WO2014104510A1 - 개질 수소화 폴리실록사잔, 이를 포함하는 실리카계 절연층 형성용 조성물, 실리카계 절연층 형성용 조성물의 제조방법, 실리카계 절연층 및 실리카계 절연층의 제조방법 - Google Patents

개질 수소화 폴리실록사잔, 이를 포함하는 실리카계 절연층 형성용 조성물, 실리카계 절연층 형성용 조성물의 제조방법, 실리카계 절연층 및 실리카계 절연층의 제조방법 Download PDF

Info

Publication number
WO2014104510A1
WO2014104510A1 PCT/KR2013/006291 KR2013006291W WO2014104510A1 WO 2014104510 A1 WO2014104510 A1 WO 2014104510A1 KR 2013006291 W KR2013006291 W KR 2013006291W WO 2014104510 A1 WO2014104510 A1 WO 2014104510A1
Authority
WO
WIPO (PCT)
Prior art keywords
silica
modified hydrogenated
hydrogenated polysiloxane
composition
forming
Prior art date
Application number
PCT/KR2013/006291
Other languages
English (en)
French (fr)
Inventor
송현지
박은수
임상학
곽택수
김고은
김미영
김보선
김봉환
나융희
배진희
서진우
윤희찬
이한송
전종대
한권우
홍승희
황병규
Original Assignee
제일모직 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제일모직 주식회사 filed Critical 제일모직 주식회사
Priority to CN201380049625.0A priority Critical patent/CN104684968B/zh
Priority to US14/429,512 priority patent/US9890255B2/en
Publication of WO2014104510A1 publication Critical patent/WO2014104510A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/54Nitrogen-containing linkages
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/02Polysilicates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/14Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/16Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers in which all the silicon atoms are connected by linkages other than oxygen atoms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/303Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups H01B3/38 or H01B3/302
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/46Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes silicones
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02219Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen
    • H01L21/02222Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen the compound being a silazane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02255Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • H01L21/0229Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating liquid atomic layer deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02321Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer
    • H01L21/02323Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of oxygen
    • H01L21/02326Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of oxygen into a nitride layer, e.g. changing SiN to SiON
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/60Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/60Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/62Nitrogen atoms

