粘度1000~1200mPa·s;
TDI-K,采用蓖麻油多元醇对TDI-65进行改性,NCO%为30%,25℃的粘度为1300~1400mPa·s。
复合催化剂包括发泡催化剂、凝胶催化剂和三聚催化剂。发泡催化剂包括但不限于五甲基二乙烯三胺、双(二甲基胺乙基)醚、四甲基已二胺的任意一种或几种,凝胶催化剂包括但不限于二月桂酸二丁基锡、N-乙基吗啉、N,N-二甲基环已胺、三乙烯二胺、1,2-二甲基咪唑、二甲基苄胺的任意一种或几种,三聚催化剂包括但不限于1,3,5-三(二甲氨基丙基)六氢三嗪、2,4,6-三(二甲氨甲基)苯酚、甲季胺盐、辛酸钾、醋酸钾、(2-羟基丙基)三甲基甲酸铵、乙季铵盐、辛季铵盐的任意一种或几种。当选用两种以上催化剂时,可以采用其任意比例的混合。
泡沫稳定剂主要为有机硅氧烷聚氧化烯烃接枝共聚物,可选自市售牌号为AK8805、AK8830、AK8818、AK8815、AK8485、AK8812、AK8809、B8460、B8462、B8461、B8544、B8494、B8532、B8465、B8471、B8474、B8476、B8481、L6900、L6863、L6912、L6988的任意一种或几种。当选用两种以上泡沫稳定剂时,可采用任意比例混合。
表1纯烷烃发泡体系实施例及对比例配方表
Figure BDA0003344896220000071
Figure BDA0003344896220000081
表2烷烃/氟烯烃发泡体系实施例及对比例配方表
Figure BDA0003344896220000082
Figure BDA0003344896220000091
表3甲酸甲酯发泡体系实施例及对比例配方表
Figure BDA0003344896220000092
Figure BDA0003344896220000101
实施例采用如下方法进行,但本发明的实施效果并不限于下述方法:
根据表1~表3中的配方,按照组合聚醚、物理发泡剂和异氰酸酯组分的重量比为100:(18~36):(99~159)进行聚氨酯发泡反应。先将组合聚醚和物理发泡剂混合,获得混合物(I),混合物(I)在25℃的粘度为200~700mPa·s。将混合物(I)与异氰酸酯组分混合,高速搅拌后注入模温为40±5℃的带挡块的兰芝模的模腔中,待泡沫成型熟化后,观测填充效果并测算芯密度、导热系数、尺寸稳定性、降解性能等,结果如表4~表7所示。
表4纯烷烃发泡体系实施例及对比例性能表征结果
Figure BDA0003344896220000111
从表4中结果可以看出,对于纯烷烃发泡体系,采用本发明的技术方案,可以实现五级填充效果,注料量少、表面气孔少,且芯密度分布均匀,在25.3~26.7kg/m3的低密度水平下,尺寸稳定性好。而对比例1在不使用甲苯二异氰酸酯的情况下,填充效果差,仅为三级,且表面气孔多。对比例2在对比例1的基础上继续增加MDI的用量,虽然填充效果有所改善,但是注料量增加,并且导热系数升高,这不利于产品的节能降耗以及原材料成本的节约。同样,对于实施例1~4,若不使用改性的甲苯二异氰酸酯,也会出现较差的填充效果。由此可见,使用异氰酸酯A能够提高纯烷烃发泡体系聚氨酯泡沫流过窄通道的能力。但是若要兼顾泡沫综合性能,异氰酸酯A的用量和粘度等特征需要满足一定的要求。若改性的甲苯二异氰酸酯的用量太低,如对比例8,仅为异氰酸酯组分的15%,则流过窄通道的能力变差,导热系数升高;若改性的甲苯二异氰酸酯的粘度太高,如对比例9,则注料量显著增加,且填充效果仍较差。
