WO2022196555A1 - 表面被覆切削工具 - Google Patents

表面被覆切削工具 Download PDF

Info

Publication number
WO2022196555A1
WO2022196555A1 PCT/JP2022/010850 JP2022010850W WO2022196555A1 WO 2022196555 A1 WO2022196555 A1 WO 2022196555A1 JP 2022010850 W JP2022010850 W JP 2022010850W WO 2022196555 A1 WO2022196555 A1 WO 2022196555A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
coating layer
less
content
cutting
Prior art date
Application number
PCT/JP2022/010850
Other languages
English (en)
French (fr)
Inventor
大輝 江畑
英利 淺沼
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to KR1020237032538A priority Critical patent/KR20230159440A/ko
Priority to CN202280022266.9A priority patent/CN117042898A/zh
Priority to JP2023507059A priority patent/JPWO2022196555A1/ja
Priority to EP22771303.9A priority patent/EP4309835A1/en
Publication of WO2022196555A1 publication Critical patent/WO2022196555A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/347Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with layers adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/42Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by the composition of the alternating layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/44Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by a measurable physical property of the alternating layer or system, e.g. thickness, density, hardness

Definitions

  • the present invention relates to a surface-coated cutting tool (hereinafter sometimes referred to as a coated tool).
  • a coated tool This application claims priority from Japanese Patent Application No. 2021-46163 filed on March 19, 2021. All the contents described in the Japanese patent application are incorporated herein by reference.
  • a coated tool for example, a tool substrate (substrate) formed of a tungsten carbide (hereinafter referred to as WC)-based cemented carbide or the like and having a coating layer formed thereon is known.
  • WC tungsten carbide
  • Patent Document 1 describes (Al x Ti 1-x ) (B y N 1-y ) (x is 0.05 to 0.75, y is 0.02 to 0.12) on the surface of the substrate. ) and having an average thickness of 0.5 to 8.0 ⁇ m, the coated tool is boric nitrided by adding boron (B) to the coating layer. It is said that it exhibits excellent wear resistance by having a solid layer and has low reactivity (low adhesion) with iron-based work materials.
  • the present invention has been made in view of the above circumstances and proposals, and has excellent wear resistance even when subjected to high-speed cutting, such as martensitic stainless steel, where the cutting speed is 30% or more higher than normal conditions.
  • An object of the present invention is to provide a coated tool that exhibits
  • a surface-coated cutting tool is 1) having a substrate and a coating layer on the surface of the substrate; 2) the coating layer includes a layer having an average thickness of 0.1 ⁇ m or more and 10.0 ⁇ m or less, in which the first layer and the second layer are alternately laminated; 3)
  • the first layer has an average thickness of 0.5 nm or more and 100.0 nm or less, and an average composition of (Al x Ti 1-xyz M y )B z N (where M is one or more elements selected from Groups 4, 5 and 6 of the periodic table and lanthanoids, x is 0.100 or more and 0.640 or less, y is 0.001 or more and 0.100 or less, z is 0.060 or more and 0.400 or less), 4)
  • the second layer has an average thickness of 0.5 nm or more and 100.0 nm or less, and an average composition of (Al p Cr 1-p )N (p is 0.650 or more and 0.900 below) and 5)
  • the surface-coated cutting tool described above exhibits excellent wear resistance and chipping resistance even when used for high-speed cutting of stainless steel such as martensitic stainless steel.
  • FIG. 3 is a schematic diagram showing a cutting edge ridge line in the surface-coated cutting tool according to the embodiment of the present invention.
  • the present inventor conducted extensive research on a coated tool that exhibits excellent wear resistance even when used for high-speed cutting of stainless steel such as martensitic stainless steel. As a result, although the coating layer containing B is excellent in wear resistance, it is brittle.
  • the present inventor believes that since B is a light element at the ridgeline of the cutting edge, the content of B decreases with respect to the portion away from the ridgeline of the cutting edge due to resputtering. , The effect of improving hardness by containing B is not sufficiently exhibited, and as a result, the hardness of the cutting edge ridge line and other areas are different, so wear does not proceed uniformly, and abnormal damage such as chipping may occur. rice field.
  • the present inventors have further studied, and as a result, a layer containing B does not exist in the coating layer to compensate for the brittleness of the layer containing B and suppress the occurrence of abnormal damage to the coating layer.
  • the inventors have found that if the high-temperature hardness is improved by suppressing the decrease in the B content at the ridgeline of the cutting edge, the coating layer can exhibit excellent wear resistance.
  • Coating Layer The coating layer will be described below.
  • the average thickness of the layer in which the first layer and the second layer included in the coating layer are alternately laminated is 0.1 ⁇ m or more and 10.0 ⁇ m or less.
  • the reason why the average thickness is in this range is that if it is less than 0.1 ⁇ m, excellent wear resistance cannot be exhibited over a long period of use, while if it exceeds 10.0 ⁇ m, the crystal grains of the coating layer This is because the particles tend to coarsen, and the chipping resistance cannot be improved.
  • This average thickness is more preferably 0.8 ⁇ m or more and 8.0 ⁇ m or less.
  • the coating layer (2) in the coated tool according to the present embodiment is provided on the substrate (1), and the first layers are alternately laminated. (3) and a second layer (4).
  • the first layer has an average thickness of 0.5 nm or more and 100.0 nm or less per layer, and is obtained by averaging the composition of all the laminated first layers.
