WO2023286482A1 - 電解コンデンサおよび電解コンデンサの製造方法 - Google Patents

電解コンデンサおよび電解コンデンサの製造方法 Download PDF

Info

Publication number
WO2023286482A1
WO2023286482A1 PCT/JP2022/022316 JP2022022316W WO2023286482A1 WO 2023286482 A1 WO2023286482 A1 WO 2023286482A1 JP 2022022316 W JP2022022316 W JP 2022022316W WO 2023286482 A1 WO2023286482 A1 WO 2023286482A1
Authority
WO
WIPO (PCT)
Prior art keywords
foil
mass
sintered
electrolytic capacitor
sintered body
Prior art date
Application number
PCT/JP2022/022316
Other languages
English (en)
French (fr)
Inventor
努 金子
美成 櫻井
Original Assignee
ルビコン株式会社
陽光東洋メタルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=83977441&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2023286482(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ルビコン株式会社, 陽光東洋メタルズ株式会社 filed Critical ルビコン株式会社
Priority to CN202280040645.0A priority Critical patent/CN117480583A/zh
Priority to JP2023535174A priority patent/JPWO2023286482A1/ja
Priority to CN202280008571.2A priority patent/CN116802759A/zh
Priority to US18/569,030 priority patent/US20240282534A1/en
Priority to PCT/JP2022/026649 priority patent/WO2023286654A1/ja
Priority to KR1020247000250A priority patent/KR20240024892A/ko
Priority to JP2023535254A priority patent/JPWO2023286654A1/ja
Priority to EP22841998.2A priority patent/EP4343800A1/en
Publication of WO2023286482A1 publication Critical patent/WO2023286482A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/052Sintered electrodes
    • H01G9/0525Powder therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/035Liquid electrolytes, e.g. impregnating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • H01G9/045Electrodes or formation of dielectric layers thereon characterised by the material based on aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/052Sintered electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/055Etched foil electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/145Liquid electrolytic capacitors

Definitions

  • the present invention relates to an electrolytic capacitor and a method for manufacturing an electrolytic capacitor.
  • An electrolytic capacitor in which an electrolytic solution is impregnated in a capacitor element in which a separator is arranged between an anode foil and a cathode foil on which an oxide film or the like is formed as a dielectric layer.
  • metal foils with increased specific surface areas are used as electrode foils by means of surface enlargement treatment.
  • Surface expansion treatment is generally performed by forming a large number of pores on the surface of a metal foil by an electrochemical etching treatment (hereafter, the metal foil subjected to the etching treatment is referred to as an "etching foil”. may be indicated).
  • etching foil the metal foil subjected to the etching treatment
  • the etching process has disadvantages such as the use of chemicals such as hydrochloric acid, which have a relatively large environmental and economic burden, and the electrochemical dissolution of the metal foil, which may lead to a decrease in foil strength. .
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2008-98279 discloses that a metal powder (in this document, aluminum powder), a binder (in this document, Then, a resin binder) and a composition containing a solvent (solvent in the document) are applied, and a sintered body film is formed by heating and sintering to form a sintered body film, thereby increasing the specific surface area.
  • a foil having a metal sintered body at least on its surface may be referred to as a “sintered foil”).
  • the organic binder evaporates when metal powder is sintered, but depending on the type and sintering conditions, thermal decomposition or the like may occur, and some components may remain as carbon residue on the electrode foil.
  • This carbon residue is electrically conductive and causes an increase in leakage current in electrolytic capacitors.
  • electrolytic capacitors that use sintered foil tend to have a high leakage current, which causes deterioration of the electrolyte and an increase in the internal pressure of the capacitor element due to the generation of hydrogen gas, resulting in a deterioration in the life characteristics of the electrolytic capacitor.
  • the present invention has been made in view of the above circumstances, and is an electrolytic capacitor in which a sintered foil having a metal sintered body at least on its surface is applied as an electrode foil, and suppresses deterioration of life characteristics by reducing leakage current. It is an object of the present invention to provide an electrolytic capacitor and a method for manufacturing the same.
  • the present invention solves the above problems by means of solutions as described below as one embodiment.
  • An electrolytic capacitor comprises: a capacitor element having an anode foil on which a dielectric layer is formed; a cathode foil; and a separator disposed between the anode foil and the cathode foil; and an electrolytic solution impregnated therein, wherein the anode foil or the cathode foil is formed by forming a sintered body of a composition containing a metal powder into a foil shape, or a sintered body made of the sintered body A body film is formed on the surface of the base material, and the electrolytic solution contains 0.01 [mass%] to 2.0 [mass%] of one type of phosphorus oxyacid or its derivative or salt thereof. It is characterized by containing in the range.
  • the anode foil or the cathode foil is formed by forming a sintered body of a composition containing a metal powder into a foil shape, or a sintered body made of the sintered body
  • a method for producing an electrolytic capacitor comprising a sintered foil in which a film is formed on the surface of a base material, wherein the electrolytic solution contains 0.01 of one type of phosphorus oxyacid or derivative thereof or salt thereof. It is characterized by adding in the range of [% by mass] to 2.0 [% by mass].
  • Another electrolytic capacitor according to the present invention is a capacitor element having an anode foil on which a dielectric layer is formed, a cathode foil, and a separator disposed between the anode foil and the cathode foil. and an electrolytic solution impregnated in the capacitor element, wherein the anode foil or the cathode foil is formed in a foil shape from a sintered body of a composition containing metal powder, or the sintered A sintered body film composed of a body is formed on the surface of the base material, and the electrolytic solution contains two kinds of oxyacids of phosphorus, derivatives thereof, or salts thereof in a total amount of 0.02 [% by mass] to 2.0% by mass. It is characterized by containing in the range of 0 [mass %].
  • another electrolytic capacitor according to the present invention is a capacitor element having an anode foil on which a dielectric layer is formed, a cathode foil, and a separator disposed between the anode foil and the cathode foil. and an electrolytic solution impregnated in the capacitor element, wherein the anode foil or the cathode foil is formed in a foil shape from a sintered body of a composition containing metal powder, or the sintered A sintered film composed of a body is formed on the surface of the substrate, and the electrolytic solution contains two or more kinds of oxyacids of phosphorus, derivatives thereof, or salts thereof.
  • the anode foil or the cathode foil is formed by forming a foil-shaped sintered body of a composition containing a metal powder, or by sintering the sintered body.
  • a method for producing an electrolytic capacitor comprising a sintered foil in which a body film is formed on the surface of a base material, wherein the electrolytic solution contains two kinds of oxyacids of phosphorus, derivatives thereof, or salts thereof in total. It is characterized by adding in the range of 0.02 [mass %] to 2.0 [mass %].
  • the anode foil or the cathode foil is formed by forming a foil-shaped sintered body of a composition containing a metal powder, or by forming a sintered body of the sintered body.
  • the present invention in an electrolytic capacitor to which sintered foil is applied, it is possible to reduce leakage current and suppress deterioration of life characteristics while achieving high capacity due to sintered foil.
  • FIG. 1 is a schematic diagram (front sectional view) showing an example of an electrolytic capacitor according to this embodiment.
  • FIG. 2A is an explanatory diagram illustrating an example of a capacitor element in the electrolytic capacitor according to this embodiment.
  • FIG. 2B is an explanatory diagram illustrating another example of the capacitor element in the electrolytic capacitor according to the embodiment of the invention.
  • FIG. 3 is an explanatory diagram illustrating an example of a method for manufacturing an electrolytic capacitor according to this embodiment.
  • FIG. 3A is an overall view of the capacitor element shown in FIG. 2A.
  • FIG. 3B is a partial view showing in greater detail a portion of the capacitor element shown in FIG. 3A.
  • FIG. 4B is Table 2-2
  • FIG. 4C is Table 2-3
  • FIG. 4D is Table 2-4
  • FIG. 4E is Table 2-5.
  • FIG. 5 represents the results of Test 3 and is a graph of Table 3.
  • FIG. 5A shows leakage currents of Example 3-1 and Reference Example 3-1.
  • FIG. 5B shows leakage currents of Example 3-2 and Reference Example 3-2.
  • FIG. 6 shows the results of Test 3 and is a graph of Table 3, showing the leakage currents of Comparative Example 3 and Reference Example 3-3.
  • FIG. 1 is a schematic diagram (front sectional view) showing an example of an electrolytic capacitor 1 according to this embodiment.
  • FIG. 2A is an explanatory diagram illustrating an example of the capacitor element 2 in the electrolytic capacitor 1 according to this embodiment.
  • FIG. 2B is an explanatory diagram illustrating another example of the capacitor element 2.
  • FIG. 2A and 2B both schematically show an example of the basic configuration of the capacitor element 2.
  • FIG. A wound type electrolytic capacitor 1 will be described below as an example of an embodiment, but the present invention is not limited to this form, and may be, for example, a laminated type, a coin type, or the like.
  • an aluminum electrolytic capacitor 1 made of an electrode material mainly made of aluminum or an aluminum alloy and having an anode foil 8 having an oxide film 8d as a dielectric layer
  • the main material may be a valve metal other than aluminum or an alloy thereof.
  • the capacitor element 2 is accommodated in the exterior material 6.
  • the opening of the exterior material 6 is sealed with the sealing material 5, and the edge of the opening of the exterior material 6 is crimped by the sealing material 5 to be sealed.
  • Lead terminals 4 (anode terminal 4 a and cathode terminal 4 b ) are passed through two through-holes provided in sealing material 5 , and lead wires 11 are drawn out of electrolytic capacitor 1 .
  • the number and positions of the explosion-proof valves 7 are not limited, and they may be provided in the sealing material 5 or may be provided in both the exterior material 6 and the sealing material 5 .
  • the capacitor element 2 includes an anode foil 8, a cathode foil 9, and a separator 10 disposed between the anode foil 8 and the cathode foil 9. I have.
  • Anode terminal 4a and cathode terminal 4b are attached to anode foil 8 and cathode foil 9, respectively.
  • the electrode foils are made of an electrode material whose main material is a valve metal such as aluminum or tantalum or an alloy thereof, and optionally have a base material 8a that supports the electrode material.
  • the main material of the base material 8a is not particularly limited, the base material 8a can also be made of a valve metal such as aluminum or tantalum, or an alloy thereof. It should be noted that the fact that the material is the “main material” here means that the inclusion of a trace amount of impurities is allowed as will be described later.
  • the main material of the electrode material according to this embodiment is aluminum or an aluminum alloy.
  • the aluminum in the aluminum or aluminum alloy preferably has a purity of 99.80 [mass%] or more from the viewpoint of preventing defects caused by impurities, and further has a purity of 99 from the viewpoint of suppressing an increase in leakage current under high-temperature loads. .99 [mass %] or more is preferable.
  • use an alloy containing one or more of elements such as silicon, iron, copper, manganese, magnesium, chromium, zinc, titanium, vanadium, gallium, nickel, boron, zirconium, etc. can be done. In this case, the content of each of these elements is preferably 100 [mass ppm] or less, particularly 50 [mass ppm] or less.
  • the anode foil 8 is configured as a sintered foil
  • the cathode foil 9 is configured as an etched foil, both of which have an enlarged surface structure.
  • the sintered foil of anode foil 8 is a foil having a metal sintered body at least on its surface.
  • the cathode foil 9 is, for example, formed by subjecting an aluminum foil, which is an electrode material, to an etching treatment, but the cathode foil 9 may also be formed as a sintered foil.
  • the etching treatment may be performed by a DC electrolysis method, an AC electrolysis method, or the like.
  • the sintered foil can be formed, for example, by applying a composition containing at least aluminum powder to the surface of the aluminum foil, which is the base material 8a, and heating and sintering the composition.
  • a sintered foil having a sintered film 8b made of a sintered body of a composition containing aluminum powder formed on the surface of the aluminum foil can be formed.
  • the sintered body film 8b, which is the electrode material may be formed on at least one side of the aluminum foil, which is the base material 8a, facing the cathode foil 9.
  • the "surface of the substrate” in the claims may mean one side of the substrate 8a.
  • the material (main material) of the base material 8a and the sintered body film 8b does not necessarily have to match.
  • a sintered film 8b made of a sintered body of a composition containing an aluminum alloy powder may be formed on the surface of the aluminum foil that is the base material 8a.
  • the sintered foil can be formed by heating and sintering a composition containing at least aluminum powder without having the base material 8a, and forming a foil before and after that. .
  • a sintered foil composed of a foil-shaped sintered body 8c in which a sintered body of a composition containing aluminum powder is formed into a foil shape can be formed.
  • the sintered body film 8b and the foil-shaped sintered body 8c are obtained by sintering aluminum or aluminum alloy powder grains while maintaining gaps between them. That is, it is a porous sintered body in which each sintered grain 8e is connected while having voids to form a three-dimensional network structure.
  • the sintered foil has an enlarged surface structure with a specific surface area greater than that of the etched foil.
  • the electrolytic capacitor 1 according to this embodiment can achieve a larger capacitance than an electrolytic capacitor to which an etched foil is applied.
  • the sintered foil of FIGS. 2A and 2B may be subjected to an etching treatment to further widen the surface.
  • the composition containing aluminum or aluminum alloy powder may contain additives such as binders, solvents, sintering aids, and surfactants, if necessary.
  • additives such as binders, solvents, sintering aids, and surfactants, if necessary.
  • Publicly known products and commercially available products can be appropriately used as these additives.
  • binders include carboxy-modified polyolefin resin, vinyl chloride resin, vinyl acetate resin, vinyl chloride/vinyl acetate copolymer resin, vinyl alcohol resin, butyral resin, vinyl fluoride resin, acrylic resin, polyester resin, urethane resin, Synthetic resins such as epoxy resin, urea resin, phenolic resin, acrylonitrile resin, nitrocellulose resin, paraffin wax, polyethylene wax, wax, tar (dry distillation liquid), glue, lacquer, lacquer (pine resin), beeswax (beeswax) and other natural resins and the like can be used.
  • the solvent can be water, or an organic solvent such as ethanol, toluene, ketones, esters, or the like.
  • the composition containing the aluminum or aluminum alloy powder has moldability and shape retention, and the sintered body film 8b and the foil-shaped sintered body are obtained.
  • the joint 8c can be formed with an optimum thickness.
  • the sintering conditions for the composition are not limited, as an example, they may be set within a range from 560 [°C] to 660 [°C] and from 5 [hours] to 24 [hours].
  • the sintering atmosphere may be a vacuum, an inert gas atmosphere such as argon gas, an air atmosphere, an oxidizing atmosphere, a reducing atmosphere, or the like.
  • the pressure environment may be normal pressure, reduced pressure or increased pressure.
  • the composition contains an organic additive such as an organic binder, as an example, prior to sintering, it is preferable to perform heating in advance at 100 [° C.] or more and 600 [° C.] or less for 5 [hours] or more.
  • Such pretreatment sometimes referred to as “degreasing treatment”
  • sintering treatment evaporate the organic additives, but some components remain as carbon residue on the sintered body film 8b and the foil-shaped sintered body. 8c, which can cause an increase in the leakage current of the electrolytic capacitor 1.
  • the electrolytic capacitor 1 reduces the leakage current by the electrolyte composition described later, and realizes both a large capacitance due to the sintered foil and a low leakage current due to the electrolyte composition. can.
  • An oxide film 8d as a dielectric layer is formed by chemical conversion treatment on the surface of the anode foil 8 configured as a sintered foil as described above.
  • the chemical conversion treatment may be performed, for example, by an anodizing treatment in which the target metal is used as an anode and is immersed in a chemical conversion bath and a voltage is applied to form the oxide film 8d, or the target metal is simply placed in the chemical conversion bath. It may be performed by a process of immersion.
  • the cathode foil 9 is basically not chemically treated, but the surface of the cathode foil 9 is naturally oxidized by oxygen in the air. (not shown) are formed.
  • the separator 10 disposed between the anode foil 8 and the cathode foil 9 to partition them is not particularly limited in structure. Cloths, sheets, films, etc. formed of synthetic fibers can be applied. Moreover, a mixed product, a blended product, etc. of natural fibers and synthetic fibers may be applied.
  • FIG. 2 schematically shows an example of the basic configuration of the capacitor element 2 and shows one separator 10, the number is not limited in practice, and as an example, as shown in FIG. 3B , two sheets (the first separator 10a and the second separator 10b) may be provided.
  • the capacitor element 2 is impregnated with the electrolytic solution 3 .
  • the electrolytic solution 3 is contained in the gap between the two electrode foils 8 and 9 , and part of the electrolytic solution 3 is also impregnated into the separator 10 depending on the configuration and material of the separator 10 .
  • Electrolytic solution 3 is configured to come into contact with the dielectric layer (oxide film 8 d ) formed on anode foil 8 and substantially function as a true cathode that serves as a counter electrode of anode foil 8 .
  • the electrolytic solution 3 does not have to be completely filled between the electrode foils 8 and 9 as long as the function can be exhibited. There may be areas where there is no
  • the electrolyte solution 3 is a fluid component.
  • the electrolytic solution 3 contains a solvent, a solute that is an electrolyte, and further contains predetermined additives.
  • a solvent consisting only of an organic solvent, or a water-organic solvent system in which a predetermined amount of water is added to an organic solvent as a main solvent, or the like can be applied.
  • the water-organic solvent system can increase the dissolving power of the electrolyte and the mobility of ions, and can reduce the specific resistance of the electrolyte solution 3 .
  • electrical properties can be ensured at lower temperatures.
  • the solvent consists only of an organic solvent, the electrolytic solution 3 does not contain water. It can prevent the internal pressure from rising.
  • organic solvents examples include protic solvents such as monohydric alcohols such as methyl alcohol, ethyl alcohol, propyl alcohol and butyl alcohol; dihydric alcohols such as ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol and propylene glycol; Examples include trihydric alcohols such as glycerin, derivatives thereof, and the like.
  • lactone compounds such as ⁇ -butyrolactone, sulfolane, methylsulfolane, dimethylsulfolane, ethylene carbonate, propylene carbonate, pyrrolidine, 2-pyrrolidinone, N-methyl-2-pyrrolidinone, 1,3-dimethyl- 2-imidazolidinone, tetrahydrofuran, acetonitrile, N-methylformamide, N,N-dimethylformamide, nitrobenzene, and derivatives thereof.
  • one type may be used alone, or two or more types may be mixed and used.
  • both protic and aprotic solvents may be used.
  • organic acids, inorganic acids, composite compounds of organic acids and inorganic acids, derivatives thereof, or salts thereof can be applied to the solute that is the electrolyte.
  • one type may be used alone, or two or more types may be mixed and used.
  • both organic and inorganic acids may be used.
  • organic acids and derivatives thereof include monocarboxylic acids such as formic acid, acetic acid, propionic acid, butyric acid, benzoic acid, caprylic acid, and derivatives thereof.
  • Dicarboxylic acids such as oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, fumaric acid, maleic acid, phthalic acid, azelaic acid, sebacic acid, 1,6-decanedicarboxylic acid and 5,6-decanedicarboxylic acid acid, 1,10-decanedicarboxylic acid, and derivatives thereof.
  • hydroxycarboxylic acids include citric acid, salicylic acid, and derivatives thereof.
  • inorganic acids and derivatives thereof include boric acid, sulfamic acid, and derivatives thereof.
  • composite compounds of organic acids and inorganic acids and derivatives thereof include boron complexes of dicarboxylic acids or hydroxycarboxylic acids. acid, borodiglycolic acid, borodicitric acid, borodisalicylic acid, and derivatives thereof.
  • Examples of salts of organic acids, inorganic acids, composite compounds of organic acids and inorganic acids, and derivatives thereof include ammonium salts, alkylammonium salts, amine salts, amidine salts, sodium salts, potassium salts, and the like. mentioned.
  • Examples of amine salts include dimethylamine, diethylamine, trimethylamine, triethylamine, ethyldimethylamine, diethylmethylamine, methanolamine, ethanolamine, dimethanolamine, diethanolamine, trimethanolamine, triethanolamine, pyrrolidine, piperidine, piperazine. , morpholine, methylmorpholine, ethylmorpholine, oxazolidine, thiomorpholine, thiazolidine and the like.
  • amine salts for example, when an amine salt is used as a solute component, leakage current, especially under high temperature load, is reduced over a long period of time compared to when an ammonium salt or the like is used. Therefore, it is possible to extend the life of the electrolytic capacitor 1 when it is used at high temperatures.
  • the mechanism of the leakage current reduction effect of this amine salt is, for example, that the unshared electron pair of the nitrogen atom, which is made negative by the electron-donating property of the alkyl group of the amine, forms electrons on the surface of the aluminum or aluminum alloy foil, which is the electrode foil. By providing and adsorbing , it is conceivable that the defective portion of the oxide film is protected by amine.
  • the electrolytic capacitor 1 to which the sintered foil is applied has not only the leakage current originating from the defective portion of the oxide film 8d as in the case of the etched foil, but also the additive used when forming the sintered body.
  • a remaining portion of a substance for example, an organic binder or the like
  • the amine salt (amine) contained in the electrolytic solution 3 acts on each starting point of the leakage current, and as a result, the leakage current reduction effect peculiar to the electrolytic capacitor 1 to which the sintered foil is applied is produced.
  • electrolyte solution 3 does not necessarily need to be composed of amine salts in order to obtain this effect. If at least the main solute (for example, 50 [mass %] or more of the solute component) is composed of an amine salt, a certain or more leakage current reduction effect can be obtained.
  • electrolyte solution 3 containing an amine salt is a convenient expression due to the fact that the amine salt is added during the preparation of the electrolytic solution 3, and the "salt" is added during the action after the addition. It does not have to be contained in the state.
  • the solute which is an electrolyte, should be added in an optimum amount according to the type within the range where the desired conductivity can be secured and it can be dissolved in the solvent.
  • an organic acid, a derivative thereof, or a salt thereof may be added in a range of about 3 [mass %] to 30 [mass %] of the total mass of the electrolytic solution 3 .
  • the inorganic acid, its derivative, or salt thereof may be added in the range of about 0.1 [mass %] to 15 [mass %] of the total mass of the electrolytic solution 3 .
  • organic acid-based component and the inorganic acid-based component are mixed and used, they are added in the range of about 0.1 [mass%] to 15 [mass%] of the total mass of the electrolyte solution 3. All you have to do is
  • the electrolytic solution 3 according to the present embodiment further contains an oxyacid of phosphorus as an additive.
  • Phosphorus oxyacids include orthophosphoric acid (H 3 PO 4 ), phosphorous acid (H 3 PO 3 ), hypophosphorous acid (H 3 PO 2 ), and the like. By containing any one of these, the effect of reducing leakage current is exhibited, but by containing two or more types, as a function and effect specific to the electrolytic capacitor 1 to which the sintered foil is applied, further Remarkable leakage current reduction effect is exhibited stably.
  • the electrolytic solution 3 contains orthophosphoric acid and hypophosphorous acid as additives.
  • the leakage current at 450 [V] for 1 [minute] application is 114 [ ⁇ A] for an electrolytic capacitor to which phosphorus oxyacid is not added, whereas hypophosphorous acid is 0.01 [ ⁇ A].
  • [mass %] added electrolytic capacitor 1 was 31.5 [ ⁇ A].
  • the leakage current was 26.4 [ ⁇ A], and a remarkable decrease in leakage current was observed.
  • the amount of orthophosphoric acid added is increased to 0.05 [mass%], 0.1 [mass%], 0.3 [mass%], 0.5 [mass%], and 1.0 [mass%]. Then, the leakage current did not change significantly, and the suppressing effect was stably exhibited.
  • the electrolytic capacitor to which the etched foil is applied 22.8 [ ⁇ A] with 0.01 [mass%] of hypophosphorous acid added, and 0.01 [mass%] of orthophosphoric acid added is 22.9 [ ⁇ A], and compared to the fact that there was almost no difference, the remarkable and stable reduction effect of leakage current by combining different types of phosphorus oxyacids is that the sintered foil is applied. It can be seen that this is an effect peculiar to the present embodiment, which has been designed (see Table 2-1).
  • the electrolytic capacitor 1 to which the sintered foil is applied has not only a leakage current originating from the defective portion of the oxide film 8d as in the case of the etched foil, but also the organic binder used when forming the sintered body. There is also a possibility that a leakage current originating from a remaining portion of a carbon residue or the like originating from the .
  • a leakage current originating from a remaining portion of a carbon residue or the like originating from the electrolytic capacitor 1 in which a plurality of starting points of leakage current may exist
  • a plurality of types of oxyacids of phosphorus contained in the electrolytic solution 3 act on the respective starting points and exhibit a synergistic effect. Therefore, it is believed that the leakage current is reduced more sufficiently. As a result, a remarkable effect of reducing leakage current can be stably exhibited, and deterioration of life characteristics affected by leakage current can be suppressed.
  • the phosphorus oxyacid may be added to the electrolytic solution 3 as a phosphorus oxyacid, a derivative thereof, or a salt thereof.
  • the amount of addition if at least one type of phosphorus oxyacid is added to 0.01 [mass%] of the total mass (in 100 [mass%]) of the electrolyte 3, the effect of reducing the leakage current is exhibited (Table 1: see Examples 1-1 and 1-8), therefore, when two types of phosphorus oxyacids are added, if the total of the two types is added at least 0.02 [mass%], the amount of phosphorus A leakage current reduction effect equal to or greater than that obtained when only one type of oxyacid is used is exhibited.
  • the electrolytic solution 3 contains 0.02 [mass %] to 2.0 [mass %] in total of two types of phosphorus oxyacids, derivatives thereof, or salts thereof. More preferably, each is added in an amount of 0.01 [mass %] to 1.0 [mass %]. When one type of phosphorus oxyacid, derivative thereof, or salt thereof is added, it is preferably added in an amount of 0.01 [mass %] to 2.0 [mass %].
  • the phosphorus oxyacid added to the electrolytic solution 3 is, for example, adsorbed to the electrode foils 8 and 9 and the separator 10, or reacts with aluminum ions dissolved from the electrode foils 8 and 9, and the content (Content ratio) is considered to be lower than the initial addition amount (addition ratio) by a predetermined amount.
  • the upper limit of the amount to be added is not particularly limited in terms of the effect of suppressing leakage current Considering that a predetermined concentration decrease over time is taken into consideration, the preferable content (content ratio) of the oxyacid of phosphorus or its derivative or salt thereof can be set to 0.02 [mass%] to 2.0 [mass%] in total for the two types of addition amount (addition ratio), more preferably each of 0.01 [mass%] to 1 It can be set to 0 [% by mass]. Similarly, when one type of phosphorus oxyacid, derivative thereof, or salt thereof is contained, the content can be preferably set to 0.01 [mass %] to 2.0 [mass %].
  • the electrolytic solution 3 may appropriately contain a known predetermined additive other than the oxyacid of phosphorus.
  • the electrolytic capacitor 1 according to the present embodiment having the above configuration can be manufactured by a known electrolytic capacitor manufacturing method, except that the electrolytic solution 3 having the composition described above is used.
  • a lead terminal 4 anode terminal 4a
  • a sintered foil on which an oxide film 8d (not shown in FIG. 3B) is formed by chemical conversion treatment.
  • a separator 10 (a first separator 10a and a second separator 10b) is provided between an anode foil 8 joined by caulking or the like and a cathode foil 9 joined to an etched foil with a lead terminal 4 (cathode terminal 4b) by caulking or the like.
  • FIGS. 3A and 3B After the obtained wound body is subjected to a chemical conversion treatment again as necessary, it is immersed in three baths of the electrolytic solution having the composition according to the present embodiment, so that the gap between the electrode foils 8 and 9 is filled with the electrolytic solution. 3 can be introduced (impregnated) to manufacture the capacitor element 2 .
  • a lead wire 11 is connected to the lead terminal 4 at appropriate times (illustration of the lead terminal 4 and the lead wire 11 is omitted in FIG. 3A).
  • introduction of the electrolytic solution 3 may be performed under reduced pressure, if necessary.
  • the capacitor element 2 is housed in the exterior material 6, and the sealing material 5 is placed in the opening of the exterior material 6 for sealing.
  • lead terminals 4 anode terminal 4 a and cathode terminal 4 b
  • the edge of the opening of the exterior material 6 is crimped to the sealing material 5 for sealing.
  • an aging process may be performed for repairing defects in the oxide film 8d caused during the cutting or winding of the foil by applying a voltage for a predetermined time under high temperature conditions.
  • Test 1 and Test 2 An electrolytic capacitor using a sintered foil as the anode foil (hereinafter sometimes referred to as a "sintered foil capacitor") was manufactured by the following procedure.
  • anode foil For the anode foil, first, 60 [parts by mass] of aluminum powder and 40 [parts by mass] of an acrylic binder were mixed and dispersed in toluene. A film was formed and dried. Next, the aluminum foil was sintered by heating at 655° C. for 7 hours in an argon gas atmosphere to produce a sintered foil. Next, the sintered foil was subjected to a predetermined anodizing treatment to form an oxide film, and then cut into an appropriate size to produce an anode foil.
  • the aluminum foil was subjected to a predetermined etching treatment to roughen the surface, and then cut into an appropriate size to produce the cathode foil.
  • a lead terminal was joined to each of the anode foil and the cathode foil, and a separator was sandwiched between the anode foil and the cathode foil.
  • a lead wire was connected to the lead terminal.
  • the obtained wound body was immersed in an electrolytic bath to impregnate the electrolytic solution, thereby producing a capacitor element.
  • the composition of the electrolytic solution is based on the solvent "ethylene glycol: 93 [mass%]” and the solute "predetermined dicarboxylic acid ammonium salt: 7 [mass%]". was adjusted by reducing the amount of solvent blended.
  • the composition of the electrolytic solution when 0.01 [mass%] of orthophosphoric acid is added is ethylene glycol: 92.99 [mass%], ammonium dicarboxylic acid salt: 7 [mass%], orthophosphoric acid: 0.01 [% by mass] was set to 100 [% by mass] in total.
  • the fabricated capacitor element is housed in a bottomed cylindrical outer packaging material, and the sealing material is placed in the opening of the outer packaging material for sealing, and the opening rim of the outer packaging material is crimped to seal it.
  • an electrolytic capacitor was manufactured and subjected to a predetermined aging treatment. As a result, a sintered foil capacitor with a capacitance of 75 [ ⁇ F] (measurement conditions: 25 [° C.], 120 [Hz]) was obtained.
  • an aluminum electrolytic capacitor using an etched foil as the anode foil (hereinafter sometimes referred to as an "etched foil capacitor") was manufactured by the following procedure.
  • the aluminum foil was etched under the same conditions as the cathode foil of the sintered foil capacitor to roughen the surface.
  • the etched foil thus produced was subjected to a predetermined anodizing treatment to form an oxide film, and then cut into an appropriate size to produce an anode foil.
  • the aluminum foil was etched under the same conditions as the cathode foil of the sintered foil capacitor to roughen the surface, and then cut into an appropriate size to produce the cathode foil.
  • a capacitor element was fabricated in the same manner as the sintered foil capacitor using the anode foil and the cathode foil.
  • the composition of the electrolyte was also the same as that of the sintered foil capacitor.
  • an electrolytic capacitor was manufactured in the same manner as the sintered foil capacitor, and was subjected to aging treatment under the same conditions as the sintered foil capacitor.
  • an etched foil capacitor with a capacitance of 64 [ ⁇ F] (measurement conditions: 25 [° C.], 120 [Hz]) was obtained.
  • Test 1 Leakage current LC1 was measured for sintered foil capacitors impregnated with an electrolytic solution to which hypophosphorous acid and/or orthophosphoric acid were added at the ratio shown in Table 1, and leakage current LC2 per unit capacity was calculated.
  • the leakage current LC1 the leakage current [ ⁇ A] after 1 [minute] has passed since the start of application of 450 [V] was measured.
  • Table 1 shows the results.
  • Example 1 sintered foil capacitors in which one kind of phosphorus oxyacid (hypophosphorous acid or orthophosphoric acid) was added to the electrolyte were used as examples (Examples 1-1 to 1-14). A sintered foil capacitor to which no acid was added was used as a comparative example (Comparative Example 1-1).
  • Example 2-1 a sintered foil capacitor in which one type (hypophosphorous acid or orthophosphoric acid) or two types (hypophosphorous acid and orthophosphoric acid) of phosphorus oxyacid was added to the electrolytic solution was used as an example (Example 2-1 ⁇ Example 2-35), and an etching foil capacitor in which one type (hypophosphorous acid or orthophosphoric acid) or two types (hypophosphorous acid and orthophosphoric acid) of phosphorus oxyacid is added to the electrolyte is a comparative example (comparative Example 2-1 to Comparative Example 2-35).
  • Example 2-1 Example 2-8, Example 2-15, Example 2-22, and Example 2-29, Example 1-1, Example 1-2, Example 1 -3, Examples 1-5, and Examples 1-6.
  • the leakage current LC1 was also measured for an etched foil capacitor to which phosphorus oxyacid was not added. As a result, the leakage current LC1 was 86.7 [ ⁇ A], and the leakage current LC2 per unit capacity was 1.35 [ ⁇ A/ ⁇ F]. On the other hand, according to Test 1 described above, the leakage current LC1 in the sintered foil capacitor (Comparative Example 1-1) to which phosphorus oxyacid was not added was 114 [ ⁇ A], and the leakage current LC2 per unit capacity was 1.52 [ ⁇ A/ ⁇ F].
  • the leakage current LC2 per unit capacity was It was 0.420 [ ⁇ A/ ⁇ F], but when 0.01 [mass %] of orthophosphoric acid was added (Example 2-2), it decreased significantly to 0.352 [ ⁇ A/ ⁇ F]. Furthermore, the amount of orthophosphoric acid added is increased to 0.05 [mass%], 0.1 [mass%], 0.3 [mass%], 0.5 [mass%], and 1.0 [mass%].
  • hypophosphorous acid and orthophosphoric acid when adding hypophosphorous acid and orthophosphoric acid to the electrolytic solution, it is preferable to add 0.02 [mass%] to 2.0 [mass%] of hypophosphorous acid and orthophosphoric acid in total, and more Preferably, 0.01 [mass%] to 1.0 [mass%] of hypophosphorous acid and orthophosphoric acid are each added, and more preferably 0.05 [mass%] of hypophosphorous acid is added. ] to 1.0 [mass %] and orthophosphoric acid is preferably added in the range of 0.01 [mass %] to 1.0 [mass %].
  • test 3 By the same procedure as Test 1 and Test 2, a sintered foil capacitor (capacitance: 27 [ ⁇ F], measurement conditions are the same as Test 1 and Test 2) with sintered foil applied to the anode foil, and the anode foil An etched foil capacitor was manufactured by applying the etched foil.
  • Example 3-1 ethylene glycol was used as the main solvent, dimethylamine azelate was used as the main solute, and phosphorus oxyacid was added as an additive, and the water content and specific resistance were appropriately adjusted. .
  • the amount of dimethylamine azelate to be added was 12 [mass %] of the total mass of the electrolytic solution.
  • Example 3-2 ethylene glycol was used as the main solvent, diethylamine azelate was used as the main solute, phosphorus oxyacid was added as an additive, and the water content and specific resistance were appropriately adjusted.
  • the amount of diethylamine azelate added was 12 [mass %] of the total mass of the electrolytic solution.
  • ethylene glycol was used as the main solvent
  • ammonium azelate was used as the main solute
  • phosphorus oxyacid was added as an additive, and the water content and specific resistance were appropriately adjusted.
  • the amount of ammonium azelate added was 6 [mass %] of the total mass of the electrolyte.
  • composition (type and amount) of phosphorus oxyacid as an additive considering the results of Test 1 and Test 2, etc., between each example (especially between Examples and Comparative Examples) was blended so that there would be no difference in the effect of reducing the leakage current due to the oxyacid of the phosphorus.
  • the etched foil capacitors were also manufactured using the same electrolytic solution composition as in Reference Example 3-1, Example 3-2, and Comparative Example 3. Three kinds of electrolytic solution compositions of Reference Example 3-3 were produced.
  • a high temperature load test was performed by applying a voltage of 425 [V] at 105 [°C] for 1500 [hours] or more, and the leakage current [ ⁇ A] was measured at each predetermined elapsed time. Specifically, after the start of the high-temperature load, the leakage current is measured at relatively short intervals in the beginning, after about 500 [hours], about 1000 [hours], and finally about 1500 [hours]. Each was measured after the passage of time. The results are shown in Table 3 and graphically in FIGS. 5 and 6. As for the graphs, FIG. 5A shows the leakage current of Example 3-1 and Reference Example 3-1, FIG. 5B shows the leakage current of Example 3-2 and Reference Example 3-2, and FIG. The leakage currents for Examples 3-3 are shown, respectively.
  • the leakage current of the sintered foil capacitor becomes larger than that of the etched foil capacitor after 78 [hours] have passed since the start of the high temperature load, and is higher than that of the etched foil capacitor until 1517 [hours] have passed. also remained at a high value.
  • the difference in leakage current from Reference Example 3-3 is, for example, 2.03 [ ⁇ A] after 512 [hours], 2.40 [ ⁇ A] after 989 [hours], and 1517 [ ⁇ A]. It became 2.40 [ ⁇ A] after [time] elapsed, and the difference was relatively large.
  • the difference in leakage current from Reference Example 3-1 is, for example, 1.80 [ ⁇ A] after 512 [hours] and 1.73 [ ⁇ A] after 989 [hours]. [ ⁇ A], and after 1517 [hours] elapsed, it became 1.53 [ ⁇ A], and the difference became relatively small.
  • Example 3-2 the difference in leakage current from Reference Example 3-2 is, for example, 1.57 [ ⁇ A] after 512 [hours] and 1.63 [ ⁇ A] after 989 [hours]. ], and 1.63 [ ⁇ A] after 1517 [hours] elapsed, and the difference became relatively small.
  • Comparative Example 3 when comparing the difference in the value of the leakage current with the average value from after 78 [hours] to after 1517 [hours] have passed, in Comparative Example 3, it was 1.70 [ ⁇ A], which is relatively large.
  • Example 3-2 it was relatively small at 1.40 [ ⁇ A]
  • Example 3-1 it was even smaller at 1.17 [ ⁇ A].
  • the amine salt contained as the main solute in the electrolytic solution has the effect of reducing leakage current as an effect peculiar to sintered foil capacitors, especially the effect of reducing leakage current over a long period of time under high temperature load. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

電極箔として少なくともその表面に金属焼結体を有する焼結箔が適用された電解コンデンサにおいて、漏れ電流を低減させることで寿命特性の悪化を抑制することができる電解コンデンサおよびその製造方法を提供することを課題とする。解決手段として、本発明に係る電解コンデンサ1は、誘電体層が形成された陽極箔(8)と、陰極箔(9)と、前記陽極箔(8)と前記陰極箔(9)との間に配設されたセパレータ(10)と、を有するコンデンサ素子(2)と、前記コンデンサ素子(2)内に含浸された電解液(3)と、を備え、前記陽極箔(8)または前記陰極箔(9)は、金属粉末を含有する組成物の焼結体が箔状に形成されてなり(箔状焼結体(8c)からなり)、または、前記焼結体からなる焼結体皮膜(8b)が基材(8a)の表面に形成されてなり、前記電解液(3)は、一種類のリンの酸素酸もしくはその誘導体またはそれらの塩を0.01質量%~2.0質量%の範囲で含有する。

Description

電解コンデンサおよび電解コンデンサの製造方法
 本発明は電解コンデンサおよび電解コンデンサの製造方法に関する。
 誘電体層としての酸化皮膜等が形成された陽極箔と陰極箔との間にセパレータが配設されたコンデンサ素子内に、電解液が含浸された電解コンデンサが知られている。
 従来、電解コンデンサにおいては、高容量化を実現するために、電極箔には、拡面処理により比表面積を増大させた金属箔が用いられている。拡面処理は、一般的には、電気化学的なエッチング処理によって金属箔の表面に多数の細孔を形成させることが行われる(以下、エッチング処理が施された金属箔を「エッチング箔」と表記する場合がある)。しかしながら、エッチング処理による比表面積の増大には限界があり、高まる高容量化要求を満たせなくなりつつある。また、エッチング処理には、環境負荷や経済負担が比較的大きい塩酸等の薬剤を使用することや、金属箔を電気化学的に溶解させることで箔強度の低下を招くことがあるといった欠点がある。
 こうしたことを踏まえて、特許文献1(特開2008-98279号公報)には、基材(当該文献では、アルミニウム箔)の表面に、金属粉末(当該文献では、アルミニウム粉末)、バインダ(当該文献では、樹脂バインダ)、および溶媒(当該文献では、溶剤)を含有する組成物を塗布し、加熱して焼結させた焼結体皮膜を形成させることで、比表面積を増大させる拡面処理法が記載されている(以下、少なくともその表面に金属焼結体を有する箔を「焼結箔」と表記する場合がある)。
特開2008-98279号公報
 特許文献1に例示される焼結箔を電極箔に適用することで、エッチング箔が適用された電解コンデンサを上回る大きな静電容量が実現できる。しかしながら、焼結箔が適用された電解コンデンサは、一般に、エッチング箔が適用された電解コンデンサと比較して漏れ電流が高くなりやすいという課題がある。その原因の一つとして、焼結箔の製造に際して、基材の表面に金属粉末を塗布する際に混合されるバインダおよび溶媒等の残渣が最終的に得られる電極箔に残存した場合、電極および電解コンデンサの性能に悪影響を及ぼすことがある。例えば、金属粉末の焼結時に有機バインダは蒸発するが、種類や焼結条件等によっては、熱分解等が生じて一部の成分が炭素残渣として電極箔に残存することがある。この炭素残渣は導電性を有し、電解コンデンサにおける漏れ電流の増大を引き起こす。このように、焼結箔が適用された電解コンデンサでは、漏れ電流が高くなりやすい結果、電解液の劣化や、水素ガスの発生によるコンデンサ素子の内圧上昇を引き起こして、電解コンデンサの寿命特性が悪化するおそれがあった。
 本発明は、上記事情に鑑みてなされ、電極箔として少なくともその表面に金属焼結体を有する焼結箔が適用された電解コンデンサにおいて、漏れ電流を低減させることで寿命特性の悪化を抑制することができる電解コンデンサおよびその製造方法を提供することを目的とする。
 本発明は、一実施形態として以下に記載するような解決手段により、前記課題を解決する。
 本発明に係る電解コンデンサは、誘電体層が形成された陽極箔と、陰極箔と、前記陽極箔と前記陰極箔との間に配設されたセパレータと、を有するコンデンサ素子と、前記コンデンサ素子内に含浸された電解液と、を備え、前記陽極箔または前記陰極箔は、金属粉末を含有する組成物の焼結体が箔状に形成されてなり、または、前記焼結体からなる焼結体皮膜が基材の表面に形成されてなり、前記電解液は、一種類のリンの酸素酸もしくはその誘導体またはそれらの塩を0.01[質量%]~2.0[質量%]の範囲で含有することを特徴とする。
 また、本発明に係る電解コンデンサの製造方法は、陽極箔または陰極箔が、金属粉末を含有する組成物の焼結体が箔状に形成されてなる、または前記焼結体からなる焼結体皮膜が基材の表面に形成されてなる焼結箔として構成される電解コンデンサの製造方法であって、電解液に、一種類のリンの酸素酸もしくはその誘導体またはそれらの塩を、0.01[質量%]~2.0[質量%]の範囲で添加することを特徴とする。
 これによれば、焼結箔が適用された電解コンデンサの漏れ電流を低減させることができる。
 また、本発明に係る他の電解コンデンサは、誘電体層が形成された陽極箔と、陰極箔と、前記陽極箔と前記陰極箔との間に配設されたセパレータと、を有するコンデンサ素子と、前記コンデンサ素子内に含浸された電解液と、を備え、前記陽極箔または前記陰極箔は、金属粉末を含有する組成物の焼結体が箔状に形成されてなり、または、前記焼結体からなる焼結体皮膜が基材の表面に形成されてなり、前記電解液は、二種類のリンの酸素酸もしくはその誘導体またはそれらの塩を合計で0.02[質量%]~2.0[質量%]の範囲で含有することを特徴とする。
 或いは、本発明に係る他の電解コンデンサは、誘電体層が形成された陽極箔と、陰極箔と、前記陽極箔と前記陰極箔との間に配設されたセパレータと、を有するコンデンサ素子と、前記コンデンサ素子内に含浸された電解液と、を備え、前記陽極箔または前記陰極箔は、金属粉末を含有する組成物の焼結体が箔状に形成されてなり、または、前記焼結体からなる焼結体皮膜が基材の表面に形成されてなり、前記電解液は、二種類以上のリンの酸素酸もしくはその誘導体またはそれらの塩を含有することを特徴とする。
 また、本発明に係る他の電解コンデンサの製造方法は、陽極箔または陰極箔が、金属粉末を含有する組成物の焼結体が箔状に形成されてなる、または前記焼結体からなる焼結体皮膜が基材の表面に形成されてなる焼結箔として構成される電解コンデンサの製造方法であって、電解液に、二種類のリンの酸素酸もしくはその誘導体またはそれらの塩を合計で0.02[質量%]~2.0[質量%]の範囲で添加することを特徴とする。
 或いは、本発明に係る他の電解コンデンサの製造方法は、陽極箔または陰極箔が、金属粉末を含有する組成物の焼結体が箔状に形成されてなる、または前記焼結体からなる焼結体皮膜が基材の表面に形成されてなる焼結箔として構成される電解コンデンサの製造方法であって、電解液に、二種類以上のリンの酸素酸もしくはその誘導体またはそれらの塩を添加することを特徴とする。
 これによれば、さらに顕著に漏れ電流を低減させることができる。焼結箔が適用された電解コンデンサは、酸化皮膜欠損箇所からの漏れ電流の他に、焼結体の形成時に使用される材料の残留箇所等からの漏れ電流が流れる可能性がある。このように、漏れ電流の起点が複数存在し得るため、例えばエッチング箔が適用された電解コンデンサ等と比較して、漏れ電流が増大しやすい特性を有している。これに対して、電解液にリンの酸素酸を二種類以上添加することで、複数種類のリンの酸素酸がそれぞれの起点に作用すると共に相乗効果を発揮して、漏れ電流をより十分に低減させると考えられる。その結果、顕著な漏れ電流の低減効果が安定的に発揮される。
 本発明によれば、焼結箔が適用された電解コンデンサにおいて、焼結箔による高容量化を実現しながら、漏れ電流を低減させて寿命特性の悪化を抑制することができる。
図1は、本実施形態に係る電解コンデンサの例を示す概略図(正面断面図)である。 図2Aは、本実施形態に係る電解コンデンサにおけるコンデンサ素子の例を説明する説明図である。図2Bは、本発明の実施形態に係る電解コンデンサにおけるコンデンサ素子の他の例を説明する説明図である。 図3は、本実施形態に係る電解コンデンサの製造方法の例を説明する説明図である。図3Aは、図2Aに示すコンデンサ素子の全体図である。図3Bは、図3Aに示すコンデンサ素子の一部をより詳細に示す部分図である。 図4は、試験2の結果を表すグラフである。図4Aは表2-1、図4Bは表2-2、図4Cは表2-3、図4Dは表2-4、図4Eは表2-5をそれぞれグラフ化したものである。 図5は、試験3の結果を表し、表3をグラフ化したものである。図5Aは実施例3-1および参考例3-1の漏れ電流を表す。図5Bは実施例3-2および参考例3-2の漏れ電流を表す。 図6は、試験3の結果を表し、表3をグラフ化したものであって、比較例3および参考例3-3の漏れ電流を表す。
 以下、図面を参照して、本発明を実施するための形態について詳しく説明する。図1は、本実施形態に係る電解コンデンサ1の例を示す概略図(正面断面図)である。図2Aは、本実施形態に係る電解コンデンサ1におけるコンデンサ素子2の例を説明する説明図である。図2Bは、当該コンデンサ素子2の他の例を説明する説明図である。図2Aおよび図2Bは、いずれもコンデンサ素子2の基本構成の例を模式的に示している。以下、一実施形態として、巻回型の電解コンデンサ1を例にして説明するが、この形態に限定されず、例えば、積層型、コイン型等でもよい。また、一実施形態として、アルミニウムまたはアルミニウム合金を主材料とする電極材からなり、酸化皮膜8dを誘電体層とする陽極箔8を有するアルミニウム電解コンデンサ1を例にして説明するが、この形態に限定されず、例えば、アルミニウム以外の弁金属またはその合金を主材料としてもよい。
 本実施形態に係る電解コンデンサ1は、図1に示すように、コンデンサ素子2が外装材6内に収容されている。外装材6の開口部が封止材5で封止されると共に、外装材6の開口縁が封止材5に加締められて密封されて構成されている。封止材5に設けられた二箇所の貫通穴にリード端子4(陽極端子4aおよび陰極端子4b)が通されてリード線11が電解コンデンサ1外へ引き出されている。なお、外装材6には安全弁として圧力弁である防爆弁7が設けられ、電解コンデンサ1の内圧が一定以上に達した際に作動し(開弁し)、電解コンデンサ1内のガスを放出して防爆されるようになっている。防爆弁7の数および位置は限定されず、封止材5に設けられてもよく、外装材6および封止材5の両方に設けられてもよい。
 続いて、本実施形態に係るコンデンサ素子2は、図2Aに示すように、陽極箔8と、陰極箔9と、陽極箔8と陰極箔9との間に配設されたセパレータ10と、を備えている。なお、陽極箔8および陰極箔9のそれぞれに陽極端子4aおよび陰極端子4bが取り付けられている。
 電極箔(陽極箔8および陰極箔9)は、アルミニウム、タンタル等の弁金属またはその合金を主材料とする電極材からなり、さらに電極材を支持する基材8aを任意に有している。基材8aの主材料は特に限定されないが、基材8aもまたアルミニウム、タンタル等の弁金属またはその合金を用いることができる。なお、ここで材料を「主材料」としているのは、後述のように微量の不純物の含有を許容するという意味である。
 本実施形態に係る電極材は、アルミニウムまたはアルミニウム合金が主材料とされている。アルミニウムまたはアルミニウム合金におけるアルミニウムは、不純物に起因する不具合を防止する観点から純度が99.80[質量%]以上であることが好ましく、さらに高温負荷に対する漏れ電流の増大を抑制する観点から純度が99.99[質量%]以上であることが好ましい。また、アルミニウム合金は、例えば、ケイ素、鉄、銅、マンガン、マグネシウム、クロム、亜鉛、チタン、バナジウム、ガリウム、ニッケル、ホウ素、ジルコニウム等の元素のうち一種類または二種類以上を含む合金を用いることができる。この場合、これらの元素の含有量は、それぞれ100[質量ppm]以下、特に50[質量ppm]以下であることが好ましい。
 本実施形態に係る電極箔8、9は、陽極箔8が、焼結箔として構成され、陰極箔9が、エッチング箔として構成され、どちらも表面に拡面構造を有している。陽極箔8の焼結箔は、少なくともその表面に金属焼結体を有する箔である。一方、陰極箔9は、一例として、電極材であるアルミニウム箔にエッチング処理が施されて構成されるが、陰極箔9もまた焼結箔として構成されてもよい。なお、エッチング処理は、直流電解法または交流電解法等によって行われればよい。
 焼結箔は、一例として、基材8aであるアルミニウム箔の表面に少なくともアルミニウム粉末を含有する組成物を塗布し、加熱して焼結させる方法によって形成することができる。これにより、図2Aに示すように、アルミニウム箔の表面にアルミニウム粉末を含有する組成物の焼結体からなる焼結体皮膜8bが形成された焼結箔を形成することができる。ただし、電極材である焼結体皮膜8bは、基材8aであるアルミニウム箔の少なくとも陰極箔9と対向する片面に形成されていればよく、必ずしも、図2Aに示すように、アルミニウム箔の両面(すなわち、図3Bに示すように、アルミニウム箔の表面全体)に形成されていなくてよい。したがって、特許請求の範囲の「基材の表面」は、基材8aの片面を意味する場合がある。また、基材8aおよび焼結体皮膜8bの材料(主材料)は必ずしも一致しなくてよい。一例として、基材8aであるアルミニウム箔の表面にアルミニウム合金粉末を含有する組成物の焼結体からなる焼結体皮膜8bが形成されてもよい。
 また、焼結箔は、他の例として、基材8aを有することなく、少なくともアルミニウム粉末を含有する組成物を加熱して焼結させ、その前後で箔状にする方法によって形成することもできる。これにより、図2Bに示すように、アルミニウム粉末を含有する組成物の焼結体が箔状に形成された箔状焼結体8cからなる焼結箔を形成することができる。
 焼結体皮膜8bおよび箔状焼結体8cは、図2Aおよび図2Bに示すように、アルミニウムまたはアルミニウム合金の粉末粒同士が互いに空隙を維持しながら焼結したものである。すなわち、各焼結粒8eが空隙を有しながら繋がって三次元網目構造に形成された多孔質焼結体である。これにより、当該焼結箔は、その表面にエッチング箔を上回る比表面積の拡面構造を有する。その結果、本実施形態に係る電解コンデンサ1は、エッチング箔が適用された電解コンデンサを上回る大きな静電容量を実現できる。ただし、図2Aおよび図2Bの焼結箔にエッチング処理が施されて、さらに拡面化されてもよい。
 焼結箔の形成に際して、アルミニウムまたはアルミニウム合金粉末を含有する組成物には、必要に応じてバインダ、溶媒、焼結助剤、界面活性剤等の添加物を含有させてもよい。これらの添加物は適宜公知品や市販品を用いることができる。一例として、バインダには、カルボキシ変性ポリオレフィン樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、塩化ビニル・酢酸ビニル共重合樹脂、ビニルアルコール樹脂、ブチラール樹脂、フッ化ビニル樹脂、アクリル樹脂、ポリエステル樹脂、ウレタン樹脂、エポキシ樹脂、尿素樹脂、フェノール樹脂、アクリロニトリル樹脂、ニトロセルロース樹脂、パラフィンワックス、ポリエチレンワックス等の合成樹脂や、ろう(蝋)、タール(乾留液)、にかわ(膠)、うるし(漆)、まつやに(松脂)、みつろう(蜜蝋)等の天然樹脂等を用いることができる。また、一例として、溶媒には、水の他、エタノール、トルエン、ケトン類、エステル類等の有機溶媒を用いることができる。これらの添加物のうち、例えばバインダおよび/または溶媒を含有させることで、アルミニウムまたはアルミニウム合金粉末を含有する組成物が成形性および保形性を有して、焼結体皮膜8bおよび箔状焼結体8cを最適な厚さに形成することができる。これらの添加物の種類や含有量を調整することで、焼結体皮膜8bおよび箔状焼結体8cの空隙率や当該添加物の残存程度を調整できる。これにより、電解コンデンサ1の静電容量を調整することができる。
 組成物の焼結条件は限定されないが、一例として、560[℃]以上660[℃]以下で5[時間]から24[時間]程度までの範囲で設定するとよい。焼結雰囲気は、真空、アルゴンガス等の不活性ガス雰囲気、大気雰囲気、酸化雰囲気、還元雰囲気等のいずれでもよい。圧力環境も、常圧下、減圧下および加圧下のいずれでもよい。
 また、組成物中に有機バインダ等の有機添加物を含有する場合、一例として、焼結に先立って予め100[℃]以上600[℃]以下で5[時間]以上の加熱を行うとよい。このような前処理(「脱脂処理」と呼称されることがある)および焼結処理によって有機添加物は蒸発するが、一部の成分が炭素残渣として焼結体皮膜8bおよび箔状焼結体8c中に残存することがあり、これが電解コンデンサ1の漏れ電流を増大させる原因になり得る。これに対して、本実施形態に係る電解コンデンサ1は、後述の電解液組成によって漏れ電流を低減させて、焼結箔による大きな静電容量と、当該電解液組成による低い漏れ電流とを共に実現できる。
 以上のような焼結箔として構成される陽極箔8の表面には、化成処理によって、誘電体層としての酸化皮膜8dが形成されている。化成処理は、一例として、対象金属を陽極として化成液槽に浸漬した状態で電圧を印加して酸化皮膜8dを形成する陽極酸化処理によって行われてもよく、または対象金属を単に化成液槽に浸漬する処理によって行われてもよい。一方、本実施形態に係る有極性の電解コンデンサ1においては、基本的に陰極箔9に対しては化成処理が行われないが、陰極箔9の表面には、空気中の酸素によって自然酸化皮膜(不図示)が形成されている。
 また、陽極箔8と陰極箔9との間に配設されてこれらを仕切るセパレータ10は、特に構成は限定されないが、一例として、マニラ麻パルプ等の天然のセルロース繊維からなる紙や、ナイロン等の合成繊維で形成された布、シート、フィルム等を適用することができる。また、天然繊維と合成繊維との混抄品、混紡品等が適用されてもよい。なお、図2には、コンデンサ素子2の基本構成の例を模式的に示し、セパレータ10を一枚示しているが、実際にはその数は限定されず、一例として、図3Bに示すように、二枚(第1のセパレータ10aおよび第2のセパレータ10b)設けられてもよい。
 また、コンデンサ素子2内には電解液3が含浸されている。電解液3は、両電極箔8、9間における空隙に含まれており、また、セパレータ10の構成や材料によっては、電解液3の一部がセパレータ10内にも含浸されている。電解液3は、陽極箔8に形成された誘電体層(酸化皮膜8d)に接触して、実質的に陽極箔8の対極をなす真の陰極として機能するように構成されている。ただし、電解液3は、当該機能が発揮できる範囲であれば、両電極箔8、9間に完全に充満していなくてもよく、両電極箔8、9間に電解液3が充満していない領域が存在していてもよい。
 電解液3は、流動性を有する液状成分である。電解液3は、溶媒と、電解質である溶質とを含有し、さらに所定の添加剤を含有している。溶媒には、有機溶媒のみからなる溶媒、または、有機溶媒を主溶媒として、これに所定量の水を添加した水-有機溶媒系の溶媒等を適用することができる。なお、水-有機溶媒系の溶媒によれば、電解質の溶解能およびイオンの移動度を大きくして、電解液3の比抵抗を低くすることができる。また、溶媒の凝固点を低下させて、それより低温での電気特性を確保できる。一方、有機溶媒のみからなる溶媒によれば、電解液3中に水を含有しないことから、高温下での電極箔8、9と水との水和反応を防止してこれによるコンデンサ素子2の内圧上昇を防止できる。
 有機溶媒としては、一例として、プロトン性溶媒として、メチルアルコール、エチルアルコール、プロピルアルコール、ブチルアルコール等の一価アルコール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール等の二価アルコール、グリセリン等の三価アルコール等や、これらの誘導体等が挙げられる。また、非プロトン性溶媒として、γ-ブチロラクトン等のラクトン化合物、スルホラン、メチルスルホラン、ジメチルスルホラン、エチレンカーボネート、プロピレンカーボネート、ピロリジン、2-ピロリジノン、N-メチル-2-ピロリジノン、1,3-ジメチル-2-イミダゾリジノン、テトラヒドロフラン、アセトニトリル、N-メチルホルムアミド、N,N-ジメチルホルムアミド、ニトロベンゼン等や、これらの誘導体等が挙げられる。これらのうち、一種類が単独で用いられてもよく、二種類以上が混合されて用いられてもよい。例えば、プロトン性溶媒および非プロトン性溶媒が共に用いられてもよい。
 また、電解質である溶質には、有機酸、無機酸、有機酸と無機酸との複合化合物、もしくはこれらの誘導体、またはこれらの塩を適用することができる。これらのうち、一種類が単独で用いられてもよく、二種類以上が混合されて用いられてもよい。例えば、有機酸および無機酸が共に用いられてもよい。
 有機酸およびその誘導体としては、一例として、モノカルボン酸として、蟻酸、酢酸、プロピオン酸、酪酸、安息香酸、カプリル酸等や、これらの誘導体が挙げられる。また、ジカルボン酸として、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、フマル酸、マレイン酸、フタル酸、アゼライン酸、セバシン酸、1,6-デカンジカルボン酸、5,6-デカンジカルボン酸、1,10-デカンジカルボン酸等や、これらの誘導体が挙げられる。また、ヒドロキシカルボン酸として、クエン酸、サリチル酸等や、これらの誘導体が挙げられる。また、無機酸およびその誘導体としては、一例として、ホウ酸、スルファミン酸等や、これらの誘導体が挙げられる。また、有機酸と無機酸との複合化合物およびその誘導体としては、ジカルボン酸またはヒドロキシカルボン酸のホウ素錯体等に例示され、一例として、ボロジシュウ酸、ボロジマロン酸、ボロジコハク酸、ボロジアジピン酸、ボロジマレイン酸、ボロジフタル酸、ボロジグリコール酸、ボロジクエン酸、ボロジサリチル酸等や、これらの誘導体が挙げられる。
 また、有機酸、無機酸、有機酸と無機酸との複合化合物、およびこれらの誘導体の塩としては、一例として、アンモニウム塩、アルキルアンモニウム塩、アミン塩、アミジン塩、ナトリウム塩、カリウム塩等が挙げられる。アミン塩としては、一例として、ジメチルアミン、ジエチルアミン、トリメチルアミン、トリエチルアミン、エチルジメチルアミン、ジエチルメチルアミン、メタノールアミン、エタノールアミン、ジメタノールアミン、ジエタノールアミン、トリメタノールアミン、トリエタノールアミン、ピロリジン、ピペリジン、ピペラジン、モルホリン、メチルモルホリン、エチルモルホリン、オキサゾリジン、チオモルホリン、チアゾリジン等の塩が挙げられる。
 これらの塩のうち、一例として、溶質成分にアミン塩が使用された場合、アンモニウム塩等が使用された場合と比較して、漏れ電流、とりわけ高温負荷時における漏れ電流を長期間に亘って低減させることができ、高温使用時における電解コンデンサ1の長寿命化を実現できる。このアミン塩による漏れ電流低減効果の仕組みは、例えば、アミンのアルキル基の電子供与性により負極性を強くした窒素原子の非共有電子対が、電極箔であるアルミニウムまたはアルミニウム合金箔の表面に電子を提供して吸着することで、酸化被膜の欠損部分がアミンによって保護されること等が考えられる。
 ただし、前述のように、焼結箔が適用された電解コンデンサ1は、エッチング箔と同様に酸化皮膜8dの欠損箇所を起点とする漏れ電流だけでなく、焼結体の形成時に使用される添加物(例えば、有機バインダ等)の残存箇所等も漏れ電流の起点になる可能性があり、漏れ電流の起点が複数存在し得る。これに対して、電解液3に含有するアミン塩(アミン)が漏れ電流のそれぞれの起点に作用し、その結果、焼結箔が適用された電解コンデンサ1に特有の漏れ電流低減効果を生じさせるものと考えられ、とりわけ高温負荷時における漏れ電流を長期間に亘って低減させることができる。後述の実施例によれば、焼結箔が適用された電解コンデンサ1において、所定のアミン塩を含有する電解液3を有するとき、105[℃]で425[V]の電圧を印加する高温負荷に対して、1500[時間]を超える長期間に亘って漏れ電流の低減効果があった。
