WO2024004962A1 - 化合物、屈折率向上剤及び重合体 - Google Patents

化合物、屈折率向上剤及び重合体 Download PDF

Info

Publication number
WO2024004962A1
WO2024004962A1 PCT/JP2023/023674 JP2023023674W WO2024004962A1 WO 2024004962 A1 WO2024004962 A1 WO 2024004962A1 JP 2023023674 W JP2023023674 W JP 2023023674W WO 2024004962 A1 WO2024004962 A1 WO 2024004962A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
chemical formula
salt
refractive index
Prior art date
Application number
PCT/JP2023/023674
Other languages
English (en)
French (fr)
Inventor
直城 小宮
Original Assignee
三光株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三光株式会社 filed Critical 三光株式会社
Priority to JP2023571960A priority Critical patent/JP7557909B2/ja
Publication of WO2024004962A1 publication Critical patent/WO2024004962A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/20Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
    • C07C43/215Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring having unsaturation outside the six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/20Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
    • C07C43/23Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring containing hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/52Esters of acyclic unsaturated carboxylic acids having the esterified carboxyl group bound to an acyclic carbon atom
    • C07C69/533Monocarboxylic acid esters having only one carbon-to-carbon double bond
    • C07C69/54Acrylic acid esters; Methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/12Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms
    • C07D303/18Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by etherified hydroxyl radicals
    • C07D303/20Ethers with hydroxy compounds containing no oxirane rings
    • C07D303/24Ethers with hydroxy compounds containing no oxirane rings with polyhydroxy compounds
    • C07D303/27Ethers with hydroxy compounds containing no oxirane rings with polyhydroxy compounds having all hydroxyl radicals etherified with oxirane containing compounds