Definitions

  • the present disclosure relates to a modified hydrogenated polysiloxane, a composition for forming a silica-based insulating layer comprising the same, a method for manufacturing the same, and a silica-based insulating layer and a method for manufacturing the same.
  • DRAM dynamic random access memory
  • the DRAM includes a plurality of unit cells including one MOS transistor and one capacitor.
  • the capacitor includes two electrodes and a dielectric layer positioned therebetween, and the capacitance of the capacitor may be determined according to the dielectric constant, the thickness of the dielectric layer, and the area of the electrode forming the capacitor.
  • a capacitor capable of sufficiently securing the storage capacity is required.
  • a silica-based insulating layer formed by filling a mold and a gap formed in the mold with a composition for forming a silica-based insulating layer in order to effectively form electrodes having a relatively high height as compared to a narrow horizontal area This can be used.
  • One embodiment of the present invention is to provide a novel modified hydrogenated polysiloxane of low shrinkage during wet heating conversion with silica membrane.
  • Another embodiment of the present invention is to provide a composition for forming a silica-based insulating layer comprising a modified hydrogenated polysiloxane having less shrinkage during wet heating conversion with a silica film.
  • Another embodiment of the present invention is to provide a method for producing a composition for forming a silica-based insulating layer comprising a modified hydrogenated polysiloxane having less shrinkage during wet heating conversion with a silica film.
  • Another embodiment of the present invention is to provide a silica-based insulating layer with less shrinkage during wet heating.
  • Another embodiment of the present invention is to provide a method for producing a silica-based insulating layer with a low shrinkage during wet heating.
  • One embodiment of the present invention provides a modified hydrogenated polysiloxaneoxane prepared by reacting a hydrogenated polysiloxane with a silane compound selected from polysilane, polycyclosilane and silane oligomer.
  • the modified hydrogenated polysiloxane may have a ratio (N / Si) of the number of atoms of nitrogen atoms to silicon atoms of 0.95 or less.
  • the modified hydrogenated polysiloxane may include structural units represented by the following Chemical Formulas 1 to 3.
  • R 1 and R 2 are each independently selected from H, SiH 3 and NH 2 , and R 3 is H or SiH 3 .
  • the modified hydrogenated polysiloxane may have an oxygen content of 0.2 to 3% by weight relative to the total weight of the modified hydrogenated polysiloxane.
  • the modified hydrogenated polysiloxane may have a weight average molecular weight of 1,000 to 30,000.
  • Another embodiment of the present invention provides a composition for forming a silica-based insulating layer comprising a modified hydrogenated polysiloxane produced by reacting a silane compound selected from polysilane, polycyclosilane and silane oligomer with a hydrogenated polysiloxane.
  • the modified hydrogenated polysiloxane may have a ratio (N / Si) of the number of atoms of nitrogen atoms to silicon atoms of 0.95 or less.
  • the modified hydrogenated polysiloxane may include structural units represented by the following Chemical Formulas 1 to 3.
  • R 1 and R 2 are each independently selected from H, SiH 3 and NH 2 , and R 3 is H or SiH 3 .
  • the modified hydrogenated polysiloxane may have a weight average molecular weight of 1000 to 30000.
  • the content of the modified hydrogenated polysiloxane may be 0.1 to 50% by weight based on the composition for forming a silica-based insulating layer.
  • Another embodiment of the present invention is a modified hydrogenated polysiloxane by reacting the hydrogenated polysiloxane with a silane compound in a solvent or by adding a halosilane compound and a silane compound to a mixture of pyridine and water, followed by coammonolysis Comprising the step of preparing a modified hydrogenated polysiloxane solution, wherein the silane compound provides a method for producing a composition for forming a silica-based insulating layer selected from polysilane, polycyclosilane, silane oligomer.
  • the halosilane compound may be selected from dichlorosilane, trichlorosilane, tetrachlorosilane and mixtures thereof.
  • the silane compound may be one having a structure of Formula 4 below.
  • R 1 and R 2 are each independently selected from H, SiH 3 , NH 2 , Cl, Br and I, and
  • R 3 and R 4 are each independently selected from the group consisting of H, SiH 3 , NH 2 , Cl, Br and I, or may be linked to each other to form a ring,
  • a is an integer of 1-30.
  • the silane compound may be cyclopentasilane .
  • Another embodiment of the present invention provides a method for preparing a composition for forming a silica-based insulating layer further comprising the step of replacing the solvent of the modified hydrogenated polysiloxane solution with a nonpolar solvent.
  • the nonpolar solvent may be xylene or di - n-butylether.
  • Another embodiment of the present invention provides a silica-based insulating layer prepared using the composition for forming a silica-based insulating layer.
  • Another embodiment of the present invention comprises the steps of applying a composition for forming a silica-based insulating layer on the substrate; Soft baking the substrate to which the composition for forming the silica-based insulating layer is applied at a temperature of 50 ° C. or more and 200 ° C. or less; And heating the soft baked substrate at a temperature of 200 ° C. or more and 1,000 ° C. or less, in an atmosphere containing oxygen or water vapor of 0.1 kPa or more.
  • the modified hydrogenated polysiloxane may be applied to a composition for forming a silica-based insulating layer because the molar amount of relative nitrogen atoms to a molar amount of silicon atoms is small, thereby significantly reducing the film shrinkage rate when forming the silica-based insulating layer.
  • Modified hydrogenated polysiloxane according to one embodiment of the present invention is prepared by reacting a silane compound selected from the group consisting of polysilane, polycyclosilane and silane oligomer to the hydrogenated polysiloxane.
  • the reforming method of reducing the molar amount of nitrogen atoms contained in the hydrogenated polysiloxane by the molar amount of silicon atoms since NH 3 is generated from the nitrogen contained in the hydrogenated polysiloxane, the reforming method of reducing the molar amount of nitrogen atoms contained in the hydrogenated polysiloxane by the molar amount of silicon atoms.
  • a modified hydrogenated polysiloxane having a low molar amount of relative nitrogen atoms relative to a molar amount of silicon atoms can be produced by reacting with a silane compound containing no Si-C bond, thereby reducing film shrinkage when forming a silica-based insulating layer You can.
  • the ratio (N / Si) of the number of atoms of nitrogen atoms to silicon atoms is 0.95 or less, preferably 0.85 to 0.95.
  • the film shrinkage rate during silica conversion is affected by conditions such as heating temperature.
  • the molar ratio (N / Si) of nitrogen atoms to silicon atoms in the modified hydrogenated polysiloxane is 0.95 or less, the silica film shrinkage is remarkable. Can be reduced.
  • the modified hydrogenated polysiloxane may have an oxygen content of 0.2 to 3% by weight based on the total weight of the modified hydrogenated polysiloxane.
  • the oxygen content is within the above range, the stress relaxation by the silicon-oxygen-silicon (Si-O-Si) bond in the structure is sufficient to prevent shrinkage during heat treatment, thereby preventing cracks in the formed filling pattern. May be advantageous.
  • the modified hydrogenated polysiloxane may have a structural unit represented by the following Chemical Formulas 1-3:
  • R 1 and R 2 are each independently selected from the group consisting of H, SiH 3 and NH 2 , and R 3 is H or SiH 3 .
  • the modified hydrogenated polysiloxane may have a weight average molecular weight (Mw) of about 1,000 to 30,000. If the weight average molecular weight is too small, since the polymer viscosity is low, it is difficult to form a uniform film because the low molecular weight component evaporates during application, flow, heating, and silica conversion to the substrate, and gelation is performed when the weight average molecular weight is too large. It is difficult to gap-fill a narrow trench when applied to a substrate that is susceptible or irregularities. When the weight average molecular weight of the modified hydrogenated polysiloxane is in the above range, a uniform silica-like film can be formed without fear of gelation. In this respect, the modified hydrogenated polysiloxane is better if the weight average molecular weight (Mw) is within the range of about 1500 to 7000.
  • composition for forming a silica-based insulating layer includes the modified hydrogenated polysiloxane.
  • the modified hydrogenated polysiloxane is the same as described above.
  • the modified hydrogenated polysiloxane may be included in an amount of 0.1 to 50 wt% based on the total content of the composition for forming a silica-based insulation layer. When included in the above range can maintain an appropriate viscosity and the silica-based insulating layer containing the modified hydrogenated polysiloxane may be formed to form a silica-based insulating layer evenly and evenly without a gap (void).
  • composition for forming a silica-based insulating layer may further include a thermal acid generator (TAG).
  • TAG thermal acid generator
  • the thermal acid generator is an additive for improving the developability of the modified hydrogenated polysiloxane, and allows the modified hydrogenated polysiloxane to be developed at a relatively low temperature.
  • the thermal acid generator is not particularly limited as long as it is a compound capable of generating an acid (H + ) by heat.
  • the thermal acid generator may be activated at about 90 ° C. or higher to generate sufficient acid, and may have low volatility.
  • Such thermal acid generators can be selected, for example, from nitrobenzyl tosylate, nitrobenzyl benzenesulfonate, phenol sulfonate and combinations thereof.
  • the thermal acid generator may be included in an amount of 0.01 to 25% by weight based on the total content of the composition for forming a silica-based insulating layer, and when included in the above range, the modified hydrogenated polysiloxane may be developed at a relatively low temperature, and at the same time, the coating property may be improved. can do.
  • composition for forming a silica-based insulating layer may further include a surfactant.
  • the said surfactant is not specifically limited, For example, polyoxyethylene alkyl ethers, such as polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene cetyl ether, polyoxyethylene oleyl ether, polyoxyethylene nonyl phenol Polyoxyethylene alkyl allyl ethers such as ether, polyoxyethylene alkyl allyl ethers such as polyoxyethylene nonyl phenol ether, polyoxyethylene polyoxypropylene block copolymers, sorbitan monolaurate, sorbitan monopalmitate, Biyi such as polyoxyethylene sorbitan fatty acid esters such as sorbitan monostearate, sorbitan monooleate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan trioleate, polyoxyethylene sorbitan tristearate Warm surfactant, F-top EF301, EF303, EF352 (manufactured by Tochem Products), Mega pack F171, F173
  • the surfactant may be included in an amount of about 0.001 to 10% by weight based on the total content of the composition for forming a silica-based insulating layer, and when included in the above range, improves the dispersibility of the solution and at the same time the film thickness uniformity and The filling property can be improved.
  • composition for forming the silica-based insulation layer may be in the form of a modified hydrogenated polysiloxane and a solution in which the components are dissolved in a solvent.
  • the solvent is not particularly limited as long as it is a compound capable of dissolving the above-mentioned components, and examples thereof include alcohols such as methanol and ethanol; Ethers such as dichloroethyl ether, di - n-butyl ether, diisoamyl ether, methylphenyl ether, tetrahydrofuran; Glycol ethers such as ethylene glycol monomethyl ether and ethylene glycol monoethyl ether; Cellosolve acetates such as methyl cellosolve acetate, ethyl cellosolve acetate and diethyl cellosolve acetate; Carbitols such as methyl ethyl carbitol, diethyl carbitol, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol dimethyl ether, diethylene glycol methylethyl ether and diethylene glycol diethyl ether; Propy
  • diethylene glycol monomethyl ether diethylene glycol diethyl ether, ethyl-3-ethoxy propionate, methyl-3-methoxy propionate, cyclopentanone, cyclohexanone, and propylene glycol monomethyl ether acetate
  • propylene glycol dimethyl ether acetate 1-methoxy-2-propanol, ethyl lactate, cyclopentanone and ethyl hydroxy acetate can be selected.