  • the average composition obtained is (Al x Ti 1-x-y-z M y )B z N (where M is one or more elements selected from Groups 4, 5, and 6 of the periodic table and lanthanides, x is 0.100 or more and 0.640 or less, y is 0.001 or more and 0.100 or less, and z is 0.060 or more and 0.400 or less).
  • the first layer as a whole may satisfy the above range, and may locally deviate from the above range.
  • the elements of groups 4, 5 and 6 of the periodic table refer to Zr, Hf, V, Nb, Ta, Cr, Mo and W.
  • the thickness is less than 0.5 nm, the improvement in crack propagation resistance brought about by the laminated structure cannot be sufficiently exhibited, while if it exceeds 100.0 nm, it is nano This is because the improvement in wear resistance brought about by lamination cannot be sufficiently exhibited.
  • the reason why the above range is preferable for the average composition is as follows.
  • x is less than 0.100, the heat resistance of the first layer cannot be sufficiently improved by the addition of Al. This is because the abrasion resistance cannot be exhibited.
  • y is less than 0.001, the heat resistance and mechanical properties of the first layer cannot be sufficiently improved by the addition of M.
  • y exceeds 0.100, the toughness of the first layer decreases. , chipping, and breakage are more likely to occur.
  • z is less than 0.060, the addition of B cannot sufficiently improve the hardness of the first layer. , is likely to cause defects.
  • Each second layer has an average thickness of 0.5 nm or more and 100.0 nm or less per layer, and is obtained by averaging the composition of all the laminated first layers.
  • the average composition is preferably (Al p Cr 1-p )N (p is 0.650 or more and 0.900 or less).
  • the thickness is less than 0.5 nm, the improvement in crack propagation resistance brought about by the laminated structure cannot be sufficiently exhibited, while if it exceeds 100.0 nm, it is nano This is because the improvement in wear resistance brought about by lamination cannot be sufficiently exhibited.
  • the first layer and the second layer are alternately laminated
  • the first layer and the second layer are preferably laminated alternately in the thickness direction.
  • the second layer containing no B compensates for the brittleness of the first layer, which has an increased B content to provide wear resistance
  • the coating layer as a whole is a martensitic stainless steel. It exhibits excellent wear resistance and chipping resistance even when used for high-speed cutting of stainless steel such as.
  • both the layer closest to the substrate and the layer closest to the surface of the tool substrate may be either the first layer or the second layer. I don't mind.
  • the number of laminated layers of the first layer and the second layer satisfies the average thickness of the first layer and the second layer, respectively, and the average thickness of the coating layer also satisfies the average thickness of the above range.
  • the number of laminations (the sum of the number of laminations of the first layer and the second layer) is more preferably 50 layers or more and 1000 layers or less.
  • the B content in the cutting edge ridgeline of the coating layer is 60% or more of the B content in the area 1 mm or more away from the cutting edge ridgeline of the coating layer in the flank direction. is preferably Although the upper limit of the B content is not restricted, 100% is a tentative upper limit in production by the PVD method, which will be described later.
  • the B content can be regarded as a constant value at a distance of 1 mm or more in the flank direction from the cutting edge ridgeline. Therefore, in the examples described later, the B content is measured at a point on a line 1.5 mm away from the cutting edge ridge in the flank direction.
  • the fact that the B content can be regarded as a constant value means that any line segment parallel to the cutting edge ridgeline that is 1 mm or more away from the cutting edge ridgeline in the direction of the flank face, any line segment on this line segment
  • the average value of the B content for the 5 points it means that the value is substantially the same, that is, it matches within the error range.
  • the B content in the cutting edge ridgeline of the coating layer is 60% or more with respect to the B content in the region separated by 1 mm or more in the flank direction from the cutting edge ridgeline of the coating layer, for example, the B content is 1 mm or more in the flank direction.
  • the cutting edge ridge is a line connecting the points at which the straight lines separate from the rake face and the flank face.
  • the point on the coating layer surface that is closest to the intersection of the approximate straight lines in the region that is, the region from the inflection point of the rake face to the inflection point of the flank face on the surface of the coating layer) (the point indicated by the dotted arrow) .
  • the object of the present invention can be achieved by having a first layer and a second layer, but when a TiN layer is formed as an upper layer of the coating layer, the TiN layer itself has a golden color tone.
  • the composition of the TiN layer is not limited to a stoichiometric composition as long as it exhibits a golden lining). It can be used as an identification layer that can The average thickness of the TiN layer as the identification layer may be, for example, 0.1 ⁇ m or more and 1.0 ⁇ m or less.
  • the film is formed so that there are no layers other than the first layer, the second layer, and the upper layer (TiN layer).
  • the film formation is changed to a layer of )
  • pressure fluctuations in the film formation apparatus unintentionally occurred, and unintentional oxygen and carbon different in composition from these layers were included between the adjacent layers. Layers may form.
  • the average thickness of each layer is measured using an energy dispersive X-ray spectroscope attached to a scanning electron microscope (SEM) or a transmission electron microscope (TEM).