表5烷烃/氟烯烃发泡体系实施例及对比例性能表征结果
Figure BDA0003344896220000121
由表5可以看出,其导热系数较表4中数据进一步降低,仅为18.3~18.7mW/(m.K),这主要是由于使用了氟烯烃类发泡剂。同时,对于该发泡体系,采用本发明的技术方案也可以实现五级填充效果,注料量少、表面气孔少,且芯密度分布均匀,且在26.0~26.6kg/m3的低密度水平下,尺寸稳定性好。而对比例3和4,在不使用甲苯二异氰酸酯,或者在增加MDI用量的情况下,效果均不理想,不能获得低注料量和高性能的兼顾。另外,对比例7表明,当甲苯二异氰酸酯的用量超过50%时,填充效果有所降低,密度分布均匀性差,且导热系数升高,不利于产品的节能降耗。
表6甲酸甲酯发泡体系实施例及对比例性能表征结果
Figure BDA0003344896220000122
Figure BDA0003344896220000131
由表6可以看出,对于甲酸甲酯发泡体系,本发明的技术方案仍然能够适用。填充效果好,注料量少、表面气孔少,且芯密度分布均匀,在25.8~26.7kg/m3的低密度水平下,尺寸稳定性好。而对比例5和6,在不使用甲苯二异氰酸酯,或者在增加MDI用量的情况下,效果均不理想,不能获得低注料量和高性能的兼顾。另外,对比例10和15表明,组合聚醚在不含有物理发泡剂时的粘度也会影响聚氨酯物料流过窄通道的能力,当粘度小于3000mPa·s或粘度大于12000mPa·s时,均会出现填充效果下降,表明气孔增多,尺寸稳定性下降等负面影响。同样,对于纯烷烃发泡体系、烷烃/氟烯烃发泡体系也会出现相同的现象。
综上所述,不管对于何种发泡体系,采用本发明的技术方案,均可以达到提高聚氨酯物料流过窄通道的能力,减少注料量,并兼顾泡沫性能的目的。即采用本发明的技术方案注料量少,而对比实施例的注料量均高于本发明,但各项性能仍不及本发明,这显然不利于原料的节约,且当产品进入报废环节,还会产生大量的废弃泡沫。而本发明的聚氨酯泡沫不仅密度低,而且尺寸稳定性好,能够在减少注料量的情况下,保证泡沫性能,这有利于碳减排且对环境友好。同时,表中数据还表明,本发明的技术方案具有较好的流过窄通道的能力,能够满足复杂结构腔体的填充需求,填充效果好,表面气孔少,能够充分发挥聚氨酯材料的节能降耗作用。
表7实施例1~15的生物降解性能
Figure BDA0003344896220000141
通常情况下,组合聚醚与异氰酸酯组分的重量比为100:140,而本发明可将料比降至100:99,即异氰酸酯组分的使用量显著降低,组合聚醚中生物基组分的占比显著增加,有利于聚氨酯泡沫的生物降解,结果如表7所示。采用本发明技术方案的聚氨酯硬泡在6个月时即已完全不成型,而对比例中采用纯的MDI的聚氨酯硬泡在6个月时仅处于骨架坍塌阶段,同时,从6个月质量损失可以看出,实施例1~15的质量损失为26~62%,而对比例1~6仅为8~18%,由此可见,本发明的技术方案具有较好的生物降解性能。