  • At least one of the solvents may include a solvent having a high boiling point.
  • a solvent having a high boiling point it is possible to prevent voids from occurring in the gap during gap filling and to increase the flatness of the film by slowly volatilizing the solvent.
  • the solvent may be included as a balance except for the above components with respect to the total content of the composition for forming a silica-based insulating layer.
  • Method for producing a composition for forming a silica-based insulating layer comprising a modified hydrogenated polysiloxane in accordance with one embodiment of the present invention is: heating the hydrogenated polysiloxane with a silane compound in a solvent (first method), or in a solvent And coammonolysis of the halosilane compound with the silane compound (second method).
  • the hydrogenated polysiloxane is heated and reacted with a silane compound in a solvent as a first method, the N-H group of the hydrogenated polysiloxane and the Si-H group of the polysilane are dehydrogenated to produce a modified hydrogenated polysiloxane.
  • the hydrogenated polysiloxane may be prepared by a conventional manufacturing method, and specifically, may be obtained by coamonolysis by combining one or more halosilane compounds.
  • halosilane compound dichlorosilane, trichlorosilane, tetrachlorosilane and mixtures thereof may be used.
  • the high molecular weight of the hydrogenated polysiloxane by the addition of the polysilane and cross-linking after the reaction with the polysilane it is preferable to use a weight average molecular weight of 500 to 15,000 or less.
  • the silane compound may be selected from the group consisting of polysilane, polycyclosilane, and silane oligomer, and the silane compound may have a chain, branched, cyclic, or three-dimensional crosslinked structure.
  • silane compound one having a structure represented by the following formula (4) may be used.
  • R 1 and R 2 are each independently selected from the group consisting of H, SiH 3 , NH 2 , Cl, Br and I, and
  • R 3 and R 4 are each independently selected from the group consisting of H, SiH 3 , NH 2 , Cl, Br and I, or may be linked to each other to form a ring,
  • a is an integer of 1-30.
  • the silane compound may be cyclopentasilane.
  • the silane compound is preferably used in 5 to 40 parts by weight with respect to 100 parts by weight of hydrogenated polysiloxane. When used in the above range, it is possible to produce a modified hydrogenated polysiloxane of low shrinkage during wet heating conversion with a silica film.
  • An aromatic hydrocarbon organic solvent such as xylene may be used as the solvent, and the reaction rate may be increased by adding a basic substance such as pyridine.
  • a basic substance such as pyridine.
  • hydrolysis or addition reactions of alkoxy groups may occur, which may adversely affect the modification of the target hydrogenated polysiloxane.
  • the solvent is sufficiently dehydrated and purified. It is preferable to use.
  • the reaction is preferably carried out at 0 ° C or more and 200 ° C or less, and more preferably at 40 ° C or more and 120 ° C or less from the viewpoint of reaction rate and controllability.
  • the molecular weight is increased due to addition reaction and crosslinking reaction with a silane compound selected from the group consisting of polysilane, polycyclosilane and silane oligomer.
  • a silane compound selected from the group consisting of polysilane, polycyclosilane and silane oligomer.
  • the reaction is caused by dehydrogenation of the N-H group of the hydrogenated polysiloxane and the Si-H group of the polysilane, a pressure rise occurs due to the generation of hydrogen gas or the like. Therefore, it is desirable to control the pressure rise during the reaction.
  • the second method may be prepared by mixing a halosilane compound and a silane compound in a mixture of pyridine and water, followed by coammonolysis while injecting ammonia. have.
  • the halosilane compound and the silane compound may be the same as those described in the first method.
  • the modified hydrogenated polysiloxane produced by the first method or the second method is obtained in a solid state in a solution, which may be used by filtration and separation through an additional process, or as it is a solution containing modified hydrogenated polysiloxane residue. Can also be used.
  • Method for producing a composition for forming a silica-based insulating layer comprising a modified hydrogenated polysiloxane in accordance with an embodiment of the present invention optionally further comprising the step of replacing the solvent present in the solution containing the modified hydrogenated polysiloxane with a nonpolar solvent. It can be carried out.
  • Di-n-butyl ether, xylene, or the like may be used as the nonpolar solvent.
  • the solvent substitution step can be carried out by a conventional method, and specifically, by adding a dry nonpolar solvent such as dry di-n-butylether or dry xylene to the modified hydrogenated polysiloxane containing solution, a rotary evaporator Can be carried out by evaporating pyridine.
  • a dry nonpolar solvent such as dry di-n-butylether or dry xylene
  • Silica-based insulation layer according to another embodiment of the present invention can be prepared using the composition for forming a silica-based insulation layer of any one of the embodiments of the present invention described above.
  • the method of manufacturing the silica-based insulating layer is not particularly limited, and may be formed according to a conventional method.
  • a device substrate such as a semiconductor, a liquid crystal
  • substrate is not specifically limited, A spin coat method, the slit coat method, etc. can be used.
  • the soft bake process is to remove the solvent contained in the modified hydrogenated polysiloxane sand thin film, it is preferably carried out at a temperature of 50 °C to 200 °C, for a time of 5 seconds to 10 minutes. If the temperature is too low, the removal of the solvent may be insufficient. If the temperature is too high, the oxidation reaction may proceed and control by subsequent heating may be difficult, so it is preferable to carry out in the above temperature range. In addition, when the reaction time is too short, it is difficult to control the reaction. When the reaction time is too long, when the oxidation reaction is progressed or when a large number of substrates are processed, the process time is too long and not practical.
  • the atmosphere may be any one of nitrogen, oxygen, and atmosphere including water vapor.
  • the heating process is for converting the modified hydrogenated polysiloxane filament thin film into silica, preferably at a temperature of 200 ° C. to 1,000 ° C. for 1 minute to 3 hours. If the reaction temperature is too low, the siliceous conversion of the modified hydrogenated polysiloxane may be insufficient. If the reaction temperature is too high, oxidation damage to the substrate may occur. If the heating time is too short, it is difficult to control the temperature and atmosphere gas in a cure furnace or the like. If the heating time is too long, oxidation damage to the substrate may occur. It is preferred to carry out during this heating time since it is lengthened and not practical. In addition, the steam included in the heating process may have a steam partial pressure of 0.1 kPa to 20 kPa.
  • the atmosphere at the time of a heating process contains either oxygen and water vapor, and you may dilute with inert gas, such as nitrogen and argon gas.
  • Oxidation of the modified hydrogenated polysiloxanes requires essentially an oxidizing gas, which is not possible with the inert gas alone.
  • the silica-based insulating layer prepared by the above method includes a modified hydrogenated polysiloxane having a low N / Si ratio, and exhibits a significantly reduced film shrinkage rate.
  • the inside of the reactor with a capacity of 2 L equipped with a stirrer and a temperature controller was replaced with dry nitrogen. Then, 2.0 g of pure water was injected into 1,500 g of dry pyridine, and the mixture was sufficiently mixed. Subsequently, 100 g of dichlorosilane was slowly injected into the reactor over 1 hour, and 70 g of ammonia was slowly injected over 3 hours while stirring the reactor. Next, after injecting dry nitrogen for 30 minutes, the ammonia remaining in the reactor was removed, and the resultant white slurry product was filtered using a 1 ⁇ m filter made of Teflon in a dry nitrogen atmosphere.
  • the weight average molecular weight of the hydrogenated polysiloxane was 2,000 and the N / Si value was 0.98.
  • the hydrogenated polysiloxane residue was applied to a silicon wafer for 1,500 rpm for 20 seconds using a spin coater, dried at 100 ° C. for 5 minutes on a hot plate, and then heated in an oxygen atmosphere containing a temperature of 750 ° C. and a partial pressure of 5 kPa for 1 hour.
  • the film thickness shrinkage was 22.5%.
  • the inside of the reactor with a capacity of 2 L equipped with a stirrer and a temperature controller was replaced with dry nitrogen. Then, 2.0 g of pure water was injected into 1,500 g of dry pyridine, and the mixture was sufficiently mixed. Subsequently, 100 g of dichlorosilane was slowly injected into the reactor over 1 hour, and 70 g of ammonia was slowly injected over 3 hours while stirring the reactor. Next, dry nitrogen was injected for 30 minutes to remove ammonia remaining in the reactor, and the resulting white slurry-like product was filtered using a 1 ⁇ m filter made of Teflon in a dry nitrogen atmosphere.
  • the weight average molecular weight of the perhydropolysiloxane was 3,500.
  • the perhydropolysiloxane residue was applied to a substrate engraved with a spin coater, dried on a hot plate at 100 ° C., and then heated in an oxygen atmosphere containing a temperature of 750 ° C. and a partial pressure of 5 kPa for 1 hour.
  • the film thickness shrinkage was 16.9% and the N / Si value was 0.97.
  • the inside of the reactor of 1 L capacity equipped with the stirrer and the temperature controller was replaced with dry nitrogen.
  • 100 g of di-n-butylether solution, 20 g of cyclopentasilane, and 300 g of dry pyridine containing 20 wt% of the hydrogenated polysiloxaneoxane obtained in Comparative Example 1 were introduced into the reactor, and the reactor was replaced with dry nitrogen. Subsequently, the reactor was slowly heated using an oil bath and maintained at a temperature of 100 ° C. for 5 hours, and then cooled to room temperature.
  • the polystyrene reduced weight average molecular weight of the modified hydrogenated polysiloxane solution was 3,500, and the N / Si value was 0.93.
  • the modified hydrogenated polysiloxane solution was applied to a silicon wafer for 1,500 rpm for 20 seconds using a spin coater, dried at 100 ° C. for 5 minutes on a hot plate, and then heated for 1 hour in an oxygen atmosphere containing a temperature of 750 ° C. and a partial pressure of steam of 5 kPa. It was.
  • the film thickness shrinkage was 15.7%.
  • the inside of the reactor of 1 L capacity equipped with the stirrer and the temperature controller was replaced with dry nitrogen.
  • 100 g of di-n-butylether solution, 20 g of cyclopentasilane, and 300 g of dry pyridine containing 20% by weight of hydrogenated polysiloxanexazan obtained in Comparative Example 1 were introduced into the reactor, and the reactor was replaced with dry nitrogen. Subsequently, the reactor was slowly heated using an oil bath and maintained at a temperature of 100 ° C. for 5 hours, and then cooled to room temperature.
  • the polystyrene reduced weight average molecular weight of the modified hydrogenated polysiloxane solution was 3,500, and the N / Si value was 0.92.
  • the modified hydrogenated polysiloxane solution was applied to a silicon wafer for 1,500 rpm for 20 seconds using a spin coater, dried at 100 ° C. for 5 minutes on a hot plate, and then heated for 1 hour in an oxygen atmosphere containing a temperature of 750 ° C. and a partial pressure of steam of 5 kPa. It was.
  • the film thickness shrinkage was 14.4%.
  • the inside of the reactor of 1 L capacity equipped with the stirrer and the temperature controller was replaced with dry nitrogen.
  • 100 g of di-n-butylether solution, 20 g of cyclopentasilane, and 300 g of dry pyridine containing 20 wt% of the hydrogenated polysiloxanexazan obtained in Comparative Example 1 were injected, and the vessel was replaced with dry nitrogen.
  • the reactor was slowly heated using an oil bath and maintained at a temperature of 100 ° C. for 5 hours, and then cooled to room temperature.
  • the polystyrene reduced weight average molecular weight of the modified hydrogenated polysiloxane solution was 3,500, and the N / Si value was 0.91.
  • the modified hydrogenated polysiloxane solution was applied to a silicon wafer for 1,500 rpm, 20 seconds with a spin coater, dried at 100 ° C. for 5 minutes on a hot plate, and then heated for 1 hour in an oxygen atmosphere containing a temperature of 500 ° C. and a partial pressure of 5 kPa of water vapor. did.
  • the film thickness shrinkage was 13.8%.
  • N / Si XPS; Measurement using JPS-9010 (manufactured by JEOL)

