WO2019182277A1 - 실리콘질화막 식각액 조성물 - Google Patents

실리콘질화막 식각액 조성물 Download PDF

Info

Publication number
WO2019182277A1
WO2019182277A1 PCT/KR2019/002771 KR2019002771W WO2019182277A1 WO 2019182277 A1 WO2019182277 A1 WO 2019182277A1 KR 2019002771 W KR2019002771 W KR 2019002771W WO 2019182277 A1 WO2019182277 A1 WO 2019182277A1
Authority
WO
WIPO (PCT)
Prior art keywords
branched
straight
formula
aminoalkyl
halogen
Prior art date
Application number
PCT/KR2019/002771
Other languages
English (en)
French (fr)
Inventor
박성환
Original Assignee
주식회사 제우스이엔피
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 제우스이엔피 filed Critical 주식회사 제우스이엔피
Publication of WO2019182277A1 publication Critical patent/WO2019182277A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • C09K13/04Etching, surface-brightening or pickling compositions containing an inorganic acid
    • C09K13/06Etching, surface-brightening or pickling compositions containing an inorganic acid with organic material

Definitions

  • the present invention relates to a silicon nitride film etchant composition
  • a silicon nitride film etchant composition comprising a silyl phosphine oxide compound or a silyl phosphine compound as an additive.
  • Silicon nitride film is used as a representative insulating film in the semiconductor process.
  • the silicon nitride film has a structure in contact with a silicon oxide film, a poly silicon film, a silicon wafer surface, and the like, and is deposited by a chemical vapor deposition (CVD) process, which is removed through dry etching and wet etching.
  • CVD chemical vapor deposition
  • Dry etching is mainly carried out in a vacuum containing a fluorine-based gas and an inert gas, etc., because the equipment for performing dry etching is expensive, there is a limit to use commercially. Thus, wet etching using phosphoric acid is widely used rather than dry etching.
  • the etching rate of the silicon nitride layer is about 20 to 50 times faster than the etching rate of the silicon oxide layer, so that the selective removal of the silicon nitride layer may be possible. Since the etching speed of is not high, in order to increase the etching speed, it is usually used to increase the temperature. In the case of etching by increasing the temperature, the selectivity is lowered because the etching rate of the oxide film increases along with the etching rate of the nitride film. In addition, recently, as the size of the pattern is reduced and miniaturized, the silicon oxide film is finely etched, thereby causing various defects and pattern abnormalities.
  • the inventors of the present invention while trying to solve the problems described above, when performing the silicon nitride film etching process using a phosphate etching liquid composition containing a silyl phosphine oxide compound or a silyl phosphine-based compound as an additive, Etch selectivity is significantly increased, and found to maintain excellent selectivity even when the etchant is reused, the present invention was completed.
  • an embodiment of the present invention provides a silicon nitride film etchant composition comprising a silyl phosphine oxide compound or a silyl phosphine-based compound and phosphoric acid.
  • an embodiment of the present invention provides a method of preparing a silicon nitride film etchant composition.
  • an aspect of the present invention is one or more compounds and phosphoric acid selected from the group consisting of a silyl phosphine oxide compound and a silyl phosphine compound represented by the following formula (1) and (2) It provides a silicon nitride film etchant composition comprising.
  • R 1 , R 2 and R 3 are independently of each other hydrogen, halogen, hydroxy group, amino group, linear or branched C1-C20 alkyl, straight or branched C1-C20 alkoxy, straight chain Or branched C1-C20 aminoalkyl, straight or branched C2-C20 alkenyl, C3-C20 cycloalkyl, C6-C30 aryl, C1-C20 alkylcarbonyl, or R 4 , R 5 , R 6 , R 7 , R 8 and R 9 may be each independently of hydrogen, halogen, hydroxy group, amino group, straight or branched C 1 -C 20 alkyl, straight or branched chain C1-C20 alkoxy, straight or branched C1-C20 aminoalkyl, straight or branched C2-C20 alkenyl, C3-C20 cycloalkyl, C6-C30 aryl, C1-C20 alkylcarbony
  • R 1 , R 2 and R 3 are independently of each other hydrogen, halogen, hydroxy group, amino group, straight chain or branched C1-C20 alkyl, straight chain or branched C1-C20 alkoxy, straight chain or branched Chain C1-C20 aminoalkyl, straight or branched C2-C20 alkenyl, C3-C20 cycloalkyl, C6-C30 aryl, C1-C20 alkylcarbonyl, or R 4 , R 5 , R 6 , R 7 , R 8 and R 9 may be each independently of hydrogen, halogen, hydroxy group, amino group, straight or branched C 1 -C 20 alkyl, straight or branched chain C1-C20 alkoxy, straight or branched C1-C20 aminoalkyl, straight or branched C2-C20 alkenyl, C3-C20 cycloalkyl, C6-C30 aryl, C1-C20 alkylcarbonyl
  • R 1 , R 2 and R 3 are independently of each other hydrogen, halogen, hydroxy group, amino group, straight or branched C 1 -C 20 alkyl, straight or branched C 1 -C 20 alkoxy , Straight or branched C1-C20 aminoalkyl, or R 4 , R 5 , R 6 , R 7 , R 8 and R 9 may be each independently of hydrogen, halogen, hydroxy group, amino group, straight or branched C 1 -C 20 alkyl, straight or branched chain C1-C20 alkoxy, straight or branched C1-C20 aminoalkyl or In Formula 2, R 1 , R 2 and R 3 may be independently of each other hydrogen, halogen, hydroxy, amino, straight or branched C1-C20 alkyl, straight or branched C1-C20 alkoxy, Straight or branched C1-C20 aminoalkyl, or R 4 , R 5 , R 6 , R 7 ,
  • R 1 , R 2 and R 3 are independently of each other hydrogen, halogen, hydroxy group, amino group, straight or branched C1-C10 alkyl, straight or branched C1-C10 Alkoxy, straight or branched C1-C10 aminoalkyl, or R 4 , R 5 , R 6 , R 7 , R 8 and R 9 may be independently of each other hydrogen, halogen, hydroxy group, amino group, straight chain or branched C1-C10 alkyl, straight chain or branched chain C1-C10 alkoxy, straight or branched C1-C10 aminoalkyl or In Formula 2, R 1 , R 2 and R 3 may be each independently hydrogen, halogen, hydroxy group, amino group, straight or branched C 1 -C 10 alkyl, straight or branched C 1 -C 10 alkoxy, Straight or branched C1-C10 aminoalkyl, or R 4 , R 5 , R 6 , R 7
  • R 1 , R 2 and R 3 independently of one another are hydrogen, halogen, hydroxy group, amino group, straight or branched C 1 -C 5 alkyl, straight or branched C 1- C5 alkoxy, straight or branched C1-C5 aminoalkyl, or R 4 , R 5 , R 6 , R 7 , R 8 and R 9 may be independently of each other hydrogen, halogen, hydroxy group, amino group, straight or branched C 1 -C 5 alkyl, straight or branched chain C1-C5 alkoxy, straight or branched C1-C5 aminoalkyl or In Formula 2, R 1 , R 2 and R 3 may be independently of each other hydrogen, halogen, hydroxy, amino, straight or branched C 1 -C 5 alkyl, straight or branched C 1 -C 5 alkoxy, Straight or branched C1-C5 aminoalkyl, or R 4 , R 5 , R 6 , R 7 ,
  • the silyl phosphine oxide compound or the silyl phosphine compound represented by Formula 1 or Formula 2 may have a number of Si—P bonds of 50 or less.
  • the content of the silylphosphine oxide compound or the silylphosphine compound represented by Formula 1 or Formula 2 may be 0.1 to 50 wt%, and the content of phosphoric acid may be 50 to 99.9 wt%.
  • the silicon nitride film etchant composition may have an etch ratio of the silicon nitride film to the silicon oxide film 50 to 1000 upon two or more reuses.
  • another aspect of the present invention comprises the steps of mixing the phosphate anhydride and the silane-based compound, the first reaction of the mixture at a temperature of -20 to 100 °C, the mixture is 100 to 200 °C the first reaction is complete
  • the second reaction at the temperature of the step the third reaction of the mixture is terminated at a temperature of 200 to 300 °C the third reaction, the mixture is cooled to room temperature to the silyl phosphine oxide compound
  • silane-based compound may be represented by the following formula (3).
  • R 1 , R 2 and R 3 are independently of each other hydrogen, halogen, hydroxy, amino, straight or branched C 1 -C 20 alkyl, straight or branched C 1 -C 20 alkoxy, straight or branched chain Chain may be C1-C20 aminoalkyl, straight or branched C2-C20 alkenyl, C3-C20 cycloalkyl, C6-C30 aryl, C1-C20 alkylcarbonyl, R 4 is halogen, hydroxy group, amino group, Methoxy, ethoxy, straight or branched C1-C4 aminoalkyl.
  • Another aspect of the present invention provides a silicon nitride film etchant composition prepared by the above method.
  • a silicon nitride film etchant composition having a higher selectivity than conventional phosphoric acid etchant.
  • etching solution composition exhibiting a silicon nitride film etching ratio of 50 to 1000 even in two or more etching processes.
  • FIG. 1 is a graph showing 31 P NMR measurement results of the compounds prepared in Example 1 and Comparative Example 1.
  • FIG. 1 is a graph showing 31 P NMR measurement results of the compounds prepared in Example 1 and Comparative Example 1.
  • a silylphosphine-based compound according to one aspect of the present invention was prepared.
  • H 3 PO 4 anhydride 100%, 300g
  • TEOS Tetra-Ethyl-Ortho-Silicate
  • the temperature of the reactor was increased to 120 ° C., and the reaction was performed while stirring at 60 rpm for 12 hours.
  • the temperature of the reactor was raised to 260 ° C. and stirred for 3 hours at 60 rpm for the third reaction.
  • silyl phosphine compound (SiP, 15 g) and the phosphate solution (85%, 285 g) prepared in Example 1 were mixed at 60 rpm for 3 hours at room temperature to prepare a phosphoric acid etchant composition including the silyl phosphine compound as an additive. .
  • a silylphosphate additive compound that has been used as a conventional phosphoric acid etchant additive was prepared.
  • H 3 PO 4 anhydride 100%, 300g
  • TEOS Tetra-Ethyl-Ortho-Silicate
  • the temperature of the reactor was increased to 120 ° C., and the reaction was performed while stirring at 60 rpm for 12 hours.
  • the phosphoric acid etchant composition including the silyl phosphate compound as an additive was mixed by mixing the silyl phosphate compound (SiOP, 15 g) and the phosphate solution (85%, 285 g) prepared in Comparative Example 1 at 60 rpm for 3 hours at room temperature. .
  • FIG. 1 is a graph showing 31 P NMR measurement results of the compounds prepared in Example 1 and Comparative Example 1.
  • FIG. 1 is a graph showing 31 P NMR measurement results of the compounds prepared in Example 1 and Comparative Example 1.
  • the additive compound prepared according to one aspect of the present invention has a silylphosphine-based chemical structure through NMR measurement.
  • Compound prepared according to one aspect of the present invention has a silyl phosphine-based Si-P bond, when used as an additive in the etching solution with phosphoric acid, does not cause the formation of particles formed by silicate, the yield and process of the etching process It increases precision and enables reuse of etchant.
  • the etching selectivity measurement experiment was performed by etching a wafer in which a predetermined amount of silicon nitride film 250 nm was formed at 165 ° C. three times (dummy etching), followed by etching thickness nitride film (250 nm) and oxide film (100 nm) was carried out under the same temperature conditions for 30 minutes to measure the thickness before and after etching.
  • Table 2 to Table 4 show the Si content, etching amount and etching selectivity in the etching solution after each dummy etching process.
  • the etching process of the silicon nitride film exhibits a high etching selectivity, so that the more effective silicon nitride film etching process is possible. Able to know.
  • Example 2 the etching amount of the silicon oxide film was maintained at 0.1 mW / m or less even when the etchant was reused two or more times. Able to know.
  • Comparative Example 2 it can be seen that as the etching process is repeated the silicon oxide film is deposited it is difficult to reuse the etching solution.
  • the etching ratio of Example 2 and Comparative Example 2 both exhibit a high etching ratio of about 600 in the initial etching process. However, when the etching process is repeated two or more times, the etching ratio of 600 or more is maintained in the case of Example 2, but in the case of Comparative Example 2 it can be confirmed that the proper etching process is not performed because the silicon oxide film deposition phenomenon occurs.
  • the silicon nitride film etchant composition according to an aspect of the present invention not only exhibits a high silicon nitride film selectivity even in the initial etching process, but also shows an excellent silicon nitride film etching selectivity even in two or more etching processes. It can be usefully used as an etchant composition for.
  • One aspect of the present invention provides a silicon nitride film etching solution composition
  • a silicon nitride film etching solution composition comprising phosphoric acid and at least one compound selected from the group consisting of a silylphosphine oxide compound and a silylphosphine compound represented by Formula 1 and Formula 2 below.