Claims (9)

1.聚氨酯硬泡,其原料包含组合聚醚、物理发泡剂和异氰酸酯组分,其特征在于,所述组合聚醚含有蔗糖基聚醚多元醇,所述异氰酸酯组分中含有异氰酸酯A、或同时含有异氰酸酯A和异氰酸酯B,所述异氰酸酯A为甲苯二异氰酸酯或改性的甲苯二异氰酸酯,所述异氰酸酯B为多亚甲基多苯基多异氰酸酯。
2.根据权利要求1所述的聚氨酯硬泡,其特征在于,所述异氰酸酯B的平均官能度为2.7~2.9。
3.根据权利要求1所述的聚氨酯硬泡,其特征在于,所述改性的甲苯二异氰酸酯在25℃的粘度≤1200mPa·s。
4.根据权利要求1所述的聚氨酯硬泡,其特征在于,所述改性的甲苯二异氰酸酯的NCO%范围为:25wt%≤NCO%≤38wt%。
5.根据权利要求1所述的聚氨酯硬泡,其特征在于,所述改性的甲苯二异氰酸酯所使用的多元醇官能度2~3。
6.根据权利要求1所述的聚氨酯硬泡,其特征在于,所述物理发泡剂中含有烷烃类发泡剂、甲酸甲酯和氟烯烃类发泡剂中的至少一种。
7.组合聚醚,其特征在于,用于制备权利要求1~5任意一项所述的聚氨酯硬泡,所述组合聚醚在不含有物理发泡剂时,25℃时的粘度为3000~12000mPa·s。
8.根据权利要求7所述的组合聚醚,其特征在于,包括如下重量百分比的组分:
62~95wt%聚醚多元醇、0~30wt%聚酯多元醇、1.7~4.6wt%泡沫稳定剂、1.5~5wt%催化剂、0.8~2.5wt%水。
9.根据权利要求8所述的组合聚醚,其特征在于,所述聚酯多元醇为聚碳酸酯多元醇和/或苯酐聚酯多元醇。
CN202111320154.5A 2021-11-09 2021-11-09 聚氨酯硬泡及其使用的组合聚醚 Active CN114057981B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111320154.5A CN114057981B (zh) 2021-11-09 2021-11-09 聚氨酯硬泡及其使用的组合聚醚

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111320154.5A CN114057981B (zh) 2021-11-09 2021-11-09 聚氨酯硬泡及其使用的组合聚醚

Publications (2)

Publication Number Publication Date
CN114057981A true CN114057981A (zh) 2022-02-18
CN114057981B CN114057981B (zh) 2023-07-07

Family

ID=80274424

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111320154.5A Active CN114057981B (zh) 2021-11-09 2021-11-09 聚氨酯硬泡及其使用的组合聚醚

Country Status (1)

Country Link
CN (1) CN114057981B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024016743A1 (zh) * 2022-07-21 2024-01-25 海信冰箱有限公司 硬质聚氨酯泡沫、其制备方法及包含硬质聚氨酯泡沫的保温材料、冰箱或冰柜

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5464560A (en) * 1995-04-06 1995-11-07 Bayer Corporation Foam-forming mixtures with decreased decomposition of hydrohalocarbon blowing agents
CN1468880A (zh) * 2002-06-27 2004-01-21 日立家用电器公司 硬质聚氨酯泡沫材料与绝热体
US20050282989A1 (en) * 2004-06-17 2005-12-22 Rosthauser James W TDI prepolymers with improved processing characteristics
CN102675579A (zh) * 2012-05-07 2012-09-19 南京宝新聚氨酯有限公司 一种聚氨酯反应组合物及采用该组合物制备的硬质泡沫的方法
CN106279605A (zh) * 2016-08-03 2017-01-04 南宁可煜能源科技有限公司 一种聚氨酯泡沫保温材料
CN113024794A (zh) * 2021-04-08 2021-06-25 红宝丽集团股份有限公司 能够与异氰酸酯反应的组合物及其制备的聚氨酯材料
CN113817213A (zh) * 2021-09-10 2021-12-21 苏州思德新材料科技有限公司 一种聚氨酯硬质泡沫的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5464560A (en) * 1995-04-06 1995-11-07 Bayer Corporation Foam-forming mixtures with decreased decomposition of hydrohalocarbon blowing agents
CN1468880A (zh) * 2002-06-27 2004-01-21 日立家用电器公司 硬质聚氨酯泡沫材料与绝热体
US20050282989A1 (en) * 2004-06-17 2005-12-22 Rosthauser James W TDI prepolymers with improved processing characteristics
CN102675579A (zh) * 2012-05-07 2012-09-19 南京宝新聚氨酯有限公司 一种聚氨酯反应组合物及采用该组合物制备的硬质泡沫的方法
CN106279605A (zh) * 2016-08-03 2017-01-04 南宁可煜能源科技有限公司 一种聚氨酯泡沫保温材料
CN113024794A (zh) * 2021-04-08 2021-06-25 红宝丽集团股份有限公司 能够与异氰酸酯反应的组合物及其制备的聚氨酯材料
CN113817213A (zh) * 2021-09-10 2021-12-21 苏州思德新材料科技有限公司 一种聚氨酯硬质泡沫的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KRZYSZTOF PIELICHOWSKI1\'等: "FLAMMABILITY OF RIGID POLYURETHANE FOAMS BLOWN WITH PENTANE: LIMITING OXYGEN INDEX DATA AND THERMOVISION CHARACTERISTICS", JOURNAL OF POLYMER ENGINEERING, vol. 22, no. 3, pages 195 - 207 *
于剑昆: "聚氨酯硬质泡沫用甲酸甲酯发泡剂简介", 《化学推进剂与高分子材料》 *
于剑昆: "聚氨酯硬质泡沫用甲酸甲酯发泡剂简介", 《化学推进剂与高分子材料》, no. 05, 28 September 2016 (2016-09-28), pages 13 - 28 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024016743A1 (zh) * 2022-07-21 2024-01-25 海信冰箱有限公司 硬质聚氨酯泡沫、其制备方法及包含硬质聚氨酯泡沫的保温材料、冰箱或冰柜