Abstract

수소화 폴리실록사잔에 폴리실란, 폴리사이클로실란 및 실란 올리고머로 이루어진 군에서 선택되는 실란 화합물을 반응시켜 제조되는 개질 수소화 폴리실록사잔을 제공한다. 상기 개질 수소화 폴리실록사잔은, 실리콘 원자에 대한 질소 원자의 몰비가 작기 때문에 실리카계 절연층 형성용 조성물에 적용되어 실리카계 절연층 형성시 막 수축률을 현저히 감소시킬 수 있다.

Description

개질 수소화 폴리실록사잔, 이를 포함하는 실리카계 절연층 형성용 조성물, 실리카계 절연층 형성용 조성물의 제조방법, 실리카계 절연층 및 실리카계 절연층의 제조방법
본 기재는 개질 수소화 폴리실록사잔, 이를 포함하는 실리카계 절연층 형성용 조성물 및 그 제조방법, 그리고 이를 이용한 실리카계 절연층 및 그 제조방법에 관한 것이다.
반도체 기술이 점점 발달함에 따라 더 작은 크기의 반도체 칩에 집적도를 높이고 성능이 개선된 고집적 및 고속화 반도체 메모리 셀에 대한 연구가 계속되고 있다. 특히 반도체 메모리 셀 중에서 정보의 입력 및 출력이 자유롭고 대용량으로 구현될 수 있는 디램(dynamic random access memory, DRAM)이 널리 이용되고 있다.
디램은 하나의 모스 트랜지스터(MOS transistor)와 하나의 캐패시터(capacitor)를 포함하는 복수의 단위 셀로 이루어진다. 이 중에서 캐패시터는 두 개의 전극과 그 사이에 위치하는 유전체층을 포함하는데, 캐패시터의 용량은 유전율, 유전체층의 두께 및 캐패시터를 형성하는 전극의 면적 등에 따라 결정될 수 있다.
한편, 반도체 칩의 크기가 점점 작아짐에 따라 캐패시터의 크기 또한 작아지고 이에 따라 축적 용량을 충분히 확보할 수 있는 캐패시터가 요구된다. 이러한 캐패시터를 구현하기 위한 방안으로, 캐패시터의 수평 면적은 감소시키는 대신 수직 면적을 증가시킴으로써 캐패시터의 전체적인 유효 면적을 늘리는 방법이 있다. 이러한 방법으로 캐패시터를 형성하는 경우, 좁은 수평 면적에 비하여 상대적으로 높이가 높은 전극들을 효과적으로 형성하기 위하여 몰드 및 상기 몰드에 형성된 갭(gap)을 실리카계 절연층 형성용 조성물로 채워 형성된 실리카계 절연층이 사용될 수 있다.
본 발명의 일 구현예는 실리카막으로 습식 가열 전화 시에 수축이 적은 신규한 개질 수소화 폴리실록사잔을 제공하기 위한 것이다.
본 발명의 다른 일 구현예는 실리카막으로 습식 가열 전화 시에 수축이 적은 개질 수소화 폴리실록사잔을 포함하는 실리카계 절연층 형성용 조성물을 제공하기 위한 것이다.
본 발명의 또 다른 일 구현예는 실리카막으로 습식 가열 전화 시에 수축이 적은 개질 수소화 폴리실록사잔을 포함하는 실리카계 절연층 형성용 조성물의 제조방법을 제공하기 위한 것이다.
본 발명의 또 다른 일 구현예는 습식 가열 전화 시에 수축이 적은 실리카계 절연층을 제공하기 위한 것이다.
본 발명의 또 다른 일 구현예는 습식 가열 전화 시에 수축이 적은 실리카계 절연층을 제조하는 방법을 제공하기 위한 것이다.
본 발명의 일 구현예는 수소화 폴리실록사잔에 폴리실란, 폴리사이클로실란 및 실란 올리고머에서 선택되는 실란 화합물을 반응시켜 제조되는 개질 수소화 폴리실록사잔을 제공한다.
상기 개질 수소화 폴리실록사잔은 실리콘 원자에 대한 질소 원자의 원자수의 비(N/Si)가 0.95 이하일 수 있다.
상기 개질 수소화 폴리실록사잔은 하기 화학식 1 내지 3의 구조단위를 포함할 수 있다.
[화학식 1]
Figure PCTKR2013006291-appb-I000001
[화학식 2]
Figure PCTKR2013006291-appb-I000002
[화학식 3]
Figure PCTKR2013006291-appb-I000003
상기 화학식 1 내지 3에서, R1 및 R2는 각각 독립적으로 H, SiH3 및 NH2 에서 선택되고, 그리고 R3는 H 또는 SiH3이다.
상기 개질 수소화 폴리실록사잔은 개질 수소화 폴리실록사잔 총 중량에 대하여 0.2 내지 3중량%의 산소함유량을 가질 수 있다.
상기 개질 수소화 폴리실록사잔은 1,000 내지 30,000의 중량 평균 분자량을 가질 수 있다.
본 발명의 다른 일 구현예는 수소화 폴리실록사잔에 폴리실란, 폴리사이클로실란 및 실란 올리고머에서 선택되는 실란 화합물을 반응시켜 제조되는 개질 수소화 폴리실록사잔을 포함하는 실리카계 절연층 형성용 조성물을 제공한다.
상기 개질 수소화 폴리실록사잔은 실리콘 원자에 대한 질소 원자의 원자수의 비(N/Si)가 0.95 이하일 수 있다.
상기 개질 수소화 폴리실록사잔은 하기 화학식 1 내지 3의 구조단위를 포함할 수 있다.
[화학식 1]
Figure PCTKR2013006291-appb-I000004
[화학식 2]
Figure PCTKR2013006291-appb-I000005
[화학식 3]
Figure PCTKR2013006291-appb-I000006
상기 화학식 1 내지 3에서, R1 및 R2는 각각 독립적으로 H, SiH3 및 NH2 에서 선택되고, 그리고 R3는 H 또는 SiH3이다.
상기 개질 수소화 폴리실록사잔은 1000 내지 30000의 중량 평균 분자량을 가질 수 있다.
상기 개질 수소화 폴리실록사잔의 함량은 실리카계 절연층 형성용 조성물에 대하여 0.1 내지 50중량%일 수 있다.
본 발명의 또 다른 일 구현예는 수소화 폴리실록사잔을 용매 중에서 실란 화합물과 가열 반응시키거나, 또는 피리딘과 물의 혼합물에 할로실란 화합물 및 실란 화합물을 첨가한 후 공가암모니아 분해(coammonolysis)시켜 개질 수소화 폴리실록사잔을 합성하여 개질 수소화 폴리실록사잔 용액을 제조하는 단계를 포함하며, 상기 실란 화합물은 폴리실란, 폴리사이클로실란, 실란 올리고머에서 선택되는 실리카계 절연층 형성용 조성물의 제조방법을 제공한다.
상기 할로실란 화합물은 디클로로실란, 트리클로로실란, 테트라클로로실란 및 이들의 혼합물에서 선택될 수 있다.
바람직하게는 상기 실란 화합물은 하기 화학식 4의 구조를 갖는 것일 수 있다.
[화학식 4]
Figure PCTKR2013006291-appb-I000007
상기 화학식 4에서,
R1 및 R2는 각각 독립적으로 H, SiH3, NH2, Cl, Br 및 I에서 선택되고, 그리고
R3 및 R4는 각각 독립적으로 H, SiH3, NH2, Cl, Br 및 I로 이루어진 군에서 선택되거나, 또는 서로 연결되어 고리를 형성할 수 있으며,
a는 1 내지 30의 정수이다.
보다 바람직하게는, 상기 실란 화합물은 시클로펜타실란(cyclopentasilane)일 수 있다.
본 발명의 또 다른 일 구현예는 상기 개질 수소화 폴리실록사잔 용액의 용매를 비극성 용매로 치환하는 단계를 더 포함하는 실리카계 절연층 형성용 조성물의 제조방법을 제공한다.
상기 비극성 용매는 자일렌 또는 디-n-부틸에테르일 수 있다.
본 발명의 또 다른 일 구현예는 상기 실리카계 절연층 형성용 조성물을 이용하여 제조되는 실리카계 절연층을 제공한다.
본 발명의 또 다른 일 구현예는 기판에 전술한 실리카계 절연층 형성용 조성물을 도포하는 단계; 상기 실리카계 절연층 형성용 조성물을 도포된 기판을 50℃ 이상 200℃ 이하의 온도에서 소프트 베이크하는 단계; 및 상기 소프트 베이크된 기판을 200℃ 이상 1,000℃ 이하의 온도에서, 산소 또는 0.1 kPa 이상의 수증기를 포함한 분위기 중에서 가열하는 단계를 포함하는 실리카계 절연층 제조방법을 제공한다.
기타 본 발명의 구현예들의 구체적인 사항은 이하의 상세한 설명에 포함되어 있다.
상기 개질 수소화 폴리실록사잔은 실리콘 원자 몰 양에 대한 상대 질소 원자의 몰 양이 적기 때문에 실리카계 절연층 형성용 조성물에 적용되어 실리카계 절연층 형성 시 막 수축률을 현저히 감소시킬 수 있다.
이하, 본 발명의 구현예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구 범위의 범주에 의해 정의될 뿐이다.
본 발명의 일 구현예에 따른 개질 수소화 폴리실록사잔은 수소화 폴리실록사잔에 폴리실란, 폴리사이클로실란 및 실란 올리고머로 이루어진 군에서 선택되는 실란 화합물을 반응시켜 제조된다.
통상 수소화실라잔 유닛과 수소화실록산 유닛의 구성비가 1:1인 수소화 폴리실록사잔을 수증기에 의해 실리카질로 전화하는 경우 하기 반응식 1에서와 같은 반응이 일어난다.
[반응식 1]
Figure PCTKR2013006291-appb-I000008
수소화 폴리실록사잔이 실리카질로 전화 시 SiO2의 생성과 동시에 NH3가 생성되는데, 이것이 이 반응에서 중량 손실의 주원인이 된다. 따라서, NH3의 생성량을 줄일 수 있다면 가열시의 수축을 감소시킬 수 있다.
상기 반응식 1에 나타나 있듯이, NH3는 수소화 폴리실록사잔에 포함된 질소로부터 기인하여 생성되기 때문에, 수소화 폴리실록사잔에 포함된 질소 원자의 몰(mol)양을 실리콘 원자의 몰 양에 대해 감소시키는 개질 방법으로서, Si-C 결합을 포함하지 않는 실란 화합물과 반응시킴으로써 실리콘 원자 몰 양에 대한 상대 질소 원자의 몰 양이 적은 개질 수소화 폴리실록사잔을 제조할 수 있으며, 이로써 실리카계 절연층 형성 시 막 수축률을 감소시킬 수 있다.
구체적으로, 상기 개질 수소화 폴리실록사잔은 실리콘 원자에 대한 질소 원자의 원자수의 비(N/Si)가 0.95이하, 바람직하게는 0.85 내지 0.95이다. 실리카질 전화 시 막 수축률은 가열 온도 등의 조건에 의해 영향을 받기는 하나, 개질 수소화 폴리실록사잔 중의 실리콘 원자에 대한 질소 원자의 몰비(N/Si)이 0.95 이하인 경우, 실리카질 막 수축을 현저하게 저감시킬 수 있다.
또한 상기 개질 수소화 폴리실록사잔은 산소함유량이 개질 수소화 폴리실록사잔 총 중량에 대하여 0.2 내지 3 중량%이다. 산소함유량이 상기 범위 내인 경우 구조 중의 규소-산소-규소(Si-O-Si) 결합에 의한 응력 완화가 충분하여 열처리 시 수축을 방지할 수 있으며 이에 따라 형성된 충전 패턴에 크랙이 발생하는 것을 방지하는데 유리할 수 있다.
상기 개질 수소화 폴리실록사잔은 하기 화학식 1 내지 3의 구조단위를 갖는다:
[화학식 1]
Figure PCTKR2013006291-appb-I000009
[화학식 2]
Figure PCTKR2013006291-appb-I000010
[화학식 3]
Figure PCTKR2013006291-appb-I000011
상기 화학식 1 내지 3에서, R1 및 R2는 각각 독립적으로 H, SiH3 및 NH2 로 이루어진 군에서 선택되고, 그리고 R3는 H 또는 SiH3이다.
상기 개질 수소화 폴리실록사잔은 중량 평균 분자량(Mw)이 약 1,000 내지 30,000일 수 있다. 중량 평균 분자량이 지나치게 작을 경우 폴리머 점도가 낮기 때문에 기판에 도포 시에 유동되거나 가열, 실리카질 전화 시에 저분자량 성분이 증발하기 때문에 균일한 막을 형성하기 어렵고, 중량 평균 분자량이 지나치게 큰 경우에는 겔화를 일으키기 쉽거나 요철(凹凸)이 있는 기판에 도포했을 때 폭이 좁은 트렌치(trench)에 갭 필(gap-fill) 하기가 어렵다. 개질 수소화 폴리실록사잔의 중량 평균 분자량이 상기 범위인 경우 겔화의 우려없이 균일한 실리카질 막 형성이 가능하다. 이러한 관점에서, 상기 개질 수소화 폴리실록사잔은 상기 범위 내에서 중량 평균 분자량(Mw)이 약 1500 내지 7000인 경우 더욱 좋다.
본 발명의 일 구현예에 따른 실리카계 절연층 형성용 조성물은 상기 개질 수소화 폴리실록사잔을 포함한다.