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • Dispersive X-ray Spectrometer (EDS) Observation of a cross section in the layer thickness direction (a cross section perpendicular to this horizontal plane when ignoring minute irregularities on the substrate surface and treating the substrate surface as a horizontal plane: longitudinal cross section) can be done. That is, for example, it is magnified 5000 times, and the thickness at a plurality of points (for example, 5 points) is obtained and averaged.
  • the average composition is obtained by observing a longitudinal section using TEM-energy dispersive X-ray spectroscopy (EDS), and performing a line analysis of multiple lines (for example, 5 lines) in the thickness direction for Al, Ti, Cr. , the average value of the M amount.
  • EDS TEM-energy dispersive X-ray spectroscopy
  • B content z the contents of Al, Ti, Cr, M, and B in the entire coating layer from the surface are determined using an Electron Probe Micro Analyzer (EPMA). Since the second layer does not contain B, the ratio of Ti and B contents in the first layer is the same as the ratio of Ti and B contents in the entire coating layer. Therefore, the B content of the first layer is obtained from the Ti and M contents obtained by TEM-EDS and the Ti, M and B contents obtained by EPMA.
  • the substrate used in the present embodiment can be any material as long as it is a conventionally known substrate material, as long as it does not interfere with the achievement of the above-mentioned object.
  • cemented carbide WC-based cemented carbide, containing Co in addition to WC, and further containing carbonitrides such as Ti, Ta, Nb, etc.), cermet (TiC, TiN, TiCN, etc. as a main component, etc.), ceramics (titanium carbide, silicon carbide, silicon nitride, aluminum nitride, aluminum oxide, etc.), cBN sintered body, or diamond sintered body is preferable. .
  • the shape of the substrate is not particularly limited as long as it has a shape that can be used as a cutting tool, examples of which include the shape of an insert and the shape of a drill.
  • the coating layer of the coated tool of the present invention can be manufactured using a film forming apparatus having an evaporation source for arc ion plating (AIP), which is a type of PVD, and the first layer is AlTiMB. (M is one or more elements selected from Groups 4, 5, and 6 of the periodic table, and lanthanoids)
  • AIP arc ion plating
  • the second layer is an AlCr target, which is arc-discharged
  • the first layer and the second layer are alternately
  • the B content in the cutting edge ridge is 60% or more with respect to the B content in the area 1 mm or more away from the cutting edge ridge in the flank direction. can do.
  • Co powder, TiC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, and WC powder were prepared as raw material powders, and these raw material powders were blended in the composition shown in Table 1, and further Wax is added and wet-mixed in a ball mill for 72 hours, dried under reduced pressure, and then press-molded at a pressure of 100 MPa.
  • Substrates 1 to 3 made of WC-based cemented carbide and having an insert shape were produced.
  • the substrates 1 to 3 are ultrasonically cleaned in acetone, and dried. It was mounted along the outer circumference at a position spaced apart by a predetermined distance in the radial direction. Also, an AlTiMB (M was shown in Table 3) target and an AlCr target were arranged as a cathode electrode (evaporation source).
  • the inside of the film forming apparatus was evacuated and maintained at a vacuum of 10 ⁇ 2 Pa or less, the inside of the apparatus was heated to 400° C. with a heater, then set to an Ar gas atmosphere of 1.0 Pa, and placed on the rotary table.
  • a DC bias voltage of ⁇ 1000 V was applied to the rotating substrate, and the substrate surface was bombarded with argon ions for 60 minutes.
  • metal ion bombardment may be performed using a metal target.
  • Nitrogen gas having a partial pressure within the range of 0.1 to 9.0 Pa shown in Table 2 was introduced as a reaction gas into the film forming apparatus for a predetermined time, and the temperature inside the furnace was maintained at the temperature shown in Table 2.
  • a predetermined DC bias voltage within the range of -10 to -500 V shown in Table 2 was applied to the substrate rotating on the table (the same range for the first layer and the second layer), and 80 to 240 A shown in Table 2.
  • the coated tools of the present invention hereinafter referred to as "Examples" 1 to 9 shown in Table 3 were produced by passing a predetermined current within the range of to generate an arc discharge.
  • the average thicknesses of the first and second layers constituting the coating layer and the average composition of the coating layer were determined by the method described above.
  • the B content in the cutting edge ridgeline of the coating layer and the B content in the region 1 mm or more away from the cutting edge ridgeline of the coating layer in the flank direction are the cutting edge ridgeline portion of the coating layer and the cutting edge ridgeline of the coating layer, respectively.
  • the furnace temperature, DC bias voltage value, and arc current value shown in Table 2 were constant during the film formation period.
  • cutting test A and cutting test B were carried out as high-speed cutting tests for stainless steel such as martensitic stainless steel.
  • Cutting test A Work material: block material of width 60 mm x length 200 mm Cutting speed: 160 m/min. Notch: 1.5mm Feed: 0.12 mm/tooth.
  • a wet high-speed cutting test of martensitic stainless steel SUS420J2 was conducted under the conditions of . Cutting was performed up to a cutting length of 1.8 m, the flank wear width was measured, and the wear state of the cutting edge was observed. The results of cutting test A are shown in Table 5.
  • Cutting test B Work material: Block material of width 60 mm x length 200 mm Cutting speed: 170 m/min. Notch: 1.5mm Feed: 0.10 mm/tooth.
  • Wet high-speed cutting test of austenitic stainless steel SUS304 was conducted under the following conditions. Cutting was performed up to a cutting length of 1.8 m, the flank wear width was measured, and the wear state of the cutting edge was observed. Table 6 shows the results of the cutting test B.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