Also Published As

Publication number Publication date
CN114057981B (zh) 2023-07-07

Similar Documents

Publication Publication Date Title
Cinelli et al. Green synthesis of flexible polyurethane foams from liquefied lignin
CN102203156B (zh) 闭孔刚性聚氨酯泡沫体的制备方法
CN101177525B (zh) 纤维增强聚氨酯改性聚异氰酸脲酯复合材料及其制备方法
CN101486834A (zh) 一种高性能纳米聚氨酯微孔弹性体复合材料及其制备方法
DK2646683T3 (en) Core foam of polyurethane for production of wings, especially for wind projects
JP2016531196A (ja) 混合発泡剤を使用して独立気泡硬質ポリウレタンフォームを作製するための真空支援方法
CN109762136B (zh) 一种聚氨酯发泡组合物、聚氨酯泡沫及其制备方法和应用
CA3003315C (en) Polyetheresters and their use in rigid polyurethane foams
KR100507847B1 (ko) 경질 폴리우레탄 폼 조성물 및 이를 이용한 보냉재
CA2796656A1 (en) Polyols suitable for hot molded foam production with high renewable resource content
CN108948410B (zh) 多元醇组合物及其制备的聚氨酯硬质泡沫塑料
CN113557255A (zh) 多元醇共混物及其在生产pur-pir泡沫形成组合物中的用途
CN114057981B (zh) 聚氨酯硬泡及其使用的组合聚醚
US20120142801A1 (en) Core foams of polyurethane for production of wings and blades for wind power systems in particular
JP2023068007A (ja) ポリウレタンフォームとその製造方法
JP2011529983A (ja) オルト−シクロヘキサンジアミン開始ポリオールに基づく硬質ポリウレタンフォームシステム
JP5612570B2 (ja) メチレンビス(シクロヘキシルアミン)開始ポリオール及び該ポリオールから作製される硬質ポリウレタンフォーム
JP2013506045A (ja) 1,3−及び/又は1,4−ビス(アミノメチル)シクロヘキサン開始ポリオールとメチレンビス(シクロヘキシルアミン)開始ポリオール及びシクロヘキサンジアミン開始ポリオールの内の少なくとも1つとを含有するポリオール混合物、並びにそれらから製造されたポリウレタン
MX2011001094A (es) Mezclas de poliol conteniendo polioles iniciados con orto-ciclohexanodiamina para espumas de poliuretano rigidas.
CN112375215A (zh) 一种高亲油聚醚及其在制备聚氨酯泡沫塑料中的应用
BR102014004175B1 (pt) Moldagem de isolamento e método para sua manufatura
CN113929852A (zh) 聚氨酯组合物、组合聚醚、聚氨酯硬泡及其制备方法
JP5687190B2 (ja) 1,3−又は1,4−ビス(アミノメチル)シクロヘキサン開始ポリオール及び該ポリオールから作製される硬質ポリウレタンフォーム
JP2005281374A (ja) リグノセルロース由来ポリオール及びその製造方法並びにポリウレタン発泡体
JPH0224289B2 (zh)

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant