WO2023276873A1 - 環状オレフィン重合体、環状オレフィン重合体組成物および成形体 - Google Patents

環状オレフィン重合体、環状オレフィン重合体組成物および成形体 Download PDF

Info

Publication number
WO2023276873A1
WO2023276873A1 PCT/JP2022/025271 JP2022025271W WO2023276873A1 WO 2023276873 A1 WO2023276873 A1 WO 2023276873A1 JP 2022025271 W JP2022025271 W JP 2022025271W WO 2023276873 A1 WO2023276873 A1 WO 2023276873A1
Authority
WO
WIPO (PCT)
Prior art keywords
cyclic olefin
structural unit
olefin polymer
polymer
ethylene
Prior art date
Application number
PCT/JP2022/025271
Other languages
English (en)
French (fr)
Inventor
周妍 李
英樹 和佐
勝彦 岡本
春佳 齋藤
達也 中村
宣正 木越
真実 中島
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to JP2023531896A priority Critical patent/JPWO2023276873A1/ja
Priority to KR1020237031059A priority patent/KR20230145152A/ko
Priority to CN202280020608.3A priority patent/CN117015562A/zh
Publication of WO2023276873A1 publication Critical patent/WO2023276873A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F232/00Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system
    • C08F232/08Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system having condensed rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/17Viscosity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/25Cycloolefine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/32Glass transition temperature [Tg]

Definitions

  • the present invention relates to a cyclic olefin polymer, a cyclic olefin polymer composition and a molded article.
  • Cyclic olefin copolymers are used, for example, in optical lenses such as imaging lenses, f ⁇ lenses, and pickup lenses. Cyclic olefin copolymers used in molded articles such as optical lenses are required to have properties such as high transparency, excellent dimensional stability, excellent heat resistance, and excellent moisture resistance. be.
  • Patent Document 1 discloses (A) a linear or branched ⁇ -olefin having 2 to 20 carbon atoms, (B) a cyclic olefin represented by a specific formula, and (C) an aromatic vinyl compound. A cyclic olefinic copolymer obtained from is disclosed.
  • Patent Document 2 discloses (A) a multidentate coordination compound in which at least two different cycloalkadienyl groups or their substituents are bonded via a hydrocarbon group, a silylene group, or a substituted silylene group.
  • a method for producing an olefinic copolymer is disclosed.
  • Patent Document 3 discloses (a) an ethylene/cyclic olefin copolymer obtained by random copolymerization of ethylene and an aromatic-containing norbornene derivative represented by a specific formula.
  • Patent Document 4 discloses that a transition metal complex is brought into contact with an organic aluminum in a proportion of 10,000 mol or less per 1 mol of the transition metal atom in the transition metal complex in terms of the amount of aluminum atoms, and a solvent. and a polymerization step of polymerizing an olefin in the presence of a solution containing the transition metal complex that has undergone the contact step and containing organic aluminum at a concentration of 0.005 mmol/L or more in terms of aluminum atoms.
  • a method of manufacture is disclosed.
  • Patent Document 5 a structural unit (A) derived from an ⁇ -olefin having 2 to 20 carbon atoms, a structural unit (B) derived from a cyclic olefin having no aromatic ring, and a A cyclic olefin copolymer having a structural unit (C) derived from a cyclic olefin is disclosed.
  • Patent Document 5 describes [A] a cyclic olefin polymer selected from a specific structure and having a softening temperature of 120 to 300° C., and [B] a cyclic olefin polymer having a glass transition point of 50° C. or less. and the absolute value of the difference between the refractive index of the cyclic olefin copolymer [B] measured according to ASTM D542 and the refractive index of the cyclic olefin copolymer [A] is a specific A cyclic olefin copolymer composition characterized in that it is below the range and contains 5 to 50 parts by weight of [B] with respect to 50 to 95 parts by weight of [A]. ing.
  • Cyclic olefin copolymers or ring-opening polymers having a norbornene structure are generally known to have low solubility in solvents. According to the studies of the present inventors, in the inventions described in Patent Documents 1 to 5, in particular, methylcyclohexane, toluene, etc. are difficult to dissolve in solvents used for polymer coating at room temperature and around room temperature, and homogeneous solutions was not obtained.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a cyclic olefin polymer having a norbornene skeleton with improved solubility in solvents.
