WO2020197057A1 - 질화티타늄막 및 텅스텐막 적층체 식각용 조성물 및 이를 이용한 반도체 소자의 식각방법 - Google Patents

질화티타늄막 및 텅스텐막 적층체 식각용 조성물 및 이를 이용한 반도체 소자의 식각방법 Download PDF

Info

Publication number
WO2020197057A1
WO2020197057A1 PCT/KR2019/018732 KR2019018732W WO2020197057A1 WO 2020197057 A1 WO2020197057 A1 WO 2020197057A1 KR 2019018732 W KR2019018732 W KR 2019018732W WO 2020197057 A1 WO2020197057 A1 WO 2020197057A1
Authority
WO
WIPO (PCT)
Prior art keywords
etching
acid
film
titanium nitride
composition
Prior art date
Application number
PCT/KR2019/018732
Other languages
English (en)
French (fr)
Inventor
변지훈
Original Assignee
에스케이머티리얼즈 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이머티리얼즈 주식회사 filed Critical 에스케이머티리얼즈 주식회사
Publication of WO2020197057A1 publication Critical patent/WO2020197057A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • C09K13/04Etching, surface-brightening or pickling compositions containing an inorganic acid
    • C09K13/06Etching, surface-brightening or pickling compositions containing an inorganic acid with organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32134Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by liquid etching only