  • R 1 , R 2 and R 3 are independently of each other hydrogen, halogen, hydroxy group, amino group, linear or branched C1-C20 alkyl, straight or branched C1-C20 alkoxy, straight chain Or branched C1-C20 aminoalkyl, straight or branched C2-C20 alkenyl, C3-C20 cycloalkyl, C6-C30 aryl, C1-C20 alkylcarbonyl, or R 4 , R 5 , R 6 , R 7 , R 8 and R 9 may be each independently of hydrogen, halogen, hydroxy group, amino group, straight or branched C 1 -C 20 alkyl, straight or branched chain C1-C20 alkoxy, straight or branched C1-C20 aminoalkyl, straight or branched C2-C20 alkenyl, C3-C20 cycloalkyl, C6-C30 aryl, C1-C20 alkylcarbony
  • R 1 , R 2 and R 3 are independently of each other hydrogen, halogen, hydroxy group, amino group, straight chain or branched C1-C20 alkyl, straight chain or branched C1-C20 alkoxy, straight chain or branched Chain C1-C20 aminoalkyl, straight or branched C2-C20 alkenyl, C3-C20 cycloalkyl, C6-C30 aryl, C1-C20 alkylcarbonyl, or R 4 , R 5 , R 6 , R 7 , R 8 and R 9 may be each independently of hydrogen, halogen, hydroxy group, amino group, straight or branched C 1 -C 20 alkyl, straight or branched chain C1-C20 alkoxy, straight or branched C1-C20 aminoalkyl, straight or branched C2-C20 alkenyl, C3-C20 cycloalkyl, C6-C30 aryl, C1-C20 alkylcarbonyl
  • R 1 , R 2 and R 3 are independently of each other hydrogen, halogen, hydroxy group, amino group, straight or branched C 1 -C 20 alkyl, straight or branched C 1 -C 20 alkoxy , Straight or branched C1-C20 aminoalkyl, or R 4 , R 5 , R 6 , R 7 , R 8 and R 9 may be each independently of hydrogen, halogen, hydroxy group, amino group, straight or branched C 1 -C 20 alkyl, straight or branched chain C1-C20 alkoxy, straight or branched C1-C20 aminoalkyl or In Formula 2, R 1 , R 2 and R 3 may be independently of each other hydrogen, halogen, hydroxy, amino, straight or branched C1-C20 alkyl, straight or branched C1-C20 alkoxy, Straight or branched C1-C20 aminoalkyl, or R 4 , R 5 , R 6 , R 7 ,
  • R 1 , R 2 and R 3 are independently of each other hydrogen, halogen, hydroxy group, amino group, straight or branched C1-C10 alkyl, straight or branched C1-C10 Alkoxy, straight or branched C1-C10 aminoalkyl, or R 4 , R 5 , R 6 , R 7 , R 8 and R 9 may be independently of each other hydrogen, halogen, hydroxy group, amino group, straight chain or branched C1-C10 alkyl, straight chain or branched chain C1-C10 alkoxy, straight or branched C1-C10 aminoalkyl or In Formula 2, R 1 , R 2 and R 3 may be each independently hydrogen, halogen, hydroxy group, amino group, straight or branched C 1 -C 10 alkyl, straight or branched C 1 -C 10 alkoxy, Straight or branched C1-C10 aminoalkyl, or R 4 , R 5 , R 6 , R 7
  • R 1 , R 2 and R 3 independently of one another are hydrogen, halogen, hydroxy group, amino group, straight or branched C 1 -C 5 alkyl, straight or branched C 1- C5 alkoxy, straight or branched C1-C5 aminoalkyl, or R 4 , R 5 , R 6 , R 7 , R 8 and R 9 may be independently of each other hydrogen, halogen, hydroxy group, amino group, straight or branched C 1 -C 5 alkyl, straight or branched chain C1-C5 alkoxy, straight or branched C1-C5 aminoalkyl or In Formula 2, R 1 , R 2 and R 3 may be independently of each other hydrogen, halogen, hydroxy, amino, straight or branched C 1 -C 5 alkyl, straight or branched C 1 -C 5 alkoxy, Straight or branched C1-C5 aminoalkyl, or R 4 , R 5 , R 6 , R 7 ,
  • silyl phosphine oxide compound or the silyl phosphine compound shown in Table 1 shows an example, and the silyl phosphine oxide compound or the silyl phosphine compound represented by Formula 1 or Formula 2 is included in the above-described kind. It is not limited.
  • the silyl phosphine oxide compound or the silyl phosphine compound represented by Formula 1 or Formula 2 is a silyl phosphine having a Si-P bond, unlike the silyl phosphate compound having a Si-OP bond, which has been used as an additive of a conventional phosphate etching solution.
  • the Si-P bond is hydrolyzed to Si-OH and PH in the presence of H 2 O during the etching process of the nitride film, wherein the generated PH is shown in Scheme 3 and Scheme 4.
  • silica (SiO 2 ) or silicic acid (Si (OH) 4 ) produced by nitride film etching is reduced to inhibit and delay growth into particles.
  • the number of Si-P bonds of the silylphosphine oxide compound or silylphosphine-based compound may be preferably 1 to 100, more preferably the number of Si-P bonds may be 50 or less. .
  • the content of the silyl phosphine oxide compound or the silyl phosphine compound represented by Formula 1 or Formula 2 is preferably from 0.1 to 30 wt%, more preferably from 0.1 to 20 wt%, based on the total weight of the silicon nitride film etchant composition. %, Most preferably 0.1 to 10 wt%.
  • the amount of the additive may be too small to serve as an additive of the phosphate etching solution, and the silylphosphine oxide compound or silyl
  • the content of the phosphine-based compound is greater than 30 wt%, the content of the phosphate solution is relatively low, so that the etching rate of the silicon nitride film is lowered, and the high viscosity of the composition makes the filter process included in the phosphoric acid etching process difficult.
  • problems such as rapid growth of silica particles may occur due to moisture in the air or the addition of ultrapure water during the process.
  • the silicon nitride film etchant composition includes phosphoric acid (H 3 PO 4 ) together with the compound represented by Formula 1 or Formula 2.
  • the phosphoric acid substantially serves to etch the silicon nitride film of the wafer.
  • the content of the phosphoric acid may be preferably 70 to 99.9 wt%, more preferably 80 to 99.9 wt%, and most preferably 90 to 99.9 wt% based on the total weight of the silicon nitride film etchant composition.
  • the silicon nitride film etchant composition may be characterized in that the etching ratio of the silicon nitride film to the silicon oxide film 50 to 1000 even after two or more reuse.
  • the temperature of the etching process may be performed at 100 °C to 230 °C, preferably may be carried out at 130 °C to 200 °C.
  • the silyl phosphate-based additive which has been used as an additive of a phosphate etchant in the past, cannot be reused more than two times due to silicon particles formed by etching of a wafer even in one etching process, but the silicon nitride film etchant composition according to an aspect of the present invention is used.
  • Silver has a silyl phosphine oxide compound or silyl phosphine-based compound as an additive of the phosphate etching solution, thereby suppressing the formation of silicon particles generated during the etching process, showing excellent etching ratio even when reused more than two times, the advantage that can be reused There is this.
  • the silicon nitride film etchant composition may further include an additional other additive in addition to the silyl phosphine oxide compound or the silyl phosphine compound and the phosphoric acid represented by the formula (1) or (2).
  • additional other additives inorganic acids such as water, nitric acid, sulfuric acid, hydrochloric acid, or fluorine-based additives such as hydrogen fluoride, ammonium fluoride, and ammonium hydrogen fluoride may be used.
  • another aspect of the present invention comprises the steps of mixing the phosphate anhydride and the silane-based compound, the first reaction of the mixture at a temperature of -20 to 100 °C, the mixture is 100 to 200 °C the first reaction is complete
  • the second reaction at the temperature of the step the third reaction of the mixture is terminated at a temperature of 200 to 300 °C the third reaction, the mixture is cooled to room temperature to the silyl phosphine oxide compound
  • the step of mixing the phosphate anhydride and the silane-based compound is a mixture of the phosphate anhydride, and silane-based compound used as a precursor to prepare a silyl phosphine oxide compound or a silyl phosphine compound represented by Formula 1 or Formula 2 It's a step.
  • the phosphate anhydride may be used orthophosphoric acid, metaphosphoric acid, pyrophosphoric acid, trimetaphosphoric acid, tripolyphosphoric acid, phosphoric anhydride, tetrapolyphosphoric acid or a mixture of these phosphate anhydrides, phosphorous pentoxide (P) in phosphoric acid containing water 4 O 10, P 2 O 5 ) and may be used in the solution by the addition of such anhydrides.
  • P phosphorous pentoxide
  • silane-based compound may be represented by the following formula (3).
  • R 1 , R 2 and R 3 are independently of each other hydrogen, halogen, hydroxy, amino, straight or branched C 1 -C 20 alkyl, straight or branched C 1 -C 20 alkoxy, straight or branched chain Chain may be C1-C20 aminoalkyl, straight or branched C2-C20 alkenyl, C3-C20 cycloalkyl, C6-C30 aryl, C1-C20 alkylcarbonyl, R 4 is halogen, hydroxy group, amino group, Methoxy, ethoxy, straight or branched C1-C4 aminoalkyl.
  • the mixed content of the phosphate anhydride is preferably more than 85 wt% based on the total weight of the mixture, the mixed content of the silane-based compound is preferably less than 15 wt% based on the total weight of the mixture.
  • the mixing temperature is preferably carried out at room temperature, it is preferable to mix with stirring at a stirring speed of 40 to 80 rpm for 5 to 15 minutes.
  • the first reaction of the mixture at a temperature of -20 to 70 °C is a step of inducing a silyl phosphate bond by reacting the mixed phosphate anhydride and the silane compound to induce a chemical reaction as shown in Scheme 5 below. .
  • the first reaction by-product is determined by the Radical bound to the reactants and is not limited to the reaction.
  • the reaction time is preferably carried out for 1 to 9 hours depending on the kind and amount of the reactant, it may be carried out under reflux stirring at a stirring speed of 10 to 80 rpm. Further, the first reaction may be carried out at a temperature of preferably 30 to 70 °C.
  • the second reaction of the mixture in which the first reaction is completed at a temperature of 100 to 200 ° C. is a step of inducing a reaction of the remaining reactors remaining after the first reaction.
  • the secondary reaction step may be preferably carried out under a nitrogen atmosphere, it can be carried out while stirring at a speed of 1 to 80 rpm for 2 to 12 hours. Further, the secondary reaction may be preferably performed at a temperature of 70 to 120 °C.
  • tertiary reaction of the mixture at which the secondary reaction is terminated at a temperature of 200 to 300 ° C. reduces the silyl phosphate-based compound prepared in the secondary reaction step as shown in Scheme 6 below. Inducing the reaction to prepare a silyl phosphine oxide compound having a Si-P bond or a silyl phosphine compound.
  • the third reaction time is preferably performed for 1 to 4 hours, the reaction may be stirred at a stirring speed of 40 to 80rpm.
  • the stirring speed it is also possible to increase the stirring speed or to lower the pressure inside the reactor below atmospheric pressure.
  • silyl phosphine oxide compound or silyl phosphine compound may be a silyl phosphine oxide compound or a silyl phosphine compound represented by the formula (1) or (2).
  • the step of cooling the mixture after the tertiary reaction to room temperature to obtain a silyl phosphine oxide compound or a silyl phosphine compound is a silyl phosphine oxide having a Si-P bond prepared through the tertiary reaction It is a step of obtaining a compound or a silyl phosphine compound.
  • the step of mixing the obtained silyl phosphine oxide compound or the silyl phosphine compound and phosphoric acid is a silyl phosphine oxide compound or silyl phosphate obtained through the first, second, third reaction and cooling step
  • the pin-based compound is mixed with a phosphoric acid solution used as an etching solution to finally prepare a silicon nitride film etching composition.
  • the content of the silyl phosphine oxide compound or the silyl phosphine compound is preferably 0.1 to 30 wt%, more preferably 0.1 to 20 wt%, most preferably based on the total weight of the silicon nitride film etching liquid composition. 0.1 to 10 wt%.
  • the content of the phosphoric acid may be preferably 70 to 99.9 wt%, more preferably 80 to 99.9 wt%, most preferably 90 to 99.9 wt% based on the total weight of the silicon nitride film etchant composition.
  • another aspect of the present invention provides a silicon nitride film etchant composition prepared through the method of preparing the silicon nitride film etchant composition.
  • the prepared siliconitride film etchant composition may be a silicon nitride film etchant composition comprising one or more compounds selected from the group consisting of a silylphosphine oxide compound and a silylphosphine-based compound represented by Formula 1 and Formula 2 and phosphoric acid. .
  • a silicon nitride film etchant composition having a higher selectivity than conventional phosphoric acid etchant.
  • etching solution composition exhibiting a silicon nitride film etching ratio of 50 to 1000 even in two or more etching processes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Weting (AREA)