 なお、当該効果を得るために、必ずしも電解液3の全溶質成分がアミン塩で構成される必要はない。少なくとも主溶質(例えば、溶質成分の50[質量%]以上)がアミン塩で構成されれば、一定以上の漏れ電流低減効果が得られる。また、「アミン塩を含有する電解液3」との表記は、電解液3の調整時にアミン塩が添加されることによる便宜的な表記であって、添加後の作用時等に「塩」の状態で含有されていなくてよい。
 電解質である溶質は、所望の電導度が確保できて且つ溶媒に溶かすことができる範囲で、種類に応じた最適な量が添加されればよい。一例として、有機酸もしくはその誘導体またはそれらの塩では、電解液3全質量の3[質量%]~30[質量%]程度の範囲で添加されればよい。また、無機酸もしくはその誘導体またはそれらの塩では、電解液3全質量の0.1[質量%]~15[質量%]程度の範囲で添加されればよい。また、上記の有機酸系の成分と無機酸系の成分とが混合されて用いられる場合も、電解液3全質量の0.1[質量%]~15[質量%]程度の範囲で添加されればよい。
 また、本実施形態に係る電解液3は、添加剤としてリンの酸素酸をさらに含有している。これにより、電解コンデンサ1の漏れ電流を低減させることができる。リンの酸素酸には、オルトリン酸(HPO)、亜リン酸(HPO)、次亜リン酸(HPO)等が含まれる。これらのうちいずれか一種類を含有することで漏れ電流の低減効果は発揮されるが、二種類以上を含有することで、焼結箔が適用された電解コンデンサ1に特有の作用効果として、さらに顕著な漏れ電流の低減効果が安定的に発揮される。
 本実施形態に係る電解液3は、一例として、添加剤としてオルトリン酸および次亜リン酸を含有する。後述の実施例では、450[V]で1[分]印加における漏れ電流は、リンの酸素酸を添加しない電解コンデンサでは114[μA]であるのに対して、次亜リン酸を0.01[質量%]添加した電解コンデンサ1では31.5[μA]であった。また、これにオルトリン酸を0.01[質量%]添加した電解コンデンサ1では26.4[μA]となり、漏れ電流の顕著な低下が見られた。次いで、さらにオルトリン酸の添加量を0.05[質量%]、0.1[質量%]、0.3[質量%]、0.5[質量%]、1.0[質量%]と増加させていくと、漏れ電流が大きく変化することなく、その抑制効果が安定して発揮された。一方、エッチング箔が適用された電解コンデンサでは、次亜リン酸を0.01[質量%]添加したもので22.8[μA]、これにオルトリン酸を0.01[質量%]添加したもので22.9[μA]となり、殆ど違いがなかったことと比較すると、種類の異なるリンの酸素酸を組み合わせて含有させることによる漏れ電流の顕著で安定的な低減効果が、焼結箔が適用された本実施形態に特有の効果であることが分かる(表2-1参照)。
 前述のように、焼結箔が適用された電解コンデンサ1は、エッチング箔と同様に酸化皮膜8dの欠損箇所を起点とする漏れ電流だけでなく、焼結体の形成時に使用される有機バインダ等に由来する炭素残渣等の残存箇所等を起点とする漏れ電流も流れる可能性がある。このように、漏れ電流の起点が複数存在し得る電解コンデンサ1に対して、本実施形態では、電解液3に含有する複数種類のリンの酸素酸がそれぞれの起点に作用すると共に相乗効果を発揮して、漏れ電流をより十分に低減させると考えられる。その結果、顕著な漏れ電流の低減効果が安定的に発揮されると共に、漏れ電流に影響される寿命特性の悪化を抑制することができる。
 ここで、リンの酸素酸は、リンの酸素酸もしくはその誘導体またはそれらの塩として、電解液3に添加されればよい。その添加量は、少なくとも一種類のリンの酸素酸が電解液3全質量(100[質量%]中)の0.01[質量%]添加されれば漏れ電流の低減効果が発揮される(表1:実施例1-1、実施例1-8参照)ことから、リンの酸素酸が二種類添加される場合、二種類の合計で少なくとも0.02[質量%]添加されれば、リンの酸素酸が一種類の場合と同等以上の漏れ電流の低減効果が発揮される。さらに、それぞれで少なくとも0.01[質量%]ずつ添加されれば、顕著な漏れ電流の低減効果がより確実に発揮される(表2-1:実施例2-2参照)。また、リンの酸素酸の添加量を0.01[質量%]以上に増加させていっても、漏れ電流の抑制効果は大きく失われることなく安定的に発揮される(表1:実施例1-2~実施例1-7、実施例1-9~実施例1-14、表2:実施例2-3~実施例2-35参照)が、漏れ電流の抑制効果以外の、例えば溶媒に溶けにくくなる等といった観点から、添加量の上限としては、2.0[質量%]程度までとされることが好ましい。
 以上のことから、本実施形態に係る電解液3は、二種類のリンの酸素酸もしくはその誘導体またはそれらの塩が、合計で0.02[質量%]~2.0[質量%]添加されることが好ましく、より好適にはそれぞれが0.01[質量%]~1.0[質量%]ずつ添加されることが好ましい。また、リンの酸素酸もしくはその誘導体またはそれらの塩が一種類添加される場合は、0.01[質量%]~2.0[質量%]添加されることが好ましい。
 なお、電解液3に添加されたリンの酸素酸は、例えば、電極箔8、9やセパレータ10に吸着したり、電極箔8、9から溶解したアルミニウムイオンと反応したりして、その含有量(含有割合)は当初の添加量(添加割合)よりも所定程度低くなると考えられる。しかしながら、前述の通り、漏れ電流の抑制効果の点では、添加量の上限は特に限定されない(例えば、一種類、二種類または三種類以上のリンの酸素酸を2.0[質量%]を超えて添加してもよい)ことを考慮すると、経時的な所定の濃度低下を考慮しても、電解液3中のリンの酸素酸もしくはその誘導体またはそれらの塩の好適な含有量(含有割合)を、その添加量(添加割合)と同じく二種類の合計で0.02[質量%]~2.0[質量%]に設定でき、より好適にはそれぞれが0.01[質量%]~1.0[質量%]に設定できる。また、リンの酸素酸もしくはその誘導体またはそれらの塩を一種類含有する場合も同様に、好適には0.01[質量%]~2.0[質量%]に設定できる。
 また、電解液3は、リンの酸素酸以外にも、適宜公知の所定の添加剤を含有していてよい。
 以上の構成を備える本実施形態に係る電解コンデンサ1は、前述の組成を有する電解液3を用いること以外は、公知の電解コンデンサの製造方法によって製造できる。本実施形態に係る巻回型の電解コンデンサ1は、一例として、化成処理により酸化皮膜8d(図3Bには、図示を省略)を形成させた焼結箔にリード端子4(陽極端子4a)を加締め等により接合した陽極箔8と、エッチング箔にリード端子4(陰極端子4b)を加締め等により接合した陰極箔9との間にセパレータ10(第1のセパレータ10aおよび第2のセパレータ10b)を挟んだ状態で、図3Aおよび図3Bに示すように、これらを巻回して略円柱形状を形成する。得られた巻回体に必要に応じて再度化成処理を行った後、これを本実施形態に係る組成の電解液3槽に浸漬することにより、両電極箔8、9間における空隙に電解液3を導入(含浸)して、コンデンサ素子2を製造することができる。なお、リード端子4には、適時にリード線11を接続する(図3Aには、リード端子4およびリード線11の図示を省略)。また、電解液3の導入は、必要に応じて減圧下で行ってもよい。
 次いで、コンデンサ素子2を外装材6内に収容し、封止材5を外装材6の開口部に配置して封止する。このとき、封止材5に設けられた二箇所の貫通穴にリード端子4(陽極端子4aおよび陰極端子4b)を通して引き出す。次いで、外装材6の開口縁を封止材5に加締めて密封する。これにより電解コンデンサ1を製造することができる。その後、必要に応じて、高温条件下で所定時間、電圧を印加して箔の裁断時や巻回時に生じた酸化皮膜8dの欠損箇所を修復するエージング処理を行ってもよい。
 試験1および試験2
 (焼結箔コンデンサ)
 陽極箔に焼結箔を適用した電解コンデンサ(以下、「焼結箔コンデンサ」と表記する場合がある)を以下の手順で製造した。
 陽極箔については、先ず、アルミニウム粉末60[質量部]とアクリル系バインダ40[質量部]とを混合し、トルエンに分散させた塗液を、アルミニウム箔の片面にアプリケータを用いて塗布して皮膜を形成し、乾燥させた。次いで、このアルミニウム箔をアルゴンガス雰囲気にて655[℃]で7[時間]加熱して焼結させて、焼結箔を製造した。次いで、焼結箔に所定の陽極酸化処理を行って酸化皮膜を形成した後、適切なサイズに裁断して陽極箔を作製した。
 陰極箔については、アルミニウム箔に所定のエッチング処理を行って表面を粗面化した後、適切なサイズに裁断して陰極箔を作製した。
 陽極箔および陰極箔にそれぞれリード端子を接合し、陽極箔と陰極箔との間にセパレータを挟んだ状態で、リード端子を巻き込みながらこれらを巻回して略円柱形状に形成した。また、リード端子にリード線を接続した。次いで、得られた巻回体を電解液槽に浸漬して電解液を含浸させて、コンデンサ素子を作製した。
 電解液の組成は、溶媒「エチレングリコール:93[質量%]」、溶質「所定のジカルボン酸アンモニウム塩:7[質量%]」を基本組成とし、リンの酸素酸を添加する際はその添加分だけ溶媒の配合量を減らすことで調整した。例えば、オルトリン酸を0.01[質量%]添加する場合の電解液の組成は、エチレングリコール:92.99[質量%]、ジカルボン酸アンモニウム塩:7[質量%]、オルトリン酸:0.01[質量%]で計100[質量%]とした。
 作製したコンデンサ素子を有底筒状の外装材内に収容し、封止材を外装材の開口部に配置して封止すると共に外装材の開口縁を封止材に加締めて密封して、電解コンデンサを製造し、所定のエージング処理を行った。これにより、静電容量:75[μF](測定条件:25[℃]、120[Hz])の焼結箔コンデンサを得た。
 (エッチング箔コンデンサ)
 また、陽極箔にエッチング箔を適用したアルミニウム電解コンデンサ(以下、「エッチング箔コンデンサ」と表記する場合がある)を以下の手順で製造した。
 陽極箔については、アルミニウム箔に焼結箔コンデンサの陰極箔と同条件のエッチング処理を行って表面を粗面化した。次いで、作製したエッチング箔に所定の陽極酸化処理を行って酸化皮膜を形成した後、適切なサイズに裁断して陽極箔を作製した。
 陰極箔については、アルミニウム箔に焼結箔コンデンサの陰極箔と同条件のエッチング処理を行って表面を粗面化した後、適切なサイズに裁断して陰極箔を作製した。
 当該陽極箔および当該陰極箔を用いて焼結箔コンデンサと同様にコンデンサ素子を作製した。電解液の組成も焼結箔コンデンサと同一にした。当該コンデンサ素子を用いて焼結箔コンデンサと同様に電解コンデンサを製造し、焼結箔コンデンサと同条件のエージング処理を行った。これにより、静電容量64[μF](測定条件:25[℃]、120[Hz])のエッチング箔コンデンサを得た。
 (試験1)
 表1に示す比率で次亜リン酸および/またはオルトリン酸を添加した電解液を含浸させた焼結箔コンデンサについて、漏れ電流LC1を測定し、単位容量当たりの漏れ電流LC2を算出した。漏れ電流LC1は、450[V]印加開始後1[分]経過時の漏れ電流[μA]を測定した。単位容量当たりの漏れ電流LC2は、製品容量1[μF]当たりの漏れ電流[μA/μF]であり、測定した漏れ電流LC1を焼結箔コンデンサの静電容量75[μF]で除した値、すなわち、LC2=LC1/75の式で算出した値である。なお、漏れ電流LC1および単位容量当たりの漏れ電流LC2の測定および算出方法は、全試験で共通である。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 試験1では、電解液にリンの酸素酸を一種類(次亜リン酸またはオルトリン酸)添加した焼結箔コンデンサを実施例(実施例1-1~実施例1-14)とし、リンの酸素酸を添加しない焼結箔コンデンサを比較例(比較例1-1)とした。
 表1に示すように、電解液にリンの酸素酸である次亜リン酸またはオルトリン酸を添加した焼結箔コンデンサ(実施例1-1~実施例1-14)では、リンの酸素酸を添加しない焼結箔コンデンサ(比較例1-1)と比較して漏れ電流LC1が低減した。漏れ電流低減効果は、オルトリン酸よりも次亜リン酸の方がより大きかった。
 (試験2)