  • a cyclic olefin copolymer having a norbornene structure or a ring-opening polymer having a norbornene skeleton has high solubility in a solvent when it has a specific stereoregularity, and completed the present invention. That is, according to the present invention, the following cyclic olefin polymer, cyclic olefin polymer composition and molded article are provided.
  • a cyclic olefin polymer having a norbornene skeleton is a cyclic olefin copolymer or a cyclic olefin ring-opening polymer, A cyclic olefin polymer that satisfies the following requirement (a).
  • the cyclic olefin polymer consists of a structural unit (A) which is a chain olefin and a structural unit (B) containing a cyclic olefin having a norbornene skeleton,
  • the existence ratio of the meso structure and the racemo structure in the chain of the structural unit (B)-the structural unit (A)-the structural unit (B) measured by 13 C-NMR (racemo structure/meso structure) is 0.01. ⁇ 100.
  • the cyclic olefin polymer is a cyclic olefin copolymer
  • the cyclic olefin copolymer is As the structural unit (A), 30 to 80 mol% of a structural unit derived from ethylene or an ⁇ -olefin having 3 to 30 carbon atoms
  • the structural unit (B) is selected from the group consisting of the following general formula [Z-I], the following general formula [Z-II], the following general formula [Z-III] and the following general formula [Z-IV].
  • R 61 to R 78 and R a1 and R b1 are each containing one or more selected from the group consisting of a hydrogen atom, a halogen atom, and a hydrocarbon group, and R 75 to R 78 may be bonded to each other to form a monocyclic or polycyclic ring; and the above monocyclic ring or polycyclic ring may have a double bond, and R 75 and R 76 or R 77 and R 78 may form an alkylidene group.
  • n and m are each independently 0, 1 or 2, and q is 1, 2 or 3.
  • R 18 to R 31 are each independently a hydrogen atom, a fluorine atom, or a hydrocarbon group having 1 to 20 carbon atoms optionally substituted with a halogen atom excluding a fluorine atom.
  • x is an integer of 0 or 1 or more, and R 111 to R 118 are each independently selected from a hydrogen atom, a halogen atom, and a hydrocarbon group.
  • R 121 to R 124 are each independently selected from a hydrogen atom, a halogen atom and a hydrocarbon group, and two adjacent groups may be bonded to each other to form a monocyclic or polycyclic aromatic ring.
  • the proportion of the above structural unit (B)-the above structural unit (B) chain measured by 13 C-NMR in the structural unit (B) is 0.1 mol % or more and 20.0 mol % or less.
  • DSC differential scanning calorimeter
  • a cyclic olefin polymer according to any one of [1] to [4] above, A cyclic olefin polymer, wherein the cyclic olefin copolymer or the cyclic olefin ring-opening polymer has a glass transition temperature of 50°C or higher and 180°C or lower as measured by a differential scanning calorimeter (DSC).
  • DSC differential scanning calorimeter
  • a cyclic olefin polymer according to any one of [1] to [5] above A cyclic olefin polymer, wherein the cyclic olefin copolymer or the cyclic olefin ring-opening polymer has an intrinsic viscosity of 0.1 [dL/g] or more and 5.0 [dL/g] or less.
  • a cyclic olefin polymer composition comprising the cyclic olefin polymer according to any one of [1] to [6] above.
  • the cyclic olefin polymer having a norbornene skeleton of the present invention has higher solubility in solvents than conventional cyclic olefin copolymers or ring-opening polymers. Therefore, it can be easily dissolved at room temperature or around room temperature in solvents such as methylcyclohexane and toluene that are used for polymer coating. In addition, since a homogeneous solution in which the cyclic olefin copolymer or the ring-opening polymer is dissolved can be obtained, there is no unevenness when formed into a molded article such as a film, and the mechanical strength and elongation are excellent.
  • cyclic olefin polymer means a copolymer and/or a ring-opening polymer unless otherwise specified.
  • the cyclic olefin polymer according to this embodiment is as follows.