Definitions

  • the present invention relates to compounds, refractive index improvers, and polymers.
  • Patent Document 1 Various compounds of biphenols and bisphenols are being studied. Furthermore, in Patent Document 1, a polymerizable functional group is introduced into the biphenols or bisphenols to produce epoxy resins, polyester resins, polyurethane resins, polybutyral resins, liquid crystal display panels, color filters, eyeglass lenses, Fresnel lenses, etc. It has been proposed to be used as a high refractive index resin material for optical articles such as lenticular lenses, prism lens sheets for TFTs, optical fibers, and optical disks.
  • Patent Document 1 has a high refractive index for optical articles such as liquid crystal display panels, color filters, eyeglass lenses, Fresnel lenses, lenticular lenses, TFT prism lens sheets, optical fibers, and optical disks.
  • This is a new polymerizable monomer that is useful as a resin material.
  • an object of the present invention is to provide a compound, a refractive index improver, and a polymer that can provide a resin material with a high refractive index.
  • the compound of the present invention is a compound represented by the following chemical formula (1), a tautomer or stereoisomer thereof, or a salt thereof.
  • A is a single bond, a divalent hydrocarbon group, or a sulfonyl group, and one or more hydrogen atoms in the divalent hydrocarbon group are each independently substituted with a methyl group or a phenyl group.
  • X 1 and X 2 are each a polymerizable functional group, and may be the same or different from each other.
  • the refractive index improver of the present invention is a refractive index improver containing the compound of the present invention, its tautomer or stereoisomer, or a salt thereof.
  • the polymer of the present invention is a polymer of monomer components containing the compound of the present invention, its tautomer or stereoisomer, or a salt thereof.
  • the present invention it is possible to provide a compound, a refractive index improver, and a polymer that can provide a resin material with a high refractive index.
  • FIG. 1 is a diagram showing the IR analysis results of the compound obtained in Synthesis Example 1.
  • FIG. 2 is a diagram showing the IR analysis results of the compound obtained in Synthesis Example 2.
  • FIG. 3 is a diagram showing the IR analysis results of the compound obtained in Example 1.
  • FIG. 4 is a diagram showing the IR analysis results of the compound obtained in Example 2.
  • FIG. 5 is a diagram showing the IR analysis results of the compound obtained in Example 3.
  • FIG. 6 is a diagram showing the IR analysis results of the compound obtained in Example 4.
  • FIG. 7 is a diagram showing the IR analysis results of the compound obtained in Example 5.
  • FIG. 8 is a diagram showing the IR analysis results of the compound obtained in Example 6.
  • FIG. 9 is a diagram showing the IR analysis results of the compound obtained in Example 7.
  • FIG. 1 is a diagram showing the IR analysis results of the compound obtained in Synthesis Example 1.
  • FIG. 2 is a diagram showing the IR analysis results of the compound obtained in Synthesis Example 2.
  • FIG. 3 is
  • FIG. 10 is a diagram showing the IR analysis results of the compound obtained in Example 8.
  • FIG. 11 is a diagram showing the IR analysis results of the compound obtained in Example 9.
  • FIG. 12 is a diagram showing the IR analysis results of the compound obtained in Example 10.
  • FIG. 13 is a diagram showing the IR analysis results of the compound obtained in Example 11.
  • isomers such as tautomers or stereoisomers (e.g. geometric isomers, conformational isomers, and optical isomers) are present in the compound (for example, the compound represented by the chemical formula (1), etc.). If present, either isomer can be used in the present invention, unless otherwise specified. Furthermore, if the compound is capable of forming a salt, the salt can also be used in the present invention, unless otherwise specified.
  • the salt may be an acid addition salt or a base addition salt. Further, the acid forming the acid addition salt may be an inorganic acid or an organic acid, and the base forming the base addition salt may be an inorganic base or an organic base.
  • the inorganic acids are not particularly limited, but include, for example, sulfuric acid, phosphoric acid, hydrofluoric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, hypofluorous acid, hypochlorous acid, hypobromous acid, Hypoiodic acid, fluorous acid, chlorous acid, bromite acid, iodic acid, fluoric acid, chloric acid, bromic acid, iodic acid, perfluoric acid, perchloric acid, perbromic acid, periodic acid, etc. can be mentioned.
  • the organic acid is not particularly limited, and examples include p-toluenesulfonic acid, methanesulfonic acid, oxalic acid, p-bromobenzenesulfonic acid, carbonic acid, succinic acid, citric acid, benzoic acid, and acetic acid.
  • the inorganic base include, but are not limited to, ammonium hydroxide, alkali metal hydroxides, alkaline earth metal hydroxides, carbonates, and hydrogen carbonates, and more specifically, for example, Examples include sodium hydroxide, potassium hydroxide, potassium carbonate, sodium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, calcium hydroxide, and calcium carbonate.
  • the organic base is not particularly limited, and examples thereof include ethanolamine, triethylamine, and tris(hydroxymethyl)aminomethane.
  • the method for producing these salts is not particularly limited, and, for example, they can be produced by appropriately adding the above-mentioned acid or base to the above-mentioned compound by a known method.
  • a chain substituent for example, a hydrocarbon group such as an alkyl group, an alkylene group, or an unsaturated aliphatic hydrocarbon group
  • a chain substituent may be linear or branched, unless otherwise specified.
  • the number of carbon atoms is not particularly limited, but for example, 1-40, 1-32, 1-24, 1-18, 1-12, 1-6, 1-4, or 1-2 (unsaturated hydrocarbon group). 2 or more).
  • the number of ring members (number of atoms constituting the ring) of the cyclic group for example, aryl group, heteroaryl group, etc.
  • any isomer may be used unless otherwise specified.
  • naphthyl group it may be a 1-naphthyl group or a 2-naphthyl group.
  • the compound of the present invention is a compound having a 2,6-diphenylphenol skeleton represented by the chemical formula (general formula) (1), a tautomer or stereoisomer thereof, or a salt thereof.
  • the compound of the present invention contains X 1 and X 2 which are polymerizable functional groups, and therefore can be polymerized to form a polymer.
  • the compound of the present invention itself has a high refractive index, and therefore, it is possible to provide a resin material with a high refractive index by polymerizing it.
  • a compound in which A is a single bond in the general formula (1) can be synthesized (manufactured) using, for example, a compound represented by the following chemical formula (6) (hereinafter also referred to as "Bis-DPP") as a raw material. Can be done.
  • “Bis-DPP” can be synthesized, for example, by the method described in Bul. Korean Chem. Soc. 1999, Vol. 20, No. 4, pp. 469-472, but is not limited to this method and can be synthesized by any other It may be synthesized by the following method.
  • the compound in which A is a methylene group can be synthesized (manufactured) using, for example, a compound represented by the following chemical formula (7) (hereinafter also referred to as "Bis-DPP-F") as a raw material. can do.
  • a compound represented by the following chemical formula (7) hereinafter also referred to as "Bis-DPP-F"
  • Bis-DPP-F can be synthesized, for example, by the method described in European Polymer Journal, 1970, Vol. 6, pp. 1339-1346, but is not limited to this method, and can be synthesized by any other method. It's okay.
  • A is a single bond, a divalent hydrocarbon group, or a sulfonyl group, as described above, and one or more hydrogen atoms in the divalent hydrocarbon group are each independently It may also be substituted with a methyl group or a phenyl group.
  • the divalent hydrocarbon group may be a divalent chain hydrocarbon group or a divalent alicyclic hydrocarbon group.
  • the divalent chain hydrocarbon group may be linear or branched, saturated or unsaturated. Examples of the divalent chain hydrocarbon group include a straight chain or branched alkylene group, a straight chain or branched alkenylene group, a straight chain or branched alkynylene group, and the like.
  • the divalent chain hydrocarbon group is, for example, a divalent hydrocarbon group having 1 to 4 carbon atoms (e.g., methylene group, ethylene group, propylene group, etc.), or a divalent hydrocarbon group having 2 to 4 carbon atoms to which one methyl is added.
  • 5 divalent hydrocarbon groups for example, methylmethylene group, etc.
  • divalent hydrocarbon groups having 3 to 6 carbon atoms to which two methyls are added dimethylmethylene group, etc.
  • one or more of the hydrogen atoms in the divalent hydrocarbon group may be independently substituted with a methyl group or a phenyl group, as described above. Furthermore, in A in the general formula (1), one or more hydrogen atoms in the divalent chain hydrocarbon group are each independently substituted with a methyl group or a phenyl group, as described above. It's okay.
  • the above A may be, for example, a divalent hydrocarbon group having 7 to 10 carbon atoms to which one phenyl group is added (that is, one hydrogen atom is substituted with a phenyl group).
  • Examples of the divalent hydrocarbon group having 7 to 10 carbon atoms to which one phenyl group is attached include a phenylmethylene group.
  • the above A may be, for example, a divalent hydrocarbon group having 13 to 16 carbon atoms to which two phenyl groups are added (that is, two hydrogen atoms are substituted with phenyl groups).
  • Examples of the divalent hydrocarbon group having 13 to 16 carbon atoms to which the two phenyl groups are attached include diphenylmethylene group.
  • the above A is, for example, a divalent carbon atom to which a methyl group and a phenyl group are added (that is, one or more hydrogen atoms are substituted with a methyl group, and one or more hydrogen atoms are substituted with a phenyl group). It may be a hydrocarbon group having 8 to 11 carbon atoms. Examples of the divalent hydrocarbon group having 8 to 11 carbon atoms to which the methyl group and phenyl group are attached include a methylphenylmethylene group.
  • the group in which one or more of the hydrogen atoms in the divalent chain hydrocarbon group is substituted with a methyl group or a phenyl group is particularly preferably a phenylmethylene group or a diphenylmethylene group.
  • a in the general formula (1) may be a divalent alicyclic hydrocarbon group, such as a cycloalkylene group.
  • the cycloalkylene group include a cyclopentylene group, a cyclopentylidene group, a cyclohexylene group, and a cyclohexylidene group.
  • the cyclopentylene group include a 1,2-cyclopentylene group and a 1,3-cyclopentylene group.
  • Examples of the cyclohexylene group include a 1,2-cyclohexylene group, a 1,3-cyclohexylene group, and a 1,4-cyclohexylene group.
  • a in the general formula (1) is preferably a single bond or a methylene group. Further, as A in the general formula (1), a sulfonyl group can be selected as described above.
  • the polymerizable functional groups X 1 and X 2 in the general formula (1) may be the same or different, but are preferably the same.
  • the polymerizable functional group include a functional group containing a hydroxyl group, a functional group containing an amino group, a functional group containing a carbonyl group, a functional group containing an epoxy group, a functional group containing an alkenyl group, and an unsaturated carboxylic acid residue. , a functional group containing an isocyanate group (-NCO group), and the like.
  • the compound represented by the general formula (1) is, for example, the following scheme 1 or the following It can be synthesized by the method shown in Scheme 2.
  • the method shown in Scheme 1 or Scheme 2 below is a method in which "Bis-DPP" (compound (6)) or “Bis-DPP-F” (compound (7)) is reacted with halobinyl or haloallyl.
  • the reaction conditions are not particularly limited, and for example, the reaction may be performed without a solvent, in an organic solvent, with a catalyst, or without a catalyst.
  • halobinyl or haloallyl is not particularly limited, but examples thereof include vinyl chloride, vinyl bromide, allyl chloride, allyl bromide, and the like.
  • the total amount of halobinyl or haloallyl used is also not particularly limited, but it is preferably 1 to 6 times the molar amount of "Bis-DPP" or “Bis-DPP-F", and 2 to 4 times the molar amount of "Bis-DPP” or “Bis-DPP-F". It is more preferable that there be.
  • the compound represented by the general formula (1) is, for example, the following scheme 3 or the following It can be synthesized by the method shown in Scheme 4.
  • the method shown in Scheme 3 or Scheme 4 below is a method of reacting "Bis-DPP" (compound (6)) or “Bis-DPP-F” (compound (7)) with epihalohydrin.
  • the reaction conditions are not particularly limited, and for example, the reaction may be performed without a solvent, in an organic solvent, with a catalyst, or without a catalyst.
  • * is a bond to the O atom in the chemical formula (1).
  • the epihalohydrin is not particularly limited, and examples thereof include epichlorohydrin, epibromohydrin, and the like.
  • the total amount of epihalohydrin used is also not particularly limited, but it is preferably 1 to 12 times the molar amount, particularly 2 to 10 times the molar amount of "Bis-DPP" or "Bis-DPP-F". It is more preferable that there be.
  • the reaction temperature is not particularly limited, but is preferably -10°C to 150°C. If the reaction temperature is too high, by-products may be produced, and if the reaction temperature is too low, the reaction time will be too long.
  • the reaction temperature is more preferably 20°C to 130°C. Further, the reaction time of the above step is not particularly limited and can be adjusted depending on the reaction temperature, but is preferably 1 to 15 hours.
  • the compound represented by the general formula (1) is, for example, the following scheme 5 or the following It can be synthesized by the method shown in Scheme 6.
  • the method shown in Scheme 5 below or Scheme 6 below involves combining "Bis-DPP" (compound (6)) or “Bis-DPP-F” (compound (7)) with ethylene oxide, ethylene carbonate, propylene oxide, and carbonic acid. This is a method of reacting with one or more types selected from the group consisting of propylene.
  • the reaction conditions are not particularly limited, and for example, the reaction may be performed without a solvent, in an organic solvent, with a catalyst, or without a catalyst.
  • * is a bond to the O atom in the chemical formula (1)
  • D is an ethylene group or an isopropylene group
  • m is an integer from 1 to 3
  • D is an integer of 1 to 3.
  • each D may be the same or different from each other. Further, D may be, for example, an isopropylene group.
  • the total amount of ethylene oxide, ethylene carbonate, propylene oxide, and propylene carbonate used is not particularly limited, but for example, when m is 1, it is 1 to 3 times the amount of "Bis-DPP" or "Bis-DPP-F". When m is 2, it is preferably 3 to 5 times the molar amount, and when m is 3, it is preferably 5 to 6 times the molar amount.
  • the reaction temperature is not particularly limited, but is preferably -20°C to 200°C. If the reaction temperature is too high, by-products may be produced, and if the reaction temperature is too low, the reaction time will be too long.
  • the reaction temperature is more preferably 0°C to 180°C. Further, the reaction time of the above step is not particularly limited, and is preferably adjusted depending on the reaction temperature, but is preferably 1 to 18 hours.
  • the compound can be synthesized, for example, by the method shown in Scheme 7 or Scheme 8 below.
  • the method shown in the following Scheme 7 or the following Scheme 8 involves the use of "Bis-DPP" (compound (6)) or “Bis-DPP-F” (compound (7)), (meth)acrylic acid, (meth)acrylic acid This is a method of reacting with one or more types selected from the group consisting of chloride or di(meth)acrylic anhydride.
  • reaction conditions are not particularly limited, and for example, the reaction may be performed without a solvent, in an organic solvent, with a catalyst, or without a catalyst.
  • “(meth)acrylic” represents “at least one of acrylic and methacryl.”
  • (meth)acrylic acid represents “at least one of acrylic acid and methacrylic acid.”
  • (Meth)acrylic acid chloride represents “at least one of acrylic acid chloride and methacrylic acid chloride.”
  • di(meth)acrylicanhydride represents "at least one of diacrylic anhydride and dimethacrylic anhydride.”
  • E is an ethylene group or an isopropylene group
  • F is a hydrogen atom or a methyl group
  • l is a , an integer from 0 to 3
  • each E may be the same or different from each other.
  • the total amount of the (meth)acrylic acid, (meth)acrylic acid chloride or di(meth)acrylic anhydride used is not particularly limited, but for "Bis-DPP" or “Bis-DPP-F", 1 It is preferably 6 to 6 times the molar amount, more preferably 2 to 4 times the molar amount.
  • the reaction temperature is not particularly limited, but is preferably -20°C to 100°C. If the reaction temperature is too high, by-products may be produced, and if the reaction temperature is too low, the reaction time will be too long.
  • the reaction temperature is more preferably -10°C to 40°C. Further, the reaction time of the above step is not particularly limited, and is preferably adjusted depending on the reaction temperature, but is preferably 1 to 8 hours.
  • the general formula (1) The compound represented by can be synthesized, for example, by the method shown in Scheme 9 or Scheme 10 below.