 表2-1~表2-5に示す比率で次亜リン酸および/またはオルトリン酸を添加した電解液を含浸させた焼結箔コンデンサおよびエッチング箔コンデンサについて、漏れ電流LC1を測定し、単位容量当たりの漏れ電流LC2を算出した。なお、エッチング箔コンデンサにおける単位容量当たりの漏れ電流LC2は、LC2=LC1/64の式で算出した。結果を表2-1~表2-5に示す。また、表2-1~表2-5に示す単位容量当たりの漏れ電流LC2を、図4A~図4Eにグラフで示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 試験2では、電解液にリンの酸素酸を一種類(次亜リン酸もしくはオルトリン酸)または二種類(次亜リン酸およびオルトリン酸)添加した焼結箔コンデンサを実施例(実施例2-1~実施例2-35)とし、電解液にリンの酸素酸を一種類(次亜リン酸もしくはオルトリン酸)または二種類(次亜リン酸およびオルトリン酸)添加したエッチング箔コンデンサを比較例(比較例2-1~比較例2-35)とした。ただし、実施例2-1、実施例2-8、実施例2-15、実施例2-22、および実施例2-29については、実施例1-1、実施例1-2、実施例1-3、実施例1-5、および実施例1-6のデータを引用している。
 なお、表には示さないが、リンの酸素酸を添加しないエッチング箔コンデンサについても漏れ電流LC1を測定した。その結果、漏れ電流LC1は86.7[μA]、単位容量当たりの漏れ電流LC2は1.35[μA/μF]であった。一方、前述の試験1によれば、リンの酸素酸を添加しない焼結箔コンデンサ(比較例1-1)における漏れ電流LC1は114[μA]、単位容量当たりの漏れ電流LC2は1.52[μA/μF]であった。これは、前述のように、焼結箔コンデンサは、漏れ電流が増大しやすい特性を有することから、元々の漏れ電流がエッチング箔コンデンサよりも大きくなったと考えらえる。本試験2では、実施例に係る焼結箔コンデンサと比較例に係るエッチング箔コンデンサとの間で、リンの酸素酸を一種類から二種類にした際、さらに各々の添加量および添加比率を変えた際に、漏れ電流LC1、LC2、特に単位容量当たりの漏れ電流LC2(以下、単に「漏れ電流LC2」と表記する場合がある)がどのように変化するかについて比較することで、本発明の効果を確認した。
 表2-1および図4Aに示すように、電解液に次亜リン酸を0.01[質量%]添加した焼結箔コンデンサ(実施例2-1)では、単位容量当たりの漏れ電流LC2が0.420[μA/μF]であったが、これにオルトリン酸を0.01[質量%]添加すると(実施例2-2)、0.352[μA/μF]と顕著に低下した。さらにオルトリン酸の添加量を0.05[質量%]、0.1[質量%]、0.3[質量%]、0.5[質量%]、1.0[質量%]と増加させていくと(実施例2-3~実施例2-7)、0.348[μA/μF]、0.343[μA/μF]、0.335[μA/μF]と漸次微減し、0.335[μA/μF]をピークに微増したが、オルトリン酸1.0[質量%]添加時においてもオルトリン酸0.01[質量%]添加時と同等の低い漏れ電流LC2に維持された。すなわち、次亜リン酸に加えてオルトリン酸を添加することで漏れ電流LC2はより顕著に低下し、オルトリン酸の添加量を増加させて二種類のリンの酸素酸の添加量および添加比率が変化しても、漏れ電流LC2は殆ど変化することなくその低減効果が安定的に発揮された。
 一方、エッチング箔コンデンサでは、次亜リン酸を0.01[質量%]添加すると(比較例2-1)、単位容量当たりの漏れ電流LC2は0.356[μA/μF]で、これにオルトリン酸を0.01[質量%]添加しても(比較例2-2)、0.358[μA/μF]で、殆ど違いがなかった。さらにオルトリン酸の添加量を0.05[質量%]、0.1[質量%]、0.3[質量%]、0.5[質量%]、1.0[質量%]と増加させていっても(比較例2-3~比較例2-7)、同様に殆ど違いがなかった。
 この傾向は、表2-2~表2-5および図4B~図4Eに示すように、次亜リン酸をそれぞれ0.05[質量%]、0.1[質量%]、0.5[質量%]、1.0[質量%]添加し、これらにオルトリン酸を添加した実施例(実施例2-8~実施例2-35)および比較例(比較例2-8~比較例2-35)についても同様であった。このことから、焼結箔コンデンサでは、電解液に次亜リン酸を所定量添加した場合と比較して、これにオルトリン酸を少なくとも0.01[質量%]添加することで単位容量当たりの漏れ電流LC2が顕著に低下し、さらにオルトリン酸の添加量を増加させていって1.0[質量%]添加時においても、オルトリン酸0.01[質量%]添加時と同等の漏れ電流低減効果が安定的に維持されることが示された。一方、エッチング箔コンデンサでは、次亜リン酸のみを添加した場合と、次亜リン酸およびオルトリン酸を添加した場合とで、単位容量当たりの漏れ電流LC2は殆ど変化しないことが示された。
 さらに、試験1および試験2の結果をより詳しく見ると、焼結箔コンデンサでは、電解液にオルトリン酸を0.01[質量%]添加すると(実施例1-8)、単位容量当たりの漏れ電流LC2は1.44[μA/μF]で、これに次亜リン酸を0.01[質量%]添加すると(実施例2-2)、0.352[μA/μF]と顕著に低下した。さらに次亜リン酸の添加量を0.05[質量%]に増加させると(実施例2-9)、0.312[μA/μF]とさらに顕著に低下した。また、さらに次亜リン酸の添加量を増加させていって1.0[質量%]添加時においても、次亜リン酸0.05[質量%]添加時と同等の漏れ電流低減効果が安定的に維持された(実施例2-16、実施例2-23、実施例2-30)。
 したがって、電解液に次亜リン酸およびオルトリン酸を添加する場合、次亜リン酸とオルトリン酸とを合計で0.02[質量%]~2.0[質量%]添加することが好ましく、より好適には次亜リン酸とオルトリン酸とをそれぞれ0.01[質量%]~1.0[質量%]ずつ添加することが好ましく、さらに好適には次亜リン酸を0.05[質量%]~1.0[質量%]且つオルトリン酸を0.01[質量%]~1.0[質量%]の範囲で添加することが好ましい。
 なお、エッチング箔コンデンサでも、電解液にオルトリン酸を0.01[質量%]および次亜リン酸を0.01[質量%]添加すると(比較例2-2)、単位容量当たりの漏れ電流LC2は0.358[μA/μF]であるのに対して、さらに次亜リン酸の添加量を増加させて0.05[質量%]とすると(比較例2-9)、0.303[μA/μF]となって、比較的漏れ電流LC2が低下した。しかしながら、さらに次亜リン酸の添加量を増加させていくと、0.5[質量%]添加時には0.369[μA/μF]となって次亜リン酸0.01[質量%]添加時と同等の漏れ電流LC2に増大し、1.0[質量%]添加時には0.464[μA/μF]となって漏れ電流LC2は顕著に高くなった(比較例2-23、比較例2-30)。したがって、前述の通り、次亜リン酸を一定量添加し、これにオルトリン酸を添加しても漏れ電流LC2に殆ど違いがなかったことと合わせて考察すると、次亜リン酸の添加量を増加させることで漏れ電流LC2が一時的に低下したのは、次亜リン酸が単独で作用したことによると考えられた。さらに、オルトリン酸と次亜リン酸とを組み合わせて添加しても、漏れ電流低減効果は、次亜リン酸単独で添加した場合と殆ど同じで、また、添加量によっては漏れ電流LC2が逆に高くなってしまって、不安定であった。
 試験3
 試験1および試験2と同様の手順により、陽極箔に焼結箔を適用した焼結箔コンデンサ(静電容量:27[μF]、測定条件は試験1および試験2と同じ)、および陽極箔にエッチング箔を適用したエッチング箔コンデンサを製造した。
 焼結箔コンデンサは、電解液組成の異なる三種類を製造した。このうち、実施例3-1は、エチレングリコールを主溶媒とし、アゼライン酸ジメチルアミンを主溶質とし、さらにリンの酸素酸を添加物として添加し、また、水分量および比抵抗を適切に調整した。アゼライン酸ジメチルアミンの添加量は、電解液全質量の12[質量%]とした。実施例3-2は、エチレングリコールを主溶媒とし、アゼライン酸ジエチルアミンを主溶質とし、さらにリンの酸素酸を添加物として添加し、また、水分量および比抵抗を適切に調整した。アゼライン酸ジエチルアミンの添加量は、電解液全質量の12[質量%]とした。比較例3は、エチレングリコールを主溶媒とし、アゼライン酸アンモニウムを主溶質とし、さらにリンの酸素酸を添加物として添加し、また、水分量および比抵抗を適切に調整した。アゼライン酸アンモニウムの添加量は、電解液全質量の6[質量%]とした。なお、添加物であるリンの酸素酸の配合(種類および添加量)については、試験1および試験2の結果等を考慮して、各例の間(特に、実施例と比較例との間)で当該リンの酸素酸による漏れ電流の低減効果に差異が生じないように配合した。
 また、エッチング箔コンデンサも、実施例3-1と同一の電解液組成の参考例3-1、実施例3-2と同一の電解液組成の参考例3-2、および比較例3と同一の電解液組成の参考例3-3の三種類を製造した。
 各例の電解コンデンサについて、105[℃]で425[V]の電圧を1500[時間]以上印加する高温負荷試験を行って、所定の経過時間毎に漏れ電流[μA]を測定した。具体的には、高温負荷開始後、初期は比較的短期間毎に漏れ電流を測定し、その後は約500[時間]経過後、約1000[時間]経過後、そして最後に約1500[時間]経過後にそれぞれ測定した。結果を表3に示し、さらに図5および図6にグラフで示す。グラフについては、図5Aに実施例3-1および参考例3-1の漏れ電流を、図5Bに実施例3-2および参考例3-2の漏れ電流を、図6に比較例3および参考例3-3の漏れ電流を、それぞれ示す。
Figure JPOXMLDOC01-appb-T000007
 表3、図5および図6に示すように、高温負荷開始後、初期の4[時間]経過後および8[時間]経過後においては、いずれの例も焼結箔コンデンサの漏れ電流はエッチング箔コンデンサのそれよりも小さく抑えられた。これは、添加物であるリンの酸素酸による漏れ電流低減効果が発揮されたものと考えらえる。一方、前述のように、焼結箔コンデンサは、漏れ電流の起点が複数存在する可能性があり、漏れ電流が増大しやすい特性を有する。そのため、いずれの例も高温負荷開始から78[時間]経過後には、焼結箔コンデンサの漏れ電流は、エッチング箔コンデンサのそれよりも大きくなり、1517[時間]経過時までエッチング箔コンデンサのそれよりも大きい値で推移した。
 しかしながら、比較例3では、参考例3-3との漏れ電流の差が、例えば512[時間]経過後で2.03[μA]、989[時間]経過後で2.40[μA]、1517[時間]経過後で2.40[μA]となり、その差は比較的大きかった。これに対して、実施例3-1では、参考例3-1との漏れ電流の差が、例えば512[時間]経過後で1.80[μA]、989[時間]経過後で1.73[μA]、1517[時間]経過後で1.53[μA]となり、その差は比較的小さくなった。同様に、実施例3-2でも、参考例3-2との漏れ電流の差が、例えば512[時間]経過後で1.57[μA]、989[時間]経過後で1.63[μA]、1517[時間]経過後で1.63[μA]となり、その差は比較的小さくなった。また、この漏れ電流の値の差を、78[時間]経過後から1517[時間]経過後までの平均値で比較した場合も、比較例3では、1.70[μA]と比較的大きかったのに対して、実施例3-2では、1.40[μA]と比較的小さく、実施例3-1では、1.17[μA]とさらに小さくなった。このことから、電解液中に主溶質として含有するアミン塩に、焼結箔コンデンサ特有の効果としての漏れ電流の低減効果、とりわけ高温負荷時における漏れ電流の長期間に亘る低減効果が認められた。
 また、主溶質のアミン塩と添加物のリンの酸素酸との間に、相互の作用を阻害するような不具合は認められなかった。したがって、試験1、試験2、および試験3の結果から、焼結箔コンデンサにおいて、主溶質をアミン塩とし、且つ添加物として所定量のリンの酸素酸を含有する電解液が適用されることで、焼結箔による高容量化を実現しながら、漏れ電流をより安定的且つ大いに低減させて、とりわけ高温使用時に対しても十分な長寿命化を実現できることが示された。