Definitions

  • the present invention relates to a composition for etching a titanium nitride film and a tungsten film laminate, and to a semiconductor device manufactured using the same, and more particularly, to maintain a certain selectivity even when used for a long time in a high temperature process, there is no decrease in the etching rate, and excellent
  • the present invention relates to a composition for etching a titanium nitride layer and a tungsten layer stack having a life-time, and a method of etching a semiconductor device using the same.
  • MOS transistor has a source electrode, a gate electrode, and a drain electrode structure.
  • a semiconductor circuit pattern is manufactured by selectively removing unnecessary portions using a liquid or gas etchant on a wafer.
  • a semiconductor structure is formed by repeating the process of forming a desired circuit pattern on a thin film of several layers constituting a semiconductor.
  • the etching process includes wet etching and dry etching depending on the state of the material causing the etching reaction.
  • Wet etching is a method of etching using a chemical solution that can chemically react with and dissolve the film to be etched. For example, in the case of wet etching a silicon oxide film using hydrofluoric acid, a chemical reaction that occurs at this time will dissociate hydrofluoric acid to be separated into hydrogen ions and fluorine ions, and the separated fluorine ions react with the oxide film to perform etching.
  • the first is to maintain uniformity.
  • the uniformity refers to how the etching rate is the same at several points on the wafer. The reason this uniformity is important is that if the etching rate is different depending on the part of the wafer while the process has been processed for a certain period of time, the shape formed is different for each part, and the chip located in a specific part does not operate, resulting in defects or different characteristics. This is because problems can arise.
  • the second is the etch rate. This means how much the film has been removed for a certain period of time, and the etching rate is mainly changed by the amount of reactive atoms and ions required for the surface reaction, and the energy of the ions.
  • a titanium nitride film which is a titanium-based metal together with tungsten or tungsten-based metal, undergoes a patterning process in which unnecessary portions are selectively removed using a gaseous or liquid corrosion solution.
  • the titanium nitride film In the prior art, a mixed solution of phosphoric acid, nitric acid, and acetic acid was used as an etching composition to etch the tungsten and tungsten films at a constant etching rate.
  • Korean Patent Laid-Open No. 10-2015-0083605 (published date: July 30, 2015) relates to a method of forming a conductive pattern and a method of manufacturing a semiconductor device using the same, including phosphoric acid, nitric acid, and auxiliary It has been described for a wet etching process using an etchant composition comprising an oxidizing agent and excess water and having the same etching rate for metal nitrides and metals.
  • Korean Patent Laid-Open Publication No. 10-2015-0050278 (published date: May 08, 2015) relates to an etching composition for a laminate of a titanium nitride film and a tungsten film, an etching method using the same, and a semiconductor device manufactured therefrom.
  • a titanium nitride layer and a tungsten layer etching composition having an etch selectivity of about 1 can be maintained at about 1, and have excellent life times.
  • the main object of the present invention in a manufacturing process of a semiconductor device in high-temperature processes do not have a long time to decrease the maintenance and the etching rate a certain selectivity in use, with a long period of time even for a high-k insulating film such as Al 2 O 3 when used in a high temperature process It is to provide a composition for etching a titanium nitride layer and a tungsten laminate that minimizes damage.
  • Another object of the present invention is to provide a method of etching a titanium nitride film and a tungsten laminate using the etching composition.
  • the present invention is an etching composition for etching a tungsten film and a titanium nitride film in a laminate comprising a tungsten film and an insulating film other than a titanium nitride film, comprising: (a) phosphoric acid, (b) nitric acid, (c) inorganic acid It provides a composition for etching a titanium nitride film and a tungsten film comprising a silane inorganic acid salt prepared by reacting a silane compound and optionally further comprising a chelating agent.
  • the insulating layer may be an alumina layer.
  • the inorganic acid used in the preparation of the silane inorganic acid salt may be any one or more selected from sulfuric acid, fuming sulfuric acid, nitric acid, phosphoric acid, and phosphoric anhydride
  • the silane compound is selected from the compounds represented by the following [Chemical Formula 1] to [Chemical Formula 2]
  • [Chemical Formula 1] to [Chemical Formula 2] A composition for etching a laminate of a titanium nitride film and a tungsten film, characterized in that at least one.
  • R 1 to R 3 are each independently any one selected from the group consisting of a hydrogen atom, a halogen atom, and an alkoxy group having 1 to 10 carbon atoms, and A is an alkyl group having 1 to 10 carbon atoms or an N radical,
  • the N radical is *-(NR 4 )n or *-(NR 5 CONR 6 )n
  • R 4 to R 6 are independently hydrogen, an alkyl group having 1 to 10 carbon atoms, and n is an integer of 1 to 5.
  • R 7 to R 12 are each independently any one selected from the group consisting of a hydrogen atom, a halogen atom, and an alkoxy group having 1 to 10 carbon atoms
  • B is an alkyl group having 1 to 10 carbon atoms or an N radical, wherein The N radical is *-(NR 13 )n-* or *-(NR 14 CONR 15 )n-*
  • R 13 to R 15 are independently hydrogen, an alkyl group having 1 to 10 carbon atoms, and n is 1 to 5 It is an integer.
  • the silane compound may be any one or more selected from the following [Structural Formula 1] to [Structural Formula 10].
  • the inorganic acid and the silane compound may be reacted with 1 to 10 parts by weight of the silane compound with respect to 100 parts by weight of the inorganic acid, and the silane inorganic acid salt may be obtained by adding the silane compound to the inorganic acid. After addition, it is prepared by reacting at 50 to 70°C.
  • the chelating agents are arginine, histidine, lysine, aspartic acid, glutamic acid, glutamine, serine, threonine, asparagine (Asparagine), Cysteine, Glycine, Proline, Serenocysteine, Alanine, Tyrosine, Valine, Tryptophane, Leucine , Phenylalanine, Methionine, Citric acid, Salicylic acid, Tartaric acid, Gluconic acid, Oxalic acid, Malonic acid, Malic acid It may be at least one selected from (Malic acid), sulfamic acid, and succinic acid.
  • the etching composition comprises (a) 40 to 80% by weight of phosphoric acid, (b) 1 to 30% by weight of nitric acid, (c) 0.01 to 15% by weight of a silane inorganic acid salt prepared by reacting an inorganic acid with a silane compound, (d ) It may include 0 to 5% by weight of the chelating agent and the balance of water.
  • the present invention provides a method of etching a semiconductor device including etching a titanium nitride film and a tungsten film using the etching composition of the present invention in a semiconductor device including a titanium nitride film, a tungsten film, and an insulating film.
  • the insulating layer may be an alumina layer.
  • composition for etching a titanium nitride layer and a tungsten laminate according to the present invention has the advantage of maintaining a certain selectivity even when used for a long time, there is no decrease in the etching rate, and can have an excellent life time.
  • composition for etching a titanium nitride layer and a tungsten layer laminate according to the present invention has a property of minimizing damage to a high-k insulating layer such as Al 2 O 3 even when used for a long time in a high temperature process.
  • FIG. 1 is a graph showing an etching rate of a tungsten (W) film according to an exposure time of an etching composition at a high temperature of 60° C. according to an embodiment of the present invention.
  • TiN titanium nitride
  • FIG 3 is a graph showing an etching rate of an Al 2 O 3 high-k insulating layer according to an exposure time of an etching composition at a high temperature of 60° C. according to an embodiment of the present invention.
  • composition for etching a titanium nitride film and a tungsten laminate according to the present invention does not have an effect on other film qualities in the vicinity during wet etching, has an excellent etching rate selectively for the film to be etched, and minimizes damage to the high-k insulating film. Has the advantage of doing it.
  • the titanium nitride (TiN, titanium nitride) film and the tungsten (W) film mentioned in the present invention may have a structure in which a single layer or a multi-layer is stacked as a thin film or a thick film through deposition or coating on a semiconductor substrate.
  • the titanium nitride (TiN, titanium nitride) film (or layer) is defined as a titanium nitride film
  • the film (or layer) made of tungsten is defined as a tungsten film.
  • the other film quality mentioned in the specification of the present invention refers to a film made of a material other than the titanium nitride film and the tungsten film present on the pattern during the semiconductor manufacturing process, and may be an insulating film or a protective film, specifically, aluminum oxide (hereinafter , Al 2 O 3 ) It may be an insulating film made of a film.
  • the Al 2 O 3 insulating layer has a higher dielectric constant (high-k) than the conventional gate insulating layer of silicon oxide (SiO 2 ), so it can be driven at a low voltage and has a larger band gap than other materials with higher dielectric constants.
  • the properties are also excellent and may be located under or on the side of the titanium nitride layer and the tungsten layer.
  • composition for wet etching is selected in consideration of film uniformity maintenance, high etching rate, and excellent selectivity, and has no effect on film quality other than the one intended to perform etching. Should be minimized.
  • the present invention proposes an etching composition capable of selectively etching a titanium nitride layer and a tungsten layer while minimizing the effect on the Al 2 O 3 insulating layer.
  • composition for etching a laminate of a titanium nitride film and a tungsten film includes phosphoric acid, nitric acid, a chelating agent, and a silane inorganic acid salt prepared by reacting an inorganic acid with a silane compound.
  • the etching composition according to an embodiment of the present invention includes (a) phosphoric acid, (b) nitric acid, and (c) a silane inorganic acid salt prepared by reacting an inorganic acid with a silane compound, and the balance may include water. .
