WO2024007909A1 - 一种蚀刻组合物、蚀刻方法及应用 - Google Patents

一种蚀刻组合物、蚀刻方法及应用 Download PDF

Info

Publication number
WO2024007909A1
WO2024007909A1 PCT/CN2023/103097 CN2023103097W WO2024007909A1 WO 2024007909 A1 WO2024007909 A1 WO 2024007909A1 CN 2023103097 W CN2023103097 W CN 2023103097W WO 2024007909 A1 WO2024007909 A1 WO 2024007909A1
Authority
WO
WIPO (PCT)
Prior art keywords
etching
etching composition
silicon nitride
composition
comparative example
Prior art date
Application number
PCT/CN2023/103097
Other languages
English (en)
French (fr)
Inventor
吴祥
李卫民
Original Assignee
上海集成电路材料研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海集成电路材料研究院有限公司 filed Critical 上海集成电路材料研究院有限公司
Publication of WO2024007909A1 publication Critical patent/WO2024007909A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • C09K13/04Etching, surface-brightening or pickling compositions containing an inorganic acid
    • C09K13/06Etching, surface-brightening or pickling compositions containing an inorganic acid with organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means

Definitions

  • the invention belongs to the field of semiconductor manufacturing technology, and in particular relates to an etching composition, etching method and application.
  • silicon nitride and silicon oxide are representative dielectric materials in semiconductor devices and are often used.
  • the silicon nitride material on the substrate is usually removed using a phosphoric acid wet etching process. In a specific process flow, it is necessary to protect the silicon oxide material on the substrate in contact with the etching composition while removing the silicon nitride material, that is, to achieve the purpose of selectively removing the silicon nitride material, such as in the production of 3D NAND device structures.
  • selective silicon nitride etching compositions usually add silicon compounds to the phosphoric acid solution.
  • the etching selectivity ratio of silicon nitride and silicon oxide is related to the concentration and type of silicon compounds in the etching composition, but not all silicon compounds can be used.
  • the preparation of special silicon compounds is costly and difficult.
  • the inventor experimentally found that many common organosilicon compounds (including organosilicon compounds containing Si-C bonds) are unable to improve the etching selectivity of silicon nitride when used alone as additives in phosphoric acid solution, or the extent of the improvement in selectivity is limited. , therefore, this limits the use of a large part of organic silicon compounds, and the silicon nitride etching composition produced is difficult to meet the high selectivity requirements for silicon nitride wet etching in wafer manufacturing.
  • the purpose of the present invention is to provide an etching composition, etching method and application to solve the problem of poor etching selectivity between silicon nitride and silicon oxide and low etching rate of silicon nitride in the prior art.
  • the etching uniformity is poor and cannot adapt to the multi-layer stack structure.
  • the organic silicon compound is used alone as an additive in the etching composition, the etching selectivity of silicon nitride and silicon oxide cannot be improved alone or the improved etching selectivity is limited.
  • the cost of the organic silicon compound additive is high and A difficult problem to prepare.
  • an etching composition which includes: phosphoric acid, an organic silicon compound, an oxidizing agent and water,
  • the organosilicon compound is an organosilicon compound containing at least one silicon-carbon bond.
  • the organosilicon compound includes 3-aminopropyltriethoxysilane, heptamethyldisilazane, dichloro(methyl)phenylsilane, triethylchlorosilane, 1,3-bis( 3-Aminopropyl)tetramethyldisiloxane, 1,3-dimethyl-1,3-diphenyl-1,3-divinyldisiloxane, dimethoxydiphenylsilane , one of dimethoxydimethylsilane, benzyloxytrimethylsilane, 1,6-bis(trichlorosilyl)hexane, and N,N,O-tris(trimethylsilyl)hydroxylamine species or combination.
  • the organosilicon compound includes tetraisocyanatosilane.
  • the relative molecular weight of the organosilicon compound does not exceed 1,000.
  • the oxidant includes one or a combination of ozone, hydrogen peroxide, nitric acid, sulfuric acid, perchloric acid, and peroxy organic matter.
  • the mass fraction of the phosphoric acid solution in the etching composition is 70wt-95wt%; the mass fraction of the organosilicon compound in the etching composition is 0.01wt%-1wt%; The mass fraction of the oxidant in the etching composition is 0.01wt-1wt%; the balance is water.
  • the etching composition further includes a surfactant;
  • the surfactant includes ethylene glycol, perfluorohexyl ethyl sulfonic acid, polyethylene glycol, ethylene glycol fluoride, hydroxy acid, carboxylic acid one or a combination of them.
  • the present invention also provides an application of an etching composition, which is used for selective removal of silicon nitride material on an etching substrate.
  • the present invention also provides a method for etching silicon nitride material on a substrate with an etching composition.
  • the etching method includes: using the above etching composition for the silicon nitride layer, heating to 100-200°C, and etching the silicon nitride layer.
  • the silicon nitride material is not limited to silicon nitride material.
  • etching composition As mentioned above, the etching composition, etching method and application of the present invention have the following beneficial effects:
  • the present invention solves the problem of low etching rate of silicon nitride by the etching composition by innovatively adding a combined additive of oxidant and organic silicon compound, and when organic silicon compound (including organic silicon compound containing Si-C bond) is used alone as an additive.
  • the etching composition cannot improve or improves the problem of weak etching selectivity of silicon nitride and silicon oxide.
  • the combination of an oxidant and an organic silicon compound can further improve the etching selectivity of silicon nitride and silicon oxide, and can further increase the etching rate of silicon nitride.
  • Figure 1 shows a cross-sectional scanning electron microscope image of an unetched substrate in the present invention.
  • FIG. 2 shows a cross-sectional scanning electron microscope image in which both the silicon nitride layer and the silicon oxide layer on the substrate are etched and removed in an example of the present invention.
  • FIG. 3 shows a cross-sectional scanning electron microscope image in which the silicon nitride layer and the silicon oxide layer on the substrate are partially etched away in another example of the present invention.
  • FIG. 4 shows a cross-sectional scanning electron microscope image of another example of the present invention in which the silicon nitride layer on the substrate is partially etched away and the silicon oxide layer is retained.
  • FIG. 5 shows a cross-sectional scanning electron microscope image of another example of the present invention in which a larger part of the silicon nitride layer on the substrate is etched away and the silicon oxide layer is retained.
  • the invention provides an etching composition, which includes phosphoric acid, an organic silicon compound, an oxidizing agent and water; by adding an organic silicon compound and an oxidizing agent combined additive, on the one hand, the etching rate of silicon nitride can be increased through the oxidizing agent, and on the other hand, the etching rate of silicon nitride can be increased through the oxidizing agent.
  • the difficulty of selecting the organic silicon compound can be reduced, and the selectivity of the silicon nitride etching in the wet etching of silicon nitride and silicon oxide can be further improved.
  • the present invention uses an etching composition to etch a substrate containing silicon nitride and silicon oxide. While ensuring that silicon nitride is etched, the silicon oxide layer is well protected, and the etching rate of silicon nitride and the relationship between silicon nitride and silicon nitride are The etching selectivity of silicon oxide is further improved.
  • organosilicon compounds include organosilicon compounds containing at least one silicon-carbon bond.
  • organosilicon compounds include 3-aminopropyltriethoxysilane, heptamethyldisilazane, dichloro(methyl)phenylsilane, triethylchlorosilane, 1,3-bis(3 -Aminopropyl)tetramethyldisiloxane, 1,3-dimethyl-1,3-diphenyl-1,3-divinyldisiloxane, dimethoxydiphenylsilane, One of dimethoxydimethylsilane, benzyloxytrimethylsilane, 1,6-bis(trichlorosilyl)hexane, and N,N,O-tris(trimethylsilyl)hydroxylamine or combination.
  • the organosilicon compound includes tetraisocyanatosilane.
  • the relative molecular weight of the organosilicon compound does not exceed 1,000.
  • the relative molecular weight of the organosilicon compound in this embodiment may include values within any range of 1000, 900, 800, 700, 600, 500, etc.
  • the oxidizing agent includes one or a combination of ozone, hydrogen peroxide, nitric acid, sulfuric acid, perchloric acid, and peroxy organic matter.
  • the mass fraction of phosphoric acid in the etching composition is 70-95wt%; the mass fraction of organosilicon compound in the etching composition is 0.01%wt-1wt%; the mass fraction of oxidant in the etching composition is The mass fraction is 0.01wt% ⁇ 1wt%; the balance is water.
  • the mass fraction of phosphoric acid in the etching composition may include values within the range of 70wt%, 75wt%, 80wt%, 85wt%, 90wt%, 95wt%, etc.; the mass fraction of the organic silicon compound in the etching compound The fraction may include values within the range of 0.01wt%, 0.05wt%, 0.1wt%, 0.5wt%, 0.9wt%, 1wt%, etc.; the mass fraction of the oxidant in the etching composition may include 0.01wt%, 0.05 Values within the range of wt%, 0.1wt%, 0.5wt%, 0.9wt%, 1wt%, etc.
  • the etching composition also includes a surfactant.
  • the surfactant includes one or a combination of ethylene glycol, perfluorohexyl ethyl sulfonic acid, polyethylene glycol, ethylene glycol fluoride, hydroxy acid, and carboxylic acid.
  • the invention also provides an application of the etching composition, which is applied to the selective removal of silicon nitride material on the etching substrate.
  • the etching composition is used to selectively etch the silicon nitride on the etching substrate according to the different etching rate selectivity ratios of the etching composition to silicon nitride and silicon oxide materials.
  • the selectivity ratio refers to the relative etching rate of one material to another material under the same etching conditions. It is defined as the ratio of the etching rate of the material to be etched to the etching rate of another material. Therefore, the etching selectivity ratio of silicon nitride to silicon oxide is the ratio of the etching rate of silicon nitride to the etching rate of silicon oxide under the same etching conditions.
  • the etching reaction mechanism between the etching composition and silicon nitride and silicon oxide is as follows:
  • the phosphoric acid etching composition contains phosphoric acid and water.
  • the etching rate of silicon nitride is related to the process temperature, water content, phosphoric acid content and the concentration of organic silicon compounds; however, not all organic silicon compounds can improve the etching rate of silicon nitride.
  • Etching options Properties mainly silicon oxide compounds. It is generally believed that the etching rate of silicon oxide is inversely proportional to the concentration of organic silicon compounds, and compared with silicon nitride, the etching rate of silicon oxide is more affected by the concentration of silicon oxygen compounds in the etching solution, but the etching rate of organic silicon compounds in the etching solution is Too low a concentration will result in poor etching selectivity for silicon nitride.
  • the present invention uses a method of combining additives of organic silicon compounds and oxidants to generate silicon oxygen compounds, thereby reducing the difficulty of selecting and preparing organic silicon compounds and further improving etching selectivity.
  • the present invention also provides an etching method of an etching composition.
  • the etching method includes: heating the etching composition to 100°C to 200°C to etch the silicon nitride material.
  • the temperature of the etching composition may include values within the range of 100°C, 110°C, 120°C, 130°C, 140°C, 150°C, 160°C, 170°C, 180°C, 190°C, 200°C, etc.
  • the specific steps are: mix each component in the etching composition in proportion, then put the mixture into a polytetrafluoroethylene container, close it and raise the temperature to 100°C to 200°C, put the test wafer slice into it, and perform etching for 30 minutes. After the etching is completed, the wafer is removed, rinsed with ultrapure water, dried, and sliced for scanning electron microscopy.
  • the manufacturing method of the test wafer is to sequentially deposit a silicon nitride layer with a thickness of 1000A and a silicon oxide layer with a thickness of 1000A on the silicon wafer through PECVD (Inductively Coupled Enhanced Chemical Vapor Deposition), and dry etching.
  • PECVD Inductively Coupled Enhanced Chemical Vapor Deposition
  • the etching compositions used in the following specific embodiments are prepared by adding additives to a phosphoric acid aqueous solution with a mass fraction of 85 wt%.
  • the additives are a combination of different organic silicon compounds and oxidants.