Abstract

화학식 1 및 화학식 2로 표시되는 실릴포스핀 옥사이드계 화합물 및 실릴포스핀계 화합물로 이루어진 군으로부터 선택되는 하나 이상의 화합물 및 인산을 포함하는 실리콘질화막 식각액 조성물을 개시한다. 본 발명의 일 실시예에 따라 제조된 실리콘 질화막 식각액 조성물은 기존의 인산 식각액보다 높은 선택비를 가지며 2회 이상의 식각공정에도 50 내지 1000의 실리콘질화막 식각비를 나타내므로, 실리콘질화막 식각용 조성물로 유용하게 사용될 수 있다.

Description

실리콘질화막 식각액 조성물
본 발명은 실릴포스핀 옥사이드계 화합물 또는 실릴포스핀계 화합물을 첨가제로 포함하는 실리콘질화막 식각액 조성물에 관한 것이다.
실리콘 질화막은 반도체 공정에서 대표적인 절연막으로 사용되고 있다. 실리콘 질화막은 실리콘 산화막, 폴리 실리콘막, 실리콘 웨이퍼 표면 등과 접촉하는 구조를 이루고 있으며, CVD (Chemical vapor deposition) 공정에 의해 증착되며, 이는 건식 식각 및 습식 식각을 통해서 제거된다. 건식 식각은 주로 불소계 가스와 비활성 기체 등을 넣고 진공 하에서 진행하는데, 건식 식각을 수행하기 위한 장비가 고가이므로 상업적으로 이용하기에는 한계가 있다. 이에, 건식 식각 보다는 인산을 이용한 습식 식각이 널리 이용되고 있다.
순수한 인산을 식각 용액으로 사용하는 습식 식각에 있어, 실리콘 질화막의 식각 속도는 실리콘 산화막의 식각 속도에 비해 약 20∼50배 정도 빨라서 어느 정도 선택적인 실리콘 질화막의 제거가 가능하다할 수 있겠으나, 질화막의 식각 속도가 높은 편이 아니기 때문에 식각 속도를 높이기 위해는 통상적으로 온도를 높여서 사용해야 한다. 온도를 높여서 식각하는 경우, 질화막의 식각 속도와 더불어 산화막의 식각 속도도 동반하여 상승하기 때문에 선택비가 떨어지는 문제점이 있다. 또한, 최근에는 패턴(pattern)의 크기가 줄어들고 미세화 됨에 따라 실리콘 산화막이 미세하게 식각됨으로써 각종 불량 및 패턴 이상이 발생되는 등의 문제가 있다.
본 발명자들은 상술한 바와 같은 문제점을 해결하고자 각고의 연구를 거듭하던중, 실릴포스핀 옥사이드계 화합물 또는 실릴포스핀계 화합물을 첨가제로 포함하는 인산 식각액 조성물을 사용하여 실리콘 질화막 식각공정을 수행했을 때, 식각 선택비가 현저히 높아지고, 식각액의 재사용 시에도 우수한 선택비를 유지하는 것을 발견하고 본 발명을 완성하게 되었다.
본 발명은 전술한 문제를 해결하고자 안출된 것으로서, 본 발명의 일 실시예는 실릴포스핀 옥사이드계 화합물 또는 실릴포스핀계 화합물 및 인산을 포함하는 실리콘질화막 식각액 조성물을 제공한다.
또한, 본 발명의 일 실시예는 실리콘질화막 식각액 조성물의 제조방법을 제공한다.
본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 한정되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
전술한 기술적 과제를 달성하기 위한 기술적 수단으로서, 본 발명의 일 측면은 하기 화학식 1 및 화학식 2로 표시되는 실릴포스핀 옥사이드계 화합물 및 실릴포스핀계 화합물로 이루어진 군으로부터 선택되는 하나 이상의 화합물 및 인산을 포함하는 실리콘질화막 식각액 조성물을 제공한다.
[화학식 1]
Figure PCTKR2019002771-appb-I000001
이때, 상기 화학식 1에서, R1, R2 및 R3는 서로 독립적으로 수소, 할로겐, 하이드록시기, 아미노기, 직쇄 또는 분지쇄의 C1-C20 알킬, 직쇄 또는 분지쇄의 C1-C20 알콕시, 직쇄 또는 분지쇄의 C1-C20 아미노알킬, 직쇄 또는 분지쇄의 C2-C20 알케닐, C3-C20 사이클로알킬, C6-C30 아릴, C1-C20 알킬카보닐,
Figure PCTKR2019002771-appb-I000002
또는
Figure PCTKR2019002771-appb-I000003
일 수 있고, R4, R5, R6, R7, R8 및 R9은 서로 독립적으로 수소, 할로겐, 하이드록시기, 아미노기, 직쇄 또는 분지쇄의 C1-C20 알킬, 직쇄 또는 분지쇄의 C1-C20 알콕시, 직쇄 또는 분지쇄의 C1-C20 아미노알킬, 직쇄 또는 분지쇄의 C2-C20 알케닐, C3-C20 사이클로알킬, C6-C30 아릴, C1-C20 알킬카보닐 또는
Figure PCTKR2019002771-appb-I000004
일 수 있다.
[화학식 2]
Figure PCTKR2019002771-appb-I000005
상기 화학식 2에서, R1, R2 및 R3는 서로 독립적으로 수소, 할로겐, 하이드록시기, 아미노기, 직쇄 또는 분지쇄의 C1-C20 알킬, 직쇄 또는 분지쇄의 C1-C20 알콕시, 직쇄 또는 분지쇄의 C1-C20 아미노알킬, 직쇄 또는 분지쇄의 C2-C20 알케닐, C3-C20 사이클로알킬, C6-C30 아릴, C1-C20 알킬카보닐,
Figure PCTKR2019002771-appb-I000006
또는
Figure PCTKR2019002771-appb-I000007
일 수 있고, R4, R5, R6, R7, R8 및 R9은 서로 독립적으로 수소, 할로겐, 하이드록시기, 아미노기, 직쇄 또는 분지쇄의 C1-C20 알킬, 직쇄 또는 분지쇄의 C1-C20 알콕시, 직쇄 또는 분지쇄의 C1-C20 아미노알킬, 직쇄 또는 분지쇄의 C2-C20 알케닐, C3-C20 사이클로알킬, C6-C30 아릴, C1-C20 알킬카보닐 또는
Figure PCTKR2019002771-appb-I000008
일 수 있다.
또한, 바람직하게는 화학식 1에서, R1, R2 및 R3는 서로 독립적으로 수소, 할로겐, 하이드록시기, 아미노기, 직쇄 또는 분지쇄의 C1-C20 알킬, 직쇄 또는 분지쇄의 C1-C20 알콕시, 직쇄 또는 분지쇄의 C1-C20 아미노알킬,
Figure PCTKR2019002771-appb-I000009
또는
Figure PCTKR2019002771-appb-I000010
일 수 있고, R4, R5, R6, R7, R8 및 R9은 서로 독립적으로 수소, 할로겐, 하이드록시기, 아미노기, 직쇄 또는 분지쇄의 C1-C20 알킬, 직쇄 또는 분지쇄의 C1-C20 알콕시, 직쇄 또는 분지쇄의 C1-C20 아미노알킬 또는
Figure PCTKR2019002771-appb-I000011
일 수 있고, 화학식 2에서, R1, R2 및 R3는 서로 독립적으로 수소, 할로겐, 하이드록시기, 아미노기, 직쇄 또는 분지쇄의 C1-C20 알킬, 직쇄 또는 분지쇄의 C1-C20 알콕시, 직쇄 또는 분지쇄의 C1-C20 아미노알킬,
Figure PCTKR2019002771-appb-I000012
또는
Figure PCTKR2019002771-appb-I000013
일 수 있고, R4, R5, R6, R7, R8 및 R9은 서로 독립적으로 수소, 할로겐, 하이드록시기, 아미노기, 직쇄 또는 분지쇄의 C1-C20 알킬, 직쇄 또는 분지쇄의 C1-C20 알콕시, 직쇄 또는 분지쇄의 C1-C20 아미노알킬 또는
Figure PCTKR2019002771-appb-I000014
일 수 있다.
나아가, 더 바람직하게는 화학식 1에서, R1, R2 및 R3는 서로 독립적으로 수소, 할로겐, 하이드록시기, 아미노기, 직쇄 또는 분지쇄의 C1-C10 알킬, 직쇄 또는 분지쇄의 C1-C10 알콕시, 직쇄 또는 분지쇄의 C1-C10 아미노알킬,
Figure PCTKR2019002771-appb-I000015
또는
Figure PCTKR2019002771-appb-I000016
일 수 있고, R4, R5, R6, R7, R8 및 R9은 서로 독립적으로 수소, 할로겐, 하이드록시기, 아미노기, 직쇄 또는 분지쇄의 C1-C10 알킬, 직쇄 또는 분지쇄의 C1-C10 알콕시, 직쇄 또는 분지쇄의 C1-C10 아미노알킬 또는
Figure PCTKR2019002771-appb-I000017
일 수 있고, 화학식 2에서, R1, R2 및 R3는 서로 독립적으로 수소, 할로겐, 하이드록시기, 아미노기, 직쇄 또는 분지쇄의 C1-C10 알킬, 직쇄 또는 분지쇄의 C1-C10 알콕시, 직쇄 또는 분지쇄의 C1-C10 아미노알킬,
Figure PCTKR2019002771-appb-I000018
또는
Figure PCTKR2019002771-appb-I000019
일 수 있고, R4, R5, R6, R7, R8 및 R9은 서로 독립적으로 수소, 할로겐, 하이드록시기, 아미노기, 직쇄 또는 분지쇄의 C1-C10 알킬, 직쇄 또는 분지쇄의 C1-C10 알콕시, 직쇄 또는 분지쇄의 C1-C10 아미노알킬 또는
Figure PCTKR2019002771-appb-I000020
일 수 있다.
더 나아가, 더욱 바람직하게는 화학식 1에서, R1, R2 및 R3는 서로 독립적으로 수소, 할로겐, 하이드록시기, 아미노기, 직쇄 또는 분지쇄의 C1-C5 알킬, 직쇄 또는 분지쇄의 C1-C5 알콕시, 직쇄 또는 분지쇄의 C1-C5 아미노알킬,
Figure PCTKR2019002771-appb-I000021
또는
Figure PCTKR2019002771-appb-I000022
일 수 있고, R4, R5, R6, R7, R8 및 R9은 서로 독립적으로 수소, 할로겐, 하이드록시기, 아미노기, 직쇄 또는 분지쇄의 C1-C5 알킬, 직쇄 또는 분지쇄의 C1-C5 알콕시, 직쇄 또는 분지쇄의 C1-C5 아미노알킬 또는
Figure PCTKR2019002771-appb-I000023
일 수 있고, 화학식 2에서, R1, R2 및 R3는 서로 독립적으로 수소, 할로겐, 하이드록시기, 아미노기, 직쇄 또는 분지쇄의 C1-C5 알킬, 직쇄 또는 분지쇄의 C1-C5 알콕시, 직쇄 또는 분지쇄의 C1-C5 아미노알킬,
Figure PCTKR2019002771-appb-I000024
또는
