WO2011081321A2 - 레지스트 하층막용 조성물 및 이를 이용한 반도체 집적회로 디바이스의 제조방법 - Google Patents

레지스트 하층막용 조성물 및 이를 이용한 반도체 집적회로 디바이스의 제조방법 Download PDF

Info

Publication number
WO2011081321A2
WO2011081321A2 PCT/KR2010/008849 KR2010008849W WO2011081321A2 WO 2011081321 A2 WO2011081321 A2 WO 2011081321A2 KR 2010008849 W KR2010008849 W KR 2010008849W WO 2011081321 A2 WO2011081321 A2 WO 2011081321A2
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
resist underlayer
underlayer film
formula
Prior art date
Application number
PCT/KR2010/008849
Other languages
English (en)
French (fr)
Other versions
WO2011081321A3 (ko
Inventor
김미영
김상균
조현모
고상란
윤희찬
정용진
김종섭
Original Assignee
제일모직 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제일모직 주식회사 filed Critical 제일모직 주식회사
Priority to CN201080060221.8A priority Critical patent/CN102713758B/zh
Publication of WO2011081321A2 publication Critical patent/WO2011081321A2/ko
Publication of WO2011081321A3 publication Critical patent/WO2011081321A3/ko
Priority to US13/539,760 priority patent/US9140986B2/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0752Silicon-containing compounds in non photosensitive layers or as additives, e.g. for dry lithography
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen
    • H01L21/02216Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen the compound being a molecule comprising at least one silicon-oxygen bond and the compound having hydrogen or an organic group attached to the silicon or oxygen, e.g. a siloxane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0332Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their composition, e.g. multilayer masks, materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/16Polysiloxanes containing silicon bound to oxygen-containing groups to hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/18Polysiloxanes containing silicon bound to oxygen-containing groups to alkoxy or aryloxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups

Definitions

  • the present invention relates to a composition for resist underlayer films capable of providing a resist underlayer film having excellent storage stability and resistance to etch, and capable of transferring an excellent pattern, and a method for manufacturing a semiconductor integrated circuit device using the same.
  • ARC anti-reflective coating
  • an anti-reflective coating material has a similar basic composition to that of the resist material, and thus has a disadvantage of having bad etch selectivity with respect to an image layer of the resist. Therefore, there is a disadvantage that an additional lithography process is required in a subsequent etching step.
  • the resist underlayer film has been widely used when the resist layer is very thin, when the substrate to be etched is very thick, when the etching depth is required deeply, or when a specific etchant is to be used for a specific substrate layer. .
  • Such a resist underlayer film is a material having excellent etch selectivity, and generally uses two layers. Even in this case, studies on the resist underlayer film for excellent etching resistance have to be continued.
  • the resist underlayer film composition for forming the resist underlayer film includes an organosilane-based condensation polymer
  • highly reactive silanol may remain and storage stability may deteriorate.
  • the silanol group condenses to increase the molecular weight of the organosilane condensation polymer, and when the increase in the molecular weight of the organosilane condensation polymer becomes more severe, the resist underlayer film for The composition can be gelled.
  • One embodiment of the present invention provides a composition for a resist underlayer film having excellent storage stability and etching resistance.
  • Another embodiment of the present invention provides a method for manufacturing a semiconductor integrated circuit device using the resist underlayer film composition.
  • One embodiment of the present invention provides a composition for a resist underlayer film including an organosilane-based condensation polymer comprising a structural unit represented by the following formula (1) 40 to 80 mol% and a solvent.
  • ORG is selected from the group consisting of a functional group having 6 to 30 carbon atoms, an alkyl group having 1 to 12 carbon atoms, and -Y- ⁇ Si (OR) 3 ⁇ a containing a substituted or unsubstituted aromatic ring,
  • R is an alkyl group having 1 to 6 carbon atoms
  • Y is a linear or branched substituted or unsubstituted alkylene group having 1 to 20 carbon atoms
  • 20 is an alkylene group, a is 1 or 2
  • Z is selected from the group consisting of hydrogen and alkyl groups having 1 to 6 carbon atoms.
  • the organosilane-based condensation polymer may further include a structural unit represented by the following Chemical Formula 2 or 3.
  • ORG is selected from the group consisting of a functional group having 6 to 30 carbon atoms, an alkyl group having 1 to 12 carbon atoms, and -Y- ⁇ Si (OR) 3 ⁇ a containing a substituted or unsubstituted aromatic ring,
  • R is an alkyl group having 1 to 6 carbon atoms
  • Y is a linear or branched substituted or unsubstituted alkylene group having 1 to 20 carbon atoms
  • a is 1 or 2
  • Z is selected from the group consisting of hydrogen and alkyl groups having 1 to 6 carbon atoms.
  • the organosilane-based condensation polymer may be produced from a compound represented by the following Chemical Formulas 4 and 5 under an acid catalyst or a base catalyst.
  • R 1 and R 2 are the same as or different from each other, and each independently an alkyl group having 1 to 6 carbon atoms,
  • R 3 is an alkyl group having 1 to 12 carbon atoms
  • X is a C6-C30 functional group containing a substituted or unsubstituted aromatic ring.
  • the organosilane condensation polymer may be produced from a compound represented by the following Chemical Formulas 4 to 6 under an acid catalyst or a base catalyst.
  • R 1 , R 2 and R 4 are the same as or different from each other, and each independently an alkyl group having 1 to 6 carbon atoms,
  • R 3 is an alkyl group having 1 to 12 carbon atoms
  • X is a C6-C30 functional group containing a substituted or unsubstituted aromatic ring
  • Y is a linear or branched substituted or unsubstituted alkylene group having 1 to 20 carbon atoms; Or an alkylene group having 1 to 20 carbon atoms in which the main chain contains a substituent selected from the group consisting of an alkenylene group, an alkynylene group, an arylene group, a heterocyclic group, a urea group, an isocyanurate group, and a combination thereof;
  • n 2 or 3
  • the C6-C30 functional group containing the substituted or unsubstituted aromatic ring may be represented by the following Formula 21.
  • L is a linear or branched, substituted or unsubstituted alkylene group having 1 to 20 carbon atoms, wherein at least one carbon constituting the alkylene group is an ether group (-O-), a carbonyl group (-CO-), an ester May be substituted or unsubstituted with a functional group selected from the group consisting of a group (-COO-) and an amine group (-NH-),
  • X 1 is selected from the group consisting of a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, a substituted or unsubstituted arylcarbonyl group having 7 to 20 carbon atoms, and a substituted or unsubstituted carbon group having 9 to 20 carbon atoms,
  • n 0 or 1)
  • the organosilane-based condensation polymer may be included in an amount of 1 to 50 wt% based on the total amount of the composition for resist underlayer film.
  • the resist underlayer film composition may further include an additive selected from the group consisting of a crosslinking agent, a radical stabilizer, a surfactant, and a combination thereof.
  • the resist underlayer film composition of pyridinium p-toluenesulfonate (pyridinium p -toluenesulfonate), amino Dorsal Phoebe others -16 (amidosulfobetain-16), ammonium (-) - camphor-10-sulfonic acid salt (ammonium (-) - camphor -10-sulfonic acid ammonium salt, ammonium formate, alkyltriethylammonium formate, pyridinium formate, tetrabutyl ammonium acetate, tetrabutylammonium azide (tetrabutyl ammonium azide), tetrabutyl ammonium benzoate, tetrabutyl ammonium bisulfate, tetrabutyl ammonium bromide, tetrabutyl ammonium chloride, cyanide tetra Tetrabutyl ammonium cyanide, t
  • Another embodiment of the present invention includes the steps of (a) providing a layer of material on a substrate; (b) forming a first resist underlayer film over the material layer; (c) coating a composition for resist underlayer film according to an embodiment of the present invention onto the first resist underlayer film to form a second resist underlayer film; (d) forming a radiation-sensitive imaging layer over the second resist underlayer film; (e) generating a pattern of radiation-exposed regions within the radiation-sensitive image layer by exposing the radiation-sensitive imaging layer to radiation in a patterned manner; (f) selectively removing portions of the radiation-sensitive imaging layer and the second resist underlayer film to expose a portion of the first resist underlayer film; (g) selectively removing portions of the patterned second resist underlayer film and the first resist underlayer film to expose portions of the material layer; And (h) forming a patterned material shape by etching the exposed portion of the material layer.
  • the method may further include forming an anti-reflection film between the step (c) of forming the second resist underlayer film and the step (d) of forming the radiation-sensitive imaging layer.
  • Another embodiment of the present invention provides a semiconductor integrated circuit device manufactured by the method of manufacturing the semiconductor integrated circuit device.
  • the resist resist underlayer film can provide a resist underlayer film excellent in storage stability and film properties by increasing the content of silicon without using a silane compound. In particular, it is excellent in the etching resistance with respect to the gas of a plasma state, and can transfer a desired pattern effectively.
  • the composition for the resist underlayer film has an effect of easily adjusting the surface properties of hydrophilicity or hydrophobicity.
  • FIG. 1 is a schematic diagram showing a cross section of a multilayer film formed by sequentially laminating a first resist underlayer film, a second resist underlayer film, and a B resist layer on a substrate.
  • substituted means substituted with an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms.
  • alkyl means alkyl of 1 to 6 carbon atoms; "Alkylene” means alkylene having 1 to 6 carbon atoms; “Aryl” means aryl having 6 to 12 carbon atoms; “Arylene” means arylene having 6 to 12 carbon atoms; “Alkenyl” means alkenyl having 2 to 6 carbon atoms; “Alkenylene” means alkenylene having 2 to 6 carbon atoms; “Alkynyl” means alkynyl having 2 to 6 carbon atoms; “Alkynylene” means alkynylene having 2 to 6 carbon atoms.
  • a “heterocyclic group” means a heteroarylene group having 3 to 12 carbon atoms and a heterocycloalkyl having 1 to 12 carbon atoms containing a "hetero" atom of N, "O", “S” or “P” in one ring. It is meant that it is a ethylene group, a heterocycloalkenylene group having 1 to 12 carbon atoms, a heterocycloalkynylene group having 1 to 12 carbon atoms, or a fused ring thereof.
  • the heterocyclic group preferably contains 1 to 5 heteroatoms described above.
  • One embodiment of the present invention provides a composition for a resist underlayer film including an organosilane-based condensation polymer comprising a structural unit represented by the following formula (1) 40 to 80 mol% and a solvent.
  • ORG is selected from the group consisting of a functional group having 6 to 30 carbon atoms, an alkyl group having 1 to 12 carbon atoms, and -Y- ⁇ Si (OR) 3 ⁇ a containing a substituted or unsubstituted aromatic ring,
  • R is an alkyl group having 1 to 6 carbon atoms
  • Y is a linear or branched substituted or unsubstituted alkylene group having 1 to 20 carbon atoms; Or a carbon number in which the main chain contains a substituent selected from the group consisting of an alkenylene group, an alkynylene group, an arylene group, a heterocyclic group, a urea group, an isocyanurate group, and a combination thereof
  • An alkylene group of 20 to a, a is 1 or 2
  • Z is selected from the group consisting of hydrogen and alkyl groups having 1 to 6 carbon atoms.
  • the content of the structural unit represented by Chemical Formula 1 may be included in the content range in consideration of the effect of improving storage stability and etching resistance.
  • the resist underlayer film composition according to the embodiment of the present invention has an effect of excellent etching resistance to O 2 gas in a plasma state.
  • the organosilane-based condensation polymer may further include a structural unit represented by the following Chemical Formula 2 or 3.
  • ORG is selected from the group consisting of a functional group having 6 to 30 carbon atoms, an alkyl group having 1 to 12 carbon atoms, and -Y- ⁇ Si (OR) 3 ⁇ a containing a substituted or unsubstituted aromatic ring,
  • R is an alkyl group having 1 to 6 carbon atoms
  • Y is a linear or branched substituted or unsubstituted alkylene group having 1 to 20 carbon atoms
  • 20 is an alkylene group, a is 1 or 2
  • Z is selected from the group consisting of hydrogen and alkyl groups having 1 to 6 carbon atoms.
  • the structural unit represented by the formula (2) may be included in the range of 1 to 20 mol% because it can obtain a storage stability effect
  • the structural unit represented by the formula (3) is included in the range of 10 to 50 mol% It is good because the etch resistance improvement effect with respect to an oxygen plasma can be acquired.
  • the organosilane-based condensation polymer may be produced from a compound represented by the following Chemical Formulas 4 and 5 under an acid catalyst or a base catalyst.
  • R 1 and R 2 are the same as or different from each other, and each independently an alkyl group having 1 to 6 carbon atoms,
  • R 3 is an alkyl group having 1 to 12 carbon atoms
  • X is a C6-C30 functional group containing a substituted or unsubstituted aromatic ring.
  • the compounds represented by the formula 4 and 5 are mixed in a ratio of 1: 0.005 to 3, respectively, in consideration of the absorbance, storage stability and resistance to etch resistance of the resist underlayer film composition according to an embodiment of the present invention It is good.
  • the compound represented by the formula (4) is excellent in the absorbance and etch resistance improvement effect
  • the compound represented by the formula (5) is excellent in the absorbance and storage stability improvement effect is preferably used in the above content range.
  • the organosilane-based condensation polymer may be produced from a compound represented by the following Chemical Formulas 4 to 6 under an acid catalyst or a base catalyst.
  • R 1 , R 2 and R 4 are the same as or different from each other, and each independently an alkyl group having 1 to 6 carbon atoms,
  • R 3 is an alkyl group having 1 to 12 carbon atoms
  • X is a C6-C30 functional group containing a substituted or unsubstituted aromatic ring
  • Y is a linear or branched substituted or unsubstituted alkylene group having 1 to 20 carbon atoms; Or C1-C1 containing a substituent selected from the group consisting of an alkenylene group, an alkynylene group, an arylene group, a heterocyclic group, a urea group, an isocyanurate group, and a combination thereof in the main chain; 20 alkylene group,
  • n 2 or 3
  • the compounds represented by the formula 4 to 6 is mixed in a ratio of 1: 1 to 0 to 20, respectively, in consideration of the absorbance, storage stability and resistance to the effect of improving the resist underlayer film composition according to an embodiment of the present invention It is good.
  • the compound represented by the formula (6) is excellent in the etch resistance and storage stability improvement effect is preferably used in the above-described content range.
  • the compound represented by Formula 6 has the effect of imparting hydrophilicity to the thin film. This has the effect of improving the interface affinity with the antireflection film.
  • the compound represented by Chemical Formula 6 may be a compound represented by the following Chemical Formulas 7 to 20.
  • each R is the same or different, and each independently, an alkyl group having 1 to 6 carbon atoms.
  • a functional group having 6 to 30 carbon atoms containing a substituted or unsubstituted aromatic ring may be represented by the following formula (21).
  • L is a linear or branched substituted or unsubstituted alkylene group having 1 to 20 carbon atoms, wherein one or two or more carbons which are not adjacent to each other forming the alkylene group are an ether group (-O-), a carbonyl group (-CO -) Can be substituted or unsubstituted with a functional group selected from the group consisting of ester group (-COO-), amine group (-NH-) and combinations thereof,
  • X 1 is selected from the group consisting of a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, a substituted or unsubstituted arylcarbonyl group having 7 to 20 carbon atoms, and a substituted or unsubstituted carbon group having 9 to 20 carbon atoms,
  • n 0 or 1)
  • substituted in Formula 21 is a halogen group, a hydroxyl group, a nitro group, an alkyl group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, It is a substituent selected from the group which consists of a C6-C12 aryl group and a C6-C12 aryl ketone group.
  • “functional group having 6 to 30 carbon atoms containing a substituted or unsubstituted aromatic ring” may be one represented by the following formula 22 to 42.
  • the organosilane condensation polymer may also be produced by hydrolysis and / or condensation polymerization under an acid catalyst or a base catalyst.
  • the acid catalyst or base catalyst serves to obtain an organosilane condensation polymer having a desired molecular weight by appropriately adjusting the rate of the hydrolysis reaction or polycondensation reaction of the above formula.
  • Types of such acid catalysts and base catalysts are generally used in the art and are not particularly limited.
  • the acid catalysts are hydrofluoric acid, hydrochloric acid, bromic acid, iodic acid, nitric acid, sulfuric acid, p-toluene sulfonic acid hydrate (p- toluenesulfonic acid monohydrate, diethylsulfate, 2,4,4,6-tetrabromocyclohexadienone, benzoin tosylate, 2-nitrobenzyl tosylate, alkyl esters of organic sulfonic acids and their Any one selected from the group consisting of combinations can be used.
  • the base catalyst may be selected from a combination of alkylamines such as triethylamine, diethylamine, ammonia, sodium hydroxide, potassium hydroxide, pyridine and phenyl.
  • the acid catalyst or the base catalyst is preferably used in an amount of 0.001 to 5 parts by weight based on 100 parts by weight of the total amount of the compound to produce the organosilane-based condensation product, so as to obtain a condensation polymer having a desired molecular weight by appropriately adjusting the reaction rate. .
  • the organosilane-based condensation polymer is preferably included in the range of 1 to 50% by weight based on the total amount of the composition for resist underlayer film.
  • the content of the organosilane-based condensation polymer may be included in the content range in consideration of the coating ability of the composition for a resist underlayer film according to an embodiment of the present invention.
  • the resist underlayer film composition according to the embodiment of the present invention comprises the organosilane condensation polymer and a solvent.
  • the solvent serves to prevent voids and to improve flatness by slowly drying the film.
  • the type of the solvent is generally used in the art, and is not particularly limited, but more specifically, volatilization near a temperature lower than the temperature at the time of coating, drying and curing of the composition for resist underlayer film according to one embodiment of the present invention.
  • a high boiling solvent can be used.
  • the resist underlayer film composition according to an embodiment of the present invention may further include an additive selected from the group consisting of a crosslinking agent, a radical stabilizer, a surfactant, and a combination thereof.
  • the resist underlayer film composition of pyridinium p-toluenesulfonate (pyridinium p -toluenesulfonate), amino Dorsal Phoebe others -16 (amidosulfobetain-16), ammonium (-) - camphor-10-sulfonic acid salt (ammonium (-) - camphor -10-sulfonic acid ammonium salt, ammonium formate, alkyltriethylammonium formate, pyridinium formate, tetrabutyl ammonium acetate, tetrabutylammonium azide (tetrabutyl ammonium azide), tetrabutyl ammonium benzoate, tetrabutyl ammonium bisulfate, tetrabutyl ammonium bromide, tetrabutyl ammonium chloride, cyanide tetra Tetrabutyl ammonium cyanide, t
  • Such additives are included in the range of 0.0001 to 0.01 parts by weight with respect to 100 parts by weight of the organosilane condensation polymer in consideration of the etch resistance, solvent resistance and storage stability of the composition for a resist underlayer film according to an embodiment of the present invention. good.
  • Such a resist underlayer film can generally be formed as shown in FIG. More specifically, the first resist underlayer film 3, which is generally made of organic matter, is formed on the substrate 1 such as a silicon oxide film, and the second resist underlayer film 5 is formed thereon, and finally, a resist layer ( 7) form. Since the second resist underlayer film 5 has a higher etch selectivity with respect to the resist layer 7 than the substrate 1, the pattern can be easily transferred even using a thin resist layer 7.
  • the first resist underlayer film 3 is etched using the second resist underlayer film 5 to which the pattern has been transferred as a mask, and the pattern is transferred. Finally, the first resist underlayer film 3 is used as a mask to the substrate 1. Transfer the pattern. As a result, a thinner layer of resist 7 is used to etch the substrate to the desired depth.
  • Another embodiment of the present invention comprises the steps of (a) providing a layer of material on a substrate; (b) forming a first resist underlayer film over the material layer; (c) coating the composition for resist underlayer film according to the embodiment of the present invention onto the first resist underlayer film to form a second resist underlayer film; (d) forming a radiation-sensitive imaging layer over the second resist underlayer film; (e) generating a pattern of radiation-exposed regions within the radiation-sensitive image layer by exposing the radiation-sensitive imaging layer to radiation in a patterned manner; (f) selectively removing portions of the radiation-sensitive imaging layer and the second resist underlayer film to expose a portion of the first resist underlayer film; (g) selectively removing portions of the patterned second resist underlayer film and portions of the first resist underlayer film to expose portions of the material layer; And (h) forming a patterned material shape by etching the exposed portion of the material layer.
  • the method may further include forming an anti-reflection film between the step (c) of forming the second resist underlayer film and the step (d) of forming the radiation-sensitive imaging layer.
  • the method of patterning a material on a substrate in accordance with the present invention may be performed more specifically as follows.
  • a material to be patterned such as aluminum and SiN (silicon nitride), is formed on a silicon substrate according to a conventional method.
  • the material to be patterned in which the composition for resist underlayer film of the present invention is used may be any of conductive, semiconductive, magnetic or insulating materials.
  • a first resist underlayer film made of an organic material is formed on the material to be patterned.
  • the first resist underlayer film may be formed to have a thickness of 200 kPa to 12000 kPa using an organic material including carbon, hydrogen, and oxygen atoms.
  • the type and thickness of the first resist underlayer film is not limited to the above range but may be manufactured in various forms, and those skilled in the art to which the present invention pertains have a technical idea or essential It will be understood that other specific forms may be practiced without changing the features.
  • a second resist underlayer film is formed by spin-coating to a thickness of 500 to 4000 mm, and then baked at 100 to 300 ° C. for 10 seconds to 10 minutes to obtain a second layer.
  • a resist underlayer film is formed.
  • the thickness of the second resist underlayer film, the baking temperature and time is not limited to the above range can be prepared in a variety of different forms, those skilled in the art to which the present invention belongs It will be appreciated that it may be embodied in other specific forms without changing the spirit or essential features.
  • a radiation-sensitive imaging layer is formed, and a development process of exposing a region where a pattern is to be formed is performed by an exposure process through the imaging layer. Subsequently, the imaging layer and the antireflective layer are selectively removed to expose portions of the material layer, and dry etching is performed using an etching gas.
  • the etching gas may be selected from the group consisting of CHF 3 , CF 4 , CH 4 , Cl 2 , BCl 3 , CH 2 F 2 , CHF 3 , CF 4 , C 2 F 6, and a mixture thereof. have.
  • any remaining radiation-sensitive imaging layer can be removed by conventional photoresist strippers.
  • Yet another embodiment of the present invention provides a semiconductor integrated circuit device manufactured by the manufacturing method according to the embodiment of the present invention.
  • patterned material layer structures such as holes for metal wiring lines, contacts or biases; Insulating sections such as damask trench or shallow trench isolation; It can be usefully applied to the field of trenches for capacitor structures, such as the design of integrated circuit devices. It can also be very usefully applied for forming patterned layers of oxides, nitrides, polysilicon and chromium. It is also to be understood that the invention is not limited to any particular lithographic technique or device structure.
  • Hexane (hexane) was added to the organosilane condensation polymer to precipitate a polymer to obtain a sample.
  • 0.5 g of pyridinium p-toluene sulfonate was added to the diluted solution to prepare a composition for resist underlayer film.
  • composition for resist underlayer film was coated on a silicon wafer by spin-coating to bake at a temperature of 240 ° C. for 1 minute to form a resist underlayer film having a thickness of 1000 kPa.
  • Hexane was added to the organosilane condensation polymer to precipitate a polymer to obtain a sample.
  • 100 g of methyl isobutyl ketone (MIBK) was added to 2.0 g of the obtained sample to prepare a dilute solution.
  • 0.5 g of pyridinium p-toluenesulfonate was added to the dilution solution to prepare a composition for resist underlayer film.
  • composition for resist underlayer film was coated on a silicon wafer by spin-coating to bake at a temperature of 240 ° C. for 1 minute to form a resist underlayer film having a thickness of 1000 kPa.
  • Hexane was added to the organosilane condensation polymer to precipitate a polymer to obtain a sample.
  • a dilution solution was prepared by putting 100 g of MIBK # 100 g into the 2.0 g sample obtained above.
  • 0.5 g of pyridinium p-toluenesulfonate was added to the dilution solution to prepare a composition for resist underlayer film.
  • composition for resist underlayer film was coated on a silicon wafer by spin-coating to bake at a temperature of 240 ° C. for 1 minute to form a resist underlayer film having a thickness of 1000 kPa.
  • composition for resist underlayer film was coated on a silicon wafer by spin-coating to bake at a temperature of 240 ° C. for 1 minute to form a resist underlayer film having a thickness of 1000 kPa.
  • composition for resist underlayer film was coated on a silicon wafer by spin-coating to bake at a temperature of 240 ° C. for 1 minute to form a resist underlayer film having a thickness of 1000 kPa.
  • composition for resist underlayer film was coated on a silicon wafer by spin-coating to bake at a temperature of 240 ° C. for 1 minute to form a resist underlayer film having a thickness of 1000 kPa.
  • the stability of the solution was tested for the compositions for resist underlayer films prepared in Comparative Example 1 and Examples # 1 to 5. While the solution was stored at 40 ° C., the state of the solution and the thickness after coating were measured for 30 days.
  • the comparative example was observed to be poor in coatability.
  • the compositions for resist underlayer films prepared in Examples 1 to 5 retained molecular weight at the time of manufacture even after a certain time elapsed, and almost no change in thickness ( ⁇ 10 kPa), thus confirming excellent storage stability.
  • Refractive index n and extinction coefficient k values of the resist underlayer films prepared in Comparative Examples 1 and 1 to 5 were measured using an Ellipsometer (manufactured by J. A. Woollam).
  • the "substituted or unsubstituted aromatic ring” shows an absorption spectrum in the "DUV (deep UV)” region, it can be applied as a material having high anti-reflection characteristics.
  • composition for resist underlayer film of the present invention can freely control the surface properties, thereby providing a hydrophilic or hydrophobic resist underlayer film.
  • the pattern was subjected to 90 mTorr pressure, 400 W / 250 W RF power, 24 sccm N 2 , 12 sccm O 2 , and 500 sccm Ar plasma conditions. After 15 seconds without bulk dry etching, the thickness was measured, and the etch rate per unit time was measured.
  • N 2 and Ar were used as a flowing gas, and O 2 was used as a main etch gas.
  • a first resist underlayer film made of an organic material was coated on the substrate to be patterned in order, and manufactured in Comparative Examples 1 and 5 on the coated first resist underlayer film.
  • the resist composition was applied to coat the second resist underlayer film, and the top was coated with a photoresist for ArF.
  • the layers stacked on the substrate were baked at 100 ° C. for 90 seconds and exposed using an ArF exposure apparatus ASML1250 (NA 0.82), followed by PEB (Post Exposure Bake) at 110 ° C. for 90 seconds. Subsequently, it was developed with a 2.38 wt% tetramethylammonium hydroxide (TMAH) aqueous solution, followed by HB (Hard Bake) at 110 ° C. for 75 seconds. After the patterning was completed, the line and space pattern of 100 nm x 100 nm was examined by using the CD-SEM.
  • TMAH tetramethylammonium hydroxide
  • the EL (exposure latitude) according to the change in the exposure amount was 3 nm / mJ or less DOF (depth of focus) according to the distance change with the 0.3 ⁇ m or less, it was confirmed that the level can be applied to the actual process.
  • the cross section of the sample was observed using the FE-SEM, it was confirmed that all of the vertical shape.
  • the patterned specimen is subjected to dry etching using CF x (x is in the range of 0 to 4) plasma, followed by dry etching again using O 2 plasma, and then CF x Dry etching was again performed using plasma. Finally, all remaining organics were removed using O 2 gas, and then the cross-section was examined by FE-SEM to form a pattern after etching.
  • CF x x is in the range of 0 to 4
  • the resist underlayer films prepared in Comparative Example 1 and Examples 1 to 5 were structured using a 29 Si NMR spectrometer (Varian Unity 400).
  • a peak of about -65 ppm appearing on the 29 Si NMR Spectrum represents a structure represented by the following Chemical Formula 3a, and a peak of about -55 ppm represents a structure represented by the following Chemical Formula 1a, and a peak of about -45 ppm.
  • ORG is a methyl group in the case of Comparative Example 1,
  • the composition for a resist underlayer film of the present invention uses an organosilane condensation polymer containing 40 to 80 mol% of the structural unit represented by Formula 1a, thereby increasing the content of silicon without using a silane compound. It was possible to provide a resist underlayer film having excellent storage stability and film characteristics. In particular, it was confirmed that it was excellent in the etching resistance with respect to the gas of a plasma state, and can transfer a desired pattern effectively.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Inorganic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials For Photolithography (AREA)
  • Silicon Polymers (AREA)

