WO2023277077A1 - 切削工具 - Google Patents

切削工具 Download PDF

Info

Publication number
WO2023277077A1
WO2023277077A1 PCT/JP2022/026003 JP2022026003W WO2023277077A1 WO 2023277077 A1 WO2023277077 A1 WO 2023277077A1 JP 2022026003 W JP2022026003 W JP 2022026003W WO 2023277077 A1 WO2023277077 A1 WO 2023277077A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
sample
less
coating
unit
Prior art date
Application number
PCT/JP2022/026003
Other languages
English (en)
French (fr)
Inventor
浩也 諸口
勇貴 堤内
望 月原
暁彦 植田
暁 久木野
Original Assignee
住友電工ハードメタル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電工ハードメタル株式会社 filed Critical 住友電工ハードメタル株式会社
Priority to JP2023518445A priority Critical patent/JP7355293B2/ja
Priority to CN202280045932.0A priority patent/CN117580664A/zh
Priority to KR1020237044935A priority patent/KR20240026951A/ko
Priority to EP22833223.5A priority patent/EP4365330A4/en
Publication of WO2023277077A1 publication Critical patent/WO2023277077A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/42Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by the composition of the alternating layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/44Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by a measurable physical property of the alternating layer or system, e.g. thickness, density, hardness

Definitions

  • Patent Document 1 discloses Ti x M 1-x C y N 1-y (M is a group 4 element, a group 5 element, a group 6 element of the periodic table, Al, Si and One or more elements selected from the group consisting of B (excluding Ti), satisfying 0.2 ⁇ x ⁇ 1 and 0 ⁇ y ⁇ 1), and an elastic recovery rate of 52
  • a cutting tool is disclosed that has a coating that includes a compound layer that is greater than or equal to
  • a cutting tool of the present disclosure comprises a substrate and a coating disposed on the substrate, the coating comprises a first layer and a second layer;
  • the hardness H1 of the first layer is 25 GPa or more and 40 GPa or less,
  • the hardness H 2 of the second layer satisfies 0.5 ⁇ H 1 ⁇ H 2 ⁇ 0.9 ⁇ H 1 ,
  • FIG. 1 is a perspective view illustrating one mode of a cutting tool.
  • FIG. 2 is a schematic cross-sectional view of a cutting tool in one aspect of the present embodiment.
  • FIG. 3 is a schematic cross-sectional view of a cutting tool in another aspect of this embodiment.
  • FIG. 4 is a schematic cross-sectional view of a cutting tool in another aspect of this embodiment.
  • FIG. 5 is a schematic cross-sectional view of a cutting tool in yet another aspect of this embodiment.
  • FIG. 6 is a schematic cross-sectional view of a cutting tool according to the present embodiment including a base layer in the coating.
  • FIG. 7 is a schematic cross-sectional view of a cutting tool according to this embodiment in which the coating includes an intermediate layer.
  • FIG. 8 is a schematic cross-sectional view of a cutting tool according to this embodiment in which the coating includes a surface layer.
  • FIG. 9 is an image diagram of a graph showing an example of the result of performing X-ray diffraction measurement on
  • Cutting tools in recent years tend to be exposed to severe cutting conditions due to high-load cutting requirements.
  • the current situation is that cutting tools that can be used stably under severe cutting conditions, in other words, cutting tools that have a sufficiently long life have not yet been provided.
  • high-load cutting such as cutting of high-hardness materials such as hardened steel (especially high-load cutting such as intermittent cutting)
  • the peeling resistance and chipping resistance may not be sufficient. Therefore, a cutting tool having a long tool life is demanded even in high-load cutting (especially high-load cutting such as interrupted cutting) like cutting of high-hardness materials such as hardened steel.
  • an object of the present disclosure is to provide a cutting tool having a long tool life even in high-load cutting of high-hardness materials.
  • a cutting tool comprising a substrate and a coating disposed on the substrate, the coating comprises a first layer and a second layer;
  • the hardness H1 of the first layer is 25 GPa or more and 40 GPa or less,
  • the hardness H 2 of the second layer satisfies 0.5 ⁇ H 1 ⁇ H 2 ⁇ 0.9 ⁇ H 1 ,
  • the cutting tool of the present disclosure can have a long tool life even in high-load cutting of high-hardness materials.
  • the thickness of the first layer is preferably 0.2 ⁇ m or more and 10 ⁇ m or less. This further improves the wear resistance of the cutting tool.
  • the thickness of the second layer is preferably 0.2 ⁇ m or more and 10 ⁇ m or less. This further improves the chipping resistance of the cutting tool and the peeling resistance of the cutting tool.
  • the ratio T 1 /T 2 of the thickness T 1 of the first layer to the thickness T 2 of the second layer is 0.02 or more and 50 or less. is preferred. This further improves the balance of wear resistance, spallation resistance and chipping resistance of the cutting tool.
  • the first layer includes a first unit layer, the first unit layer is made of Ti x Al y M 1-xy C z N 1-z ;
  • M is one element selected from the group consisting of zirconium, hafnium, elements of Group 5 and Group 6 of the periodic table, silicon, boron, and yttrium;
  • the x is 0.20 or more and 0.99 or less,
  • the y is 0.01 or more and 0.80 or less,
  • the 1-xy is 0.01 or more and 0.20 or less,
  • the z is preferably 0 or more and 1 or less. This further improves the wear resistance of the cutting tool.
  • the first layer further includes a second unit layer, the second unit layer is made of Al m Cr 1-m N;
  • the m is 0 or more and 0.8 or less,
  • the thickness of the first unit layer is 5 nm or more and 50 nm or less,
  • the thickness of the second unit layer is 5 nm or more and 50 nm or less,
  • the first unit layers and the second unit layers are alternately laminated. This further improves the wear resistance of the cutting tool.
  • the first layer further includes a third unit layer, the third unit layer is made of Ti 1-n Al n N, The n is 0 or more and 0.8 or less, The thickness of the first unit layer is 5 nm or more and 50 nm or less, The thickness of the third unit layer is 5 nm or more and 50 nm or less, Preferably, the first unit layers and the third unit layers are alternately laminated. This further improves the wear resistance of the cutting tool.
  • the second layer includes a fourth unit layer, the fourth unit layer is made of TiaAlbCcN1 -c ;
  • the a is 0.2 or more and 1.0 or less,
  • the b is 0 or more and 0.8 or less,
  • the value of c is preferably 0 or more and 1 or less. This further improves the chipping resistance of the cutting tool and the peeling resistance of the cutting tool.
  • a compound or the like when represented by a chemical formula, it shall include any conventionally known atomic ratio unless the atomic ratio is particularly limited, and should not necessarily be limited only to those within the stoichiometric range.
  • TiAlSiN when “TiAlSiN" is described, the ratio of the number of atoms constituting TiAlSiN includes all conventionally known atomic ratios.
  • the cutting tool 10 has A cutting tool 10 comprising a substrate 11 and a coating 40 disposed on the substrate 11,
  • the coating 40 includes a first layer 12 and a second layer 13,
  • the hardness H1 of the first layer 12 is 25 GPa or more and 40 GPa or less
  • the hardness H 2 of the second layer 13 satisfies 0.5 ⁇ H 1 ⁇ H 2 ⁇ 0.9 ⁇ H 1
  • the X-ray diffraction intensity I of the ( 200) plane of the film, the X-ray diffraction intensity I of the ( 111 ) plane, and the X-ray diffraction intensity I of the ( 220) plane the ratio I ( 200 ) /(I (200) +I (111) +I (220) ) of I (200),
  • the cutting tool of the present disclosure can have a long tool life even in high-load cutting such as cutting of high-hardness materials such as hardened steel (especially high-load cutting such as interrupted cutting). The reason is presumed as follows.
  • the coating includes a first layer, and the hardness H1 of the first layer 12 is 25 GPa or more and 40 GPa or less. This allows such cutting tools to have excellent wear resistance.
  • wear resistance means resistance to abrasion of the coating when used for cutting.
  • the coating includes a first layer, and the hardness H1 of the first layer 12 is 25 GPa or more and 40 GPa or less.
  • a coating having the above hardness is excellent in wear resistance.
  • such a coating is generally highly brittle, it tends to be easily damaged (chipping of the coating and peeling of the coating) by breaking the coating itself. For this reason, in cutting tools having such a coating, the coating itself is destroyed during high-load cutting such as cutting of high-hardness materials such as hardened steel (especially high-load cutting such as interrupted machining). Damage tends to occur, and wear tends to progress starting from the damage.
  • the coating has the second layer together with the first layer, and the hardness H2 of the second layer 13 is 0.5 ⁇ H 1 ⁇ H 2 ⁇ 0.9 ⁇
  • H1 the hardness of the coating as a whole can be suppressed to a low level, so that damage caused by destruction of the coating itself (fine cracks and peeling of the coating) can be suppressed.
  • the cutting tool of the present embodiment has excellent peeling resistance and excellent resistance even in high-load cutting such as cutting of high-hardness materials such as hardened steel (particularly, high-load cutting such as interrupted cutting). It has a chipping property and can suppress the progress of wear originating from film damage.
  • peeling resistance means resistance to peeling of the coating from the substrate.
  • chipping resistance used herein means resistance to occurrence of minute cracks in the film.
  • the X-ray diffraction intensity I of the (200) plane of the coating film and the X-ray diffraction intensity I of the (200) and (111) planes (111) and (220) planes The ratio I (200) /(I (200) + I (111) + I (220) ) of the I (200) to the sum of the X-ray diffraction intensity I (220) of the above, the ratio of the I ( 111) to the sum
  • the ratio I (111) /(I (200) +I (111) +I (220) ) and the ratio of said I (220) to said sum I (220) /(I (200) +I (111) +I (220) ) is 0.45 or more.
  • the cutting tool according to this embodiment can have a long tool life by combining excellent wear resistance, excellent flaking resistance, and excellent chipping resistance.
  • the shape and application of the cutting tool 10 according to this embodiment are not particularly limited.
  • the cutting tool 10 according to the present embodiment includes a drill, an end mill, an indexable cutting insert for a drill, an indexable cutting insert for an end mill, an indexable cutting insert for milling, an indexable cutting insert for turning, It can be a metal saw, a gear cutting tool, a reamer, a tap, a tip for crankshaft pin milling, and the like.
  • FIG. 1 is a perspective view illustrating one aspect of the cutting tool 10 of the present disclosure.
  • the cutting tool 10 having such a shape is used as an indexable cutting tip such as an indexable cutting tip for turning.
  • the base material may be a cemented carbide (for example, a tungsten carbide (WC)-based cemented carbide, a cemented carbide containing Co in addition to WC, or a carbonitride such as Ti, Ta, Nb, etc. added in addition to WC). cemented carbide, etc.), cermets (having TiC, TiN, TiCN, etc.
  • a cemented carbide for example, a tungsten carbide (WC)-based cemented carbide, a cemented carbide containing Co in addition to WC, or a carbonitride such as Ti, Ta, Nb, etc. added in addition to WC.
  • cemented carbide, etc. cemented carbide, etc.
  • cermets having TiC, TiN, TiCN, etc.
  • high-speed steels high-speed steels, tool steels, ceramics (TiC, SiC, SiN, AlN, Al2O3 , sialon, and their mixture, etc.), a cubic boron nitride sintered body (cBN sintered body), a diamond sintered body, and a hard material in which cubic boron nitride particles are dispersed in the binding phase. preferably included.
  • cemented carbide especially WC-based cemented carbide
  • cermet especially TiCN-based cermet
  • the effect of the present embodiment is exhibited even if such a cemented carbide contains free carbon or an abnormal phase called ⁇ phase in the structure.
  • the base material used in this embodiment may have a modified surface.
  • a ⁇ -free layer may be formed on the surface, or in the case of a cBN sintered body, a surface-hardened layer may be formed. Even if the surface is modified in this way, The effect of this embodiment is shown.
  • the substrate may or may not have a chip breaker. included.
  • the shape of the cutting edge is sharp edge (the ridge where the rake face and flank face intersect), honing (sharp edge rounded), negative land (chamfered shape), and a combination of honing and negative land. includes any shape.
  • FIG. 2 is a schematic cross-sectional view illustrating one aspect of the cutting tool of the present disclosure.
  • FIG. 3 is a schematic cross-sectional view illustrating another aspect of the cutting tool of the present disclosure.
  • the "coating" covers at least the cutting edge portion of the base material 11, thereby improving various properties of the cutting tool such as peeling resistance, chipping resistance, and wear resistance.
  • the cutting edge portion described here means a region within 500 ⁇ m along the substrate surface from the cutting edge ridgeline.
  • the coating 40 preferably covers the entire surface of the substrate 11 . However, even if a part of the substrate 11 is not covered with the film 40 or the structure of the film 40 is partially different, this does not depart from the scope of the present embodiment.
  • the thickness of the coating is preferably 0.1 ⁇ m or more and 30 ⁇ m or less, more preferably 0.4 ⁇ m or more and 20 ⁇ m or less, further preferably 0.5 ⁇ m or more and 10 ⁇ m or less, and 0.7 ⁇ m or more and 5 ⁇ m or less. is even more preferable, and it is particularly preferable to be 1 ⁇ m or more and 3 ⁇ m or less.
  • the thickness of the coating means the sum of the thicknesses of the layers constituting the coating. Examples of "layers constituting the coating" include the first layer, the second layer, and other layers described later as layers other than the first layer and the second layer.
  • the thickness of the coating is, for example, using a scanning electron microscope (SEM), measuring arbitrary 5 points in a cross-sectional sample parallel to the normal direction of the surface of the base material, and measuring 5 points It is possible to obtain by taking the average value of the thickness.
  • SEM scanning electron microscope
  • a focused ion beam device, a cross-section polisher device, or the like can be used to prepare the cross-sectional sample. The same applies when measuring the thickness of each of the first layer, the second layer, the first unit layer, the second unit layer, the third unit layer, the fourth unit layer, and the other layers. be.
  • the coating includes a first layer and a second layer.
  • a plurality of the first layers may be provided as long as the effect of the cutting tool is maintained.
  • the said 2nd layer may be provided in multiple numbers.
  • either of the first layer and the second layer may be positioned closest to the surface. Either the first layer or the second layer may be positioned closest to the substrate.
  • “including a first layer and a second layer” means that the coating can include other layers described later as layers other than the first layer and the second layer.
  • variations in the orientation between the first layer and the second layer arranged closest to the first layer can be suppressed, and the orientation can be made uniform.
  • the “X-ray diffraction intensity I (200) of the (200) plane” means the diffraction intensity (peak height) at the highest peak among the X-ray diffraction peaks derived from the (200) plane (hereinafter , also referred to as “maximum diffraction intensity”).
  • each of the two or more compounds contained in the film has an X-ray diffraction peak A1 derived from the (200) plane and an X-ray diffraction peak A2 derived from the (200) plane.
  • the “X-ray diffraction intensity I (200) of the (200) plane” is the maximum diffraction intensity (peak height). The same applies to the “(111) plane X-ray diffraction intensity I (111) " and “(220) plane X-ray diffraction intensity I (220) ".
  • I (200) /(I (200) +I (111) +I (220) ), I (111) /(I (200) +I (111) +I (220) ), and I (220) /(I (200) +I (111) +I (220) ) is preferably 0.47 or more, more preferably 0.50 or more, and preferably 0.55 or more More preferred.
  • I (200) /(I (200) +I (111) +I (220) ), I (111) /(I (200) +I (111) +I (220) ), and I (220) /(I (200) +I (111) +I (220) ) is preferably 0.90 or less, more preferably 0.85 or less, and preferably 0.80 or less. More preferred.
  • I (200) /(I (200) +I (111) +I (220) ), I (111) /(I (200) +I (111) +I (220) ), and I (220) /(I (200) +I (111) +I (220) ) is preferably 0.47 or more and 0.90 or less, more preferably 0.50 or more and 0.85 or less, It is more preferably 0.55 or more and 0.80 or less.
  • the above I (200) , I (111) , and I (220) can be determined, for example, by X-ray diffraction measurement (XRD measurement) under the following conditions. Specifically, the surface of the coating is irradiated with X-rays, X-ray diffraction measurement (XRD measurement) is performed, and the X-ray diffraction intensities of the (200) plane, (111) plane and (220) plane are obtained, The above I (200) , the above I (111) , and the above I (220) are calculated. Examples of the apparatus used for the X-ray diffraction measurement include "SmartLab" (trade name) manufactured by Rigaku Corporation and "X'pert" (trade name) manufactured by Panalytical.
  • the hardness H1 of the first layer according to this embodiment is 25 GPa or more and 40 GPa or less. This allows the cutting tool to have excellent wear resistance.
  • the lower limit of H1 is preferably 27 GPa or more, more preferably 29 GPa or more, and even more preferably 31 GPa or more.
  • the upper limit of H1 is preferably 38 GPa or less, more preferably 36 GPa or less, and even more preferably 34 GPa or less. Further, H1 is preferably 27 GPa or more and 38 GPa or less , more preferably 29 GPa or more and 36 GPa or less, and even more preferably 31 GPa or more and 34 GPa or less.
  • the hardness H1 of the first layer is measured by a method conforming to ISO14577 (2015) to measure the indentation hardness.
  • a nanoindentation hardness tester (ENT1100a; manufactured by Elionix) is used as a measuring instrument. Specifically, first, the position of the cutting tool where the coating is provided is ground so as to obtain a surface (inclined surface) having an inclination of 6° with respect to the surface direction of the outermost surface of the coating. Next, at an arbitrary point on the surface of the first layer on the obtained inclined surface and corresponding to the middle point in the film thickness direction of the first layer, under an environment of 25 ° C.
  • the hardness H1 of the first layer is calculated according to ISO14577. The same is true when measuring the hardness H2 of the second layer.
  • the hardness H1 of the first layer means the hardness of the entire first layer.
  • the thickness of the first layer is preferably 0.2 ⁇ m or more and 10 ⁇ m or less. This can further improve the wear resistance of the cutting tool.
  • the lower limit of the thickness of the first layer is preferably 0.4 ⁇ m or more, more preferably 0.5 ⁇ m or more, and even more preferably 0.6 ⁇ m or more.
  • the upper limit of the thickness of the first layer is preferably 6 ⁇ m or less, more preferably 3 ⁇ m or less, and even more preferably 2 ⁇ m or less.
  • the thickness of the first layer is preferably 0.4 ⁇ m or more and 6 ⁇ m or less, more preferably 0.5 ⁇ m or more and 3 ⁇ m or less, and even more preferably 0.6 ⁇ m or more and 2 ⁇ m or less.
  • the first layer includes a first unit layer, and the first unit layer is made of Ti x Al y M 1-xy C z N 1-z , and M is zirconium, hafnium, or an element selected from the group consisting of Group 5 elements, Group 6 elements, silicon, boron, and yttrium, x is 0.20 or more and 0.99 or less, and y is 0.01 0.80 or less, 1-xy is 0.01 or more and 0.20 or less, and z is preferably 0 or more and 1.0 or less. This can further improve the wear resistance of the cutting tool.
  • the first layer includes the first unit layer
  • the first layer means that the first layer consists of only the first unit layer, and that the first layer and the first unit layer together with the second unit layer or It is a concept that includes aspects including a third unit layer.
  • the first unit layer consists of Ti x Al y M 1-x-y C z N 1-z
  • the first unit layer consists of Ti x Al y M 1-x-y C z N 1-z
  • x is preferably 0.25 or more and 0.95 or less, more preferably 0.30 or more and 0.90 or less, and still more preferably 0.35 or more and 0.80 or less.
  • y is preferably 0.10 or more and 0.70 or less, more preferably 0.20 or more and 0.60 or less, and still more preferably 0.30 or more and 0.55 or less.
  • the 1-xy is preferably 0.02 or more and 0.18 or less, more preferably 0.03 or more and 0.15 or less, and 0.04 or more and 0.10 or less. is more preferred.
  • the above z is preferably 0.01 or more and 0.90 or less, more preferably 0.05 or more and 0.70 or less, and still more preferably 0.10 or more and 0.50 or less.
  • x is 0.20 or more and 0.99 or less
  • y is 0.01 or more and 0.80 or less
  • 1-xy is 0, and Said z can also be 0 or more and 1.0 or less.
  • 1-xy is preferably not "0".
  • the above x, above y, and above z can be confirmed by using an EDX (Energy Dispersive X-ray spectroscopy) device attached to SEM or TEM. Specifically, first, a cutting tool is cut at an arbitrary position in the film thickness direction to prepare a sample including a cross section of the film. Next, point analysis is performed on the first unit layer in the coating. Note that the measurement point is on the middle point in the thickness direction of the first unit layer so that the information near the interface is not included. The measurements are performed at five arbitrarily selected locations. Specify x and y, which indicate the atomic ratio of each element, at each of the five arbitrary measurement points. An average value of each of x and y is obtained at five measurement points. The average value corresponds to x and y above in the first unit layer. The same is true for obtaining m in the second unit layer described later, n in the third unit layer described later, and a, b, and c in the fourth unit layer described later.