Figure PCTKR2019002771-appb-I000025
일 수 있고, R4, R5, R6, R7, R8 및 R9은 서로 독립적으로 수소, 할로겐, 하이드록시기, 아미노기, 직쇄 또는 분지쇄의 C1-C5 알킬, 직쇄 또는 분지쇄의 C1-C5 알콕시, 직쇄 또는 분지쇄의 C1-C5 아미노알킬 또는
Figure PCTKR2019002771-appb-I000026
일 수 있다.
상기 화학식 1 또는 화학식 2로 표시되는 실릴포스핀 옥사이드계 화합물 또는 실릴포스핀계 화합물은 Si-P 결합의 개수가 50개 이하인 것일 수 있다.
상기 화학식 1 또는 화학식 2로 표시되는 실릴포스핀 옥사이드계 화합물 또는 실릴포스핀계 화합물의 함량은 0.1 내지 50 wt% 인 것이고, 상기 인산의 함량은 50 내지 99.9wt%인 것일 수 있다.
상기 실리콘질화막 식각액 조성물은 2회 이상의 재사용시에 실리콘 산화막에 대한 실리콘 질화막의 식각비가 50 내지 1000인 것일 수 있다.
또한, 본 발명의 다른 일측면은 인산 무수물 및 실레인계 화합물을 혼합하는 단계, 상기 혼합물을 -20 내지 100℃의 온도에서 1차 반응시키는 단계, 상기 1차 반응이 종료된 혼합물을 100 내지 200℃의 온도에서 2차 반응시키는 단계, 상기 2차 반응이 종료된 혼합물을 200 내지 300℃의 온도에서 3차 반응시키는 단계, 상기 3차 반응이 종료된 혼합물을 상온으로 냉각시켜 실릴포스핀 옥사이드계 화합물 또는 실릴포스핀계 화합물을 수득하는 단계 및 상기 수득된 실릴포스핀 옥사이드계 화합물 또는 실릴포스핀계 화합물 및 인산을 혼합하는 단계를 포함하는 실리콘질화막 식각액 조성물의 제조방법을 제공한다.
이때, 상기 실레인계 화합물은 하기 화학식 3으로 표시되는 것일 수 있다.
[화학식 3]
Figure PCTKR2019002771-appb-I000027
상기 화학식 3에서, R1, R2 및 R3는 서로 독립적으로 수소, 할로겐, 하이드록시기, 아미노기, 직쇄 또는 분지쇄의 C1-C20 알킬, 직쇄 또는 분지쇄의 C1-C20 알콕시, 직쇄 또는 분지쇄의 C1-C20 아미노알킬, 직쇄 또는 분지쇄의 C2-C20 알케닐, C3-C20 사이클로알킬, C6-C30 아릴, C1-C20 알킬카보닐일 수 있고, R4는 할로겐, 하이드록시기, 아미노기, 메톡시기, 에톡시기, 직쇄 또는 분지쇄의 C1-C4 아미노알킬일 수 있다.
나아가, 본 발명의 또 다른 일측면은 상기 제조방법을 통해 제조된 실리콘질화막 식각액 조성물을 제공한다.
본 발명의 일 실시예에 따르면 기존의 인산 식각액보다 높은 선택비를 가지는 실리콘질화막 식각액 조성물을 제공한다.
또한, 본 발명의 일 실시예에 따르면 2회 이상의 식각공정에도 50 내지 1000의 실리콘질화막 식각비를 나타내는 식각액 조성물을 제공한다.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 특허청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.
도 1은 실시예 1 및 비교예 1에서 제조된 화합물의 31P NMR 측정결과를 나타낸 그래프이다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
실시예 1:실릴포스핀계 첨가제 화합물의 제조
본 발명의 일측면에 따른 실릴포스핀계 화합물을 제조하였다.
먼저, H3PO4 무수물(100%, 300g)과 Tetra-Ethyl-Ortho-Silicate(TEOS, 99%, 30g)를 혼합한 뒤 10분 동안 60rpm으로 교반시키며 혼합하였다.
다음으로, 상기 혼합물을 60℃의 온도에서 8시간 동안 60rpm으로 교반시키며 1차 반응시켰다.
다음으로, 상기 1차 반응이 종료된 후 반응기의 온도를 120℃까지 승온시켜 12시간 동안 60rpm으로 교반시키며 2차 반응시켰다.
다음으로, 상기 2차 반응이 종료된 후 반응기의 온도를 260℃까지 승온시켜 3시간 동안 60rpm으로 교반시키며 3차 반응시켰다.
마지막으로, 상기 3차 반응이 종료된 후 반응기의 온도를 상온까지 냉각시켜 실릴포스핀계 화합물을 수득하였다.
실시예 2: 실릴포스핀계 화합물을 포함하는 실리콘질화막 식각액 조성물의 제조
상기 실시예 1에서 제조된 실릴포스핀계 화합물(SiP, 15g)과 인산용액(85%, 285g)을 상온에서 3시간 동안 60rpm으로 혼합하여 실릴포스핀계 화합물을 첨가제로 포함하는 인산 식각액 조성물을 제조하였다.
비교예 1: 실릴포스페이트계 첨가제 화합물의 제조
종래 인산 식각액 첨가제로 사용되어 왔던 실릴포스페이트계 첨가제 화합물을 제조하였다.
먼저, H3PO4 무수물(100%, 300g)과 Tetra-Ethyl-Ortho-Silicate(TEOS, 98%, 30g)를 혼합한 뒤 10분 동안 60rpm으로 교반시키며 혼합하였다.
다음으로, 상기 혼합물을 60℃의 온도에서 8시간 동안 60rpm으로 교반시키며 1차 반응시켰다.
다음으로, 상기 1차 반응이 종료된 후 반응기의 온도를 120℃까지 승온시켜 12시간 동안 60rpm으로 교반시키며 2차 반응시켰다.
마지막으로, 상기 2차 반응이 종료된 후 반응기의 온도를 상온까지 냉각시켜 실릴포스페이트계 화합물을 수득하였다.
비교예 2: 실릴포스페이트계 화합물을 포함하는 실리콘질화막 식각액 조성물의 제조
상기 비교예 1에서 제조된 실릴포스페이트계 화합물(SiOP, 15g)과 인산용액(85%, 285g)을 상온에서 3시간 동안 60rpm으로 혼합하여 실릴포스페이트계 화합물을 첨가제로 포함하는 인산 식각액 조성물을 제조하였다.
실험예 1: 식각액 조성물의 31P NMR 측정 실험
상기 실시예 1 및 비교예 1에서 제조된 화합물의 분자구조를 확인하기 위하여 31P NMR 측정 실험을 수행하였다.
도 1은 실시예 1 및 비교예 1에서 제조된 화합물의 31P NMR 측정결과를 나타낸 그래프이다.
도 1에서 확인할 수 있듯이, 실시예 1의 화합물은 Si-P 결합 피크값이 높게 나타나는 것을 알 수 있으며, 비교예 1의 화합물은 Si-P 결합 피크 값이 매우 낮은 것을 알 수 있다.
따라서, 본 발명의 일 측면에 따라 제조된 첨가제 화합물은 NMR 측정으로 통해 실릴포스핀계 화학 구조를 가지고 있음을 알 수 있다.
본 발명의 일 측면에 따라 제조된 화합물은 실릴포스핀계 Si-P 결합을 가짐으로써 인산과 함께 식각액의 첨가제로 활용 시, 규산염에 의해 형성되는 파티클의 형성을 유발하지 않으므로, 식각공정의 수율과 공정 정밀도를 높여주며, 식각액의 재사용 또한 가능하게 한다.
실험예 2: 실리콘 질화막 식각 선택비 측정 실험
본 발명의 일측면에 따라 제조된 실리콘질화막 식각액 조성물의 식각비를 측정 및 비교하기 위해 실시예 2 및 비교예 2에서 제조된 식각액을 사용하여 실리콘질화막 식각 선택비를 측정하는 실험을 수행하였다.
식각 선택비 측정 실험은 실제 반도체 인산공정의 배치를 모사하기 위해 165℃에서 일정량의 실리콘 질화막 250nm이 형성된 웨이퍼를 3회에 걸쳐서 식각한 다음(Dummy 식각), 식각 두께 측정용 질화막 (250nm) 과 산화막(100nm)를 같은 온도조건에서 30분간 담지하여 식각 전후 두께를 측정하는 조건으로 수행하였다.
하기 표 2 내지 표 4에 각각의 Dummy식각공정 후 식각액 내의 Si 함유량, 식각량 및 식각 선택비를 정리하여 나타내었다.
구분 Si 농도(ppm)
초기 1회 Dummy 식각 후 2회 Dummy 식각 후 3회 Dummy 식각 후
실시예 2 910 963 1018 1072
비교예 2 832 881 936 991
분류 초기 1회 Dummy 식각 후E/R 측정 값 2회 Dummy 식각 후E/R 측정 값 3회 Dummy 식각 후E/R 측정 값
SiN E/R(Å/m) SiO2 E/R(Å/m) SiN E/R(Å/m) SiO2 E/R(Å/m) SiN E/R(Å/m) SiO2 E/R(Å/m) SiN E/R(Å/m) SiO2 E/R(Å/m)
실시예 2 59.6 0.1 59.4 0.1 60.8 0.1 59.4 0.05
비교예 2 59.5 0.1 60.2 -0.5 59.8 -1.5 55.6 -3.5
분류 식각비
초기 1회 식각 후 2회 식각 후 3회 식각 후
실시예 2 596.0 594 608 1188
비교예 2 595.0 - - -
상기 표 2에서 확인할 수 있듯이, 본 발명의 일측면에 따른 실리콘 질화막 식각액 조성물을 사용하여 실리콘질화막의 식각공정을 수행했을 때, 높은 식각 선택비를 나타내므로 보다 효과적인 실리콘 질화막의 식각공정이 가능하다는 것을 알 수 있다.
또한, 실리콘 질화막 및 실리콘 산화막의 각각의 식각량을 분석한 표 3에서 확인할 수 있듯이, 실시예 2의 경우 식각액을 2회 이상 재사용 했을 때에도 실리콘 산화막의 식각량을 0.1 Å/m 이하으로 유지시키는 것을 알 수 있다. 반면, 비교예 2의 경우 식각 공정이 거듭될 수록 실리콘 산화막이 증착되어 식각액의 재사용이 어렵다는 것을 알 수 있다.
나아가, 상기 표 4에서 확인할 수 있듯이, 실시예 2 및 비교예 2의 식각비는 모두 초기 식각공정에서 약 600 내외의 높은 식각비를 나타내는 것을 알 수 있다. 다만, 식각 공정이 2회 이상 반복될 경우, 실시예 2의 경우 600 이상의 식각비를 유지하지만, 비교예 2의 경우 실리콘산화막 증착현상이 발생하여 적절한 식각공정이 이루어지지 않음을 확인할 수 있다.
따라서, 본 발명의 일측면에 따른 실리콘질화막 식각액 조성물은 초기 식각공정에서도 높은 실리콘 질화막 식각 선택비를 나타낼 뿐만아니라, 2회 이상의 식각공정에도 우수한 실리콘 질화막 식각 선택비를 나타내므로 실리콘 질화막의 식각공정을 위한 식각액 조성물로 유용하게 사용될 수 있다.
이하, 본 발명을 더욱 상세하게 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 의해 본 발명이 한정되지 않으며 본 발명은 후술할 청구범위에 의해 정의될 뿐이다.