개질 수소화 폴리실록사잔은 앞서 설명한 바와 동일하다.
상기 개질 수소화 폴리실록사잔은 실리카계 절연층 형성용 조성물 총 함량에 대하여 0.1 내지 50 중량%로 포함될 수 있다. 상기 범위로 포함되는 경우 적절한 점도를 유지할 수 있으며 상기 개질 수소화 폴리실록사잔을 포함하는 실리카계 절연층 형성용 조성물로 갭 필시, 간극(void) 없이 평탄하고 고르게 실리카계 절연층을 형성할 수 있다.
상기 실리카계 절연층 형성용 조성물은 열산 발생제(thermal acid generator, TAG)를 더 포함할 수 있다.
상기 열산 발생제는 상기 개질 수소화 폴리실록사잔의 현상성을 개선하기 위한 첨가제로, 상기 개질 수소화 폴리실록사잔이 비교적 낮은 온도에서 현상될 수 있도록 한다.
열산 발생제는 열에 의해 산(H+)을 발생할 수 있는 화합물이면 특히 한정되지 않으나, 약 90℃ 이상에서 활성화되어 충분한 산을 발생하며 휘발성이 낮은 것을 선택할 수 있다. 이러한 열산 발생제는 예컨대 니트로벤질 토실레이트, 니트로벤질 벤젠술포네이트, 페놀 술포네이트 및 이들의 조합에서 선택될 수 있다.
열산 발생제는 실리카계 절연층 형성용 조성물의 총 함량에 대하여 0.01 내지 25중량%로 포함될 수 있으며, 상기 범위로 포함되는 경우 비교적 낮은 온도에서 개질 수소화 폴리실록사잔이 현상될 수 있는 동시에 코팅성을 개선할 수 있다.
상기 실리카계 절연층 형성용 조성물은 계면 활성제를 더 포함할 수 있다.
상기 계면 활성제는 특히 한정되지 않으며, 예컨대 폴리옥시에틸렌라우릴에테르, 폴리옥시에틸렌스테아릴에테르, 폴리옥시에틸렌세틸에테르, 폴리옥시에틸렌올레일에테르 등의 폴리옥시에틸렌알킬에테르류, 폴리옥시에틸렌노닐페놀에테르 등의 폴리옥시에틸렌알킬알릴에테르류, 폴리옥시에틸렌노닐페놀에테르 등의 폴리옥시에틸렌알킬알릴에테르류, 폴리옥시에틸렌 폴리옥시프로필렌 블록 코폴리머류, 솔비탄모노라우레이트, 솔비탄모노팔미테이트, 솔비탄모노스테아레이트, 솔비탄모노올레이에트, 폴리옥시에틸렌솔비탄모노스테아레이트, 폴리옥시에틸렌솔비탄트리올레이에이트, 폴리옥시에틸렌솔비탄트리스테아레이트 등의 폴리옥시에틸렌솔비탄지방산 에스테르 등의 비이온성 계면활성제,에프톱 EF301, EF303, EF352((주)토켐프로덕츠 제조), 메가팩 F171, F173(다이닛폰잉크(주) 제조), 프로라드 FC430, FC431(스미토모쓰리엠(주) 제조), 아사히가드 AG710, 샤프론 S-382, SC101, SC102, SC103, SC104, SC105, SC106(아사히가라스(주) 제조) 등의 불소계 계면활성제, 오르가노실록산폴리머 KP341(신에쯔카가쿠고교(주) 제조) 등과 기타 실리콘계 계면활성제를 들 수 있다.
상기 계면활성제는 실리카계 절연층 형성용 조성물의 총 함량에 대하여 약 0.001 내지 10 중량%로 포함될 수 있으며, 상기 범위로 포함되는 경우 용액의 분산성을 개선하는 동시에 막 형성 시 막 두께의 균일성 및 충전성을 높일 수 있다.
상기 실리카계 절연층 형성용 조성물은 개질 수소화 폴리실록사잔 및 상기 성분들이 용매에 용해된 용액 형태일 수 있다.
상기 용매는 상술한 성분들을 용해할 수 있는 화합물이면 특히 한정되지 않으며, 예컨대 메탄올, 에탄올 등의 알코올류; 디클로로에틸 에테르, 디-n-부틸 에테르, 디이소아밀 에테르, 메틸페닐 에테르, 테트라히드로퓨란 등의 에테르류; 에틸렌 글리콜 모노메틸에테르, 에틸렌 글리콜 모노에틸에테르 등의 글리콜 에테르류; 메틸 셀로솔브 아세테이트, 에틸 셀로솔브 아세테이트, 디에틸 셀로솔브 아세테이트 등의 셀로솔브 아세테이트류; 메틸에틸 카르비톨, 디에틸 카르비톨, 디에틸렌 글리콜 모노메틸에테르, 디에틸렌 글리콜 모노에틸에테르, 디에틸렌 글리콜 디메틸에테르, 디에틸렌 글리콜 메틸에틸에테르, 디에틸렌 글리콜 디에틸에테르 등의 카르비톨류; 프로필렌 글리콜 메틸에테르 아세테이트, 프로필렌 글리콜 프로필에테르 아세테이트 등의 프로필렌 글리콜 알킬에테르 아세테이트류; 톨루엔, 크실렌 등의 방향족 탄화 수소류; 메틸에틸케톤, 사이클로헥사논, 4-히드록시-4-메틸-2-펜타논, 메틸-n-프로필케톤, 메틸-n-부틸케톤, 메틸-n-아밀케톤, 2-헵타논 등의 케톤류; 초산 에틸, 초산-n-부틸, 초산 이소부틸 등의 포화 지방족 모노카르복실산 알킬 에스테르류; 젖산 메틸, 젖산 에틸 등의 젖산 에스테르류; 옥시 초산 메틸, 옥시 초산 에틸, 옥시 초산 부틸 등의 옥시 초산 알킬 에스테르류; 메톡시 초산 메틸, 메톡시 초산 에틸, 메톡시 초산 부틸, 에톡시 초산 메틸, 에톡시 초산 에틸 등의 알콕시 초산 알킬 에스테르류; 3-옥시 프로피온산 메틸, 3-옥시 프로피온산 에틸 등의 3-옥시 프로피온산 알킬에스테르류; 3-메톡시 프로피온산 메틸, 3-메톡시 프로피온산 에틸, 3-에톡시 프로피온산 에틸, 3-에톡시 프로피온산 메틸 등의 3-알콕시 프로피온산 알킬 에스테르류; 2-옥시 프로피온산 메틸, 2-옥시 프로피온산 에틸, 2-옥시 프로피온산 프로필 등의 2-옥시 프로피온산 알킬 에스테르류; 2-메톡시 프로피온산 메틸, 2-메톡시 프로피온산 에틸, 2-에톡시 프로피온산 에틸, 2-에톡시 프로피온산 메틸 등의 2-알콕시 프로피온산 알킬 에스테르류; 2-옥시-2-메틸 프로피온산 메틸, 2-옥시-2-메틸 프로피온산 에틸 등의 2-옥시-2-메틸 프로피온산 에스테르류, 2-메톡시-2-메틸 프로피온산 메틸, 2-에톡시-2-메틸 프로피온산 에틸 등의 2-알콕시-2-메틸 프로피온산 알킬류의 모노옥시 모노카르복실산 알킬 에스테르류; 2-히드록시 프로피온산 에틸, 2-히드록시-2-메틸 프로피온산 에틸, 히드록시 초산 에틸, 2-히드록시-3-메틸 부탄산 메틸 등의 에스테르류; 피루브산 에틸 등의 케톤산 에스테르류 등의 화합물이 있으며, 또한, N-메틸포름아미드, N,N-디메틸포름아미드, N-메틸포름아닐라드, N-메틸아세트아미드, N,N-디메틸아세트아미드, N-메틸피롤리돈, 디메틸술폭시드, 벤질에틸에테르, 디헥실에테르, 아세트닐아세톤, 이소포론, 카프론산, 카프릴산, 1-옥탄올, 1-노난올, 벤질알코올, 초산 벤질, 안식향산 에틸, 옥살산 디에틸, 말레인산 디에틸, 감마-부티로락톤, 탄산 에틸렌, 탄산 프로필렌, 페닐 셀로솔브 아세테이트 등의 고비점 용매를 첨가할 수도 있다. 이 중에서 디에틸렌글리콜모노메틸에테르, 디에틸렌글리콜디에틸에테르, 에틸-3-에톡시 프로피오네이트, 메틸-3-메톡시 프로피오네이트, 사이클로펜타논, 사이클로헥사논, 프로필렌글리콜모노메틸에테르아세테이트, 프로필렌글리콜디메틸에테르아세테이트, 1-메톡시-2-프로판올, 에틸 락테이트, 시클로펜타논 및 히드록시초산에틸에서 선택된 하나 이상을 선택할 수 있다.
특히 상기 용매들 중 적어도 하나는 높은 비점을 가지는 용매를 포함하는 것이 좋다. 이 경우 갭 충전 시 갭 내부에 보이드가 발생하는 것을 방지할 수 있고 용매가 천천히 휘발됨으로써 막의 평탄성을 높일 수 있다.
상기 용매는 실리카계 절연층 형성용 조성물의 총 함량에 대하여 상술한 성분을 제외한 잔부로 포함될 수 있다.
본 발명의 일 구현예에 따른 개질 수소화 폴리실록사잔을 포함하는 실리카계 절연층 형성용 조성물을 제조하는 방법은: 수소화 폴리실록사잔을 용매 중에서 실란 화합물과 가열 반응시키거나(제1 방법), 또는 용매 중에서 할로실란 화합물을 실란 화합물과 혼합 후 공가암모니아 분해(coammonolysis)시키는 단계(제2 방법)를 포함한다.
먼저 제1 방법으로서 수소화 폴리실록사잔을 용매 중에서 실란 화합물과 가열 반응시키면 수소화 폴리실록사잔의 N-H기와 폴리실란의 Si-H기가 탈수소 결합하여 개질 수소화 폴리실록사잔이 제조된다.
이때 상기 수소화 폴리실록사잔으로는 통상의 제조방법에 의해 제조된 것을 사용할 수 있으며, 구체적으로는 할로실란 화합물을 1종 이상 조합하여 공가암모니아 분해(coammonolysis) 시킴으로써 수득될 수 있다.
구체적으로 상기 할로실란 화합물로는 디클로로실란, 트리클로로실란, 테트라클로로실란 및 이들의 혼합물 등을 사용할 수 있다.
상기 수소화 폴리실록사잔은 이후 폴리실란과의 반응 시 폴리실란의 부가 및 가교에 의한 고분자량화가 일어나기 때문에, 500 내지 15,000 이하의 중량 평균 분자량을 갖는 것을 사용하는 것이 바람직하다.
상기 실란 화합물로는 폴리실란, 폴리사이클로실란, 실란 올리고머로 이루어진 군에서 선택되는 것을 사용할 수 있으며, 상기 실란 화합물은 사슬형, 가지형, 고리형 또는 3차원 가교형의 구조를 가질 수 있다.
바람직하게는 상기 실란 화합물로 하기 화학식 4의 구조를 갖는 것을 사용할 수 있다.
[화학식 4]
Figure PCTKR2013006291-appb-I000012
상기 화학식 4에서,
R1 및 R2는 각각 독립적으로 H, SiH3, NH2, Cl, Br 및 I로 이루어진 군에서 선택되고, 그리고
R3 및 R4는 각각 독립적으로 H, SiH3, NH2, Cl, Br 및 I로 이루어진 군에서 선택되거나, 또는 서로 연결되어 고리를 형성할 수 있으며,
a는 1 내지 30의 정수이다.
구체적으로, 상기 실란 화합물로는 시클로펜타실란(cyclopentasilane)일 수 있다.
상기 실란 화합물은 수소화 폴리실록사잔 100중량부에 대하여 5 내지 40중량부로 사용되는 것이 바람직하다. 상기 범위로 사용될 때 실리카막으로 습식 가열 전화 시에 수축이 적은 개질 수소화 폴리실록사잔을 제조할 수 있다.
상기 용매로는 자일렌 등의 방향족 탄화수소계 유기용매를 사용할 수 있으며, 피리딘 등의 염기성 물질을 추가 함으로써 반응 속도를 증가시킬 수 있다. 또한, 용매 중에 수분이나 알코올류 등이 존재하는 경우 가수분해(hydrolysis)나 알콕시기의 부가반응이 일어나 목적으로 하는 수소화 폴리실록사잔의 개질에 악영향을 미칠 우려가 있으므로, 사용 전 용매를 충분히 탈수 및 정제하여 사용하는 것이 바람직하다.
상기 반응은 0℃ 이상 200℃ 이하에서 수행되는 것이 바람직하고, 반응속도 및 제어성의 관점에서 40℃ 이상 120℃ 이하에서 수행되는 것이 보다 바람직하다.
반응 전후에 폴리실란, 폴리사이클로실란 및 실란 올리고머로 이루어진 군에서 선택되는 실란 화합물과의 부가반응 및 가교반응으로 인해 분자량이 상승한다. 또한 상기 반응은 수소화 폴리실록사잔의 N-H기와 폴리실란의 Si-H기가 탈수소 결합함으로써 일어나기 때문에 수소 가스 등의 생성에 의한 압력상승이 일어난다. 따라서, 반응 시의 압력 상승을 제어하는 것이 바람직하다.
개질 수소화 폴리실록사잔을 제조하기 위한 또 다른 방법으로 제2방법은 피리딘과 물의 혼합물에 할로실란 화합물과 실란 화합물을 혼합한 후 암모니아를 주입하면서 공가암모니아 분해(coammonolysis)시킴으로써 개질 수소화 폴리실록사잔을 제조할 수 있다.
상기 할로실란 화합물 및 실란화합물로는 앞서 제1 방법에서 설명한 것과 동일한 것을 사용할 수 있다.
상기 제1 방법 또는 제2 방법에 의해 제조된 개질 수소화 폴리실록사잔은 용액 중에 고형분 상태로 수득되는데, 이를 추가의 공정을 통해 여과, 분리하여 사용할 수도 있고, 또는 개질 수소화 폴리실록사잔 고형분을 포함하는 용액 그대로 사용할 수도 있다.
본 발명의 일 구현예에 따른 개질 수소화 폴리실록사잔을 포함하는 실리카계 절연층 형성용 조성물을 제조하는 방법은, 상기 개질 수소화 폴리실록사잔 포함 용액 중에 존재하는 용매를 비극성 용매로 치환하는 공정을 선택적으로 더 실시할 수 있다.
상기 비극성 용매로는 디-n-부틸에테르, 자일렌 등을 사용할 수 있다.