Abstract

화학식 1로 표시되는 구조단위 40 내지 80 몰%를 포함하는 유기실란계 축중합물 및 용매를 포함하는 레지스트 하층막용 조성물이 제공된다.  이로써, 본 발명은 저장안정성 및 내에칭성이 우수한 레지스트 하층막을 제공하여 우수한 패턴을 전사할 수 있는 레지스트 하층막용 조성물 및 이를 이용한 반도체 집적회로 디바이스의 제조방법을 제공할 수 있다.

Description

레지스트 하층막용 조성물 및 이를 이용한 반도체 집적회로 디바이스의 제조방법
본 발명은 저장안정성 및 내에칭성이 우수한 레지스트 하층막을 제공하여 우수한 패턴을 전사할 수 있는 레지스트 하층막용 조성물 및 이를 이용한 반도체 집적회로 디바이스의 제조방법에 관한 것이다.
일반적으로 대부분의 리소그래피(lithography) 공정은 해상도를 증가시키기 위하여 레지스트층과 기판 사이에서의 반사를 최소화시켜야 한다.  따라서 레지스트층과 기판 사이에 반사방지코팅재료(ARC; anti-reflective coating)를 사용하여 해상도를 증가시킨다.  그러나 이러한 반사방지코팅재료는 레지스트 재료와 기본 조성이 유사하여, 이미지가 새겨진 레지스트층에 대해 나쁜 에치선택성(etch selectivity)을 가지는 단점이 있다.  그러므로 후속 에칭단계에서 추가의 리소그래피 공정이 요구되는 단점이 있다.
또한, 일반적인 레지스트 재료는 후속 에칭 단계에 대한 충분한 내성을 지니지 못한다.  이로써, 레지스트층이 매우 얇은 경우, 에칭하고자 하는 기판이 매우 두꺼운 경우, 에칭깊이가 깊게 요구되는 경우, 또는 특정 기판층에 대해 특정 에칭제(echant)를 사용해야하는 경우에 레지스트 하층막이 널리 사용되어 왔다.  이러한 레지스트 하층막은 우수한 에치선택성을 가지는 재료로, 일반적으로 두 개의 층을 사용하게 된다.  이러한 경우에도 우수한 내에칭성을 가지기 위한 레지스트 하층막에 대한 연구는 지속되어야하는 실정이다.
특히, 상기 레지스트 하층막을 형성하기 위한 레지스트 하층막용 조성물이 유기실란계 축중합물을 포함하는 경우, 반응성이 높은 실란올기(silanol)가 잔존하여 보관안정성이 악화될 수 있다.  특히, 상기 레지스트 하층막용 조성물을 장기간 보관하는 경우에는 상기 실란올기가 축합 반응하여 유기실란계 축중합물의 분자량이 증가하게 되고, 상기 유기실란계 축중합물의 분자량의 증가가 보다 심해지면 상기 레지스트 하층막용 조성물이 겔(gel)화될 수 있다.  
따라서, 내에칭성이 우수하면서도 저장안정성이 우수한 새로운 레지스트 하층막용 조성물이 절실히 요구되는 실정이다.
본 발명의 일 구현예는 저장안정성 및 내에칭성이 우수한 레지스트 하층막용 조성물을 제공한다.
본 발명의 다른 일 구현예는 상기 레지스트 하층막용 조성물을 이용하는 반도체 집적회로 디바이스의 제조방법을 제공한다.
본 발명의 일 구현예는 하기 화학식 1로 표시되는 구조단위 40 내지 80 몰%를 포함하는 유기실란계 축중합물 및 용매를 포함하는 레지스트 하층막용 조성물을 제공한다.
[화학식 1]
Figure PCTKR2010008849-appb-I000001
(상기 화학식 1에서,
ORG는 치환 또는 비치환된 방향족 고리를 함유하는 탄소수 6 내지 30의 관능기, 탄소수 1 내지 12의 알킬기, 및 -Y-{Si(OR)3}a로 이루어진 군에서 선택되는 것이고,
이 때, 상기 R은 탄소수 1 내지 6의 알킬기이고, Y는 직쇄 또는 분지쇄의 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기; 또는 주쇄에 알케닐렌기, 알키닐렌기, 아릴렌기, 헤테로고리기, 우레아(urea)기, 이소시아누레이트(isocyanurate)기 및 이들의 조합으로 이루어진 군에서 선택되는 치환기가 포함되어 있는 탄소수 1 내지 20의 알킬렌기이고, a는 1 또는 2이고,
Z는 수소 및 탄소수 1 내지 6의 알킬기로 이루어진 군에서 선택된다.)
상기 유기실란계 축중합물은 하기 화학식 2 또는 3으로 표시되는 구조단위를 더 포함할 수 있다.
[화학식 2]
Figure PCTKR2010008849-appb-I000002
[화학식 3]
Figure PCTKR2010008849-appb-I000003
(상기 화학식 2 및 3에서,
ORG는 치환 또는 비치환된 방향족 고리를 함유하는 탄소수 6 내지 30의 관능기, 탄소수 1 내지 12의 알킬기 및 -Y-{Si(OR)3}a로 이루어진 군에서 선택되는 것이고,
이 때, 상기 R은 탄소수 1 내지 6의 알킬기이고, Y는 직쇄 또는 분지쇄의 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기; 또는 주쇄에 알케닐렌기, 알키닐렌기, 아릴렌기, 헤테로고리기, 우레아기, 이소시아누레이트기 및 이들의 조합으로 이루어진 군에서 선택되는 치환기가 포함되어 있는 탄소수 1 내지 20의 알킬렌기이고, a는 1 또는 2이고,
Z는 수소 및 탄소수 1 내지 6의 알킬기로 이루어진 군에서 선택된다.)
상기 유기실란계 축중합물은 산촉매 또는 염기촉매 하에서, 하기 화학식 4 및 5로 표시되는 화합물로부터 생성될 수 있다.
[화학식 4]
[R1O]3Si-X
[화학식 5]
[R2O]3Si-R3
(상기 화학식 4 및 5에서,
R1 및 R2는 서로 같거나 다른 것으로 각각 독립적으로, 탄소수 1 내지 6의 알킬기이고,
R3는 탄소수 1 내지 12의 알킬기이고,
X는 치환 또는 비치환된 방향족 고리를 함유하는 탄소수 6 내지 30의 관능기이다.)
상기 유기실란계 축중합물은 산촉매 또는 염기촉매 하에서, 하기 화학식 4 내지 6으로 표시되는 화합물로부터 생성될 수 있다.
[화학식 4]
[R1O]3Si-X
[화학식 5]
[R2O]3Si-R3
[화학식 6]
{[R4O]3Si}n-Y
(상기 화학식 4 내지 6에서,
R1, R2 및 R4는 서로 같거나 다른 것으로 각각 독립적으로, 탄소수 1 내지 6의 알킬기이고,
R3는 탄소수 1 내지 12의 알킬기이고,
X는 치환 또는 비치환된 방향족 고리를 함유하는 탄소수 6 내지 30의 관능기이고,
Y는 직쇄 또는 분지쇄의 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기; 또는 주쇄에 알케닐렌기, 알키닐렌기, 아릴렌기, 헤테로고리기, 우레아기, 이소시아누레이트기 및 이들의 조합으로 이루어진 군에서 선택되는 치환기가 포함되어 있는 탄소수 1 내지 20의 알킬렌기이고,
n은 2 또는 3 이다.)
상기 치환 또는 비치환된 방향족 고리를 함유하는 탄소수 6 내지 30의 관능기는 하기 화학식 21로 표시될 수 있다.
[화학식 21]
*-(L)m-X1
(상기 화학식 21에서
L은 직쇄 또는 분지쇄의 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기, 이 때, 상기 알킬렌기를 이루는 단일 또는 둘 이상의 탄소는 에테르기(-O-), 카르보닐기(-CO-), 에스테르기(-COO-) 및 아민기(-NH-)로 이루어진 군에서 선택되는 관능기로 치환 또는 비치환될 수 있고,
X1은 치환 또는 비치환된 탄소수 6 내지 20의 아릴기, 치환 또는 비치환된 탄소수 7 내지 20의 아릴카르보닐기 및 치환 또는 비치환된 탄소수 9 내지 20의 크로메논기로 이루어진 군에서 선택되는 것이고,
m은 0 또는 1 이다.)
상기 유기실란계 축중합물은 레지스트 하층막용 조성물 총량에 대하여, 1 내지 50 중량% 포함될 수 있다.
상기 레지스트 하층막용 조성물은 가교제, 라디칼 안정제, 계면활성제 및 이들의 조합으로 이루어진 군에서 선택되는 첨가제를 더 포함할 수 있다.
상기 레지스트 하층막용 조성물은 피리디늄 p-톨루엔설포네이트(pyridiniump-toluenesulfonate), 아미도설포베타인-16(amidosulfobetain-16), 암모늄(-)-캠퍼-10-설폰산염(ammonium(-)-camphor-10-sulfonic acid ammonium salt), 암모늄포메이트(ammonium formate), 알킬암모늄포메이트(alkyltriethylammonium formate), 피리디늄포메이트(pyridinium formate), 테트라부틸암모늄아세테이트(tetrabutyl ammonium acetate), 테트라부틸암모늄아자이드(tetrabutyl ammonium azide), 테트라부틸암모늄벤조에이트(tetrabutyl ammonium benzoate), 테트라부틸암모늄바이설페이트(tetrabutyl ammonium bisulfate), 브롬화테트라부틸암모늄(tetrabutyl ammonium bromide), 염화 테트라부틸암모늄(tetrabutyl ammonium chloride), 시안화테트라부틸암모늄(tetrabutyl ammonium cyanide), 불화테트라부틸암모늄(tetrabutyl ammonium fluoride), 요오드화테트라부틸암모늄(tetrabutyl ammonium iodide), 테트라부틸암모늄 설페이트(tetrabutyl ammonium sulfate), 테트라부틸암모늄나이트레이트(tetrabutyl ammonium nitrate), 테트라부틸암모늄나이트라이트(tetrabutyl ammonium nitrite), 테트라부틸암모늄 p-톨루엔설포네이트(tetrabutyl ammonium p-toluene sulfonate), 테트라부틸암모늄포스페이트(tetrabutyl ammonium phosphate) 및 이들의 조합으로 이루어진 군에서 선택되는 첨가제를 더 포함할 수 있다.
본 발명의 다른 일 구현예는 (a) 기판 상에 재료층을 제공하는 단계; (b) 상기 재료층 위로 제1 레지스트 하층막을 형성시키는 단계; (c) 상기 제1 레지스트 하층막 위로 본 발명의 일구현예에 따른 레지스트 하층막용 조성물을 코팅하여 제2 레지스트 하층막을 형성시키는 단계; (d) 상기 제2 레지스트 하층막 위로 방사선-민감성 이미지화층을 형성시키는 단계; (e) 상기 방사선-민감성 이미지화층을 패턴 방식으로 방사선에 노출시킴으로써 상기 방사선-민감성 이미지층 내에서 방사선-노출된 영역의 패턴을 생성시키는 단계; (f) 상기 방사선-민감성 이미지화층 및 상기 제2 레지스트 하층막의 부분을 선택적으로 제거하여 상기 제1 레지스트 하층막의 부분을 노출시키는 단계; (g) 패턴화된 제2 레지스트 하층막 및 상기 제1 레지스트 하층막의 부분을 선택적으로 제거하여 재료층의 부분을 노출시키는 단계; 및 (h) 재료층의 노출된 부분을 에칭함으로써 패턴화된 재료 형상을 형성시키는 단계를 포함하는 반도체 집적회로 디바이스의 제조방법을 제공한다.
상기 제2 레지스트 하층막을 형성시키는 (c)단계와 방사선-민감성 이미지화층을 형성시키는 (d)단계 사이에 추가로 반사방지막을 형성시키는 단계를 더 포함할 수 있다.
본 발명의 또다른 구현예는 상기 반도체 집적회로 디바이스의 제조방법에 의해 제조되는 반도체 집적회로 디바이스를 제공한다.
기타 본 발명의 구현예들의 구체적인 사항은 이하의 상세한 설명에 포함되어 있다.
상기 레지스트 하층막용 조성물은 실란화합물을 사용하지 않고도 실리콘의 함량을 높임으로써, 저장안정성 및 막특성이 우수한 레지스트 하층막을 제공할 수 있다.  특히, 플라즈마 상태의 기체에 대한 내에칭성이 우수하여, 원하는 패턴을 효과적으로 전사할 수 있다.  또한, 상기 레지스트 하층막용 조성물은 친수성 또는 소수성의 표면성질을 용이하게 조절 가능한 효과가 있다.
도 1은 기판 상에 제1 레지스트 하층막, 제2 레지스트 하층막 및  레지스트층을 순차적으로 적층하여 이루어진 다층막의 단면을 도시한 개략도이다.
<도면의 주요 부분에 대한 부호의 설명>
1 : 기판               3 : 제1 레지스트 하층막
5 : 제2 레지스트 하층막        7 : 레지스트층
이하, 본 발명의 구현예를 상세히 설명하기로 한다.  다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구 범위의 범주에 의해 정의될 뿐이다.
본 명세서에서 "치환"이란 별도의 정의가 없는 한, 탄소수 1 내지 6의 알킬기 또는 탄소수 6 내지 12의 아릴기로 치환된 것을 의미한다.
본 명세서에서 별도의 정의가 없는 한, "알킬"이란 탄소수 1 내지 6의 알킬을 의미하는 것이고; "알킬렌"이란 탄소수 1 내지 6의 알킬렌을 의미하는 것이고; "아릴"이란 탄소수 6 내지 12의 아릴을 의미하는 것이고; "아릴렌"이란 탄소수 6 내지 12의 아릴렌을 의미하는 것이고; "알케닐"이란 탄소수 2 내지 6의 알케닐을 의미하는 것이고; "알케닐렌"이란 탄소수 2 내지 6의 알케닐렌을 의미하는 것이고; "알키닐"이란 탄소수 2 내지 6의 알키닐을 의미하는 것이고; "알키닐렌"이란 탄소수 2 내지 6의 알키닐렌을 의미하는 것이다.
본 명세서에서 별도의 정의가 없는 한, "헤테로고리기"란 하나의 고리내에 N, O, S 또는 P의 헤테로 원자를 포함하는 탄소수 3 내지 12의 헤테로아릴렌기, 탄소수 1 내지 12의 헤테로사이클로알킬렌기, 탄소수 1 내지 12의 헤테로사이클로알케닐렌기, 탄소수 1 내지 12의 헤테로사이클로알키닐렌기 또는 이들의 융합고리인 것을 의미한다.  상기 헤테로고리기는 상기한 헤테로 원자를 1 내지 5 개 포함하는 것이 좋다.
 