  • the cyclic olefin polymer is a cyclic olefin copolymer or a cyclic olefin ring-opening polymer,
  • the cyclic olefin polymer is composed of a structural unit (A) which is a chain olefin and a cyclic olefin structural unit (B) having a norbornene skeleton, and the structural unit (B) measured by 13 C-NMR-the structural unit (A)-The existence ratio of the meso structure and the racemo structure in the chain of the above structural units (B) (racemo structure/meso structure) is 0.01 to 100.
  • the cyclic olefin polymer having a norbornene skeleton according to the present embodiment has specific stereoregularity, so that its solubility in solvents is increased.
  • it can be easily dissolved in a solvent (eg, methylcyclohexane, toluene, etc.) used for polymer coating at or near room temperature. Therefore, since a homogeneously dissolved solvent can be obtained, there is no unevenness when formed into a molded article such as a film, and the mechanical strength and elongation are excellent.
  • a solvent eg, methylcyclohexane, toluene, etc.
  • a cyclic olefin copolymer with specific stereoregularity can be dissolved in other solvents such as toluene in addition to methylcyclohexane.
  • Cyclic olefin copolymers have different solubility parameters (SP values) depending on the constituents and composition of the structural unit (A), which is a chain olefin, and the structural unit (B), which includes a cyclic olefin having a norbornene skeleton. Depending on the difference, the solubility in the toluene solvent may be high.
  • the mesostructure in the chain of structural unit (B)-structural unit (A)-structural unit (B) means the structure described as ⁇ m in FIG. 5 of Non-Patent Document 2.
  • the racemo structure refers to the structure indicated as ⁇ r in the figure.
  • m and n represent repeating units.
  • the structure derived from norbornene is NB and the structure derived from ethylene is E, in the above example, . . .
  • the mesostructure and racemostructure are determined by 13 C-NMR. An example of this binding mode is shown below.
  • cyclic olefin copolymers having a norbornene skeleton or cyclic olefin ring-opening polymers having a norbornene skeleton synthesized without controlling the stereoregularity are only meso- or racemo-isomers, and are not soluble in solvents. low.
  • the solubility in solvents is improved.
  • the above-mentioned stereoregularity is appropriately adjusted by selecting a catalyst and a co-catalyst during polymerization, which will be described later.
  • 13 C-NMR measurement is not particularly limited as long as mesostructure and racemostructure can be distinguished and measured. Examples of such 13 C-NMR measurement include the following. More detailed 13 C-NMR measurement will be explained in stereoregularity below.
  • Apparatus Bruker Biospin AVANCE III cryo-500 nuclear magnetic resonance Measurement nucleus: 13 C Frequency: 125MHz Measurement mode: Single pass proton (with reverse gate) decoupling Pulse width: 90 degrees Number of points: 64000 Measurement range: -55 to 195 ppm (total 250 ppm) Repeat time: 12 seconds Accumulation times: 256 times Solvent: 1,1,2,2-tetrachloroethane-d2 Concentration: 10% w/v Temperature: 120°C Chemical shift standard: tetramethylsilane standard (1,1,2,2-tetrachloroethane-d2: corresponds to 74.2 ppm)
  • Cyclic olefin polymer having norbornene skeleton A cyclic olefin copolymer having a norbornene skeleton (hereinafter also simply referred to as a cyclic olefin copolymer) or a cyclic olefin ring-opening polymer having a norbornene skeleton (hereinafter simply referred to as a cyclic olefin ring-opening polymer) according to the present embodiment ) will be described in detail.
  • a cyclic olefin copolymer and a cyclic olefin ring-opening polymer have a norbornene skeleton and consist of a structural unit (A) which is a chain olefin and a structural unit (B) containing a cyclic olefin having a norbornene skeleton.
  • the cyclic olefin copolymer according to the present embodiment is capable of further improving heat resistance and improving moldability while maintaining a good performance balance between transparency and refractive index of the optical component obtained, and is characterized by the following. It preferably has a structural unit (A) and a structural unit (B).
  • Structural unit (A) A structural unit derived from ethylene or an ⁇ -olefin having 3 to 30 carbon atoms.
  • Structural unit (B) a structural unit represented by the following general formula (ZI), a structural unit represented by the following general formula (Z-II), and a structural unit represented by the following general formula (Z-III) A structural unit derived from at least one selected from the group consisting of structural units and structural units represented by general formula (Z-IV) below.