  • the thickness of the first unit layer is preferably 0.2 ⁇ m or more and 10 ⁇ m or less. This can further improve the wear resistance of the cutting tool. Further, when the first layer consists of only the first unit layer, the lower limit of the thickness of the first unit layer is preferably 0.4 ⁇ m or more, more preferably 0.5 ⁇ m or more, and 0 0.6 ⁇ m or more is more preferable. When the first layer consists of only the first unit layer, the upper limit of the thickness of the first unit layer is preferably 6 ⁇ m or less, more preferably 3 ⁇ m or less, and 2 ⁇ m or less. is more preferred.
  • the thickness of the first unit layer is preferably 0.4 ⁇ m or more and 6 ⁇ m or less, more preferably 0.5 ⁇ m or more and 3 ⁇ m or less. , more preferably 0.6 ⁇ m or more and 2 ⁇ m or less.
  • the thickness of the first unit layer is preferably 0.005 ⁇ m or more and 1 ⁇ m or less. This can further improve the wear resistance of the cutting tool.
  • the lower limit of the thickness of the first unit layer is preferably 0.007 ⁇ m or more. , more preferably 0.010 ⁇ m or more, and even more preferably 0.015 ⁇ m or more.
  • the upper limit of the thickness of the first unit layer is preferably 0.8 ⁇ m or less.
  • the thickness of the first unit layer is 0.005 ⁇ m or more and 0.8 ⁇ m or less. , more preferably 0.010 ⁇ m or more and 0.6 ⁇ m or less, and even more preferably 0.015 ⁇ m or more and 0.3 ⁇ m or less.
  • the first layer 12 further includes a second unit layer 13 together with the first unit layer.
  • the second unit layer 13 is made of Al m Cr 1-m N, m is 0 or more and 0.8 or less, and the thickness of the first unit layer 121 is 5 nm or more and 50 nm or less. and the thickness of the second unit layer 122 is 5 nm or more and 50 nm or less, and the first unit layer 121 and the second unit layer 122 are preferably alternately laminated (FIG. 4).
  • the grain size of the particles constituting the first layer becomes finer, the hardness of the first layer increases, so that the wear resistance of the cutting tool can be further improved.
  • the first unit layer and the second unit layer are alternately laminated
  • either one of the first unit layer and the second unit layer may be arranged closest to the substrate.
  • the first unit layer and the second unit layer may be arranged on the most surface side.
  • the phrase “the second unit layer is made of Al m Cr 1-m N” is not limited to the embodiment made only of Al m Cr 1-m N, and as long as the effects of the present disclosure are exhibited, It is a concept that includes aspects including components other than Al m Cr 1-m N (for example, unavoidable impurities) in addition to Al m Cr 1-m N.
  • m is preferably 0.10 or more and 0.75 or less, more preferably 0.20 or more and 0.73 or less, and still more preferably 0.30 or more and 0.70 or less.
  • the thickness of the second unit layer is preferably 5 nm or more and 1 ⁇ m or less. This can further improve the wear resistance of the cutting tool.
  • the lower limit of the thickness of the second unit layer is preferably 7 nm or more, more preferably 10 nm or more, and even more preferably 15 nm or more.
  • the upper limit of the thickness of the second unit layer is preferably 0.8 ⁇ m or less, more preferably 0.6 ⁇ m or less, and even more preferably 0.3 ⁇ m or less.
  • the thickness of the second unit layer is preferably 5 nm or more and 0.8 ⁇ m or less, more preferably 10 nm or more and 0.6 ⁇ m or less, and even more preferably 15 nm or more and 0.3 ⁇ m or less.
  • the first layer 12 further includes a third unit layer 123 together with the first unit layer.
  • the third unit layer 123 is made of Ti 1-n Al n N, n is 0 or more and 0.8 or less, and the thickness of the first unit layer 121 is 5 nm or more and 50 nm or less. and the thickness of the third unit layer 123 is 5 nm or more and 50 nm or less, and the first unit layer 121 and the third unit layer 123 are preferably alternately laminated (FIG. 5).
  • the third unit layer 123 is made of Ti 1-n Al n N, n is 0 or more and 0.8 or less, and the thickness of the first unit layer 121 is 5 nm or more and 50 nm or less. and the thickness of the third unit layer 123 is 5 nm or more and 50 nm or less, and the first unit layer 121 and the third unit layer 123 are preferably alternately laminated (FIG. 5).
  • the phrase “the third unit layer is made of Ti 1-n Al n N” is not limited to the mode of being made only of Ti 1-n Al n N, and as long as the effects of the present disclosure are achieved, It is a concept that includes an aspect including Ti 1 -n Al n N and components other than Ti 1-n Al n N (for example, unavoidable impurities).
  • n is preferably 0.3 or more and 0.9 or less, more preferably 0.4 or more and 0.8 or less, and still more preferably 0.5 or more and 0.7 or less.
  • the thickness of the third unit layer is preferably 5 nm or more and 1 ⁇ m or less. This can further improve the wear resistance of the cutting tool.
  • the lower limit of the thickness of the third unit layer is preferably 7 nm or more, more preferably 10 nm or more, and even more preferably 15 nm or more.
  • the upper limit of the thickness of the third unit layer is preferably 0.8 ⁇ m or less, more preferably 0.6 ⁇ m or less, and even more preferably 0.3 ⁇ m or less.
  • the thickness of the third unit layer is preferably 5 nm or more and 0.8 ⁇ m or less, more preferably 10 nm or more and 0.6 ⁇ m or less, and even more preferably 15 nm or more and 0.3 ⁇ m or less.
  • the hardness H 2 of the second layer according to this embodiment satisfies 0.5 ⁇ H 1 ⁇ H 2 ⁇ 0.9 ⁇ H 1 . This allows the cutting tool to have excellent flaking resistance and excellent chipping resistance.
  • the above H 2 preferably satisfies H 2 ⁇ 0.53 ⁇ H 1 , more preferably satisfies H 2 ⁇ 0.56 ⁇ H 1 , and further satisfies H 2 ⁇ 0.6 ⁇ H 1 preferable.
  • H 2 preferably satisfies H 2 ⁇ 0.87 x H 1 , more preferably satisfies H 2 ⁇ 0.84 x H 1 , and satisfies H 2 ⁇ 0.8 x H 1 is more preferred.
  • the above H 2 preferably satisfies 0.53 ⁇ H 1 ⁇ H 2 ⁇ 0.87 ⁇ H 1 , more preferably 0.56 ⁇ H 1 ⁇ H 2 ⁇ 0.84 ⁇ H 1 .
  • 0.6 ⁇ H 1 ⁇ H 2 ⁇ 0.8 ⁇ H 1 is more preferably satisfied.
  • the thickness of the second layer is preferably 0.2 ⁇ m or more and 10 ⁇ m or less. Thereby, the chipping resistance of the cutting tool and the peeling resistance of the cutting tool can be further improved.
  • the lower limit of the thickness of the second layer is preferably 0.3 ⁇ m or more, more preferably 0.4 ⁇ m or more, and even more preferably 0.5 ⁇ m or more.
  • the upper limit of the thickness of the second layer is preferably 8 ⁇ m or less, more preferably 5 ⁇ m or less, and even more preferably 3 ⁇ m or less.
  • the thickness of the second layer is preferably 0.3 ⁇ m or more and 8 ⁇ m or less, more preferably 0.4 ⁇ m or more and 5 ⁇ m or less, and even more preferably 0.5 ⁇ m or more and 3 ⁇ m or less.
  • the ratio T 1 /T 2 of the thickness T 1 of the first layer to the thickness T 2 of the second layer is preferably 0.02 or more and 50 or less.
  • the lower limit of T 1 /T 2 is preferably 0.04 or more, more preferably 0.06 or more, and even more preferably 0.1 or more.
  • the upper limit of T 1 /T 2 is preferably 45 or less, more preferably 40 or less, and even more preferably 30 or less.
  • the second layer preferably includes the fourth unit layer.
  • the fourth unit layer is made of Ti a Al b C c N 1-c , the a is 0.2 or more and 1.0 or less, and the b is 0 or more and 0.8 or less. and c is preferably 0 or more and 1.0 or less.
  • the second layer includes the fourth unit layer
  • the second layer consists only of the fourth unit layer, and that the second layer is a layer other than the fourth unit layer together with the fourth unit layer.
  • the fourth unit layer is composed of Ti a Al b C c N 1-c
  • the fourth unit layer is not limited to the mode composed only of Ti a Al b C c N 1-c , and the effect of the present disclosure is exhibited.
  • the thickness of the fourth unit layer is preferably 0.3 ⁇ m or more and 9 ⁇ m or less. This can further improve the wear resistance of the cutting tool.
  • the lower limit of the thickness of the fourth unit layer is preferably 0.4 ⁇ m or more, more preferably 0.5 ⁇ m or more, and even more preferably 0.6 ⁇ m or more.
  • the upper limit of the thickness of the fourth unit layer is preferably 7 ⁇ m or less, more preferably 5 ⁇ m or less, and even more preferably 3 ⁇ m or less.
  • the thickness of the fourth unit layer is preferably 0.4 ⁇ m or more and 7 ⁇ m or less, more preferably 0.5 ⁇ m or more and 5 ⁇ m or less, and even more preferably 0.6 ⁇ m or more and 3 ⁇ m or less.
  • the above a is preferably 0.3 or more and 0.95 or less, more preferably 0.35 or more and 0.9 or less, and even more preferably 0.4 or more and 0.85 or less.
  • the above b is preferably 0.05 or more and 0.7 or less, more preferably 0.1 or more and 0.65 or less, and still more preferably 0.15 or more and 0.6 or less.
  • the above c is preferably 0.01 or more and 0.9 or less, more preferably 0.03 or more and 0.85 or less, and still more preferably 0.05 or more and 0.7 or less.
  • the coating may further include the other layers as long as the effects of the present embodiment are not impaired.
  • examples of the other layers include an underlying layer 14, an intermediate layer 15, a surface layer 16, and the like.
  • the coating of this embodiment can include an underlayer.
  • the base layer 14 is a layer arranged between the substrate 11 and the layer closest to the substrate among the first layer 12 and the second layer 13 .
  • the underlayer is composed of a first compound, and the first compound includes one or more elements selected from the group consisting of elements of Group 4, Group 5, Group 6 of the periodic table, and aluminum, and carbon, nitrogen, and boron. and one or more elements selected from the group consisting of oxygen. This can further improve the wear resistance of the cutting tool. In addition, this can also improve the adhesion between the coating and the substrate.
  • the adhesion between the substrate and the coating can be enhanced.
  • the thickness of the underlayer is preferably 0.1 ⁇ m or more and 20 ⁇ m or less. This can further improve the wear resistance of the cutting tool. This also allows the cutting tool to have excellent chipping resistance.
  • the coating of this embodiment can include an intermediate layer.
  • the intermediate layer 15 is a layer arranged between the first layer 12 and the second layer 13 .
  • the composition of the intermediate layer is preferably a TiAlN layer or a TiN layer, for example.
  • the thickness of the intermediate layer is preferably 0.01 ⁇ m or more and 0.2 ⁇ m or less.
  • the coating of this embodiment can include a surface layer.
  • the surface layer 16 is the layer located closest to the surface of the coating 40 . However, it may not be formed at the cutting edge ridge.
  • the surface layer 16 is composed of a second compound, and the second compound includes at least one element selected from the group consisting of Group 4 elements, Group 5 elements, Group 6 elements of the periodic table, and aluminum, carbon, nitrogen, and one or more elements selected from the group consisting of boron and oxygen. This can further improve the wear resistance of the cutting tool.
  • the surface layer 16 may be a TiN layer or a TiAlN layer. Since the TiN layer has a clear color (golden color), its use as the surface layer 16 has the advantage of facilitating identification of the corners of the cutting tip after use for cutting (identification of used portions). By using a TiAlN layer as the surface layer 16, the oxidation resistance of the coating can be enhanced.
  • the thickness of the surface layer 16 is preferably 0.05 ⁇ m or more and 1 ⁇ m or less. This improves the adhesion between the surface layer 16 and adjacent layers.
  • Embodiment 2 Manufacturing method of cutting tool
  • a method for manufacturing the cutting tool of Embodiment 1 will be described below.
  • the following manufacturing method is an example, and the cutting tool of Embodiment 1 may be manufactured by other methods.
  • the method for manufacturing a cutting tool includes: A first step of preparing the base material (hereinafter sometimes simply referred to as “first step”); and a second step of forming the coating on the base material (hereinafter sometimes simply referred to as “second step”). Each step will be described below.
  • the substrate is prepared.
  • any base material can be used as long as it is conventionally known as this type of base material, as described above.
  • a tool made of a cubic boron nitride sintered body whose shape is ISO standard DNGA150408 can be used.
  • ⁇ Second step Step of forming a coating on the base material>>
  • a coating is formed on the substrate.
  • the second step includes a "first layer coating step” of coating at least a portion of the surface of the base material with a first layer, and a “coating step of coating at least a portion of the surface of the base material with a second layer.” second layer coating step”.
  • first layer coating step and the second layer coating step are performed, either one of the first layer coating step and the second layer coating step may be performed first.
  • the second step can further include at least one of step (i), step (ii), and step (iii), which will be described later.
  • the second step may further include an "other layer coating step” of coating at least part of the surface of the base material with the other layer.
  • the terms “coated with the first layer” or “coated with the second layer” herein refer to the case where the first layer or the second layer covers directly above the substrate surface, and the case where the substrate surface and the first layer Or, it is a concept that includes both the case where a layer (base layer) other than the first layer or the second layer is arranged between the layer and the second layer. Either the first layer coating step or the second layer coating step may be performed first.
  • the first layer coating step can include a "first unit layer coating step” of forming a first unit layer in the first layer.
  • the first layer coating step further includes a "second unit layer coating step” for forming a second unit layer in the first layer, or a "third unit layer coating step” for forming a third unit layer in the first layer. process” can be included.
  • the second layer coating step can include a "fourth unit layer coating step” of forming a fourth unit layer in the second layer.
  • the second step can include an "other layer coating step” for forming the other layer.
  • Examples of methods for coating at least part of the base material with the first layer include physical vapor deposition (PVD). The same applies to the first unit layer covering step, the second unit layer covering step, the third unit layer covering step, the second unit layer covering step, and the fourth unit layer covering step.
  • PVD physical vapor deposition
  • Examples of physical vapor deposition methods include sputtering, ion plating, arc ion plating, and electron ion beam evaporation.
  • sputtering ion plating
  • arc ion plating arc ion plating
  • electron ion beam evaporation electron ion beam evaporation.
  • the cathodic arc ion plating method or sputtering method which has a high ion rate of the raw material element, it is possible to subject the substrate surface to metal or gas ion bombardment treatment before forming the coating. It is preferable because the adhesion to is markedly improved.
  • the following conditions can be mentioned.
  • a Ti target is used as the metal evaporation source, and N 2 gas is used as the reaction gas.
  • the substrate (base material) temperature is set at 400-550° C. and the gas pressure in the apparatus is set at 0.3-1.5 Pa.
  • An apparatus used for the arc ion plating method includes, for example, AIP (trade name) manufactured by Kobe Steel, Ltd.
  • a Ti target can be used as a metal evaporation source, and a sputtering gas such as N 2 gas, Ar gas, Kr gas, or Xe gas can be used as a reaction gas.
  • the present inventors newly found that the hardness difference between the first layer and the second layer can be adjusted by performing at least one of the following steps (i) to (iii). I found out.
  • at least one of the above steps (i) to (iii) is performed even when the difference in hardness between the first layer and the second layer is outside the desired range under conventional film formation conditions due to the chemical composition. It has been found that the difference in hardness between the first layer and the second layer can be easily adjusted by this.
  • step (i) the second layer is annealed with a heater for a certain period of time.
  • the hardness of the second layer can be lowered, so that the hardness H2 of the second layer can be adjusted within the range of 0.5 ⁇ H 1 ⁇ H 2 ⁇ 0.9 ⁇ H 1 . .
  • the rate of temperature increase in step (i) is, for example, 5° C./min or more and 10° C./min or less.
  • the annealing temperature in the step (i) is, for example, 400° C. or higher and 500° C. or lower.
  • the annealing time in the step (i) is, for example, 10 minutes or more and 60 minutes or less.
  • the cooling rate in the step (i) is, for example, 5° C./min or more and 10° C./min or less.
  • the pressure in the furnace during cooling in the step (i) is, for example, 1 Pa or more and 8 Pa or less.
  • the first layer or the second layer is subjected to ion bombardment treatment using a sputtering gas.
  • a sputtering gas As a result, compressive stress can be applied to the first layer or the second layer, so that the hardness of the first layer or the second layer subjected to the ion bombardment treatment can be increased.
  • the gas composition in the above step (ii) is, for example, Ar (100%), Kr (100%), or Xe (100%).
  • the gas pressure in the step (ii) is, for example, 1 Pa or more and 3 Pa or less.
  • the bias voltage in the step (ii) is, for example, -1000 V or more and -600 V or less.
  • the treatment time in the step (ii) is, for example, 5 minutes or more and 60 minutes or less.
  • step (iii) the first unit layers and the second or third unit layers are alternately laminated.
  • lattice constant distortion occurs between layers having different compositions, so that the hardness of the first layer can be adjusted.
  • the bias voltage is adjusted as follows when switching between the second layer coating step and the first layer coating step.
  • A(V) be the bias voltage in the second layer coating process
  • B(V) be the bias voltage in the first layer coating process.
  • the bias voltage is set to A (V)
  • the second layer coating step is performed.
  • the bias voltage is greater than A and less than B (V) when B>A, or when A>B.
  • Time is changed to more than B and less than A (V), and film formation is performed for 60 to 120 seconds. This step is shown as step (iv-1).
  • step (iv) includes one or both of step (iv-1) and step (iv-2).
  • step (iv-3) A case in which the first layer coating process is performed first and then the second layer coating process is performed.
  • B(V) be the bias voltage for the first layer coating process
  • A(V) the bias voltage for the second coating process.
  • the bias voltage is set to B (V)
  • the first layer coating step is performed.
  • the bias voltage is greater than A and less than B (V) when B>A, or when A>B.
  • Time is changed to more than B and less than A (V), and film formation is performed for 60 to 120 seconds. This step is shown as step (iv-3).
  • step (iv) includes one or both of step (iv-3) and step (iv-4).
  • bias voltage B (V) in the first layer coating step is not more than 20 V and less than 60 V, it tends to be difficult to obtain the desired hardness H1.
  • step (iv) changes in the bias voltage when switching from the first layer coating step to the second layer coating step and when switching from the second layer coating step to the first layer coating step can be moderated, it is possible to suppress variations in orientation in the film caused by abrupt changes in the bias voltage during film formation.
  • the present inventors have newly discovered that the variation in orientation in the film can be suppressed by switching the bias voltage as described above.
  • a “lower layer” is formed between the base material and the first layer.
  • stratum covering step "intermediate layer covering step” for forming an intermediate layer between the first layer and the second layer, and “surface layer covering step” for forming a surface layer on the second layer, etc. may be performed as appropriate.
  • the other layers may be formed by conventional methods. Specifically, for example, the other layer may be formed by the PVD method described above.
  • a surface treatment step may be performed as appropriate.
  • the surface treatment step include surface treatment using a medium in which diamond powder is supported on an elastic material.
  • Example 1 ⁇ Manufacturing cutting tools ⁇ [Sample No. 1-1 to Sample No. 1-15, sample no. 1-17 to sample No. 1-34, and sample no. 1-101 to sample No. 1-105] Sample no. 1-1 to Sample No. 1-15, sample no. 1-17 to sample No. 1-34, and sample no. 1-101 to sample No. 1-106 cutting tools were produced.
  • ⁇ Step of preparing base material First, as a substrate preparation step, a cubic boron sintered body tool (shape: JIS standard DNGA150408) was prepared as a substrate. Next, the substrate was set at a predetermined position of an arc ion plating apparatus (manufactured by Kobe Steel, Ltd., trade name: AIP).
  • a second layer coating step a second layer was formed on the surface of the substrate using an arc ion plating method under the conditions shown in Table 1. Specifically, the following method was used.
  • the metal evaporation source a target corresponding to the "composition" of the second layer described in Tables 3 and 4, which will be described later, was used.
  • the composition of the second layer was TiAlN
  • a TiAl target was used as the metal evaporation source.
  • TiCN, TiC or TiN a Ti target was used as the metal evaporation source.
  • N2 gas and/or methane gas was used as the reaction gas.
  • the substrate (substrate) temperature was set at 500° C. and the gas pressure in the apparatus was set at 1 Pa.
  • step (i) the surface of the second layer was annealed under the conditions described in the "annealing temperature [°C]/time [minutes]” column of Table 1.
  • the furnace pressure during annealing was set to 2 Pa.
  • "-" in the "annealing temperature [°C]/time [minutes]” column of Table 1 means that step (i) was not performed.
  • step (ii) ion bombardment treatment was performed under the conditions described in the "ion bombardment” column of Table 1.
  • Ar (800V) means that the reaction gas is Ar gas and the bias voltage is 800V.
  • the ion bombardment treatment time was 45 minutes, and the furnace pressure was 1 Pa.
  • a "-" in the “ion bombardment” column of Table 1 means that step (ii) was not performed.
  • step (iv) while maintaining the conditions other than the bias voltage, the bias voltage is changed from the bias voltage value in the second layer coating step to the bias voltage described in the "step (iv)" column of Table 1.
  • the film was formed for 60 seconds by adjusting the bias voltage to the value.
  • the bias voltage was adjusted from 30 V (bias voltage in the second layer coating step) to 33 V (bias voltage in step (iv)).
  • the film formation conditions other than the bias voltage were changed to the first layer coating conditions shown below, and film formation was carried out for 60 seconds while maintaining the bias voltage.
  • the arc ion plating method was used under the conditions shown in Table 1 to form the first layer on the second layer. Specifically, the following method was used.
  • the metal evaporation source a target corresponding to the "composition" of the first layer described in Tables 3 and 4, which will be described later, was used.
  • the composition of the first layer was TiAlN
  • a TiAl target was used as the metal evaporation source.
  • a TiAlSi target was used as the metal evaporation source.
  • N2 gas was used as the reaction gas.
  • the substrate (substrate) temperature was set at 500° C. and the gas pressure in the apparatus was set at 4 Pa.
  • Sample no. 1-16 cutting tools were made.
  • ⁇ Step of preparing base material> As a base material preparation step, the above sample No. A substrate identical to that of 1-1 was prepared and set at a predetermined position in an arc ion plating apparatus.
  • an arc ion plating method was used to form a first layer on the substrate. Specifically, the following method was used.
  • the metal evaporation source a target corresponding to the "composition" of the first layer described in Table 3, which will be described later, was used. That is, a TiAl target was used as a metal evaporation source. N2 gas was used as the reaction gas.
  • the substrate (base material) temperature was set at 500° C. and the gas pressure in the apparatus was set at 2 Pa.
  • step (iv) while maintaining the conditions other than the bias voltage, the bias voltage is changed from the bias voltage value in the first layer coating step to the bias voltage described in the "step (iv)" column of Table 2.
  • the bias voltage was adjusted to the value
  • the film formation conditions other than the bias voltage were changed to the second layer coating conditions shown below, and film formation was carried out for 60 seconds while maintaining the bias voltage.
  • an arc ion plating method was used to form a second layer on the first layer.
  • the metal evaporation source a target corresponding to the "composition" of the second layer described in Tables 3 and 4, which will be described later, was used. That is, a TiAl target was used as a metal evaporation source. N2 gas was used as the reaction gas.
  • the substrate (base material) temperature was set at 500° C. and the gas pressure in the apparatus was set at 2 Pa.
  • the work material was cut under the following cutting conditions. Next, when the cutting distance reached 50 m, the cutting tool and the work material which were in contact with each other were once separated. Then, three minutes after the separation, the work material was cut again under the following cutting conditions. These were repeated until the cutting distance reached 3 km. Next, the maximum wear amount of the flank face of the cutting tool when the cutting distance reached 3 km was measured as the maximum wear amount. A smaller maximum wear amount means that the cutting tool has a longer tool life even in high-load cutting. Further, the fact that the maximum wear amount is 290 ⁇ m or less means that the cutting tool has a long tool life even in high-load cutting.
  • Sample no. 1-1 to Sample No. 1-34 correspond to examples.
  • Sample no. 1-101 to sample No. 1-106 corresponds to a comparative example. From the results of Tables 3 and 4, sample No. corresponding to the example. 1-1 to Sample No.
  • the cutting tool of 1-34 is a sample No. corresponding to the comparative example. 1-101 to sample No. It was confirmed that 1-106 has a longer tool life than 1-106, even in high-load cutting such as cutting of high-hardness materials such as hardened steel. The reason for this is that sample no. 1-1 to Sample No.
  • the first layer of the coating has high hardness and good wear resistance, and the coating includes the first layer and the second layer, so the coating has chipping resistance and peeling resistance. It is presumed that this is because the coating is less likely to break during cutting, and the wear originating there is suppressed.
  • Example 2 ⁇ Manufacturing cutting tools ⁇ [Sample No. 2-1 to Sample No. 2-42] Sample no. 2-1 to Sample No. 2-42 cutting tools were made.
  • the second layer coating step was carried out under the conditions shown in Tables 5 and 6, and the following targets were used as metal evaporation sources. 1-1 to Sample No. 1-15, sample no. 1-17 to sample No. 1-34, and sample no. 1-101 to sample No.
  • a second layer was formed on the substrate using the arc ion plating method under the same conditions as 1-106.
  • the metal evaporation source a target corresponding to the "composition" of the second layer described in Table 7, which will be described later, was used. Specifically, when the composition of the second layer was TiAlN, a TiAl target was used as the metal evaporation source. In the case of TiCN or TiN, a Ti target was used as the metal evaporation source.
  • step (iv) the bias voltage is adjusted from the value of the bias voltage in the second layer coating step to the bias voltage value described in the “step (iv)” column of Tables 5 and 6. Film formation was performed for seconds. Subsequently, the film formation conditions other than the bias voltage were changed to the first layer coating conditions shown below, and film formation was carried out for 60 seconds while maintaining the bias voltage. In addition, process (i) and process (ii) were not performed.
  • the arc ion plating method is used under the conditions shown in Tables 5 and 6 to alternately perform the first unit layer coating step and the second unit layer coating step.
  • a first layer was formed on the surface of the second layer.
  • the metal evaporation source a target corresponding to the "composition" of the first layer described in Tables 7 and 8, which will be described later, was used. That is, when the composition of the first unit layer was TiAlN, a TiAl target was used as the metal evaporation source. Further, for example, when the composition of the first unit layer was TiAlSiN, a TiAlSi target was used as the metal evaporation source.
  • composition of the second unit layer was AlCrN
  • an AlCr target was used as the metal evaporation source.
  • a Cr target was used as the metal evaporation source.
  • N2 gas was used as the reaction gas.
  • the substrate (substrate) temperature was set at 500° C. and the gas pressure in the apparatus was set at 4 Pa.
  • the first unit layer covering process and the second unit layer covering process was executed first, and the second unit layer covering process was executed last. .
  • the results obtained are shown in Tables 7 and 8, respectively.
  • the relationship among the "first unit layer thickness", the "second unit layer thickness” and the “first layer thickness” is as follows.
  • the first layer is formed by alternately laminating the first unit layer with a thickness of 15 nm and the second unit layer with a thickness of 10 nm, and the thickness T1 of the first layer is 2.5 ⁇ m. be.
  • sample no. 2-1 to Sample No. 2-42 cutting tools correspond to the examples.
  • Sample no. 2-1 to Sample No. 2-42 corresponds to the example. From the results of Tables 7 and 8, sample No. corresponding to the example. 2-1 to Sample No. It was confirmed that the cutting tool of No. 2-42 has a long tool life even in high-load cutting such as cutting of high-hardness materials such as hardened steel. The reason for this, as in Example 1, is that sample No. 2-1 to Sample No. In the cutting tool of 2-42, the first layer of the coating has high hardness and good wear resistance, and the coating includes the first layer and the second layer, so the coating has chipping resistance and peeling resistance. It is presumed that this is because the coating is less likely to break during cutting, and the wear originating there is suppressed.
  • Example 3 ⁇ Manufacturing cutting tools ⁇ [Sample No. 3-1 to Sample No. 3-43, and sample no. 3-101] Sample no. 3-1 to Sample No. 3-43, and sample no. 3-101 cutting tools were produced.
  • ⁇ Step of preparing base material> As a base material preparation step, the above sample No. 1-1 to Sample No. 1-15, sample no. 1-17 to sample No. 1-34, and sample no. 1-101 to sample No. A substrate identical to that of No. 1-106 was prepared and set at a predetermined position in an arc ion plating apparatus.
  • the second layer coating process was performed under the conditions shown in Tables 9 and 10, and the following targets were used as metal evaporation sources. 1-1 to Sample No. 1-15, sample no. 1-17 to sample No. 1-34, and sample no. 1-101 to sample No.
  • a second layer was formed on the surface of the base material using the arc ion plating method under the same conditions as in 1-106.
  • the metal evaporation source a target corresponding to the "composition" of the second layer described in Tables 11 and 12, which will be described later, was used. Specifically, when the composition of the second layer was TiAlN or TiAlC, a TiAl target was used as the metal evaporation source. When the composition of the second layer was TiCN, TiC or TiN, a Ti target was used as the metal evaporation source.
  • step (i) the surface of the second layer was annealed under the temperature conditions described in the "annealing temperature [°C]” column of Tables 9 and 10. "-" in the “annealing temperature [°C]” column of Tables 9 and 10 means that step (i) was not performed.
  • step (iv) the bias voltage in the second layer coating step was adjusted to the bias voltage described in the "step (iv)" column of Tables 9 and 10, and film formation was performed for 60 seconds. Subsequently, the film formation conditions other than the bias voltage were changed to the first layer coating conditions shown below, and film formation was carried out for 60 seconds while maintaining the bias voltage. Note that step (ii) was not performed.
  • the first layer coating step the first unit layer coating step and the third unit layer coating step are alternately performed using the arc ion plating method under the conditions shown in Tables 9 and 10.
  • a first layer was formed on the surface of the second layer. Specifically, the following method was used.
  • the metal evaporation source a target corresponding to the "composition" of the first layer described in Tables 11 and 12, which will be described later, was used. That is, when the composition of the first unit layer was TiAlN, a TiAl target was used as the metal evaporation source. Further, for example, when the composition of the first unit layer was TiAlSiN, a TiAlSi target was used as the metal evaporation source.
  • the composition of the third unit layer was TiAlN
  • a TiAl target was used as the metal evaporation source.
  • N2 gas was used as the reaction gas.
  • the substrate (substrate) temperature was set at 500° C. and the gas pressure in the apparatus was set at 4 Pa.
  • the first unit layer covering process and the third unit layer covering process was executed first, and the third unit layer covering process was executed last. .
  • the results obtained are shown in Tables 11 and 12, respectively.
  • the relationship among the "first unit layer thickness", "third unit layer thickness” and “first layer thickness” is as follows.
  • sample 3-1 a first unit layer having a thickness of 10 nm and a third unit layer having a thickness of 15 nm are alternately laminated to form a first layer, and the thickness T1 of the first layer is 2.5 ⁇ m. be.
  • the cutting tool of 3-43 corresponds to the example, sample no.
  • the 3-101 cutting tool corresponds to a comparative example.
  • Sample no. 3-1 to Sample No. 3-43 corresponds to the example. Moreover, sample no. 3-101 corresponds to a comparative example. From the results of Tables 11 and 12, sample No. corresponding to the example. 3-1 to Sample No. The cutting tool of 3-43 is sample No. 3 which corresponds to the comparative example. It was confirmed that 3-101 has a longer tool life than 3-101, even in high-load cutting such as cutting of high hardness materials such as hardened steel. The reason for this, as in Example 1, is that sample No. 3-1 to Sample No. In the cutting tool of 3-43, the first layer of the coating has high hardness and good wear resistance, and the coating includes the first layer and the second layer, so the coating has chipping resistance and peeling resistance. It is presumed that this is because the coating is less likely to break during cutting, and the wear originating there is suppressed.
  • Example 4 ⁇ Manufacturing cutting tools ⁇ [Sample No. 4-1 to Sample No. 4-28] Sample no. 4-1 to Sample No. 4-28 cutting tools were made.
  • composition of the second layer was TiAlN or TiAlC
  • a Ti target and an Al target were used as metal evaporation sources.
  • the composition of the second layer was TiCN or TiN
  • a Ti target was used as the metal evaporation source.
  • step (iv) the bias voltage is adjusted from the bias voltage value in the second layer coating step to the bias voltage value described in the "step (iv)" column of Table 13, and the film is formed for 60 seconds. did Subsequently, the film formation conditions other than the bias voltage were changed to the first layer coating conditions shown below, and film formation was carried out for 60 seconds while maintaining the bias voltage. In addition, process (i) and process (ii) were not performed.
  • the first layer coating step the first unit layer coating step and the second unit layer coating step are alternately performed using the arc ion plating method under the conditions shown in Table 13.
  • a first layer was formed on the surface of the second layer.
  • the metal evaporation source a target corresponding to the "composition" of the first layer described in Table 14, which will be described later, was used. That is, when the composition of the first unit layer was TiAlN, a TiAl target was used as the metal evaporation source. Further, for example, when the composition of the first unit layer was TiAlSiN, a TiAlSi target was used as the metal evaporation source.
  • composition of the second unit layer was AlCrN
  • an AlCr target was used as the metal evaporation source.
  • a Cr target was used as the metal evaporation source.
  • N2 gas was used as the reaction gas.
  • the substrate (substrate) temperature was set at 500° C. and the gas pressure in the apparatus was set at 4 Pa.
  • the first unit layer covering process and the second unit layer covering process was executed first, and the second unit layer covering process was executed last. .
  • the series of steps composed of the second layer coating step to the first layer coating step is repeated the number of times described in the section “Number of repetitions of the second layer coating step to the first layer coating step” in Table 13. executed.
  • sample no. In 4-1 a series of steps from the second layer coating step to the first layer coating step were repeated three times. That is, sample no.
  • the coating of 4-1 is formed by alternately stacking the second layers and the first layers, and includes three layers each of the second layers and the first layers.
  • the “first unit layer thickness” indicates the thickness of one first unit layer
  • the “second unit layer thickness” indicates the thickness of one second unit layer
  • the “thickness of the first layer” is The thickness of the first layer of one layer is indicated
  • the “thickness of the second layer” indicates the thickness of the second layer of one layer.
  • the first layer is formed by alternately laminating the first unit layer with a thickness of 15 nm and the second unit layer with a thickness of 10 nm
  • the thickness T1 of the first layer is 0.5 ⁇ m.
  • the 4-28 cutting tool corresponds to the example.
  • Sample no. 4-1 to Sample No. 4-28 corresponds to the example. From the results in Table 14, sample No. corresponding to the example. 4-1 to Sample No. It was confirmed that the 4-28 cutting tool has a long tool life even in high-load cutting such as cutting of high-hardness materials such as hardened steel. The reason for this, as in Example 1, is that sample No. 4-1 to Sample No. In the cutting tool of 4-28, the first layer of the coating has high hardness and good wear resistance, and the coating includes the first layer and the second layer, so the coating has chipping resistance and peeling resistance. It is presumed that this is because the coating is less likely to break during cutting, and the wear originating there is suppressed.
  • Example 5 ⁇ Manufacturing cutting tools ⁇ [Sample No. 5-1 to Sample No. 5-28] Sample no. 5-1 to Sample No. 5-28 cutting tools were made.
  • ⁇ Step of preparing base material> As a base material preparation step, the above sample No. 1-1 to Sample No. 1-15, sample no. 1-17 to sample No. 1-34, and sample no. 1-101 to sample No. A substrate identical to that of No. 1-106 was prepared and set at a predetermined position in an arc ion plating apparatus.
  • composition of the second layer was TiAlN or TiAlC
  • a TiAl target was used as the metal evaporation source.
  • composition of the second layer was TiN
  • a Ti target was used as the metal evaporation source.
  • step (iv) the bias voltage is adjusted from the bias voltage value in the second layer coating step to the bias voltage value described in the "step (iv)" column of Table 15, and the film is formed for 60 seconds. did Subsequently, the film formation conditions other than the bias voltage were changed to the first layer coating conditions shown below, and film formation was carried out for 60 seconds while maintaining the bias voltage. In addition, process (i) and process (ii) were not performed.
  • the first layer coating step the first unit layer coating step and the third unit layer coating step are alternately performed using the arc ion plating method under the conditions shown in Table 15.
  • a first layer was formed on the surface of the second layer. Specifically, the following method was used.
  • the metal evaporation source a target corresponding to the "composition" of the first layer described in Table 16, which will be described later, was used. That is, when the composition of the first unit layer was TiAlN, a TiAl target was used as the metal evaporation source. Further, for example, when the composition of the first unit layer was TiAlSiN, a TiAlSi target was used as the metal evaporation source.
  • the composition of the third unit layer was TiAlN
  • a TiAl target was used as the metal evaporation source.
  • an Al target was used as the metal evaporation source.
  • N2 gas was used as the reaction gas.
  • the substrate (substrate) temperature was set at 500° C. and the gas pressure in the apparatus was set at 4 Pa.
  • the first unit layer covering step and the second unit layer covering step the first unit layer covering step was performed first, and the third unit layer covering step was lastly performed. .
  • step (iii) a series of steps composed of the second layer coating step to the first layer coating step are performed according to the number of repetitions of the second layer coating step to the first layer coating step in Table 15. was performed the number of times described in the section. For example, sample no. In 5-1, a series of steps from the second layer coating step to the first layer coating step were repeated three times. That is, sample no. In the coating of 5-1, the second layers and the first layers are alternately laminated, and the second layers and the first layers each include three layers.
  • the “first unit layer thickness” indicates the thickness of one first unit layer
  • the “third unit layer thickness” indicates the thickness of one third unit layer
  • the "thickness of the first layer” is The thickness of the first layer of one layer is indicated
  • the "thickness of the second layer” indicates the thickness of the second layer of one layer.
  • sample no. In 5-1 a first unit layer with a thickness of 10 nm and a second unit layer with a thickness of 15 nm are alternately laminated to form a first layer, the thickness T1 of the first layer is 0.5 ⁇ m, and the coating There are three first layers and three second layers having a thickness T2 of 0.5 ⁇ m.
  • the 5-28 cutting tool corresponds to the example.
  • Sample no. 5-1 to Sample No. 5-28 corresponds to the example. From the results of Table 16, sample No. corresponding to the example. 5-1 to Sample No. It was confirmed that the 5-28 cutting tool has a long tool life even in high-load cutting such as cutting of high-hardness materials such as hardened steel. The reason for this, as in Example 1, is that sample No. 5-1 to Sample No. In the cutting tool of No. 5-28, the first layer of the coating has high hardness and good wear resistance, and the coating includes the first layer and the second layer, so the coating has chipping resistance and peeling resistance. It is presumed that this is because the coating is less likely to break during cutting, and the wear originating there is suppressed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Drilling Tools (AREA)