덧붙여, 본 발명에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 발명의 명세서 전체에서 어떤 구성요소를 '포함'한다는 것은 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있다는 것을 의미한다.
본 발명의 일 측면은 하기 화학식 1 및 화학식 2로 표시되는 실릴포스핀 옥사이드계 화합물 및 실릴포스핀계 화합물로 이루어진 군으로부터 선택되는 하나 이상의 화합물 및 인산을 포함하는 실리콘질화막 식각액 조성물을 제공한다.
[화학식 1]
Figure PCTKR2019002771-appb-I000028
이때, 상기 화학식 1에서, R1, R2 및 R3는 서로 독립적으로 수소, 할로겐, 하이드록시기, 아미노기, 직쇄 또는 분지쇄의 C1-C20 알킬, 직쇄 또는 분지쇄의 C1-C20 알콕시, 직쇄 또는 분지쇄의 C1-C20 아미노알킬, 직쇄 또는 분지쇄의 C2-C20 알케닐, C3-C20 사이클로알킬, C6-C30 아릴, C1-C20 알킬카보닐,
Figure PCTKR2019002771-appb-I000029
또는
Figure PCTKR2019002771-appb-I000030
일 수 있고, R4, R5, R6, R7, R8 및 R9은 서로 독립적으로 수소, 할로겐, 하이드록시기, 아미노기, 직쇄 또는 분지쇄의 C1-C20 알킬, 직쇄 또는 분지쇄의 C1-C20 알콕시, 직쇄 또는 분지쇄의 C1-C20 아미노알킬, 직쇄 또는 분지쇄의 C2-C20 알케닐, C3-C20 사이클로알킬, C6-C30 아릴, C1-C20 알킬카보닐 또는
Figure PCTKR2019002771-appb-I000031
일 수 있다.
[화학식 2]
Figure PCTKR2019002771-appb-I000032
상기 화학식 2에서, R1, R2 및 R3는 서로 독립적으로 수소, 할로겐, 하이드록시기, 아미노기, 직쇄 또는 분지쇄의 C1-C20 알킬, 직쇄 또는 분지쇄의 C1-C20 알콕시, 직쇄 또는 분지쇄의 C1-C20 아미노알킬, 직쇄 또는 분지쇄의 C2-C20 알케닐, C3-C20 사이클로알킬, C6-C30 아릴, C1-C20 알킬카보닐,
Figure PCTKR2019002771-appb-I000033
또는
Figure PCTKR2019002771-appb-I000034
일 수 있고, R4, R5, R6, R7, R8 및 R9은 서로 독립적으로 수소, 할로겐, 하이드록시기, 아미노기, 직쇄 또는 분지쇄의 C1-C20 알킬, 직쇄 또는 분지쇄의 C1-C20 알콕시, 직쇄 또는 분지쇄의 C1-C20 아미노알킬, 직쇄 또는 분지쇄의 C2-C20 알케닐, C3-C20 사이클로알킬, C6-C30 아릴, C1-C20 알킬카보닐 또는
Figure PCTKR2019002771-appb-I000035
일 수 있다.
또한, 바람직하게는 화학식 1에서, R1, R2 및 R3는 서로 독립적으로 수소, 할로겐, 하이드록시기, 아미노기, 직쇄 또는 분지쇄의 C1-C20 알킬, 직쇄 또는 분지쇄의 C1-C20 알콕시, 직쇄 또는 분지쇄의 C1-C20 아미노알킬,
Figure PCTKR2019002771-appb-I000036
또는
Figure PCTKR2019002771-appb-I000037
일 수 있고, R4, R5, R6, R7, R8 및 R9은 서로 독립적으로 수소, 할로겐, 하이드록시기, 아미노기, 직쇄 또는 분지쇄의 C1-C20 알킬, 직쇄 또는 분지쇄의 C1-C20 알콕시, 직쇄 또는 분지쇄의 C1-C20 아미노알킬 또는
Figure PCTKR2019002771-appb-I000038
일 수 있고, 화학식 2에서, R1, R2 및 R3는 서로 독립적으로 수소, 할로겐, 하이드록시기, 아미노기, 직쇄 또는 분지쇄의 C1-C20 알킬, 직쇄 또는 분지쇄의 C1-C20 알콕시, 직쇄 또는 분지쇄의 C1-C20 아미노알킬,
Figure PCTKR2019002771-appb-I000039
또는
Figure PCTKR2019002771-appb-I000040
일 수 있고, R4, R5, R6, R7, R8 및 R9은 서로 독립적으로 수소, 할로겐, 하이드록시기, 아미노기, 직쇄 또는 분지쇄의 C1-C20 알킬, 직쇄 또는 분지쇄의 C1-C20 알콕시, 직쇄 또는 분지쇄의 C1-C20 아미노알킬 또는
Figure PCTKR2019002771-appb-I000041
일 수 있다.
나아가, 더 바람직하게는 화학식 1에서, R1, R2 및 R3는 서로 독립적으로 수소, 할로겐, 하이드록시기, 아미노기, 직쇄 또는 분지쇄의 C1-C10 알킬, 직쇄 또는 분지쇄의 C1-C10 알콕시, 직쇄 또는 분지쇄의 C1-C10 아미노알킬,
Figure PCTKR2019002771-appb-I000042
또는
Figure PCTKR2019002771-appb-I000043
일 수 있고, R4, R5, R6, R7, R8 및 R9은 서로 독립적으로 수소, 할로겐, 하이드록시기, 아미노기, 직쇄 또는 분지쇄의 C1-C10 알킬, 직쇄 또는 분지쇄의 C1-C10 알콕시, 직쇄 또는 분지쇄의 C1-C10 아미노알킬 또는
Figure PCTKR2019002771-appb-I000044
일 수 있고, 화학식 2에서, R1, R2 및 R3는 서로 독립적으로 수소, 할로겐, 하이드록시기, 아미노기, 직쇄 또는 분지쇄의 C1-C10 알킬, 직쇄 또는 분지쇄의 C1-C10 알콕시, 직쇄 또는 분지쇄의 C1-C10 아미노알킬,
Figure PCTKR2019002771-appb-I000045
또는
Figure PCTKR2019002771-appb-I000046
일 수 있고, R4, R5, R6, R7, R8 및 R9은 서로 독립적으로 수소, 할로겐, 하이드록시기, 아미노기, 직쇄 또는 분지쇄의 C1-C10 알킬, 직쇄 또는 분지쇄의 C1-C10 알콕시, 직쇄 또는 분지쇄의 C1-C10 아미노알킬 또는
Figure PCTKR2019002771-appb-I000047
일 수 있다.
더 나아가, 더욱 바람직하게는 화학식 1에서, R1, R2 및 R3는 서로 독립적으로 수소, 할로겐, 하이드록시기, 아미노기, 직쇄 또는 분지쇄의 C1-C5 알킬, 직쇄 또는 분지쇄의 C1-C5 알콕시, 직쇄 또는 분지쇄의 C1-C5 아미노알킬,
Figure PCTKR2019002771-appb-I000048
또는
Figure PCTKR2019002771-appb-I000049
일 수 있고, R4, R5, R6, R7, R8 및 R9은 서로 독립적으로 수소, 할로겐, 하이드록시기, 아미노기, 직쇄 또는 분지쇄의 C1-C5 알킬, 직쇄 또는 분지쇄의 C1-C5 알콕시, 직쇄 또는 분지쇄의 C1-C5 아미노알킬 또는
Figure PCTKR2019002771-appb-I000050
일 수 있고, 화학식 2에서, R1, R2 및 R3는 서로 독립적으로 수소, 할로겐, 하이드록시기, 아미노기, 직쇄 또는 분지쇄의 C1-C5 알킬, 직쇄 또는 분지쇄의 C1-C5 알콕시, 직쇄 또는 분지쇄의 C1-C5 아미노알킬,
Figure PCTKR2019002771-appb-I000051
또는
Figure PCTKR2019002771-appb-I000052
일 수 있고, R4, R5, R6, R7, R8 및 R9은 서로 독립적으로 수소, 할로겐, 하이드록시기, 아미노기, 직쇄 또는 분지쇄의 C1-C5 알킬, 직쇄 또는 분지쇄의 C1-C5 알콕시, 직쇄 또는 분지쇄의 C1-C5 아미노알킬 또는
Figure PCTKR2019002771-appb-I000053
일 수 있다.
상기 화학식 1 또는 화학식 2로 표시되는 실릴포스핀 옥사이드계 화합물 또는 실릴포스핀계 화합물의 바람직한 예시를 하기 표 1에 정리하여 나타내었다.
Figure PCTKR2019002771-appb-T000001
다만, 상기 표 1에 나타낸 실릴포스핀 옥사이드계 화합물 또는 실릴포스핀계 화합물은 일 실시예를 나타낸 것이며, 상기 화학식 1 또는 화학식 2로 표시되는 실릴포스핀 옥사이드계 화합물 또는 실릴포스핀계 화합물이 상기 종류에 한정되는 것은 아니다.
화학식 1 또는 화학식 2로 표시되는 실릴포스핀 옥사이드계 화합물 또는 실릴포스핀계 화합물은 종래 인산 식각액의 첨가제로 사용되어왔던 Si-O-P 결합을 가지는 실릴포스페이트계 화합물과 달리 Si-P 결합을 가지는 실릴포스핀 옥사이드계 화합물 또는 실릴포스핀계 화합물로써, 종래의 실릴포스페이트계 첨가제가 가지고 있었던 단점인 식각공정 중 발생하는 파티클 형성의 문제점을 개선할 수 있는 첨가제 화합물이다.
하기 반응식 1 및 반응식 2에 나타낸 바와 같이 Si-P 결합은 질화막의 식각 공정 중 H2O의 존재 하에서 Si-OH와 P-H로 가수 분해 되는데, 이때에 발생되는 P-H는 하기 반응식 3 및 반응식 4에 나타낸 바와 같이 강력한 환원제로서 질화막 식각에 의해 생성되는 실리카(SiO2) 혹은 실리실 산(Si(OH)4)를 환원시켜 파티클로 성장하는 것을 억제 및 지연시키는 효과가 있다.
[반응식 1]
Figure PCTKR2019002771-appb-I000054
[반응식 2]
Figure PCTKR2019002771-appb-I000055
[반응식 3]
Figure PCTKR2019002771-appb-I000056
[반응식 4]
Figure PCTKR2019002771-appb-I000057
이때, 상기 실릴포스핀 옥사이드계 화합물 또는 실릴포스핀계 화합물의 Si-P 결합의 개수는 1 내지 100개인 것이 바람직할 수 있으며, 더 바람직하게는 상기 Si-P 결합의 개수가 50개 이하인 것일 수 있다.
상기 화학식 1 또는 화학식 2로 표시되는 실릴포스핀 옥사이드계 화합물 또는 실릴포스핀계 화합물의 함량은 실리콘질화막 식각액 조성물의 총 중량을 기준으로 바람직하게는 0.1 내지 30 wt%, 더 바람직하게는 0.1 내지 20 wt%, 가장 바람직하게는 0.1 내지 10 wt%인 것일 수 있다.