  • the manufacturing method of the test wafer is to sequentially grow a silicon nitride layer with a thickness of 1000A and a silicon oxide layer with a thickness of 1000A on the silicon wafer through PECVD (Inductively Coupled Enhanced Chemical Vapor Deposition), and dry etching
  • PECVD Inductively Coupled Enhanced Chemical Vapor Deposition
  • the method is to create a trench so that the etching composition in this embodiment contacts the silicon nitride and silicon oxide materials simultaneously through the trench.
  • This embodiment provides an etching composition, which includes 100g of 85wt% phosphoric acid solution, 0.0474g of 3-aminopropyltriethoxysilane, and 0.4525g of 30wt% hydrogen peroxide aqueous solution.
  • This embodiment also provides an etching method of the etching composition.
  • the etching method is specifically as follows: putting the etching composition prepared in this embodiment into a polytetrafluoroethylene container, sealing it and heating it to 160°C, and putting it into a test wafer. The slices were etched for 30 minutes.
  • the test wafer after etching is taken out, rinsed with ultrapure water, dried, sliced, and analyzed.
  • the etching composition in this embodiment has high etching selectivity for the silicon oxide layer and silicon nitride layer on the test wafer slice, which means that the etching composition in this embodiment has a much higher etching rate for silicon nitride.
  • the etching rate of silicon oxide is significantly improved in this embodiment.
  • This embodiment provides an etching composition, which includes 100 g of 85 wt% phosphoric acid solution, 0.0381 g of heptamethyldisilazane, and 0.4929 g of 30 wt% hydrogen peroxide aqueous solution.
  • This embodiment also provides an etching method of the etching composition.
  • the etching method has the same steps as the etching method in Embodiment 1, and will not be described again.
  • a performance test is performed on the test wafer slices after the etching is completed.
  • the performance test method is the same as that in Embodiment 1 and will not be repeated here.
  • Analysis shows that the etching composition in this embodiment has a negative impact on the test wafer.
  • the etching selectivity of the silicon oxide layer and the silicon nitride layer on the slice is high, which indicates that the etching rate of silicon nitride by the etching composition in this embodiment is much greater than the etching rate of silicon oxide.
  • the silicon nitride etching rate and silicon nitride etching selectivity are significantly improved in this embodiment.
  • This embodiment provides an etching composition, which includes 100 g of 85 wt% phosphoric acid solution, 0.0448 g of dichloro(methyl)phenylsilane, and 0.4920 g of 30 wt% hydrogen peroxide aqueous solution.
  • This embodiment also provides an etching method of the etching composition.
  • the etching method has the same steps as the etching method in Embodiment 1, and will not be described again.
  • a performance test is performed on the test wafer after the etching is completed.
  • the performance test method is the same as that in Embodiment 1 and will not be repeated here.
  • Analysis shows that the etching composition in this embodiment has a better effect on slicing the test wafer.
  • the etching selectivity of the silicon oxide layer and the silicon nitride layer on the substrate is high, which means that the etching rate of silicon nitride by the etching composition in this embodiment is much greater than the etching rate of silicon oxide.
  • the silicon nitride etching rate and silicon nitride etching selectivity are significantly improved in this embodiment.
  • This embodiment provides an etching composition, which includes 100g of 85wt% phosphoric acid solution, 0.0340g of 1,3-bis(3-aminopropyl)tetramethyldisiloxane, and 0.4950g of 30wt% hydrogen peroxide aqueous solution. g.
  • This embodiment also provides an etching method of the etching composition.
  • the etching method has the same steps as the etching method in Embodiment 1, and will not be described again.
  • a performance test is performed on the test wafer after the etching is completed.
  • the performance test method is the same as that in Embodiment 1 and will not be repeated here. Analysis shows that the etching composition in this embodiment has a better effect on slicing the test wafer.
  • the silicon oxide layer on the The etching selectivity of the silicon nitride layer is high, which means that the etching rate of the etching composition in this embodiment for silicon nitride is much greater than the etching rate for silicon oxide.
  • the silicon nitride etching rate and silicon nitride etching selectivity are significantly improved in this embodiment.
  • This embodiment provides an etching composition, which includes 100g of 85wt% phosphoric acid solution, 0.0353g of triethylchlorosilane, and 0.4870g of 30wt% hydrogen peroxide aqueous solution.
  • This embodiment also provides an etching method of the etching composition.
  • the etching method has the same steps as the etching method in Embodiment 1, and will not be described again.
  • a performance test is performed on the test wafer after the etching is completed.
  • the performance test method is the same as that in Embodiment 1 and will not be repeated here.
  • Analysis shows that the etching composition in this embodiment has a better effect on slicing the test wafer.
  • the etching selectivity of the silicon oxide layer and the silicon nitride layer on the substrate is high, which means that the etching rate of silicon nitride by the etching composition in this embodiment is much greater than the etching rate of silicon oxide.
  • the silicon nitride etching rate and silicon nitride etching selectivity are significantly improved in this embodiment.
  • This embodiment provides an etching composition, which includes 100 g of 85 wt% phosphoric acid solution and 0.0390 1,3-dimethyl-1,3-diphenyl-1,3-divinyldisiloxane. g and 0.4913g of 30wt% hydrogen peroxide aqueous solution.
  • This embodiment also provides an etching method of the etching composition.
  • the etching method has the same steps as the etching method in Embodiment 1, and will not be described again.
  • a performance test is performed on the test wafer after the etching is completed.
  • the performance test method is the same as that in Embodiment 1 and will not be repeated here.
  • Analysis shows that the etching composition in this embodiment has a better effect on slicing the test wafer.
  • the etching selectivity of the silicon oxide layer and the silicon nitride layer on the substrate is high, which means that the etching rate of silicon nitride by the etching composition in this embodiment is much greater than the etching rate of silicon oxide.
  • the silicon nitride etching rate and silicon nitride etching selectivity are significantly improved in this embodiment.
  • This embodiment provides an etching composition, which includes 100 g of 85 wt% phosphoric acid solution, 0.0535 g of dimethoxydiphenylsilane, and 0.4820 g of 30 wt% hydrogen peroxide aqueous solution.
  • This embodiment also provides an etching method of the etching composition.
  • the etching method has the same steps as the etching method in Embodiment 1, and will not be described again.
  • a performance test is performed on the test wafer after the etching is completed.
  • the performance test method is the same as that in Embodiment 1 and will not be repeated here. Analysis shows that the etching composition in this embodiment has a better effect on slicing the test wafer.
  • the silicon oxide layer on the The etching selectivity of the silicon nitride layer is high, which means that the etching rate of the etching composition in this embodiment for silicon nitride is much greater than the etching rate for silicon oxide.
  • the silicon nitride etching rate and silicon nitride etching selectivity are significantly improved in this embodiment.
  • This embodiment provides an etching composition, which includes 100 g of 85 wt% phosphoric acid solution, 0.0433 g of 1,6-bis(trichlorosilyl)hexane, and 0.4974 g of 30 wt% hydrogen peroxide aqueous solution.
  • This embodiment also provides an etching method of the etching composition.
  • the etching method has the same steps as the etching method in Embodiment 1, and will not be described again.
  • a performance test is performed on the test wafer after the etching is completed.
  • the performance test method is the same as that in Embodiment 1 and will not be repeated here.
  • Analysis shows that the etching composition in this embodiment has a better effect on slicing the test wafer.
  • the etching selectivity of the silicon oxide layer and the silicon nitride layer on the substrate is high, which means that the etching rate of silicon nitride by the etching composition in this embodiment is much greater than the etching rate of silicon oxide.
  • the silicon nitride etching rate and silicon nitride etching selectivity are significantly improved in this embodiment.
  • This embodiment provides an etching composition, which includes 100 g of 85 wt% phosphoric acid solution, 0.0436 g of benzyloxytrimethylsilane, and 0.4950 g of 30 wt% hydrogen peroxide aqueous solution.
  • This embodiment also provides an etching method of the etching composition.
  • the etching method has the same steps as the etching method in Embodiment 1, and will not be described again.
  • a performance test is performed on the test wafer after the etching is completed.
  • the performance test method is the same as that in Embodiment 1 and will not be repeated here.
  • Analysis shows that the etching composition in this embodiment has a better effect on slicing the test wafer.
  • the etching selectivity of the silicon oxide layer and the silicon nitride layer on the substrate is high, which means that the etching rate of silicon nitride by the etching composition in this embodiment is much greater than the etching rate of silicon oxide.
  • the silicon nitride etching rate and silicon nitride etching selectivity are significantly improved in this embodiment.
  • This embodiment provides an etching composition, which includes 100 g of 85 wt% phosphoric acid solution, 0.0276 g of dimethoxydimethylsilane, and 0.4950 g of 30 wt% hydrogen peroxide aqueous solution.
  • This embodiment also provides an etching method of the etching composition.
  • the etching method has the same steps as the etching method in Embodiment 1, and will not be described again.
  • a performance test is performed on the test wafer after the etching is completed.
  • the performance test method is the same as that in Embodiment 1 and will not be repeated here. Analysis shows that the etching composition in this embodiment has a better effect on slicing the test wafer.
  • the silicon oxide layer on the The etching selectivity of the silicon nitride layer is high, which means that the etching rate of the etching composition in this embodiment for silicon nitride is much greater than the etching rate for silicon oxide.
  • the silicon nitride etching rate and silicon nitride etching selectivity are significantly improved in this embodiment.
  • This embodiment provides an etching composition, which includes 100 g of 85 wt% phosphoric acid solution, 0.0276 g of dimethoxydimethylsilane, and 0.5100 g of 60 wt% nitric acid aqueous solution.
  • This embodiment also provides an etching method of the etching composition.
  • the etching method has the same steps as the etching method in Embodiment 1, and will not be described again.
  • a performance test is performed on the test wafer after the etching is completed.
  • the performance test method is the same as that in Embodiment 1 and will not be repeated here.
  • Analysis shows that the etching composition in this embodiment has a better effect on slicing the test wafer.
  • the etching selectivity of the silicon oxide layer and the silicon nitride layer on the substrate is high, which means that the etching rate of silicon nitride by the etching composition in this embodiment is much greater than the etching rate of silicon oxide.
  • the silicon nitride etching rate and silicon nitride etching selectivity are significantly improved in this embodiment.
  • This embodiment provides an etching composition, which includes 100 g of 85 wt% phosphoric acid solution, 0.0420 g of tetraisocyanatosilane, and 0.4928 g of 30 wt% hydrogen peroxide aqueous solution.
  • This embodiment also provides an etching method of the etching composition.
  • the etching method has the same steps as the etching method in Embodiment 1, and will not be described again.
  • a performance test is performed on the test wafer after the etching is completed.
  • the performance test method is the same as that in Embodiment 1 and will not be repeated here.
  • Analysis shows that the etching composition in this embodiment has a better effect on slicing the test wafer.
  • the etching selectivity of the silicon oxide layer and the silicon nitride layer on the substrate is high, which means that the etching rate of silicon nitride by the etching composition in this embodiment is much greater than the etching rate of silicon oxide.
  • the silicon nitride etching rate and silicon nitride etching selectivity are significantly improved in this embodiment.
  • This embodiment provides an etching composition, which includes 100g of 85wt% phosphoric acid solution, 0.0534g of N,N,O-tris(trimethylsilyl)hydroxylamine, and 0.5006g of 30wt% hydrogen peroxide aqueous solution.
  • This embodiment also provides an etching method of the etching composition.