  • the present invention may further include (d) a chelating agent.
  • the additive includes all of the conventional additives known in the art, such as surfactants, ammonium compounds, inorganic oxides, azole compounds, sulfates, phosphates, etc. to further improve the effect of the invention.
  • the content of the additive may be about 0.01 to 2 wt% based on the total weight of the etching composition.
  • phosphoric acid serves to promote etching by providing hydrogen ions to the titanium nitride layer and the tungsten layer in the composition.
  • the phosphoric acid may be included in an amount of 40 to 80% by weight, preferably 50 to 80% by weight, more preferably 60 to 75% by weight based on the total weight of the etching composition.
  • the phosphoric acid content in the etching composition is less than 40% by weight, etching of the titanium nitride layer and the tungsten layer may be significantly reduced, and when the phosphoric acid content exceeds 80% by weight, there is a risk of overetching. .
  • nitric acid reacts with a tungsten-based metal to form an oxide, and serves to increase the etching rate of the tungsten-based metal and the titanium-based metal.
  • the nitric acid may be included in an amount of 1 to 30% by weight, preferably 5 to 20% by weight, and more preferably 5 to 15% by weight, based on the total weight of the etching composition.
  • nitric acid is included within the above range, sufficient etching and etching speed can be exhibited, and since control is easy, it is preferable to be included within the above range when considering excellent etching effects.
  • the silane inorganic acid salt prepared by reacting (c) an inorganic acid with a silane compound in the etching composition serves to prevent the etching of Al 2 O 3 high-k by phosphoric acid, thereby damaging or etching the high-k film. It is possible to prevent deterioration of electrical characteristics due to the occurrence of particles, and the generation of particles may be prevented, thereby improving device characteristics.
  • the silane inorganic acid salt may be included in an amount of 0.01 to 15% by weight, preferably 0.1 to 10% by weight, more preferably 0.1 to 5% by weight, based on the total weight of the etching composition.
  • content of the inorganic silane salt is within the above range, etching of the high-k Al 2 O 3 film by phosphoric acid can be prevented, and problems such as generation of particles on the etched surface can be reduced.
  • the inorganic acid used to prepare the silane inorganic acid salt may be any one selected from sulfuric acid, fuming sulfuric acid, nitric acid, phosphoric acid, and phosphoric anhydride, or a mixture thereof, but is not limited thereto.
  • silane compound used to prepare the silane inorganic acid salt may be a compound represented by the following [Chemical Formula 1] to [Chemical Formula 2].
  • R 1 to R 3 are each independently any one selected from the group consisting of a hydrogen atom, a halogen atom, and an alkoxy group having 1 to 10 carbon atoms, and A is an alkyl group having 1 to 10 carbon atoms or an N radical,
  • the N radical is *-(NR 4 )n or *-(NR 5 CONR 6 )n
  • R 4 to R 6 are independently hydrogen, an alkyl group having 1 to 10 carbon atoms, and n is an integer of 1 to 5.
  • R 7 to R 12 are each independently any one selected from the group consisting of a hydrogen atom, a halogen atom, and an alkoxy group having 1 to 10 carbon atoms
  • B is an alkyl group having 1 to 10 carbon atoms or an N radical.
  • the N radical is *-(NR 13 )n-* or *-(NR 14 CONR 15 )n-*
  • R 13 to R 15 are independently hydrogen, an alkyl group having 1 to 10 carbon atoms, and n is 1 to 5 It is an integer.
  • silane compound represented by [Chemical Formula 1] and [Chemical Formula 2] used for preparing the silane inorganic acid salt is any one selected from the following [Structural Formula 1] to [Structural Formula 10], or a mixture thereof. I can.
  • the silane compound containing the silanol group or the alkoxysilyl group may be added as an aqueous acid solution containing water obtained by reacting with any one selected from among sulfuric acid, fuming sulfuric acid, nitric acid, phosphoric acid and phosphoric anhydride described above.
  • the reaction is usually completed within about 1 to 10 hours, but by heating to a temperature of 60° C. and reacting by dropping a silane compound into an inorganic acid or aqueous inorganic acid solution, a silane inorganic acid salt can be prepared.
  • the silane compound in the reaction for preparing the silane inorganic acid salt, 1 to 10 parts by weight of the silane compound may be reacted with the inorganic acid and the silane compound with respect to 100 parts by weight of the inorganic acid, and air and moisture may be removed.
  • the content of the silane compound is less than 1 part by weight, it may be difficult to control the selectivity due to the silane inorganic acid salt, and when it exceeds 10 parts by weight, the silane compound may be precipitated or an amorphous structure may be generated.
  • the reaction for preparing the silane inorganic acid salt after adding the silane compound to the inorganic acid, it may be reacted at 40 to 70°C, and more preferably at 50 to 60°C.
  • the chelating agent forms a chelate with etch byproduct ions generated during etching of the titanium nitride layer and the tungsten layer to inactivate it to prevent readsorption and increase the uniformity of the etching surface after etching. Plays a role.
  • the chelating agent is preferably contained in an amount of 0 to 5% by weight, preferably 0 to 3% by weight, more preferably 0.01 to 3% by weight, based on the total weight of the etching composition.
  • the weight of the chelating agent is included within the range indicated, the etching by-products generated during the eating process form ions and chelates to inactivate, thereby preventing re-adsorption and increasing the uniformity after etching.
  • the chelating agent is, but not limited to, arginine, histidine, lysine, aspartic acid, glutamic acid, glutamine, serine. ), Threonine, Asparagine, Cysteine, Glycine, Proline, Serenocysteine, Alanine, Tyrosine, Valine, Tryptophan (Tryptophane), Leucine, Phenylalanine, Methionine, Citric acid, Salicylic acid, Tartaric acid, Gluconic acid, Oxalic acid, Malonic acid, malic acid, sulfamic acid, succinic acid may be any one or a mixture thereof, more preferably glycine, valine, glutamic acid and aspart It can be a mountain.
  • a method of etching a laminate of a titanium nitride film and a tungsten film using the etching composition is provided.
  • the etching method includes forming a laminate by sequentially forming the titanium nitride film and a tungsten film on a substrate, and performing etching by adding the etching composition to the laminate. After completing the process, the step of removing the remaining etching composition may be optionally further included.
  • the substrate may preferably be a semiconductor wafer, but is not limited thereto, and all commonly used substrates may be used.
  • the titanium nitride film and the tungsten film for the substrate may be formed according to a conventional method of forming a titanium nitride film and a tungsten metal film, and the order of forming the titanium nitride film and the tungsten film is not particularly limited.
  • the method of treating the etching composition for the laminate of the titanium nitride layer and the tungsten layer is not particularly limited, and may be a method such as coating, dipping, spraying or spraying, and a method of dipping (batch type device) or a method of spraying. (Sheet type device) can be preferably used.
  • the temperature may be 30 to 80°C. If the etching temperature is less than 30°C, the etching rate is extremely slow, so that the titanium nitride layer and the tungsten layer cannot be etched. Membrane damage may occur.
  • a removal process using ultrapure water or the like for the remaining etching composition and a drying process on the etched laminate may be performed.
  • silane inorganic acid salts were each prepared while varying the formulation.
  • Silane inorganic acid salt was reacted by adding a silane compound to the inorganic acid and stirring at 300 rpm at a temperature of 60° C., and air and moisture were removed.
  • phosphoric acid As shown in Table 3 below, phosphoric acid, nitric acid, APS (Ammonium persulfate), and acetic acid were mixed to prepare a composition for etching of Comparative Example.
  • Phosphoric acid (OCI) was used as an 85% aqueous solution
  • nitric acid (Duksan Chemical) was used as a 70% aqueous solution.
  • etching composition [Table 2] and [Table 3] at 60°C for 20 minutes, and then deionized water (DIW) ) Was washed and dried, and the film thickness was measured with a 4-point probe and described in [Table 4].
  • DIW deionized water
  • the etch rate is a value calculated by dividing the difference between the thickness of each film before the etch treatment and the film thickness after the etch treatment by the etching time (minutes), and the selectivity is the tungsten film ( W) represents the ratio of the etch rate.
  • a 50 ⁇ (Al2O3)-thick wafer was prepared in a size of 2 x 2cm2, immersed in the etching composition of [Table 2] and [Table 3] at 60°C for 20 minutes, washed with DIW and dried The etch rate was evaluated by measuring the film thickness with an ellipsometry (Nano-view, SEMG-1000: Ellipsometry), and the results are shown in [Table 4].
  • Example 1 6.63 3.07 2.16 0.11
  • Example 2 6.92 3.18 2.18 0.02
  • Example 3 6.12 3.14 1.95 0.32
  • Example 4 6.34 3.08 2.06 0.16
  • Example 5 6.88 3.17 2.17 0.06
  • Example 6 6.57 3.05 2.15 0.10
  • Example 7 6.88 3.15 2.18 0.07
  • Example 8 6.45 2.92 2.20 0.09 Comparative Example 1 6.29 3.14 2.00 1.91 Comparative Example 2 6.16 3.21 1.92 1.63 Comparative Example 3 6.21 3.24 1.92 1.78
  • the etching compositions used in Comparative Examples 1, 2, and 3 do not minimize damage to the Al 2 O 3 high-k insulating layer.
  • the etching rate for the Al 2 O 3 high-k insulating film was lower, and the titanium nitride film and tungsten due to the addition of the silane inorganic acid salt.
  • the etch rate of the film was also not decreased. From these results, it could be confirmed that the etching composition of the example has superior anticorrosive properties for the Al 2 O 3 high-k insulating layer compared to the etching composition of the comparative example.
  • the etching composition used in Example 5 and Comparative Example 1 was put into a beaker and the etching composition was exposed at a temperature of 60°C.
  • the substrate on which the laminate of the titanium nitride film and the tungsten film was formed and the substrate on which the Al 2 O 3 was formed were immersed in the etching composition of Example 5 and Comparative Example 1 in increments of 2 hours until 10 hours after exposure, and the exposure time of the etching composition at a high temperature of 60°C
  • the etching rate and selectivity according to were measured. The results are shown in [Table 5], [Fig. 1], [Fig. 2] and [Fig. 3].