Abstract

切削工具は、基材と、前記基材上に配置された被膜と、を備える切削工具であって、前記被膜は、第1層と、第2層とを含み、前記第1層の硬度H1は、25GPa以上40GPa以下であり、前記第2層の硬度H2は、0.5×H1≦H2≦0.9×H1を満たし、前記被膜の(200)面のX線回折強度I(200)と、(111)面のX線回折強度I(111)と、(220)面のX線回折強度I(220)との合計に対する、前記I(200)の比率I(200)/(I(200)+I(111)+I(220))、前記合計に対する前記I(111)の比率I(111)/(I(200)+I(111)+I(220))、および前記合計に対する前記I(220)の比率I(220)/(I(200)+I(111)+I(220))の少なくともいずれかは、0.45以上である、切削工具。

Description

切削工具
 本開示は、切削工具に関する。本出願は、2021年6月30日に出願した国際出願であるPCT/JP2021/024828に基づく優先権を主張する。当該国際出願に記載された全ての記載内容は、参照によって本明細書に援用される。
 切削工具の長寿命化を目的として、種々の検討がなされている。特開2018-69433号公報(特許文献1)には、Ti1-x1-y(Mは、周期表の4族元素、5族元素、6族元素、Al、SiおよびBからなる群より選ばれる1種以上の元素(ただしTiは除く)であり、0.2≦x≦1、および0≦y≦1を満たす)の組成からなり、且つ、弾性回復率が52%以上である化合物層を含む被膜を有する切削工具が開示されている。
特開2018-69433号公報
 本開示の切削工具は、基材と、該基材上に配置された被膜と、を備える切削工具であって、
 該被膜は、第1層と、第2層とを含み、
 該第1層の硬度Hは、25GPa以上40GPa以下であり、
 該第2層の硬度Hは、0.5×H≦H≦0.9×Hを満たし、
 該被膜の(200)面のX線回折強度I(200)と、(111)面のX線回折強度I(111)と、(220)面のX線回折強度I(220)との合計に対する、該I(200)の比率I(200)/(I(200)+I(111)+I(220))、
 該合計に対する該I(111)の比率I(111)/(I(200)+I(111)+I(220))、および
 該合計に対する該I(220)の比率I(220)/(I(200)+I(111)+I(220))の少なくともいずれかは、0.45以上である。
図1は、切削工具の一態様を例示する斜視図である。 図2は、本実施形態の一態様における切削工具の模式断面図である。 図3は、本実施形態の他の態様における切削工具の模式断面図である。 図4は、本実施形態の別の他の態様における切削工具の模式断面図である。 図5は、本実施形態の更に別の他の態様における切削工具の模式断面図である。 図6は、被膜に下地層を含む本実施形態における切削工具の模式断面図である。 図7は、被膜に中間層を含む本実施形態における切削工具の模式断面図である。 図8は、被膜に表面層を含む本実施形態における切削工具の模式断面図である。 図9は、被膜にX線回折測定を実行した結果の一例を示すグラフのイメージ図である。
 [本開示が解決しようとする課題]
 近年の切削工具は、高負荷切削の要求により、過酷な切削条件下に曝される傾向がある。現在、過酷な切削条件下において、安定的に利用可能な切削工具、換言すれば、十分な長寿命を有する切削工具を提供するに至っていないのが実情である。特に、焼入鋼などの高硬度材の切削のような高負荷切削(特に、断続加工などの高負荷切削)において、耐剥離性や耐チッピング性が十分でない場合がある。そのため、焼入鋼などの高硬度材の切削のように、高負荷切削(特に、断続加工などの高負荷切削)においても、長い工具寿命を有する切削工具が求められている。
 そこで、本開示は、高硬度材の高負荷切削においても、長い工具寿命を有する切削工具を提供することを目的とする。
 [本開示の効果]
 本開示によれば、高硬度材高負荷切削においても、長い工具寿命を有する切削工具を提供することが可能である。
 [本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。
 (1)基材と、該基材上に配置された被膜と、を備える切削工具であって、
 該被膜は、第1層と、第2層とを含み、
 該第1層の硬度Hは、25GPa以上40GPa以下であり、
 該第2層の硬度Hは、0.5×H≦H≦0.9×Hを満たし、
 該被膜の(200)面のX線回折強度I(200)と、(111)面のX線回折強度I(111)と、(220)面のX線回折強度I(220)との合計に対する、該I(200)の比率I(200)/(I(200)+I(111)+I(220))、
 該合計に対する該I(111)の比率I(111)/(I(200)+I(111)+I(220))、および
 該合計に対する該I(220)の比率I(220)/(I(200)+I(111)+I(220))の少なくともいずれかは、0.45以上である。
 本開示の切削工具は、高硬度材の高負荷切削においても、長い工具寿命を有することができる。
 (2)上記(1)において、該第1層の厚みは、0.2μm以上10μm以下であることが好ましい。これによって、切削工具の耐摩耗性が更に向上する。
 (3)上記(1)または(2)において、該第2層の厚みは、0.2μm以上10μm以下であることが好ましい。これによって、切削工具の耐チッピング性と切削工具の耐剥離性とが更に向上する。
 (4)上記(1)から(3)のいずれかにおいて、該第2層の厚みTに対する該第1層の厚みTの比率T/Tは、0.02以上50以下であることが好ましい。これによって、切削工具の耐摩耗性、耐剥離性、および耐チッピング性のバランスが更に向上する。
 (5)上記(1)から(4)のいずれかにおいて、該第1層は、第1単位層を含み、
 該第1単位層は、TiAl1-x-y1-zからなり、
 該Mは、ジルコニウム、ハフニウム、周期表第5族元素、第6族元素、珪素、硼素、イットリウムからなる群より選択される1種の元素であり、
 該xは、0.20以上0.99以下であり、
 該yは、0.01以上0.80以下であり、
 該1-x-yは、0.01以上0.20以下であり、
 該zは、0以上1以下であることが好ましい。これによって、切削工具の耐摩耗性が更に向上する。
 (6)上記(5)において、該第1層は、第2単位層を更に含み、
 該第2単位層は、AlCr1-mNからなり、
 該mは、0以上0.8以下であり、
 該第1単位層の厚みは、5nm以上50nm以下であり、
 該第2単位層の厚みは、5nm以上50nm以下であり、
 該第1単位層と該第2単位層とは交互に積層されることが好ましい。これによって、切削工具の耐摩耗性が更に向上する。
 (7)上記(5)において、該第1層は、第3単位層を更に含み、
 該第3単位層は、Ti1-nAlNからなり、
 該nは、0以上0.8以下であり、
 該第1単位層の厚みは、5nm以上50nm以下であり、
 該第3単位層の厚みは、5nm以上50nm以下であり、
 該第1単位層と該第3単位層とは交互に積層されることが好ましい。これによって、切削工具の耐摩耗性が更に向上する。
 (8)上記(1)から(7)のいずれかにおいて、該第2層は、第4単位層を含み、
 該第4単位層は、TiAl1-cからなり、
 該aは、0.2以上1.0以下であり、
 該bは、0以上0.8以下であり、
 該cは、0以上1以下であることが好ましい。これによって、切削工具の耐チッピング性と切削工具の耐剥離性とが更に向上する。
 [本開示の実施形態の詳細]
 本開示の一実施形態(以下、「本実施形態」とも記す。)の切削工具の具体例を、以下に図面を参照しつつ説明する。本開示の図面において、同一の参照符号は、同一部分または相当部分を表すものである。また、長さ、幅、厚み、深さなどの寸法関係は図面の明瞭化と簡略化のために適宜変更されており、必ずしも実際の寸法関係を表すものではない。
 本明細書において「A~B」という形式の表記は、範囲の上限下限(すなわちA以上B以下)を意味し、Aにおいて単位の記載がなく、Bにおいてのみ単位が記載されている場合、Aの単位とBの単位とは同じである。
 本明細書において化合物などを化学式で表す場合、原子比を特に限定しないときは従来公知のあらゆる原子比を含むものとし、必ずしも化学量論的範囲のもののみに限定されるべきではない。たとえば「TiAlSiN」と記載されている場合、TiAlSiNを構成する原子数の比には、従来公知のあらゆる原子比が含まれる。
 本明細書中の結晶学的記載においては、個別面を()で示している。
 [実施形態1:切削工具]
 図2および図3に示される様に、本実施形態に係る切削工具10は、
 基材11と、該基材11上に配置された被膜40と、を備える切削工具10であって、
 該被膜40は、第1層12と、第2層13とを含み、
 該第1層12の硬度Hは、25GPa以上40GPa以下であり、
 該第2層13の硬度Hは、0.5×H≦H≦0.9×Hを満たし、
 該被膜の(200)面のX線回折強度I(200)と、(111)面のX線回折強度I(111)と、(220)面のX線回折強度I(220)との合計に対する、該I(200)の比率I(200)/(I(200)+I(111)+I(220))、
 該合計に対する該I(111)の比率I(111)/(I(200)+I(111)+I(220))、および
 該合計に対する該I(220)の比率I(220)/(I(200)+I(111)+I(220))の少なくともいずれかは、0.45以上である。
 本開示の切削工具は、焼入鋼などの高硬度材の切削のような高負荷切削(特に、断続加工などの高負荷切削)においても、長い工具寿命を有することが可能である。その理由は、以下の通りと推察される。
 (a)上記被膜は第1層を含み、上記第1層12の硬度Hは、25GPa以上40GPa以下である。これによって、このような切削工具は優れた耐摩耗性を有することができる。なお、ここで「耐摩耗性」とは、切削加工に用いた場合被膜が摩耗することに対する耐性を意味する。
 (b)上記(a)の通り、上記被膜は第1層を含み、上記第1層12の硬度Hは、25GPa以上40GPa以下である。上記の硬度を有する被膜は、耐摩耗性に優れる。しかしながら、このような被膜は、一般的に脆性が高いため、被膜自体が破壊されることにより損傷(被膜のチッピング及び被膜の剥離)が生じやすい傾向にある。このため、このような被膜を有する切削工具では、焼入鋼などの高硬度材の切削のような高負荷切削(特に、断続加工などの高負荷切削)において、被膜自体が破壊されることにより損傷が生じ、該損傷を起点として摩耗が進行しやすい傾向にある。
 しかし、本実施形態の切削工具では、被膜が上記第1層とともに、第2層を有し、上記第2層13の硬度Hは、0.5×H≦H≦0.9×Hを満たすことによって、被膜全体として脆性を低く抑えることができるため、被膜自体が破壊されることにより生じる損傷(被膜に生じる微小な欠け及び被膜の剥離)を抑制することができる。このため、本実施形態の切削工具は、焼入鋼などの高硬度材の切削のような高負荷切削(特に、断続加工などの高負荷切削)においても、優れた耐剥離性および優れた耐チッピング性を有し、膜の損傷を起点とする摩耗の進行を抑制することができる。なお、ここで「耐剥離性」とは、基材から被膜が剥離することに対する耐性を意味する。また、ここで「耐チッピング性」とは、被膜に微小な欠けが発生することに対する耐性を意味する。
 (c)更に、本実施形態の切削工具では、上記被膜の(200)面のX線回折強度I(200)と、(111)面のX線回折強度I(111)と、(220)面のX線回折強度I(220)との合計に対する、上記I(200)の比率I(200)/(I(200)+I(111)+I(220))、上記合計に対する上記I(111)の比率I(111)/(I(200)+I(111)+I(220))、および上記合計に対する上記I(220)の比率I(220)/(I(200)+I(111)+I(220))の少なくともいずれかは、0.45以上である。これによって、第1層と、当該第1層の最も近くに配置された第2層との間で配向性のばらつきを低く抑え、配向性を揃えることができるため、当該第1層と当該第2層との密着性が向上する。そのため、このような切削工具の耐剥離性を向上することができる。
 すなわち、本実施形態に係る切削工具は、優れた耐摩耗性、優れた耐剥離性、および優れた耐チッピング性を兼備することにより、長い工具寿命を有することができる。
 本実施形態に係る切削工具10の形状および用途は特に制限されない。例えば、本実施形態に係る切削工具10は、ドリル、エンドミル、ドリル用刃先交換型切削チップ、エンドミル用刃先交換型切削チップ、フライス加工用刃先交換型切削チップ、旋削加工用刃先交換型切削チップ、メタルソー、歯切工具、リーマ、タップ、クランクシャフトのピンミーリング加工用チップなどであり得る。
 図1は、本開示の切削工具10の一態様を例示する斜視図である。このような形状の切削工具10は、旋削加工用刃先交換型切削チップ等の刃先交換型切削チップとして用いられる。
 ≪基材≫
 本実施形態の基材は、この種の基材として従来公知のものであればいずれのものも使用することができる。例えば、上記基材は、超硬合金(例えば、炭化タングステン(WC)基超硬合金、WCの他にCoを含む超硬合金、WCの他にTi、Ta、Nb等の炭窒化物を添加した超硬合金等)、サーメット(TiC、TiN、TiCN等を主成分とするもの)、高速度鋼、工具鋼、セラミックス(TiC、SiC、SiN、AlN、Al、サイアロン、およびこれらの混合体等)、立方晶型窒化硼素焼結体(cBN焼結体)、ダイヤモンド焼結体、および結合相中に立方晶型窒化硼素粒子が分散した硬質材料からなる群から選ばれる1種を含むことが好ましい。
 これらの各種基材の中でも、特に超硬合金(特にWC基超硬合金)、サーメット(特にTiCN基サーメット)を選択することが好ましい。その理由は、これらの基材が特に高温における硬度と強度とのバランスに優れ、上記用途の切削工具の基材として優れた特性を有するためである。
 基材として超硬合金を使用する場合、そのような超硬合金は、組織中に遊離炭素又はη相と呼ばれる異常相を含んでいても本実施形態の効果は示される。なお、本実施形態で用いる基材は、その表面が改質されたものであっても差し支えない。例えば、超硬合金の場合はその表面に脱β層が形成されていたり、cBN焼結体の場合には表面硬化層が形成されていてもよく、このように表面が改質されていても本実施形態の効果は示される。
 上記切削工具が、刃先交換型切削チップ(旋削加工用刃先交換型切削チップ、フライス加工用刃先交換型切削チップ等)である場合、基材は、チップブレーカーを有するものも、有さないものも含まれる。刃先部の形状は、シャープエッジ(すくい面と逃げ面とが交差する稜)、ホーニング(シャープエッジに対してアールを付与した形状)、ネガランド(面取りをした形状)、ホーニングとネガランドを組み合わせた形状の中で、いずれの形状も含まれる。
 ≪被膜≫
 被膜40は、上記基材11上に配置される(図2、図3)。図2は、本開示の切削工具の一態様を例示する模式断面図である。図3は、本開示の切削工具の他の一態様を例示する模式断面図である。「被膜」は、上記基材11の少なくとも刃先部分を被覆することで、切削工具における耐剥離性、耐欠損性、耐摩耗性等の諸特性を向上させる作用を有するものである。ここで記載の刃先部分とは、刃先稜線から基材表面に沿って500μm以内の領域を意味する。上記被膜40は、上記基材11の全面を被覆することが好ましい。しかしながら、上記基材11の一部が上記被膜40で被覆されていなかったり、被膜40の構成が部分的に異なっていたりしていたとしても本実施形態の範囲を逸脱するものではない。
 上記被膜の厚みは、0.1μm以上30μm以下であることが好ましく、0.4μm以上20μm以下であることがより好ましく、0.5μm以上10μm以下であることが更に好ましく、0.7μm以上5μm以下であることが更により好ましく、1μm以上3μm以下であることが特に好ましい。ここで、被膜の厚みとは、被膜を構成する層それぞれの厚みの総和を意味する。「被膜を構成する層」としては、例えば、上記第1層と、上記第2層と、上記第1層および上記第2層以外の層として後述する他の層とが挙げられる。
 上記被膜の厚みは、例えば、走査型電子顕微鏡(Scanning Electron Microscope:SEM)を用いて、基材の表面の法線方向に平行な断面サンプルにおける任意の5点を測定し、測定された5点の厚みの平均値をとることで求めることが可能である。上記断面サンプルの作製には、例えば、集束イオンビーム装置、クロスセクションポリッシャ装置等を用いることができる。上記第1層、上記第2層、上記第1単位層、上記第2単位層、上記第3単位層、上記第4単位層、および上記他の層のそれぞれの厚みを測定する場合も同様である。
 上記被膜は、第1層と、第2層とを含む。また、本実施形態の一側面において、上記切削工具が奏する効果を維持する限り、上記第1層は複数設けられていてもよい。また、上記切削工具が奏する効果を維持する限り、上記第2層は複数設けられていてもよい。これによって、被膜の一部が摩滅した場合においても、当該被膜中に第1層および第2層が残存するため、切削工具は、被膜の耐摩耗性、耐チッピング性、および耐剥離性を保持することができる。また、第1層および第2層のうちのいずれが最も表面側に位置していてもよい。また、第1層および第2層のいずれが最も基材側に位置していてもよい。また、「第1層と、第2層とを含む」とは、上記被膜が、上記第1層および上記第2層以外の層として、後述する他の層を含み得ることを意味する。
 上記被膜の(200)面のX線回折強度I(200)と、(111)面のX線回折強度I(111)と、(220)面のX線回折強度I(220)との合計に対する、上記I(200)の比率I(200)/(I(200)+I(111)+I(220))、上記合計に対する上記I(111)の比率I(111)/(I(200)+I(111)+I(220))、および上記合計に対する上記I(220)の比率I(220)/(I(200)+I(111)+I(220))の少なくともいずれかは、0.45以上である。これによって、第1層と、当該第1層の最も近くに配置された第2層との間で配向性のばらつきを低く抑え、配向性を揃えることができるため、当該第1層と当該第2層との密着性が向上する。そのため、このような切削工具の耐剥離性を向上することができる。なお、ここで「(200)面のX線回折強度I(200)」とは、(200)面に由来するX線回折ピークのうち、最も高いピークにおける回折強度(ピークの高さ)(以下、「最大回折強度」とも記す。)を意味する。また、図9に示す様に、被膜に含まれる2種類以上の化合物のそれぞれについて(200)面に由来するX線回折ピークA1と(200)面に由来するX線回折ピークA2とが存在する場合、すなわち、(200)面に由来するX線回折ピークが異なる位置に複数存在する場合は、「(200)面のX線回折強度I(200)」とは、それらの最大回折強度(ピークの高さ)の合計を意味する。「(111)面のX線回折強度I(111)」及び「(220)面のX線回折強度I(220)」についても同様である。
 また、上記I(200)/(I(200)+I(111)+I(220))、上記I(111)/(I(200)+I(111)+I(220))、および上記I(220)/(I(200)+I(111)+I(220))の少なくともいずれかは、0.47以上であることが好ましく、0.50以上であることがより好ましく、0.55以上であることが更に好ましい。また、上記I(200)/(I(200)+I(111)+I(220))、上記I(111)/(I(200)+I(111)+I(220))、および上記I(220)/(I(200)+I(111)+I(220))の少なくともいずれかは、0.90以下であることが好ましく、0.85以下であることがより好ましく、0.80以下であることが更に好ましい。また、上記I(200)/(I(200)+I(111)+I(220))、上記I(111)/(I(200)+I(111)+I(220))、および上記I(220)/(I(200)+I(111)+I(220))の少なくともいずれかは、0.47以上0.90以下であることが好ましく、0.50以上0.85以下であることがより好ましく、0.55以上0.80以下であることが更に好ましい。
 上記I(200)、上記I(111)、および上記I(220)は、例えば以下の条件で行うX線回折測定(XRD測定)によって求めることが可能である。具体的には、上記被膜の表面にX線を照射して、X線回折測定(XRD測定)を行い、(200)面、(111)面及び(220)面のX線回折強度を求め、上記I(200)、上記I(111)、および上記I(220)を算出する。また、上記X線回折測定に用いる装置としては、たとえば、株式会社リガク製の「SmartLab」(商品名)、パナリティカル製の「X’pert」(商品名)等が挙げられる。
 (X線回折測定の条件)