  • the method shown in the following Scheme 9 or the following Scheme 10 is to synthesize the compound (6)-3 according to the scheme 5, or synthesize the compound (7)-3 according to the scheme 6, and then synthesize the compound (6)-3 according to the scheme 6.
  • 3 or the compound (7)-3 is reacted with one or more selected from the group consisting of (meth)acrylic acid, (meth)acrylic acid chloride, or di(meth)acrylic anhydride.
  • the reaction conditions are not particularly limited, and for example, the reaction may be performed without a solvent, in an organic solvent, with a catalyst, or without a catalyst.
  • the total amount of (meth)acrylic acid, (meth)acrylic chloride, or di(meth)acrylic anhydride used is not particularly limited, but may be "Bis-DPP" or "Bis- It is preferably 1 to 6 times the molar amount, more preferably 2 to 4 times the molar amount of "DPP-F".
  • the compound (6)-3 or the compound (7)-3 is composed of (meth)acrylic acid, (meth)acrylic acid chloride, or di(meth)acrylic anhydride.
  • the reaction temperature in the step of reacting with one or more selected from the group is not particularly limited, but is preferably -20°C to 200°C. If the reaction temperature is too high, by-products may be produced, and if the reaction temperature is too low, the reaction time will be too long.
  • the reaction temperature is more preferably -10°C to 140°C. Further, the reaction time of the above step is not particularly limited, and is preferably adjusted depending on the reaction temperature, but is preferably 1 to 20 hours.
  • examples of the solvent include, but are not limited to, esters such as methyl acetate, ethyl acetate, phenyl acetate, and benzyl acetate; halogenated hydrocarbons such as dichloromethane and trichloromethane; acetone.
  • the organic solvents may be used alone or in combination of two or more.
  • the catalyst is not particularly limited, but may be a metal hydroxide such as sodium hydroxide or potassium hydroxide, or a basic compound such as tetramethylammonium chloride or benzyltriethylammonium chloride.
  • inorganic acids such as hydrochloric acid and sulfuric acid
  • organic acids such as acetic acid, para-toluenesulfonic acid, and methanesulfonic acid
  • inorganic bases such as carbonates or hydrogen carbonates such as sodium carbonate, sodium hydrogen carbonate, potassium carbonate, and potassium hydrogen carbonate
  • Examples include amines such as monoethylamine, diethylamine, and triethylamine.
  • the catalysts may be used alone or in combination of two or more.
  • post-treatment may be carried out as necessary by a known method, taking into account the physical properties of each compound, the type and amount of the raw materials and organic solvents used, etc. All you have to do is perform the treatment and extract each compound. Specifically, for example, as appropriate, post-treatment operations such as filtration, washing, extraction, pH adjustment, dehydration, and concentration may be carried out singly or in combination of two or more, and concentration, crystallization, and re-treatment may be carried out. Each compound may be extracted by precipitation, column chromatography, or the like.
  • each extracted compound is further subjected to operations such as crystallization, reprecipitation, column chromatography, extraction, stirring and washing of crystals with a solvent, etc., either alone or in combination of two or more. Purification may be performed by performing the above steps.
  • the compound of the present invention has a polymerizable functional group, it is possible to produce a resin material formed from the polymer by polymerizing it into a polymer.
  • the polymer may be a polymer of the compound of the present invention alone, or a copolymer with other monomer components.
  • the conditions for the polymerization reaction are also not particularly limited, and may be set as appropriate with reference to known polymerization reaction conditions, for example, depending on the type of polymerizable functional group that the compound of the present invention has. Good too.
  • the polymerization reaction may be carried out, for example, by using the compound of the present invention alone or in the presence of other compounds (such as the other monomer components), optionally adding a solvent, a catalyst, etc.
  • the melting point was measured using a DSC-50 (trade name) device manufactured by Shimadzu Corporation.
  • the average molecular weight was measured using an LC-20AD (trade name) device manufactured by Shimadzu Corporation, and was determined as a standard polystyrene equivalent value by gel permeation chromatography (GPC).
  • Infrared absorption measurement was carried out by the ATR method using an infrared spectrophotometer IRAffinity-1S (trade name) device manufactured by Shimadzu Corporation.
  • the refractive index was measured as follows. First, a compound whose refractive index was to be measured was dissolved in 1-bromonaphthalene or N-methyl-2-pyrrolidone (hereinafter also referred to as "NMP") to prepare a 5% or 10% solution by weight. Next, the refractive index of each adjustment solution and the solvent 1-bromonaphthalene or NMP as a control was measured using a DR-2M (trade name) device manufactured by Atago Co., Ltd. An approximate straight line was derived from the measured values at the three points obtained through the measurement. From the approximate straight line, the value of 100% by weight of each compound, which is the substance to be measured for refractive index, was read and used as the refractive index value.
  • NMP N-methyl-2-pyrrolidone
  • the white crystals were dissolved in 430.2 g of xylene, washed with water, azeotropically dehydrated, and then filtered. While cooling the filtrate, seed crystals were added to perform crystallization, followed by solid-liquid separation to obtain 140.8 g of white crystals (yield 62.0%, calculated as paraformaldehyde).
  • Yield 62.0%, calculated as paraformaldehyde By measuring the white crystal by 1 H-NMR, it was confirmed that it was a compound (Bis-DPP-F) represented by the chemical formula (7).
  • Compound (7) (Bis-DPP-F) had a melting point of 204 to 207°C and a refractive index of 1.689.
  • Example 1 Synthesis of compound (6)-1a
  • compound (6) (Bis-DPP) 14.7 g (0.030 mol)
  • acetone 147.0 g 48% sodium hydroxide 5.3 g (0.063 mol)
  • benzyltrimethylammonium chloride 0 .28 g was charged, and the temperature was raised to 55°C while stirring under a nitrogen flow.
  • 9.2 g (0.12 mol) of allyl chloride was added dropwise over 2 hours. Further, the reaction was carried out for 5 hours while stirring was continued.
  • Example 2 Synthesis of compound (6)-2
  • a 200 mL four-necked flask was charged with 19.6 g (0.040 mol) of compound (6) (Bis-DPP), 29.6 g (0.64 mol) of epichlorohydrin, and 0.37 g of benzyltrimethylammonium chloride, and then heated with nitrogen. The temperature was raised to 100° C. while stirring under flow, and stirring was continued at that temperature for an additional 3 hours. Thereafter, after distilling off excess epichlorohydrin, 40.0 g of toluene was added, and 14.2 g (0.17 mol) of 48% sodium hydroxide was added dropwise at a pot temperature of 100° C., followed by stirring for 9 hours.
  • Example 3 Synthesis of compound (6)-3a
  • a 200 mL four-neck flask was charged with 40.2 g (0.082 mol) of compound (6) (Bis-DPP), 15.9 g (0.090 mol) of ethylene carbonate, 2.0 g of sodium carbonate, and 40.2 g of dimethylacetamide. While stirring under nitrogen flow, the temperature was raised to 155° C. and stirred for 16 hours. Thereafter, the pot temperature was cooled to 100° C., and filtration was performed. 120.0 g of methanol was added to the filtrate to precipitate crystals. The precipitated crystals were subjected to solid-liquid separation to obtain 43.5 g of white crude crystals.
  • the obtained crude crystals and 87.0 g of toluene were charged, and the temperature was raised to 115° C. while stirring under a nitrogen flow to dissolve the crystals. Thereafter, while cooling the pot temperature, seed crystals were added to perform crystallization, and solid-liquid separation was performed to obtain 41.0 g of white crystals (yield: 86.3%).
  • the obtained white crystals were analyzed by 1 H-NMR and IR, it was confirmed that the crystals were a compound represented by the following chemical formula (6)-3a.
  • the obtained compound (6)-3a had a melting point of 200 to 202°C and a refractive index of 1.671.
  • the obtained crude crystals and 48.0 g of dimethylacetamide were charged, and the temperature was raised to 85° C. while stirring under a nitrogen flow to dissolve the crystals. After filtration, seed crystals were added to the filtrate while cooling to perform crystallization, followed by solid-liquid separation to obtain 6.6 g of white crystals (yield: 68.8%).
  • the obtained white crystals were analyzed by 1 H-NMR and IR, it was confirmed that the crystals were a compound represented by the following chemical formula (6)-4a.
  • the obtained compound (6)-4a had a melting point of 218 to 220°C and a refractive index of 1.663.
  • Example 7 Synthesis of compound (7)-2
  • a 200 mL four-necked flask was charged with 10.1 g (0.020 mol) of compound (7) (Bis-DPP-F), 14.8 g (0.16 mol) of epichlorohydrin, and 0.19 g of benzyltrimethylammonium chloride.
  • the temperature was raised to 100° C. while stirring under a nitrogen flow, and stirring was further continued for 4 hours. Thereafter, after distilling off excess epichlorohydrin, 50.0 g of xylene was added, and 8.4 g (0.10 mol) of 48% sodium hydroxide was added dropwise at a pot temperature of 100°C, followed by stirring for 9 hours. .
  • Example 8 Synthesis of compound (7)-3a
  • compound (7) (Bis-DPP-F)
  • 4.1 g (0.023 mol) of ethylene carbonate, 0.5 g of sodium carbonate, and 20.2 g of dimethylacetamide. was charged, the temperature was raised to 150° C. while stirring under a nitrogen flow, and stirring was further continued for 9 hours. Thereafter, the pot temperature was cooled to 60° C., and filtration was performed. 300.0 g of purified water was added to the filtrate to precipitate crystals. The precipitated crystals were subjected to solid-liquid separation to obtain 11.2 g of white crude crystals.
  • the obtained crude crystals and 44.8 g of xylene were charged, and the temperature was raised to 100° C. while stirring under a nitrogen flow to dissolve the crystals. After filtration, seed crystals were added to the filtrate while cooling to perform crystallization, followed by solid-liquid separation to obtain 8.6 g of white crystals (yield: 72.3%).
  • the obtained white crystals were analyzed by 1 H-NMR and IR, it was confirmed that the crystals were a compound represented by the following chemical formula (7)-3a.
  • the obtained compound (7)-3a had a melting point of 178 to 179°C and a refractive index of 1.653.
  • Example 9 Synthesis of compound (7)-4a
  • compound (7) (Bis-DPP-F)
  • 004 g was charged and dissolved, the mixture was cooled to 5° C., and 4.8 g (0.053 mol) of acrylic acid chloride was added dropwise over 1 hour. Thereafter, the mixture was stirred for 4 hours.
  • Example 10 Synthesis of compound (6)-5a and its polymer
  • 58.0 g of toluene, 0.6 g of methanesulfonic acid, 0.004 g of p-methoxyphenol, and 2.0 g (0.028 mol) of acrylic acid were charged and stirred.
  • the temperature was raised to 80° C., the pressure inside the flask was reduced to approximately 0.033 MPa, and stirring was performed for 7 hours while refluxing toluene. 20.0 g of toluene was added to the reaction solution, followed by water washing, azeotropic dehydration, and filtration.
  • the toluene in the filtrate was distilled off and concentrated to obtain 6.0 g (yield: 87.4%) of a pale yellow liquid.
  • the liquid was allowed to stand and crystallize.
  • the average molecular weight of the compound thus obtained was 810, and from the average molecular weight and the IR analysis results, a composition of the compound represented by the following chemical formula (6)-5a and its polymer (polymer) (mixture).
  • the resulting composition (mixture) had a melting point of 88 to 93°C and a refractive index of 1.630.
  • the IR analysis results of the composition (mixture) obtained in Example 10 are shown in FIG. 12, and the IR analysis results of Compound (6)-3a of Example 3 used as the raw material of Example 10 are shown in FIG.
  • Example 11 Synthesis of compound (7)-5a and its polymer
  • a 200 mL four-necked flask 5.9 g (0.010 mol) of compound (7)-3a synthesized in Example 8, 60.0 g of toluene, 0.6 g of methanesulfonic acid, 0.004 g of p-methoxyphenol, and 2.0 g (0.028 mol) of acrylic acid was charged and stirred. Thereafter, the temperature was raised to 80° C., the pressure inside the flask was reduced to about 0.033 MPa, and the mixture was stirred for 13 hours while refluxing toluene.
  • FIGS. 1 to 13 The IR spectra (IR analysis results) of the compounds synthesized (manufactured) in Examples (including synthesis examples) are collectively shown in FIGS. 1 to 13.
  • FIG. 1 is a diagram showing the IR analysis results of the compound obtained in Synthesis Example 1.
  • FIG. 2 is a diagram showing the IR analysis results of the compound obtained in Synthesis Example 2.
  • FIG. 3 is a diagram showing the IR analysis results of the compound obtained in Example 1.
  • FIG. 4 is a diagram showing the IR analysis results of the compound obtained in Example 2.
  • FIG. 5 is a diagram showing the IR analysis results of the compound obtained in Example 3, as described above.
  • FIG. 6 is a diagram showing the IR analysis results of the compound obtained in Example 4.
  • FIG. 7 is a diagram showing the IR analysis results of the compound obtained in Example 5.
  • FIG. 8 is a diagram showing the IR analysis results of the compound obtained in Example 6.
  • FIG. 9 is a diagram showing the IR analysis results of the compound obtained in Example 7.
  • FIG. 10 is a diagram showing the IR analysis results of the compound obtained in Example 8, as described above.
  • FIG. 11 is a diagram showing the IR analysis results of the compound obtained in Example 9.
  • FIG. 12 is a diagram showing the IR analysis results of the compound (composition, mixture) obtained in Example 10, as described above.
  • FIG. 13 is a diagram showing the IR analysis results of the compound (composition, mixture) obtained in Example 11, as described above. Note that in FIGS. 1 to 13, the horizontal axis is the wave number (cm ⁇ 1 ), and the vertical axis is the transmittance.
  • the obtained crude crystals and 150.0 g of 4-methyl-2-pentanone were charged, and the temperature was raised to 100° C. while stirring under a nitrogen flow to dissolve the crystals. After filtration, seed crystals were added to the filtrate while cooling it to perform crystallization, followed by solid-liquid separation to obtain 30.6 g of white crystals (yield 70.7%) of the compound represented by the following chemical formula (10). Obtained.
  • the obtained compound (10) had a melting point of 109 to 111°C and a refractive index of 1.579.
  • the compounds of the present invention synthesized (manufactured) in Examples were all compounds having a polymerizable functional group. Furthermore, all of the compounds of the present invention synthesized (manufactured) in the examples showed a high refractive index of 1.636 to 1.671, as shown in Table 1, and optical resins for which a high refractive index is desired. It was confirmed that the material was suitable.
  • A is a single bond, a divalent hydrocarbon group, or a sulfonyl group, and one or more hydrogen atoms in the divalent hydrocarbon group are each independently substituted with a methyl group or a phenyl group.
  • X 1 and X 2 are each a polymerizable functional group, and may be the same or different from each other.
  • the divalent hydrocarbon group is a divalent chain hydrocarbon group or a divalent alicyclic hydrocarbon group
  • One or more hydrogen atoms in the divalent chain hydrocarbon group or the divalent alicyclic hydrocarbon group may be each independently substituted with a methyl group or a phenyl group
  • A is a single bond, a methylene group, or a cyclohexylene group, and the hydrogen atom in the methylene group may or may not be substituted with a methyl group or a phenyl group, respectively.
  • X 1 and X 2 are each independently a substituent represented by any of the groups of the following chemical formulas (2) to (5).
  • * is a bond to the O atom in the chemical formula (1)
  • n is an integer of 0 or 1.
  • * is a bond to the O atom in the chemical formula (1).
  • * is a bond to the O atom in the chemical formula (1)
  • D is an ethylene group or an isopropylene group
  • m is an integer from 1 to 3
  • each D may be the same or different from each other.
  • * is a bond to the O atom in the chemical formula (1)
  • E is an ethylene group or an isopropylene group
  • F is a hydrogen atom or a methyl group
  • l is an integer from 0 to 3
  • each E may be the same or different from each other.
  • D is an isopropylene group
  • the compound according to supplementary note 4 its tautomer or stereoisomer, or a salt thereof.
  • A is a single bond, a methylene group, or a cyclohexylene group, and one or more hydrogen atoms of the methylene group may be each independently substituted with a methyl group or a phenyl group, The compound according to appendix 4 or 5, its tautomer or stereoisomer, or a salt thereof.
  • (Appendix 7) A refractive index improver comprising a compound according to any one of Supplementary Notes 1 to 6, a tautomer or stereoisomer thereof, or a salt thereof.
  • (Appendix 8) A polymer of monomer components containing the compound according to any one of Supplementary Notes 1 to 6, its tautomer or stereoisomer, or a salt thereof.
  • the present invention it is possible to provide a compound, a refractive index improver, and a polymer that can provide a resin material with a high refractive index.
  • the use of the compound, refractive index improver, and polymer of the present invention is not particularly limited, and they can be used in a wide range of applications including general high refractive index resin materials, and have great industrial utility value. be.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