  • u is 0 or 1
  • v is 0 or a positive integer, preferably an integer of 1 or more, more preferably 1 or 2, more preferably 1
  • w is 0 or 1.
  • R 61 to R 78 and R a1 and R b1 are each independently selected from hydrogen atoms, halogen atoms and hydrocarbon groups.
  • x and d are 0 or an integer of 1 or more, and y and z are 0, 1 or 2.
  • x is preferably an integer of 1 or more, more preferably 1 or 2, and more preferably 1.
  • n and m are each independently 0, 1 or 2, and q is 1, 2 or 3.
  • R 28 and R 28 , R 28 and R 29 , R 29 and R 30 , R 30 and R 31 , R 31 and R 31 are bonded to form a monocyclic or polycyclic ring.
  • the monocyclic ring or the polycyclic ring may have a double bond, and the monocyclic ring or the polycyclic ring may be an aromatic ring.
  • x is 0 or an integer of 1 or more.
  • R 111 to R 118 are each independently selected from hydrogen atoms, halogen atoms and hydrocarbon groups
  • R 121 to R 124 are each independently selected from hydrogen atoms, halogen atoms and hydrocarbon groups
  • Two adjacent groups may be bonded to each other to form a monocyclic or polycyclic aromatic ring.
  • the structural unit (A) is preferably 30 to 80 mol%, more preferably 40 to 77 mol%, still more preferably 50 to 75 mol%.
  • Unit (B) is preferably 20 to 70 mol %, more preferably 23 to 60 mol %, still more preferably 25 to 50 mol %.
  • the olefin monomer which is one of the raw materials for copolymerization of the olefin copolymer according to the present embodiment, undergoes addition polymerization to form the structural unit (A).
  • olefin monomers represented by the following general formula (Ia) can be exemplified.
  • R 300 represents a hydrogen atom or a linear or branched hydrocarbon group having 1 to 28 carbon atoms.
  • the olefin monomer represented by the general formula (Ia) include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 3-methyl-1-butene, 3-methyl-1-pentene, 3 -ethyl-1-pentene, 4-methyl-1-pentene, 4-methyl-1-hexene, 4,4-dimethyl-1-hexene, 4,4-dimethyl-1-pentene, 4-ethyl-1-hexene , 3-ethyl-1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicosene and the like.
  • ethylene and propylene are preferred, and ethylene is particularly preferred, from the viewpoint of obtaining an optical component having superior heat resistance, mechanical properties and optical properties.
  • Two or more kinds of olefin monomers represented by the general formula (Ia) may be used.
  • the olefin monomer represented by the general formula (Ia) preferably does not contain an acyclic diene, from the viewpoint of obtaining an optical part having superior moldability and optical properties.
  • cyclic olefin monomer represented by the above [ZI] formula, [Z-II] formula, [Z-III] formula or [Z-IV] formula include, for example, bicyclo-2- Heptene derivatives (bicyclohept-2-ene derivatives), tricyclo-3-decene derivatives, tricyclo-3-undecene derivatives, tetracyclo-3-dodecene derivatives, pentacyclo-4-pentadecene derivatives, pentacyclopentadecadiene derivatives, pentacyclo-3- Pentadecene derivative, pentacyclo-4-hexadecene derivative, pentacyclo-3-hexadecene derivative, hexacyclo-4-heptadecene derivative, heptacyclo-5-eicosene derivative, heptacyclo-4-eicosene derivative, heptacyclo-5-heneicosen
  • the weight-average molecular weight of the cyclic olefin monomer represented by the above [ZI] formula, [Z-II] formula, [Z-III] formula or [Z-IV] formula is 50 g/mol or more and 500 g/ mol or less is preferable, 100 g/mol or more and 300 g/mol or less is more preferable, and 100 g/mol or more and 250 g/mol or less is most preferable.
  • the cyclic olefin polymer is one or more cyclic olefin monomers selected from the group consisting of general formulas [ZI], [Z-II], [Z-III] and [Z-IV].
  • the weight average molecular weight of at least one of the cyclic olefin monomers is preferably 100 g/mol or more and 500 g/mol or less.
  • [ZI] formula, [Z-II] formula, [Z-III] formula or [Z-IV] formula Among the cyclic olefin monomers represented by one or two selected from the [ZI] formula and a cyclic olefin represented by one or two selected from the formula [Z-IV] is preferred.