용매의 치환 공정은 통상의 방법으로 실시할 수 있으며, 구체적으로는 상기 개질 수소화 폴리실록사잔 포함 용액 중에 건조 디-n-부틸에테르 또는 건조 자일렌 등의 건조상의 비극성 용매를 첨가한 후 로터리 이베포레이터를 사용하여 피리딘을 증발시킴으로써 실시될 수 있다.
본 발명의 또 다른 구현예에 따른 실리카계 절연층은 전술한 본 발명의 구현예 중 어느 하나의 실리카계 절연층 형성용 조성물을 이용하여 제조될 수 있다.
상기 실리카계 절연층은 그 제조방법이 특별히 한정되지 않으며, 통상의 방법에 따라 형성될 수 있다.
구체적으로, 반도체, 액정 등의 디바이스 기판에 전술한 실리카계 절연층 형성용 조성물을 도포하는 단계; 상기 실리카계 절연층 형성용 조성물을 도포된 기판을 50℃ 내지 200℃의 온도에서 소프트 베이크하는 단계; 및 상기 소프트 베이크된 기판을 200℃ 내지 1,000℃의 온도에서, 산소 또는 0.1 kPa 이상의 수증기를 포함한 분위기 중에서 가열하는 단계를 포함하는 제조 공정을 수행하여 실리카계 절연층을 형성할 수 있다.
상기 기판에 대한 도포방법은 특별히 한정하는 것은 아니지만, 스핀코트법, 슬릿코트법 등을 이용할 수 있다.
상기 소프트 베이크 공정은 개질 수소화 폴리실록사잔 박막 중에 포함된 용매를 제거하기 위한 것으로, 50℃ 내지 200℃의 온도에서, 5초 내지 10분의 시간동안 수행하는 것이 바람직하다. 온도가 지나치게 낮을 경우 용매의 제거가 불충분할 우려가 있고, 온도가 지나치게 높을 경우 산화반응이 진행되어 그 후의 가열에 의한 제어가 어려울 수 있으므로, 상기 온도 범위에서 실시하는 것이 바람직하다. 또한 반응 시간이 지나치게 짧을 경우 반응 제어가 어렵고, 반응 시간이 지나치게 길면 산화반응이 진행되거나 많은 기재를 처리할 경우 프로세스 시간이 너무 걸려서 실용적이지 않으므로, 상기 범위내의 시간 동안 수행하는 것이 바람직하다.
또한 상기 소프트 베이크 공정시 분위기는 질소, 산소, 또는 수증기를 포함한 대기 중 어느 것이라도 상관 없다.
상기 가열 공정은 개질 수소화 폴리실록사잔 박막을 실리카질로 전화시키기 위한 것으로, 200℃ 내지 1,000℃의 온도에서, 1분 내지 3시간 동안 수행하는 것이 바람직하다. 반응 온도가 지나치게 낮으면 개질 수소화 폴리실록사잔의 실리카질 전화가 불충분할 우려가 있고, 반응 온도가 지나치게 높으면 기재에 대한 산화 데미지 등의 발생 우려가 있기 때문에 상기 온도 범위에서 수행하는 것이 바람직하다. 또한 가열 시간이 지나치게 짧으면 큐어 로(cure furnace) 등에서의 온도, 분위기 가스 제어가 어렵고, 가열 시간이 지나치게 길면 기재에 대한 산화 데미지 등이 발생할 우려가 있고, 또한 많은 기재를 처리하는 경우에는 프로세스 시간이 길어져 실용적이지 않기 때문에 상기 가열 시간 동안 실시하는 것이 바람직하다. 또한 상기 가열 공정시 포함되는 수증기는 0.1 kPa 내지 20 kPa의 수증기 분압을 가질 수 있다.
또한, 가열 공정 시 분위기는 산소 및 수증기 중 어느 하나를 포함하는 것이 바람직하며, 질소나 아르곤가스 등의 불활성가스로 희석해도 상관없다.
개질 수소화 폴리실록사잔의 산화에는 본질적으로 산화성 가스가 필요하며, 불활성 가스만으로는 실리카질 전화가 불가능하기 때문이다.
상기와 같은 방법에 의해 제조된 실리카계 절연층은 N/Si 비가 낮은 개질 수소화 폴리실록사잔을 포함하여 현저히 감소된 막 수축률을 나타낸다.
이하, 본 발명의 바람직한 실시예를 기재한다. 다만, 하기의 실시예는 본 발명의 바람직한 일 실시예일 뿐, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.
비교예 1
교반기 및 온도제어장치가 부착된 용량 2L의 반응기 내부를 건조질소로 치환하였다. 그리고 건조피리딘 1,500g에 순수 2.0g을 주입하여 충분히 혼합한 후에 상기 반응기에 넣고 5℃로 보온하였다. 이어서 디클로로실란 100g을 1시간에 걸쳐서 상기 반응기 내에 서서히 주입하고, 반응기를 교반하면서 여기에 암모니아 70g을 3시간에 걸쳐서 서서히 주입하였다. 다음으로 건조 질소를 30분간 주입한 후 반응기 내에 잔존하는 암모니아를 제거하고, 결과로 수득된 백색의 슬러리상의 생성물을 건조질소 분위기 중에서 1㎛의 테프론제 여과기를 사용하여 여과하였다. 결과로 수득된 여액 1,000g에 건조 디-n-부틸에테르 1,000g을 첨가한 후, 로터리 이베포레이터를 사용하여 용매를 피리딘에서 디-n-부틸에테르로 치환하는 동시에 고형분 농도를 20중량%로 조정하고, 마지막으로 포어 사이즈 0.03㎛의 테프론제 여과기로 여과하여 수소화 폴리실록사잔을 수득하였다.
상기 수소화 폴리실록사잔의 중량 평균 분자량은 2,000이었으며, N/Si 값은 0.98이었다.
또한 상기 수소화 폴리실록사잔을 스핀코터로 1,500rpm, 20초간, 실리콘 웨이퍼에 도포하고, 핫플레이트에서 100℃, 5분간 건조시키고 이어서 온도 750℃, 수증기분압 5kPa을 포함하는 산소 분위기 중에서 1시간 가열하였다.
가열 전후의 막두께 수축률을 측정한 결과 막두께 수축률은 22.5%이었다.
비교예 2
교반기 및 온도제어장치가 부착된 용량 2L의 반응기 내부를 건조질소로 치환하였다. 그리고 건조피리딘 1,500g에 순수 2.0g을 주입하여 충분히 혼합한 후에 상기 반응기에 넣고 20℃로 보온하였다. 이어서 디클로로실란 100g을 1시간에 걸쳐서 상기 반응기 내에 서서히 주입하고, 반응기를 교반하면서 여기에 암모니아 70g을 3시간에 걸쳐서 서서히 주입하였다. 다음으로 건조 질소를 30분간 주입하여 반응기 내에 잔존하는 암모니아를 제거하고, 결과로 수득된 얻어진 백색 슬러리상의 생성물을 건조질소 분위기 중에서 1㎛의 테프론제 여과기를 사용하여 여과하였다. 결과로 수득된 여액 1,000g에 건조자일렌 1,000g을 첨가한 후, 로터리 이베포레이터를 사용하여 용매를 피리딘에서 자일렌으로 치환하는 조작을 총3회 반복하면서 고형분 농도를 20중량%로 조정하고, 마지막으로 포어 사이즈 0.03㎛의 테프론제 여과기로 여과하여 퍼하이드로폴리실록사잔을 수득하였다.
상기 퍼하이드로폴리실록사잔의 중량 평균 분자량은 3,500이었다.
또한 상기 퍼하이드로폴리실록사잔을 스핀코터로 패턴이 새겨진 기판에 도포한 후 100℃의 핫플레이트에서 건조시키고, 이어서 온도 750℃, 수증기분압 5kPa를 포함한 산소 분위기 중에서 1시간 가열하였다.
가열 전후의 막두께 수축률을 측정한 결과, 막두께 수축률은 16.9%이었으며, N/Si 값은 0.97이었다.
실시예 1
교반기 및 온도제어장치가 부착된 용량 1L의 반응기 내부를 건조질소로 치환하였다. 상기 반응기에 상기 비교예1에서 얻어진 수소화 폴리실록사잔 20중량%를 포함하는 디-n-부틸에테르 용액 100g, 시클로펜타실란 2.0g, 및 건조피리딘 300g을 주입하고 반응기 내를 건조질소로 치환하였다. 이어서 오일베스를 이용하여 반응기를 서서히 가열하여 온도 100℃에서 5시간 유지한 후, 실온까지 냉각시켰다. 로터리 이베포레이터를 사용하여 건조 디-n-부틸에테르 1,000g를 첨가하면서 용매 중의 피리딘을 디-n-부틸에테르로 치환하는 동시에 고형분 농도를 20중량%로 조정하고, 마지막으로 포어 사이즈 0.03㎛의 테프론제 여과기로 여과하여 개질 수소화 폴리실록사잔 용액을 수득하였다.
상기 개질 수소화 폴리실록사잔 용액의 폴리스티렌 환산 중량 평균 분자량은 3,500이었으며, N/Si 값은 0.93이었다.
또한 상기 개질 수소화 폴리실록사잔 용액을 스핀코터로 1,500rpm, 20초간, 실리콘 웨이퍼에 도포하고, 핫플레이트에서 100℃, 5분간 건조시키고 이어서 온도 750℃, 수증기분압 5kPa을 포함하는 산소 분위기 중에서 1시간 가열하였다.
가열 전후의 막두께 수축률을 측정한 결과, 막두께 수축률은 15.7%이었다.
실시예 2
교반기 및 온도제어장치가 부착된 용량 1L의 반응기 내부를 건조질소로 치환하였다. 상기 반응기에 상기 비교예 1에서 얻어진 수소화 폴리실록사잔 20중량%를 포함하는 디-n-부틸에테르 용액 100g, 시클로펜타실란 4.0g, 및 건조피리딘 300g을 주입하고 반응기 내를 건조질소로 치환하였다. 이어서 오일베스를 이용하여 반응기를 서서히 가열하여 온도 100℃에서 5시간 유지한 후, 실온까지 냉각시켰다. 로터리 이베포레이터를 사용하여 건조 디-n-부틸에테르 1,000g를 첨가하면서 용매 중의 피리딘을 디-n-부틸에테르로 치환하는 동시에 고형분 농도를 20%로 조정하고, 마지막으로 포어 사이즈 0.03㎛의 테프론제 여과기로 여과하여 개질 수소화 폴리실록사잔 용액을 수득하였다.
상기 개질 수소화 폴리실록사잔 용액의 폴리스티렌 환산 중량 평균 분자량은 3,500이었으며, N/Si 값은 0.92이었다.
또한 상기 개질 수소화 폴리실록사잔 용액을 스핀코터로 1,500rpm, 20초간, 실리콘 웨이퍼에 도포하고, 핫플레이트에서 100℃, 5분간 건조시키고 이어서 온도 750℃, 수증기분압 5kPa을 포함하는 산소 분위기 중에서 1시간 가열하였다.
가열 전후의 막두께 수축률을 측정한 결과, 막두께 수축률은 14.4%이었다.
실시예 3
교반기 및 온도제어장치가 부착된 용량 1L의 반응기 내부를 건조질소로 치환하였다. 상기 반응기에 상기 비교예 1에서 얻어진 수소화 폴리실록사잔 20 중량%를 포함하는 디-n-부틸에테르 용액 100g, 시클로펜타실란 6.0g, 및 건조피리딘 300g을 주입하고 용기 내를 건조질소로 치환하였다. 이어서 오일베스를 이용하여 반응기를 서서히 가열하여 온도 100℃에서 5시간 유지한 후, 실온까지 냉각시켰다. 로터리 이베포레이터를 사용하여 건조 디-n-부틸에테르 1,000g를 첨가하면서 용매 중의 피리딘을 디-n-부틸에테르로 치환하는 동시에 고형분 농도를 20%로 조정하고, 마지막으로 포어 사이즈 0.03㎛의 테프론제 여과기로 여과하여, 개질 수소화 폴리실록사잔 용액을 수득하였다.
상기 개질 수소화 폴리실록사잔 용액의 폴리스티렌 환산 중량 평균 분자량은 3,500이었으며, N/Si 값은 0.91이었다.
또한 상기 개질 수소화 폴리실록사잔 용액을 스핀코터로 1,500rpm, 20초간, 실리콘 웨이퍼에 도포하고, 핫플레이트에서 100℃, 5분간 건조시키고 이어서 온도 500℃, 수증기분압 5kPa을 포함하는 산소 분위기 중에서 1시간 가열했다.
가열 전후의 막두께 수축률을 측정한 결과, 막두께 수축률은 13.8%이었다.
비교예 2와 실시예 1, 2 및 3을 비교해 보면, 같은 수준의 중량평균 분자량을 갖는 폴리실록사잔 대비 개질 폴리실록사잔의 막 두께 수축률이 감소되었다.
상기 실시예 및 비교예에서 사용한 분석 및 평가장치는 다음과 같다.
- 중량 평균 분자량:
Waters사 제조 GPC; HPLC Pump 1515, RI Detector 2414
Shodex사 제조 Column; KF801, KF802, KF803
폴리스티렌 표준 폴리머에 의해 교정
- N/Si: XPS; JPS-9010(JEOL社 제조)를 이용하여 측정
- 막두께 수축률: 반사분광막두께계(ST-4000, K-MAC사제)를 사용하여 수증기 분위기 중에서의 가열전후의 막두께를 측정한 후(가열전: T1, 가열후: T2), 하기 수학식 1에 따라 수축률을 산출하였다.
[수학식 1]
(T1-T2)/T1 x 100 (%)
본 발명의 단순한 변형 또는 변경은 모두 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.