高屈折率の樹脂材料を提供可能な化合物を提供する。 本発明の化合物は、下記化学式(1)で表される化合物、その互変異性体若しくは立体異性体又はそれらの塩。前記化学式(1)中、 Aは、単結合、2価の炭化水素基、又はスルホニル基であり、前記2価の炭化水素基における水素原子の1つ以上は、それぞれ独立して、メチル基若しくはフェニル基で置換されていてもよく、 X及びXは、それぞれ重合性官能基であり、互いに同一でも異なっていてもよい。

Description

化合物、屈折率向上剤及び重合体
 本発明は、化合物、屈折率向上剤及び重合体に関する。
 ビフェノール類及びビスフェノール類は様々な化合物が検討されている。さらに、特許文献1では、そのビフェノール類又はビスフェノール類に重合性の官能基を導入し、エポキシ樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリブチラール樹脂、液晶ディスプレイ用パネル、カラーフィルター、眼鏡レンズ、フレネルレンズ、レンチキュラーレンズ、TFT用プリズムレンズシート、光ファイバー、光ディスク等の光学用物品の高屈折率の樹脂材料などへの使用が提案されている。特許文献1の一般式(1)で表される化合物は、液晶ディスプレイ用パネル、カラーフィルター、眼鏡レンズ、フレネルレンズ、レンチキュラーレンズ、TFT用プリズムレンズシート、光ファイバー、光ディスク等の光学用物品の高屈折率の樹脂材料などとして有用な新規の重合性モノマーである。
WO2016/002607A1
 しかしながら、特許文献1に記載されているような用途の中で、高屈折率の樹脂材料は薄型化がされており、樹脂の更なる高屈折率化が求められている。
 そこで、本発明は、高屈折率の樹脂材料を提供可能な化合物、屈折率向上剤及び重合体を提供することを目的とする。
 前記目的を達成するために、本発明の化合物は、下記化学式(1)で表される化合物、その互変異性体若しくは立体異性体又はそれらの塩である。
Figure JPOXMLDOC01-appb-C000006
 前記化学式(1)中、
 Aは、単結合、2価の炭化水素基、又はスルホニル基であり、前記2価の炭化水素基における水素原子の1つ以上は、それぞれ独立して、メチル基若しくはフェニル基で置換されていてもよく、
 X及びXは、それぞれ重合性官能基であり、互いに同一でも異なっていてもよい。
 本発明の屈折率向上剤は、前記本発明の化合物、その互変異性体若しくは立体異性体又はそれらの塩を含む屈折率向上剤である。
 本発明の重合体は、前記本発明の化合物、その互変異性体若しくは立体異性体又はそれらの塩を含むモノマー成分の重合体である。
 本発明によれば、高屈折率の樹脂材料を提供可能な化合物、屈折率向上剤及び重合体を提供することができる。
図1は、合成例1で得られた化合物のIR分析結果を示す図である。 図2は、合成例2で得られた化合物のIR分析結果を示す図である。 図3は、実施例1で得られた化合物のIR分析結果を示す図である。 図4は、実施例2で得られた化合物のIR分析結果を示す図である。 図5は、実施例3で得られた化合物のIR分析結果を示す図である。 図6は、実施例4で得られた化合物のIR分析結果を示す図である。 図7は、実施例5で得られた化合物のIR分析結果を示す図である。 図8は、実施例6で得られた化合物のIR分析結果を示す図である。 図9は、実施例7で得られた化合物のIR分析結果を示す図である。 図10は、実施例8で得られた化合物のIR分析結果を示す図である。 図11は、実施例9で得られた化合物のIR分析結果を示す図である。 図12は、実施例10で得られた化合物のIR分析結果を示す図である。 図13は、実施例11で得られた化合物のIR分析結果を示す図である。
 つぎに、本発明について、例を挙げてさらに具体的に説明する。ただし、本発明は、以下の説明により、なんら限定されない。
 本発明において、化合物(例えば、前記化学式(1)で表される化合物等)に互変異性体又は立体異性体(例:幾何異性体、配座異性体及び光学異性体)等の異性体が存在する場合は、特に断らない限り、いずれの異性体も本発明に用いることができる。また、化合物が塩を形成し得る場合は、特に断らない限り、前記塩も本発明に用いることができる。前記塩は、酸付加塩でも良いが、塩基付加塩でも良い。さらに、前記酸付加塩を形成する酸は無機酸でも有機酸でも良く、前記塩基付加塩を形成する塩基は無機塩基でも有機塩基でも良い。前記無機酸としては、特に限定されないが、例えば、硫酸、リン酸、フッ化水素酸、塩酸、臭化水素酸、ヨウ化水素酸、次亜フッ素酸、次亜塩素酸、次亜臭素酸、次亜ヨウ素酸、亜フッ素酸、亜塩素酸、亜臭素酸、亜ヨウ素酸、フッ素酸、塩素酸、臭素酸、ヨウ素酸、過フッ素酸、過塩素酸、過臭素酸、及び過ヨウ素酸等が挙げられる。前記有機酸も特に限定されないが、例えば、p-トルエンスルホン酸、メタンスルホン酸、シュウ酸、p-ブロモベンゼンスルホン酸、炭酸、コハク酸、クエン酸、安息香酸及び酢酸等が挙げられる。前記無機塩基としては、特に限定されないが、例えば、水酸化アンモニウム、アルカリ金属水酸化物、アルカリ土類金属水酸化物、炭酸塩及び炭酸水素塩等が挙げられ、より具体的には、例えば、水酸化ナトリウム、水酸化カリウム、炭酸カリウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸水素カリウム、水酸化カルシウム及び炭酸カルシウム等が挙げられる。前記有機塩基も特に限定されないが、例えば、エタノールアミン、トリエチルアミン及びトリス(ヒドロキシメチル)アミノメタン等が挙げられる。これらの塩の製造方法も特に限定されず、例えば、前記化合物に、前記のような酸や塩基を公知の方法により適宜付加させる等の方法で製造することができる。
 また、本発明において、鎖状置換基(例えば、アルキル基、アルキレン基、不飽和脂肪族炭化水素基等の炭化水素基)は、特に断らない限り、直鎖状でも分枝状でも良く、その炭素数は、特に限定されないが、例えば、1~40、1~32、1~24、1~18、1~12、1~6、1~4、又は1~2(不飽和炭化水素基の場合は2以上)であっても良い。また、本発明において、環状の基(例えば、アリール基、ヘテロアリール基等)の環員数(環を構成する原子の数)は、特に限定されないが、例えば、5~32、5~24、6~18、6~12、又は6~10であっても良い。また、置換基等に異性体が存在する場合は、特に断らない限り、どの異性体でも良く、例えば、単に「ナフチル基」という場合は、1-ナフチル基でも2-ナフチル基でも良い。
[1.本発明の化合物及びその製造方法等]
 本発明の化合物は、前述のとおり、前記化学式(一般式)(1)で表される2,6-ジフェニルフェノール骨格を有する化合物、その互変異性体若しくは立体異性体又はそれらの塩である。また、本発明の化合物は、前記化学式(1)に示すとおり、重合性官能基であるX及びXを含んでいるので、重合してポリマー(重合体)を形成可能である。本発明の化合物は、それ自体が高い屈折率を有し、このため、重合することにより高屈折率の樹脂材料を提供可能である。
 以下において、前記一般式(1)で表される化合物の合成(製造)方法について、例を挙げて説明する。
 前記一般式(1)においてAが単結合である化合物は、例えば、下記化学式(6)で表される化合物(以下、「Bis-DPP」ともいう)を原料に用いて合成(製造)することができる。
Figure JPOXMLDOC01-appb-C000007
 「Bis-DPP」は、例えば、Bul. Korean Chem. Soc. 1999, Vol.20, No.4, pp. 469-472に記載の方法で合成できるが、この方法に限定されず、その他の任意の方法で合成してもよい。
 前記一般式(1)において、Aがメチレン基の化合物は、例えば、下記化学式(7)で表される化合物(以下、「Bis-DPP-F」ともいう)を原料に用いて合成(製造)することができる。
Figure JPOXMLDOC01-appb-C000008
 「Bis-DPP-F」は、例えば、European Polymer Journal, 1970, Vol.6, pp. 1339-1346に記載の方法で合成できるが、この方法に限定されず、その他の任意の方法で合成してもよい。
 前記一般式(1)において、Aは、前述のとおり、単結合、2価の炭化水素基、又はスルホニル基であり、前記2価の炭化水素基における水素原子の1つ以上は、それぞれ独立して、メチル基若しくはフェニル基で置換されていてもよい。Aにおいて、前記2価の炭化水素基は、2価の鎖状の炭化水素基又は2価の脂環式炭化水素基であってもよい。Aにおいて、前記2価の鎖状の炭化水素基は、直鎖状でも分枝状でも飽和でも不飽和でもよい。前記2価の鎖状の炭化水素基は、例えば、直鎖又は分枝アルキレン基、直鎖または分枝アルケニレン基、直鎖または分枝アルキニレン基等が挙げられる。前記2価の鎖状の炭化水素基は、例えば、炭素数1~4の2価の炭化水素基(例えば、メチレン基、エチレン基、プロピレン基など)、1つのメチルが付加した炭素数2~5の2価の炭化水素基(例えば、メチルメチレン基など)、2つのメチルが付加した炭素数3~6の2価の炭化水素基(ジメチルメチレン基など)などの基が挙げられ、メチレン基が特に好ましい。
 前記一般式(1)中のAにおいて、前記2価の炭化水素基における水素原子の1つ以上は、前述のとおり、それぞれ独立して、メチル基若しくはフェニル基で置換されていてもよい。また、前記一般式(1)中のAにおいて、前記2価の鎖状の炭化水素基における水素原子の1つ以上は、前述のとおり、それぞれ独立して、メチル基又はフェニル基で置換されていてもよい。前記Aは、例えば、1つのフェニル基が付加した(すなわち、水素原子の1つがフェニル基で置換された)炭素数7~10の2価の炭化水素基であってもよい。前記1つのフェニル基が付加した炭素数7~10の2価の炭化水素基としては、例えば、フェニルメチレン基などが挙げられる。前記Aは、例えば、2つのフェニル基が付加した(すなわち、水素原子の2つがフェニル基で置換された)炭素数13~16の2価の炭化水素基であってもよい。前記2つのフェニル基が付加した炭素数13~16の2価の炭化水素基としては、例えば、ジフェニルメチレン基などが挙げられる。前記Aは、例えば、メチル基及びフェニル基が付加した(すなわち、水素原子の1つ以上がメチル基で置換され、かつ水素原子の1つ以上がフェニル基で置換された)炭素数2価の炭素数8~11の炭化水素基であってもよい。前記メチル基及びフェニル基が付加した炭素数2価の炭素数8~11の炭化水素基としては、例えば、メチルフェニルメチレン基などが挙げられる。前記Aにおいて、前記2価の鎖状の炭化水素基における水素原子の1つ以上がメチル基又はフェニル基で置換された基としては、特に、フェニルメチレン基、又はジフェニルメチレン基が好ましい。
 前記一般式(1)中のAは、前述のとおり、2価の脂環式炭化水素基であってもよく、例えば、シクロアルキレン基が挙げられる。前記シクロアルキレン基としては、例えば、シクロペンチレン基、シクロペンチリデン基、シクロへキシレン基、シクロヘキシリデン基等が挙げられる。前記シクロペンチレン基としては、例えば、1,2-シクロペンチレン基、1,3-シクロペンチレン基が挙げられる。前記シクロへキシレン基としては、例えば、1,2-シクロヘキシレン基、1,3-シクロヘキシレン基、1,4-シクロヘキシレン基が挙げられる。
 前記一般式(1)中のAは、単結合又はメチレン基が好ましい。また、前記一般式(1)中のAとして、前述のとおり、スルホニル基を選択することもできる。
 前記一般式(1)中の重合性官能基X及びXは、前述のとおり、互いに同一でも異なっていてもよいが、同一であることが好ましい。前記重合性官能基としては、例えば、水酸基を含む官能基、アミノ基を含む官能基、カルボニル基を含む官能基、エポキシ基を含む官能基、アルケニル基を含む官能基、不飽和カルボン酸残基を含む官能基、イソシアナート基(-NCO基)を含む官能基等が挙げられる。
 前記一般式(1)中の重合性官能基X及びXが下記化学式(2)で表される場合は、前記一般式(1)で表される化合物は、例えば、下記スキーム1又は下記スキーム2に表す方法で合成できる。下記スキーム1又は下記スキーム2に表す方法は、「Bis-DPP」(化合物(6))又は「Bis-DPP-F」(化合物(7))と、ハロビニル又はハロアリルとを反応させる方法である。反応条件は特に限定されず、例えば、無溶媒で反応させても有機溶媒中で反応させてもよいし、触媒を用いて反応させてもよいし、無触媒で反応させてもよい。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
 前記化学式(2)中、*は、前記化学式(1)中のO原子に対する結合手であり、nは、0又は1の整数である。
 前記ハロビニル又はハロアリルとしては、特に限定されないが、例えば、塩化ビニル、臭化ビニル、塩化アリル、臭化アリル等が例示できる。
 前記ハロビニル又はハロアリルの総使用量も特に限定されないが、「Bis-DPP」又は「Bis-DPP-F」に対して、1~6倍モル量であることが好ましく、2~4倍モル量であることがより好ましい。
 前記一般式(1)中の重合性官能基X及びXが下記化学式(3)で表される場合は、前記一般式(1)で表される化合物は、例えば、下記スキーム3又は下記スキーム4に表す方法で合成できる。下記スキーム3又は下記スキーム4に表す方法は、「Bis-DPP」(化合物(6))又は「Bis-DPP-F」(化合物(7))と、エピハロヒドリンとを反応させる方法である。反応条件は特に限定されず、例えば、無溶媒で反応させても有機溶媒中で反応させてもよいし、触媒を用いて反応させてもよいし、無触媒で反応させてもよい。
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
 前記化学式(3)中、*は、前記化学式(1)中のO原子に対する結合手である。
 前記化学式(1)中、Aが単結合である場合は、X及びXの少なくとも一方は、前記化学式(3)以外の置換基であってもよく、X及びXのいずれのが、前記化学式(3)以外の置換基であってもよい。
 前記エピハロヒドリンとしては、特に限定されないが、例えば、エピクロロヒドリン、エピブロモヒドリン等が例示できる。
 前記エピハロヒドリンの総使用量も特に限定されないが、「Bis-DPP」又は「Bis-DPP-F」に対して、1~12倍モル量であることが好ましく、特に、2~10倍モル量であることがより好ましい。
 前記スキーム3及び前記スキーム4の前記工程において、反応温度は特に限定されないが、-10℃~150℃であることが好ましい。反応温度が高すぎると副生成物が生じる可能性があり、且つ、反応温度が低すぎると反応時間がかかり過ぎる。前記反応温度は、20℃~130℃であることがより好ましい。また、前記工程の反応時間は、特に限定されず、反応温度に応じて調節できるが、1~15時間であることが好ましい。
 前記一般式(1)中の重合性官能基X及びXが下記化学式(4)で表される場合は、前記一般式(1)で表される化合物は、例えば、下記スキーム5又は下記スキーム6に表す方法で合成できる。下記スキーム5又は下記スキーム6に表す方法は、「Bis-DPP」(化合物(6))又は「Bis-DPP-F」(化合物(7))と、エチレンオキサイド、炭酸エチレン、プロピレンオキサイド、及び炭酸プロピレンからなる群から選択される1種類以上とを反応させを反応させる方法である。反応条件は特に限定されず、例えば、無溶媒で反応させても有機溶媒中で反応させてもよいし、触媒を用いて反応させてもよいし、無触媒で反応させてもよい。
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
 前記化学式(4)中、*は、前記化学式(1)中のO原子に対する結合手であり、Dは、エチレン基又はイソプロピレン基であり、mは、1~3の整数であり、Dが複数の場合は、各Dは互いに同一でも異なっていてもよい。また、Dは、例えば、イソプロピレン基であってもよい。
 前記エチレンオキシド、炭酸エチレン、プロピレンオキシド及び炭酸プロピレンの総使用量は、特に限定されないが、「Bis-DPP」又は「Bis-DPP-F」に対して、例えば、mが1の場合1~3倍モル量、mが2の場合は3~5倍モル量、mが3の場合は5~6倍モル量であることが好ましい。
 前記スキーム5及び前記スキーム6の前記工程において、反応温度は、特に限定されないが、-20℃~200℃であることが好ましい。反応温度が高すぎると副生成物が生じる可能性があり、且つ、反応温度が低すぎると反応時間がかかり過ぎる。前記反応温度は、0℃~180℃であることがより好ましい。また、前記工程の反応時間は、特に限定されず、反応温度に応じて調節することが好ましいが、1~18時間であることが好ましい。