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Weting (AREA)
  • ing And Chemical Polishing (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

본 발명은 인산, 질산 및 무기산과 실란화합물을 반응시켜 제조된 실란무기산염을 포함하고 선택적으로 킬레이트제를 더 포함하는 식각용 조성물로서, 반도체소자의 제조공정에서 고온공정에서 장시간 사용시에도 일정한 선택비를 유지하고 식각속도의 저하가 없으며, 우수한 Life-time을 갖는 질화티타늄막 및 텅스텐 적층체 식각용 조성물에 관한 것이다.

Description

질화티타늄막 및 텅스텐막 적층체 식각용 조성물 및 이를 이용한 반도체 소자의 식각방법
본 발명은 질화 티타늄막 및 텅스텐막 적층체 식각용 조성물, 이를 이용하여 제조된 반도체 소자에 관한 것으로서, 보다 상세하게는 고온공정에서 장시간 사용시에도 일정한 선택비를 유지하고 식각속도의 저하가 없으며, 우수한 라이프 타임(Life-time)을 갖는 질화티타늄막 및 텅스텐막 적층체 식각용 조성물 및 이를 이용한 반도체 소자의 식각 방법에 관한 것이다.
최근 IT 기술의 발달로 휴대폰, 디지털 카메라, MP3, USB 메모리와 같은 휴대기기의 고성능화, 소형화가 가속화되고 있다. 또한, 현재 대두되고 있는 스마트폰은 휴대용 컴퓨터를 지향하며 발전을 거듭하고 있다. 이러한 제품들은 기존의 컴퓨터(PC)와 동등한 능력을 지녀야 하며, 이를 구현하기 위해서는 초고속, 대용량, 저소비 전력, 우수한 성능을 지닌 반도체에 대한 기술 개발이 요구되고 있다.
일반적으로 반도체 직접회로는 하나의 트랜지스터와 하나의 커패시터(Capacitor)를 단위셀로 하여 제조되고 이러한 반도체 장치의 트랜지스터는 일반적으로 MOS 구조이다. 이러한 MOS 구조의 트랜지스터는 소스(Source) 전극, 게이트(Gate) 전극 및 드레인(Drain) 전극 구조로 이루어진다.
이와 같이, 반도체 직접회로를 가득 채우고 있는 수천만 개 이상의 트랜지스터, 다이오드, 저항, 캐패시터 등의 전자부품들은 서로 정확하게 연결되고 전기 신호를 연산하고 저장하고 있다. 이러한 반도체 직접회로의 제조는 전자부품들과 그 접속 부분들을 모두 미세하고 복잡한 패턴으로 만들어 여러층의 재료 속에 그려 넣는 방식을 사용하고 있으며, 이를 위해서는 식각공정이 매우 중요하다.
식각공정은 웨이퍼에 액체 또는 기체의 에천트(etchant)를 이용해 불필요한 부분을 선택적으로 제거해 반도체 회로 패턴을 제조하는 것이다. 반도체를 구성하는 여러 층의 얇은 막에 원하는 회로 패턴을 형성하는 과정을 반복함으로써, 반도체의 구조가 형성된다.
이러한 식각공정은 식각 반응을 일으키는 물질의 상태에 따라 습식식각(wet etching)과 건식식각(dry etching)이 있다. 습식식각은 식각하고자 하는 막과 화학적으로 반응하여 용해시킬 수 있는 화학용액을 사용하여 식각하는 방법이다. 가령, 불산을 사용하여 실리콘 산화막을 습식식각하는 경우, 이때 일어나는 화학반응을 살펴보면 불산이 해리되어 수소이온과 불소이온으로 분리되며, 분리된 불소이온이 산화막과 반응하여 식각이 이루어지게 된다.
따라서, 식각이 계속됨에 따라 불소이온은 소모가 되며, 용액자체가 물에 의해 희석되면서 용액내의 수소이온 농도는 증가하게 된다. 이러한 결과는 산화막의 식각속도가 공정이 진행될수록 달라짐을 의미하며, 그 결과는 재현성 있는 공정이 어렵다. 또한 습식식각의 화학반응이 수직 및 수평방향으로 동시에 진행되기 때문에 언더 컷(under cut)현상이 발생하게 된다. 즉, 노광되지 않은 포토 패턴 밑에 식각용액의 침투에 의해 원치않는 언더컷이 발생하게 되면, 패턴의 선폭이 점점 좁아져, 수직한 코어층의 형성을 어렵게 하는 문제점이 발생한다.
따라서, 상기 식각공정의 수율을 높이기 위해서는 다음과 같은 물성을 고려해야 한다.
첫 번째는 균일도(Uniformity)를 유지해야 한다. 여기서 균일도란 식각이 이루어지는 속도가 웨이퍼 상의 여러 지점에서 얼마나 동일한 가를 의미한다. 이러한 균일도가 중요한 이유는 일정한 시간 동안 공정을 진행한 상태에서 웨이퍼의 부위에 따라 식각 속도가 다를 경우, 형성된 모양이 부위별로 다르게 되어 특정 부위에 위치한 칩의 경우 동작하지 않아 불량이 발생하거나 특성이 달라지는 문제가 발생할 수 있기 때문이다.
두 번째는 식각속도(Etch Rate)이다. 이는 일정시간 동안 막이 얼마나 제거됬는지를 의미하는데, 식각속도는 주로 표면 반응에 필요한 반응성 원자와 이온의 양, 이온이 가진 에너지에 의해서 변화한다.
일반적으로, 반도체 집적 회로의 습식식각공정에서 텅스텐 또는 텅스텐계 금속과 함께 티탄계 금속인 티타늄 질화막을 기체 또는 액체의 부식액을 사용하여 불필요한 부분을 선택적으로 제거하는 패터닝 과정을 거치며, 이때, 질화티타늄 막과 텅스텐 막을 일정한 식각속도로 식각하기 위해 종래기술에서는 인산, 질산 및 초산의 혼합용액이 식각 조성물로서 사용되었다.
상기 식각 조성물에 관한 종래기술로서, 한국공개특허 10-2015-0083605호(공개일:2015.7.20.)에서는 도전 패턴의 형성 방법 및 이를 이용한 반도체 장치의 제조 방법에 관한 것으로, 인산, 질산, 보조 산화제 및 여분의 물을 포함하며, 금속 질화물 및 금속에 대해 동일한 식각속도를 갖는 식각액 조성물을 사용한 습식식각 공정에 대해 기재되어 있다.
또 다른 종래기술로서 한국공개특허공보 10-2015-0050278호(공개일: 2015.05.08.)는 질화티타늄막 및 텅스텐막의 적층체용 식각 조성물, 이를 이용한 식각 방법 및 이로부터 제조된 반도체 소자에 관한 것으로, 질화티타늄막과 텅스텐막의 식각선택비를 약 1로 유지할 수 있고, 우수한 라이프 타임을 갖는 질화티타늄막 및 텅스텐막 식각 조성물이 기재되어 있다.
그러나, 상기 선행문헌을 포함하는 종래기술에도 불구하고, 높은 공정온도에서 습식식각을 수행할 때 식각 조성물 중 초산과 질산이 증발되어 질화티타늄 막 대비 텅스텐 막의 선택비를 일정하게 유지 할 수 없으며, 질화티타늄막이나 텅스텐막만을 선택적으로 식각하여야 하는데, 침지 등의 습식식각 공정시 식각액의 공격에 의해서 손상이 발생하여 결과적으로 막의 품질이 크게 저하되는 문제가 발생하였다.
이에 따라, 반도체소자의 제조 공정에서 다른 막에 영향을 미치지 않으면서도 질화티타늄막(TiN)과 텅스텐막(W)의 고온공정에서 장시간 사용시에도 일정한 선택비를 유지하고, 식각속도의 저하가 없는 식각용 조성물에 대한 개발이 필요하다.
본 발명의 주된 목적은 반도체소자의 제조공정에서 고온공정에서 장시간 사용시에도 일정한 선택비를 유지하고 식각속도의 저하가 없으며, 더불어 고온공정에서 장시간 사용시에도 Al2O3과 같은 high-k 절연막에 대한 손상을 최소화하는 질화티타늄막 및 텅스텐 적층체 식각용 조성물을 제공하는데 있다.
또한 본 발명의 다른 목적은 상기 식각 조성물을 이용하는 질화티타늄막 및 텅스텐 적층체를 식각하는 방법을 제공하는 것이다.
상기 과제를 해결하기 위하여 본원 발명은 텅스텐막과 질화티타늄막외 절연막을 포함하는 적층체에서 텅스텐막과 질화티타늄막을 식각하기 위한 식각용 조성물로서, (a) 인산, (b) 질산, (c) 무기산과 실란화합물을 반응시켜 제조된 실란무기산염을 포함하며, 선택적으로 킬레이트제를 더 포함하는 질화티타늄막 및 텅스텐막의 식각용 조성물을 제공한다. 상기 절연막은 알루미나 막일 수 있다.
또한 상기 실란무기산염 제조에 사용되는 무기산은 황산, 발연황산, 질산, 인산, 무수인산중에서 선택되는 어느 하나 이상일 수 있으며, 상기 실란화합물은 하기 [화학식1] 내지 [화학식2]로 표시되는 화합물 중 하나 이상인 것을 특징으로 하는 질화티타늄막 및 텅스텐막의 적층체 식각용 조성물.
[화학식 1]
Figure PCTKR2019018732-appb-I000001
(상기 화학식 1에 있어서 R1 내지 R3는 각각 독립적으로 수소원자, 할로겐원자, 탄소수 1 내지 10의 알콕시기로 이루어진 군에서 선택되는 어느 하나이고, A는 탄소수 1 내지 10의 알킬기 또는 N라디칼이며, 상기 N라디칼은 *-(NR4)n 또는 *-(NR5CONR6)n 이다. R4 내지 R6은 독립적으로 수소, 탄소수 1내지 10의 알킬기이며 n은 1내지 5의 정수이다.)
[화학식 2]
Figure PCTKR2019018732-appb-I000002
(상기 화학식2에 있어서 R7 내지 R12는 각각 독립적으로 수소원자, 할로겐원자, 탄소수 1 내지 10의 알콕시기로 이루어진 군에서 선택되는 어느 하나이고 B는 탄소수 1 내지 10의 알킬기 또는 N라디칼이며, 상기 N 라디칼은 *-(NR13)n-* 또는 *-(NR14CONR15)n-* 이다. R13 내지 R15는 독립적으로 수소, 탄소수 1 내지 10의 알킬기 이며, n은 1 내지 5의 정수이다.)
상기 실란화합물은 하기 [구조식 1] 내지 [구조식 10] 중에서 선택되는 어느 하나 이상일 수 있다.
[구조식 1]
Figure PCTKR2019018732-appb-I000003
[구조식 2]
Figure PCTKR2019018732-appb-I000004
[구조식 3]
Figure PCTKR2019018732-appb-I000005
[구조식 4]
Figure PCTKR2019018732-appb-I000006
[구조식 5]
Figure PCTKR2019018732-appb-I000007
[구조식 6]
Figure PCTKR2019018732-appb-I000008
[구조식 7]
Figure PCTKR2019018732-appb-I000009
[구조식 8]
Figure PCTKR2019018732-appb-I000010
[구조식 9]
Figure PCTKR2019018732-appb-I000011
[구조식 10]
Figure PCTKR2019018732-appb-I000012
또한, 상기 실란무기산염을 제조하는 반응에서 상기 무기산과 실란화합물을 상기 무기산 100 중량부에 대하여 상기 실란화합물 1 내지 10 중량부를 반응시킨 것일 수 있으며, 상기 실란무기산염은 상기 무기산에 상기 실란화합물을 첨가한 후, 50 내지 70 ℃에서 반응시켜 제조된다.
또한, 상기 킬레이트제는 아르기닌(Arginine), 히스티딘(Histidine), 리신(Lysine), 아스파르트산(Aspartic acid), 글루타민산(Glutamic acid), 글루타민(Glutamine), 세린(Serine), 트레오닌(Threonine), 아스파라긴(Asparagine), 시스테인(Cysteine), 글리신(Glycine), 프롤린(Proline), 세레노시스테인(Serenocysteine), 알라닌(Alanine), 티로신(Tyrosine), 발린(Valine), 트립토판(Tryptophane), 류신(Leucine), 페닐알라닌(Phenylalanine), 메티오닌(Methionine), 시트르산(Citric acid), 살리실산(Salicylic acid), 타르타르산(Tartaric acid), 글루콘산(Gluconic acid), 옥살산(Oxalic acid), 말론산(Malonic acid), 말산(Malic acid), 설파믹산(Sulfamic acid), 석신산(Succinic acid) 중에서 선택되는 하나 이상일 수 있다.