平均厚さが0.1μm以上、10.0μm以下で第1層と第2層が交互に積層される層を、被覆層は含み、 前記第1層は、平均厚さが0.5nm以上、100.0nm以下で、その平均組成が(AlTi1-x-y-z)BN(Mは周期表の4族、5族、6族、ランタノイドから選択した1種または2種以上の元素、xが0.100以上、0.640以下、yが0.001以上、0.100以下、zが0.060以上、0.400以下であり、 前記第2層は、平均厚さが0.5~100.0nmで、その平均組成が(AlCr1-p)N(pが0.650以上、0.900以下)であり、 前記被覆層の刃先稜線におけるB含有量は、前記被覆層の前記刃先稜線から逃げ面方向に1mm以上離れた領域のB含有量に対して、60%以上である表面被覆切削工具。

Description

表面被覆切削工具
 本発明は、表面被覆切削工具(以下、被覆工具ということがある)に関するものである。本出願は、2021年3月19日に出願した日本特許出願である特願2021-46163号に基づく優先権を主張する。当該日本特許出願に記載された全ての記載内容は、参照によって本明細書に援用される。
 従来から、被覆工具としては、例えば、炭化タングステン(以下、WCで表す)基超硬合金等の工具基体(基体)に被覆層を形成したものが知られている。
 そして、この被覆層の組成を調整することによって、より高硬度の被覆層を得る提案がなされている。
 例えば、特許文献1には、基体の表面に(AlTi1-x)(B1-y)(xは、0.05~0.75、yは、0.02~0.12)で示される硼窒化物層を含み、平均厚さが0.5~8.0μmの被覆層を有する被覆工具が記載され、該被覆工具は被覆層に硼素(B)を添加して硼窒化物層を有することによって優れた耐摩耗性を発揮し、鉄系被削材との反応性が低い(溶着性が低い)とされている。
特開平4-26756号公報
 本発明は、前記事情や前記提案を鑑みてなされたものであって、マルテンサイト系ステンレス鋼等の切削速度が通常の条件よりも30%以上高い高速切削に供しても、優れた耐摩耗性を発揮する被覆工具を提供することを目的とする。
 本発明の実施形態に係る表面被覆切削工具は、
1)基体と該基体表面に被覆層を有し、
2)その平均厚さが0.1μm以上、10.0μm以下であって第1層と第2層が交互に積層された層を、前記被覆層は含み、
3)前記第1層は、その平均厚さが0.5nm以上、100.0nm以下であって、その平均組成が(AlTi1-x-y-z)BN(ただし、Mは周期表の4族、5族、6族、ランタノイドから選択した1種以上の元素、xが0.100以上、0.640以下、yが0.001以上、0.100以下、zが0.060以上、0.400以下)であり、
4)前記第2層は、その平均厚さが0.5nm以上、100.0nm以下であって、その平均組成が(AlCr1-p)N(pが0.650以上、0.900以下)であり、
5)前記被覆層の刃先稜線におけるB含有量は、前記被覆層の前記刃先稜線から逃げ面方向に1mm以上離れた領域のB含有量に対して、60%以上である、
ことを特徴とする。
 前記の表面被覆切削工具は、マルテンサイト系ステンレス鋼等のステンレス鋼の高速切削に供しても、優れた耐摩耗性、耐欠損性を発揮する。
本発明の実施形態に係る表面被覆切削工具における被覆層の一例を示す縦断面の模式図である。 本発明の実施形態に係る表面被覆切削工具における刃先稜線を示す模式図である。
 本発明者は、マルテンサイト系ステンレス鋼等のステンレス鋼の高速切削に供しても、優れた耐摩耗性を発揮する被覆工具について鋭意検討を行った。その結果、Bを含有する被覆層は、耐摩耗性に優れるものの脆いため、単にBを含有する被覆層を単に被覆しただけでは、耐摩耗性と耐欠損性を両立できないと考えた。
 一方、本発明者は、イオンプレーティング法の原理を考慮すれば、刃先稜線では、Bは軽元素であるが故に、リスパッタによりその含有量が刃先稜線から離れた部分に対して少なくなってしまい、B含有による硬さ向上の効果が十分に発揮されず、その結果、刃先稜線とその他の領域で硬さが異なるため、摩耗が均一に進行せず、チッピングなどの異常損傷が発生するとも考えた。
 これらの考えを基にして、本発明者は更に検討した結果、被覆層にBを含有しない層を存在させて、Bを含有させる層の脆さを補い、被覆層の異常損傷の発生を抑制し、一方、刃先稜線でのB含有量の低下を抑制することにより高温硬さを向上させれば、被覆層が優れた耐摩耗性を発揮することができるとの知見を得たのである。
 以下では、本発明の実施形態に係る被覆工具について、より詳細に説明する。なお、本明細書、特許請求の範囲の記載において、数値範囲を「A~B」を用いて表現する場合は、「A以上、B以下」と同義であって、その範囲は上限値(B)および下限値(A)の数値を含むものである。また、上限値(B)のみに単位が記載されているとき、上限値(B)および下限値(A)は同じ単位である。
 本発明の実施形態に係る被覆工具の被覆層の層構造は図1に模式的に示すとおりである。