본 발명의 일 구현예는 하기 화학식 1로 표시되는 구조단위 40 내지 80 몰%를 포함하는 유기실란계 축중합물 및 용매를 포함하는 레지스트 하층막용 조성물을 제공한다.
[화학식 1]
Figure PCTKR2010008849-appb-I000004
(상기 화학식 1에서,
ORG는 치환 또는 비치환된 방향족 고리를 함유하는 탄소수 6 내지 30의 관능기, 탄소수 1 내지 12의 알킬기, 및 -Y-{Si(OR)3}a로 이루어진 군에서 선택되는 것이고,
이 때, 상기 R은 탄소수 1 내지 6의 알킬기이고, Y는 직쇄 또는 분지쇄의 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기; 또는 주쇄에 알케닐렌기, 알키닐렌기, 아릴렌기, 헤테로고리기, 우레아(urea)기, 이소시아누레이트(isocyanurate)기, 및 이들의 조합으로 이루어진 군에서 선택되는 치환기가 포함되어 있는 탄소수 1 내지 20의 알킬렌기이고, a는 1 또는 2이고,
Z는 수소 및 탄소수 1 내지 6의 알킬기로 이루어진 군에서 선택된다.)
상기 화학식 1로 표시되는 구조단위의 함량은 저장안정성 및 내에칭성 개선 효과를 고려하여 상기 함량범위로 포함되는 것이 좋다.  특히, 본 발명의 일 구현예에 따른 레지스트 하층막용 조성물은 플라즈마 상태의 O2 가스에 대한 내에칭성이 우수한 효과가 있다.
상기 유기실란계 축중합물은 하기 화학식 2 또는 3으로 표시되는 구조단위를 더 포함할 수 있다.
[화학식 2]
Figure PCTKR2010008849-appb-I000005
[화학식 3]
Figure PCTKR2010008849-appb-I000006
(상기 화학식 2 및 3에서,
ORG는 치환 또는 비치환된 방향족 고리를 함유하는 탄소수 6 내지 30의 관능기, 탄소수 1 내지 12의 알킬기, 및 -Y-{Si(OR)3}a로 이루어진 군에서 선택되는 것이고,
이 때, 상기 R은 탄소수 1 내지 6의 알킬기이고, Y는 직쇄 또는 분지쇄의 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기; 또는 주쇄에 알케닐렌기, 알키닐렌기, 아릴렌기, 헤테로고리기, 우레아(urea)기, 이소시아누레이트(isocyanurate)기 및 이들의 조합으로 이루어진 군에서 선택되는 치환기가 포함되어 있는 탄소수 1 내지 20의 알킬렌기이고, a는 1 또는 2이고,
Z는 수소 및 탄소수 1 내지 6의 알킬기로 이루어진 군에서 선택되는 것이다.)
이 때, 상기 화학식 2로 표시되는 구조단위는 1 내지 20 몰%의 범위로 포함되는 것이 보관안정성 효과를 얻을 수 있으므로 좋고, 상기 화학식 3으로 표시되는 구조단위는 10 내지 50 몰%의 범위로 포함되는 것이 산소 플라즈마에 대한 에치내성 향상 효과를 얻을 수 있으므로 좋다.
상기 유기실란계 축중합물은 산촉매 또는 염기촉매 하에서, 하기 화학식 4 및 5로 표시되는 화합물로부터 생성될 수 있다.
[화학식 4]
[R1O]3Si-X
[화학식 5]
[R2O]3Si-R3
(상기 화학식 4 및 5에서,
R1 및 R2는 서로 같거나 다른 것으로 각각 독립적으로, 탄소수 1 내지 6의 알킬기이고,
R3는 탄소수 1 내지 12의 알킬기이고,
X는 치환 또는 비치환된 방향족 고리를 함유하는 탄소수 6 내지 30의 관능기이다.)
이 때, 상기 화학식 4 및 5로 표시되는 화합물은 본 발명의 일 구현예에 따른 레지스트 하층막용 조성물의 흡광도, 저장안정성 및 내에칭성 개선 효과를 고려하여, 각각 1: 0.005 내지 3 중량비로 혼합되는 것이 좋다.  특히, 상기 화학식 4로 표시되는 화합물은 흡광도 및 내에칭성 개선 효과가 우수하고, 상기 화학식 5로 표시되는 화합물은 흡광도 및 저장안정성 개선 효과가 우수하므로 상기한 함량 범위로 사용하는 것이 좋다.
또한, 상기 유기실란계 축중합물은 산촉매 또는 염기촉매 하에서, 하기 화학식 4 내지 6으로 표시되는 화합물로부터 생성될 수 있다.
[화학식 4]
[R1O]3Si-X
[화학식 5]
[R2O]3Si-R3
[화학식 6]
{[R4O]3Si}n-Y
(상기 화학식 4 내지 6에서,
R1, R2 및 R4는 서로 같거나 다른 것으로 각각 독립적으로, 탄소수 1 내지 6의 알킬기이고,
R3는 탄소수 1 내지 12의 알킬기이고,
X는 치환 또는 비치환된 방향족 고리를 함유하는 탄소수 6 내지 30의 관능기이고,
Y는 직쇄 또는 분지쇄의 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기; 또는 주쇄에 알케닐렌기, 알키닐렌기, 아릴렌기, 헤테로고리기, 우레아(urea)기, 이소시아누레이트(isocyanurate)기 및 이들의 조합으로 이루어진 군에서 선택되는 치환기가 포함되어 있는 탄소수 1 내지 20의 알킬렌기이고,
n은 2 또는 3 이다.)
이 때, 상기 화학식 4 내지 6으로 표시되는 화합물은 본 발명의 일구현예에 따른 레지스트 하층막용 조성물의 흡광도, 저장안정성 및 내에칭성 개선 효과를 고려하여, 각각 1: 0 내지 20 중량비로 혼합되는 것이 좋다.  특히, 상기 화학식 6으로 표시되는 화합물은 내에칭성 및 저장안정성 개선 효과가 우수하므로 상기한 함량 범위로 사용하는 것이 좋다.  또한, 상기 화학식 6으로 표시되는 화합물은 박막에 친수성를 부여할 수 있는 효과가 있다.  이로써, 반사방지막과의 계면친화력을 개선할 수 있는 효과가 있다.
보다 구체적으로, 상기 화학식 6으로 표시되는 화합물은 하기 화학식 7 내지 20로 표시되는 화합물을 사용할 수 있다.
[화학식 7] [화학식 8]
Figure PCTKR2010008849-appb-I000007
Figure PCTKR2010008849-appb-I000008
[화학식 9] [화학식 10]
Figure PCTKR2010008849-appb-I000009
Figure PCTKR2010008849-appb-I000010
[화학식 11] [화학식 12]
Figure PCTKR2010008849-appb-I000011
Figure PCTKR2010008849-appb-I000012
[화학식 13] [화학식 14]
Figure PCTKR2010008849-appb-I000013
Figure PCTKR2010008849-appb-I000014
[화학식 15] [화학식 16]
Figure PCTKR2010008849-appb-I000015
Figure PCTKR2010008849-appb-I000016
[화학식 17] [화학식 18]
Figure PCTKR2010008849-appb-I000017
Figure PCTKR2010008849-appb-I000018
[화학식 19] [화학식 20]
Figure PCTKR2010008849-appb-I000019
Figure PCTKR2010008849-appb-I000020
상기 화학식 7 내지 20에서 각각의 R은 동일하거나 상이하며, 각각 독립적으로, 탄소수 1 내지 6의 알킬기이다.
또한, 상기 화학식에 있어서, "치환 또는 비치환된 방향족 고리를 함유하는 탄소수 6 내지 30의 관능기"라 함은 하기 화학식 21로 표시되는 것일 수 있다.
[화학식 21]
*-(L)m-X1
(상기 화학식 21에서
L은 직쇄 또는 분지쇄의 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기, 이 때, 상기 알킬렌기를 이루는 서로 인접하지 않는 하나 또는 둘 이상의 탄소는 에테르기(-O-), 카르보닐기(-CO-), 에스테르기(-COO-), 아민기(-NH-) 및 이들의 조합으로 이루어진 군에서 선택되는 관능기로 치환 또는 비치환될 수 있고,
X1은 치환 또는 비치환된 탄소수 6 내지 20의 아릴기, 치환 또는 비치환된 탄소수 7 내지 20의 아릴카르보닐기 및 치환 또는 비치환된 탄소수 9 내지 20의 크로메논기로 이루어진 군에서 선택되는 것이고,
m은 0 또는 1 이다.)
이 때, 상기 화학식 21에서 "치환"은 할로겐기, 히드록시기, 니트로기, 탄소수 1 내지 6의 알킬기, 탄소수 1 내지 6의 할로알킬기, 탄소수 1 내지 6의 알콕시기,탄소수 2 내지 6의 알케닐기, 탄소수 6 내지 12의 아릴기 및 탄소수 6 내지 12의 아릴케톤기로 이루어진 군에서 선택되는 치환기이다.
보다 구체적으로, 상기 화학식에 있어서, "치환 또는 비치환된 방향족 고리를 함유하는 탄소수 6 내지 30의 관능기"라 함은 하기 화학식 22 내지 42로 표시되는 것을 사용할 수 있다.
Figure PCTKR2010008849-appb-I000021
Figure PCTKR2010008849-appb-I000022
Figure PCTKR2010008849-appb-I000023
또한, 상기 유기실란계 축중합물은 산 촉매 또는 염기 촉매하에서 가수분해 및/또는 축중합 반응으로 생성될 수 있다.
이 때, 상기 산촉매 또는 염기촉매는 상기한 화학식들의 가수분해 반응 또는 축중합 반응의 속도를 적절히 조절하여 원하는 분자량의 유기실란계 축중합물을 얻을 수 있도록 하는 역할을 한다.  이러한 산촉매 및 염기촉매의 종류는 당분야에서 일반적으로 사용되는 것으로 특별히 한정하지 않으나, 보다 구체적으로 상기 산촉매는 불산, 염산, 브롬산, 요오드산, 질산, 황산, p-톨루엔 설폰산 수화물(p-toluenesulfonic acid monohydrate), 디에틸설페이트(diethylsulfate), 2,4,4,6-테트라브로모시클로헥사디엔온, 벤조인 토실레이트, 2-니트로벤질 토실레이트,  유기 설폰산의 알킬 에스테르류 및 이들의 조합으로 이루어진 군에서 선택되는 것을 사용할 수 있다.  또한, 상기 염기촉매는 트리에틸아민, 디에틸아민과 같은 알킬아민, 암모니아, 수산화나트륨, 수산화칼륨, 피리딘 및 이들의 조합으로부터 선택되는 것을 사용할 수 있다.  이 때, 상기 산촉매 또는 염기촉매는 유기실란계 축중합물을 생성하는 상기 화합물의 총량 100 중량부에 대하여 0.001 내지 5 중량부로 사용하는 것이 반응속도를 적절히 조절하여 원하는 분자량의 축중합물을 얻기 위해서 바람직하다.
상기 유기실란계 축중합물은 레지스트 하층막용 조성물 총량에 대하여, 1 내지 50 중량% 범위로 포함되는 것이 좋다.  이 때, 상기 유기실란계 축중합물의 함량은 본 발명의 일구현예에 따른 레지스트 하층막용 조성물의 코팅능을 고려하여, 상기 함량 범위가 되도록 포함하는 것이 좋다.
본 발명의 일구현예에 따른 레지스트 하층막용 조성물은 상기한 유기실란계 축중합물과 용매를 포함하여 이루어진다.  상기 용매는 보이드(void)를 방지하고, 필름을 천천히 건조함으로써 평탄성을 향상시키는 역할을 한다.  이러한 용매의 종류는 당분야에서 일반적으로 사용되는 것으로 특별히 한정하지 않으나, 보다 구체적으로 본 발명의 일 구현예에 따른 레지스트 하층막용 조성물의 코팅, 건조 및 경화시의 온도보다 좀 더 낮은 온도 근처에서 휘발하는 고비등 용매를 사용할 수 있다.  보다 더 구체적으로 아세톤(acetone), 테트라하이드로퓨란(tetrahydrofuran), 벤젠(benzene), 톨루엔(toluene), 디에틸에테르(diethyl ether), 클로로포름(chloroform), 디클로로메탄(dichloromethane), 에틸 아세테이트(ethyl acetate), 프로필렌 글리콜 메틸 에테르(propylene glycol methyl ether), 프로필렌 글리콜 에틸 에테르(propylene glycol ethyl ether), 프로필렌 글리콜 프로필 에테르(propylene glycol propyl ether), 프로필렌 글리콜 메틸 에테르 아세테이트(propylene glycol methyl ether acetate), 프로필렌 글리콜 에틸 에테르 아세테이트(propylene glycol ethyl ether acetate), 프로필렌 글리콜 프로필 에테르 아세테이트(propylene glycol propyl ether acetate), 에틸 락테이트(ethyl lactate), g-부티로락톤(g-butyrolactone), 메틸 이소부틸 케톤(methyl isobutyl ketone) 및 이들의 조합으로 이루어진 군에서 선택되는 것을 사용할 수 있다.
또한, 본 발명의 일구현예에 따른 레지스트 하층막용 조성물은 가교제, 라디칼 안정제, 계면활성제 및 이들의 조합으로 이루어진 군에서 선택되는 첨가제를 더 포함할 수 있다.
상기 레지스트 하층막용 조성물은 피리디늄 p-톨루엔설포네이트(pyridiniump-toluenesulfonate), 아미도설포베타인-16(amidosulfobetain-16), 암모늄(-)-캠퍼-10-설폰산염(ammonium(-)-camphor-10-sulfonic acid ammonium salt), 암모늄포메이트(ammonium formate), 알킬암모늄포메이트(alkyltriethylammonium formate), 피리디늄포메이트(pyridinium formate), 테트라부틸암모늄아세테이트(tetrabutyl ammonium acetate), 테트라부틸암모늄아자이드(tetrabutyl ammonium azide), 테트라부틸암모늄벤조에이트(tetrabutyl ammonium benzoate), 테트라부틸암모늄바이설페이트(tetrabutyl ammonium bisulfate), 브롬화테트라부틸암모늄(tetrabutyl ammonium bromide), 염화 테트라부틸암모늄(tetrabutyl ammonium chloride), 시안화테트라부틸암모늄(tetrabutyl ammonium cyanide), 불화테트라부틸암모늄(tetrabutyl ammonium fluoride), 요오드화테트라부틸암모늄(tetrabutyl ammonium iodide), 테트라부틸암모늄 설페이트(tetrabutyl ammonium sulfate), 테트라부틸암모늄나이트레이트(tetrabutyl ammonium nitrate), 테트라부틸암모늄나이트라이트(tetrabutyl ammonium nitrite), 테트라부틸암모늄 p-톨루엔설포네이트(tetrabutyl ammonium p-toluene sulfonate), 테트라부틸암모늄포스페이트(tetrabutyl ammonium phosphate) 및 이들의 조합으로 이루어진 군에서 선택되는 첨가제를 더 포함할 수 있다.  이러한 첨가제는 본 발명의 일 구현에에 따른 레지스트 하층막용 조성물의 내에칭성, 내용제성 및 저장안정성을 고려하여, 유기실란계 축중합물 100 중량부에 대하여, 0.0001 내지 0.01 중량부 범위로 포함되는 것이 좋다.
이러한 레지스트 하층막은 일반적으로 도 1에 나타낸 바와 같이 형성될 수 있다.  보다 구체적으로, 실리콘 산화막과 같은 기판(1) 상에 일반적으로 유기물로 이루어진 제1 레지스트 하층막(3)을 형성하고, 그 위에 제2 레지스트 하층막(5)를 만든 후, 최종적으로 레지스트층(7)을 형성한다.  제2 레지스트 하층막(5)는 기판(1)보다 레지스트층(7)에 대해 더 높은 에치선택성을 갖기 때문에 얇은 두께의 레지스트층(7)을 이용해도 패턴을 쉽게 전사할 수 있다.  패턴이 전사된 제2 레지스트 하층막(5)을 마스크로 제1 레지스트 하층막(3)을 에칭하여 패턴을 전사하고, 마지막으로 이 제1 레지스트 하층막(3)을 마스크로 기판(1)에 패턴을 전사한다.  결과적으로 더 얇은 레지스트층(7)을 사용하여 원하는 깊이로 기판을 에칭하게 되는 것이다.
본 발명의 또 다른 일 구현예는 (a) 기판 상에 재료층을 제공하는 단계; (b) 상기 재료층 위로 제1 레지스트 하층막을 형성시키는 단계; (c) 상기 제1 레지스트 하층막 위로 상기 본 발명의 일 구현예에 따른 레지스트 하층막용 조성물을 코팅하여 제2 레지스트 하층막을 형성시키는 단계; (d) 상기 제2 레지스트 하층막 위로 방사선-민감성 이미지화층을 형성시키는 단계; (e) 상기 방사선-민감성 이미지화층을 패턴 방식으로 방사선에 노출시킴으로써 상기 방사선-민감성 이미지층 내에서 방사선-노출된 영역의 패턴을 생성시키는 단계; (f) 상기 방사선-민감성 이미지화층 및 상기 제2 레지스트 하층막의 부분을 선택적으로 제거하여 상기 제1 레지스트 하층막의 부분을 노출시키는 단계; (g) 패턴화된 제2 레지스트 하층막 및 상기 제1 레지스트 하층막의 부분을 선택적으로 제거하여 재료층의 부분을 노출시키는 단계; 및 (h) 재료층의 노출된 부분을 에칭함으로써 패턴화된 재료 형상을 형성시키는 단계를 포함하는 반도체 집적회로 디바이스의 제조방법을 제공한다.
상기 제2 레지스트 하층막을 형성시키는 (c)단계와 방사선-민감성 이미지화층을 형성시키는 (d)단계 사이에 추가로 반사방지막을 형성시키는 단계를 더 포함할 수도 있다.
본 발명에 따라 기판 상의 재료를 패턴화하는 방법은 보다 구체적으로 하기와 같이 수행될 수 있다.  
먼저, 알루미늄과 SiN(실리콘 나이트라이드)등과 같은 패턴화하고자 하는 재료를 통상적인 방법에 따라 실리콘 기판 위에 형성시킨다.  본 발명의 레지스트 하층막용 조성물이 사용되는 패턴화하고자 하는 재료는 전도성, 반전도성, 자성 또는 절연성 재료인 것이 모두 가능하다.
상기 패턴화하고자 하는 재료 상에 유기물로 이루어진 제1 레지스트 하층막을 형성한다.  이 때, 상기 제1 레지스트 하층막은 탄소, 수소, 산소 원자를 포함하는 유기물 재료를 이용하여 200 내지 12000 Å의 두께로 형성될 수 있다. 이 때, 상기 제1 레지스트 하층막의 종류 및 두께는 상기 범위로 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다.
이어서, 본 발명의 일 구현예에 따른 레지스트 하층막용 조성물을 사용하여 500 내지 4000 Å 두께로 스핀-코팅에 의해 제2 레지스트 하층막을 형성하고, 100 내지 300 ℃에서 10 초 내지 10 분간 베이킹하여 제2 레지스트 하층막을 형성한다.  이 때, 상기 제2 레지스트 하층막의 두께, 베이킹 온도 및 시간은 상기 범위로 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다.
상기 제2 레지스트 하층막이 형성되면 방사선-민감성 이미지화층을 형성시키고, 상기 이미지화층을 통한 노광(exposure) 공정에 의해 패턴이 형성될 영역을 노출시키는 현상(develop)공정을 진행한다.  이어서, 이미지화층 및 반사방지층을 선택적으로 제거하여 재료층의 부분을 노출시키고, 에칭가스를 이용하여 드라이 에칭을 진행한다.  상기 에칭가스의 일반적인 예로는 CHF3, CF4, CH4, Cl2, BCl3, CH2F2, CHF3, CF4, C2F6 및 이들의 혼합가스로 이루어진 군에서 선택된 것을 사용할 수 있다.  패턴화된 재료 형상이 형성된 후에는 통상의 포토레지스트 스트립퍼에 의해 잔류하는 임의의 방사선-민감성 이미지화층을 제거할 수 있다. 
본 발명의 또 다른 일 구현예는 상기 본 발명의 일 구현예에 따른 제조방법에 의해 제조되는 반도체 집적회로 디바이스를 제공한다.  특히, 금속 와이어링 라인, 컨택트 또는 바이어스를 위한 홀과 같은 패터닝된 재료층 구조물; 다마스크 트렌치 또는 셀로우 트렌치 절연과 같은 절연색션; 집적 회로 장치의 설계와 같은 커패시터 구조물용 트렌치 등의 분야에 유용하게 적용될 수 있다.  또한, 산화물, 질화물, 폴리실리콘 및 크롬의 패터닝된 층을 형성하는 데에 매우 유용하게 적용될 수 있다.  또한 본 발명은 임의의 특정 리쏘그래픽 기법 또는 디바이스 구조물에 국한되는 것이 아님을 이해해야 한다.  
이하에서는 본 발명의 구체적인 실시예들을 제시한다.  다만, 하기에 기재된  실시예들은 본 발명을 구체적으로 예시하거나 설명하기 위한 것에 불과하며, 이로서 본 발명이 제한되어서는 아니된다.
 