또한, 상기 식각용 조성물은 (a) 인산 40 내지 80중량%, (b) 질산 1 내지 30중량%, (c) 무기산과 실란화합물을 반응시켜 제조된 실란무기산염 0.01 내지 15중량%, (d) 킬레이트제 0 내지 5중량% 및 잔부의 물을 포함하는 것일 수 있다.
또한, 본 발명은 질화티타늄막, 텅스텐막 및 절연막을 포함하는 반도체 소자에서 본 발명의 식각 조성물을 이용하여 질화티타늄막과 텅스텐막을 식각하는 단계를 포함하는 반도체 소자의 식각 방법을 제공한다. 이 때, 상기 절연막은 알루미나막 일 수 있다.
본 발명에 따른 질화티타늄막 및 텅스텐 적층체 식각용 조성물은 장시간 사용시에도 일정한 선택비를 유지하고 식각속도의 저하가 없으며 우수한 라이프 타임을 가질 수 있다는 장점이 있다.
또한 본 발명에 따른 질화티타늄막 및 텅스텐막 적층체 식각용 조성물은 고온공정에서 장시간 사용시에도 Al2O3과 같은 high-k 절연막에 대한 손상을 최소화하는 특성을 갖는다.
도 1은 본 발명의 일 실시예에 따른 60℃ 고온에서 식각조성물의 노출시간에 따른 텅스텐(W)막의 식각속도를 보여주는 그래프이다.
도 2는 본 발명의 일 실시예에 따른 60℃ 고온에서 식각조성물의 노출시간에 따른 질화티타늄(TiN)막의 식각속도를 보여주는 그래프이다.
도 3은 본 발명의 일 실시예에 따른 60℃ 고온에서 식각조성물의 노출시간에 따른 Al2O3 high-k 절연막의 식각속도를 보여주는 그래프이다.
다른 식으로 정의하지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로, 본 명세서에서 사용된 명명법은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.
본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 “포함”한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본 발명에 따른 질화티타늄막 및 텅스텐 적층체 식각용 조성물은 습식식각시 주위의 다른 막질에 대한 영향은 없으면서, 식각하고자 하는 막에 대해서만 선택적으로 우수한 식각속도를 가지며 high-k 절연막에 대한 손상을 최소화하는 장점을 가진다.
본 발명에서 언급되는 티타늄 나이트라이드(TiN, 질화티타늄)막 및 텅스텐(W)막은 반도체 기판 상에 증착 또는 코팅을 통해 박막 또는 후막으로 단층 또는 다층으로 적층되는 구조 일 수 있다.
이 때 티타늄 나이트라이드(TiN, 질화티타늄)막(또는 층)은 질화티타늄막으로 정의하며, 텅스텐으로 이루어진 막(또는 층)은 텅스텐막으로 정의한다.
또한 본 발명의 명세서에서 언급되는 다른 막질은 반도체 제조 공정 중 패턴 상에 존재하는 질화티타늄막 및 텅스텐 막 이외의 다른 재질의 막을 의미하며, 일례로 절연막, 보호막일 수 있으며, 구체적으로 산화알루미늄(이하, Al2O3)막으로 이루어진 절연막일 수 있다. 상기 Al2O3 절연막은 기존의 게이트 절연막인 실리콘 옥사이드 (SiO2)보다 높은 유전율 (high-k)을 가지고 있어 저전압 구동이 가능하고 다른 높은 유전율을 가지는 물질 보다 밴드 갭 (band gap)이 커서 절연 특성 또한 우수하며 상기 질화티타늄막 및 텅스텐 막의 하부 또는 측면에 위치할 수 있다.
습식식각의 식각용 조성물은 막 균일도(Uniformity) 유지, 높은 식각 속도(Etch Rate), 우수한 선택비(Selectivity) 등을 고려하여 선정되며, 식각을 수행하고자하는 것 이외의 다른 막질에 대한 영향이 없거나 최소화되어야 한다.
그러나 실제 습식 식각에 사용하는 식각용 조성물의 경우 산 또는 염기도가 높은 재질이 사용됨에 따라, 특정 막만을 선택적으로 식각을 수행한다고 하더라도 이와 인접한 다른 막을 공격(attack)하여 막질에 대한 손상을 유발하고, 이는 결과적으로 반도체 제품의 불량을 야기한다.
이에 본 발명에서는 Al2O3 절연막에 대한 영향을 최소화하면서도 질화티타늄막 및 텅스텐막을 선택적으로 식각할 수 있는 식각용 조성물을 제시한다.
본 발명의 일 실시예에 따른 질화티타늄막 및 텅스텐막의 적층체 식각용 조성물은 인산, 질산, 킬레이트제 및 무기산과 실란화합물을 반응시켜 제조된 실란무기산염을 포함한다.
본 발명의 일 실시예에 따른 상기 식각용 조성물은 (a) 인산, (b) 질산 및 (c) 무기산과 실란화합물을 반응시켜 제조된 실란무기산염을 포함하며, 잔부로 물을 포함할 수 있다. 또한, 본원 발명은 (d) 킬레이트제를 더 추가하여 포함할 수 있다.
이외에도 상기 식각 조성물은 다양한 종류의 각종 첨가제를 첨가할 수 있다. 예로서, 상기 첨가제는 계면활성제, 암모늄계 화합물, 무기산화물, 아졸계화합물, 황산염, 인산염 등 발명의 효과를 더욱 양호하게 하기 위한, 이 분야에 공지되어 있는 통상의 첨가제들을 모두 포함한다. 상기 첨가제의 함량은 식각용 조성물 전체 중량 대비 약 0.01~2wt%일 수 있다.
상기 식각용 조성물에서 (a) 인산은 조성물 내에서 질화티타늄막 및 텅스텐막에 수소 이온을 제공하여 식각을 촉진시키는 역할을 한다.
상기 인산은 식각용 조성물 총 중량에 대하여 40 내지 80 중량%로 포함될 수 있으며 바람직하게는 50 내지 80 중량%, 더욱 바람직하게는 60 내지 75 중량%가 될 수 있다. 상기 식각용 조성물에서 인산의 함량이 40 중량% 미만인 경우, 질화티타늄막 및 텅스텐막에 대한 식각이 현저히 줄어들 수 있고, 인산의 함량이 80 중량%를 초과하는 경우, 과식각이 발생될 우려가 있다.
상기 식각용 조성물에서 (b)질산은 텅스텐계 금속과 반응하여 산화물을 형성하고 텅스텐계 금속과 티타늄계 금속의 식각속도를 증가시키는 역할을 한다.
상기 질산은 식각용 조성물 총 중량에 대하여 1 내지 30 중량%, 바람직하게는 5 내지 20 중량%, 더욱 바람직하게는 5 내지 15 중량%로 포함될 수 있다. 질산이 상기 범위내에서 포함될 경우, 충분한 식각 및 식각속도가 발휘될 수 있으며, 제어가 용이하기 때문에 우수한 식각 효과를 고려할 때 상기 범위 내에 포함되는 것이 바람직하다.
한편, 상기 식각용 조성물에서 (c) 무기산과 실란화합물을 반응시켜 제조된 실란무기산염은 인산에 의한 Al2O3 high-k의 식각을 방지하는 역할을 하며 이를 통해 high-k막의 손상이나 식각으로 인한 전기적 특성 저하를 방지할 수 있으며, 파티클 발생이 방지되어 소자 특성을 향상시킬 수 있다.
상기 실란무기산염은 식각용 조성물 총 중량에 대하여 0.01 내지 15 중량%로 포함될 수 있으며, 바람직하게는 0.1 내지 10중량%, 더욱 바람직하게는 0.1 내지 5 중량% 일 수 있다. 상기 실란 무기산염의 함량이 상기범위내에 존재할 경우 인산에 의한 high-k Al2O3막에 대한 식각을 방지할 수 있으며, 식각표면에서 파티클 발생 등의 문제를 감소시킬 수 있다.
한편, 상기 실란무기산염 제조에 사용되는 무기산은 황산, 발연황산, 질산, 인산, 무수인산 중에서 선택되는 어느 하나 또는 이들의 혼합물로 이루어진 것일 수 있으나, 이에 한정하지는 않는다.
또한, 상기 실란무기산염 제조에 사용되는 실란화합물은 하기 [화학식 1] 내지 [화학식 2]로 표시되는 화합물을 사용할 수 있다.
[화학식 1]
Figure PCTKR2019018732-appb-I000013
(상기 화학식 1에 있어서 R1 내지 R3는 각각 독립적으로 수소원자, 할로겐원자, 탄소수 1 내지 10의 알콕시기로 이루어진 군에서 선택되는 어느 하나이고, A는 탄소수 1 내지 10의 알킬기 또는 N라디칼이며, 상기 N라디칼은 *-(NR4)n 또는 *-(NR5CONR6)n 이다. R4 내지 R6은 독립적으로 수소, 탄소수 1내지 10의 알킬기이며 n은 1내지 5의 정수이다.)
[화학식 2]
Figure PCTKR2019018732-appb-I000014
(상기 화학식2에 있어서 R7 내지 R12는 각각 독립적으로 수소원자, 할로겐원자, 탄소수 1 내지 10의 알콕시기로 이루어진 군에서 선택되는 어느 하나이고 B는 탄소수 1 내지 10의 알킬기 또는 N라디칼이다. 상기 N 라디칼은 *-(NR13)n-* 또는 *-(NR14CONR15)n-* 이다. R13 내지 R15는 독립적으로 수소, 탄소수 1 내지 10의 알킬기 이며, n은 1 내지 5의 정수이다.)
보다 상세하게는, 상기 실란무기산염 제조에 사용되는 상기 [화학식 1] 및 [화학식 2]로 표시되는 실란화합물은, 하기 [구조식 1] 내지 [구조식 10] 중에서 선택되는 어느 하나 또는 이들의 혼합물일 수 있다.
[구조식 1]
Figure PCTKR2019018732-appb-I000015
[구조식 2]
Figure PCTKR2019018732-appb-I000016
[구조식 3]
Figure PCTKR2019018732-appb-I000017
[구조식 4]
Figure PCTKR2019018732-appb-I000018
[구조식 5]
Figure PCTKR2019018732-appb-I000019
[구조식 6]
Figure PCTKR2019018732-appb-I000020
[구조식 7]
Figure PCTKR2019018732-appb-I000021
[구조식 8]
Figure PCTKR2019018732-appb-I000022
[구조식 9]
Figure PCTKR2019018732-appb-I000023
[구조식 10]
Figure PCTKR2019018732-appb-I000024
상기 실란올기 또는 알콕시시릴기 함유한 실란화합물은 상기 기재된 황산, 발연황산, 질산, 인산, 무수인산 중 선택된 어느 하나와 반응하여 얻어진 물을 포함한 산 수용액으로 첨가할수도 있다. 상기 반응은 통상적으로 1 내지 10시간 정도내에서 완료하지만, 60℃ 의 온도로 가열하여, 무기산 또는 무기산 수용액에 실란화합물을 적하하여 반응시킴으로써, 실란무기산염을 제조시킬 수 있다.
이때, 상기 실란무기산염을 제조하는 반응에서 상기 무기산과 실란화합물을 상기 무기산 100 중량부에 대하여 상기 실란화합물 1 내지 10 중량부를 반응시킬 수 있으며, 공기 및 수분을 제거하면서 실시할 수 있다. 상기 실란화합물의 함량이 1 중량부 미만이면, 실란무기산염으로 인한 선택비의 제어가 어려울 수 있고, 10 중량부를 초과하면, 상기 실란화합물이 석출되거나, 비정형 구조가 생성될 수 있다.
또한, 상기 실란무기산염을 제조하는 반응에서 상기 무기산에 상기 실란화합물을 첨가한 후, 40 내지 70 ℃에서 반응시키는 것일 수 있으며 더욱 바람직하게는 50 내지 60 ℃에서 반응시킨다.