1.被覆層
 以下、被覆層について説明する。
(1)平均厚さ
 本実施形態に係る被覆工具において、被覆層に含まれる第1層と第2層とが交互に積層した層の平均厚さは、0.1μm以上、10.0μm以下であることが好ましい。平均厚さをこの範囲とした理由は、0.1μm未満であると、長期の使用にわたって優れた耐摩耗性を発揮することができず、一方、10.0μmを超えると、被覆層の結晶粒が粗大化しやすくなり、耐チッピング性の向上が得られなくなるからである。この平均厚さは、0.8μm以上、8.0μm以下がより好ましい。
(2)被覆層の構成
 図1に模式的に示すように、本実施形態に係る被覆工具における被覆層(2)は、基体(1)に設けられており、交互に積層される第1層(3)と第2層(4)を含んでいる。
(2-1)第1層
 第1層は、それぞれ、その一層当たりの平均厚さが0.5nm以上、100.0nm以下であって、積層した全ての第1層の組成を平均して求めた平均組成は、(AlTi1-x-y-z)BN(ただし、Mは周期表の4族、5族、6族、ランタノイドから選択した1種以上の元素、xが0.100以上、0.640以下、yが0.001以上、0.100以下、zが0.060以上、0.400以下)であることが好ましい。なおBの含有量zについては、第1層全体として前記範囲を満たしていればよく、局所的には前記範囲を外れてもよい。
 ここで、周期表の4族、5族、6族の元素とは、Zr、Hf、V、Nb、Ta、Cr、Mo、Wをいう。
 平均厚さとして、前記範囲が好ましい理由は、0.5nm未満であると、積層構造がもたらす耐クラック進展性の向上を十分に発揮することができず、一方、100.0nmを超えると、ナノ積層がもたらす耐摩耗性向上を十分に発揮することができないためである。
 また、平均組成として前記範囲が好ましい理由は、次のとおりである。
 xは、0.100未満であると、Alの添加による第1層の耐熱性向上が十分に得られず、一方、0.640を超えると、第1層の硬さが低下し十分な耐摩耗性が発揮できないためである。
 yは、0.001未満であると、Mの添加による第1層の耐熱性向上や機械的物性向上が十分に得られず、一方、0.100を超えると第1層の靭性が低下し、チッピング、欠損を発生しやすくなるためである。
 zは、0.060未満であると、Bの添加による第1層の十分な硬さの向上を得ることができず、一方、0.040を超えると第1層の靭性が低下し、チッピング、欠損を発生しやすくなるためである。
(2-2)第2層
 第2層は、それぞれ、その一層当たりの平均厚さが0.5nm以上、100.0nm以下であって、積層した全ての第1層の組成を平均して求めた平均組成は、(AlCr1-p)N(pが0.650以上、0.900以下)であることが好ましい。
 平均厚さとして、前記範囲が好ましい理由は、0.5nm未満であると、積層構造がもたらす耐クラック進展性の向上を十分に発揮することができず、一方、100.0nmを超えると、ナノ積層がもたらす耐摩耗性向上を十分に発揮することができないためである。
 また、平均組成として前記範囲が好ましい理由は、次のとおりである。
 pは、0.650未満であると、Alの添加による第2層の耐熱性向上効果が十分に得られず、一方、0.900を超えると、第2層の硬さが低下し十分な耐摩耗性が発揮できないためである。
(2-3)第1層および第2層は交互に積層されていること
 第1層と第2層は、その厚さ方向で交互に積層されていることが好ましい。交互積層をすることにより、Bの含有量を高めて耐摩耗性を与えた第1層の有する脆さをBの含有がない第2層が補って、被覆層全体として、マルテンサイト系ステンレス鋼等のステンレス鋼の高速切削に供しても、優れた耐摩耗性、耐欠損性を発揮する。
 第1層と第2層が交互に積層されていれば、基体に最も近い側の層および工具基体表面に最も近い側の層のどちらも、第1層、第2層のいずれであってもかまわない。
 第1層および第2層の積層数は、第1層および第2層が前述の範囲の平均厚さをそれぞれ満足し、かつ、被覆層の平均厚さも前述の範囲の平均厚さを満足する限り、特段の制約はない。しかし、前述の目的を確実に達成するために、積層数(第1層と第2層それぞれの積層数の和)は、50層以上、1000層以下がより好ましい。
(2-4)刃先稜線部のBの含有量
 被覆層の刃先稜線におけるB含有量は、被覆層の刃先稜線から逃げ面方向に1mm以上離れた領域のB含有量に対して、60%以上であることが好ましい。このB含有量の上限は制約がないが、後述するPVD法による製造では、100%が一応の上限となる。
 刃先稜線から逃げ面方向に1mm以上離れると、B含有量は一定値とみなすことができるようになる。そのため、後述する実施例では、刃先稜線から逃げ面方向に1.5mm離れた線上の点でB含有量を測定している。
 ここで、B含有量は一定値とみなすことができるようになるとは、刃先稜線から逃げ面方向に1mm以上離れた刃先稜線に平行な任意の線分のいずれにおいても、この線分上の任意の5点に対するB含有量の平均値を求めると、実質的に同じ値、すなわち、誤差範囲内で一致することをいう。