상기 실릴포스핀 옥사이드계 화합물 또는 실릴포스핀계 화합물의 함량이 0.1 wt% 미만으로 포함되는 경우 첨가제의 양이 너무 적어 인산 식각액의 첨가제로서의 역할을 수행하지 못할 수 있으며, 실릴포스핀 옥사이드계 화합물 또는 실릴포스핀계 화합물의 함량이 30 wt% 초과로 포함되는 경우 인산용액의 함량이 상대적으로 적어져 실리콘 질화막의 식각속도가 낮아지고, 조성물의 높은 점도로 인해 인산 식각 공정에 포함되는 필터 공정이 어려워지며, 무엇 보다, 공기 중 수분이나 공정중 초순수 추가등에 의해 실리카 파티클이 빠르게 성장하는 등의 문제를 야기할 수 있다.
나아가, 상기 실리콘질화막 식각액 조성물은 상기 화학식 1 또는 화학식 2로 표시되는 화합물과 함께 인산(H3PO4)을 포함한다.
이때, 상기 인산은 실질적으로 웨이퍼의 실리콘질화막을 식각하는 역할을 한다.
상기 인산의 함량은 실리콘질화막 식각액 조성물의 총 중량을 기준으로 바람직하게는 70 내지 99.9 wt%, 더 바람직하게는 80 내지 99.9 wt%, 가장 바람직하게는 90 내지 99.9 wt%인 것일 수 있다.
상기 실리콘질화막 식각액 조성물은 2회 이상의 재사용시에도 실리콘 산화막에 대한 실리콘 질화막의 식각비가 50 내지 1000인 것을 특징으로 할 수 있다.
이때, 식각 공정의 온도는 100℃ 내지 230℃에서 수행될 수 있으며, 바람직하게는 130℃ 내지 200℃에서 수행될 수 있다.
종래에 인산 식각액의 첨가제로 사용되어 왔던 실릴포스페이트계 첨가제는 한번의 식각 공정에도 웨이퍼의 식각에 의해 형성되는 규소 파티클로 인해 2회 이상의 재사용이 불가능했으나, 본 발명의 일측면에 따른 실리콘질화막 식각액 조성물은 실릴포스핀 옥사이드계 화합물 또는 실릴포스핀계 화합물을 인산 식각액의 첨가제로 포함함으로써, 식각 공정시 발생하는 규소 파티클의 형성을 억제하여 2회 이상의 재사용 시에도 우수한 식각비를 나타내므로 재사용이 가능하다는 장점이 있다.
또한, 상기 실리콘질화막 식각액 조성물은 상기 화학식 1 또는 화학식 2로 표시되는 실릴포스핀 옥사이드계 화합물 또는 실릴포스핀계 화합물 및 인산 외에 부가적인 기타 첨가제를 더 포함할 수 있다. 이때, 상기 기타 첨가제로는 물, 질산, 황산, 염산 등의 무기산 또는 불화수소, 불화암모늄, 불화수소암모늄 등의 불소계 첨가제 등이 사용될 수 있다.
또한, 본 발명의 다른 일측면은 인산 무수물 및 실레인계 화합물을 혼합하는 단계, 상기 혼합물을 -20 내지 100℃의 온도에서 1차 반응시키는 단계, 상기 1차 반응이 종료된 혼합물을 100 내지 200℃의 온도에서 2차 반응시키는 단계, 상기 2차 반응이 종료된 혼합물을 200 내지 300℃의 온도에서 3차 반응시키는 단계, 상기 3차 반응이 종료된 혼합물을 상온으로 냉각시켜 실릴포스핀 옥사이드계 화합물 또는 실릴포스핀계 화합물을 수득하는 단계 및 상기 수득된 실릴포스핀 옥사이드계 화합물 또는 실릴포스핀계 화합물 및 인산을 혼합하는 단계를 포함하는 실리콘질화막 식각액 조성물의 제조방법을 제공한다.
이하, 상기 실리콘질화막 식각액 조성물의 제조방법을 각 단계별로 상세히 설명한다.
먼저, 인산 무수물 및 실레인계 화합물을 혼합하는 단계는 상기 화학식 1 또는 화학식 2로 표시되는 실릴포스핀 옥사이드계 화합물 또는 실릴포스핀계 화합물을 제조하기 위해 전구체로써 사용되는 인산 무수물, 및 실레인계 화합물을 혼합하는 단계이다.
이때, 상기 인산 무수물로는 orthophosphoric acid, metaphosphoric acid, pyrophosphoric acid, trimetaphosphoric acid, tripolyphosphoric acid, phosphoric anhydride, tetrapolyphosphoric acid 또는 이들 인산 무수물들의 혼합물 등을 사용할 수 있고, 물을 포함하고 있는 인산에 phosphorous pentoxide(P4O10, P2O5)와 같은 무수물을 첨가한 용액을 사용할 수도 있다.
이때, 상기 실레인계 화합물은 하기 화학식 3으로 표시되는 것일 수 있다.
[화학식 3]
Figure PCTKR2019002771-appb-I000058
상기 화학식 3에서, R1, R2 및 R3는 서로 독립적으로 수소, 할로겐, 하이드록시기, 아미노기, 직쇄 또는 분지쇄의 C1-C20 알킬, 직쇄 또는 분지쇄의 C1-C20 알콕시, 직쇄 또는 분지쇄의 C1-C20 아미노알킬, 직쇄 또는 분지쇄의 C2-C20 알케닐, C3-C20 사이클로알킬, C6-C30 아릴, C1-C20 알킬카보닐일 수 있고, R4는 할로겐, 하이드록시기, 아미노기, 메톡시기, 에톡시기, 직쇄 또는 분지쇄의 C1-C4 아미노알킬일 수 있다.
이때, 상기 인산 무수물의 혼합 함량은 혼합물의 총 중량을 기준으로 85 wt% 초과가 바람직하고, 상기 실레인계 화합물의 혼합 함량은 혼합물의 총 중량을 기준으로 15 wt% 미만이 바람직하다.
상기 혼합온도는 상온에서 수행되는 것이 바라직하며, 5 내지 15 분 동안 40 내지 80 rpm의 교반속도로 교반하며 혼합하는 것이 바람직하다.
다음으로, 상기 혼합물을 -20 내지 70℃의 온도에서 1차 반응시키는 단계는 상기 혼합된 인산 무수물과 실레인계 화합물을 반응시켜 하기 반응식 5와 같은 화학반응을 유도하여 실릴 포스페이트 결합을 유도하는 단계이다.
[반응식 5]
Figure PCTKR2019002771-appb-I000059
이때, 상기 1차 반응 부산물은 반응물에 결합되어 있는 Radical에 의해 결정 되며 상기 반응에 국한되는 것은 아니다. 또한, 반응 시간은 반응물의 종류 (Radical)와 양에 따라 1 내지 9 시간 동안 수행되는 것이 바람직하며, 10 내지 80 rpm의 교반 속도로 환류 교반하며 반응을 수행시킬 수 있다. 나아가, 상기 1차 반응은 바람직하게는 30 내지 70℃의 온도에서 수행될 수 있다.
다음으로, 상기 1차 반응이 종료된 혼합물을 100 내지 200℃의 온도에서 2차 반응시키는 단계는 1차 반응 이후 남아 있는 잔여 반응기들의 반응을 유도하는 단계이다.
이때, 상기 2차 반응 단계는 질소 분위기 하에서 수행되는 것이 바람직할 수 있으며, 2 내지 12 시간 동안 1 내지 80 rpm의 속도로 교반시키면서 반응을 수행할 수 있다. 나아가, 상기 2차 반응은 바람직하게는 70 내지 120℃의 온도에서 수행될 수 있다.
다음으로, 상기 2차 반응이 종료된 혼합물을 200 내지 300℃의 온도에서 3차 반응시키는 단계는 하기 반응식 6에 나타낸 바와 같이 상기 2차 반응 단계에서 제조된 실릴포스페이트계 화합물을 인산-규소간 환원 반응을 유도하여 Si-P 결합을 가지는 실릴포스핀 옥사이드계 화합물 또는 실릴포스핀계 화합물로 제조하는 단계이다.
[반응식 6]
Figure PCTKR2019002771-appb-I000060
이때, 상술한 바와 같이 200 내지 300℃의 고온에서 반응시킴으로써, Si-O-P결합의 산소가 제거되고 인산-규소간 환원 반응이 유도되어 Si-P 결합을 가지는 실릴포스핀 옥사이드계 화합물 또는 실릴포스핀계 화합물을 제조할 수 있다.
상기 3차 반응 시간은 1 내지 4시간 동안 수행되는 것이 바람직하며, 40 내지 80rpm의 교반속도로 교반되며 반응을 수행시킬 수 있다. 또한, 반응을 촉진 하기 위하여 교반 속도를 높이거나, 반응기 내부의 압력을 대기압 이하로 낮추는 것도 가능하다.
한편, 상기 실릴포스핀 옥사이드계 화합물 또는 실릴포스핀계 화합물은 상기 화학식 1 또는 화학식 2로 표시되는 실릴포스핀 옥사이드계 화합물 또는 실릴포스핀계 화합물일 수 있다.
다음으로, 상기 3차 반응이 종료된 혼합물을 상온으로 냉각시켜 실릴포스핀 옥사이드계 화합물 또는 실릴포스핀계 화합물을 수득하는 단계는 상기 3차 반응을 통해 제조된 Si-P 결합을 가지는 실릴포스핀 옥사이드계 화합물 또는 실릴포스핀계 화합물을 수득하는 단계이다.
마지막으로, 상기 수득된 실릴포스핀 옥사이드계 화합물 또는 실릴포스핀계 화합물 및 인산을 혼합하는 단계는 상기 1차, 2차, 3차 반응 및 냉각 단계를 거쳐 수득된 실릴포스핀 옥사이드계 화합물 또는 실릴포스핀계 화합물을 식각액으로 사용되는 인산용액과 혼합하여 최종적으로 실리콘질화막 식각용 조성물을 제조하는 단계이다.
이때, 상기 실릴포스핀 옥사이드계 화합물 또는 실릴포스핀계 화합물의 함량은 실리콘질화막 식각액 조성물의 총 중량을 기준으로 바람직하게는 0.1 내지 30 wt%, 더 바람직하게는 0.1 내지 20 wt%, 가장 바람직하게는 0.1 내지 10 wt%일 수 있다.
또한, 상기 인산의 함량은 실리콘질화막 식각액 조성물의 총 중량을 기준으로 바람직하게는 70 내지 99.9 wt%, 더 바람직하게는 80 내지 99.9 wt%, 가장 바람직하게는 90 내지 99.9 wt%일 수 있다.
나아가, 본 발명의 다른 일측면은 상기 실리콘질화막 식각액 조성물의 제조방법을 통해 제조된 실리콘질화막 식각액 조성물을 제공한다.
이때, 제조된 실리코질화막 식각액 조성물은 상기 화학식 1 및 화학식 2로 표시되는 실릴포스핀 옥사이드계 화합물 및 실릴포스핀계 화합물로 이루어진 군으로부터 선택되는 하나 이상의 화합물 및 인산을 포함하는 실리콘질화막 식각액 조성물일 수 있다.
본 발명의 일 실시예에 따르면 기존의 인산 식각액보다 높은 선택비를 가지는 실리콘질화막 식각액 조성물을 제공한다.
또한, 본 발명의 일 실시예에 따르면 2회 이상의 식각공정에도 50 내지 1000의 실리콘질화막 식각비를 나타내는 식각액 조성물을 제공한다.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 특허청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.