  • the etching method has the same steps as the etching method in Embodiment 1, and will not be described again.
  • a performance test is performed on the test wafer after the etching is completed.
  • the performance test method is the same as that in Embodiment 1 and will not be repeated here. Analysis shows that the etching composition in this embodiment has a better effect on slicing the test wafer.
  • the silicon oxide layer on the The etching selectivity of the silicon nitride layer is high, which means that the etching rate of the etching composition in this embodiment for silicon nitride is much greater than the etching rate for silicon oxide.
  • the silicon nitride etching rate and silicon nitride etching selectivity are significantly improved in this embodiment.
  • the etching composition in this comparative example is different from that in Example 1 in that no hydrogen peroxide aqueous solution is added, and the rest is the same.
  • This comparative example also provides an etching method of the etching composition.
  • the etching method has the same steps as the etching method in Example 1, and will not be described again.
  • etching composition in this comparative example has a negative effect on the oxidation of the test wafer slices.
  • the etching selectivity and etching rate of the silicon layer and the silicon nitride layer are both low, which means that compared with Example 1, the etching composition in this comparative example has relatively low etching selectivity and etching rate for silicon nitride.
  • the etching composition in this comparative example is different from that in Example 2 in that no hydrogen peroxide aqueous solution is added, and the rest is the same.
  • This comparative example also provides an etching method of the etching composition.
  • the etching method has the same steps as the etching method in Example 1, and will not be described again.
  • the performance test is performed on the test wafer after etching is completed.
  • the performance test method is the same as in Example 1 and will not be repeated here.
  • the etching composition in this comparative example affects the silicon oxide on the test wafer slices.
  • the etching selectivity and etching rate of the silicon nitride layer and the silicon nitride layer are both low, which means that compared with Example 2, the etching composition in this comparative example has relatively low etching selectivity and etching rate for silicon nitride.
  • the etching composition in this comparative example is different from that in Example 3 in that no hydrogen peroxide aqueous solution is added, and the rest is the same.
  • This comparative example also provides an etching method of the etching composition.
  • the etching method has the same steps as the etching method in Example 1, and will not be described again.
  • the performance test is performed on the test wafer after etching is completed.
  • the performance test method is the same as in Example 1 and will not be repeated here.
  • the etching composition in this comparative example affects the silicon oxide on the test wafer slices.
  • the etching selectivity and etching rate of the silicon nitride layer and the silicon nitride layer are both low, which means that compared with Example 3, the etching composition in this comparative example has relatively low etching selectivity and etching rate for silicon nitride.
  • the etching composition in this comparative example is different from that in Example 4 in that no hydrogen peroxide aqueous solution is added, and the rest is the same.
  • This comparative example also provides an etching method of the etching composition.
  • the etching method is the same as the etching method in Example 1. The steps are the same and will not be repeated here.
  • the performance test is performed on the test wafer after etching is completed.
  • the performance test method is the same as in Example 1 and will not be repeated here.
  • the etching composition in this comparative example affects the silicon oxide on the test wafer slices.
  • the etching selectivity and etching rate of the silicon nitride layer and the silicon nitride layer are both low, which means that compared with Example 4, the etching composition in this comparative example has relatively low etching selectivity and etching rate for silicon nitride.
  • the etching composition in this comparative example is different from that in Example 5 in that no hydrogen peroxide aqueous solution is added, and the rest is the same.
  • This comparative example also provides an etching method of the etching composition.
  • the etching method has the same steps as the etching method in Example 1, and will not be described again.
  • the performance test is performed on the test wafer after etching is completed.
  • the performance test method is the same as in Example 1 and will not be repeated here.
  • the etching composition in this comparative example affects the silicon oxide on the test wafer slices.
  • the etching selectivity and etching rate of the silicon nitride layer and the silicon nitride layer are both low, which means that compared with Example 5, the etching composition in this comparative example has relatively low etching selectivity and etching rate for silicon nitride.
  • the etching composition in this comparative example is different from that in Example 6 in that no hydrogen peroxide aqueous solution is added, and the rest is the same.
  • This comparative example also provides an etching method of the etching composition.
  • the etching method has the same steps as the etching method in Example 1, and will not be described again.
  • the performance test is performed on the test wafer after etching is completed.
  • the performance test method is the same as in Example 1 and will not be repeated here.
  • the etching composition in this comparative example affects the silicon oxide on the test wafer slices.
  • the etching selectivity and etching rate of the silicon nitride layer and the silicon nitride layer are both low, which means that compared with Example 6, the etching composition in this comparative example has relatively low etching selectivity and etching rate for silicon nitride.
  • the etching composition in this comparative example is different from that in Example 7 in that no hydrogen peroxide aqueous solution is added, and the rest is the same.
  • This comparative example also provides an etching method of the etching composition.
  • the etching method has the same steps as the etching method in Example 1, and will not be described again.
  • the performance test is performed on the test wafer after etching is completed.
  • the performance test method is the same as in Example 1 and will not be repeated here.
  • the etching composition in this comparative example affects the silicon oxide on the test wafer slices.
  • the etching selectivity and etching rate of the silicon nitride layer and the silicon nitride layer are both low, which means that compared with Example 7, the etching composition in this comparative example has relatively low etching selectivity and etching rate for silicon nitride.
  • the etching composition in this comparative example is different from that in Example 8 in that no hydrogen peroxide aqueous solution is added, and the rest is the same.
  • This comparative example also provides an etching method of the etching composition.
  • the etching method has the same steps as the etching method in Example 1, and will not be described again.
  • the performance test is performed on the test wafer after etching is completed.
  • the performance test method is the same as in Example 1 and will not be repeated here.
  • the etching composition in this comparative example affects the silicon oxide on the test wafer slices.
  • the etching selectivity and etching rate of the silicon nitride layer and the silicon nitride layer are both low, which means that compared with Example 8, the etching composition in this comparative example has relatively low etching selectivity and etching rate for silicon nitride.
  • the etching composition in this comparative example is different from that in Example 9 in that no hydrogen peroxide aqueous solution is added, and the rest is the same.
  • This comparative example also provides an etching method of the etching composition.
  • the etching method has the same steps as the etching method in Example 1, and will not be described again.
  • the performance test is performed on the test wafer after etching is completed.
  • the performance test method is the same as in Example 1 and will not be repeated here.
  • the etching composition in this comparative example affects the silicon oxide on the test wafer slices.
  • the etching selectivity and etching rate of the silicon nitride layer and the silicon nitride layer are both low, which means that compared with Example 9, the etching composition in this comparative example has relatively low etching selectivity and etching rate for silicon nitride.
  • the etching composition in this comparative example is different from that in Example 10 in that no hydrogen peroxide aqueous solution is added, and the rest is the same.
  • This comparative example also provides an etching method of the etching composition.
  • the etching method has the same steps as the etching method in Example 1, and will not be described again.
  • the performance test is performed on the test wafer after etching is completed.
  • the performance test method is the same as in Example 1 and will not be repeated here.
  • the etching composition in this comparative example affects the silicon oxide on the test wafer slices.
  • the etching selectivity and etching rate of the silicon nitride layer and the silicon nitride layer are both low, which means that compared with Example 10, the etching composition in this comparative example has relatively low etching selectivity and etching rate for silicon nitride.
  • the etching composition in this comparative example is different from that in Example 11 in that no nitric acid is added, and the rest is the same.
  • This comparative example also provides an etching method of the etching composition.
  • the etching method has the same steps as the etching method in Example 1, and will not be described again.
  • the performance test is performed on the test wafer after etching.
  • the performance test method is the same as that in Example 1 and will not be described again.
  • the etching composition in this comparative example has a positive effect on the silicon oxide on the test wafer slices.
  • the etching selectivity and etching rate of the silicon nitride layer and the silicon nitride layer are both low, which means that compared with Example 11, the etching composition in this comparative example has a better etching effect on silicon nitride.
  • the etching selectivity and etching rate are relatively low.
  • the etching composition in this comparative example is different from that in Example 12 in that no hydrogen peroxide aqueous solution is added, and the rest is the same.
  • This comparative example also provides an etching method of the etching composition.
  • the etching method has the same steps as the etching method in Example 1, and will not be described again.
  • the performance test is performed on the test wafer after etching is completed.
  • the performance test method is the same as in Example 1 and will not be repeated here.
  • the etching composition in this comparative example affects the silicon oxide on the test wafer slices.
  • the etching selectivity and etching rate of the silicon nitride layer and the silicon nitride layer are both low, which indicates that compared with Example 12, the etching composition in this comparative example has relatively low etching selectivity and etching rate for silicon nitride.
  • the etching composition in this comparative example is different from that in Example 13 in that no hydrogen peroxide aqueous solution is added, and the rest is the same.
  • This comparative example also provides an etching method of the etching composition.
  • the etching method has the same steps as the etching method in Example 1, and will not be described again.
  • the performance test is performed on the test wafer after etching is completed.
  • the performance test method is the same as in Example 1 and will not be repeated here.
  • the etching composition in this comparative example affects the silicon oxide on the test wafer slices.
  • the etching selectivity and etching rate of the silicon nitride layer and the silicon nitride layer are both low, which means that compared with Example 13, the etching composition in this comparative example has relatively low etching selectivity and etching rate for silicon nitride.
  • the etching composition in the present invention includes phosphoric acid, an organic silicon compound, an oxidizing agent and water. Perchloric acid, ozone and peroxyorganic substances in the oxidizing agent are not tested one by one here. It is common knowledge that oxidizing substances have oxidizing ability. Through the joint action of the organic silicon compound and the oxidant, the problem that the etching composition cannot improve or improves the limited etching selectivity of silicon nitride and silicon oxide when the organic silicon compound is used alone is solved, and the etching selectivity and silicon nitride etching rate are further improved. Therefore, the present invention effectively overcomes various shortcomings in the prior art and has high industrial utilization value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Weting (AREA)