 走査軸  :2θ-θ
 X線源  :Cu-Kα線(1.541862Å)
 検出器  :0次元検出器(シンチレーションカウンタ)
 管電圧  :45kV
 管電流  :40mA
 入射光学系:ミラーの利用
 受光光学系:アナライザ結晶(PW3098/27)の利用
 ステップ :0.03°
 積算時間 :2秒
 スキャン範囲(2θ):10°~120°
 本実施形態の切削工具では、同一の切削工具で測定する限り、異なる測定範囲を任意に選択し、該測定範囲において上記の測定を行っても同様の結果が得られることが確認されている。
 <第1層>
 (第1層の硬度)
 本実施形態に係る第1層の硬度Hは、25GPa以上40GPa以下である。これによって、切削工具が優れた耐摩耗性を有することができる。また、上記Hの下限は、27GPa以上であることが好ましく、29GPa以上であることがより好ましく、31GPa以上であることが更に好ましい。また、上記Hの上限は、38GPa以下であることが好ましく、36GPa以下であることがより好ましく、34GPa以下であることが更に好ましい。また、上記Hは、27GPa以上38GPa以下であることが好ましく、29GPa以上36GPa以下であることがより好ましく、31GPa以上34GPa以下であることが更に好ましい。
 第1層の硬度Hの測定は、ISO14577(2015)に準拠した方法で行い、押し込み硬さを測定する。測定機器はナノインデンテーション硬度計(ENT1100a;Elionix社製)を用いて行う。具体的には、まず、切削工具の被膜が設けられた位置において、被膜の最表面の面方向に対して6°の傾斜を有する面(傾斜面)が得られるように研磨する。次に、得られた傾斜面における第1層の表面上であって、且つ、該第1層の膜厚方向の中点に当たる任意の1点に対し、25℃から30℃の環境下で、第1層の膜厚の1/10以下の押し込み深さ(h)になるように制御された押し込み荷重を負荷し、ナノインデンテーション法による測定を実行する。上記測定を実行することによって、ISO14577に準拠し、第1層の硬度Hが算出される。上記第2層の硬度Hを測定する場合も同様である。なお、第1層が第1単位層、第2単位層、または第3単位層を含む場合は、第1層の硬度Hとは、第1層全体の硬度を意味する。
 同一の切削工具において、異なる測定範囲を任意に選択し、該測定範囲において上記の測定を行っても同様の結果が得られることが確認されている。
 (第1層の厚み)
 上記第1層の厚みは、0.2μm以上10μm以下であることが好ましい。これによって、切削工具の耐摩耗性を更に向上することができる。また、上記第1層の厚みの下限は、0.4μm以上であることが好ましく、0.5μm以上であることがより好ましく、0.6μm以上であることが更に好ましい。また、上記第1層の厚みの上限は、6μm以下であることが好ましく、3μm以下であることがより好ましく、2μm以下であることが更に好ましい。また、上記第1層の厚みは、0.4μm以上6μm以下であることが好ましく、0.5μm以上3μm以下であることがより好ましく、0.6μm以上2μm以下であることが更に好ましい。
 (第1単位層)
 上記第1層は、第1単位層を含み、上記第1単位層は、TiAl1-x-y1-zからなり、上記Mは、ジルコニウム、ハフニウム、周期表第5族元素、第6族元素、珪素、硼素、イットリウムからなる群より選択される1種の元素であり、上記xは、0.20以上0.99以下であり、上記yは、0.01以上0.80以下であり、上記1-x-yは、0.01以上0.20以下であり、上記zは、0以上1.0以下であることが好ましい。これによって、切削工具の耐摩耗性を更に向上することができる。ここで「第1層は、第1単位層を含み」とは、第1層が第1単位層のみからなる態様、及び、第1層が第1単位層とともに、後述の第2単位層または第3単位層を含む態様を包含する概念である。また、「第1単位層は、TiAl1-x-y1-zからなる」とは、TiAl1-x-y1-zのみからなる態様に限られず、本開示の効果が奏される限りにおいて、TiAl1-x-y1-zとともにTiAl1-x-y1-z以外の成分(例えば、不可避不純物)を含む態様をも包含する概念である。
 また、上記xは、0.25以上0.95以下であることが好ましく、0.30以上0.90以下であることがより好ましく、0.35以上0.80以下であることが更に好ましい。
 また、上記yは、0.10以上0.70以下であることが好ましく、0.20以上0.60以下であることがより好ましく、0.30以上0.55以下であることが更に好ましい。
 また、上記1-x-yは、0.02以上0.18以下であることが好ましく、0.03以上0.15以下であることがより好ましく、0.04以上0.10以下であることが更に好ましい。
 また、上記zは、0.01以上0.90以下であることが好ましく、0.05以上0.70以下であることがより好ましく、0.10以上0.50以下であることが更に好ましい。
 上記第1層が第1単位層のみからなる場合は、上記xは0.20以上0.99以下、上記yは0.01以上0.80以下、上記1-x-yは0、かつ、上記zは0以上1.0以下とすることもできる。また、第1層が第1単位層とともに、後述の第2単位層及び/又は第3単位層を含む場合は、上記1-x-yは、「0」でないことが好ましい。
 上記x、上記y、および上記zは、SEMまたはTEM付帯のEDX(Energy Dispersive X-ray spectroscopy)装置を用いることにより、確認することができる。具体的には、まず、切削工具の任意の位置を膜厚方向に切断し、被膜の断面を含む試料を作製する。次に、被膜における第1単位層を点分析する。なお、測定箇所は、界面付近の情報が含まれない様、上記第1単位層の厚み方向の中点上とする。該測定を任意に選択された5箇所で行う。任意の5箇所の測定箇所のそれぞれにおいて、各元素の原子比を示すxおよびyを特定する。5箇所の測定箇所における、当該xおよび当該yのそれぞれの平均値を求める。該平均値が、第1単位層における上記x及び上記yに該当する。なお、後述する第2単位層におけるm、後述する第3単位層におけるn、および後述する第4単位層におけるa、b、およびcを求める場合も同様である。
 上記第1層が上記第1単位層のみからなる場合、該第1単位層の厚みは、0.2μm以上10μm以下であることが好ましい。これによって、切削工具の耐摩耗性を更に向上することができる。また、上記第1層が上記第1単位層のみからなる場合、上記第1単位層の厚みの下限は、0.4μm以上であることが好ましく、0.5μm以上であることがより好ましく、0.6μm以上であることが更に好ましい。また、上記第1層が上記第1単位層のみからなる場合、上記第1単位層の厚みの上限は、6μm以下であることが好ましく、3μm以下であることがより好ましく、2μm以下であることが更に好ましい。また、上記第1層が上記第1単位層のみからなる場合、上記第1単位層の厚みは、0.4μm以上6μm以下であることが好ましく、0.5μm以上3μm以下であることがより好ましく、0.6μm以上2μm以下であることが更に好ましい。
 上記第1層が上記第1単位層と、上記第2単位層または上記第3単位層とを含む場合、該第1単位層の厚みは、0.005μm以上1μm以下であることが好ましい。これによって、切削工具の耐摩耗性を更に向上することができる。また、上記第1層が上記第1単位層と、上記第2単位層または上記第3単位層とを含む場合、上記第1単位層の厚みの下限は、0.007μm以上であることが好ましく、0.010μm以上であることがより好ましく、0.015μm以上であることが更に好ましい。また、上記第1層が上記第1単位層と、上記第2単位層または上記第3単位層とを含む場合、上記第1単位層の厚みの上限は、0.8μm以下であることが好ましく、0.6μm以下であることがより好ましく、0.3μm以下であることが更に好ましい。また、上記第1層が上記第1単位層と、上記第2単位層または上記第3単位層とを含む場合、上記第1単位層の厚みは、0.005μm以上0.8μm以下であることが好ましく、0.010μm以上0.6μm以下であることがより好ましく、0.015μm以上0.3μm以下であることが更に好ましい。
 (第2単位層)
 上記第1層12は、上記第1単位層とともに第2単位層13を更に含むことが好ましい。また、この場合、上記第2単位層13は、AlCr1-mNからなり、上記mは、0以上0.8以下であり、上記第1単位層121の厚みは、5nm以上50nm以下であり、上記第2単位層122の厚みは、5nm以上50nm以下であり、上記第1単位層121と上記第2単位層122とは交互に積層されることが好ましい(図4)。これによって、第1層を構成する粒子の粒径が微細になることに起因して第1層の硬度が高くなるため、切削工具の耐摩耗性を更に向上することができる。ここで、「第1単位層と第2単位層とは交互に積層される」限りにおいて、第1単位層および第2単位層のうち何れの層が最も基材側に配置されていても良く、第1単位層および第2単位層のうち何れの層が最も表面側に配置されていても良い。また、ここで「第2単位層は、AlCr1-mNからなる」とは、AlCr1-mNのみからなる態様に限られず、本開示の効果が奏される限りにおいて、AlCr1-mNとともにAlCr1-mN以外の成分(例えば、不可避不純物)を含む態様をも包含する概念である。
 また、上記mは、0.10以上0.75以下であることが好ましく、0.20以上0.73以下であることがより好ましく、0.30以上0.70以下であることが更に好ましい。
 第2単位層の厚みは、5nm以上1μm以下であることが好ましい。これによって、切削工具の耐摩耗性を更に向上することができる。また、上記第2単位層の厚みの下限は、7nm以上であることが好ましく、10nm以上であることがより好ましく、15nm以上であることが更に好ましい。また、上記第2単位層の厚みの上限は、0.8μm以下であることが好ましく、0.6μm以下であることがより好ましく、0.3μm以下であることが更に好ましい。また、上記第2単位層の厚みは、5nm以上0.8μm以下であることが好ましく、10nm以上0.6μm以下であることがより好ましく、15nm以上0.3μm以下であることが更に好ましい。
 (第3単位層)
 上記第1層12は、上記第1単位層とともに第3単位層123を更に含むことが好ましい。また、この場合、上記第3単位層123は、Ti1-nAlNからなり、上記nは、0以上0.8以下であり、上記第1単位層121の厚みは、5nm以上50nm以下であり、上記第3単位層123の厚みは、5nm以上50nm以下であり、上記第1単位層121と上記第3単位層123とは交互に積層されることが好ましい(図5)。これによって、切削工具の第1層を構成する粒子の粒径が微細になることに起因して第1層の硬度が高くなるため、切削工具の耐摩耗性を更に向上することができる。「第1単位層と第3単位層とは交互に積層される」限りにおいて、第1単位層および第3単位層のうち何れの層が最も基材側に配置されていても良く、第1単位層および第3単位層のうち何れの層が最も表面側に配置されていても良い。また、ここで「第3単位層は、Ti1-nAlNからなる」とは、Ti1-nAlNのみからなる態様に限られず、本開示の効果が奏される限りにおいて、Ti1-nAlNとともにTi1-nAlN以外の成分(例えば、不可避不純物)を含む態様をも包含する概念である。
 また、上記nは、0.3以上0.9以下であることが好ましく、0.4以上0.8以下であることがより好ましく、0.5以上0.7以下であることが更に好ましい。
 第3単位層の厚みは、5nm以上1μm以下であることが好ましい。これによって、切削工具の耐摩耗性を更に向上することができる。また、上記第3単位層の厚みの下限は、7nm以上であることが好ましく、10nm以上であることがより好ましく、15nm以上であることが更に好ましい。また、上記第3単位層の厚みの上限は、0.8μm以下であることが好ましく、0.6μm以下であることがより好ましく、0.3μm以下であることが更に好ましい。また、上記第3単位層の厚みは、5nm以上0.8μm以下であることが好ましく、10nm以上0.6μm以下であることがより好ましく、15nm以上0.3μm以下であることが更に好ましい。
 <第2層>
 (第2層の硬度)
 本実施形態に係る第2層の硬度Hは、0.5×H≦H≦0.9×Hを満たす。これによって、切削工具が優れた耐剥離性と優れた耐チッピング性とを有することができる。上記Hは、H≧0.53×Hを満たすことが好ましく、H≧0.56×Hを満たすことがより好ましく、H≧0.6×Hを満たすことが更に好ましい。また、上記Hは、H≦0.87×Hを満たすことが好ましく、H≦0.84×Hを満たすことがより好ましく、H≦0.8×Hを満たすことが更に好ましい。また、上記Hは、0.53×H≦H≦0.87×Hを満たすことが好ましく、0.56×H≦H≦0.84×Hを満たすことがより好ましく、0.6×H≦H≦0.8×Hを満たすことが更に好ましい。
 (第2層の厚み)
 上記第2層の厚みは、0.2μm以上10μm以下であることが好ましい。これによって、切削工具の耐チッピング性と切削工具の耐剥離性とを更に向上することができる。また、上記第2層の厚みの下限は、0.3μm以上であることが好ましく、0.4μm以上であることがより好ましく、0.5μm以上であることが更に好ましい。また、上記第2層の厚みの上限は、8μm以下であることが好ましく、5μm以下であることがより好ましく、3μm以下であることが更に好ましい。また、上記第2層の厚みは、0.3μm以上8μm以下であることが好ましく、0.4μm以上5μm以下であることがより好ましく、0.5μm以上3μm以下であることが更に好ましい。
 上記第2層の厚みTに対する上記第1層の厚みTの比率T/Tは、0.02以上50以下であることが好ましい。これによって、耐摩耗性、耐剥離性、および耐チッピング性のバランスを改善することができるため、切削工具の寿命を更に向上することができる。また、上記T/Tの下限は、0.04以上であることが好ましく、0.06以上であることがより好ましく、0.1以上であることが更に好ましい。また、上記T/Tの上限は、45以下であることが好ましく、40以下であることがより好ましく、30以下であることが更に好ましい。
 (第4単位層)
 上記第2層は、上記第4単位層を含むことが好ましい。また、この場合、上記第4単位層は、TiAl1-cからなり、上記aは、0.2以上1.0以下であり、上記bは、0以上0.8以下であり、上記cは、0以上1.0以下であることが好ましい。これによって、第1層と第2層との密着性を悪化させず、第2層の亀裂の発生を効果的に抑制することができるため、切削工具の耐チッピング性を更に向上することができる。また、これによって、第2層において、剥離の起点となるチッピングの発生、および剥離の起点となる亀裂の発生を抑制できるため、切削工具の耐剥離性を更に向上することができる。ここで、「第2層は、第4単位層を含む」とは、第2層が第4単位層のみからなる態様、及び、第2層が第4単位層とともに第4単位層以外の層を含む態様を包含する概念である。ここで「第4単位層は、TiAl1-cからなる」とは、TiAl1-cのみからなる態様に限られず、本開示の効果が奏される限りにおいて、TiAl1-cとともにTiAl1-c以外の成分を含む態様をも包含する概念である。
 第4単位層の厚みは、0.3μm以上9μm以下であることが好ましい。これによって、切削工具の耐摩耗性を更に向上することができる。また、上記第4単位層の厚みの下限は、0.4μm以上であることが好ましく、0.5μm以上であることがより好ましく、0.6μm以上であることが更に好ましい。また、上記第4単位層の厚みの上限は、7μm以下であることが好ましく、5μm以下であることがより好ましく、3μm以下であることが更に好ましい。また、上記第4単位層の厚みは、0.4μm以上7μm以下であることが好ましく、0.5μm以上5μm以下であることがより好ましく、0.6μm以上3μm以下であることが更に好ましい。
 また、上記aは、0.3以上0.95以下であることが好ましく、0.35以上0.9以下であることがより好ましく、0.4以上0.85以下であることが更に好ましい。
 また、上記bは、0.05以上0.7以下であることが好ましく、0.1以上0.65以下であることがより好ましく、0.15以上0.6以下であることが更に好ましい。
 また、上記cは、0.01以上0.9以下であることが好ましく、0.03以上0.85以下であることがより好ましく、0.05以上0.7以下であることが更に好ましい。
 <他の層>
 本実施形態の効果を損なわない限り、上記被膜は、上記他の層を更に含んでいてもよい。図6~図8に示されるように、上記他の層としては、例えば、下地層14、中間層15、および表面層16等が挙げられる。
 (下地層)
 本実施形態の被膜は、下地層を含むことができる。下地層14は、基材11と、第1層12および第2層13のうち最も基材側の層との間に配置される層である。下地層は、第1化合物からなり、該第1化合物は、周期表の4族元素、5族元素、6族元素及びアルミニウムからなる群より選ばれる1種以上の元素と、炭素、窒素、硼素及び酸素からなる群より選ばれる1種以上の元素と、からなることが好ましい。これによって、切削工具の耐摩耗性を更に向上することができる。また、これによって、被膜と基材との密着性をも向上することができる。
 下地層として、基材の直上にTiN層、TiC層、TiCN層、TiBN層、AlCrN層、TiAlN層を配置することにより、基材と被膜との密着性を高めることができる。下地層の厚みは、0.1μm以上20μm以下であることが好ましい。これによって、切削工具の耐摩耗性を更に向上することができる。また、これによって、切削工具は優れた耐欠損性を有することができる。
 (中間層)
 本実施形態の被膜は、中間層を含むことができる。中間層15は、第1層12と第2層13との間に配置される層である。中間層の組成は、例えばTiAlN層やTiN層であることが好ましい。中間層の厚みは、0.01μm以上0.2μm以下であることが好ましい。
 (表面層)
 本実施形態の被膜は、表面層を含むことができる。表面層16は、被膜40において最も表面側に配置される層である。ただし、刃先稜線部においては形成されない場合もある。表面層16は、第2化合物からなり、該第2化合物は、周期表の4族元素、5族元素、6族元素及びアルミニウムからなる群より選ばれる1種以上の元素と、炭素、窒素、硼素及び酸素からなる群より選ばれる1種以上の元素と、からなることが好ましい。これによって、切削工具の耐摩耗性が更に向上することができる。
 表面層16としては、TiN層又はTiAlN層が挙げられる。TiN層は色彩が明瞭(金色を呈する)であるため、表面層16として用いると、切削使用後の切削チップのコーナー識別(使用済み部位の識別)が容易であるという利点がある。表面層16としてTiAlN層を用いることにより、被膜の耐酸化性を高めることができる。
 表面層16の厚みは、0.05μm以上1μm以下であることが好ましい。これによって、表面層16と、隣接する層との密着性が向上する。
 [実施形態2:切削工具の製造方法]
 実施形態1の切削工具の製造方法について以下に説明する。なお、以下の製造方法は一例であり、実施形態1の切削工具は、他の方法で作製されたものでもよい。
 本実施形態に係る切削工具の製造方法は、
 上記基材を準備する第1工程(以下、単に「第1工程」という場合がある)と、
 上記基材上に上記被膜を形成する第2工程(以下、単に「第2工程」という場合がある)と、を含む。以下、各工程について説明する。
 ≪第1工程:基材を準備する工程≫
 第1工程では、上記基材を準備する。上記基材としては、上述したようにこの種の基材として従来公知のものであればいずれの基材も使用することができる。例えば、形状がISO規格のDNGA150408からなる立方晶窒化硼素焼結体からなる工具を用いることができる。
 ≪第2工程:基材上に被膜を形成する工程≫
 第2工程では、基材上に被膜を形成する。また、上記第2工程は、上記基材の表面の少なくとも一部を第1層で被覆する「第1層被覆工程」、および上記基材の表面の少なくとも一部を第2層で被覆する「第2層被覆工程」を含む。上記第1層被覆工程および上記第2層被覆工程が実行される限りにおいて、上記第1層被覆工程および上記第2被覆工程のうちいずれの工程が先に実行されてもよい。また、上記第2工程は、更に、後述する工程(i)、工程(ii)、および工程(iii)の少なくとも何れかを含むことができる。また、上記第2工程は、更に、上記基材の表面の少なくとも一部を上記他の層で被覆する「他の層被覆工程」を含むことができる。
 第1層被覆工程及び第2層被覆工程では、上記基材の表面の少なくとも刃先部分を第1層又は第2層で被覆する。また、ここで「第1層で被覆する」又は「第2層で被覆する」とは、基材表面の直上を第1層又は第2層が被覆する場合と、基材表面と第1層又は第2層との間に第1層又は第2層以外の層(下地層)が配置される場合との両方を包含する概念である。第1層被覆工程及び第2層被覆工程は、いずれが先に行われてもよい。