Claims (10)

  1. 하기 화학식 1 및 화학식 2로 각각 표시되는 실릴포스핀 옥사이드계 화합물 및 실릴포스핀계 화합물로 이루어진 군으로부터 선택되는 하나 이상의 화합물 및 인산을 포함하는 실리콘질화막 식각액 조성물:
    [화학식 1]
    Figure PCTKR2019002771-appb-I000061
    (상기 화학식 1에서,
    R1, R2 및 R3는 서로 독립적으로 수소, 할로겐, 하이드록시기, 아미노기, 직쇄 또는 분지쇄의 C1-C20 알킬, 직쇄 또는 분지쇄의 C1-C20 알콕시, 직쇄 또는 분지쇄의 C1-C20 아미노알킬, 직쇄 또는 분지쇄의 C2-C20 알케닐, C3-C20 사이클로알킬, C6-C30 아릴, C1-C20 알킬카보닐,
    Figure PCTKR2019002771-appb-I000062
    또는
    Figure PCTKR2019002771-appb-I000063
    이고,
    R4, R5, R6, R7, R8 및 R9은 서로 독립적으로 수소, 할로겐, 하이드록시기, 아미노기, 직쇄 또는 분지쇄의 C1-C20 알킬, 직쇄 또는 분지쇄의 C1-C20 알콕시, 직쇄 또는 분지쇄의 C1-C20 아미노알킬, 직쇄 또는 분지쇄의 C2-C20 알케닐, C3-C20 사이클로알킬, C6-C30 아릴, C1-C20 알킬카보닐 또는
    Figure PCTKR2019002771-appb-I000064
    이다.)
    [화학식 2]
    Figure PCTKR2019002771-appb-I000065
    (상기 화학식 2에서,
    R1, R2 및 R3는 서로 독립적으로 수소, 할로겐, 하이드록시기, 아미노기, 직쇄 또는 분지쇄의 C1-C20 알킬, 직쇄 또는 분지쇄의 C1-C20 알콕시, 직쇄 또는 분지쇄의 C1-C20 아미노알킬, 직쇄 또는 분지쇄의 C2-C20 알케닐, C3-C20 사이클로알킬, C6-C30 아릴, C1-C20 알킬카보닐,
    Figure PCTKR2019002771-appb-I000066
    또는
    Figure PCTKR2019002771-appb-I000067
    이고,
    R4, R5, R6, R7, R8 및 R9은 서로 독립적으로 수소, 할로겐, 하이드록시기, 아미노기, 직쇄 또는 분지쇄의 C1-C20 알킬, 직쇄 또는 분지쇄의 C1-C20 알콕시, 직쇄 또는 분지쇄의 C1-C20 아미노알킬, 직쇄 또는 분지쇄의 C2-C20 알케닐, C3-C20 사이클로알킬, C6-C30 아릴, C1-C20 알킬카보닐 또는
    Figure PCTKR2019002771-appb-I000068
    이다.)
  2. 제1항에 있어서,
    화학식 1에서,
    R1, R2 및 R3는 서로 독립적으로 수소, 할로겐, 하이드록시기, 아미노기, 직쇄 또는 분지쇄의 C1-C20 알킬, 직쇄 또는 분지쇄의 C1-C20 알콕시, 직쇄 또는 분지쇄의 C1-C20 아미노알킬,
    Figure PCTKR2019002771-appb-I000069
    또는
    Figure PCTKR2019002771-appb-I000070
    이고,
    R4, R5, R6, R7, R8 및 R9은 서로 독립적으로 수소, 할로겐, 하이드록시기, 아미노기, 직쇄 또는 분지쇄의 C1-C20 알킬, 직쇄 또는 분지쇄의 C1-C20 알콕시, 직쇄 또는 분지쇄의 C1-C20 아미노알킬 또는
    Figure PCTKR2019002771-appb-I000071
    이고,
    화학식 2에서,
    R1, R2 및 R3는 서로 독립적으로 수소, 할로겐, 하이드록시기, 아미노기, 직쇄 또는 분지쇄의 C1-C20 알킬, 직쇄 또는 분지쇄의 C1-C20 알콕시, 직쇄 또는 분지쇄의 C1-C20 아미노알킬,
    Figure PCTKR2019002771-appb-I000072
    또는
    Figure PCTKR2019002771-appb-I000073
    이고,
    R4, R5, R6, R7, R8 및 R9은 서로 독립적으로 수소, 할로겐, 하이드록시기, 아미노기, 직쇄 또는 분지쇄의 C1-C20 알킬, 직쇄 또는 분지쇄의 C1-C20 알콕시, 직쇄 또는 분지쇄의 C1-C20 아미노알킬 또는
    Figure PCTKR2019002771-appb-I000074
    인 것인 실리콘질화막 식각액 조성물.
  3. 제1항에 있어서,
    화학식 1에서,
    R1, R2 및 R3는 서로 독립적으로 수소, 할로겐, 하이드록시기, 아미노기, 직쇄 또는 분지쇄의 C1-C10 알킬, 직쇄 또는 분지쇄의 C1-C10 알콕시, 직쇄 또는 분지쇄의 C1-C10 아미노알킬,
    Figure PCTKR2019002771-appb-I000075
    또는
    Figure PCTKR2019002771-appb-I000076
    이고,
    R4, R5, R6, R7, R8 및 R9은 서로 독립적으로 수소, 할로겐, 하이드록시기, 아미노기, 직쇄 또는 분지쇄의 C1-C10 알킬, 직쇄 또는 분지쇄의 C1-C10 알콕시, 직쇄 또는 분지쇄의 C1-C10 아미노알킬 또는
    Figure PCTKR2019002771-appb-I000077
    이고,
    화학식 2에서,
    R1, R2 및 R3는 서로 독립적으로 수소, 할로겐, 하이드록시기, 아미노기, 직쇄 또는 분지쇄의 C1-C10 알킬, 직쇄 또는 분지쇄의 C1-C10 알콕시, 직쇄 또는 분지쇄의 C1-C10 아미노알킬,
    Figure PCTKR2019002771-appb-I000078
    또는
    Figure PCTKR2019002771-appb-I000079
    이고,
    R4, R5, R6, R7, R8 및 R9은 서로 독립적으로 수소, 할로겐, 하이드록시기, 아미노기, 직쇄 또는 분지쇄의 C1-C10 알킬, 직쇄 또는 분지쇄의 C1-C10 알콕시, 직쇄 또는 분지쇄의 C1-C10 아미노알킬 또는
    Figure PCTKR2019002771-appb-I000080
    인 것인 실리콘질화막 식각액 조성물.
  4. 제1항에 있어서,
    화학식 1에서,
    R1, R2 및 R3는 서로 독립적으로 수소, 할로겐, 하이드록시기, 아미노기, 직쇄 또는 분지쇄의 C1-C5 알킬, 직쇄 또는 분지쇄의 C1-C5 알콕시, 직쇄 또는 분지쇄의 C1-C5 아미노알킬,
    Figure PCTKR2019002771-appb-I000081
    또는
    Figure PCTKR2019002771-appb-I000082
    이고,
    R4, R5, R6, R7, R8 및 R9은 서로 독립적으로 수소, 할로겐, 하이드록시기, 아미노기, 직쇄 또는 분지쇄의 C1-C5 알킬, 직쇄 또는 분지쇄의 C1-C5 알콕시, 직쇄 또는 분지쇄의 C1-C5 아미노알킬 또는
    Figure PCTKR2019002771-appb-I000083
    이고,
    화학식 2에서,
    R1, R2 및 R3는 서로 독립적으로 수소, 할로겐, 하이드록시기, 아미노기, 직쇄 또는 분지쇄의 C1-C5 알킬, 직쇄 또는 분지쇄의 C1-C5 알콕시, 직쇄 또는 분지쇄의 C1-C5 아미노알킬,
    Figure PCTKR2019002771-appb-I000084
    또는
    Figure PCTKR2019002771-appb-I000085
    이고,
    R4, R5, R6, R7, R8 및 R9은 서로 독립적으로 수소, 할로겐, 하이드록시기, 아미노기, 직쇄 또는 분지쇄의 C1-C5 알킬, 직쇄 또는 분지쇄의 C1-C5 알콕시, 직쇄 또는 분지쇄의 C1-C5 아미노알킬 또는
    Figure PCTKR2019002771-appb-I000086
    인 것인 실리콘질화막 식각액 조성물.
  5. 제1항에 있어서,
    상기 화학식 1 또는 화학식 2로 표시되는 실릴포스핀 옥사이드계 화합물 또는 실릴포스핀계 화합물은 Si-P 결합의 개수가 50개 이하인 것인 실리콘질화막 식각액 조성물.
  6. 제1항에 있어서,
    상기 화학식 1 또는 화학식 2로 표시되는 실릴포스핀 옥사이드계 화합물 또는 실릴포스핀계 화합물의 함량은 0.1 내지 50 wt% 인 것이고, 상기 인산의 함량은 50 내지 99.9wt%인 것인 실리콘질화막 식각액 조성물.
  7. 제1항에 있어서,
    상기 실리콘질화막 식각액 조성물은 2회 이상의 재사용시에 실리콘 산화막에 대한 실리콘 질화막의 식각비가 50 내지 1000인 것을 특징으로 하는 실리콘질화막 식각액 조성물.
  8. 인산 무수물 및 실레인계 화합물을 혼합하는 단계;
    상기 혼합물을 -20 내지 100℃의 온도에서 1차 반응시키는 단계;
    상기 1차 반응이 종료된 혼합물을 100 내지 200℃의 온도에서 2차 반응시키는 단계;
    상기 2차 반응이 종료된 혼합물을 200 내지 300℃의 온도에서 3차 반응시키는 단계;
    상기 3차 반응이 종료된 혼합물을 상온으로 냉각시켜 실릴포스핀 옥사이드계 화합물 또는 실릴포스핀계 화합물을 수득하는 단계; 및
    상기 수득된 실릴포스핀 옥사이드계 화합물 또는 실릴포스핀계 화합물 및 인산을 혼합하는 단계
    를 포함하는 실리콘질화막 식각액 조성물의 제조방법.
  9. 제8항에 있어서,
    상기 실레인계 화합물은 하기 화학식 3으로 표시되는 것인 실리콘질화막 식각액 조성물의 제조방법:
    [화학식 3]
    Figure PCTKR2019002771-appb-I000087
    상기 화학식 3에서,
    R1, R2 및 R3는 서로 독립적으로 수소, 할로겐, 하이드록시기, 아미노기, 직쇄 또는 분지쇄의 C1-C20 알킬, 직쇄 또는 분지쇄의 C1-C20 알콕시, 직쇄 또는 분지쇄의 C1-C20 아미노알킬, 직쇄 또는 분지쇄의 C2-C20 알케닐, C3-C20 사이클로알킬, C6-C30 아릴, C1-C20 알킬카보닐이고,
    R4는 할로겐, 하이드록시기, 아미노기, 메톡시기, 에톡시기, 직쇄 또는 분지쇄의 C1-C4 아미노알킬이다.
  10. 제8항에 따른 제조방법을 통해 제조된 실리콘질화막 식각액 조성물.
PCT/KR2019/002771 2018-03-23 2019-03-11 실리콘질화막 식각액 조성물 WO2019182277A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180033667A KR101932441B1 (ko) 2018-03-23 2018-03-23 실리콘질화막 식각액 조성물
KR10-2018-0033667 2018-03-23