Abstract

本发明提供一种蚀刻组合物、蚀刻方法及应用,蚀刻组合物包括磷酸、有机硅化合物、氧化剂和水;使用本发明中的蚀刻组合物来蚀刻基板上的氮化硅材料;同时将本发明中的蚀刻组合物应用于蚀刻基板上氮化硅材料的选择性去除。本发明中的蚀刻组合物通过有机硅化合物和氧化剂的共同作用,解决有机硅化合物单独使用时无法提高或提高氮化硅与氧化硅的蚀刻选择性有限的问题,并可提高氮化硅蚀刻速率与蚀刻均匀性,提升工艺表现。

Description

一种蚀刻组合物、蚀刻方法及应用 技术领域
本发明属于半导体制造技术领域,特别是涉及一种蚀刻组合物、蚀刻方法及应用。
背景技术
集成电路是现代信息技术的基础,而集成电路制造是集成电路产业重要一环。在半导体制造中,氮化硅和氧化硅为半导体器件中具有代表性的介电材料,经常被使用。衬底上的氮化硅材料的去除通常采用磷酸湿法蚀刻工艺。在特定工艺流程中,需要保护与蚀刻组合物接触的基板上的氧化硅材料的同时,去除氮化硅材料,即达到选择性的去除氮化硅材料的目的,比如在3D NAND器件结构制作中需要在多层氧化硅与氮化硅堆叠的结构中选择性的去除氮化硅而保留氧化硅层。目前,选择性氮化硅蚀刻组合物在氮化硅与氧化硅的蚀刻中面临选择性差、氮化硅层蚀刻均匀性差、容易产生颗粒、无法适应多层堆叠的氮化硅与氧化硅结构的蚀刻等缺陷。
同时,选择性氮化硅蚀刻组合物通常在磷酸溶液中加入硅化合物,氮化硅与氧化硅的蚀刻选择比与蚀刻组合物中硅化合物的浓度、种类相关,但不是所有的硅化合物都可以提供选择性,特殊硅化合物的制备成本高,难度大。发明人实验发现,常见的有机硅化合物(包括含有Si-C键的有机硅化合物)在磷酸溶液中单独作为添加剂使用时很多是无法提高氮化硅的蚀刻选择性的或提高选择性的幅度有限,因此,这就限制了很大一部分有机硅化合物的使用,并且制作成的氮化硅蚀刻组合物难以满足晶圆制造中对氮化硅湿法蚀刻的高选择性要求。
因此,需要提供一种针对上述现有技术不足的改进技术方案。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种蚀刻组合物、蚀刻方法及应用,用于解决现有技术中氮化硅与氧化硅蚀刻选择性差,氮化硅蚀刻速率低,蚀刻均匀性差,无法适应多层堆叠结构、有机硅化合物单独作为蚀刻组合物添加剂时无法单独提高氮化硅与氧化硅的蚀刻选择性或提高的蚀刻选择性有限、有机硅化合物添加剂成本高及制备难度大的问题。
为实现上述目的及其他相关目的,本发明提供一种蚀刻组合物,所述蚀刻组合物包含:磷酸、有机硅化合物、氧化剂和水,
优选地,所述有机硅化合物为含有至少一个硅碳键的有机硅化合物。
优选地,所述有机硅化合物包括3-氨丙基三乙氧基硅烷、七甲基二硅氮烷、二氯(甲基)苯基硅烷、三乙基氯硅烷、1,3-双(3-氨基丙基)四甲基二硅氧烷、1,3-二甲基-1,3-二苯基-1,3-二乙烯基二硅氧烷、二甲氧基二苯基硅烷、二甲氧基二甲基硅烷、苄氧基三甲基硅烷、1,6-双(三氯硅烷基)己烷、N,N,O-三(三甲基硅基)羟胺中的一种或组合。
优选地,所述有机硅化合物包括四异氰酸基硅烷。
优选地,所述有机硅化合物的相对分子量不超过1000。
优选地,所述氧化剂包括臭氧、双氧水、硝酸、硫酸、高氯酸、过氧有机物中的一种或组合。
优选地,所述磷酸溶液在所述蚀刻组合物中所占的质量分数为70wt~95wt%;所述有机硅化合物在所述蚀刻组合物中所占的质量分数为0.01wt%~1wt%;所述氧化剂在所述的蚀刻组合物中所占的质量分数为0.01wt~1wt%;余量为水。
优选地,所述蚀刻组合物还包括含表面活性剂;所述表面活性剂包括乙二醇、全氟已基乙基磺酸、聚乙二醇、乙二醇氟化物、羟基酸、羧酸中的一种或组合。
本发明还提供一种蚀刻组合物的应用,所述蚀刻组合物应用于蚀刻基板上氮化硅材料的选择性去除。
本发明还提供一种蚀刻组合物蚀刻基板上氮化硅材料的方法,所述蚀刻方法包括:使用上述的用于氮化硅层的蚀刻组合物,加热至100~200℃后,来蚀刻所述氮化硅材料。
如上所述,本发明的一种蚀刻组合物、蚀刻方法及应用,具有以下有益效果:
本发明通过创新性的加入氧化剂与有机硅化合物的组合添加剂,解决蚀刻组合物对氮化硅的蚀刻速率低、有机硅硅化合物(包括含有Si-C键的有机硅化合物)的单独作为添加剂时蚀刻组合物无法提高或提高氮化硅与氧化硅的蚀刻选择性较弱的问题。相较于只有有机硅化合物、磷酸和水的蚀刻组合物,通过氧化剂与有机硅化合物的组合作用可进一步提高氮化硅与氧化硅的蚀刻选择性,并可进一步增加氮化硅的蚀刻速率。
附图说明
图1显示为本发明中未经蚀刻的基板的截面扫描电镜图。
图2显示为本发明一种示例中基板上的氮化硅层和氧化硅层均被蚀刻去除的截面扫描电镜图。
图3显示为本发明另一种示例中基板上的氮化硅层和氧化硅层均被部分蚀刻去除的截面扫描电镜图。
图4显示为本发明另一种示例中基板上氮化硅层被部分蚀刻去除、氧化硅层被保留的截面扫描电镜图。
图5显示为本发明另一种示例中基板上氮化硅层被较大部分蚀刻去除、氧化硅层被保留的截面扫描电镜图。
具体实施方式
以下由特定的具体实施例说明本发明的实施方式,熟悉此技术的人士可由本说明书所揭露的内容轻易地了解本发明的其他优点及功效。
在进一步描述本发明具体实施方式之前,应理解,本发明的保护范围不局限于下述特定的具体实施方案;还应当理解,本发明实施例中使用的术语是为了描述特定的具体实施方案,而不是为了限制本发明的保护范围。下列实施例中未注明具体条件的试验方法,通常按照常规条件,或者按照各制造商所建议的条件。
当实施例给出数值范围时,应理解,除非本发明另有说明,每个数值范围的两个端点以及两个端点之间任何一个数值均可选用。除非另外定义,本发明中使用的所有技术和科学术语与本技术领域技术人员通常理解的意义相同。除实施例中使用的具体方法、设备、材料外,根据本技术领域的技术人员对现有技术的掌握及本发明的记载,还可以使用与本发明实施例中所述的方法、设备、材料相似或等同的现有技术的任何方法、设备和材料来实现本发明。
本发明提供一种蚀刻组合物,该蚀刻组合物包括磷酸、有机硅化合物、氧化剂及水;通过加入有机硅化合物和氧化剂组合添加剂的方式,一方面,可通过氧化剂提高氮化硅蚀刻速率,另一方面,可在氧化剂与有机硅化合物的共同作用下,降低有机硅化合物的选择难度,进一步提高氮化硅与氧化硅的湿法蚀刻中氮化硅蚀刻的选择性。
具体的,本发明采用蚀刻组合物对含氮化硅与氧化硅的基板进行蚀刻,在保证氮化硅被蚀刻的同时,氧化硅层保护完好,并且氮化硅的蚀刻速率及氮化硅与氧化硅的蚀刻选择性进一步提高。
作为示例,有机硅化合物包括至少含有一个硅碳键的有机硅化合物。
作为示例,有机硅化合物包括包括3-氨丙基三乙氧基硅烷、七甲基二硅氮烷、二氯(甲基)苯基硅烷、三乙基氯硅烷、1,3-双(3-氨基丙基)四甲基二硅氧烷、1,3-二甲基-1,3-二苯基-1,3-二乙烯基二硅氧烷、二甲氧基二苯基硅烷、二甲氧基二甲基硅烷、苄氧基三甲基硅烷、1,6-双(三氯硅烷基)己烷、N,N,O-三(三甲基硅基)羟胺中的一种或组合。
作为示例,有机硅化合物包括四异氰酸基硅烷。
作为示例,有机硅化合物的相对分子量不超过1000。
具体的,本实施例中的有机硅化合物的相对分子量可包括1000、900、800、700、600、500等任何范围内的值。
作为示例,氧化剂包括臭氧、双氧水、硝酸、硫酸、高氯酸、过氧有机物中的一种或组合。
作为示例,磷酸在蚀刻组合物中所占的质量分数为70~95wt%;有机硅化合物在蚀刻组合物中所占的质量分数为0.01%wt~1wt%;氧化剂在蚀刻组合物中所占的质量分数为0.01wt%~1wt%;余量为水。
具体的,磷酸在蚀刻组合物中所占的质量分数可包括70wt%、75wt%、80wt%、85wt%、90wt%、95wt%等范围内的数值;有机硅化合物在蚀刻化合物中所占的质量分数可包括0.01wt%、0.05wt%、0.1wt%、0.5wt%、0.9wt%、1wt%等范围内的数值;氧化剂在蚀刻组合物中所占的质量份数可包括0.01wt%、0.05wt%、0.1wt%、0.5wt%、0.9wt%、1wt%等范围内的数值。
作为示例,蚀刻组合物还包括表面活性剂。
具体的,表面活性剂包括乙二醇、全氟已基乙基磺酸、聚乙二醇、乙二醇氟化物、羟基酸、羧酸中的一种或组合物。
本发明还提供一种蚀刻组合物的应用,将蚀刻组合物应用于蚀刻基板上氮化硅材料的选择性去除。
具体的,根据蚀刻组合物对氮化硅和氧化硅材料的蚀刻速率选择比不同,采用蚀刻组合物来对蚀刻基板上的氮化硅进行选择性蚀刻。选择比指的是在同一蚀刻条件下一种材料与另一种材料相对蚀刻速率快慢,它定义为被蚀刻材料的蚀刻速率与另一种材料的蚀刻速率的比。因此,氮化硅与氧化硅的蚀刻选择比为同一蚀刻条件下,氮化硅的蚀刻速率与氧化硅的蚀刻速率的比值。
具体的,蚀刻组合物与氮化硅、氧化硅的蚀刻反应机理如下:
在氮化硅与氧化硅的选择性蚀刻时,通常采用高温湿法蚀刻工艺,磷酸蚀刻组合物中包含磷酸和水,氮化硅和氧化硅在磷酸蚀刻组合物中的基本化学反应方程式分别为:
3Si3N4+4H3PO4+36H2O=4(NH4)3PO4+9Si(OH)4
SiO2+H2O=Si(OH)4