 被覆層の刃先稜線におけるB含有量が、被覆層の刃先稜線から逃げ面方向に1mm以上離れた領域のB含有量に対して、60%以上であるとは、例えば、逃げ面方向に1mm以上離れた領域のB含有量が、z=0.15、すなわち、15原子%であるとき、刃先稜線におけるB含有量は、9(=0.15×60/100)原子%以上であることをいう。
 これにより、刃先稜線におけるB含有量の低下が防止され、被覆層は高温硬さが向上して、優れた耐摩耗性を発揮することができる。
 なお、刃先稜線とは、図2に示すように、すくい面(5)と逃げ面(6)とをそれぞれ直線で近似したときに、当該直線がすくい面、逃げ面から離間する点を結んだ領域(すなわち、被覆層表面におけるすくい面の屈曲点から逃げ面の屈曲点までの領域)の中で、前記近似直線の交点から最も近い被覆層表面の点(点線の矢印が示す箇所)である。
(3)その他の層
 本発明の目的は、第1層と第2層を有することにより達成できるが、被覆層の上層としてTiN層を形成した場合には、TiN層自体が黄金色の色調を有することから(TiN層の組成は黄金色の敷料を示す限り、化学量論的組成に限定されない)、例えば、切削工具が未使用であるか使用済であるかを上層の色調変化によって、判別することができる識別層として活用することができる。
 なお、この識別層としてのTiN層の平均厚さは、例えば、0.1μm以上、1.0μm以下でよい。
(4)意図しない層
 この実施形態では、第1層、第2層、上層(TiN層)以外の層は存在しないように成膜されるが、成膜すべき層を変更する(隣接する他の層へ成膜を変更する)際に成膜装置内の圧力の変動が意図せずに生じ、前記隣接する各層の間にこれらの層とは組成の異なった意図しない酸素や炭素を含んだ層が形成されることがある。
 なお、本実施形態において、各層の平均厚さについては、走査型電子顕微鏡(Scanning Electron Microscope:SEM)、透過型電子顕微鏡(Transmission Electron Microscope:TEM)に付属するエネルギー分散型X線分光器(Energy Dispersive X-ray Spectrometer:EDS)を用いた層厚方向の断面(基体表面の微小な凹凸を無視し基体表面を水平面と扱ったときに、この水平面に垂直な断面:縦断面)観察により求めることができる。すなわち、例えば、5000倍に拡大し、複数点(例えば、5点)の厚さを求め平均する。
 また、平均組成は縦断面をTEM-エネルギー分散型X線分光法(EDS)を用いた断面観察により、厚さ方向に複数本(例えば、5本)の線分析を行ってAl、Ti、Cr、M量の平均値を求める。B含有量zについては、電子プローブマイクロアナライザー(Electron Probe Micro Analyzer:EPMA)を用いて表面から被覆層全体のAl、Ti、Cr、M、Bの含有量を求める。第2層はBを含有しないため第1層のTi、B含有量の比と被覆層全体のTi、B含有量の比は同一である。そこで、TEM-EDSで求めたTi、Mの含有量と、EPMAで求めたTi、M、Bの含有量から、第1層のB含有量を求める。
2.基体
(1)材質
 本実施形態に使用する基体は、従来公知の基体の材質であれば、前述の目的を達成することを阻害するものでない限り、いずれのものも使用可能である。一例をあげるならば、超硬合金(WC基超硬合金、WCの他、Coを含み、さらに、Ti、Ta、Nb等の炭窒化物を添加したものも含むもの等)、サーメット(TiC、TiN、TiCN等を主成分とするもの等)、セラミックス(炭化チタン、炭化珪素、窒化珪素、窒化アルミニウム、酸化アルミニウムなど)、cBN焼結体、またはダイヤモンド焼結体のいずれかであることが好ましい。
(2)形状
 基体の形状は、切削工具として用いられる形状であれば特段の制約はなく、インサートの形状、ドリルの形状が例示できる。
3.製造方法
 本発明の被覆工具の被覆層は、PVDの一種であるアークイオンプレーティング(Arc Ion Plating:AIP)の蒸着源を持つ成膜装置を用いて製造することができ、第1層はAlTiMB(Mは、周期表の4族、5族、6族、ランタノイドから選択した1種以上の元素)ターゲットとして、第2層はAlCrターゲットとしてアーク放電し、第1層と第2層を交互に積層させ、かつ、バイアス電圧とアーク電流を制御することにより、刃先稜線部のBの含有量が、刃先稜線から逃げ面方向に1mm以上離れた領域のB含有量に対して、60%以上とすることができる。
 次に、実施例について説明する。
 ここでは、本発明の被覆工具の実施例として、基体としてWC基超硬合金を用いたインサート切削工具に適用したものについて述べるが、基体は前述の材質のものであればよく、また、切削工具としてドリル、エンドミル等に適用した場合も同様である。