Publications (1)

Publication Number Publication Date
WO2019182277A1 true WO2019182277A1 (ko) 2019-09-26

Family

ID=65006421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/002771 WO2019182277A1 (ko) 2018-03-23 2019-03-11 실리콘질화막 식각액 조성물

Country Status (2)

Country Link
KR (1) KR101932441B1 (ko)
WO (1) WO2019182277A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115386377A (zh) * 2022-09-09 2022-11-25 易安爱富(武汉)科技有限公司 一种磷酸蚀刻液及制备方法和应用

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101932441B1 (ko) * 2018-03-23 2018-12-26 주식회사 제우스이엔피 실리콘질화막 식각액 조성물
KR102654224B1 (ko) * 2019-01-24 2024-04-04 동우 화인켐 주식회사 실리콘 질화막 식각액 조성물
KR102286852B1 (ko) * 2019-04-24 2021-08-06 주식회사 제우스이엔피 실리콘질화막 식각액 조성물의 제조방법
KR102245035B1 (ko) * 2019-04-30 2021-04-27 주식회사 이엔에프테크놀로지 실리콘 질화막 식각 조성물
KR102345230B1 (ko) * 2019-08-23 2021-12-30 주식회사 제우스이엔피 실리콘질화막 식각액 조성물 및 이의 제조방법
KR102675055B1 (ko) * 2019-09-18 2024-06-12 오씨아이 주식회사 실리콘 질화막 식각 용액 및 이를 사용한 반도체 소자의 제조 방법
KR20220079928A (ko) * 2019-10-09 2022-06-14 엔테그리스, 아이엔씨. 습식 에칭 조성물 및 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013114311A1 (fr) * 2012-02-02 2013-08-08 Ecole Polytechnique Procede de preparation de phosphines tertiaires et de derives de celles-ci
JP2014082330A (ja) * 2012-10-16 2014-05-08 Hitachi Chemical Co Ltd SiN膜の除去方法
KR20170001850A (ko) * 2015-06-26 2017-01-05 오씨아이 주식회사 실리콘 질화막 식각 용액
KR20170066179A (ko) * 2015-12-04 2017-06-14 솔브레인 주식회사 식각용 조성물 및 이를 이용한 반도체 소자의 제조방법
KR101809192B1 (ko) * 2011-12-16 2017-12-15 에스케이하이닉스 주식회사 식각 조성물 및 이를 이용한 반도체 소자의 제조방법
KR101932441B1 (ko) * 2018-03-23 2018-12-26 주식회사 제우스이엔피 실리콘질화막 식각액 조성물

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8609789B2 (en) 2006-02-16 2013-12-17 Basf Se Oligomeric and polymeric aromatic phosphonic acids, their blends, processes for preparing them and uses as polyelectrolytes
KR101539373B1 (ko) 2014-07-17 2015-07-27 솔브레인 주식회사 식각용 조성물 및 이를 이용한 반도체 소자의 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101809192B1 (ko) * 2011-12-16 2017-12-15 에스케이하이닉스 주식회사 식각 조성물 및 이를 이용한 반도체 소자의 제조방법
WO2013114311A1 (fr) * 2012-02-02 2013-08-08 Ecole Polytechnique Procede de preparation de phosphines tertiaires et de derives de celles-ci
JP2014082330A (ja) * 2012-10-16 2014-05-08 Hitachi Chemical Co Ltd SiN膜の除去方法
KR20170001850A (ko) * 2015-06-26 2017-01-05 오씨아이 주식회사 실리콘 질화막 식각 용액
KR20170066179A (ko) * 2015-12-04 2017-06-14 솔브레인 주식회사 식각용 조성물 및 이를 이용한 반도체 소자의 제조방법
KR101932441B1 (ko) * 2018-03-23 2018-12-26 주식회사 제우스이엔피 실리콘질화막 식각액 조성물

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115386377A (zh) * 2022-09-09 2022-11-25 易安爱富(武汉)科技有限公司 一种磷酸蚀刻液及制备方法和应用

Also Published As

Publication number Publication date
KR101932441B1 (ko) 2018-12-26

Similar Documents

Publication Publication Date Title
WO2019182277A1 (ko) 실리콘질화막 식각액 조성물
WO2015105350A1 (en) Novel cyclodisilazane derivative, method for preparing the same and silicon-containing thin film using the same
KR101970860B1 (ko) 실리카질막의 형성 방법 및 동 방법으로 형성된 실리카질막
WO2014104480A1 (ko) 모노머, 상기 모노머를 포함하는 하드마스크 조성물 및 상기 하드마스크 조성물을 사용하는 패턴형성방법
WO2017095022A1 (ko) 식각용 조성물 및 이를 이용한 반도체 소자의 제조방법
WO2015190749A1 (en) Novel amino-silyl amine compound and the manufacturing method of dielectric film containing si-n bond by using atomic layer deposition
WO2014104510A1 (ko) 개질 수소화 폴리실록사잔, 이를 포함하는 실리카계 절연층 형성용 조성물, 실리카계 절연층 형성용 조성물의 제조방법, 실리카계 절연층 및 실리카계 절연층의 제조방법
WO2018124705A1 (ko) 식각용 조성물 및 이를 이용한 반도체 소자의 제조방법
WO2020218816A1 (ko) 식각챔버를 이용한 식각장치
WO2014133287A1 (ko) 광학소자 봉지용 수지 조성물
WO2018066896A2 (ko) 디플루오로인산리튬의 제조방법
WO2022196878A1 (ko) 실리콘계 조성물 및 이의 경화물
WO2019225856A1 (ko) 실리콘 질화막 식각용 조성물 및 이를 이용한 식각 방법
WO2011081326A2 (ko) 봉지재용 투광성 수지 및 이를 포함하는 전자 소자
KR102345230B1 (ko) 실리콘질화막 식각액 조성물 및 이의 제조방법
WO2016167449A1 (ko) 포스포늄계 화합물, 이를 포함하는 에폭시 수지 조성물, 및 이를 사용하여 제조된 반도체 소자
WO2017142251A1 (ko) 반도체 소자 밀봉용 에폭시 수지 조성물 및 이를 이용하여 밀봉된 반도체 소자
KR0147499B1 (ko) 열안정성 피복 재료
WO2020040385A1 (ko) 절연막 식각액 조성물 및 이를 이용한 패턴 형성 방법
WO2014109506A1 (ko) 반도체 기판
WO2020040386A1 (ko) 절연막 식각액 조성물 및 이를 이용한 패턴 형성 방법
WO2020017723A1 (ko) 절연막 식각액 조성물 및 이를 이용한 패턴 형성 방법
WO2022035111A1 (ko) 내플라즈마 유리 및 그 제조 방법
WO2018182307A1 (ko) 실리콘 질화막 식각 조성물
KR20190090210A (ko) 절연막 식각액 조성물 및 이를 이용한 패턴 형성 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19772532

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19772532

Country of ref document: EP

Kind code of ref document: A1