 前記一般式(1)中の重合性官能基X及びXが下記化学式(5)で表され、前記化学式(5)中のlが0である場合は、前記一般式(1)で表される化合物は、例えば、下記スキーム7又は下記スキーム8に表す方法で合成できる。下記スキーム7又は下記スキーム8に表す方法は、「Bis-DPP」(化合物(6))又は「Bis-DPP-F」(化合物(7))と、(メタ)アクリル酸、(メタ)アクリル酸クロリド、又はジ(メタ)アクリル酸無水物からなる群から選択される1種類以上とを反応させる方法である。反応条件は特に限定されず、例えば、無溶媒で反応させても有機溶媒中で反応させてもよいし、触媒を用いて反応させてもよいし、無触媒で反応させてもよい。なお、本発明において、「(メタ)アクリル」は、「アクリル及びメタクリルの少なくとも一方」を表す。例えば、「(メタ)アクリル酸」は、「アクリル酸及びメタクリル酸の少なくとも一方」を表す。「(メタ)アクリル酸クロリド」は、「アクリル酸クロリド及びメタクリル酸クロリドの少なくとも一方」を表す。「ジ(メタ)アクリル酸無水物」は、「ジアクリル酸無水物及びジメタクリル酸無水物の少なくとも一方」を表す。
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
 前記化学式(5)中、*は、前記化学式(1)中のO原子に対する結合手であり、Eは、エチレン基又はイソプロピレン基であり、Fは、水素原子又はメチル基であり、lは、0~3の整数であり、Eが複数の場合は、各Eは互いに同一でも異なっていてもよい。
 前記(メタ)アクリル酸、(メタ)アクリル酸クロリド又はジ(メタ)アクリル酸無水物の総使用量は、特に限定されないが、「Bis-DPP」又は「Bis-DPP-F」対して、1~6倍モル量であることが好ましく、2~4倍モル量であることがより好ましい。
 前記スキーム7及び前記スキーム8の前記工程において、反応温度は特に限定されないが、-20℃~100℃であることが好ましい。反応温度が高すぎると副生成物が生じる可能性があり、且つ、反応温度が低すぎると反応時間がかかり過ぎる。前記反応温度は、-10℃~40℃であることがより好ましい。また、前記工程の反応時間は、特に限定されず、反応温度に応じて調節することが好ましいが、1~8時間であることが好ましい。
 前記一般式(1)中の重合性官能基X及びXが前記化学式(5)で表され、前記化学式(5)中のlが1~3である場合は、前記一般式(1)で表される化合物は、例えば、下記スキーム9又は下記スキーム10に表す方法で合成できる。下記スキーム9又は下記スキーム10に表す方法は、前記スキーム5により前記化合物(6)-3を合成し、又は前記スキーム6により前記化合物(7)-3を合成した後に、前記化合物(6)-3又は前記化合物(7)-3と、(メタ)アクリル酸、(メタ)アクリル酸クロリド、又はジ(メタ)アクリル酸無水物からなる群から選択される1種類以上とを反応させる方法である。反応条件は特に限定されず、例えば、無溶媒で反応させても有機溶媒中で反応させてもよいし、触媒を用いて反応させてもよいし、無触媒で反応させてもよい。
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
 前記スキーム9及び前記スキーム10において、(メタ)アクリル酸、(メタ)アクリル酸クロリド又はジ(メタ)アクリル酸無水物の総使用量は、特に限定されないが、「Bis-DPP」又は「Bis-DPP-F」に対して、1~6倍モル量であることが好ましく、2~4倍モル量であることがより好ましい。
 前記スキーム9及び前記スキーム10において、前記化合物(6)-3又は前記化合物(7)-3と、(メタ)アクリル酸、(メタ)アクリル酸クロリド、又はジ(メタ)アクリル酸無水物からなる群から選択される1種類以上とを反応させる工程の反応温度は、特に限定されないが、-20℃~200℃であることが好ましい。反応温度が高すぎると副生成物が生じる可能性があり、且つ、反応温度が低すぎると反応時間がかかり過ぎる。前記反応温度は、-10℃~140℃であることがより好ましい。また、前記工程の反応時間は、特に限定されず、反応温度に応じて調節することが好ましいが、1~20時間であることが好ましい。
 前記スキーム1~10の反応に溶媒を用いる場合、前記溶媒としては、特に限定されないが、酢酸メチル、酢酸エチル、酢酸フェニル、酢酸ベンジル等のエステル;ジクロロメタン、トリクロロメタン等のハロゲン化炭化水素;アセトン、メチルイソブチルケトン等のケトン;ジエチルエーテル、テトラヒドロフラン等のエーテル;ベンゼン、トルエン、キシレン等の芳香族炭化水素;N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAc)等のアミドが例示できる。前記有機溶媒は、1種を単独で用いてもよいし、2種類以上を併用してもよい。
 前記スキーム1~10の反応に触媒を用いる場合、前記触媒は、特に限定されないが、水酸化ナトリウム、水酸化カリウム等の金属水酸化物やテトラメチルアンモニウムクロリド、ベンジルトリエチルアンモニウムクロリド等の塩基性化合物、塩酸、硫酸等の無機酸;酢酸、パラトルエンスルホン酸、メタンスルホン酸等の有機酸、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム、炭酸水素カリウム等の炭酸塩又は炭酸水素塩等の無機塩基;モノエチルアミン、ジエチルアミン、トリエチルアミン等のアミンが例示できる。前記触媒は、1種を単独で用いてもよいし、2種類以上を併用してもよい。
 前記スキーム1~10の反応において、各段階の反応の終了後は、例えば、それぞれの化合物の物性、使用した原料や有機溶剤の種類及び量を考慮し、公知の手法によって、必要に応じて後処理を行い、それぞれの化合物を取り出せばよい。具体的には、例えば、適宜必要に応じて、濾過、洗浄、抽出、pH調製、脱水、濃縮等の後処理操作をいずれか単独で、又は2種以上組み合わせて行い、濃縮、結晶化、再沈殿、カラムクロマトグラフィー等により、それぞれの化合物を取り出せばよい。また、取り出したそれぞれの化合物は、さらに必要に応じて、結晶化、再沈殿、カラムクロマトグラフィー、抽出、溶剤による結晶の攪拌洗浄等の操作をいずれか単独で、又は2種以上組み合わせて1回以上行うことで、精製してもよい。
 本発明の化合物は、重合性官能基を有するため、重合させて重合体(ポリマー)とすることで、前記重合体により形成された樹脂材料を製造することが可能である。前記重合体は、本発明の化合物単独の重合体でもよいし、他のモノマー成分との共重合体でもよい。重合反応の条件(反応温度、反応時間等)も特に限定されず、例えば、本発明の化合物が有する重合性官能基の種類等に応じ、公知の重合反応の条件を参考にして適宜設定してもよい。前記重合反応は、例えば、本発明の化合物単体で、又はその他の化合物(前記他のモノマー成分等)を共存させ、任意に溶剤、触媒等を加えて反応させることで行なってもよい。
 以下、本発明の実施例(合成例を含む)について、比較例と併せて示す。ただし、本発明は、以下の実施例に限定されるものではない。なお、以下の実施例中において、「部」は、特に断らない限り「質量部」を表し、「%」は、特に断らない限り「質量%」を表す。
 以下の実施例及び参考例に示した各物性値は、下記の方法により測定した。
 H-NMRは、内部標準としてトリメチルシラン(TMS)を用い、溶媒として重クロロホルム(CDCl)を用いて、日本電子株式会社製 JNM-ECZ400(商品名)装置にて記録した。
 融点は、株式会社島津製作所製 DSC-50(商品名)装置により測定した。
 平均分子量は、株式会社島津製作所製 LC-20AD(商品名)装置にて測定し、ゲル・パーミエーション・クロマトグラフィー(GPC)により、標準ポリスチレン換算値として求めた。
 赤外吸収測定(IR)は、株式会社島津製作所製 赤外分光光度計 IRAffinity-1S(商品名)装置を用いて、ATR法にて測定した。
 屈折率は、以下のようにして測定した。まず、1-ブロモナフタレン又はN-メチル-2-ピロリドン(以下、「NMP」ともいう)に屈折率の測定対象物質である化合物を溶解して5重量%又は10重量%溶液を調整した。つぎに、各調整液と、対照として溶媒である1-ブロモナフタレン又はNMPとの屈折率を、株式会社アタゴ製 DR-2M(商品名)装置を用いて測定した。その測定により得られた3点の測定値から近似直線を導いた。その近似直線から屈折率の測定対象物質である各化合物の100重量%の値を読み取り、屈折率の値とした。
[合成例1:化合物(6)(Bis-DPP)の合成]
 3000mLの4ツ口フラスコに、2,6-ジフェニルフェノール(以下「DPP」ともいう)400.0g(1.62mol)、ベンゾニトリル800.0g、及び塩化銅(1)47.0gを仕込み、空気を吹き込みながら65℃程度に昇温して48時間撹拌した。その後、前記4ツ口フラスコを冷却して室温まで温度を下げ、その後にメタノール800.0gと35%塩酸50.0gを滴下した。その後、析出した結晶を固液分離して緑色の結晶330.8gを得た。
 得られた前記緑色の結晶は、H-NMR及びIRにより、下記化合物(6)と下記化合物(6X)との混合物であることを確認した。
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
 2Lの4ツ口フラスコに前記緑色の結晶(化合物(6)及び(6X)の混合物)330.8g、キシレン864.0g、及びヒドラジン・一水和物81.1g(1.62mol)を仕込み、窒素フロー下で撹拌しつつ、70℃程度で3時間反応を行った。その後、水洗及び共沸脱水後に濾過を行った。その濾液を冷却しながら種結晶を加えて晶析を行い、固液分離して白色の結晶346.0g(収率87.1%)を得た。この白色の結晶をH-NMR及びIRにより測定したところ、前記化学式(6)で表される化合物(Bis-DPP)であることを確認した。化合物(6)(Bis-DPP)の融点は198℃、屈折率は1.705であった。
[合成例2:化合物(7)(Bis-DPP‐F)の合成]
 1000mLの4ツ口フラスコに、DPP246.3g(1.00mol)、トルエン183.2g、及びメタンスルホン酸24.6gを仕込み、窒素フロー下で撹拌しつつ、90℃に昇温した。つぎに、純度94%のパラホルムアルデヒド14.4g(0.45mol)を1時間かけて少量ずつ加え、さらに3時間撹拌した。その後、釜温度を冷却し、析出した結晶を固液分離して白色の結晶163.4gを得た。この白色の結晶をキシレン430.2gで溶解し、水洗、共沸脱水後に濾過を行った。その濾液を冷却しながら種結晶を加えて晶析を行い、固液分離して白色の結晶140.8g(収率62.0%、パラホルムアルデヒド換算)を得た。その白色の結晶をH-NMRにより測定することにより、前記化学式(7)で表される化合物(Bis-DPP-F)であることを確認した。化合物(7)(Bis-DPP-F)の融点は204~207℃、屈折率は1.689であった。
[実施例1:化合物(6)-1aの合成]
 300mLの4ツ口フラスコに化合物(6)(Bis-DPP)14.7g(0.030mol)、アセトン147.0g、48%水酸化ナトリウム5.3g(0.063mol)、及びベンジルトリメチルアンモニウムクロリド0.28gを仕込み、窒素フロー下で撹拌しながら55℃に昇温した。つぎに、塩化アリル9.2g(0.12mol)を2時間かけて滴下した。さらに、攪拌を続けながら5時間反応を行った。その後、過剰量の塩化アリルを留去した後、キシレン48.6gを加えて、水洗、共沸脱水後に濾過を行った。その濾液を冷却しながら種結晶を加えて晶析を行い、固液分離して白色の結晶14.2g(収率83.0%)を得た。得られた白色の結晶をH-NMR及びIRで分析したところ、下記化学式(6)-1aで表される化合物であることを確認した。得られた化合物(6)-1aの融点は192~194℃、屈折率は1.664であった。
Figure JPOXMLDOC01-appb-C000026
 化合物(6)-1aのH-NMRの測定結果を以下に記す。
化合物(6)-1a:
H-NMR(400MHz,CDCl):σ7.67-7.65(dd、8H),σ7.61(s、4H),σ7.45-7.42(t、8H),σ7.38-7.34(tt、4H),σ5.49-5.39(m、2H),σ4.89-4.81(dd、4H),σ3.78-3.76(dd、4H)
[実施例2:化合物(6)-2の合成]
 200mLの4ツ口フラスコに化合物(6)(Bis-DPP)19.6g(0.040mol)、エピクロロヒドリン29.6g(0.64mol)、及びベンジルトリメチルアンモニウムクロリド0.37gを仕込み、窒素フロー下で撹拌しながら100℃に昇温し、その温度でさらに3時間撹拌を行った。その後、過剰量のエピクロロヒドリンを留去した後、トルエン40.0gを加え、釜温度100℃で48%水酸化ナトリウム14.2g(0.17mol)を滴下し、9時間撹拌した。その後、トルエン30.0gを追加し、水洗、共沸脱水後に濾過を行った。その濾液を冷却しながら種結晶を加えて晶析を行い、固液分離して白色の結晶18.2g(収率75.5%)を得た。得られた白色の結晶をH-NMR及びIRで分析したところ、前記化学式(6)-2で表される化合物であることを確認した。得られた化合物(6)-2の融点は201~202℃、屈折率は1.669であった。
Figure JPOXMLDOC01-appb-C000027
 化合物(6)-2のH-NMRの測定結果を以下に記す。
化合物(6)-2:
H-NMR(400MHz,CDCl):σ7.68-7.65(dd、8H),σ7.61(s、4H),σ7.47-7.43(t、8H),σ7.39-7.35(tt、4H),σ3.40-3.36(dd、2H),σ3.28-3.24(dd、2H),σ2.66-2.62(m、2H),σ2.44-2.42(t、2H),σ2.04-2.02(dd、2H)
[実施例3:化合物(6)-3aの合成]
 200mLの4ツ口フラスコに化合物(6)(Bis-DPP)40.2g(0.082mol)、炭酸エチレン15.9g(0.090mol)、炭酸ナトリウム2.0g、及びジメチルアセトアミド40.2gを仕込み、窒素フロー下で撹拌しつつ、155℃に昇温して16時間撹拌した。その後、釜温度を100℃まで冷却し、濾過を行った。濾液にメタノール120.0gを加えて結晶を析出させた。析出した結晶を固液分離して白色の粗結晶43.5gを得た。得られた粗結晶とトルエン87.0gを仕込み、窒素フロー下で撹拌しつつ、115℃まで昇温して結晶を溶解した。その後、釜温度を冷却しながら種結晶を加えて晶析を行い、固液分離して白色の結晶41.0g(収率86.3%)を得た。得られた白色の結晶をH-NMR及びIRで分析したところ、下記化学式(6)-3aで表される化合物であることを確認した。得られた化合物(6)-3aの融点は200~202℃、屈折率は1.671であった。
Figure JPOXMLDOC01-appb-C000028
 化合物(6)-3aのH-NMRの測定結果を以下に記す。
化合物(6)-3a:
H-NMR(400MHz,CDCl):σ7.68-7.66(dd、8H),σ7.62(s、4H),σ7.50-7.46(t、8H),σ7.42-7.38(tt、4H),σ3.39-3.24(m、8H),σ1.10-1.07(t、2H)
[実施例4:化合物(6)-4aの合成]
 200mLの4ツ口フラスコに化合物(6)(Bis-DPP)7.8g(0.016mol)、トリエチルアミン5.4g(0.053mol)、ジメチルアセトアミド156.0g、及びp-メトキシフェノール0.004gを仕込み、溶解した後、5℃に冷却し、アクリル酸クロリド4.8g(0.053mol)を1時間かけて滴下し、さらに2時間撹拌した。その後、反応液を精製水400.0g中に滴下し、結晶を析出させた。固液分離をして白色の粗結晶9.6gを得た。得られた粗結晶とジメチルアセトアミド48.0gを仕込み、窒素フロー下で撹拌しつつ、85℃まで昇温して結晶を溶解させた。これを濾過後、濾液を冷却しながら種結晶を加えて晶析を行い、固液分離して白色の結晶6.6g(収率68.8%)を得た。得られた白色の結晶をH-NMR及びIRで分析したところ、下記化学式(6)-4aで表される化合物であることを確認した。得られた化合物(6)-4aの融点は218~220℃、屈折率は1.663であった。
Figure JPOXMLDOC01-appb-C000029
 化合物(6)-4aのH-NMRの測定結果を以下に記す。
化合物(6)-4a:
H-NMR(400MHz,CDCl):σ7.67(s、4H),σ7.51-7.48(dd、8H),σ7.41-7.37(t、8H),σ7.35-7.31(tt、4H),σ6.26-6.22(dd、2H),σ5.97-5.90(dd、2H),σ5.74-5.71(dd、2H)
[実施例5:化合物(6)-4bの合成]