비교예 1
기계교반기, 냉각관, 적가 깔대기 및 질소가스 도입관을 구비한 10 ℓ의 4구 플라스크에 메틸트리메톡시실란(methyltrimethoxysilane; MTMS) 3000 g을 프로필렌 글리콜 메틸 에테르 아세테이트(propylene glycol methyl ether acetate, PGMEA) 7000 g에 용해시킨 후 0.5% 질산 수용액 833.4 g을 용액에 첨가하였다.  그 후, 50 ℃에서 1시간 동안 가수분해를 한 후, 음압을 가하여 생성된 메탄올(methanol)을 제거하였고, 50 ℃에서 4일 동안 반응시켰다.  반응 후, 유기실란계 축중합물(중량평균분자량= 20000, 분산도(polydispersity, PD)=4.5)을 얻었다.
상기 유기실란계 축중합물에 헥산(hexane)을 가하여 폴리머를 침전시켜 샘플을 얻었다.  상기 얻어진 샘플 2.0 g에 메틸이소부틸케톤(mehtylisobutylketone, MIBK) 100 g을 넣어 희석용액을 제조하였다.  상기 희석용액에 피리디늄 p-톨루엔 설포네이트(pyridinium p-toluene sulfonate) 0.5 g을 넣어 레지스트 하층막용 조성물을 제조하였다.
상기 레지스트 하층막용 조성물을 실리콘 웨이퍼에 스핀-코팅법으로 코팅하여 240 ℃의 온도에서 1 분 동안 구워서(baking), 두께 1000 Å의 레지스트 하층막을 형성하였다.
 