 まず、原料粉末として、Co粉末、TiC粉末、VC粉末、TaC粉末、NbC粉末、Cr粉末、WC粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてボールミルで72時間湿式混合し、減圧乾燥した後、100MPaの圧力でプレス成形し、これらの圧粉成形体を焼結し、所定寸法となるように加工して、ISO規格SEEN1203AFTN1のインサート形状をもったWC基超硬合金製の基体1~3を作製した。
 次に、基体1~3にAIP蒸着源を持つ成膜装置を用いて被覆層を形成すべく、アセトン中で超音波洗浄し、乾燥した状態で、該装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着した。また、カソード電極(蒸発源)としてAlTiMB(Mは、表3に示したものであった)ターゲットとAlCrターゲットを配置した。
 続いて、成膜装置内を排気して10-2Pa以下の真空に保持しながら、ヒーターで装置内を400℃に加熱した後、1.0PaのArガス雰囲気に設定し、前記回転テーブル上で自転する基体に-1000Vの直流バイアス電圧を印加し、アルゴンイオンによって、基体表面を60分間ボンバード処理した。また本実施例では行っていないが、金属ターゲットを用いて金属イオンボンバードを処理してもよい。
 成膜装置内に反応ガスとして、表2に示す分圧が0.1~9.0Paの範囲内の窒素ガスを所定時間導入すると共に、同じく表2に示す炉内温度に維持し、前記回転テーブル上で自転する基体に、表2に示す-10~-500Vの範囲内の所定の直流バイアス電圧を印加して(第1層、第2層とも同じ範囲)、表2に示す80~240Aの範囲内の所定の電流を流してアーク放電を発生させて、表3に示す本発明の被覆工具(以下、「実施例」という)1~9を作製した。
 一方、比較のため、前記基体1~3に対して、前記と同じ成膜装置を用いて、表2に示す条件で被覆層を蒸着形成し、表4に示す比較例の皮膜工具(以下、「比較例」という)1~9を作製した。
 被覆層を構成する第1層、第2層の平均厚さ、被覆層の平均組成は、前述の方法により求めた。
 また、被覆層の刃先稜線におけるB含有量と前記被覆層の前記刃先稜線から逃げ面方向に1mm以上離れた領域のB含有量は、それぞれ被覆層の刃先稜線部と前記被覆層の前記刃先稜線から逃げ面方向に1.5mm離れた刃先稜線に平行な線分に対して、EPMAを用いて5点(線分上のそれぞれの点の間隔は0.5mm)求め、それらの平均値とした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表2に示す、炉内温度、直流バイアス電圧値およびアーク電流値は、成膜期間中一定であった。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表4において、「-」は含有していないことを示す。
 次いで、本発明工具1~9および比較例工具1~9について、SE445R0506Eのカッタを用いて、単刃の正面フライス切削加工試験を実施した。すなわち、マルテンサイト系ステンレス鋼等のステンレス鋼の高速切削加工試験として、切削試験Aおよび切削試験B、を実施した。
切削試験A:
 被削材:幅60mm×長さ200mmのブロック材
 切削速度:  160 m/min.
 切り込み: 1.5 mm
 送り:  0.12 mm/tooth.
の条件でマルテンサイト系ステンレス鋼SUS420J2の湿式高速切削加工試験を行った。切削長1.8mまで切削し、逃げ面摩耗幅を測定し、刃先の損耗状態を観察した。
 切削試験Aの結果を表5に示す。
切削試験B:
 被削材:幅60mm×長さ200mmのブロック材
 切削速度:  170 m/min.
 切り込み: 1.5 mm
 送り:  0.10 mm/tooth.
の条件でオーステナイト系ステンレス鋼SUS304の湿式高速切削加工試験を行った。切削長1.8mまで切削し、逃げ面摩耗幅を測定し、刃先の損耗状態を観察した。
 切削試験Bの結果を表6に示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表5および表6において、「※」は切削長(1.8m)に到達する前に使用寿命に至ったもので、寿命に至るまでの時間(秒)を示している。
 表5および表6の結果によれば、実施例1~9については、切削条件A、Bのいずれでもチッピング、剥離等の異常損傷の発生はなく、耐摩耗性、耐チッピング性のいずれにも優れていることがわかる。
 これに対して、比較例1~9については、切削条件A、Bのいずれにおいても、チッピングの発生、あるいは、逃げ面摩耗の進行により、短時間で寿命に至ることは明らかである。
 前記開示した実施の形態はすべての点で例示にすぎず、制限的なものではない。本発明の範囲は前記した実施の形態ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
1 基体
2 被覆層
3 第1層
4 第2層
5 すくい面
6 逃げ面
 