 

Claims (12)

  1.  誘電体層が形成された陽極箔と、陰極箔と、前記陽極箔と前記陰極箔との間に配設されたセパレータと、を有するコンデンサ素子と、
     前記コンデンサ素子内に含浸された電解液と、を備え、
     前記陽極箔または前記陰極箔は、金属粉末を含有する組成物の焼結体が箔状に形成されてなり、または、前記焼結体からなる焼結体皮膜が基材の表面に形成されてなり、
     前記電解液は、一種類のリンの酸素酸もしくはその誘導体またはそれらの塩を0.01質量%~2.0質量%の範囲で含有すること
    を特徴とする電解コンデンサ。
  2.  前記一種類のリンの酸素酸は、次亜リン酸またはオルトリン酸であること
    を特徴とする請求項1記載の電解コンデンサ。
  3.  誘電体層が形成された陽極箔と、陰極箔と、前記陽極箔と前記陰極箔との間に配設されたセパレータと、を有するコンデンサ素子と、
     前記コンデンサ素子内に含浸された電解液と、を備え、
     前記陽極箔または前記陰極箔は、金属粉末を含有する組成物の焼結体が箔状に形成されてなり、または、前記焼結体からなる焼結体皮膜が基材の表面に形成されてなり、
     前記電解液は、二種類のリンの酸素酸もしくはその誘導体またはそれらの塩を合計で0.02質量%~2.0質量%の範囲で含有すること
    を特徴とする電解コンデンサ。
  4.  前記電解液は、前記二種類のリンの酸素酸もしくはその誘導体またはそれらの塩をそれぞれ0.01質量%~1.0質量%の範囲で含有すること
    を特徴とする請求項3記載の電解コンデンサ。
  5.  前記二種類のリンの酸素酸は、次亜リン酸およびオルトリン酸であること
    を特徴とする請求項3または請求項4記載の電解コンデンサ。
  6.  誘電体層が形成された陽極箔と、陰極箔と、前記陽極箔と前記陰極箔との間に配設されたセパレータと、を有するコンデンサ素子と、
     前記コンデンサ素子内に含浸された電解液と、を備え、
     前記陽極箔または前記陰極箔は、金属粉末を含有する組成物の焼結体が箔状に形成されてなり、または、前記焼結体からなる焼結体皮膜が基材の表面に形成されてなり、
     前記電解液は、二種類以上のリンの酸素酸もしくはその誘導体またはそれらの塩を含有すること
    を特徴とする電解コンデンサ。
  7.  陽極箔または陰極箔が、金属粉末を含有する組成物の焼結体が箔状に形成されてなる、または前記焼結体からなる焼結体皮膜が基材の表面に形成されてなる焼結箔として構成される電解コンデンサの製造方法であって、
     電解液に、一種類のリンの酸素酸もしくはその誘導体またはそれらの塩を、0.01質量%~2.0質量%の範囲で添加すること
    を特徴とする電解コンデンサの製造方法。
  8.  前記一種類のリンの酸素酸は、次亜リン酸またはオルトリン酸であること
    を特徴とする請求項7記載の電解コンデンサの製造方法。
  9.  陽極箔または陰極箔が、金属粉末を含有する組成物の焼結体が箔状に形成されてなる、または前記焼結体からなる焼結体皮膜が基材の表面に形成されてなる焼結箔として構成される電解コンデンサの製造方法であって、
     電解液に、二種類のリンの酸素酸もしくはその誘導体またはそれらの塩を合計で0.02質量%~2.0質量%の範囲で添加すること
    を特徴とする電解コンデンサの製造方法。
  10.  前記電解液に、前記二種類のリンの酸素酸もしくはその誘導体またはそれらの塩をそれぞれ0.01質量%~1.0質量%の範囲で添加すること
    を特徴とする請求項9記載の電解コンデンサの製造方法。
  11.  前記二種類のリンの酸素酸は、次亜リン酸およびオルトリン酸であること
    を特徴とする請求項9または請求項10記載の電解コンデンサの製造方法。
  12.  陽極箔または陰極箔が、金属粉末を含有する組成物の焼結体が箔状に形成されてなる、または前記焼結体からなる焼結体皮膜が基材の表面に形成されてなる焼結箔として構成される電解コンデンサの製造方法であって、
     電解液に、二種類以上のリンの酸素酸もしくはその誘導体またはそれらの塩を添加すること
    を特徴とする電解コンデンサの製造方法。

     
PCT/JP2022/022316 2021-07-15 2022-06-01 電解コンデンサおよび電解コンデンサの製造方法 WO2023286482A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN202280040645.0A CN117480583A (zh) 2021-07-15 2022-06-01 电解电容器和电解电容器的制造方法
JP2023535174A JPWO2023286482A1 (ja) 2021-07-15 2022-06-01
CN202280008571.2A CN116802759A (zh) 2021-07-15 2022-07-05 电解电容器
US18/569,030 US20240282534A1 (en) 2021-07-15 2022-07-05 Electrolytic capacitor
PCT/JP2022/026649 WO2023286654A1 (ja) 2021-07-15 2022-07-05 電解コンデンサ
KR1020247000250A KR20240024892A (ko) 2021-07-15 2022-07-05 전해 콘덴서
JP2023535254A JPWO2023286654A1 (ja) 2021-07-15 2022-07-05
EP22841998.2A EP4343800A1 (en) 2021-07-15 2022-07-05 Electrolytic capacitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2021/026547 2021-07-15
PCT/JP2021/026547 WO2023286226A1 (ja) 2021-07-15 2021-07-15 電解コンデンサ

Publications (1)

Publication Number Publication Date
WO2023286482A1 true WO2023286482A1 (ja) 2023-01-19

Family

ID=83977441

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/JP2021/026547 WO2023286226A1 (ja) 2021-07-15 2021-07-15 電解コンデンサ
PCT/JP2022/022316 WO2023286482A1 (ja) 2021-07-15 2022-06-01 電解コンデンサおよび電解コンデンサの製造方法
PCT/JP2022/026649 WO2023286654A1 (ja) 2021-07-15 2022-07-05 電解コンデンサ

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/026547 WO2023286226A1 (ja) 2021-07-15 2021-07-15 電解コンデンサ

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/026649 WO2023286654A1 (ja) 2021-07-15 2022-07-05 電解コンデンサ

Country Status (6)

Country Link
US (1) US20240282534A1 (ja)
EP (1) EP4343800A1 (ja)
JP (4) JP7168823B1 (ja)
KR (1) KR20240024892A (ja)
CN (3) CN221861469U (ja)
WO (3) WO2023286226A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0442911A (ja) * 1990-06-06 1992-02-13 Elna Co Ltd 電解コンデンサ駆動用電解液
JP2005303062A (ja) * 2004-04-13 2005-10-27 Rubycon Corp 電解コンデンサ駆動用電解液及び電解コンデンサ
JP2008098279A (ja) * 2006-10-10 2008-04-24 Toyo Aluminium Kk アルミニウム電解コンデンサ用電極材及びその製造方法
JP2017076699A (ja) * 2015-10-15 2017-04-20 宇部興産株式会社 アルミ電解コンデンサ用電解液及びそれを用いたアルミ電解コンデンサ
JP2017188640A (ja) * 2016-03-31 2017-10-12 出光興産株式会社 電解液並びにそれを用いた蓄電デバイス及び電界コンデンサ
WO2019026701A1 (ja) * 2017-08-01 2019-02-07 日立化成株式会社 電解コンデンサ用の電極、電解コンデンサ用の電極の製造方法、及び電解コンデンサ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02267916A (ja) 1989-04-07 1990-11-01 Matsushita Electric Ind Co Ltd アルミ電解コンデンサ
WO2000055876A1 (fr) 1999-03-17 2000-09-21 Nippon Chemi-Con Corporation Electrolyte pour condensateur electrolytique
JP2005019773A (ja) * 2003-06-27 2005-01-20 Nichicon Corp アルミニウム電解コンデンサ
JP2006108159A (ja) 2004-09-30 2006-04-20 Nippon Chemicon Corp 電解コンデンサ
KR101552746B1 (ko) 2008-04-22 2015-09-11 도요 알루미늄 가부시키가이샤 알루미늄 전해 컨덴서용 전극재 및 그의 제조 방법
JP5769528B2 (ja) 2011-07-15 2015-08-26 東洋アルミニウム株式会社 アルミニウム電解コンデンサ用電極材及びその製造方法
JP6073255B2 (ja) 2012-02-10 2017-02-01 東洋アルミニウム株式会社 アルミニウム電解コンデンサ用電極材の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0442911A (ja) * 1990-06-06 1992-02-13 Elna Co Ltd 電解コンデンサ駆動用電解液
JP2005303062A (ja) * 2004-04-13 2005-10-27 Rubycon Corp 電解コンデンサ駆動用電解液及び電解コンデンサ
JP2008098279A (ja) * 2006-10-10 2008-04-24 Toyo Aluminium Kk アルミニウム電解コンデンサ用電極材及びその製造方法
JP2017076699A (ja) * 2015-10-15 2017-04-20 宇部興産株式会社 アルミ電解コンデンサ用電解液及びそれを用いたアルミ電解コンデンサ
JP2017188640A (ja) * 2016-03-31 2017-10-12 出光興産株式会社 電解液並びにそれを用いた蓄電デバイス及び電界コンデンサ
WO2019026701A1 (ja) * 2017-08-01 2019-02-07 日立化成株式会社 電解コンデンサ用の電極、電解コンデンサ用の電極の製造方法、及び電解コンデンサ

Also Published As

Publication number Publication date
WO2023286226A1 (ja) 2023-01-19
JP7168823B1 (ja) 2022-11-09
EP4343800A1 (en) 2024-03-27
CN221861469U (zh) 2024-10-18
CN116802759A (zh) 2023-09-22
US20240282534A1 (en) 2024-08-22
KR20240024892A (ko) 2024-02-26
JPWO2023286482A1 (ja) 2023-01-19
CN117480583A (zh) 2024-01-30
TW202312199A (zh) 2023-03-16
JP2023014075A (ja) 2023-01-26
JPWO2023286654A1 (ja) 2023-01-19
JPWO2023286226A1 (ja) 2023-01-19
WO2023286654A1 (ja) 2023-01-19

Similar Documents

Publication Publication Date Title
KR100608466B1 (ko) 전해캐패시터용전해질및이를포함하는전해캐패시터
US7780835B2 (en) Method of making a capacitor by anodizing aluminum foil in a glycerine-phosphate electrolyte without a pre-anodizing hydration step
US8915974B2 (en) Method for manufacturing capacitor element
JP4900456B2 (ja) アルミニウム電解コンデンサ
JP4863626B2 (ja) 電解コンデンサ駆動用電解液及び電解コンデンサ
US20050117276A1 (en) Electrolytes for high voltage electrolytic capacitors
WO2023286482A1 (ja) 電解コンデンサおよび電解コンデンサの製造方法
JP4780812B2 (ja) アルミニウム電解コンデンサ
TW202349426A (zh) 電解電容器及電解電容器的製造方法
JP2007173454A (ja) 固体電解コンデンサ
WO2023233610A1 (ja) 電解コンデンサおよび電解コンデンサの製造方法
JP2011071238A (ja) 電解コンデンサ
WO2019049848A1 (ja) 固体電解コンデンサ
JP3663245B2 (ja) 電解コンデンサ駆動用電解液
JP2008244346A (ja) 電解コンデンサ用電解液
JP2000124074A (ja) アルミニウム電解コンデンサ
JP4548563B2 (ja) アルミニウム電解コンデンサ
JP2022053328A (ja) 電解コンデンサ
JP2023097332A (ja) 電解コンデンサ用電解液及び電解コンデンサ
JP2006108172A (ja) 固体電解コンデンサおよびその製造方法
WO2018043604A1 (ja) アルミニウム多孔質体
JP2008226971A (ja) 固体電解コンデンサの製造方法
JP4947888B2 (ja) 固体電解コンデンサの製造方法
JP2019029597A (ja) アルミニウム電解コンデンサ
JP2006108173A (ja) 固体電解コンデンサおよびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22841829

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023535174

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280040645.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22841829

Country of ref document: EP

Kind code of ref document: A1