실시예 1
기계교반기, 냉각관, 적가 깔대기 및 질소가스 도입관을 구비한 10 ℓ의 4구 플라스크에 페닐트리메톡시실란(phenyltrimethoxysilane) 457.44 g과 메틸트리메톡시실란 2542.56 g을 PGMEA 7000 g에 용해시킨 후 0.5% 질산 수용액 793.62 g을 용액에 첨가하였다.  그 후, 50 ℃에서 1시간 동안 가수분해를 한 후, 음압을 가하여 생성된 메탄올(methanol)을 제거하였고, 50 ℃에서 7일 동안 반응시켰다.  반응 후, 유기실란계 축중합물(중량평균분자량= 20000, 분산도(PD)=4.5)을 얻었다.
상기 유기실란계 축중합물에 헥산을 가하여 폴리머를 침전시켜 샘플을 얻었다.  상기 얻어진 샘플 2.0 g에 메틸이소부틸케톤(mehtylisobutylketone, MIBK) 100 g을 넣어 희석용액을 제조하였다.  상기 희석용액에 피리디늄 p-톨루엔설포네이트(pyridinium p-toluenesulfonate) 0.5 g을 넣어 레지스트 하층막용 조성물을 제조하였다.
상기 레지스트 하층막용 조성물을 실리콘 웨이퍼에 스핀-코팅법으로 코팅하여 240 ℃의 온도에서 1 분 동안 구워서(baking), 두께 1000 Å의 레지스트 하층막을 형성하였다.
 
실시예 2
기계교반기, 냉각관, 적가 깔대기 및 질소가스 도입관을 구비한 10 ℓ의 4구 플라스크에 페닐트리메톡시실란 457.44 g과 메틸트리메톡시실란 2542.56 g을 PGMEA 7000 g과 에탄올 1190.44 g에 용해시킨 후 0.5% 질산 수용액 793.62 g을 용액에 첨가하였다.  그 후, 50 ℃에서 1시간 동안 가수분해를 한 후, 음압을 가하여 생성된 메탄올과 에탄올을 제거하였고, 50 ℃에서 7일 동안 반응시켰다.  반응 후, 유기실란계 축중합물(중량평균분자량= 20000, 분산도(PD)=4.45)을 얻었다.
상기 유기실란계 축중합물에 헥산을 가하여 폴리머를 침전시켜 샘플을 얻었다.  상기 얻어진 샘플 2.0 g에 MIBK 100 g을 넣어 희석용액을 제조하였다.  상기 희석용액에 피리디늄 p-톨루엔설포네이트 0.5 g을 넣어 레지스트 하층막용 조성물을 제조하였다.
상기 레지스트 하층막용 조성물을 실리콘 웨이퍼에 스핀-코팅법으로 코팅하여 240 ℃의 온도에서 1 분 동안 구워서(baking), 두께 1000 Å의 레지스트 하층막을 형성하였다.
실시예 3
기계교반기, 냉각관, 적가 깔대기 및 질소가스 도입관을 구비한 10 ℓ의 4구 플라스크에 페닐트리메톡시실란 132.4 g, 메틸트리메톡시실란 363.82 g 및 비스트리에톡시실릴에탄 1183.78 g을 PGMEA 3920 g에 용해시킨 후 0.5% 질산 수용액 379 g을 용액에 첨가하였다.  그 후, 50 ℃에서 1시간 동안 가수분해를 한 후, 음압을 가하여 생성된 메탄올과 에탄올을 제거하였고, 50 ℃에서 3일 동안 반응시켰다.  반응 후, 유기실란계 축중합물(중량평균분자량= 10000, 분산도(PD)=4)을 얻었다.
상기 유기실란계 축중합물 2.0 g에 PGMEA 100 g을 넣어 희석용액을 제조하였다.  상기 희석용액에 피리디늄 p-톨루엔설포네이트 0.002 g을 넣어 레지스트 하층막용 조성물을 제조하였다.
상기 레지스트 하층막용 조성물을 실리콘 웨이퍼에 스핀-코팅법으로 코팅하여 240 ℃의 온도에서 1 분 동안 구워서(baking), 두께 1000 Å의 레지스트 하층막을 형성하였다.
 
실시예 4
기계교반기, 냉각관, 적가 깔대기 및 질소가스 도입관을 구비한 10 ℓ의 4구 플라스크에 페닐트리메톡시실란 132.4 g, 메틸트리메톡시실란 363.82 g 및 비스트리에톡시실릴에탄 1183.78 g을 PGMEA 3920 g과 에탄올 568.5 g에 용해시킨 후 0.5% 질산 수용액 379 g을 용액에 첨가하였다.  그 후, 50 ℃에서 1시간 동안 가수분해를 한 후, 음압을 가하여 생성된 메탄올과 에탄올을 제거하였고, 50 ℃에서 3일 동안 반응시켰다.  반응 후, 유기실란계 축중합물(중량평균분자량= 10000, 분산도(PD)=4)을 얻었다.
상기 유기실란계 축중합물 2.0 g에 PGMEA 100 g을 넣어 희석용액을 제조하였다.  상기 희석용액에 피리디늄 p-톨루엔설포네이트 0.002 g을 넣어 레지스트 하층막용 조성물을 제조하였다.
상기 레지스트 하층막용 조성물을 실리콘 웨이퍼에 스핀-코팅법으로 코팅하여 240 ℃의 온도에서 1 분 동안 구워서(baking), 두께 1000 Å의 레지스트 하층막을 형성하였다.
 
실시예 5
기계교반기, 냉각관, 적가 깔대기 및 질소가스 도입관을 구비한 10 ℓ의 4구 플라스크에  페닐트리메톡시실란 132.4 g, 메틸트리메톡시실란 363.82 g 및 비스트리에톡시실릴에탄 1183.78 g을 PGMEA 3920 g과 에탄올 1137.02 g에 용해시킨 후 0.5% 질산 수용액 379 g을 용액에 첨가하였다.   그 후, 50 ℃에서 1 시간 동안 가수분해를 한 후, 음압을 가하여 생성된 메탄올과 에탄올을 제거하였고, 50 ℃에서 3일 동안 반응시켰다.  반응 후, 유기실란계 축중합물(중량평균분자량= 10000, 분산도(PD)=4)을 얻었다.
상기 유기실란계 축중합물 2.0 g에 PGMEA 100 g을 넣어 희석용액을 제조하였다.  상기 희석용액에 피리디늄 p-톨루엔설포네이트 0.002 g을 넣어 레지스트 하층막용 조성물을 제조하였다.
상기 레지스트 하층막용 조성물을 실리콘 웨이퍼에 스핀-코팅법으로 코팅하여 240 ℃의 온도에서 1 분 동안 구워서(baking), 두께 1000 Å의 레지스트 하층막을 형성하였다.
실험예 1
상기 비교예 1 및 실시예 1 내지 5에서 제조된 레지스트 하층막용 조성물에 대하여, 용액의 안정성을 테스트를 수행하였다.  40 ℃에서 용액을 보관하면서 30일간 용액의 상태와 코팅 후 두께를 측정하였다.  
비교예는 코팅성이 불량인 것으로 관찰되었다.  반면에 실시예 1 내지 5에서 제조된 레지스트 하층막용 조성물은 모두 일정시간 경과 후에도 제조시의 분자량을 유지하며, 두께 변화가 거의 없는 것으로(< 10 Å) 보아 보관안정성이 우수함을 확인할 수 있었다. 
 
실험예 2
상기 비교예 1 및 실시예 1 내지 5에서 제조된 레지스트 하층막에 대하여, 굴절률(refractive index) n과 흡광계수(extinction coefficient) k값을 Ellipsometer(J. A. Woollam 사 제품)을 이용하여 측정하였다.
비교예 1의 경우에는 193 nm 파장에서 n=1.69이고, k=0.00인 것을 확인할 수 있었다.  또한, 실시예 1 내지 2의 경우에는 n=1.69이고, k=0.22이며, 실시예 3 내지 5의 경우에는 n=1.69이고, k=0.14인 것을 확인할 수 있었다.
이와 같이 치환 또는 비치환의 방향족 고리가 DUV(deep UV) 영역에서 흡수스펙트럼을 나타내는 점을 활용하면 반사방지 특성이 높은 재료로서 응용될 수 있다.
 