Claims (1)

  1.  基体と該基体表面に被覆層を有する表面被覆切削工具であって、
    1)その平均厚さが0.1μm以上、10.0μm以下であって第1層と第2層が交互に積層される層を、前記被覆層は、含み、
    2)前記第1層は、その平均厚さが0.5nm以上、100.0nm以下であって、その平均組成が(AlTi1-x-y-z)BN(ただし、Mは周期表の4族、5族、6族、ランタノイドから選択した1種または2種以上の元素、xが0.100以上、0.640以下、yが0.001以上、0.100以下、zが0.060以上、0.400以下)であり、
    3)前記第2層は、その平均厚さが0.5~100.0nmであって、その平均組成が(AlCr1-p)N(pが0.650以上、0.900以下)であり、
    4)前記被覆層の刃先稜線におけるB含有量は、前記被覆層の前記刃先稜線から逃げ面方向に1mm以上離れた領域のB含有量に対して、60%以上である、
    ことを特徴とする表面被覆切削工具。
PCT/JP2022/010850 2021-03-19 2022-03-11 表面被覆切削工具 WO2022196555A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020237032538A KR20230159440A (ko) 2021-03-19 2022-03-11 표면 피복 절삭 공구
CN202280022266.9A CN117042898A (zh) 2021-03-19 2022-03-11 表面包覆切削工具
JP2023507059A JPWO2022196555A1 (ja) 2021-03-19 2022-03-11
EP22771303.9A EP4309835A1 (en) 2021-03-19 2022-03-11 Surface-coated cutting tool

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-046163 2021-03-19
JP2021046163 2021-03-19

Publications (1)

Publication Number Publication Date
WO2022196555A1 true WO2022196555A1 (ja) 2022-09-22

Family

ID=83320327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010850 WO2022196555A1 (ja) 2021-03-19 2022-03-11 表面被覆切削工具

Country Status (5)

Country Link
EP (1) EP4309835A1 (ja)
JP (1) JPWO2022196555A1 (ja)
KR (1) KR20230159440A (ja)
CN (1) CN117042898A (ja)
WO (1) WO2022196555A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0426756A (ja) 1990-05-17 1992-01-29 Kobe Steel Ltd 耐摩耗性皮膜
JP2011224671A (ja) * 2010-04-15 2011-11-10 Mitsubishi Materials Corp 表面被覆切削工具
WO2019181742A1 (ja) * 2018-03-19 2019-09-26 住友電気工業株式会社 表面被覆切削工具
JP6583763B1 (ja) * 2018-06-15 2019-10-02 住友電工ハードメタル株式会社 表面被覆切削工具、及びその製造方法
JP2021046163A (ja) 2019-09-20 2021-03-25 大同信号株式会社 レール破断検知装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0426756A (ja) 1990-05-17 1992-01-29 Kobe Steel Ltd 耐摩耗性皮膜
JP2011224671A (ja) * 2010-04-15 2011-11-10 Mitsubishi Materials Corp 表面被覆切削工具
WO2019181742A1 (ja) * 2018-03-19 2019-09-26 住友電気工業株式会社 表面被覆切削工具
JP6583763B1 (ja) * 2018-06-15 2019-10-02 住友電工ハードメタル株式会社 表面被覆切削工具、及びその製造方法
JP2021046163A (ja) 2019-09-20 2021-03-25 大同信号株式会社 レール破断検知装置

Also Published As

Publication number Publication date
CN117042898A (zh) 2023-11-10
JPWO2022196555A1 (ja) 2022-09-22
EP4309835A1 (en) 2024-01-24
KR20230159440A (ko) 2023-11-21

Similar Documents

Publication Publication Date Title
EP3269479B1 (en) Surface-coated cutting tool and method for manufacturing same
JP6620482B2 (ja) 耐チッピング性にすぐれた表面被覆切削工具
JP4072155B2 (ja) 表面被覆切削工具およびその製造方法
US10994341B2 (en) Surface-coated cutting tool and method for manufacturing same
US11511352B2 (en) Coated cutting tool and production method therefor
JP2016036873A (ja) 耐摩耗性にすぐれた表面被覆切削工具
JP4968674B2 (ja) 高速切削加工で硬質被覆層がすぐれた耐チッピング性と耐摩耗性を発揮する表面被覆切削工具およびその製造方法
WO2019171648A1 (ja) 表面被覆切削工具及びその製造方法
WO2019171653A1 (ja) 表面被覆切削工具及びその製造方法
WO2022196555A1 (ja) 表面被覆切削工具
WO2020166466A1 (ja) 硬質皮膜切削工具
EP3808477B1 (en) Surface-coated cutting tool and process for producing same
CN115335166A (zh) 表面包覆切削工具
US20240157450A1 (en) Surface-coated cutting tool
JPWO2020070967A1 (ja) 表面被覆切削工具及びその製造方法
JP6759536B2 (ja) 被覆切削工具
WO2024079891A1 (ja) 切削工具
WO2024079889A1 (ja) 切削工具
WO2022176230A1 (ja) 表面被覆切削工具
WO2024079890A1 (ja) 切削工具
JP7486045B2 (ja) 表面被覆切削工具
WO2023136212A1 (ja) 表面被覆切削工具
WO2023276066A1 (ja) 切削工具
WO2023182126A1 (ja) 表面被覆切削工具
WO2024062613A1 (ja) 切削工具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22771303

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023507059

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18281831

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280022266.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022771303

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022771303

Country of ref document: EP

Effective date: 20231019