 200mLの4ツ口フラスコに化合物(6)(Bis-DPP)7.8g(0.016mol)、トリエチルアミン5.4g(0.053mol)、ジメチルアセトアミド156.0g、及びp-メトキシフェノール0.004gを仕込み、溶解した後、5℃に冷却し、メタクリル酸クロリド5.5g(0.053mol)を1時間かけて滴下し、さらに4時間撹拌した。その後、反応液を精製水400.0g中に滴下し、結晶を析出させた。固液分離をして白色の粗結晶8.6gを得た。得られた粗結晶とキシレン17.2gを仕込み、窒素フロー下で撹拌しつつ、80℃まで昇温して結晶を溶解した。濾過後、濾液を冷却しながら種結晶を加えて晶析を行い、固液分離して薄橙色の結晶4.3g(収率42.9%)を得た。得られた薄橙色の結晶をH-NMR及びIRで分析したところ、下記化学式(6)-4bで表される化合物であることを確認した。得られた化合物(6)-4bの融点は208~215℃、屈折率は1.650であった。
Figure JPOXMLDOC01-appb-C000030
 化合物(6)-4bのH-NMRの測定結果を以下に記す。
化合物(6)-4b:
H-NMR(400MHz,CDCl):σ7.68(s、4H),σ7.51-7.48(dd、8H),σ7.41-7.37(t、8H),σ7.35-7.31(tt、4H),σ5.92(s、2H),σ5.43-5.42(dd、2H),σ1.70(s、6H)
[実施例6:化合物(7)-1aの合成]
 300mLの4ツ口フラスコに化合物(7)(Bis-DPP-F)15.1g(0.030mol)、アセトン151.0g、48%水酸化ナトリウム5.3g(0.063mol)、及びベンジルトリメチルアンモニウムクロリド0.28gを仕込み、窒素フロー下で撹拌し、60℃に昇温した。その温度で、塩化アリル9.2g(0.12mol)を2時間かけて滴下し、さらに5時間撹拌を行った。その後、過剰量の塩化アリルを留去した後、トルエン(40.0g)を加えて、水洗、共沸脱水後に濾過を行った。その濾液中のトルエンを留去させて濃縮し、橙色の液状物(16.9g、収率96.6%)を得た。得られた橙色の液状物をH-NMR及びIRで分析したところ、下記化学式(7)-1aで表される化合物であることを確認した。得られた化合物(7)-1aの屈折率は1.636であった。
Figure JPOXMLDOC01-appb-C000031
 化合物(7)-1aのH-NMRの測定結果を以下に記す。
化合物(7)-1a:
H-NMR(400MHz,CDCl):σ7.60-7.58(dd、8H),7.42-7.37(t、8H),σ7.34-7.30(tt、4H),σ7.22(s、4H),σ5.45-5.35(m、2H),σ4.86-4.77(dd、4H),σ4.05(s、2H),σ3.70-3.68(dd、4H) 
[実施例7:化合物(7)-2の合成]
 200mLの4ツ口フラスコに化合物(7)(Bis-DPP-F)10.1g(0.020mol)、エピクロロヒドリン14.8g(0.16mol)、及びベンジルトリメチルアンモニウムクロリド0.19gを仕込み、窒素フロー下で撹拌しながら100℃に昇温し、さらに4時間撹拌を行った。その後、過剰量のエピクロロヒドリンを留去した後、キシレン50.0gを加え、釜温度100℃で48%水酸化ナトリウム8.4g(0.10mol)を滴下し、9時間撹拌を行った。その後、水洗、共沸脱水後に濾過を行った。その濾液中のキシレンを留去させて濃縮し、薄い黄色の液状物12.1g(収率98.4%)を得た。得られた薄い黄色の液状物をH-NMR及びIRで分析したところ、前記化学式(7)-2で表される化合物であることを確認した。得られた化合物(7)-2の屈折率は1.639であった。
Figure JPOXMLDOC01-appb-C000032
 化合物(7)-2のH-NMRの測定結果を以下に記す。
化合物(7)-2:
H-NMR(400MHz,CDCl):σ7.61-7.58(dd、8H),σ7.43-7.39(t、8H),σ7.35-7.31(tt、4H),σ7.22(s、4H),σ4.05(s、2H),σ3.33-3.29(dd、2H),σ3.19-3.15(dd、2H),σ2.61-2.57(m、2H),σ2.41-2.38(dd、2H),σ2.00-1.98(dd、2H)
[実施例8:化合物(7)-3aの合成]
 200mLの4ツ口フラスコに化合物(7)(Bis-DPP-F)10.1g(0.020mol)、炭酸エチレン4.1g(0.023mol)、炭酸ナトリウム0.5g、及びジメチルアセトアミド20.2gを仕込み、窒素フロー下で撹拌しながら150℃に昇温し、さらに9時間撹拌を行った。その後、釜温度を60℃まで冷却し、濾過を行った。濾液に精製水300.0gを加えて結晶を析出させた。析出した結晶を固液分離して白色の粗結晶11.2gを得た。得られた粗結晶とキシレン44.8gを仕込み、窒素フロー下で撹拌しながら100℃まで昇温して結晶を溶解させた。それを濾過後、濾液を冷却しながら種結晶を加えて晶析を行い、固液分離して白色の結晶8.6g(収率72.3%)を得た。得られた白色の結晶をH-NMR及びIRで分析したところ、下記化学式(7)-3aで表される化合物であることを確認した。得られた化合物(7)-3aの融点は178~179℃、屈折率は1.653であった。
Figure JPOXMLDOC01-appb-C000033
 化合物(7)-3aのH-NMRの測定結果を以下に記す。
化合物(7)-3a:
H-NMR(400MHz,CDCl):σ7.61-7.58(dd、8H),σ7.46-7.42(t、8H),σ7.38-7.34(tt、4H),σ7.23(s、4H),σ4.06(s、2H),σ3.31-3.19(m、8H),σ1.06-1.03(t、2H)
[実施例9:化合物(7)-4aの合成]
 200mLの4ツ口フラスコに化合物(7)(Bis-DPP-F)8.0g(0.016mol)、トリエチルアミン5.4g(0.053mol)、ジメチルアセトアミド160.0g、及びp-メトキシフェノール0.004gを仕込み、溶解した後、5℃に冷却し、アクリル酸クロリド4.8g(0.053mol)を1時間かけて滴下した。その後、4時間撹拌した。その後、トルエン50.0gを追加し、水洗、共沸脱水後に濾過を行った。その濾液を冷却しながら種結晶を加えて晶析を行い、固液分離して淡黄色の結晶6.6g(収率67.3%)を得た。得られた淡黄色の結晶をH-NMR及びIRで分析したところ、下記化学式(7)-4aで表される化合物であることを確認した。得られた化合物(7)-4aの融点は139~144℃、屈折率は1.647であった。
Figure JPOXMLDOC01-appb-C000034
 化合物(7)-4aのH-NMRの測定結果を以下に記す。
化合物(7)-4a:
H-NMR(400MHz,CDCl):σ7.44-7.41(dd、8H),σ7.38-7.31(m、12H),σ7.30(s、4H),σ6.22-6.18(dd、2H),σ5.93-5.86(dd、2H),σ5.70-5.67(dd、2H),σ4.13(s、2H) 
[実施例10:化合物(6)-5a及びその重合体の合成]
 200mLの4ツ口フラスコに、実施例3で合成した化合物(6)-3aを5.8g(0.010mol)、トルエン58.0g、メタンスルホン酸0.6g、p-メトキシフェノール0.004g、及びアクリル酸2.0g(0.028mol)を仕込み、撹拌を行った。80℃に昇温して、フラスコ内をおよそ0.033MPa程度に減圧してトルエンを還流させながら7時間撹拌を行った。反応液にトルエン20.0gを加えて、水洗、共沸脱水後に濾過を行った。その濾液中のトルエンを留去させて濃縮し、薄い黄色の液状物6.0g(収率87.4%)を得た。その液状物を静置して結晶化させた。そのようにして得られた化合物の平均分子量は810であり、その平均分子量とIR分析結果とから、下記化学式(6)-5aで表される化合物とその重合体(重合物)との組成物(混合物)であることが確認された。得られた組成物(混合物)の融点は88~93℃、屈折率は1.630であった。実施例10で得られた組成物(混合物)のIR分析結果を図12に、実施例10の原料に用いた実施例3の化合物(6)-3aのIR分析結果を図5に示した。
Figure JPOXMLDOC01-appb-C000035
[実施例11:化合物(7)-5a及びその重合体の合成]
 200mLの4ツ口フラスコに実施例8で合成した化合物(7)-3aを5.9g(0.010mol)、トルエン60.0g、メタンスルホン酸0.6g、p-メトキシフェノール0.004g、及びアクリル酸2.0g(0.028mol)を仕込み、撹拌した。その後、80℃に昇温して、フラスコ内をおよそ0.033MPa程度に減圧してトルエンを還流させながら13時間撹拌した。そのようにして得られた反応液にトルエン20.0gを加えて、水洗、共沸脱水後に濾過を行った。その濾液中のトルエンを留去させて濃縮し、薄い黄色の液状物6.2g(収率88.6%)を得た。得られた薄い黄色の液状物化合物の平均分子量は1318であり、その平均分子量とIR分析結果とから、下記化学式(7)-5aで表される化合物とその重合体(重合物)との組成物(混合物)であることが確認された。この組成物(混合物)の屈折率は1.617であった。実施例11で得られた組成物(混合物)のIR分析結果を図13に、実施例11の原料に用いた実施例8の化合物(7)-3aのIR分析結果を図10に示した。
Figure JPOXMLDOC01-appb-C000036
 なお、実施例(合成例を含む)で合成(製造)した化合物のIRスペクトル図(IR分析結果)を、図1~図13にまとめて示す。図1は、合成例1で得られた化合物のIR分析結果を示す図である。図2は、合成例2で得られた化合物のIR分析結果を示す図である。図3は、実施例1で得られた化合物のIR分析結果を示す図である。図4は、実施例2で得られた化合物のIR分析結果を示す図である。図5は、前述のとおり、実施例3で得られた化合物のIR分析結果を示す図である。図6は、実施例4で得られた化合物のIR分析結果を示す図である。図7は、実施例5で得られた化合物のIR分析結果を示す図である。図8は、実施例6で得られた化合物のIR分析結果を示す図である。図9は、実施例7で得られた化合物のIR分析結果を示す図である。図10は、前述のとおり、実施例8で得られた化合物のIR分析結果を示す図である。図11は、実施例9で得られた化合物のIR分析結果を示す図である。図12は、前述のとおり、実施例10で得られた化合物(組成物、混合物)のIR分析結果を示す図である。図13は、前述のとおり、実施例11で得られた化合物(組成物、混合物)のIR分析結果を示す図である。なお、図1~13において、横軸は波数(cm-1)であり、縦軸は透過率である。
[比較例1]
 200mLの4ツ口フラスコに4,4’-ジヒドロキシビフェニル27.9g(0.15mol)、炭酸エチレン29.1g(0.33mol)、炭酸ナトリウム1.4g、及びジメチルアセトアミド83.7gを仕込み、窒素フロー下で撹拌し、155℃に昇温して8時間撹拌した。その後、釜温度を110℃まで冷却し、濾過。濾液を冷却しながら種結晶を加えて晶析を行い、固液分離して、下記化学式(9)で表される化合物の白色の結晶29.9g(収率72.7%)を得た。得られた化合物(9)の融点は217~219℃、屈折率は1.612であった。
Figure JPOXMLDOC01-appb-C000037
[比較例2]
 200mLの4ツ口フラスコにビス(4-ヒドロキシフェニル)メタン30.0g(0.15mol)、炭酸エチレン29.1g(0.33mol)、炭酸ナトリウム1.5g、及びジメチルアセトアミド30.0gを仕込み、窒素フロー下で撹拌し、155℃に昇温して15時間撹拌した。その後、釜温度を冷却し、反応液を精製水200.0gに加えて結晶を析出させた。析出した結晶を固液分離して白色の粗結晶42.8gを得た。得られた粗結晶と4-メチル-2-ペンタノン150.0gを仕込み、窒素フロー下で撹拌しつつ、100℃まで昇温して結晶を溶解した。濾過後、濾液を冷却しながら種結晶を加えて晶析を行い、固液分離して、下記化学式(10)で表される化合物の白色の結晶30.6g(収率70.7%)を得た。得られた化合物(10)の融点は109~111℃、屈折率は1.579であった。
Figure JPOXMLDOC01-appb-C000038
 実施例及び比較例で合成した化合物の屈折率を、下記表1にまとめて示す。
[表1]
化合物     屈折率
実施例 1  1.664
実施例 2  1.669
実施例 3  1.671
実施例 4  1.663
実施例 5  1.650
実施例 6  1.636
実施例 7  1.639
実施例 8  1.653
実施例 9  1.647
実施例10  1.617
実施例11  1.612
比較例 1  1.612
比較例 2  1.579
 以上、説明したとおり、実施例で合成(製造)した本発明の化合物は、いずれも重合性の官能基を有する化合物であった。さらに、実施例で合成(製造)した本発明の化合物は、いずれも、前記表1に示したように1.636~1.671の高い屈折率を示し、高屈折率が望まれる光学用樹脂材料等に適していることが確認できた。
 本発明は、以下の付記のようにも記載することが可能である。ただし、本発明は、これらには限定されない。
(付記1)
 下記化学式(1)で表される化合物、その互変異性体若しくは立体異性体又はそれらの塩。
Figure JPOXMLDOC01-appb-C000039
 前記化学式(1)中、
 Aは、単結合、2価の炭化水素基、又はスルホニル基であり、前記2価の炭化水素基における水素原子の1つ以上は、それぞれ独立して、メチル基若しくはフェニル基で置換されていてもよく、
 X及びXは、それぞれ重合性官能基であり、互いに同一でも異なっていてもよい。
(付記2)
 前記化学式(1)中のAにおいて、
 前記2価の炭化水素基は、2価の鎖状の炭化水素基又は2価の脂環式炭化水素基であり、
 前記2価の鎖状の炭化水素基又は前記2価の脂環式炭化水素基における水素原子の1つ以上は、それぞれ独立して、メチル基若しくはフェニル基で置換されていてもよい、
付記1記載の化合物、その互変異性体若しくは立体異性体又はそれらの塩。
(付記3)
 前記化学式(1)中、
 Aは、単結合、メチレン基、又はシクロヘキシレン基であり、前記メチレン基中の水素原子は、それぞれメチル基又はフェニル基に置換されていても置換されていなくてもよい、
付記1又は2記載の化合物、その互変異性体若しくは立体異性体又はそれらの塩。
(付記4)
前記化学式(1)中、X及びXが、それぞれ独立して、下記化学式(2)~(5)のいずれかの基で表される置換基である、付記1から3のいずれかに記載の化合物、その互変異性体若しくは立体異性体又はそれらの塩。
Figure JPOXMLDOC01-appb-C000040
 前記化学式(2)中、
 *は、前記化学式(1)中のO原子に対する結合手であり、
 nは、0又は1の整数である。
Figure JPOXMLDOC01-appb-C000041
 前記化学式(3)中、
 *は、前記化学式(1)中のO原子に対する結合手である。
Figure JPOXMLDOC01-appb-C000042
 前記化学式(4)中、*は、前記化学式(1)中のO原子に対する結合手であり、
 Dは、エチレン基又はイソプロピレン基であり、
 mは、1~3の整数であり、
 Dが複数の場合は、各Dは互いに同一でも異なっていてもよい。
Figure JPOXMLDOC01-appb-C000043
 前記化学式(5)中、*は、前記化学式(1)中のO原子に対する結合手であり、
 Eは、エチレン基又はイソプロピレン基であり、
 Fは、水素原子又はメチル基であり、
 lは、0~3の整数であり、
 Eが複数の場合は、各Eは互いに同一でも異なっていてもよい。
(付記5)
 前記化学式(4)中、Dが、イソプロピレン基である、
付記4記載の化合物、その互変異性体若しくは立体異性体又はそれらの塩。
(付記6)
 前記化学式(1)において、
 Aが、単結合、メチレン基、又はシクロヘキシレン基であり、前記メチレン基の水素原子の1つ以上は、それぞれ独立して、メチル基若しくはフェニル基で置換されていてもよい、
付記4又は5記載の化合物、その互変異性体若しくは立体異性体又はそれらの塩。
(付記7)
 付記1から6のいずれかに記載の化合物、その互変異性体若しくは立体異性体又はそれらの塩を含む屈折率向上剤。
(付記8)
 付記1から6のいずれかに記載の化合物、その互変異性体若しくは立体異性体又はそれらの塩を含むモノマー成分の重合体。
 以上、実施形態及び実施例を参照して本発明を説明したが、本発明は、上記実施形態及び実施例に限定されるものではない。本発明の構成や詳細は、本発明の趣旨を逸脱しない範囲内で、必要に応じて、任意にかつ適宜に組み合わせ、変更し、又は選択して採用できるものである。
 以上、説明したとおり、本発明によれば、高屈折率の樹脂材料を提供可能な化合物、屈折率向上剤及び重合体を提供することができる。本発明の化合物、屈折率向上剤及び重合体の用途は特に限定されず、一般的な高屈折率の樹脂材料の用途を含む広範な用途に利用可能であり、産業上の利用価値は多大である。
 この出願は、2022年6月28日に出願された日本出願特願2022-104012を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (8)