실험예 3
상기 비교예 1 및 실시예 1 내지 5에서 제조된 레지스트 하층막에 대하여, 접촉각(contact angle, °)을 측정하였다.  각각의 표면 위에 5 point 씩 탈이온수(DI water) 3 μL를 떨어뜨리고, DAS-100(KRUSS 사)을 이용하여 각각의 표면과 물방울이 이루는 각도를 측정함으로써 표면특성을 관찰하였다.  
상기 비교예 1 및 실시예 1 내지 2에서 제조된 레지스트 하층막의 접촉각은  모두 약 85 °로 소수성(hydrophobicity)의 표면을 가지는 것을 확인할 수 있었다.  또한, 실시예 3 내지 5에서 제조된 레지스트 하층막의 접촉각은 약 72 °로 친수성(hydrophilicity)의 표면을 가지는 것을 확인할 수 있었다.  
이로써, 본 발명의 레지스트 하층막용 조성물은 표면성질을 자유롭게 조절가능하여, 친수성 또는 소수성의 레지스트 하층막을 제공할 수 있는 것을 확인할 수 있었다.
실험예 4
상기 비교예 1 및 실시예 1 내지 5에서 제조된 레지스트 하층막에 대하여, 90 mTorr의 압력, 400W/250W의 RF power, 24 sccm의 N2, 12sccm의 O2, 500sccm의 Ar 플라즈마 조건으로 패턴이 없는 벌크 드라이 에칭을 15 초간 진행한 후 두께를 측정하여 단위 시간당 식각 속도(etch rate)를 측정하여 하기 표 1에 나타내었다.
이 때, 상기 실험 조건에서 N2 및 Ar은 플로잉 가스(flowing gas)로, O2는 주에칭 가스(main etch gas)로 사용되었다.
표 1
  식각 속도(Å/sec)
비교예 1 7.80
실시예 1 7.70
실시예 2 8.26
실시예 3 6.45
실시예 4 6.48
실시예 5 6.92
상기 표 1을 참고하면, 비교예 1 및 실시예 1 내지 5 모두 O2 플라즈마(plasma)에 대한 우수한 내에칭성을 가짐을 확인하였다.
실험예 5
패터닝(patterning)을 하고자 하는 기판(substrate) 위에 순서대로 유기물(organic material)로 이루어진 제 1 레지스트 하층막을 코팅하고, 코팅된 제 1 레지스트 하층막 상에 상기 비교예 1 및 실시예 1 내지 5에서 제조된 레지스트 조성물을 도포하여 제 2 레지스트 하층막을 코팅하고, 최상부에는 ArF용 포토레지스트를 코팅하였다.  
상기 기판 위에 적층된 층들을 100 ℃에서 90 초간 굽고 ArF 노광장비인 ASML1250(NA 0.82)를 사용하여 노광한 다음, 110 ℃에서 90 초간 PEB(Post Exposure Bake)를 진행하였다.  이어서, 2.38 중량%의 테트라메틸암모늄히드록사이드(tetramethylammoniumhydroxide, TMAH) 수용액으로 현상하고, 110 ℃에서 75 초간 HB(Hard Bake)를 진행하였다.  패터닝이 완성된 후, CD-SEM을 사용하여 100nm×100nm의 라인 앤드 스페이스(line and space) 패턴을 고찰한 결과, 모두 노광량의 변화에 따른 EL(exposure latitude)은 3 nm/mJ 이하이고, 광원과의 거리변동에 따른 DOF(depth of focus)은 0.3 ㎛ 이하로, 실제 공정에 적용할 수 있는 수준임이 확인되었다.  또한 FE-SEM을 이용하여 Sample의 단면을 관찰한 결과 모두 수직 모양임이 확인되었다.
상기 패턴이 형성된 시편을 CFx(x는 0 내지 4의 범위에 있음)플라즈마를 사용하여 드라이 에칭(dry etching)을 진행하고, 이어서 O2 플라즈마를 사용하여 다시 드라이 에칭을 진행한 다음, CFx 플라즈마를 사용하여 드라이 에칭을 다시 진행하였다.  마지막으로 O2 가스를 사용하여 남아 있는 유기물을 모두 제거한 다음, FE-SEM으로 단면을 고찰하여 에칭 후 패턴 모양을 하기 표 2에 나타내었다.
표 2
필름 제조에사용된 샘플 에칭 후 패턴 모양
비교예 1 찌글 수직 모양(불량)
실시예 1 수직모양
실시예 2 수직모양
실시예 3 수직모양
실시예 4 수직모양
실시예 5 수직모양
상기 표 2를 참고하면, 본 발명의 실시예 1 내지 5에서 제조된 레지스트 조성물을 사용하는 레지스트 하층막을 포함하는 경우에는 우수한 내에칭성으로 인하여 에칭 후 최종 패턴의 모양도 매우 우수한 것을 확인할 수 있었다.
그러나 비교예 1에 따른 레지스트 조성물을 사용하는 레지스트 하층막을 포함하는 경우에는 에칭 후 최종 패턴의 모양이 찌글거리는 수직 모양으로, 불량인 것을 확인할 수 있었다.
실험예 6
상기 비교예 1 및 실시예 1 내지 5에서 제조된 레지스트 하층막에 대하여, 29Si NMR 분광기(Varian Unity 400)를 이용하여 구조 규명을 하였다.  29Si NMR Spectrum 상에서 나타나는 약 -65 ppm의 피크는 하기 화학식 3a로 표시되는 구조를 나타내는 것이고, 약 -55 ppm의 피크는 하기 화학식 1a로 표시되는 구조를 나타내는 것이고, 또한, 약 -45 ppm의 피크는 하기 화학식 2a로 표시되는 구조를 나타내는 것이다.  이를 이용하여 상기 피크의  면적비(몰%)를 구하여 하기 표 3에 나타내었다.
[화학식 1a]
Figure PCTKR2010008849-appb-I000024
[화학식 2a]
Figure PCTKR2010008849-appb-I000025
[화학식 3a]
Figure PCTKR2010008849-appb-I000026
(상기 화학식 1a 내지 3a에서,
ORG는 비교예 1의 경우, 메틸기이고,
실시예 1 내지 2의 경우, 메틸기 및 페닐기로 이루어진 군에서 선택되는 것이고,
실시예 3 내지 5의 경우, 메틸기, 페닐기 및 트리메톡시메틸기로 이루어진 군에서 선택되는 것이고,
Z는 메틸기이다.)
표 3
구조 화학식 1a로 표시되는 구조(몰%) 화학식 2a로 표시되는 구조(몰%) 화학식 3a로 표시되는 구조(몰%)
비교예 1 36 3 61
실시예 1 47 4 49
실시예 2 47 5 48
실시예 3 70 8 22
실시예 4 74 5 21
실시예 5 76 6 18
 
상기 표 3을 참고하면, 본 발명의 레지스트 하층막용 조성물은 화학식 1a로 표시되는 구조단위 40 내지 80 몰%를 포함하는 유기실란계 축중합물을 사용함으로써, 실란화합물을 사용하지 않고도 실리콘의 함량을 높여 저장안정성 및 막특성이 우수한 레지스트 하층막을 제공할 수 있었다.  특히, 플라즈마 상태의 기체에 대한 내에칭성이 우수하여, 원하는 패턴을 효과적으로 전사할 수 있는 것을 확인할 수 있었다.  
본 발명의 단순한 변형 또는 변경은 모두 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.

Claims (11)

  1. 하기 화학식 1로 표시되는 구조단위 40 내지 80 몰%를 포함하는 유기실란계 축중합물 및 용매를 포함하는 레지스트 하층막용 조성물.
    [화학식 1]
    Figure PCTKR2010008849-appb-I000027
    (상기 화학식 1에서,
    ORG는 치환 또는 비치환된 방향족 고리를 함유하는 탄소수 6 내지 30의 관능기, 탄소수 1 내지 12의 알킬기 및 -Y-{Si(OR)3}a로 이루어진 군에서 선택되는 것이고,
    이 때, 상기 R은 탄소수 1 내지 6의 알킬기이고, Y는 직쇄 또는 분지쇄의 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기; 또는 주쇄에 알케닐렌기, 알키닐렌기, 아릴렌기, 헤테로고리기, 우레아(urea)기, 이소시아누레이트(isocyanurate)기 및 이들의 조합으로 이루어진 군에서 선택되는 치환기가 포함되어 있는 탄소수 1 내지 20의 알킬렌기이고, a는 1 또는 2이고,
    Z는 수소 및 탄소수 1 내지 6의 알킬기로 이루어진 군에서 선택된다.)
     
  2. 제1항에 있어서,
    상기 유기실란계 축중합물은 하기 화학식 2 또는 3으로 표시되는 구조단위를 더 포함하는 것인 레지스트 하층막용 조성물.
    [화학식 2]
    Figure PCTKR2010008849-appb-I000028
    [화학식 3]
    Figure PCTKR2010008849-appb-I000029
    (상기 화학식 2 및 3에서,
    ORG는 치환 또는 비치환된 방향족 고리를 함유하는 탄소수 6 내지 30의 관능기, 탄소수 1 내지 12의 알킬기 및 -Y-{Si(OR)3}a로 이루어진 군에서 선택되는 것이고,
    이 때, 상기 R은 탄소수 1 내지 6의 알킬기이고, Y는 직쇄 또는 분지쇄의 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기; 또는 주쇄에 알케닐렌기, 알키닐렌기, 아릴렌기, 헤테로고리기, 우레아기, 이소시아누레이트기 및 이들의 조합으로 이루어진 군에서 선택되는 치환기가 포함되어 있는 탄소수 1 내지 20의 알킬렌기이고, a는 1 또는 2이고,
    Z는 수소 및 탄소수 1 내지 6의 알킬기로 이루어진 군에서 선택된다.)
  3. 제1항에 있어서,
    상기 유기실란계 축중합물은 산촉매 또는 염기촉매 하에서, 하기 화학식 4 및 5로 표시되는 화합물로부터 생성되는 것인 레지스트 하층막용 조성물.
    [화학식 4]
    [R1O]3Si-X
    [화학식 5]
    [R2O]3Si-R3
    (상기 화학식 4 및 5에서,
    R1 및 R2는 서로 같거나 다른 것으로 각각 독립적으로, 탄소수 1 내지 6의 알킬기이고,
    R3는 탄소수 1 내지 12의 알킬기이고,
    X는 치환 또는 비치환된 방향족 고리를 함유하는 탄소수 6 내지 30의 관능기이다.)
     
  4. 제1항에 있어서,
    상기 유기실란계 축중합물은 산촉매 또는 염기촉매 하에서, 하기 화학식 4 내지 6으로 표시되는 화합물로부터 생성되는 것인 레지스트 하층막용 조성물.
    [화학식 4]
    [R1O]3Si-X
    [화학식 5]
    [R2O]3Si-R3
    [화학식 6]
    {[R4O]3Si}n-Y
    (상기 화학식 4 내지 6에서,
    R1, R2 및 R4는 서로 같거나 다른 것으로 각각 독립적으로, 탄소수 1 내지 6의 알킬기이고,
    R3는 탄소수 1 내지 12의 알킬기이고,
    X는 치환 또는 비치환된 방향족 고리를 함유하는 탄소수 6 내지 30의 관능기이고,
    Y는 직쇄 또는 분지쇄의 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기; 또는 주쇄에 알케닐렌기, 알키닐렌기, 아릴렌기, 헤테로고리기, 우레아기, 이소시아누레이트기 및 이들의 조합으로 이루어진 군에서 선택되는 치환기가 포함되어 있는 탄소수 1 내지 20의 알킬렌기이고,
    n은 2 또는 3 이다.)
     
  5. 제1항에 있어서,
    상기 치환 또는 비치환된 방향족 고리를 함유하는 탄소수 6 내지 30의 관능기는 하기 화학식 21로 표시되는 것인 레지스트 하층막용 조성물.
    [화학식 21]
    *-(L)m-X1
    (상기 화학식 21에서
    L은 직쇄 또는 분지쇄의 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기, 이 때, 상기 알킬렌기를 이루는 단일 또는 둘 이상의 탄소는 에테르기(-O-), 카르보닐기(-CO-), 에스테르기(-COO-) 및 아민기(-NH-)로 이루어진 군에서 선택되는 관능기로 치환 또는 비치환될 수 있고,
    X1은 치환 또는 비치환된 탄소수 6 내지 20의 아릴기, 치환 또는 비치환된 탄소수 7 내지 20의 아릴카르보닐기 및 치환 또는 비치환된 탄소수 9 내지 20의 크로메논기로 이루어진 군에서 선택되는 것이고,
    m은 0 또는 1 이다.)
  6. 제1항에 있어서,
    상기 유기실란계 축중합물은 레지스트 하층막용 조성물 총량에 대하여, 1 내지 50 중량% 포함되는 것인 레지스트 하층막용 조성물.
     
  7. 제1항에 있어서, 
    상기 레지스트 하층막용 조성물은 가교제, 라디칼 안정제, 계면활성제 및 이들의 조합으로 이루어진 군에서 선택되는 첨가제를 더 포함하는 것인 레지스트 하층막용 조성물.
     
  8. 제1항에 있어서, 
    상기 레지스트 하층막용 조성물은 피리디늄 p-톨루엔설포네이트(pyridiniump-toluenesulfonate), 아미도설포베타인-16(amidosulfobetain-16), 암모늄(-)-캠퍼-10-설폰산염(ammonium(-)-camphor-10-sulfonic acid ammonium salt), 암모늄포메이트(ammonium formate), 알킬암모늄포메이트(alkyltriethylammonium formate), 피리디늄포메이트(pyridinium formate), 테트라부틸암모늄아세테이트(tetrabutyl ammonium acetate), 테트라부틸암모늄아자이드(tetrabutyl ammonium azide), 테트라부틸암모늄벤조에이트(tetrabutyl ammonium benzoate), 테트라부틸암모늄바이설페이트(tetrabutyl ammonium bisulfate), 브롬화테트라부틸암모늄(tetrabutyl ammonium bromide), 염화 테트라부틸암모늄(tetrabutyl ammonium chloride), 시안화테트라부틸암모늄(tetrabutyl ammonium cyanide), 불화테트라부틸암모늄(tetrabutyl ammonium fluoride), 요오드화테트라부틸암모늄(tetrabutyl ammonium iodide), 테트라부틸암모늄 설페이트(tetrabutyl ammonium sulfate), 테트라부틸암모늄나이트레이트(tetrabutyl ammonium nitrate), 테트라부틸암모늄나이트라이트(tetrabutyl ammonium nitrite), 테트라부틸암모늄 p-톨루엔설포네이트(tetrabutyl ammonium p-toluene sulfonate), 테트라부틸암모늄포스페이트(tetrabutyl ammonium phosphate) 및 이들의 조합으로 이루어진 군에서 선택되는 첨가제를 더 포함하는 것인 레지스트 하층막용 조성물.
     
  9. (a) 기판 상에 재료층을 제공하는 단계;
    (b) 상기 재료층 위로 제1 레지스트 하층막을 형성시키는 단계;
    (c) 상기 제1 레지스트 하층막 위로 제1항 내지 제8항 중 어느 한 항에 따른 레지스트 하층막용 조성물을 코팅하여 제2 레지스트 하층막을 형성시키는 단계;
    (d) 상기 제2 레지스트 하층막 위로 방사선-민감성 이미지화층을 형성시키는 단계;
    (e) 상기 방사선-민감성 이미지화층을 패턴 방식으로 방사선에 노출시킴으로써 상기 방사선-민감성 이미지층 내에서 방사선-노출된 영역의 패턴을 생성시키는 단계;
    (f) 상기 방사선-민감성 이미지화층 및 상기 제2 레지스트 하층막의 부분을 선택적으로 제거하여 상기 제1 레지스트 하층막의 부분을 노출시키는 단계;
    (g) 패턴화된 제2 레지스트 하층막 및 상기 제1 레지스트 하층막의 부분을 선택적으로 제거하여 재료층의 부분을 노출시키는 단계; 및
    (h) 재료층의 노출된 부분을 에칭함으로써 패턴화된 재료 형상을 형성시키는 단계를 포함하는 반도체 집적회로 디바이스의 제조방법.
  10. 제9항에 있어서,
    상기 제2 레지스트 하층막을 형성시키는 (c)단계와 방사선-민감성 이미지화층을 형성시키는 (d)단계 사이에 추가로 반사방지막을 형성시키는 단계를 더 포함하는 반도체 집적회로 디바이스의 제조방법.
     