 上記第1層被覆工程は、第1層中に第1単位層を形成する「第1単位層被覆工程」を含むことができる。上記第1層被覆工程は、更に、第1層中に第2単位層を形成する「第2単位層被覆工程」、または第1層中に第3単位層を形成する「第3単位層被覆工程」を含むことができる。上記第2層被覆工程は、第2層中に第4単位層を形成する「第4単位層被覆工程」を含むことができる。第2工程は、上記他の層を形成する「他の層被覆工程」を含むことができる。
 上記基材の少なくとも一部を第1層で被覆する方法としては、例えば、物理蒸着(PVD)法が挙げられる。第1単位層被覆工程、第2単位層被覆工程、第3単位層被覆工程、第2層被覆工程、および第4単位層被覆工程においても同様である。
 物理蒸着法としては、例えばスパッタリング法、イオンプレーティング法、アークイオンプレーティング法、電子イオンビーム蒸着法等を挙げることができる。特に原料元素のイオン率が高いカソードアークイオンプレーティング法又はスパッタリング法を用いると、被膜を形成する前に基材表面に対して金属又はガスイオンボンバードメント処理が可能となるため、被膜と基材との密着性が格段に向上するので好ましい。
 アークイオンプレーティング法により被膜を形成する場合、例えば以下のような条件を挙げることができる。例えば、TiNからなる層を形成する場合は、金属蒸発源としてTiターゲットを用い、反応ガスとしてNガスを用いる。基板(基材)温度を400~550℃及び該装置内のガス圧を0.3~1.5Paに設定する。
 基板(負)バイアス電圧を10~150V且つDC又はパルスDC(周波数20~50kHz)に維持したまま、カソード電極に80~150Aのアーク電流を供給し、アーク式蒸発源から金属イオン等を発生させることによりTiNからなる層を形成することができる。成膜中にタングステンフィラメントも放電する(エミッション電流30~45A)。これにより、プラズマ中のイオンを増加させることができる。アークイオンプレーティング法に用いる装置としては、例えば、株式会社神戸製鋼所製のAIP(商品名)が挙げられる。
 スパッタリング法により被膜を形成する場合、例えば以下のような条件を挙げることができる。TiNからなる層を形成する場合、金属蒸発源としてTiターゲットを用い、反応ガスとしてNガス、Arガス、Krガス、Xeガス等のスパッタガスを用いることができる。
 本発明者らは、鋭意検討の結果、以下の工程(i)~(iii)の少なくともいずれかの工程を行うことにより、第1層と第2層との間の硬度差を調整できることを新たに知見した。特に、化学組成上、従来の成膜条件では第1層および第2層の硬度差が所望の範囲外となる場合においても、上記工程(i)~(iii)の少なくともいずれかの工程を行うことにより、第1層と第2層との間の硬度差を容易に調整できることを見出した。
 上記工程(i)では、上記第2層を一定時間ヒーターでアニールする。これによって、上記第2層の硬度を下げることができる為、該第2層の硬度Hを、0.5×H≦H≦0.9×Hの範囲に調整することができる。なお、上記工程(i)における昇温速度は、例えば5℃/分以上10℃/分以下である。また、上記工程(i)におけるアニール温度は、例えば400℃以上500℃以下である。また、上記工程(i)におけるアニール時間は、例えば10分以上60分以下である。また、上記工程(i)における冷却速度は、例えば5℃/分以上10℃/分以下である。また、上記工程(i)における冷却時の炉内圧力は、例えば1Pa以上8Pa以下である。
 上記工程(ii)では、上記第1層または上記第2層に、スパッタガスによるイオンボンバードメント処理を行う。これによって、上記第1層または上記第2層に圧縮応力を付与することができるため、イオンボンバードメント処理を行った上記第1層または第2層の硬度を高めることができる。なお、上記工程(ii)におけるガス組成は、例えば、Ar(100%)、Kr(100%)、またはXe(100%)である。また、上記工程(ii)におけるガス圧は、例えば1Pa以上3Pa以下である。また、上記工程(ii)におけるバイアス電圧は、例えば-1000V以上-600V以下である。また、上記工程(ii)における処理時間は、例えば5分以上60分以下である。
 上記工程(iii)では、第1単位層と、第2単位層または第3単位層とを交互に積層する。これによって、組成が異なる層同士の格子定数の歪みが生じるため、第1層の硬度を調整することができる。
 また、本発明者らは、鋭意検討の結果、以下の工程(iv)を行うことにより、第1層と第2層との間の密着性を向上できることを新たに知見した。
 上記工程(iv)では、上記第2層被覆工程と上記第1層被覆工程との切り替え時に、バイアス電圧を以下の通り調整する。
 はじめに第2層被覆工程が実行され、その後第1層被覆工程が実行される場合について説明する。第2層被覆工程のバイアス電圧をA(V)、及び、第1層被覆工程のバイアス電圧をB(V)とする。まず、バイアス電圧をA(V)として、第2層被覆工程を行う。第2層の厚みが所望の厚みとなった時点で、バイアス電圧以外の成膜条件を維持したまま、バイアス電圧をB>Aの時はA超B未満(V)、又は、A>Bの時はB超A未満(V)に変更して60~120秒間成膜を行う。該工程を工程(iv-1)と示す。続いて、バイアス電圧以外の成膜条件を第1層被覆条件に変更し、かつ、バイアス電圧は工程(iv-1)を維持して60~120秒間成膜を行う。該工程を工程(iv-2)と示す。続いて、バイアス電圧以外の成膜条件を維持したまま、バイアス電圧をB(V)に変更して、第1層被覆工程を行う。この場合、上記工程(iv)は、工程(iv-1)及び工程(iv-2)の一方又は両方を含む。
 はじめに第1層被覆工程が実行され、その後第2層被覆工程が実行される場合について説明する。第1層被覆工程のバイアス電圧をB(V)、及び、第2被覆工程のバイアス電圧をA(V)とする。まず、バイアス電圧をB(V)として、第1層被覆工程を行う。第1層の厚みが所望の厚みとなった時点で、バイアス電圧以外の成膜条件を維持したまま、バイアス電圧をB>Aの時はA超B未満(V)、又は、A>Bの時はB超A未満(V)に変更して60~120秒間成膜を行う。該工程を工程(iv-3)と示す。続いて、バイアス電圧以外の成膜条件を第2層被覆条件に変更し、かつ、バイアス電圧は工程(iv-3)を維持して60~120秒間成膜を行う。該工程を工程(iv-4)と示す。続いて、バイアス電圧以外の成膜条件を維持したまま、バイアス電圧をA(V)に変更して、第2層被覆工程を行う。この場合、上記工程(iv)は、工程(iv-3)及び工程(iv-4)の一方又は両方を含む。
 なお、上記第1層被覆工程のバイアス電圧B(V)は、20V超60V未満でない場合、所望の硬度Hを得にくい傾向がある。
 上記工程(iv)によると、上記第1層被覆工程から、上記第2層被覆工程に切り替わる際、及び、上記第2層被覆工程から、上記第1層被覆工程に切り替わる際のバイアス電圧の変化を緩やかにすることができるため、被膜形成時のバイアス電圧の急激な変化に起因する被膜中の配向性のばらつきを抑えることができる。その結果、I(200)/(I(200)+I(111)+I(220))、I(111)/(I(200)+I(111)+I(220))、およびI(220)/(I(200)+I(111)+I(220))のうち、何れかの配向性が優勢になるため、I(200)/(I(200)+I(111)+I(220))、I(111)/(I(200)+I(111)+I(220))、およびI(220)/(I(200)+I(111)+I(220))の少なくともいずれかは、0.45以上とすることができる。上記のようなバイアス電圧の切り替え操作により、被膜中の配向性のばらつきを抑制できることは、本発明者らが鋭意検討の結果、新たに知見したものである。
 <他の層被覆工程>
 本実施形態に係る第2工程では、上述した第1層被覆工程、第2層被覆工程、およびアニール工程の他にも、基材と上記第1層との間に下地層を形成する「下地層被覆工程」、上記第1層と上記第2層との間に中間層を形成する「中間層被覆工程」、および上記第2層の上に表面層を形成する「表面層被覆工程」等を適宜行ってもよい。上述の下地層、中間層及び表面層等の他の層を形成する場合、従来の方法によって他の層を形成してもよい。具体的には、例えば、上述したPVD法によって上記他の層を形成することが挙げられる。
 ≪その他の工程≫
 本実施形態に係る製造方法では、上述した工程の他にも、例えば、表面処理する工程等を適宜行ってもよい。表面処理をする工程としては、例えば、弾性材にダイヤモンド粉末を担持させたメディアを用いた表面処理等が挙げられる。
 以下、実施例を挙げて本発明を詳細に説明するが、本発明はこれらに限定されるものではない。
 [実施例1]
 ≪切削工具の作製≫
 [試料No.1-1~試料No.1-15、試料No.1-17~試料No.1-34、および試料No.1-101~試料No.1-105]
 下記の製造方法を用いて、試料No.1-1~試料No.1-15、試料No.1-17~試料No.1-34、および試料No.1-101~試料No.1-106の切削工具を作製した。
 <基材を準備する工程>
 まず、基材準備工程として、立方晶硼素焼結体工具(形状:JIS規格DNGA150408)を基材として準備した。次に、上記基材をアークイオンプレーティング装置(株式会社神戸製鋼所製、商品名:AIP)の所定の位置にセットした。
 <基材上に被膜を形成する工程>
 次に、第2層被覆工程として、表1に記載した条件で、アークイオンプレーティング法を用いて、上記基材の表面に第2層を形成した。具体的には以下の方法で行った。金属蒸発源としては、後述する表3および表4に記載した第2層の「組成」に応じたターゲットを用いた。例えば、第2層の組成がTiAlNの場合は、金属蒸発源としてTiAlターゲットを用いた。また、TiCN、TiCまたはTiNの場合は、金属蒸発源としてTiターゲットを用いた。反応ガスとしてはNガス及び/又はメタンガスを用いた。基板(基材)温度を500℃及び該装置内のガス圧を1Paに設定した。
 次に、工程(i)として、表1の「アニール温度[℃]/時間[分]」欄に記載した条件で、第2層の表面にアニールを行った。アニール時の炉内圧力は2Paとした。表1の「アニール温度[℃]/時間[分]」欄における「-」は、工程(i)が実行されなかったことを意味する。
 次に、工程(ii)として、表1の「イオンボンバードメント」の欄に記載した条件でイオンボンバーメント処理を実行した。ここで、「Ar(800V)」は、反応ガスがArガスであり、且つ、バイアス電圧が800Vであることを意味する。イオンボンバーメント処理の時間は45分とし、炉内圧力は1Paとした。表1の「イオンボンバードメント」欄における「-」は、工程(ii)が実行されなかったことを意味する。
 次に、工程(iv)として、バイアス電圧以外の条件を維持したまま、バイアス電圧を第2層被覆工程におけるバイアス電圧の値から、表1の「工程(iv)」欄に記載したバイアス電圧の値にバイアス電圧を調整して、60秒間成膜を行った。例えば、試料1-1では、バイアス電圧を30V(第2層被覆工程におけるバイアス電圧)から33V(工程(iv)におけるバイアス電圧)に調整した。続いて、バイアス電圧以外の成膜条件を以下に示す第1層被覆条件に変更し、かつ、バイアス電圧を維持したまま、60秒間成膜を行った。
 次いで、第1層被覆工程として、表1に記載した条件で、アークイオンプレーティング法を用いて、上記第2層の上に第1層を形成した。具体的には以下の方法で行った。金属蒸発源としては、後述する表3および表4に記載した第1層の「組成」に応じたターゲットを用いた。例えば、第1層の組成がTiAlNの場合は、金属蒸発源としてTiAlターゲットを用いた。また、例えば、第1層の組成がTiAlSiNの場合は、金属蒸発源としてTiAlSiターゲットを用いた。反応ガスとしてはNガスを用いた。基板(基材)温度を500℃及び該装置内のガス圧を4Paに設定した。
Figure JPOXMLDOC01-appb-T000001
 [試料No.1-16]
 下記の製造方法を用いて、試料No.1-16の切削工具を作製した。
 <基材を準備する工程>
 基材準備工程として、上記の試料No.1-1と同一の基材を準備し、該基材をアークイオンプレーティング装置の所定の位置にセットした。
 <基材上に被膜を形成する工程>
 次いで、第1層被覆工程として、表2に記載した条件で、アークイオンプレーティング法を用いて、上記基材の上に第1層を形成した。具体的には以下の方法で行った。金属蒸発源としては、後述する表3に記載した第1層の「組成」に応じたターゲットを用いた。すなわち、金属蒸発源としてTiAlターゲットを用いた。反応ガスとしてはNガスを用いた。基板(基材)温度を500℃及び該装置内のガス圧を2Paに設定した。
 次に、工程(iv)として、バイアス電圧以外の条件を維持したまま、バイアス電圧を第1層被覆工程におけるバイアス電圧の値から、表2の「工程(iv)」欄に記載したバイアス電圧の値にバイアス電圧を調整した。続いて、バイアス電圧以外の成膜条件を以下に示す第2層被覆条件に変更し、かつ、バイアス電圧を維持したまま、60秒間成膜を行った。
 次に、第2層被覆工程として、表2に記載した条件で、アークイオンプレーティング法を用いて、上記第1層の上に第2層を形成した。具体的には以下の方法で行った。金属蒸発源としては、後述する表3および表4に記載した第2層の「組成」に応じたターゲットを用いた。すなわち、金属蒸発源としてTiAlターゲットを用いた。反応ガスとしてはNガスを用いた。基板(基材)温度を500℃及び該装置内のガス圧を2Paに設定した。
 なお、試料No.1-16の切削工具を作製するためには、工程(i)および工程(ii)は実行しなかった。
Figure JPOXMLDOC01-appb-T000002
 ≪切削工具の特性評価≫
 上述のようにして作製した試料No.1-1~試料No.1-34、および試料No.1-101~試料No.1-106の切削工具を用いて、以下のように、切削工具の各特性を評価した。なお、試料No.1-1~試料No.1-34の切削工具は実施例に対応し、試料No.1-101~試料No.1-106の切削工具は比較例に対応する。
 <x、y、z、a、b、およびcの測定>
 試料No.1-1~試料No.1-34、および試料No.1-101~試料No.1-106の切削工具について、第1層の組成TiAl1-x-y1-zにおける「x」、「y」、「z」、第2層の組成TiAl1-cにおける「a」、「b」、および「c」を、実施形態1に記載の方法により求めた。得られた結果を、それぞれ表3および表4の「組成」の項における化学式中に、原子比として記す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 <第1層の厚み及び第2層の厚みの測定>
 試料No.1-1~試料No.1-34、および試料No.1-101~試料No.1-106の切削工具について、第1層の厚みを、実施形態1に記載の方法により求めた。得られた結果を、それぞれ表3および表4の「厚みT[μm]」の項に記す。また、試料No.1-1~試料No.1-34、および試料No.1-101~試料No.1-106の切削工具について、第2層の厚みを、実施形態1に記載の方法により求めた。得られた結果を、それぞれ表3および表4の「厚みT[μm]」の項に記す。
 <第1層の硬度H及び第2層の硬度Hの測定>
 試料No.1-1~試料No.1-34、および試料No.1-101~試料No.1-106の切削工具について、第1層の硬度Hを、実施形態1に記載の方法により求めた。得られた結果を、それぞれ表3および表4の「硬度H[GPa]」の項に記す。また、試料No.1-1~試料No.1-34、および試料No.1-101~試料No.1-106の切削工具について、第2層の硬度Hを、実施形態1に記載の方法により求めた。得られた結果を、それぞれ表3および表4の「硬度H[GPa]」の項に記す。
 <I(200)/(I(200)+I(111)+I(220))、I(111)/(I(200)+I(111)+I(220))、及びI(220)/(I(200)+I(111)+I(220))の測定>
 試料No.1-1~試料No.1-34、および試料No.1-101~試料No.1-106の切削工具について、被膜のI(200)/(I(200)+I(111)+I(220))を、実施形態1に記載の方法により求めた。得られた結果を、それぞれ表3および表4の「R(200)」の項に記す。また、試料No.1-1~試料No.1-34、および試料No.1-101~試料No.1-106の切削工具について、被膜のI(111)/(I(200)+I(111)+I(220))を、実施形態1に記載の方法により求めた。得られた結果を、それぞれ表3および表4の「R(111)」の項に記す。また、試料No.1-1~試料No.1-34、および試料No.1-101~試料No.1-106の切削工具について、被膜のI(220)/(I(200)+I(111)+I(220))を、実施形態1に記載の方法により求めた。得られた結果を、それぞれ表3および表4の「R(220)」の項に記す。
 ≪切削試験≫
 上記のようにして作製した試料No.1-1~試料No.1-34、および試料No.1-101~試料No.1-106の切削工具を用いて、以下の切削試験を行った。
 試料No.1-1~試料No.1-34、および試料No.1-101~試料No.1-106の切削工具について、以下の切削条件により被削材の切削加工を実行した。次いで、切削距離が50mに達した時点で、相互に接した切削工具と被削材とを一旦分離した。次いで、上記分離後3分経過後に、以下の切削条件により上記被削材の切削を再度実行した。切削距離が3kmに達するまで、これらを繰り返し実行した。次いで、切削距離が3kmに達した時点における切削工具の逃げ面の最大摩耗量を、最大摩耗量として測定した。最大摩耗量が小さいほど、高負荷切削においても、切削工具が長い工具寿命を有することを意味する。また、ここで、最大摩耗量が290μm以下であることは、高負荷切削においても、切削工具が長い工具寿命を有することを意味する。上記最大摩耗量を表3および表4の「最大摩耗量[μm]」の項に記す。
 (切削条件)
 被削材 :高硬度鋼SUJ2(HRC62)(直径85mm×長さ200mm)
 切削速度:V=100m/min.
 送り  :f=0.2mm/rev.
 切込み :ap=0.5mm
 湿式/乾式:湿式
 当該切削条件は、焼入鋼(高硬度材)の高負荷切削に該当する。
 <結果>
 試料No.1-1~試料No.1-34は、実施例に該当する。試料No.1-101~試料No.1-106は、比較例に該当する。表3および表4の結果から、実施例に該当する試料No.1-1~試料No.1-34の切削工具は、比較例に該当する試料No.1-101~試料No.1-106よりも、焼入鋼などの高硬度材の切削のように、高負荷切削においても、長い工具寿命を有することが確認された。この理由は、試料No.1-1~試料No.1-34の切削工具では、被膜の第1層の硬度が高く耐摩耗性が良好であり、かつ、被膜が第1層とともに第2層を含むため、被膜の耐チッピング性、及び耐剥離性が良好であり、切削中に被膜の破壊が発生しにくく、そこを起点とする摩耗が抑制されるためと推察される。
 [実施例2]
 ≪切削工具の作製≫
 [試料No.2-1~試料No.2-42]
 下記の製造方法を用いて、試料No.2-1~試料No.2-42の切削工具を作製した。
 <基材を準備する工程>
 基材準備工程として、上記の試料No.1-1~試料No.1-15、試料No.1-17~試料No.1-34、および試料No.1-101~試料No.1-106と同一の基材を準備し、該基材をアークイオンプレーティング装置の所定の位置にセットした。
 <基材上に被膜を形成する工程>
 第2層被覆工程として、表5および表6に記載した条件で実行されることと、金属蒸発源として以下のターゲットが用いられることとを除いては、上記の試料No.1-1~試料No.1-15、試料No.1-17~試料No.1-34、および試料No.1-101~試料No.1-106と同一の条件で、アークイオンプレーティング法を用いて、上記基材の上に第2層を形成した。金属蒸発源としては、後述する表7に記載した第2層の「組成」に応じたターゲットを用いた。具体的には、第2層の組成がTiAlNの場合は、金属蒸発源としてTiAlターゲットを用いた。また、TiCNまたはTiNの場合は、金属蒸発源としてTiターゲットを用いた。
 次に、工程(iv)として、第2層被覆工程におけるバイアス電圧の値から、表5および表6の「工程(iv)」欄に記載したバイアス電圧の値にバイアス電圧を調整して、60秒間成膜を行った。続いて、バイアス電圧以外の成膜条件を以下に示す第1層被覆条件に変更し、かつ、バイアス電圧を維持したまま、60秒間成膜を行った。なお、工程(i)および工程(ii)は実行しなかった。