또한, 상기 식각용 조성물에서 (d) 킬레이트제는 질화티타늄막 및 텅스텐 막의 식각이 진행되는 동안 발생하는 식각부산물 이온들과 킬레이트를 형성하여 비활성화 시킴으로써 재흡착 방지 및 식각 후 식각면의 균일도를 증가시키는 역할을 한다.
상기 킬레이트제는 식각용 조성물 총 중량에 대하여 0 내지 5 중량%, 바람직하게는 0 내지 3 중량%, 더욱 바람직하게는 0.01 내지 3 중량%로 포함되는 것이 바람직하다. 상기 킬레이트제의 중량이 제시된 범위 내에서 포함될 경우, 식과정에서 발생하는 식각부산물이 이온들과 킬레이트를 형성하여 비활성화 시킴으로써 재흡착 방지 및 식각 후 균일도를 증가시킨다.
상기 킬레이트제는, 이에 제한되는 것은 아니지만, 예시적으로 아르기닌(Arginine), 히스티딘(Histidine), 리신(Lysine), 아스파르트산(Aspartic acid), 글루타민산(Glutamic acid), 글루타민(Glutamine), 세린(Serine), 트레오닌(Threonine), 아스파라긴(Asparagine), 시스테인(Cysteine), 글리신(Glycine), 프롤린(Proline), 세레노시스테인(Serenocysteine), 알라닌(Alanine), 티로신(Tyrosine), 발린(Valine), 트립토판(Tryptophane), 류신(Leucine), 페닐알라닌(Phenylalanine), 메티오닌(Methionine), 시트르산(Citric acid), 살리실산(Salicylic acid), 타르타르산(Tartaric acid), 글루콘산(Gluconic acid), 옥살산(Oxalic acid), 말론산(Malonic acid), 말산(Malic acid), 설파믹산(Sulfamic acid), 석신산(Succinic acid) 중에서 선택되는 어느 하나 또는 이들의 혼합물인 것일 수 있으며 보다 바람직하게는 글리신, 발린, 글루타민산 및 아스파르트산일 수 있다.
본 발명의 또 다른 일 실시예에 따르면, 상기 식각용 조성물을 이용한 질화티타늄막 및 텅스텐막의 적층체를 식각하는 방법을 제공한다.
보다 상세하게는, 상기 식각방법은 상기 질화티타늄막 및 텅스텐막을 기판 위에 순차적으로 형성하여 적층체를 제조하는 단계, 상기 식각조성물을 상기 적층체에서 가하여 식각을 실시하는 단계를 포함하여, 상기 식각공정을 완료한 후 잔류하는 식각용 조성물을 제거하는 단계가 선택적으로 더 포함될 수 있다.
상기 기판은 바람직하게는 반도체 웨이퍼일 수 있으나, 이에 한정되는 것은 아니며 통상적으로 사용되는 기판은 모두 사용이 가능할 수 있다.
또한, 상기 기판에 대한 질화티타늄막과 텅스텐막은 통상의 질화티타늄막 및 텅스텐 금속막의 형성 방법에 따라 형성될 수 있으며, 질화티타늄막과 텅스텐막의 형성 순서는 특별히 제한되지 않는다.
상기 질화티타늄막과 텅스텐막의 적층체에 대한 식각 조성물의 처리 방법은 특별히 한정되지 않으며, 가령, 도포, 침적, 분무 또는 분사 등의 방법일 수 있고, 침적하는 방법(배치식 장치) 또는 분사하는 방법(매엽식 장치)을 바람직하게 이용할 수 있다.
상기 식각 조성물을 이용하여 식각공정시 온도는 30 내지 80℃일 수 있으며, 상기 식각 온도가 30℃ 미만이면 식각속도가 지니치게 느려 질화티타늄막과 텅스텐막을 식각할 수 없고, 80℃를 초과하면 추가적으로 막손상이 발생할 수 있다.
그러나, 이러한 조건은 엄밀하게 적용되지는 않으며, 당업자에 의해 용이하거나 적합한 조건으로 선택될 수 있다.
또한, 상기 식각공정을 완료한 후에는 잔류하는 상기 식각용 조성물에 대해 초순수 등을 이용한 제거 공정 및 식각이 완료된 적층체에 대한 건조 공정이 실시될 수 있다.
이하, 실시예, 비교예 및 실험예를 통하여 본 발명 과정의 세부사항을 설명하고자 한다. 이는 본 발명에 관련된 대표적 예시로서, 이것만으로 본 발명의 적용 범위를 결코 제한할 수 없음을 밝히는 바이다.
제조예 1 내지 4 (실란무기산염 제조)
하기 표 1에 기재된 바와 같이 배합을 달리하면서 실란무기산염을 각각 제조하였다. 실란 무기산염은 무기산에 실란화합물을 첨가한 후 60℃의 온도에서 300rpm으로 교반하여 반응시켰으며, 공기와 수분을 제거하여 실시하였다.
구분 실란무기산염 제조
실란 함량(중량%) 실란화합물 무기산함량(중량%) 무기산 반응온도(℃)
제조예 1 2 상기 화학식 1에서 R1, R2, R3가 메톡시기인 화합물 98 인산 60
제조예 2 2 상기 화학식 1에서 R1, R2, R3가 에톡시기인 화합물 98 인산 60
제조예 3 2 상기 화학식 2에서 R7, R8, R9, R10, R11, R12이 에톡시인 화합물 98 인산 60
제조예 4 2 상기 화학식 2에서 R7, R8, R9, R10, R11, R12이 메톡시인 화합물 98 인산 60
실시예 1 내지 실시예 8 (식각용 조성물 제조)
하기 표 2에 나타낸 것과 같이 인산(OCI)은 85% 수용액, 질산(덕산화학)은 70% 수용액, 실란무기산염 및 킬레이트제를 조성물 총 중량에 대하여 표시된 각 중량비로 혼합하여, 본 발명에 따른 식각용 조성물을 제조하였다.
구분 식각 조성물의 조성 (중량%)
인산(85%) 질산(70%) 실란무기산염 킬레이트제
성분 함량 성분 함량
실시예 1 70.1 10.5 잔량 제조예 1 2.5
실시예 2 70.1 10.5 잔량 제조예 2 2.5
실시예 3 70.1 10.5 잔량 제조예 3 2.5
실시예 4 70.1 10.5 잔량 제조예 4 2.5
실시예 5 70.6 10.0 잔량 제조예 2 2.5 A-1 0.2
실시예 6 70.6 10.0 잔량 제조예 2 2.5 A-2 0.2
실시예 7 70.6 10.0 잔량 제조예 2 2.5 A-3 0.2
실시예 8 70.6 10.0 16.7 제조예 2 2.5 A-4 0.2
A-1 : Glycine, A-2 : Valine, A-3 : Glutamic acid, A-4 : Aspartic acid
비교예 1 내지 3
하기 표 3에서 나타낸 바와 같이, 인산, 질산, APS(Ammonium persulfate) 및 초산을 혼합하여 비교예의 식각용 조성물을 제조하였다. 인산(OCI)은 85% 수용액, 질산(덕산화학)은 70% 수용액을 사용하였다.
구분 식각용 조성물의 조성 (중량%)
인산 질산 APS 초산
비교예 1 71.4 1.4 14 잔량
비교예 2 71.4 10.5 1 잔량
비교예 3 72.3 10.5 잔량
실험예 1 (질화티타늄(TiN) 및 텅스텐(W)의 식각속도 평가)
300Å(TiN) 및 400Å(W) 두께의 웨이퍼를 2 x 2㎠ 크기로 시편을 제조하여 60℃의 [표2], [표3]의 식각용 조성물에 20분간 침지시킨 후, 탈이온수(DIW)로 세정 후 건조하여 평가하였으며, 4-Point probe로 막 두께를 측정하여 [표 4]에 기재하였다. 이때, 식각속도는 각 막의 식각처리 전의 막 두께와 식각 처리 후의 막 두께의 차이를 식각 시간(분)으로 나누어 산출한 수치이며, 선택비는 질화티타늄막(TiN)의 식각속도에 대한 텅스텐막(W)의 식각 속도의 비를 나타낸다.
실험예 2 (high-k 손상 여부 평가)
50Å(Al2O3) 두께의 웨이퍼를 2 x 2㎠ 크기로 시편을 제조하여 60℃의 [표 2], [표 3]의 식각용 조성물에 20분간 침지시킨 후, 탈이온수(DIW)로 세정 후 건조하여 평가하였으며, 식각속도는 엘립소미트리 (Nano-view, SEMG-1000 : Ellipsometry)로 막두께를 측정하여 그 결과를 [표 4]에 기재하였다.
구분 W 식각속도(Å/min) TiN 식각속도(Å/min) 선택비(W/TiN) Al2O3 식각속도(Å/min)
실시예1 6.63 3.07 2.16 0.11
실시예2 6.92 3.18 2.18 0.02
실시예3 6.12 3.14 1.95 0.32
실시예4 6.34 3.08 2.06 0.16
실시예5 6.88 3.17 2.17 0.06
실시예6 6.57 3.05 2.15 0.10
실시예7 6.88 3.15 2.18 0.07
실시예8 6.45 2.92 2.20 0.09
비교예1 6.29 3.14 2.00 1.91
비교예2 6.16 3.21 1.92 1.63
비교예3 6.21 3.24 1.92 1.78
상기 [표 4]에 나타난 바와 같이, 비교예1, 2, 3에서 사용된 식각 조성물의 경우 Al2O3 high-k 절연막에 대한 손상을 최소화 하지 못한다. 그러나 실시예 1 내지 8 에서 사용된 식각조성물의 경우 비교예 1, 2, 3에 비해 Al2O3 high-k 절연막에 대한 낮은 식각속도를 보이며, 실란무기산염의 첨가로 인한 질화티타늄막 및 텅스텐막의 식각속도도 저하되지 않았다. 이와 같은 결과로부터 실시예 식각조성물이 비교예의 식각조성물에 비해 우수한 Al2O3 high-k 절연막에 대한 방식 특성을 가짐을 확인 할 수 있었다.
실험예 3 (히팅시간에 따른 성능 변화 평가 (조성의 Life-time 평가))
실시예 5 및 비교예 1에서 사용된 식각조성물을 비이커에 넣고 60℃ 온도에서 식각조성물을 노출시켰다. 노출 후 10시간까지 2시간 단위로 질화티타늄막과 텅스텐막의 적층체가 형성된 기판과 Al2O3가 형성된 기판을 실시예 5와 비교예 1 식각조성물에 침지하여, 식각조성물의 60℃ 고온에서 노출시간에 따른 식각 속도 및 선택비를 측정하였다. 그 결과를 [표 5], [도 1], [도 2] 및 [도 3]에 나타내었다.
Heating노출 시간(hrs) 식각조성물 W 식각속도(Å/min) TiN 식각속도(Å/min) 선택비(W/TiN) Al2O3 식각속도(Å/min)
- 실시예5 6.97 3.20 2.18 0.06
2 6.89 3.16 2.18 0.07
4 6.81 3.13 2.18 0.06
6 6.78 3.09 2.19 0.08
8 6.68 3.06 2.19 0.05
10 6.62 3.07 2.16 0.04
- 비교예1 6.30 3.12 2.01 1.93
2 5.97 2.89 2.07 1.98
4 5.75 2.77 2.08 1.89
6 5.48 2.73 2.01 1.91
8 5.13 2.69 1.91 1.87
10 5.01 2.56 1.96 1.92
또한, [표 5], [도 1], [도 2] 및 [도 3]에 나타난 바와 같이 실시예 5와 비교예 1 식각조성물에 대한 히팅시간에 따른 성능 변화 평가를 통해 조성의 Life-time을 확인하였다. [표 5], [도 1], [도 2] 및 [도 3]에 나타난 바와 같이 비교예 1 식각조성물의 경우 60℃ 고온에서 2시간 이후부터 텅스텐막 및 질화티타늄막의 식각속도가 크게 저하되며 Al2O3 high-k 절연막에 대한 식각능력도 떨어진다. 그러나 실시예 5 식각조성물에 대해 60℃ 고온에서 10시간까지 노출되어도 질화티타늄막 및 텅스텐 식각속도 변화가 거의 없으며, Al2O3 high-k 절연막에 대한 식각방지 능력도 유지됨을 확인할 수 있었다.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적은 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.