氮化硅在磷酸蚀刻组合物中蚀刻时,氮化硅的蚀刻速率与工艺温度、水含量、磷酸含量及有机硅化合物的浓度有关;但并不是所有的有机硅化合物均可以提高氮化硅的蚀刻选择 性,主要为硅氧化合物。通常认为,氧化硅的蚀刻速率与有机硅化合物的浓度成反比,而且相较于氮化硅,氧化硅的蚀刻速率受蚀刻液中硅氧化合物的浓度影响更大,但蚀刻液中有机硅化合物浓度太低会导致对氮化硅的蚀刻选择比变差。本发明通过有机硅化合物与氧化剂的组合添加剂的方法,生成硅氧化合物,降低有机硅化合物选择与制备难度,进一步提升蚀刻选择性。
本发明还提供一种蚀刻组合物的蚀刻方法,该蚀刻方法包括:将上述蚀刻组合物升温至100℃~200℃来蚀刻氮化硅材料。
具体的,蚀刻组合物的温度可包括100℃、110℃、120℃、130℃、140℃、150℃、160℃、170℃、180℃、190℃、200℃等范围内的数值。
具体步骤为:将蚀刻组合物中的各组分按比例混合,然后将混合物放入聚四氟乙烯容器,封闭升温至100℃~200℃,放入测试晶圆切片,进行蚀刻30min。蚀刻完成后,去除晶圆并用超纯水冲洗、干燥后切片拍摄扫描电镜。其中,测试晶圆的制造方法为在硅晶圆上通过PECVD(电感耦合增强型化学气象沉积)先后沉积厚度为1000A的氮化硅层与厚度为1000A的氧化硅层,并通过干法蚀刻的方法,制造沟槽,以使本发明中的蚀刻组合物通过沟槽与氮化硅、氧化硅材料同时接触。
为了进一步说明本发明中的蚀刻组合物、蚀刻方法及应用,采用如下具体实施例进一步说明。
下述具体实施例中所采用的蚀刻组合物的制备方法均为在质量分数为85wt%的磷酸水溶液中加入添加剂,添加剂为不同有机硅化合物和氧化剂的组合。
具体的,测试晶圆的制造方法为在硅晶圆上通过PECVD(电感耦合增强型化学气象沉积)先后生长厚度为1000A的氮化硅层与厚度为1000A的氧化硅层,并通过干法蚀刻的方法,制造沟槽,以使本实施例中的蚀刻组合物通过沟槽与氮化硅、氧化硅材料同时接触。
实施例1
本实施例提供一种蚀刻组合物,该蚀刻组合物包括85wt%的磷酸溶液100g、3-氨丙基三乙氧基硅烷0.0474g和30wt%双氧水水溶液0.4525g。
本实施例还提供一种蚀刻组合物的蚀刻方法,蚀刻方法具体为:将本实施例中所制备的蚀刻组合物放入聚四氟乙烯容器中,封闭加热至160℃,放入测试晶圆切片进行蚀刻工艺30min。
性能测试:
将本实施例中蚀刻完成后的测试晶圆取出,用超纯水冲洗、干燥后切片并进行分析。经 分析可知,本实施例中的蚀刻组合物对测试晶圆切片上的氧化硅层与氮化硅层的蚀刻选择性高,即表明本实施例中的蚀刻组合物对氮化硅的蚀刻速率远大于对氧化硅的蚀刻速率。同时与对照例1对比,本实施例中氮化硅蚀刻速率和氮化硅蚀刻选择性有明显提高。
实施例2
本实施例提供一种蚀刻组合物,该蚀刻组合物包括85wt%的磷酸溶液100g、七甲基二硅氮烷0.0381g和30wt%双氧水水溶液0.4929g。
本实施例还提供一种蚀刻组合物的蚀刻方法,蚀刻方法同实施例1中的蚀刻方法中的步骤相同,在此不再赘述。
本实施例中对蚀刻完成后的测试晶圆切片进行性能测试,性能测试方法同实施例1中的相同,在此不再赘述;经分析可知,本实施例中的蚀刻组合物对测试晶圆切片上的氧化硅层与氮化硅层的蚀刻选择性高,即表明本实施例中的蚀刻组合物对氮化硅的蚀刻速率远大于对氧化硅的蚀刻速率。同时与对照例2对比,本实施例中氮化硅蚀刻速率和氮化硅蚀刻选择性有明显提高。
实施例3
本实施例提供一种蚀刻组合物,该蚀刻组合物包括85wt%的磷酸溶液100g、二氯(甲基)苯基硅烷0.0448g和30wt%的双氧水水溶液0.4920g。
本实施例还提供一种蚀刻组合物的蚀刻方法,蚀刻方法同实施例1中的蚀刻方法中的步骤相同,在此不再赘述。
本实施例中对蚀刻完成后的测试晶圆进行性能测试,性能测试方法同实施例1中的相同,在此不再赘述;经分析可知,本实施例中的蚀刻组合物对测试晶圆切片上的氧化硅层与氮化硅层的蚀刻选择性高,即表明本实施例中的蚀刻组合物对氮化硅的蚀刻速率远大于对氧化硅的蚀刻速率。同时与对照例3对比,本实施例中氮化硅蚀刻速率和氮化硅蚀刻选择性有明显提高。
实施例4
本实施例提供一种蚀刻组合物,该蚀刻组合物包括85wt%的磷酸溶液100g、1,3-双(3-氨基丙基)四甲基二硅氧烷0.0340g和30wt%的双氧水水溶液0.4950g。
本实施例还提供一种蚀刻组合物的蚀刻方法,蚀刻方法同实施例1中的蚀刻方法中的步骤相同,在此不再赘述。
本实施例中对蚀刻完成后的测试晶圆进行性能测试,性能测试方法同实施例1中的相同,在此不再赘述;经分析可知,本实施例中的蚀刻组合物对测试晶圆切片上的氧化硅层与 氮化硅层的蚀刻选择性高,即表明本实施例中的蚀刻组合物对氮化硅的蚀刻速率远大于对氧化硅的蚀刻速率。同时与对照例4对比,本实施例中氮化硅蚀刻速率和氮化硅蚀刻选择性有明显提高。
实施例5
本实施例提供一种蚀刻组合物,该蚀刻组合物包括85wt%的磷酸溶液100g、三乙基氯硅烷0.0353g和30wt%的双氧水水溶液0.4870g。
本实施例还提供一种蚀刻组合物的蚀刻方法,蚀刻方法同实施例1中的蚀刻方法中的步骤相同,在此不再赘述。
本实施例中对蚀刻完成后的测试晶圆进行性能测试,性能测试方法同实施例1中的相同,在此不再赘述;经分析可知,本实施例中的蚀刻组合物对测试晶圆切片上的氧化硅层与氮化硅层的蚀刻选择性高,即表明本实施例中的蚀刻组合物对氮化硅的蚀刻速率远大于对氧化硅的蚀刻速率。同时与对照例5对比,本实施例中氮化硅蚀刻速率和氮化硅蚀刻选择性有明显提高。
实施例6
本实施例提供一种蚀刻组合物,该蚀刻组合物包括85wt%的磷酸溶液100g、1,3-二甲基-1,3-二苯基-1,3-二乙烯基二硅氧烷0.0390g和30wt%的双氧水水溶液0.4913g。
本实施例还提供一种蚀刻组合物的蚀刻方法,蚀刻方法同实施例1中的蚀刻方法中的步骤相同,在此不再赘述。
本实施例中对蚀刻完成后的测试晶圆进行性能测试,性能测试方法同实施例1中的相同,在此不再赘述;经分析可知,本实施例中的蚀刻组合物对测试晶圆切片上的氧化硅层与氮化硅层的蚀刻选择性高,即表明本实施例中的蚀刻组合物对氮化硅的蚀刻速率远大于对氧化硅的蚀刻速率。同时与对照例5对比,本实施例中氮化硅蚀刻速率和氮化硅蚀刻选择性有明显提高。
实施例7
本实施例提供一种蚀刻组合物,该蚀刻组合物包括85wt%的磷酸溶液100g、二甲氧基二苯基硅烷0.0535g和30wt%的双氧水水溶液0.4820g。
本实施例还提供一种蚀刻组合物的蚀刻方法,蚀刻方法同实施例1中的蚀刻方法中的步骤相同,在此不再赘述。
本实施例中对蚀刻完成后的测试晶圆进行性能测试,性能测试方法同实施例1中的相同,在此不再赘述;经分析可知,本实施例中的蚀刻组合物对测试晶圆切片上的氧化硅层与 氮化硅层的蚀刻选择性高,即表明本实施例中的蚀刻组合物对氮化硅的蚀刻速率远大于对氧化硅的蚀刻速率。同时与对照例7对比,本实施例中氮化硅蚀刻速率和氮化硅蚀刻选择性有明显提高。
实施例8
本实施例提供一种蚀刻组合物,该蚀刻组合物包括85wt%的磷酸溶液100g、1,6-双(三氯硅烷基)己烷0.0433g和30wt%的双氧水水溶液0.4974g。
本实施例还提供一种蚀刻组合物的蚀刻方法,蚀刻方法同实施例1中的蚀刻方法中的步骤相同,在此不再赘述。
本实施例中对蚀刻完成后的测试晶圆进行性能测试,性能测试方法同实施例1中的相同,在此不再赘述;经分析可知,本实施例中的蚀刻组合物对测试晶圆切片上的氧化硅层与氮化硅层的蚀刻选择性高,即表明本实施例中的蚀刻组合物对氮化硅的蚀刻速率远大于对氧化硅的蚀刻速率。同时与对照例8对比,本实施例中氮化硅蚀刻速率和氮化硅蚀刻选择性有明显提高。
实施例9
本实施例提供一种蚀刻组合物,该蚀刻组合物包括85wt%的磷酸溶液100g、苄氧基三甲基硅烷0.0436g和30wt%的双氧水水溶液0.4950g。
本实施例还提供一种蚀刻组合物的蚀刻方法,蚀刻方法同实施例1中的蚀刻方法中的步骤相同,在此不再赘述。
本实施例中对蚀刻完成后的测试晶圆进行性能测试,性能测试方法同实施例1中的相同,在此不再赘述;经分析可知,本实施例中的蚀刻组合物对测试晶圆切片上的氧化硅层与氮化硅层的蚀刻选择性高,即表明本实施例中的蚀刻组合物对氮化硅的蚀刻速率远大于对氧化硅的蚀刻速率。同时与对照例9对比,本实施例中氮化硅蚀刻速率和氮化硅蚀刻选择性有明显提高。
实施例10
本实施例提供一种蚀刻组合物,该蚀刻组合物包括85wt%的磷酸溶液100g、二甲氧基二甲基硅烷0.0276g和30wt%的双氧水水溶液0.4950g。
本实施例还提供一种蚀刻组合物的蚀刻方法,蚀刻方法同实施例1中的蚀刻方法中的步骤相同,在此不再赘述。
本实施例中对蚀刻完成后的测试晶圆进行性能测试,性能测试方法同实施例1中的相同,在此不再赘述;经分析可知,本实施例中的蚀刻组合物对测试晶圆切片上的氧化硅层与 氮化硅层的蚀刻选择性高,即表明本实施例中的蚀刻组合物对氮化硅的蚀刻速率远大于对氧化硅的蚀刻速率。同时与对照例10对比,本实施例中氮化硅蚀刻速率和氮化硅蚀刻选择性有明显提高。
实施例11
本实施例提供一种蚀刻组合物,该蚀刻组合物包括85wt%的磷酸溶液100g、二甲氧基二甲基硅烷0.0276g和60wt%的硝酸水溶液0.5100g。
本实施例还提供一种蚀刻组合物的蚀刻方法,蚀刻方法同实施例1中的蚀刻方法中的步骤相同,在此不再赘述。