 次に、第1層被覆工程として、表5および表6に記載した条件で、アークイオンプレーティング法を用いて、第1単位層被覆工程と第2単位層被覆工程とを交互に実行することにより、上記第2層の表面に第1層を形成した。具体的には以下の方法で行った。金属蒸発源としては、後述する表7および表8に記載した第1層の「組成」に応じたターゲットを用いた。すなわち、第1単位層の組成がTiAlNの場合は、金属蒸発源としてTiAlターゲットを用いた。また、例えば、第1単位層の組成がTiAlSiNの場合は、金属蒸発源としてTiAlSiターゲットを用いた。また、第2単位層の組成がAlCrNの場合は、金属蒸発源としてAlCrターゲットを用いた。また、第2単位層の組成がCrNの場合は、金属蒸発源としてCrターゲットを用いた。反応ガスとしてはNガスを用いた。基板(基材)温度を500℃及び該装置内のガス圧を4Paに設定した。なお、第1単位層被覆工程および第2単位層被覆工程のうち、最初に実行されたのは第1単位層被覆工程であり、最後に実行されたのは第2単位層被覆工程であった。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 ≪切削工具の特性評価≫
 上述のようにして作製した試料No.2-1~試料No.2-42の切削工具について、実施例1と同様の方法で、第1単位層の組成TiAl1-x-y1-zにおける「x」、「y」、「z」、「第1単位層厚み」、第2単位層の組成AlCr1-mNにおける「m」、「第2単位層厚み」、第2層の組成TiAl1-cにおける「a」、「b」、「c」、「第1層の厚み」、「第2層の厚み」、「第1層の硬度H」、「第2層の硬度H」、「I(200)/(I(200)+I(111)+I(220))」(「R(200)」)、「I(111)/(I(200)+I(111)+I(220))」(「R(111)」)、および「I(220)/(I(200)+I(111)+I(220))」(「R(220)」)をそれぞれ測定により求めた。得られた結果をそれぞれ表7および表8に記す。「第1単位層厚み」、「第2単位層厚み」及び「第1層の厚み」の関係は次の通りである。例えば、試料2-1では、厚み15nmの第1単位層と厚み10nmの第2単位層とが交互に積層されて第1層が形成され、該第1層の厚みTが2.5μmである。なお、試料No.2-1~試料No.2-42の切削工具は実施例に相当する。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 ≪切削試験≫
 上述のようにして作製した試料No.2-1~試料No.2-42の切削工具について、実施例1と同様の方法で「切削試験」を実行することにより、「最大摩耗量」を求めた。得られた結果をそれぞれ表7および表8の「最大摩耗量[μm]」の項に記す。
 <結果>
 試料No.2-1~試料No.2-42は、実施例に該当する。表7および表8の結果から、実施例に該当する試料No.2-1~試料No.2-42の切削工具は、焼入鋼などの高硬度材の切削のように、高負荷切削においても、長い工具寿命を有することが確認された。この理由は、実施例1と同様に、試料No.2-1~試料No.2-42の切削工具では、被膜の第1層の硬度が高く耐摩耗性が良好であり、かつ、被膜が第1層とともに第2層を含むため、被膜の耐チッピング性、及び耐剥離性が良好であり、切削中に被膜の破壊が発生しにくく、そこを起点とする摩耗が抑制されるためと推察される。
 [実施例3]
 ≪切削工具の作製≫
 [試料No.3-1~試料No.3-43、および試料No.3-101]
 下記の製造方法を用いて、試料No.3-1~試料No.3-43、および試料No.3-101の切削工具を作製した。
 <基材を準備する工程>
 基材準備工程として、上記の試料No.1-1~試料No.1-15、試料No.1-17~試料No.1-34、および試料No.1-101~試料No.1-106と同一の基材を準備し、該基材をアークイオンプレーティング装置の所定の位置にセットした。
 <基材上に被膜を形成する工程>
 第2層被覆工程として、表9および表10に記載した条件で実行されることと、金属蒸発源として以下のターゲットが用いられることとを除いては、上記の試料No.1-1~試料No.1-15、試料No.1-17~試料No.1-34、および試料No.1-101~試料No.1-106と同一の条件で、アークイオンプレーティング法を用いて、上記基材の表面に第2層を形成した。金属蒸発源としては、後述する表11および表12に記載した第2層の「組成」に応じたターゲットを用いた。具体的には、第2層の組成がTiAlNまたはTiAlCの場合は、金属蒸発源としてTiAlターゲットを用いた。また、第2層の組成がTiCN、TiCまたはTiNの場合は、金属蒸発源としてTiターゲットを用いた。
 次に、試料No.3-30の切削工具を作製するために、工程(i)として、表9および表10の「アニール温度[℃]」欄に記載した温度条件で、第2層の表面にアニールを行った。表9および表10の「アニール温度[℃]」欄における「-」は、工程(i)が実行されなかったことを意味する。
 次に、工程(iv)として、第2層被覆工程におけるバイアス電圧を、表9および表10の「工程(iv)」欄に記載したバイアス電圧に調整して、60秒間成膜を行った。続いて、バイアス電圧以外の成膜条件を以下に示す第1層被覆条件に変更し、かつ、バイアス電圧を維持したまま、60秒間成膜を行った。なお、工程(ii)は実行しなかった。
 次に、第1層被覆工程として、表9および表10に記載した条件で、アークイオンプレーティング法を用いて、第1単位層被覆工程と第3単位層被覆工程とを交互に実行することにより、上記第2層の表面に第1層を形成した。具体的には以下の方法で行った。金属蒸発源としては、後述する表11および表12に記載した第1層の「組成」に応じたターゲットを用いた。すなわち、第1単位層の組成がTiAlNの場合は、金属蒸発源としてTiAlターゲットを用いた。また、例えば、第1単位層の組成がTiAlSiNの場合は、金属蒸発源としてTiAlSiターゲットを用いた。また、第3単位層の組成がTiAlNの場合は、金属蒸発源としてTiAlターゲットを用いた。反応ガスとしてはNガスを用いた。基板(基材)温度を500℃及び該装置内のガス圧を4Paに設定した。なお、第1単位層被覆工程および第3単位層被覆工程のうち、最初に実行されたのは第1単位層被覆工程であり、最後に実行されたのは第3単位層被覆工程であった。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 ≪切削工具の特性評価≫
 上述のようにして作製した試料No.3-1~試料No.3-43、および試料No.3-101の切削工具について、実施例1と同様の方法で、第1単位層の組成TiAl1-x-y1-zにおける「x」、「y」、「z」、「第1単位層厚み」、第3単位層の組成TiAl1-nNにおける「n」、「第3単位層厚み」、第2層の組成TiAl1-cにおける「a」、「b」、「c」、「第1層の厚み」、「第2層の厚み」、「第1層の硬度H」、「第2層の硬度H」、「I(200)/(I(200)+I(111)+I(220))」(「R(200)」)、「I(111)/(I(200)+I(111)+I(220))」(「R(111)」)、および「I(220)/(I(200)+I(111)+I(220))」(「R(220)」)をそれぞれ測定により求めた。得られた結果をそれぞれ表11および表12に記す。「第1単位層厚み」、「第3単位層厚み」及び「第1層の厚み」の関係は次の通りである。例えば、試料3-1では、厚み10nmの第1単位層と厚み15nmの第3単位層とが交互に積層されて第1層が形成され、該第1層の厚みTが2.5μmである。なお、試料No.3-1~試料No.3-43の切削工具は実施例に相当し、試料No.3-101の切削工具は比較例に相当する。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 ≪切削試験≫
 上述のようにして作製した試料No.3-1~試料No.3-43、および試料No.3-101の切削工具について、実施例1と同様の方法で「切削試験」を実行することにより、「最大摩耗量」を求めた。得られた結果をそれぞれ表11および表12の「最大摩耗量[μm]」の項に記す。
 <結果>
 試料No.3-1~試料No.3-43は、実施例に該当する。また、試料No.3-101は、比較例に該当する。表11および表12の結果から、実施例に該当する試料No.3-1~試料No.3-43の切削工具は、比較例に該当する試料No.3-101よりも、焼入鋼などの高硬度材の切削のように、高負荷切削においても、長い工具寿命を有することが確認された。この理由は、実施例1と同様に、試料No.3-1~試料No.3-43の切削工具では、被膜の第1層の硬度が高く耐摩耗性が良好であり、かつ、被膜が第1層とともに第2層を含むため、被膜の耐チッピング性、及び耐剥離性が良好であり、切削中に被膜の破壊が発生しにくく、そこを起点とする摩耗が抑制されるためと推察される。
 [実施例4]
 ≪切削工具の作製≫
 [試料No.4-1~試料No.4-28]
 下記の製造方法を用いて、試料No.4-1~試料No.4-28の切削工具を作製した。
 <基材を準備する工程>
 基材準備工程として、上記の試料No.1-1~試料No.1-15、試料No.1-17~試料No.1-34、および試料No.1-101~試料No.1-106と同一の基材を準備し、該基材をアークイオンプレーティング装置の所定の位置にセットした。
 <基材上に被膜を形成する工程>
 第2層被覆工程として、表13に記載した条件で実行されることと、金属蒸発源として以下のターゲットが用いられることとを除いては、上記の試料No.1-1~試料No.1-15、試料No.1-17~試料No.1-34、および試料No.1-101~試料No.1-106と同一の条件で、アークイオンプレーティング法を用いて、上記基材の表面に第2層を形成した。金属蒸発源としては、後述する表14に記載した第2層の「組成」に応じたターゲットを用いた。具体的には、第2層の組成がTiAlNまたはTiAlCの場合は、金属蒸発源としてTiターゲットおよびAlターゲットを用いた。また、第2層の組成がTiCNまたはTiNの場合は、金属蒸発源としてTiターゲットを用いた。
 次に、工程(iv)として、第2層被覆工程におけるバイアス電圧の値から、表13の「工程(iv)」欄に記載したバイアス電圧の値にバイアス電圧を調整して、60秒間成膜を行った。続いて、バイアス電圧以外の成膜条件を以下に示す第1層被覆条件に変更し、かつ、バイアス電圧を維持したまま、60秒間成膜を行った。なお、工程(i)および工程(ii)は実行しなかった。
 次に、第1層被覆工程として、表13に記載した条件で、アークイオンプレーティング法を用いて、第1単位層被覆工程と第2単位層被覆工程とを交互に実行することにより、上記第2層の表面に第1層を形成した。具体的には以下の方法で行った。金属蒸発源としては、後述する表14に記載した第1層の「組成」に応じたターゲットを用いた。すなわち、第1単位層の組成がTiAlNの場合は、金属蒸発源としてTiAlターゲットを用いた。また、例えば、第1単位層の組成がTiAlSiNの場合は、金属蒸発源としてTiAlSiターゲットを用いた。また、第2単位層の組成がAlCrNの場合は、金属蒸発源としてAlCrターゲットを用いた。また、第2単位層の組成がCrNの場合は、金属蒸発源としてCrターゲットを用いた。反応ガスとしてはNガスを用いた。基板(基材)温度を500℃及び該装置内のガス圧を4Paに設定した。なお、第1単位層被覆工程および第2単位層被覆工程のうち、最初に実行されたのは第1単位層被覆工程であり、最後に実行されたのは第2単位層被覆工程であった。
 次に、上記第2層被覆工程から上記第1層被覆工程で構成される一連の工程を、表13の「第2層被覆工程~第1層被覆工程の繰り返し回数」の項に記載した回数実行した。例えば、試料No.4-1では、上記第2層被覆工程から上記第1層被覆工程で構成される一連の工程を3回繰り返した。すなわち、試料No.4-1の被膜は、第2層と第1層とが交互に積層され、第2層と第1層とをそれぞれ3層ずつ含む。
Figure JPOXMLDOC01-appb-T000013
 ≪切削工具の特性評価≫
 上述のようにして作製した試料No.4-1~試料No.4-28の切削工具について、実施例1と同様の方法で、第1単位層の組成TiAl1-x-y1-zにおける「x」、「y」、「z」、「第1単位層厚み」、第2単位層の組成AlCr1-mNにおける「m」、「第2単位層厚み」、第2層の組成TiAl1-cにおける「a」、「b」、および「c」、「第1層の厚み」、「第2層の厚み」、「第1層の硬度H」、「第2層の硬度H」、「I(200)/(I(200)+I(111)+I(220))」(「R(200)」)、「I(111)/(I(200)+I(111)+I(220))」(「R(111)」)、および「I(220)/(I(200)+I(111)+I(220))」(「R(220)」)をそれぞれ測定により求めた。得られた結果を、それぞれ表14に記す。ここで「第1単位層厚み」は1層の第1単位層の厚みを示し、「第2単位層厚み」は1層の第2単位層の厚みを示し、「第1層の厚み」は1層の第1層の厚みを示し、「第2層の厚み」は1層の第2層の厚みを示す。例えば、試料4-1では、厚み15nmの第1単位層と厚み10nmの第2単位層とが交互に積層されて第1層が形成され、該第1層の厚みTが0.5μmであり、被膜中に該第1層が3層、かつ、厚みTが0.5μmの第2層が3層存在する。なお、試料No.4-1~試料No.4-28の切削工具は実施例に相当する。
Figure JPOXMLDOC01-appb-T000014
 ≪切削試験≫
 上述のようにして作製した試料No.4-1~試料No.4-28の切削工具について、実施例1と同様の方法で「切削試験」を実行することにより、「最大摩耗量」を求めた。得られた結果をそれぞれ表14の「最大摩耗量[μm]」の項に記す。
 <結果>
 試料No.4-1~試料No.4-28は、実施例に該当する。表14の結果から、実施例に該当する試料No.4-1~試料No.4-28の切削工具は、焼入鋼などの高硬度材の切削のように、高負荷切削においても、長い工具寿命を有することが確認された。この理由は、実施例1と同様に、試料No.4-1~試料No.4-28の切削工具では、被膜の第1層の硬度が高く耐摩耗性が良好であり、かつ、被膜が第1層とともに第2層を含むため、被膜の耐チッピング性、及び耐剥離性が良好であり、切削中に被膜の破壊が発生しにくく、そこを起点とする摩耗が抑制されるためと推察される。
 [実施例5]
 ≪切削工具の作製≫
 [試料No.5-1~試料No.5-28]
 下記の製造方法を用いて、試料No.5-1~試料No.5-28の切削工具を作製した。
 <基材を準備する工程>
 基材準備工程として、上記の試料No.1-1~試料No.1-15、試料No.1-17~試料No.1-34、および試料No.1-101~試料No.1-106と同一の基材を準備し、該基材をアークイオンプレーティング装置の所定の位置にセットした。
 <基材上に被膜を形成する工程>
 第2層被覆工程として、表15に記載した条件で実行されることと、金属蒸発源として以下のターゲットが用いられることとを除いては、上記の試料No.1-1~試料No.1-15、試料No.1-17~試料No.1-34、および試料No.1-101~試料No.1-106と同一の条件で、アークイオンプレーティング法を用いて、上記基材の表面に第2層を形成した。金属蒸発源としては、後述する表16に記載した第2層の「組成」に応じたターゲットを用いた。具体的には、第2層の組成がTiAlNまたはTiAlCの場合は、金属蒸発源としてTiAlターゲットを用いた。また、第2層の組成がTiNの場合は、金属蒸発源としてTiターゲットを用いた。
 次に、工程(iv)として、第2層被覆工程におけるバイアス電圧の値から、表15の「工程(iv)」欄に記載したバイアス電圧の値にバイアス電圧を調整して、60秒間成膜を行った。続いて、バイアス電圧以外の成膜条件を以下に示す第1層被覆条件に変更し、かつ、バイアス電圧を維持したまま、60秒間成膜を行った。なお、工程(i)および工程(ii)は実行しなかった。
 次に、第1層被覆工程として、表15に記載した条件で、アークイオンプレーティング法を用いて、第1単位層被覆工程と第3単位層被覆工程とを交互に実行することにより、上記第2層の表面に第1層を形成した。具体的には以下の方法で行った。金属蒸発源としては、後述する表16に記載した第1層の「組成」に応じたターゲットを用いた。すなわち、第1単位層の組成がTiAlNの場合は、金属蒸発源としてTiAlターゲットを用いた。また、例えば、第1単位層の組成がTiAlSiNの場合は、金属蒸発源としてTiAlSiターゲットを用いた。また、第3単位層の組成がTiAlNの場合は、金属蒸発源としてTiAlターゲットを用いた。また、第3単位層の組成がAlNの場合は、金属蒸発源としてAlターゲットを用いた。反応ガスとしてはNガスを用いた。基板(基材)温度を500℃及び該装置内のガス圧を4Paに設定した。なお、第1単位層被覆工程および第2単位層被覆工程のうち、最初に実行されたのは第1単位層被覆工程であり、最後に実行されたのは第3単位層被覆工程であった。
 次に、工程(iii)として、上記第2層被覆工程から上記第1層被覆工程で構成される一連の工程を、表15の「第2層被覆工程~第1層被覆工程の繰り返し回数」の項に記載した回数実行した。例えば、試料No.5-1では、上記第2層被覆工程から上記第1層被覆工程で構成される一連の工程を3回繰り返した。すなわち、試料No.5-1の被膜は、第2層と第1層とが交互に積層され、第2層と第1層とをそれぞれ3層ずつ含む。
Figure JPOXMLDOC01-appb-T000015
 ≪切削工具の特性評価≫
 上述のようにして作製した試料No.5-1~試料No.5-28の切削工具について、実施例1と同様の方法で、第1単位層の組成TiAl1-x-y1-zにおける「x」、「y」、「z」、「第1単位層厚み」、第3単位層の組成TiAl1-nNにおける「n」、「第2単位層厚み」、第2層の組成TiAl1-cにおける「a」、「b」、および「c」、「第1層の厚み」、「第2層の厚み」、「第1層の硬度H」、「第2層の硬度H」、「I(200)/(I(200)+I(111)+I(220))」、「I(111)/(I(200)+I(111)+I(220))」、および「I(220)/(I(200)+I(111)+I(220))」をそれぞれ測定により求めた。得られた結果を、それぞれ表16に記す。ここで「第1単位層厚み」は1層の第1単位層の厚みを示し、「第3単位層厚み」は1層の第3単位層の厚みを示し、「第1層の厚み」は1層の第1層の厚みを示し、「第2層の厚み」は1層の第2層の厚みを示す。例えば、試料No.5-1では、厚み10nmの第1単位層と厚み15nmの第2単位層とが交互に積層されて第1層が形成され、該第1層の厚みTが0.5μmであり、被膜中に該第1層が3層、かつ、厚みTが0.5μmの第2層が3層存在する。なお、試料No.5-1~試料No.5-28の切削工具は実施例に相当する。
Figure JPOXMLDOC01-appb-T000016
 ≪切削試験≫
 上述のようにして作製した試料No.5-1~試料No.5-28の切削工具について、実施例1と同様の方法で「切削試験」を実行することにより、「最大摩耗量」を求めた。得られた結果をそれぞれ表16の「最大摩耗量[μm]」の項に記す。
 <結果>
 試料No.5-1~試料No.5-28は、実施例に該当する。表16の結果から、実施例に該当する試料No.5-1~試料No.5-28の切削工具は、焼入鋼などの高硬度材の切削のように、高負荷切削においても、長い工具寿命を有することが確認された。この理由は、実施例1と同様に、試料No.5-1~試料No.5-28の切削工具では、被膜の第1層の硬度が高く耐摩耗性が良好であり、かつ、被膜が第1層とともに第2層を含むため、被膜の耐チッピング性、及び耐剥離性が良好であり、切削中に被膜の破壊が発生しにくく、そこを起点とする摩耗が抑制されるためと推察される。
 以上のように本開示の実施の形態および実施例について説明を行なったが、上述の各実施の形態および実施例の構成を適宜組み合わせたり、様々に変形することも当初から予定している。
 今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態および実施例ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
1 すくい面、2 逃げ面、3 刃先稜線部、10 切削工具、11 基材、12 第1層、13 第2層、14 下地層、15 中間層、16 表面層、40 被膜、121 第1単位層、122 第2単位層、123 第3単位層、131 第4単位層、A1およびA2 (200)面に由来するX線回折ピーク