  1.  下記化学式(1)で表される化合物、その互変異性体若しくは立体異性体又はそれらの塩。
    Figure JPOXMLDOC01-appb-C000001
     前記化学式(1)中、
     Aは、単結合、2価の炭化水素基、又はスルホニル基であり、前記2価の炭化水素基における水素原子の1つ以上は、それぞれ独立して、メチル基若しくはフェニル基で置換されていてもよく、
     X及びXは、それぞれ重合性官能基であり、互いに同一でも異なっていてもよい。
  2.  前記化学式(1)中のAにおいて、
     前記2価の炭化水素基は、2価の鎖状の炭化水素基又は2価の脂環式炭化水素基であり、
     前記2価の鎖状の炭化水素基又は前記2価の脂環式炭化水素基における水素原子の1つ以上は、それぞれ独立して、メチル基若しくはフェニル基で置換されていてもよい、
    請求項1記載の化合物、その互変異性体若しくは立体異性体又はそれらの塩。
  3.  前記化学式(1)中、
     Aは、単結合、メチレン基、又はシクロヘキシレン基であり、前記メチレン基中の水素原子は、それぞれメチル基又はフェニル基に置換されていても置換されていなくてもよい、
    請求項1又は2記載の化合物、その互変異性体若しくは立体異性体又はそれらの塩。
  4. 前記化学式(1)中、X及びXが、それぞれ独立して、下記化学式(2)~(5)のいずれかの基で表される置換基である、請求項1から3のいずれか一項に記載の化合物、その互変異性体若しくは立体異性体又はそれらの塩。
    Figure JPOXMLDOC01-appb-C000002
     前記化学式(2)中、
     *は、前記化学式(1)中のO原子に対する結合手であり、
     nは、0又は1の整数である。
    Figure JPOXMLDOC01-appb-C000003
     前記化学式(3)中、
     *は、前記化学式(1)中のO原子に対する結合手である。
    Figure JPOXMLDOC01-appb-C000004
     前記化学式(4)中、*は、前記化学式(1)中のO原子に対する結合手であり、
     Dは、エチレン基又はイソプロピレン基であり、
     mは、1~3の整数であり、
     Dが複数の場合は、各Dは互いに同一でも異なっていてもよい。
    Figure JPOXMLDOC01-appb-C000005
     前記化学式(5)中、*は、前記化学式(1)中のO原子に対する結合手であり、
     Eは、エチレン基又はイソプロピレン基であり、
     Fは、水素原子又はメチル基であり、
     lは、0~3の整数であり、
     Eが複数の場合は、各Eは互いに同一でも異なっていてもよい。
  5.  前記化学式(4)中、Dが、イソプロピレン基である、
    請求項4記載の化合物、その互変異性体若しくは立体異性体又はそれらの塩。
  6.  前記化学式(1)において、
     Aが、単結合、メチレン基、又はシクロヘキシレン基であり、前記メチレン基の水素原子の1つ以上は、それぞれ独立して、メチル基若しくはフェニル基で置換されていてもよい、
    請求項4又は5記載の化合物、その互変異性体若しくは立体異性体又はそれらの塩。
  7.  請求項1から6のいずれか一項に記載の化合物、その互変異性体若しくは立体異性体又はそれらの塩を含む屈折率向上剤。
  8.  請求項1から6のいずれか一項に記載の化合物、その互変異性体若しくは立体異性体又はそれらの塩を含むモノマー成分の重合体。
PCT/JP2023/023674 2022-06-28 2023-06-26 化合物、屈折率向上剤及び重合体 WO2024004962A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023571960A JP7557909B2 (ja) 2022-06-28 2023-06-26 化合物、屈折率向上剤及び重合体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-104012 2022-06-28
JP2022104012 2022-06-28