本实施例中对蚀刻完成后的测试晶圆进行性能测试,性能测试方法同实施例1中的相同,在此不再赘述;经分析可知,本实施例中的蚀刻组合物对测试晶圆切片上的氧化硅层与氮化硅层的蚀刻选择性高,即表明本实施例中的蚀刻组合物对氮化硅的蚀刻速率远大于对氧化硅的蚀刻速率。同时与对照例10对比,本实施例中氮化硅蚀刻速率和氮化硅蚀刻选择性有明显提高。
实施例12
本实施例提供一种蚀刻组合物,该蚀刻组合物包括85wt%的磷酸溶液100g、四异氰酸基硅烷0.0420g和30wt%的双氧水水溶液0.4928g。
本实施例还提供一种蚀刻组合物的蚀刻方法,蚀刻方法同实施例1中的蚀刻方法中的步骤相同,在此不再赘述。
本实施例中对蚀刻完成后的测试晶圆进行性能测试,性能测试方法同实施例1中的相同,在此不再赘述;经分析可知,本实施例中的蚀刻组合物对测试晶圆切片上的氧化硅层与氮化硅层的蚀刻选择性高,即表明本实施例中的蚀刻组合物对氮化硅的蚀刻速率远大于对氧化硅的蚀刻速率。同时与对照例12对比,本实施例中氮化硅蚀刻速率和氮化硅蚀刻选择性有明显提高。
实施例13
本实施例提供一种蚀刻组合物,该蚀刻组合物包括85wt%的磷酸溶液100g、N,N,O-三(三甲基硅基)羟胺0.0534g和30wt%的双氧水水溶液0.5006g。
本实施例还提供一种蚀刻组合物的蚀刻方法,蚀刻方法同实施例1中的蚀刻方法中的步骤相同,在此不再赘述。
本实施例中对蚀刻完成后的测试晶圆进行性能测试,性能测试方法同实施例1中的相同,在此不再赘述;经分析可知,本实施例中的蚀刻组合物对测试晶圆切片上的氧化硅层与 氮化硅层的蚀刻选择性高,即表明本实施例中的蚀刻组合物对氮化硅的蚀刻速率远大于对氧化硅的蚀刻速率。同时与对照例13对比,本实施例中氮化硅蚀刻速率和氮化硅蚀刻选择性有明显提高。
对照例1
本对照例中的蚀刻组合物与实施例1中的不同在于:未添加双氧水水溶液,其余一致。
本对照例还提供一种蚀刻组合物的蚀刻方法,蚀刻方法同实施例1中的蚀刻方法中的步骤相同,在此不再赘述。
本对照例中对蚀刻完成后的测试晶圆切片进行结构测试,结构测试方法同实施例1中的相同,在此不再赘述;本对照例中的蚀刻组合物对测试晶圆切片上的氧化硅层与氮化硅层的蚀刻选择性和蚀刻速率均低,即表明相较于实施例1,本对照例中的蚀刻组合物对氮化硅的蚀刻选择性和蚀刻速率相对较低。
对照例2
本对照例中的蚀刻组合物与实施例2中的不同在于:未添加双氧水水溶液,其余一致。
本对照例还提供一种蚀刻组合物的蚀刻方法,蚀刻方法同实施例1中的蚀刻方法中的步骤相同,在此不再赘述。
本对照例中对蚀刻完成后的测试晶圆进行性能测试,性能测试方法同实施例1中的相同,在此不再赘述;本对照例中的蚀刻组合物对测试晶圆切片上的氧化硅层与氮化硅层的蚀刻选择性和蚀刻速率均低,即表明相较于实施例2,本对照例中的蚀刻组合物对氮化硅的蚀刻选择性和蚀刻速率相对较低。
对照例3
本对照例中的蚀刻组合物与实施例3中的不同在于:未添加双氧水水溶液,其余一致。
本对照例还提供一种蚀刻组合物的蚀刻方法,蚀刻方法同实施例1中的蚀刻方法中的步骤相同,在此不再赘述。
本对照例中对蚀刻完成后的测试晶圆进行性能测试,性能测试方法同实施例1中的相同,在此不再赘述;本对照例中的蚀刻组合物对测试晶圆切片上的氧化硅层与氮化硅层的蚀刻选择性和蚀刻速率均低,即表明相较于实施例3,本对照例中的蚀刻组合物对氮化硅的蚀刻选择性和蚀刻速率相对较低。
对照例4
本对照例中的蚀刻组合物与实施例4中的不同在于:未添加双氧水水溶液,其余一致。
本对照例还提供一种蚀刻组合物的蚀刻方法,蚀刻方法同实施例1中的蚀刻方法中的步 骤相同,在此不再赘述。
本对照例中对蚀刻完成后的测试晶圆进行性能测试,性能测试方法同实施例1中的相同,在此不再赘述;本对照例中的蚀刻组合物对测试晶圆切片上的氧化硅层与氮化硅层的蚀刻选择性和蚀刻速率均低,即表明相较于实施例4,本对照例中的蚀刻组合物对氮化硅的蚀刻选择性和蚀刻速率相对较低。
对照例5
本对照例中的蚀刻组合物与实施例5中的不同在于:未添加双氧水水溶液,其余一致。
本对照例还提供一种蚀刻组合物的蚀刻方法,蚀刻方法同实施例1中的蚀刻方法中的步骤相同,在此不再赘述。
本对照例中对蚀刻完成后的测试晶圆进行性能测试,性能测试方法同实施例1中的相同,在此不再赘述;本对照例中的蚀刻组合物对测试晶圆切片上的氧化硅层与氮化硅层的蚀刻选择性和蚀刻速率均低,即表明相较于实施例5,本对照例中的蚀刻组合物对氮化硅的蚀刻选择性和蚀刻速率相对较低。
对照例6
本对照例中的蚀刻组合物与实施例6中的不同在于:未添加双氧水水溶液,其余一致。
本对照例还提供一种蚀刻组合物的蚀刻方法,蚀刻方法同实施例1中的蚀刻方法中的步骤相同,在此不再赘述。
本对照例中对蚀刻完成后的测试晶圆进行性能测试,性能测试方法同实施例1中的相同,在此不再赘述;本对照例中的蚀刻组合物对测试晶圆切片上的氧化硅层与氮化硅层的蚀刻选择性和蚀刻速率均低,即表明相较于实施例6,本对照例中的蚀刻组合物对氮化硅的蚀刻选择性和蚀刻速率相对较低。
对照例7
本对照例中的蚀刻组合物与实施例7中的不同在于:未添加双氧水水溶液,其余一致。
本对照例还提供一种蚀刻组合物的蚀刻方法,蚀刻方法同实施例1中的蚀刻方法中的步骤相同,在此不再赘述。
本对照例中对蚀刻完成后的测试晶圆进行性能测试,性能测试方法同实施例1中的相同,在此不再赘述;本对照例中的蚀刻组合物对测试晶圆切片上的氧化硅层与氮化硅层的蚀刻选择性和蚀刻速率均低,即表明相较于实施例7,本对照例中的蚀刻组合物对氮化硅的蚀刻选择性和蚀刻速率相对较低。
对照例8
本对照例中的蚀刻组合物与实施例8中的不同在于:未添加双氧水水溶液,其余一致。
本对照例还提供一种蚀刻组合物的蚀刻方法,蚀刻方法同实施例1中的蚀刻方法中的步骤相同,在此不再赘述。
本对照例中对蚀刻完成后的测试晶圆进行性能测试,性能测试方法同实施例1中的相同,在此不再赘述;本对照例中的蚀刻组合物对测试晶圆切片上的氧化硅层与氮化硅层的蚀刻选择性和蚀刻速率均低,即表明相较于实施例8,本对照例中的蚀刻组合物对氮化硅的蚀刻选择性和蚀刻速率相对较低。
对照例9
本对照例中的蚀刻组合物与实施例9中的不同在于:未添加双氧水水溶液,其余一致。
本对照例还提供一种蚀刻组合物的蚀刻方法,蚀刻方法同实施例1中的蚀刻方法中的步骤相同,在此不再赘述。
本对照例中对蚀刻完成后的测试晶圆进行性能测试,性能测试方法同实施例1中的相同,在此不再赘述;本对照例中的蚀刻组合物对测试晶圆切片上的氧化硅层与氮化硅层的蚀刻选择性和蚀刻速率均低,即表明相较于实施例9,本对照例中的蚀刻组合物对氮化硅的蚀刻选择性和蚀刻速率相对较低。
对照例10
本对照例中的蚀刻组合物与实施例10中的不同在于:未添加双氧水水溶液,其余一致。
本对照例还提供一种蚀刻组合物的蚀刻方法,蚀刻方法同实施例1中的蚀刻方法中的步骤相同,在此不再赘述。
本对照例中对蚀刻完成后的测试晶圆进行性能测试,性能测试方法同实施例1中的相同,在此不再赘述;本对照例中的蚀刻组合物对测试晶圆切片上的氧化硅层与氮化硅层的蚀刻选择性和蚀刻速率均低,即表明相较于实施例10,本对照例中的蚀刻组合物对氮化硅的蚀刻选择性和蚀刻速率相对较低。
对照例11
本对照例中的蚀刻组合物与实施例11中的不同在于:未添加硝酸,其余一致。
本对照例还提供一种蚀刻组合物的蚀刻方法,蚀刻方法同实施例1中的蚀刻方法中的步骤相同,在此不再赘述。
本对照例中对蚀刻完成后的测试晶圆进行性能测试,性能测试方法同实施例1中的相同,在此不再赘述;本对照例中的蚀刻组合物对测试晶圆切片上的氧化硅层与氮化硅层的蚀刻选择性和蚀刻速率均低,即表明相较于实施例11,本对照例中的蚀刻组合物对氮化硅的蚀 刻选择性和蚀刻速率相对较低。
对照例12
本对照例中的蚀刻组合物与实施例12中的不同在于:未添加双氧水水溶液,其余一致。
本对照例还提供一种蚀刻组合物的蚀刻方法,蚀刻方法同实施例1中的蚀刻方法中的步骤相同,在此不再赘述。
本对照例中对蚀刻完成后的测试晶圆进行性能测试,性能测试方法同实施例1中的相同,在此不再赘述;本对照例中的蚀刻组合物对测试晶圆切片上的氧化硅层与氮化硅层的蚀刻选择性和蚀刻速率均低,即表明相较于实施例12,本对照例中的蚀刻组合物对氮化硅的蚀刻选择性和蚀刻速率相对较低。
对照例13
本对照例中的蚀刻组合物与实施例13中的不同在于:未添加双氧水水溶液,其余一致。
本对照例还提供一种蚀刻组合物的蚀刻方法,蚀刻方法同实施例1中的蚀刻方法中的步骤相同,在此不再赘述。
本对照例中对蚀刻完成后的测试晶圆进行性能测试,性能测试方法同实施例1中的相同,在此不再赘述;本对照例中的蚀刻组合物对测试晶圆切片上的氧化硅层与氮化硅层的蚀刻选择性和蚀刻速率均低,即表明相较于实施例13,本对照例中的蚀刻组合物对氮化硅的蚀刻选择性和蚀刻速率相对较低。
综上所述,本发明中的蚀刻组合物包含磷酸、有机硅化合物、氧化剂和水,氧化剂中高氯酸、臭氧及过氧有机物等不在此一一测试,氧化性物质具有氧化能力为常识。通过有机硅化合物和氧化剂的共同作用,解决有机硅化合物单独使用时蚀刻组合物无法提高或提高氮化硅与氧化硅的蚀刻选择性有限的问题,进一步提高蚀刻选择性和氮化硅蚀刻速率。所以,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (10)