Claims (8)

  1.  基材と、前記基材上に配置された被膜と、を備える切削工具であって、
     前記被膜は、第1層と、第2層とを含み、
     前記第1層の硬度Hは、25GPa以上40GPa以下であり、
     前記第2層の硬度Hは、0.5×H≦H≦0.9×Hを満たし、
     前記被膜の(200)面のX線回折強度I(200)と、(111)面のX線回折強度I(111)と、(220)面のX線回折強度I(220)との合計に対する、前記I(200)の比率I(200)/(I(200)+I(111)+I(220))、
     前記合計に対する前記I(111)の比率I(111)/(I(200)+I(111)+I(220))、および
     前記合計に対する前記I(220)の比率I(220)/(I(200)+I(111)+I(220))の少なくともいずれかは、0.45以上である、切削工具。
  2.  前記第1層の厚みTは、0.2μm以上10μm以下である、請求項1に記載の切削工具。
  3.  前記第2層の厚みTは、0.2μm以上10μm以下である、請求項1または請求項2に記載の切削工具。
  4.  前記第2層の厚みTに対する前記第1層の厚みTの比率T/Tは、0.02以上50以下である、請求項1から請求項3のいずれか1項に記載の切削工具。
  5.  前記第1層は、第1単位層を含み、
     前記第1単位層は、TiAl1-x-y1-zからなり、
     前記Mは、ジルコニウム、ハフニウム、周期表5族元素、6族元素、珪素、硼素及びイットリウムからなる群より選択される1種の元素であり、
     前記xは、0.20以上0.99以下であり、
     前記yは、0.01以上0.80以下であり、
     前記1-x-yは、0.01以上0.20以下であり、
     前記zは、0以上1.0以下である、請求項1から請求項4のいずれか1項に記載の切削工具。
  6.  前記第1層は、第2単位層を更に含み、
     前記第2単位層は、AlCr1-mNからなり、
     前記mは、0以上0.8以下であり、
     前記第1単位層の厚みは、5nm以上50nm以下であり、
     前記第2単位層の厚みは、5nm以上50nm以下であり、
     前記第1単位層と前記第2単位層とは交互に積層される、請求項5に記載の切削工具。
  7.  前記第1層は、第3単位層を更に含み、
     前記第3単位層は、Ti1-nAlNからなり、
     前記nは、0以上0.8以下であり、
     前記第1単位層の厚みは、5nm以上50nm以下であり、
     前記第3単位層の厚みは、5nm以上50nm以下であり、
     前記第1単位層と前記第3単位層とは交互に積層される、請求項5に記載の切削工具。
  8.  前記第2層は、第4単位層を含み、
     前記第4単位層は、TiAl1-cからなり、
     前記aは、0.2以上1.0以下であり、
     前記bは、0以上0.8以下であり、
     前記cは、0以上1.0以下である、請求項1から請求項7のいずれか1項に記載の切削工具。
PCT/JP2022/026003 2021-06-30 2022-06-29 切削工具 WO2023277077A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023518445A JP7355293B2 (ja) 2021-06-30 2022-06-29 切削工具
CN202280045932.0A CN117580664A (zh) 2021-06-30 2022-06-29 切削工具
KR1020237044935A KR20240026951A (ko) 2021-06-30 2022-06-29 절삭 공구
EP22833223.5A EP4365330A4 (en) 2021-06-30 2022-06-29 CUTTING TOOL

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/024828 WO2023276066A1 (ja) 2021-06-30 2021-06-30 切削工具
JPPCT/JP2021/024828 2021-06-30

Publications (1)

Publication Number Publication Date
WO2023277077A1 true WO2023277077A1 (ja) 2023-01-05

Family

ID=84691684

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2021/024828 WO2023276066A1 (ja) 2021-06-30 2021-06-30 切削工具
PCT/JP2022/026003 WO2023277077A1 (ja) 2021-06-30 2022-06-29 切削工具

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/024828 WO2023276066A1 (ja) 2021-06-30 2021-06-30 切削工具

Country Status (5)

Country Link
EP (1) EP4365330A4 (ja)
JP (1) JP7355293B2 (ja)
KR (1) KR20240026951A (ja)
CN (1) CN117580664A (ja)
WO (2) WO2023276066A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002096205A (ja) * 2000-09-19 2002-04-02 Hitachi Tool Engineering Ltd 硬質皮膜被覆工具
JP2003034858A (ja) * 2001-07-23 2003-02-07 Kobe Steel Ltd 切削工具用硬質皮膜およびその製造方法並びに硬質皮膜形成用ターゲット
JP2003305601A (ja) * 2002-04-11 2003-10-28 Kobe Steel Ltd 硬質皮膜被覆工具およびその製造方法
JP2005138211A (ja) * 2003-11-05 2005-06-02 Sumitomo Electric Hardmetal Corp 表面被覆切削工具
JP2006299399A (ja) * 2005-03-24 2006-11-02 Hitachi Tool Engineering Ltd 硬質皮膜被覆部材
JP2008279562A (ja) * 2007-05-11 2008-11-20 Sumitomo Electric Ind Ltd 表面被覆切削工具
JP2010284787A (ja) * 2009-06-15 2010-12-24 Hitachi Tool Engineering Ltd 硬質皮膜被覆切削工具
JP2012045650A (ja) * 2010-08-25 2012-03-08 Hitachi Tool Engineering Ltd 硬質皮膜被覆切削工具
WO2017111073A1 (ja) * 2015-12-22 2017-06-29 京セラ株式会社 被覆工具
JP2018069433A (ja) 2016-11-04 2018-05-10 住友電気工業株式会社 表面被覆切削工具

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3934263B2 (ja) * 1998-10-27 2007-06-20 三菱マテリアル神戸ツールズ株式会社 耐摩耗性に優れた硬質皮膜および硬質皮膜被覆部材
JP3637883B2 (ja) * 2000-08-31 2005-04-13 住友電気工業株式会社 表面被覆窒化硼素焼結体工具
KR101284766B1 (ko) * 2011-11-30 2013-07-17 한국야금 주식회사 절삭공구용 경질피막

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002096205A (ja) * 2000-09-19 2002-04-02 Hitachi Tool Engineering Ltd 硬質皮膜被覆工具
JP2003034858A (ja) * 2001-07-23 2003-02-07 Kobe Steel Ltd 切削工具用硬質皮膜およびその製造方法並びに硬質皮膜形成用ターゲット
JP2003305601A (ja) * 2002-04-11 2003-10-28 Kobe Steel Ltd 硬質皮膜被覆工具およびその製造方法
JP2005138211A (ja) * 2003-11-05 2005-06-02 Sumitomo Electric Hardmetal Corp 表面被覆切削工具
JP2006299399A (ja) * 2005-03-24 2006-11-02 Hitachi Tool Engineering Ltd 硬質皮膜被覆部材
JP2008279562A (ja) * 2007-05-11 2008-11-20 Sumitomo Electric Ind Ltd 表面被覆切削工具
JP2010284787A (ja) * 2009-06-15 2010-12-24 Hitachi Tool Engineering Ltd 硬質皮膜被覆切削工具
JP2012045650A (ja) * 2010-08-25 2012-03-08 Hitachi Tool Engineering Ltd 硬質皮膜被覆切削工具
WO2017111073A1 (ja) * 2015-12-22 2017-06-29 京セラ株式会社 被覆工具
JP2018069433A (ja) 2016-11-04 2018-05-10 住友電気工業株式会社 表面被覆切削工具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4365330A4

Also Published As

Publication number Publication date
EP4365330A1 (en) 2024-05-08
CN117580664A (zh) 2024-02-20
JPWO2023277077A1 (ja) 2023-01-05
JP7355293B2 (ja) 2023-10-03
KR20240026951A (ko) 2024-02-29
EP4365330A4 (en) 2024-05-08
WO2023276066A1 (ja) 2023-01-05

Similar Documents

Publication Publication Date Title
EP3269479B1 (en) Surface-coated cutting tool and method for manufacturing same
JP2020528831A (ja) コーティング切削工具及びその製造方法
JP4970886B2 (ja) 表面被覆切削工具
JP2022115929A (ja) 切削工具
US8900336B2 (en) Cutting tool
JP4921984B2 (ja) 表面被覆切削工具
JP4917447B2 (ja) 表面被覆切削工具
WO2019171653A1 (ja) 表面被覆切削工具及びその製造方法
WO2019171648A1 (ja) 表面被覆切削工具及びその製造方法
WO2023277077A1 (ja) 切削工具
JP7251347B2 (ja) 表面被覆切削工具
JP5286931B2 (ja) 高速重切削加工で硬質被覆層がすぐれた耐チッピング性と耐摩耗性を発揮する表面被覆切削工具
JPWO2020070967A1 (ja) 表面被覆切削工具及びその製造方法
JP7226688B2 (ja) 切削工具
JP2020199589A (ja) 被覆切削工具
JP2020151794A (ja) 表面被覆切削工具
JP7305054B2 (ja) 切削工具
JP7067691B1 (ja) 切削工具
JP7338827B1 (ja) 切削工具
JP6743350B2 (ja) 切削工具
WO2022244190A1 (ja) 切削工具
WO2022239139A1 (ja) 切削工具
WO2022244191A1 (ja) 切削工具
WO2022196555A1 (ja) 表面被覆切削工具
JP2022030401A (ja) 表面被覆切削工具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22833223

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023518445

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280045932.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022833223

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022833223

Country of ref document: EP

Effective date: 20240130