  11.  제9항에 따른 반도체 집적회로 디바이스의 제조방법에 의해 제조되는 반도체 집적회로 디바이스.
PCT/KR2010/008849 2009-12-31 2010-12-10 레지스트 하층막용 조성물 및 이를 이용한 반도체 집적회로 디바이스의 제조방법 WO2011081321A2 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201080060221.8A CN102713758B (zh) 2009-12-31 2010-12-10 抗蚀剂底层组合物以及利用其制造半导体集成电路器件的方法
US13/539,760 US9140986B2 (en) 2009-12-31 2012-07-02 Resist underlayer composition and process of producing integrated circuit devices using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2009-0136179 2009-12-31
KR1020090136179A KR101344795B1 (ko) 2009-12-31 2009-12-31 레지스트 하층막용 조성물 및 이를 이용한 반도체 집적회로 디바이스의 제조방법

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/539,760 Continuation US9140986B2 (en) 2009-12-31 2012-07-02 Resist underlayer composition and process of producing integrated circuit devices using the same

Publications (2)

Publication Number Publication Date
WO2011081321A2 true WO2011081321A2 (ko) 2011-07-07
WO2011081321A3 WO2011081321A3 (ko) 2011-11-03

Family

ID=44226952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/008849 WO2011081321A2 (ko) 2009-12-31 2010-12-10 레지스트 하층막용 조성물 및 이를 이용한 반도체 집적회로 디바이스의 제조방법

Country Status (5)

Country Link
US (1) US9140986B2 (ko)
KR (1) KR101344795B1 (ko)
CN (1) CN102713758B (ko)
TW (1) TWI497215B (ko)
WO (1) WO2011081321A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150210829A1 (en) * 2012-07-30 2015-07-30 Nissan Chemical Industries, Ltd. Silicon-containing euv resist underlayer film-forming composition containing onium sulfonate
KR20200071739A (ko) * 2017-10-25 2020-06-19 닛산 가가쿠 가부시키가이샤 암모늄기를 갖는 유기기를 포함하는 실리콘함유 레지스트 하층막 형성 조성물을 이용하는 반도체장치의 제조방법

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6681795B2 (ja) * 2015-09-24 2020-04-15 東京応化工業株式会社 表面処理剤及び表面処理方法
KR101862710B1 (ko) * 2015-10-30 2018-05-30 삼성에스디아이 주식회사 감광성 수지 조성물, 그로부터 형성된 경화막, 및 경화막을 갖는 소자
KR102028642B1 (ko) * 2016-12-19 2019-10-04 삼성에스디아이 주식회사 감광성 수지 조성물, 그로부터 형성된 경화막, 및 경화막을 갖는 전자 장치
US10186424B2 (en) 2017-06-14 2019-01-22 Rohm And Haas Electronic Materials Llc Silicon-based hardmask
KR102551719B1 (ko) * 2021-07-20 2023-07-06 엠에이치디 주식회사 스타형 구조를 갖는 실리콘 함유 레지스트 하층막 형성용 조성물

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100725795B1 (ko) * 2005-12-26 2007-06-08 제일모직주식회사 레지스트 하층막용 하드마스크 조성물 및 이를 이용한반도체 집적회로 디바이스의 제조방법
KR20070095736A (ko) * 2006-03-22 2007-10-01 제일모직주식회사 유기실란계 중합체를 포함하는 레지스트 하층막용 하드마스크 조성물 및 이를 이용한 반도체 집적회로 디바이스의 제조방법
KR20070122250A (ko) * 2006-06-26 2007-12-31 제일모직주식회사 레지스트 하층막용 하드마스크 조성물 및 이를 이용한반도체 집적회로 디바이스의 제조방법
KR100796047B1 (ko) * 2006-11-21 2008-01-21 제일모직주식회사 레지스트 하층막용 하드마스크 조성물, 이를 이용한 반도체집적회로 디바이스의 제조방법 및 그로부터 제조된 반도체집적회로 디바이스

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3414251B2 (ja) * 1998-03-13 2003-06-09 信越化学工業株式会社 シリコーン樹脂含有エマルジョン組成物及びその製造方法並びに該組成物の硬化被膜を有する物品
FR2787100B1 (fr) * 1998-12-15 2001-03-09 Essilor Int Procede de preparation d'un sol organosilicie et materiaux obtenus a partir d'un tel sol
JP4545973B2 (ja) * 2001-03-23 2010-09-15 富士通株式会社 シリコン系組成物、低誘電率膜、半導体装置および低誘電率膜の製造方法
JP2004059738A (ja) * 2002-07-29 2004-02-26 Jsr Corp 膜形成用組成物、膜の形成方法およびシリカ系膜
JP2004161876A (ja) * 2002-11-13 2004-06-10 Shin Etsu Chem Co Ltd 多孔質膜形成用組成物、多孔質膜とその製造方法、層間絶縁膜及び半導体装置
KR100882409B1 (ko) * 2003-06-03 2009-02-05 신에쓰 가가꾸 고교 가부시끼가이샤 반사 방지용 실리콘 수지, 반사 방지막 재료, 이것을 이용한 반사 방지막 및 패턴 형성 방법
CN101133364B (zh) 2005-03-01 2013-03-20 Jsr株式会社 抗蚀剂下层膜用组合物及其制造方法
CN101322074B (zh) 2005-12-06 2013-01-23 日产化学工业株式会社 用于形成光交联固化的抗蚀剂下层膜的含有硅的抗蚀剂下层膜形成用组合物
JP4421566B2 (ja) 2005-12-26 2010-02-24 チェイル インダストリーズ インコーポレイテッド フォトレジスト下層膜用ハードマスク組成物及びこれを利用した半導体集積回路デバイスの製造方法
US20070212886A1 (en) 2006-03-13 2007-09-13 Dong Seon Uh Organosilane polymers, hardmask compositions including the same and methods of producing semiconductor devices using organosilane hardmask compositions
US7629260B2 (en) 2006-03-22 2009-12-08 Cheil Industries, Inc. Organosilane hardmask compositions and methods of producing semiconductor devices using the same
JP2008205008A (ja) * 2007-02-16 2008-09-04 Shin Etsu Chem Co Ltd 半導体層間絶縁膜形成用組成物とその製造方法、膜形成方法と半導体装置
KR100813850B1 (ko) * 2007-03-29 2008-03-17 삼성에스디아이 주식회사 발광 장치
EP2072528A1 (en) * 2007-12-19 2009-06-24 Labeit, Mr. Siegfried A host cell deficient for MuRF1 and MuRF2
KR100930672B1 (ko) * 2008-01-11 2009-12-09 제일모직주식회사 실리콘계 하드마스크 조성물 및 이를 이용한 반도체집적회로 디바이스의 제조방법
KR101354637B1 (ko) 2009-12-30 2014-01-22 제일모직주식회사 레지스트 하층막용 조성물 및 이를 이용한 반도체 집적회로 디바이스의 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100725795B1 (ko) * 2005-12-26 2007-06-08 제일모직주식회사 레지스트 하층막용 하드마스크 조성물 및 이를 이용한반도체 집적회로 디바이스의 제조방법
KR20070095736A (ko) * 2006-03-22 2007-10-01 제일모직주식회사 유기실란계 중합체를 포함하는 레지스트 하층막용 하드마스크 조성물 및 이를 이용한 반도체 집적회로 디바이스의 제조방법
KR20070122250A (ko) * 2006-06-26 2007-12-31 제일모직주식회사 레지스트 하층막용 하드마스크 조성물 및 이를 이용한반도체 집적회로 디바이스의 제조방법
KR100796047B1 (ko) * 2006-11-21 2008-01-21 제일모직주식회사 레지스트 하층막용 하드마스크 조성물, 이를 이용한 반도체집적회로 디바이스의 제조방법 및 그로부터 제조된 반도체집적회로 디바이스

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150210829A1 (en) * 2012-07-30 2015-07-30 Nissan Chemical Industries, Ltd. Silicon-containing euv resist underlayer film-forming composition containing onium sulfonate
US10613440B2 (en) * 2012-07-30 2020-04-07 Nissan Chemical Industries, Ltd. Silicon-containing EUV resist underlayer film-forming composition containing onium sulfonate
KR20200071739A (ko) * 2017-10-25 2020-06-19 닛산 가가쿠 가부시키가이샤 암모늄기를 갖는 유기기를 포함하는 실리콘함유 레지스트 하층막 형성 조성물을 이용하는 반도체장치의 제조방법
KR102585820B1 (ko) 2017-10-25 2023-10-06 닛산 가가쿠 가부시키가이샤 암모늄기를 갖는 유기기를 포함하는 실리콘함유 레지스트 하층막 형성용 조성물을 이용하는 반도체장치의 제조방법

Also Published As

Publication number Publication date
CN102713758A (zh) 2012-10-03
TWI497215B (zh) 2015-08-21
US9140986B2 (en) 2015-09-22
US20120267766A1 (en) 2012-10-25
KR101344795B1 (ko) 2013-12-26
CN102713758B (zh) 2014-12-31
KR20110079195A (ko) 2011-07-07
WO2011081321A3 (ko) 2011-11-03
TW201135367A (en) 2011-10-16

Similar Documents

Publication Publication Date Title
WO2011081316A2 (ko) 레지스트 하층막용 조성물 및 이를 이용한 반도체 집적회로 디바이스의 제조방법
WO2011081321A2 (ko) 레지스트 하층막용 조성물 및 이를 이용한 반도체 집적회로 디바이스의 제조방법
WO2013100409A1 (ko) 하드마스크 조성물용 모노머, 상기 모노머를 포함하는 하드마스크 조성물 및 상기 하드마스크 조성물을 사용하는 패턴형성방법
WO2013100365A1 (ko) 하드마스크 조성물용 모노머, 상기 모노머를 포함하는 하드마스크 조성물 및 상기 하드마스크 조성물을 사용하는 패턴형성방법
WO2014065500A1 (ko) 하드마스크 조성물 및 이를 사용한 패턴형성방법
WO2014157881A1 (ko) 레지스트 하층막 조성물 및 이를 이용한 패턴 형성 방법
US7629260B2 (en) Organosilane hardmask compositions and methods of producing semiconductor devices using the same
US20070212886A1 (en) Organosilane polymers, hardmask compositions including the same and methods of producing semiconductor devices using organosilane hardmask compositions
WO2011081285A2 (ko) 레지스트 하층막용 방향족 고리 함유 중합체 및 이를 포함하는 레지스트 하층막 조성물
WO2014104480A1 (ko) 모노머, 상기 모노머를 포함하는 하드마스크 조성물 및 상기 하드마스크 조성물을 사용하는 패턴형성방법
WO2011081323A2 (ko) 포토레지스트 하층막용 조성물 및 이를 이용하는 반도체 소자의 제조 방법
WO2018199419A1 (en) Resist underlayer composition and method of forming patterns using the resist underlayer composition
WO2019022394A1 (ko) 신규한 레지스트 하층막 형성용 중합체, 이를 포함하는 레지스트 하층막 형성용 조성물 및 이를 이용한 반도체 소자의 제조방법
WO2012005418A1 (ko) 레지스트 하층막용 방향족 고리 함유 화합물, 이를 포함하는 레지스트 하층막 조성물 및 이를 이용하는 소자의 패턴 형성 방법
WO2010064829A2 (ko) 반사방지 하층막 조성물
WO2023195636A1 (ko) 고평탄화 성능을 지닌 스핀 온 카본 하드마스크 조성물 및 이를 이용한 패턴화 방법
US7879526B2 (en) Hardmask compositions for resist underlayer films
WO2022245014A1 (ko) 증발감량이 적은 스핀 온 카본 하드마스크 조성물 및 이를 이용한 패턴화 방법
WO2014104496A1 (ko) 모노머, 상기 모노머를 포함하는 하드마스크 조성물 및 상기 하드마스크 조성물을 사용하는 패턴형성방법
WO2011081322A2 (ko) 레지스트 하층막용 조성물 및 이를 이용한 반도체 집적회로 디바이스의 제조방법
WO2019093761A1 (ko) 하드마스크용 조성물
WO2019143121A1 (ko) 하드마스크용 조성물
WO2015026194A1 (ko) 신규한 중합체 및 이를 포함하는 조성물
WO2014104491A1 (ko) 표시장치 절연막용 감광성 수지 조성물, 및 이를 이용한 표시장치 절연막 및 표시장치
WO2019093757A1 (ko) 하드마스크용 조성물

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080060221.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10841153

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10841153

Country of ref document: EP

Kind code of ref document: A2