  1. 一种蚀刻组合物,其特征在于,所述蚀刻组合物包含:磷酸、有机硅化合物、氧化剂和水。
  2. 根据权利要求1所述的蚀刻组合物,其特征在于,所述有机硅化合物为含有至少一个硅碳键的有机硅化合物。
  3. 根据权利要求2所述的蚀刻组合物,其特征在于,所述有机硅化合物包括3-氨丙基三乙氧基硅烷、七甲基二硅氮烷、二氯(甲基)苯基硅烷、三乙基氯硅烷、1,3-双(3-氨基丙基)四甲基二硅氧烷、1,3-二甲基-1,3-二苯基-1,3-二乙烯基二硅氧烷、二甲氧基二苯基硅烷、二甲氧基二甲基硅烷、苄氧基三甲基硅烷、1,6-双(三氯硅烷基)己烷、N,N,O-三(三甲基硅基)羟胺中的一种或组合。
  4. 根据权利要求1所述的蚀刻组合物,其特征在于,所述有机硅化合物包括四异氰酸基硅烷。
  5. 根据权利要求1所述的蚀刻组合物,其特征在于,所述有机硅化合物的相对分子量不超过1000。
  6. 根据权利要求1所述的蚀刻组合物,其特征在于,所述氧化剂包括臭氧、双氧水、硝酸、硫酸、高氯酸、过氧有机物中的一种或组合。
  7. 根据权利要求1所述的蚀刻组合物,其特征在于,
    所述磷酸在所述蚀刻组合物中所占的质量分数为70wt~95wt%;
    所述有机硅化合物在所述蚀刻组合物中所占的质量分数为0.01wt%~1wt%;
    所述氧化剂在所述蚀刻组合物中所占的质量分数为0.01wt~1wt%;
    余量为水。
  8. 根据权利要求1~7中任一所述的蚀刻组合物,其特征在于,所述蚀刻组合物还包括表面活性剂;所述表面活性剂包括乙二醇、全氟已基乙基磺酸、聚乙二醇、乙二醇氟化物、羟基酸、羧酸中的一种或组合。
  9. 一种根据权利1~8中任一所述的蚀刻组合物的应用,其特征在于,所述蚀刻组合物应用于蚀刻基板上氮化硅材料的选择性去除。
  10. 一种蚀刻组合物的蚀刻方法,其特征在于,所述蚀刻方法包括:使用如权利要求1~7中任一项所述的蚀刻组合物,加热至100~200℃,来蚀刻氮化硅材料。
PCT/CN2023/103097 2022-07-05 2023-06-28 一种蚀刻组合物、蚀刻方法及应用 WO2024007909A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210792286.6 2022-07-05
CN202210792286.6A CN115011350A (zh) 2022-07-05 2022-07-05 一种蚀刻组合物、蚀刻方法及应用