Claims (19)

  1. 수소화 폴리실록사잔에 폴리실란, 폴리사이클로실란 및 실란 올리고머로 이루어진 군에서 선택되는 실란 화합물을 반응시켜 제조되는 개질 수소화 폴리실록사잔.
  2. 제1항에 있어서,
    상기 개질 수소화 폴리실록사잔은 실리콘 원자에 대한 질소 원자의 원자수의 비(N/Si)가 0.95 이하인 개질 수소화 폴리실록사잔.
  3. 제1항에 있어서,
    하기 화학식 1 내지 3의 구조단위를 가지는 개질 수소화 폴리실록사잔:
    [화학식 1]
    Figure PCTKR2013006291-appb-I000013
    [화학식 2]
    Figure PCTKR2013006291-appb-I000014
    [화학식 3]
    Figure PCTKR2013006291-appb-I000015
    상기 화학식 1 내지 3에서, R1 및 R2는 각각 독립적으로 H, SiH3 및 NH2 로 이루어진 군에서 선택되고, 그리고 R3는 H 또는 SiH3이다.
  4. 제1항에 있어서,
    상기 개질 수소화 폴리실록사잔은 개질 수소화 폴리실록사잔 총 중량에 대하여 0.2 내지 3중량%의 산소함유량을 가지는 개질 수소화 폴리실록사잔.
  5. 제1항에 있어서,
    상기 개질 수소화 폴리실록사잔은 1000 내지 30000의 중량 평균 분자량을 가지는 개질 수소화 폴리실록사잔.
  6. 수소화 폴리실록사잔에 폴리실란, 폴리사이클로실란 및 실란 올리고머로 이루어진 군에서 선택되는 실란 화합물을 반응시켜 제조되는 개질 수소화 폴리실록사잔을 포함하는 실리카계 절연층 형성용 조성물.
  7. 제6항에 있어서,
    상기 개질 수소화 폴리실록사잔은 실리콘 원자에 대한 질소 원자의 원자수의 비(N/Si)가 0.95 이하인 실리카계 절연층 형성용 조성물.
  8. 제6항에 있어서,
    상기 개질 수소화 폴리실록사잔은 하기 화학식 1 내지 3의 구조단위를 가지는 실리카계 절연층 형성용 조성물:
    [화학식 1]
    Figure PCTKR2013006291-appb-I000016
    [화학식 2]
    Figure PCTKR2013006291-appb-I000017
    [화학식 3]
    Figure PCTKR2013006291-appb-I000018
    상기 화학식 1 내지 3에서, R1 및 R2는 각각 독립적으로 H, SiH3 및 NH2 로 이루어진 군에서 선택되고, 그리고 R3는 H 또는 SiH3이다.
  9. 제6항에 있어서,
    상기 개질 수소화 폴리실록사잔은 개질 수소화 폴리실록사잔 총 중량에 대하여 0.2 내지 3중량%의 산소함유량을 가지는 실리카계 절연층 형성용 조성물.
  10. 제6항에 있어서,
    상기 개질 수소화 폴리실록사잔은 1000 내지 30000의 중량 평균 분자량을 가지는 실리카계 절연층 형성용 조성물.
  11. 제6항에 있어서,
    상기 개질 수소화 폴리실록사잔의 함량이 개질 수소화 폴리실록사잔 총 중량에 대하여 0.1 내지 50 중량%인 실리카계 절연층 형성용 조성물.
  12. 수소화 폴리실록사잔을 용매 중에서 실란 화합물과 가열 반응시키거나, 또는 피리딘과 물의 혼합물에 할로실란 화합물 및 실란 화합물을 첨가한 후 공가암모니아분해(coammonolysis)시켜 개질 수소화 폴리실록사잔을 합성하여 개질 수소화 폴리실록사잔 용액을 제조하는 단계를 포함하며,
    상기 실란 화합물은 폴리실란, 폴리사이클로실란, 실란 올리고머로 이루어진 군에서 선택되는 실리카계 절연층 형성용 조성물의 제조방법.
  13. 제12항에 있어서,
    상기 할로실란 화합물은 디클로로실란, 트리클로로실란, 테트라클로로실란 및 이들의 혼합물로 이루어진 군에서 선택되는, 실리카계 절연층 형성용 조성물의 제조방법.
  14. 제12항에 있어서,
    상기 실란 화합물은 하기 화학식 4의 구조를 가지는 실리카계 절연층 형성용 조성물의 제조방법:
    [화학식 4]
    Figure PCTKR2013006291-appb-I000019
    상기 화학식 4에서,
    R1 및 R2는 각각 독립적으로 H, SiH3, NH2, Cl, Br 및 I로 이루어진 군에서 선택되고, 그리고
    R3 및 R4는 각각 독립적으로 H, SiH3, NH2, Cl, Br 및 I로 이루어진 군에서 선택되거나, 또는 서로 연결되어 고리를 형성할 수 있으며,
    a는 1 내지 30의 정수이다.
  15. 제12항에 있어서,
    상기 실란 화합물은 시클로펜타실란(cyclopentasilane)인 실리카계 절연층 형성용 조성물의 제조방법.
  16. 제12항에 있어서,
    상기 개질 수소화 폴리실록사잔 용액의 용매를 비극성 용매로 치환하는 단계를 더 포함하는 실리카계 절연층 형성용 조성물의 제조방법.
  17. 제12항에 있어서,
    상기 비극성 용매는 자일렌 또는 n-부틸에테르인 실리카계 절연층 형성용 조성물의 제조방법.
  18. 제6항 내지 제11항 중 어느 한 항의 실리카계 절연층 형성용 조성물을 이용하여 제조되는 실리카계 절연층.
  19. 기판에 제6항 내지 제11항 중 어느 한 항의 실리카계 절연층 형성용 조성물을 도포하는 단계;
    상기 실리카계 절연층 형성용 조성물을 도포된 기판을 50℃ 이상 200℃ 이하의 온도에서 소프트 베이크하는 단계; 및
    상기 소프트 베이크된 기판을 200℃ 이상 1,000℃ 이하의 온도에서, 산소 또는 0.1 kPa 이상의 수증기를 포함한 분위기 중에서 가열하는 단계
    를 포함하는 실리카계 절연층 제조방법.
PCT/KR2013/006291 2012-12-31 2013-07-15 개질 수소화 폴리실록사잔, 이를 포함하는 실리카계 절연층 형성용 조성물, 실리카계 절연층 형성용 조성물의 제조방법, 실리카계 절연층 및 실리카계 절연층의 제조방법 WO2014104510A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380049625.0A CN104684968B (zh) 2012-12-31 2013-07-15 改质氢化聚硅氧氮烷、组合物及其制法、绝缘层及其制法
US14/429,512 US9890255B2 (en) 2012-12-31 2013-07-15 Modified hydrogenated polysiloxazane, composition comprising same for forming silica-based insulation layer, method for preparing composition for forming