Publications (1)

Publication Number Publication Date
WO2024004962A1 true WO2024004962A1 (ja) 2024-01-04

Family

ID=89383107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/023674 WO2024004962A1 (ja) 2022-06-28 2023-06-26 化合物、屈折率向上剤及び重合体

Country Status (2)

Country Link
JP (1) JP7557909B2 (ja)
WO (1) WO2024004962A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58170774A (ja) * 1982-03-31 1983-10-07 Kanegafuchi Chem Ind Co Ltd 新規エポキシ樹脂およびその製造方法
JPH02111743A (ja) * 1988-10-19 1990-04-24 Idemitsu Kosan Co Ltd アクリル酸誘導体
JPH08188625A (ja) * 1995-01-11 1996-07-23 Sekisui Chem Co Ltd 硬化性樹脂
JP2008247755A (ja) * 2007-03-29 2008-10-16 Nippon Kayaku Co Ltd (メタ)アクリレート化合物及びそれを含有する樹脂組成物並びにその硬化物
JP2018012828A (ja) * 2016-07-07 2018-01-25 Jsr株式会社 硬化性組成物、凹凸パターンの形成方法及び化合物
WO2023036868A1 (en) * 2021-09-10 2023-03-16 Reuter Chemische Apparatebau E.K. (het)aryl substituted bisphenol compounds and thermoplastic resins

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58170774A (ja) * 1982-03-31 1983-10-07 Kanegafuchi Chem Ind Co Ltd 新規エポキシ樹脂およびその製造方法
JPH02111743A (ja) * 1988-10-19 1990-04-24 Idemitsu Kosan Co Ltd アクリル酸誘導体
JPH08188625A (ja) * 1995-01-11 1996-07-23 Sekisui Chem Co Ltd 硬化性樹脂
JP2008247755A (ja) * 2007-03-29 2008-10-16 Nippon Kayaku Co Ltd (メタ)アクリレート化合物及びそれを含有する樹脂組成物並びにその硬化物
JP2018012828A (ja) * 2016-07-07 2018-01-25 Jsr株式会社 硬化性組成物、凹凸パターンの形成方法及び化合物
WO2023036868A1 (en) * 2021-09-10 2023-03-16 Reuter Chemische Apparatebau E.K. (het)aryl substituted bisphenol compounds and thermoplastic resins

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ANDO, SHINJI: "Control of Refractive Indices of Optical Polymers: Theoretical Prediction and Molecular Design Method", KOGAKU - JAPANESE JOURNAL OF OPTICS, OYO BUTSURI GAKKAI. KOGAKU KONWAKAI, TOKYO, JP, vol. 44, no. 8, 1 August 2015 (2015-08-01), JP , pages 298 - 303, XP009551957, ISSN: 0389-6625 *
GOTO KOHEI, AKIIKE TOSHIYUKI, INOUE YASUTAKE, MATSUBARA MINORU: "Polymer design for thermally stable polyimides with low dielectric constant", MACROMOLECULAR SYMPOSIA, WILEY VCH VERLAG WEINHEIM, DE, vol. 199, no. 1, 1 October 2003 (2003-10-01), DE , pages 321 - 332, XP093121566, ISSN: 1022-1360, DOI: 10.1002/masy.200350927 *
HAY A. S., BOLON D. A., LEIMER K. R., CLARK R. F.: "Photosensitive polyacetylenes", JOURNAL OF POLYMER SCIENCE PART B: POLYMER LETTERS, INTERSCIENCE PUBLISHERS, JP, vol. 8, no. 2, 1 February 1970 (1970-02-01), JP , pages 97 - 99, XP093121564, ISSN: 0449-2986, DOI: 10.1002/pol.1970.110080207 *
KATO MARIKO, HIROSHI ITO: "Processability and Optical Properties of Fluorene Based Polyester Resin ", JOURNAL OF THE JAPAN SOCIETY OF POLYMER PROCESSING, vol. 24, no. 2, 20 January 2012 (2012-01-20), pages 46 - 50, XP093121572, DOI: 10.4325/seikeikakou.24.46 *
KIM WHAN GI, HAY ALLAN S.: "Synthesis of soluble poly(ether imides) from bis(ether anhydrides) containing bulky substituents", MACROMOLECULES, AMERICAN CHEMICAL SOCIETY, US, vol. 26, no. 20, 27 September 1993 (1993-09-27), US , pages 5275 - 5280, XP093121562, ISSN: 0024-9297, DOI: 10.1021/ma00072a001 *

Also Published As

Publication number Publication date
JPWO2024004962A1 (ja) 2024-01-04
JP7557909B2 (ja) 2024-09-30

Similar Documents

Publication Publication Date Title
EP3385300B1 (en) Resin composition, stretched film, circularly polarizing plate, and image display device
JP5466927B2 (ja) フルオレンポリエステルオリゴマー及びその製造方法
WO2023195504A1 (ja) 熱可塑性樹脂及びそれを含む光学レンズ
KR20240063141A (ko) (헤트)아릴 치환된 비스페놀 화합물 및 열가소성 수지
JP7200668B2 (ja) オリゴアザフルオレンモノマー
WO2024004962A1 (ja) 化合物、屈折率向上剤及び重合体
JPS6322540A (ja) 4−ハイドロキシフエニル4−ハイドロキシベンゾエ−トの製法
JP7463020B2 (ja) 樹脂およびその製造方法
US20160023978A1 (en) 6-hydroxy-2-naphthalenyl fluorene derivatives and lens and camera module using the same
CN113330051B (zh) 热塑性树脂和光学构件
KR20240011699A (ko) 폴리카보네이트의 제조 방법
JP2636042B2 (ja) 4,4▲′′′▼―ジヒドロキシクォーターフェニル誘導体およびその製造方法
KR20220023967A (ko) 열가소성 수지, 그것으로 이루어지는 광학 필름, 디올 화합물, 디에스테르 화합물
JP3073256B2 (ja) 高分子液晶ポリウレタン
JP4243822B2 (ja) イソシアヌレート化合物とその製造方法
CN115087648B (zh) 化合物、热塑性树脂、光学构件、光学透镜
JPH11228577A (ja) 高純度スピログリコールの製造方法
JPH01275631A (ja) 液晶性ビス‐クロロ蟻酸エステル、その製造方法、及びそれから製造された液晶性n‐アルキルポリウレタン及びポリカーボネート
CN114702655B (zh) 聚碳酸酯及其制备方法和应用
JP7460259B2 (ja) 樹脂およびその製造方法
JP3136696B2 (ja) 変性ポリカーボネートの製造方法
KR20160013784A (ko) 6-히드록시-2-나프탈레닐 플루오렌 유도체 및 이를 이용한 렌즈와 카메라 모듈
WO1994007937A2 (en) Partially-fluorinated polymers
JPH04300918A (ja) 二環ポリエステルカーボネート樹脂
JP6318787B2 (ja) オリゴフルオレンジアリールエステルの製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023571960

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23831402

Country of ref document: EP

Kind code of ref document: A1