Publications (1)

Publication Number Publication Date
WO2024007909A1 true WO2024007909A1 (zh) 2024-01-11

Family

ID=83079343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/103097 WO2024007909A1 (zh) 2022-07-05 2023-06-28 一种蚀刻组合物、蚀刻方法及应用

Country Status (2)

Country Link
CN (1) CN115011350A (zh)
WO (1) WO2024007909A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115011350A (zh) * 2022-07-05 2022-09-06 上海集成电路材料研究院有限公司 一种蚀刻组合物、蚀刻方法及应用
CN115873599B (zh) * 2022-10-10 2024-05-17 湖北兴福电子材料股份有限公司 氮化硅/氧化硅的3d nand结构片的选择性蚀刻液

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5840631A (en) * 1994-11-28 1998-11-24 Nec Corporation Method of manufacturing semiconductor device
US20150200112A1 (en) * 2014-01-10 2015-07-16 Samsung Electronics Co., Ltd. Methods of forming conductive patterns and methods of manufacturing semiconductor devices using the same
CN105273718A (zh) * 2014-07-17 2016-01-27 秀博瑞殷株式公社 蚀刻用组合物
JP2016029717A (ja) * 2014-07-17 2016-03-03 ソウルブレイン シーオー., エルティーディー. エッチング用組成物及びこれを用いた半導体素子の製造方法
CN107573940A (zh) * 2016-07-04 2018-01-12 Oci有限公司 氮化硅膜蚀刻溶液
CN108102654A (zh) * 2016-11-24 2018-06-01 三星电子株式会社 蚀刻剂组合物以及使用其制造集成电路器件的方法
KR20190038459A (ko) * 2017-09-29 2019-04-08 솔브레인 주식회사 식각용 조성물 및 이를 이용한 반도체 소자의 제조방법
CN109689838A (zh) * 2016-12-26 2019-04-26 秀博瑞殷株式公社 蚀刻用组合物和使用该蚀刻用组合物制造半导体器件的方法
CN111363550A (zh) * 2018-12-26 2020-07-03 上海新阳半导体材料股份有限公司 选择性刻蚀液组合物及其制备方法和应用
WO2020197057A1 (ko) * 2019-03-25 2020-10-01 에스케이머티리얼즈 주식회사 질화티타늄막 및 텅스텐막 적층체 식각용 조성물 및 이를 이용한 반도체 소자의 식각방법
CN111961472A (zh) * 2020-08-14 2020-11-20 上海新阳半导体材料股份有限公司 高选择比氮化硅蚀刻液、其制备方法及应用
KR20210007574A (ko) * 2019-07-12 2021-01-20 주식회사 케이씨텍 실리콘 질화막 식각액
CN112280558A (zh) * 2020-10-29 2021-01-29 湖北兴福电子材料有限公司 一种硅片打毛液
CN115011350A (zh) * 2022-07-05 2022-09-06 上海集成电路材料研究院有限公司 一种蚀刻组合物、蚀刻方法及应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101097277B1 (ko) * 2009-10-07 2011-12-22 솔브레인 주식회사 습식 식각용 조성물
JP2012074601A (ja) * 2010-09-29 2012-04-12 Dainippon Screen Mfg Co Ltd 基板処理装置および基板処理方法
TW201311869A (zh) * 2011-06-16 2013-03-16 Advanced Tech Materials 選擇性蝕刻氮化矽之組成物及方法
KR102545800B1 (ko) * 2015-12-04 2023-06-20 솔브레인 주식회사 식각용 조성물 및 이를 이용한 반도체 소자의 제조방법
KR102484988B1 (ko) * 2017-12-29 2023-01-09 오씨아이 주식회사 식각용 조성물 및 이를 이용한 반도체 소자의 제조방법
CN114621769A (zh) * 2020-12-11 2022-06-14 安集微电子(上海)有限公司 一种蚀刻组合物及其应用
CN113943579A (zh) * 2021-10-15 2022-01-18 中国科学院上海微系统与信息技术研究所 组合型刻蚀液、刻蚀系统及刻蚀方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5840631A (en) * 1994-11-28 1998-11-24 Nec Corporation Method of manufacturing semiconductor device
US20150200112A1 (en) * 2014-01-10 2015-07-16 Samsung Electronics Co., Ltd. Methods of forming conductive patterns and methods of manufacturing semiconductor devices using the same
CN105273718A (zh) * 2014-07-17 2016-01-27 秀博瑞殷株式公社 蚀刻用组合物
JP2016029717A (ja) * 2014-07-17 2016-03-03 ソウルブレイン シーオー., エルティーディー. エッチング用組成物及びこれを用いた半導体素子の製造方法
CN107573940A (zh) * 2016-07-04 2018-01-12 Oci有限公司 氮化硅膜蚀刻溶液
CN108102654A (zh) * 2016-11-24 2018-06-01 三星电子株式会社 蚀刻剂组合物以及使用其制造集成电路器件的方法
CN109689838A (zh) * 2016-12-26 2019-04-26 秀博瑞殷株式公社 蚀刻用组合物和使用该蚀刻用组合物制造半导体器件的方法
KR20190038459A (ko) * 2017-09-29 2019-04-08 솔브레인 주식회사 식각용 조성물 및 이를 이용한 반도체 소자의 제조방법
CN111363550A (zh) * 2018-12-26 2020-07-03 上海新阳半导体材料股份有限公司 选择性刻蚀液组合物及其制备方法和应用
WO2020197057A1 (ko) * 2019-03-25 2020-10-01 에스케이머티리얼즈 주식회사 질화티타늄막 및 텅스텐막 적층체 식각용 조성물 및 이를 이용한 반도체 소자의 식각방법
KR20210007574A (ko) * 2019-07-12 2021-01-20 주식회사 케이씨텍 실리콘 질화막 식각액
CN111961472A (zh) * 2020-08-14 2020-11-20 上海新阳半导体材料股份有限公司 高选择比氮化硅蚀刻液、其制备方法及应用
CN112280558A (zh) * 2020-10-29 2021-01-29 湖北兴福电子材料有限公司 一种硅片打毛液
CN115011350A (zh) * 2022-07-05 2022-09-06 上海集成电路材料研究院有限公司 一种蚀刻组合物、蚀刻方法及应用

Also Published As

Publication number Publication date
CN115011350A (zh) 2022-09-06

Similar Documents

Publication Publication Date Title
WO2024007909A1 (zh) 一种蚀刻组合物、蚀刻方法及应用
TWI638033B (zh) 選擇性蝕刻氮化鈦之組成物及方法
CN108690621B (zh) 氮化硅膜刻蚀用混合物
US20060097220A1 (en) Etching solution and method for removing low-k dielectric layer
JP5349326B2 (ja) 窒化ケイ素の選択的除去のための組成物および方法
KR102336865B1 (ko) 식각 조성물 및 이를 이용한 식각 방법
KR100917955B1 (ko) 화학 기계적 연마 동안에 구리 제거율에 대한 낮은―k를조정하기 위한 방법 및 슬러리
KR101232249B1 (ko) 반도체 기판 세정액 및 반도체 기판 세정방법
US20080110748A1 (en) Selective High Dielectric Constant Material Etchant
CN108369898A (zh) 用于相对于氮化硅选择性蚀刻p掺杂多晶硅的组合物及方法
KR20190081343A (ko) 식각용 조성물 및 이를 이용한 반도체 소자의 제조방법
CN109423290A (zh) 用于在制造半导体器件过程中相对于氮化钛选择性地去除氮化钽的蚀刻溶液
JP7271691B2 (ja) シリコン窒化膜エッチング組成物
JPWO2005008762A1 (ja) 低誘電率膜、及びその製造方法、並びそれを用いた電子部品
CN114395395A (zh) 具有高选择比的氮化硅蚀刻液及其制备方法和应用
US20090301867A1 (en) Integrated system for semiconductor substrate processing using liquid phase metal deposition
Wu et al. Removal of nanoceria abrasive particles by using diluted SC1 and non-ionic surfactant
CN113195699B (zh) 洗涤剂组成物及利用其的洗涤方法
CN104134630B (zh) 一种减少超低介质常数薄膜侧壁损伤的方法
Borst et al. Chemical–mechanical polishing of SiOC organosilicate glasses: the effect of film carbon content
CN113151838B (zh) 一种化学机械抛光后清洗液
CN112143573B (zh) 硅片碱抛后清洗用添加剂及其应用
KR20190054570A (ko) 실리콘 질화막 식각 조성물
TW201128702A (en) Method for plasma etching a silicon-containing insulating layer
Wood et al. Etching Silicon Nitride and Silicon Oxide Using Ethylene Glycol/Hydrofluoric Acid Mixtures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23834677

Country of ref document: EP

Kind code of ref document: A1