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0158166 2012-12-31
KR20120158166 2012-12-31

Publications (1)

Publication Number Publication Date
WO2014104510A1 true WO2014104510A1 (ko) 2014-07-03

Family

ID=51021535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/006291 WO2014104510A1 (ko) 2012-12-31 2013-07-15 개질 수소화 폴리실록사잔, 이를 포함하는 실리카계 절연층 형성용 조성물, 실리카계 절연층 형성용 조성물의 제조방법, 실리카계 절연층 및 실리카계 절연층의 제조방법

Country Status (5)

Country Link
US (1) US9890255B2 (ko)
KR (1) KR101767083B1 (ko)
CN (1) CN104684968B (ko)
TW (1) TWI503374B (ko)
WO (1) WO2014104510A1 (ko)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10020185B2 (en) 2014-10-07 2018-07-10 Samsung Sdi Co., Ltd. Composition for forming silica layer, silica layer, and electronic device
KR101837971B1 (ko) * 2014-12-19 2018-03-13 삼성에스디아이 주식회사 실리카계 막 형성용 조성물, 실리카계 막, 및 전자 디바이스
KR101833800B1 (ko) 2014-12-19 2018-03-02 삼성에스디아이 주식회사 실리카계 막 형성용 조성물, 실리카계 막의 제조방법 및 상기 실리카계 막을 포함하는 전자 소자
KR20170014946A (ko) 2015-07-31 2017-02-08 삼성에스디아이 주식회사 실리카 막 형성용 조성물, 실리카 막의 제조방법 및 실리카 막
TWI785070B (zh) 2017-07-31 2022-12-01 美商陶氏有機矽公司 聚矽氧樹脂、相關方法、以及由其形成的膜
JP2019210370A (ja) * 2018-06-04 2019-12-12 メルク、パテント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングMerck Patent GmbH ポリシラン骨格を有するブロックとポリシラザン骨格を有するブロックとを含んでなるブロックコポリマー
JP2020083728A (ja) * 2018-11-29 2020-06-04 メルク、パテント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングMerck Patent GmbH ブロックコポリマーを含んでなるアモルファスシリコン形成組成物、およびそれを用いたアモルファスシリコン膜の製造方法
JP2020082013A (ja) * 2018-11-29 2020-06-04 メルク、パテント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングMerck Patent GmbH アモルファスシリコン犠牲膜の製造方法およびアモルファスシリコン形成組成物
JP2020102525A (ja) * 2018-12-21 2020-07-02 メルク、パテント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングMerck Patent GmbH ブロックコポリマーを含んでなるシリカ質膜形成組成物、およびそれを用いたシリカ質膜の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100600630B1 (ko) * 1998-04-24 2006-07-13 쇼쿠바이가세고교 가부시키가이샤 저유전율 실리카계 피막 형성용 도포액 및 저유전율피막으로 도포된 기재
US20080305611A1 (en) * 2007-06-07 2008-12-11 Elpida Memory, Inc. Coating composition for forming oxide film and method for producing semiconductor device using the same
KR20110062158A (ko) * 2009-12-02 2011-06-10 제일모직주식회사 갭필용 충전제 및 상기 충전제를 사용한 반도체 캐패시터의 제조 방법
KR20120080383A (ko) * 2011-01-07 2012-07-17 제일모직주식회사 실리카계 절연층 형성용 조성물, 실리카계 절연층 형성용 조성물의 제조방법, 실리카계 절연층 및 실리카계 절연층의 제조방법

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0618885B2 (ja) * 1986-02-12 1994-03-16 東燃株式会社 ポリシロキサザンおよびその製法
FR2625211A1 (fr) 1987-12-28 1989-06-30 Atochem Polysiloxazanes, leur procede de preparation, leur utilisation comme precurseurs de ceramiques et lesdites ceramiques
KR890012910A (ko) 1988-02-29 1989-09-20 원본미기재 질화 실리콘 기재의 세라믹으로 형성된 성형품 및 그의 제조방법
JP3516815B2 (ja) 1996-08-06 2004-04-05 触媒化成工業株式会社 シリカ系被膜形成用塗布液および被膜付基材
JP3883641B2 (ja) 1997-03-27 2007-02-21 株式会社半導体エネルギー研究所 コンタクト構造およびアクティブマトリクス型表示装置
JPWO2008029834A1 (ja) 2006-09-08 2010-01-21 Azエレクトロニックマテリアルズ株式会社 シリカ質膜形成用組成物およびそれを用いたシリカ質膜の製造法
KR20110012574A (ko) * 2009-07-31 2011-02-09 (주)디엔에프 아미노실란을 포함하는 폴리실라잔 조성물
WO2011053551A1 (en) 2009-10-28 2011-05-05 Dow Corning Corporation Polysilane - polysilazane copolymers and methods for their preparation and use
KR101443758B1 (ko) 2010-12-22 2014-09-26 제일모직주식회사 실리카층 형성용 조성물, 그 제조방법, 이를 이용한 실리카층 및 실리카층 제조방법
US9082612B2 (en) * 2010-12-22 2015-07-14 Cheil Industries, Inc. Composition for forming a silica layer, method of manufacturing the composition, silica layer prepared using the composition, and method of manufacturing the silica layer
KR101432606B1 (ko) * 2011-07-15 2014-08-21 제일모직주식회사 갭필용 충전제, 이의 제조 방법 및 이를 사용한 반도체 캐패시터의 제조 방법
JP6018885B2 (ja) * 2012-11-16 2016-11-02 信越ポリマー株式会社 導電パターン形成基板および静電容量式センサーシート並びにその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100600630B1 (ko) * 1998-04-24 2006-07-13 쇼쿠바이가세고교 가부시키가이샤 저유전율 실리카계 피막 형성용 도포액 및 저유전율피막으로 도포된 기재
US20080305611A1 (en) * 2007-06-07 2008-12-11 Elpida Memory, Inc. Coating composition for forming oxide film and method for producing semiconductor device using the same
KR20110062158A (ko) * 2009-12-02 2011-06-10 제일모직주식회사 갭필용 충전제 및 상기 충전제를 사용한 반도체 캐패시터의 제조 방법
KR20120080383A (ko) * 2011-01-07 2012-07-17 제일모직주식회사 실리카계 절연층 형성용 조성물, 실리카계 절연층 형성용 조성물의 제조방법, 실리카계 절연층 및 실리카계 절연층의 제조방법

Also Published As

Publication number Publication date
KR20140087998A (ko) 2014-07-09
CN104684968A (zh) 2015-06-03
CN104684968B (zh) 2017-06-13
US20150225508A1 (en) 2015-08-13
US9890255B2 (en) 2018-02-13
TWI503374B (zh) 2015-10-11
TW201425481A (zh) 2014-07-01
KR101767083B1 (ko) 2017-08-10

Similar Documents

Publication Publication Date Title
WO2014104510A1 (ko) 개질 수소화 폴리실록사잔, 이를 포함하는 실리카계 절연층 형성용 조성물, 실리카계 절연층 형성용 조성물의 제조방법, 실리카계 절연층 및 실리카계 절연층의 제조방법
WO2014104528A1 (ko) 실리카계 절연층 형성용 조성물, 실리카계 절연층 형성용 조성물의 제조방법, 실리카계 절연층 및 실리카계 절연층의 제조방법
KR101387740B1 (ko) 실리카계 절연층 형성용 조성물, 실리카계 절연층 형성용 조성물의 제조방법, 실리카계 절연층 및 실리카계 절연층의 제조방법
US20070178319A1 (en) Composition for forming porous film, porous film and method for forming the same, interlevel insulator film, and semiconductor device
JP6816946B2 (ja) シリカ系膜形成用組成物、シリカ系膜の製造方法および前記シリカ系膜を含む電子素子
US20060220253A1 (en) Porous film, composition and manufacturing method, interlayer dielectric film, and semiconductor device
KR20130009509A (ko) 갭필용 충전제, 이의 제조 방법 및 이를 사용한 반도체 캐패시터의 제조 방법
CN106409652A (zh) 用于形成氧化硅层的组合物、制造氧化硅层的方法、氧化硅层及电子装置
KR20140087908A (ko) 중합체 제조 방법 및 실리카계 절연막 형성용 조성물
KR20120071311A (ko) 실리카층 형성용 조성물, 그 제조방법, 이를 이용한 실리카층 및 실리카층 제조방법
KR101599952B1 (ko) 중합체 제조 방법 및 실리카계 절연막 형성용 조성물
CN105720041A (zh) 用于形成二氧化硅类层的组成物、二氧化硅类层及电子装置
JP2004292643A (ja) 多孔質膜形成用組成物、多孔質膜の製造方法、多孔質膜、層間絶縁膜、及び半導体装置
KR100512293B1 (ko) 실세스퀴옥산 또는 실록산 수지와 실리콘 용매로된 안정한 용액
KR20150039084A (ko) 실리카계 막 형성용 조성물, 실리카계 막 및 실리카계 막의 제조방법
TWI783248B (zh) 用於形成二氧化矽層的組成物、二氧化矽層和電子裝置
KR20150019949A (ko) 절연막의 제조방법
KR101868430B1 (ko) 실리카 막 형성용 조성물, 실리카 막의 제조방법 및 실리카 막
JP2004269692A (ja) 多孔質膜形成用組成物、多孔質膜の製造方法、多孔質膜、層間絶縁膜、及び半導体装置
WO2019074167A1 (ko) 실리카 막 형성용 조성물, 실리카 막의 제조방법 및 실리카 막
KR20150017972A (ko) 실리카계 절연층 형성용 조성물, 실리카계 절연층 및 실리카계 절연층의 제조방법
WO2015026194A1 (ko) 신규한 중합체 및 이를 포함하는 조성물
WO2018226016A1 (ko) 높은 식각비를 갖는 유기 반사 방지막 형성용 조성물
WO2011078483A2 (ko) 미세 갭필용 중합체, 이를 포함하는 미세 갭필용 조성물, 및 이를 이용한 반도체 집적회로 디바이스의 제조방법
JP4139711B2 (ja) 多孔質膜形成用組成物、多孔質膜の製造方法、多孔質膜、層間絶縁膜、及び半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13868474

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14429512

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13868474

Country of ref document: EP

Kind code of ref document: A1