Claims (12)

  1. 텅스텐막과 질화티타늄막외 절연막을 포함하는 적층체에서 텅스텐막과 질화티타늄막을 식각하기 위한 식각용 조성물로서,
    (a) 인산, (b) 질산, (c) 무기산과 실란화합물을 반응시켜 제조된 실란무기산염을 포함하는 질화티타늄막 및 텅스텐막의 식각용 조성물.
  2. 제1항에 있어서,
    (d) 킬레이트제를 더 포함하는 것을 특징으로 하는 질화티타늄막 및 텅스텐막의 식각용 조성물.
  3. 제1항에 있어서,
    상기 절연막은 알루미나 막인 것을 특징으로 하는 질화티타늄막 및 텅스텐막의 식각용 조성물.
  4. 제1항에 있어서,
    상기 실란무기산염 제조에 사용되는 무기산은 황산, 발연황산, 질산, 인산, 무수인산중에서 선택되는 어느 하나 이상인 것을 특징으로 하는 질화티타늄막 및 텅스텐막의 식각용 조성물.
  5. 제1항에 있어서,
    상기 실란무기산염 제조에 사용되는 실란화합물은 하기 [화학식1] 내지 [화학식2]로 표시되는 화합물 중 하나 이상인 것을 특징으로 하는 질화티타늄막 및 텅스텐막의 식각용 조성물.
    [화학식 1]
    Figure PCTKR2019018732-appb-I000025
    (상기 화학식 1에 있어서 R1 내지 R3는 각각 독립적으로 수소원자, 할로겐원자, 탄소수 1 내지 10의 알콕시기로 이루어진 군에서 선택되는 어느 하나이고, A는 탄소수 1 내지 10의 알킬기 또는 N라디칼이며, 상기 N라디칼은 *-(NR4)n 또는 *-(NR5CONR6)n 이다. R4 내지 R6은 독립적으로 수소, 탄소수 1 내지 10의 알킬기이며 n은 1 내지 5의 정수이다.)
    [화학식 2]
    Figure PCTKR2019018732-appb-I000026
    (상기 화학식 2에 있어서 R7 내지 R12는 각각 독립적으로 수소원자, 할로겐원자, 탄소수 1 내지 10의 알콕시기로 이루어진 군에서 선택되는 어느 하나이고 B는 탄소수 1 내지 10의 알킬기 또는 N라디칼이며, 상기 N 라디칼은 *-(NR13)n-* 또는 *-(NR14CONR15)n-* 이다. R13 내지 R15는 독립적으로 수소, 탄소수 1 내지 10의 알킬기 이며, n은 1 내지 5의 정수이다.)
  6. 제1항에 있어서,
    상기 실란화합물은 하기 [구조식 1] 내지 [구조식 10] 중에서 선택되는 어느 하나 이상인 것을 특징으로 하는 질화티타늄막 및 텅스텐막의 식각용 조성물.
    [구조식 1]
    Figure PCTKR2019018732-appb-I000027
    [구조식 2]
    Figure PCTKR2019018732-appb-I000028
    [구조식 3]
    Figure PCTKR2019018732-appb-I000029
    [구조식 4]
    Figure PCTKR2019018732-appb-I000030
    [구조식 5]
    Figure PCTKR2019018732-appb-I000031
    [구조식 6]
    Figure PCTKR2019018732-appb-I000032
    [구조식 7]
    Figure PCTKR2019018732-appb-I000033
    [구조식 8]
    Figure PCTKR2019018732-appb-I000034
    [구조식 9]
    Figure PCTKR2019018732-appb-I000035
    [구조식 10]
    Figure PCTKR2019018732-appb-I000036
  7. 제1항에 있어서,
    상기 실란무기산염을 제조하는 반응에서 상기 무기산과 실란화합물을 상기 무기산 100 중량부에 대하여 상기 실란화합물 1 내지 10 중량부를 반응시킨 것을 특징으로 하는 질화티타늄막 및 텅스텐막의 식각용 조성물.
  8. 제1항에 있어서,
    상기 실란무기산염을 제조하는 반응에서 상기 무기산에 상기 실란화합물을 첨가한 후, 50 내지 70 ℃에서 반응시킨 것을 특징으로 하는 질화티타늄막 및 텅스텐막의 식각용 조성물.
  9. 제1항에 있어서,
    상기 (c) 킬레이트제는 아르기닌(Arginine), 히스티딘(Histidine), 리신(Lysine), 아스파르트산(Aspartic acid), 글루타민산(Glutamic acid), 글루타민(Glutamine), 세린(Serine), 트레오닌(Threonine), 아스파라긴(Asparagine), 시스테인(Cysteine), 글리신(Glycine), 프롤린(Proline), 세레노시스테인(Serenocysteine), 알라닌(Alanine), 티로신(Tyrosine), 발린(Valine), 트립토판(Tryptophane), 류신(Leucine), 페닐알라닌(Phenylalanine), 메티오닌(Methionine), 시트르산(Citric acid), 살리실산(Salicylic acid), 타르타르산(Tartaric acid), 글루콘산(Gluconic acid), 옥살산(Oxalic acid), 말론산(Malonic acid), 말산(Malic acid), 설파믹산(Sulfamic acid), 석신산(Succinic acid) 중에서 선택되는 어느 하나 이상인 것을 특징으로 하는 질화티타늄막 및 텅스텐막의 식각용 조성물.
  10. 텅스텐막과 질화티타늄막외 절연막을 포함하는 적층체에서 텅스텐막과 질화티타늄막을 식각하기 위한 식각용 조성물로서,
    상기 식각용 조성물은 (a) 인산 40 내지 80중량%, (b) 질산 1 내지 30중량%, (c) 무기산과 실란화합물을 반응시켜 제조된 실란무기산염 0.01 내지 15중량%, (d) 킬레이트제 0 내지 5중량% 및 잔부의 물을 포함하는 질화티타늄막 및 텅스텐막의 식각용 조성물.
  11. 제1항 내지 제10항 중 어느 한 항에 기재된 식각용 조성물을 이용하여 질화티타늄막, 텅스텐막 및 절연막을 포함하는 반도체 소자에서 질화티타늄막과 텅스텐막을 식각하는 단계를 포함하는 반도체 소자의 식각 방법.
  12. 제11항에 있어서,
    상기 절연막은 알루미나 막인 것을 특징으로 하는 반도체 소자의 식각 방법.
PCT/KR2019/018732 2019-03-25 2019-12-30 질화티타늄막 및 텅스텐막 적층체 식각용 조성물 및 이를 이용한 반도체 소자의 식각방법 WO2020197057A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0033667 2019-03-25
KR1020190033667A KR102309755B1 (ko) 2019-03-25 2019-03-25 질화티타늄막 및 텅스텐막 적층체 식각용 조성물 및 이를 이용한 반도체 소자의 식각방법

Publications (1)

Publication Number Publication Date
WO2020197057A1 true WO2020197057A1 (ko) 2020-10-01

Family

ID=72611624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/018732 WO2020197057A1 (ko) 2019-03-25 2019-12-30 질화티타늄막 및 텅스텐막 적층체 식각용 조성물 및 이를 이용한 반도체 소자의 식각방법

Country Status (2)

Country Link
KR (1) KR102309755B1 (ko)
WO (1) WO2020197057A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024007909A1 (zh) * 2022-07-05 2024-01-11 上海集成电路材料研究院有限公司 一种蚀刻组合物、蚀刻方法及应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150050278A (ko) * 2013-10-31 2015-05-08 솔브레인 주식회사 질화티타늄막 및 텅스텐막의 적층체용 식각 조성물, 이를 이용한 식각 방법 및 이로부터 제조된 반도체 소자
KR101627181B1 (ko) * 2014-07-17 2016-06-03 솔브레인 주식회사 식각용 조성물 및 이를 이용한 반도체 소자의 제조방법
KR20180068545A (ko) * 2016-12-14 2018-06-22 솔브레인 주식회사 식각액 조성물 및 이를 이용한 식각 방법
KR20180109745A (ko) * 2017-03-28 2018-10-08 주식회사 이엔에프테크놀로지 실리콘 질화막 식각 조성물
KR20190030299A (ko) * 2017-09-14 2019-03-22 주식회사 이엔에프테크놀로지 실리콘 질화막에 대한 선택적 에칭을 위한 식각 조성물 및 이를 이용한 식각 방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102190370B1 (ko) 2014-01-10 2020-12-11 삼성전자주식회사 도전 패턴의 형성 방법 및 이를 이용한 반도체 장치의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150050278A (ko) * 2013-10-31 2015-05-08 솔브레인 주식회사 질화티타늄막 및 텅스텐막의 적층체용 식각 조성물, 이를 이용한 식각 방법 및 이로부터 제조된 반도체 소자
KR101627181B1 (ko) * 2014-07-17 2016-06-03 솔브레인 주식회사 식각용 조성물 및 이를 이용한 반도체 소자의 제조방법
KR20180068545A (ko) * 2016-12-14 2018-06-22 솔브레인 주식회사 식각액 조성물 및 이를 이용한 식각 방법
KR20180109745A (ko) * 2017-03-28 2018-10-08 주식회사 이엔에프테크놀로지 실리콘 질화막 식각 조성물
KR20190030299A (ko) * 2017-09-14 2019-03-22 주식회사 이엔에프테크놀로지 실리콘 질화막에 대한 선택적 에칭을 위한 식각 조성물 및 이를 이용한 식각 방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024007909A1 (zh) * 2022-07-05 2024-01-11 上海集成电路材料研究院有限公司 一种蚀刻组合物、蚀刻方法及应用

Also Published As

Publication number Publication date
KR102309755B1 (ko) 2021-10-06
KR20200113457A (ko) 2020-10-07

Similar Documents

Publication Publication Date Title
KR102443370B1 (ko) 실리콘 질화막 식각액 조성물
WO2018070837A1 (ko) 식각액 조성물
WO2013100365A1 (ko) 하드마스크 조성물용 모노머, 상기 모노머를 포함하는 하드마스크 조성물 및 상기 하드마스크 조성물을 사용하는 패턴형성방법
WO2019182277A1 (ko) 실리콘질화막 식각액 조성물
KR20150050278A (ko) 질화티타늄막 및 텅스텐막의 적층체용 식각 조성물, 이를 이용한 식각 방법 및 이로부터 제조된 반도체 소자
WO2017026803A1 (ko) Lcd 제조용 포토레지스트 박리액 조성물
KR20170030774A (ko) 비인산계 실리콘 질화막 식각 조성물
KR20090014750A (ko) 액정표시장치용 어레이 기판의 제조 방법
WO2014104480A1 (ko) 모노머, 상기 모노머를 포함하는 하드마스크 조성물 및 상기 하드마스크 조성물을 사용하는 패턴형성방법
WO2020197057A1 (ko) 질화티타늄막 및 텅스텐막 적층체 식각용 조성물 및 이를 이용한 반도체 소자의 식각방법
WO2020197056A1 (ko) 질화티타늄막 및 텅스텐막 적층체 식각용 조성물 및 이를 이용한 반도체 소자의 식각방법
WO2020218816A1 (ko) 식각챔버를 이용한 식각장치
WO2022030765A1 (ko) 텅스텐막에 대한 질화티타늄막의 식각 선택비를 조절하기 위한 식각액 조성물 및 이를 이용한 식각방법
WO2011081321A2 (ko) 레지스트 하층막용 조성물 및 이를 이용한 반도체 집적회로 디바이스의 제조방법
KR101391023B1 (ko) 액정표시장치용 어레이 기판의 제조 방법
WO2017176038A1 (ko) Basno3 박막 및 이의 저온 제조 방법
WO2022245014A1 (ko) 증발감량이 적은 스핀 온 카본 하드마스크 조성물 및 이를 이용한 패턴화 방법
WO2018182307A1 (ko) 실리콘 질화막 식각 조성물
WO2020040386A1 (ko) 절연막 식각액 조성물 및 이를 이용한 패턴 형성 방법
US6794294B1 (en) Etch process that resists notching at electrode bottom
WO2020017723A1 (ko) 절연막 식각액 조성물 및 이를 이용한 패턴 형성 방법
WO2015026194A1 (ko) 신규한 중합체 및 이를 포함하는 조성물
WO2022145654A1 (ko) 반도체 공정용 연마 조성물, 연마 조성물의 제조 방법 및 연마 조성물을 적용한 반도체 소자의 제조 방법
WO2017195968A1 (ko) 구리 연마용 cmp 슬러리 조성물 및 이를 이용한 연마 방법
KR20190131911A (ko) 실란 화합물을 포함하는 절연막 식각액 조성물 및 이를 이용한 패턴 형성 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19921928

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19921928

Country of ref document: EP

Kind code of ref document: A1