  • Examples of the cyclic olefin monomer represented by the formula [ZI] include bicyclo[2.2.1]-2-heptene (also referred to as norbornene), tetracyclo[4.4.0.1 2,5 . 1 7,10 ]-3-dodecene (also called tetracyclododecene), 5-phenyl-bicyclo[2.2.1]hept-2-ene, 5-methyl-bicyclo[2.2.1]hept 1 selected from -2-ene, 5-tolyl-bicyclo[2.2.1]hept-2-ene, 5-(ethylphenyl)-bicyclo[2.2.1]hept-2-ene It is preferable to use a species or two or more species, and tetracyclo[4.4.0.1 2,5 .
  • cyclic olefins have a rigid ring structure, there is an advantage that the elastic modulus of the copolymer and the optical parts can be easily maintained.
  • the cyclic olefin monomer represented by the above formula [ZI] preferably does not have a polar group from the viewpoint of obtaining an optical component having superior moldability and optical properties.
  • the copolymerization type of the copolymer according to the present embodiment is not particularly limited, examples thereof include random copolymers and block copolymers.
  • optical properties such as transparency, refractive index, and birefringence are excellent, and high-precision optical parts can be obtained. Therefore, as the copolymer according to the present embodiment, a random copolymer is used. It is preferable to use
  • ethylene and tetracyclo[4.4.0.1 2,5 . 1 7,10 ]-3-dodecene hereinafter also referred to as TD
  • random copolymers of ethylene and bicyclo[2.2.1]-2-heptene hereinafter referred to as norbornene or NB
  • copolymers of ethylene and 5-phenyl-bicyclo[2.2.1]hept-2-ene copolymers of ethylene and 5-methyl-bicyclo[2.2.1]hept-2-ene
  • Polymers copolymers of ethylene and 5-tolyl-bicyclo[2.2.1]hept-2-ene, ethylene and 5-(ethylphenyl)-bicyclo[2.2.1]hept-2-ene copolymer of ethylene and 5-(isopropylphenyl)-bicyclo[2.2.1]hept-2-ene, copolymer of ethylene and 5-( ⁇ -naphthy
  • 1 7,10 ]-3-dodecene and norbornene copolymers are more preferred, and ethylene and tetracyclo[4.4.0.1 2,5 . 1 7,10 ]-3-dodecene random copolymer, ethylene and 1,4-dihydro-1,4-methanonaphthalene copolymer, ethylene and tetracyclo[4.4.0.1 2,5 .
  • a copolymer of 1 7,10 ]-3-dodecene and 1,4-dihydro-1,4-methanonaphthalene is more preferred.
  • the copolymer according to the present embodiment may be used singly or in combination of two or more.
  • the copolymer according to the present embodiment for example, JP-A-60-168708, JP-A-61-120816, JP-A-61-115912, JP-A-61-115916, JP-A-61-115916, JP-A-61-271308, JP-A-61-272216, JP-A-62-252406, JP-A-62-252407, JP-A-2018-145349, International Publication No. 2015/122415, Patent It can be produced by appropriately selecting conditions according to the methods disclosed in JP-A-2007-063409, JP-A-2-173112, and the like.
  • the cyclic olefin ring-opening polymer according to this embodiment is a cyclic olefin ring-opening polymer having a norbornene skeleton.
  • the structural unit represented by the above general formula (ZI) is used from the viewpoint of further improving the heat resistance and improving the moldability while maintaining a good balance between transparency and refractive index performance of the resulting optical component. and a structural unit represented by the general formula (Z-II), and a structural unit represented by the general formula (Z-IV). is preferred.
  • the ring-opening polymer preferably has structural units derived from the same structural units as the copolymer components.
  • Stereoregularity according to this embodiment is measured by 13 C-NMR.
  • 13 C-NMR measurement is not particularly limited as long as the mesostructure and racemostructure can be distinguished.
  • An example of specific measurement conditions is as described above.
  • the signal position of 13 C-NMR showing the meso structure and the racemo structure differs depending on the polymer (copolymer, ring-opening polymer).
  • the signal positions of 13 C-NMR and methods for measuring the signals are described below for some embodiments.
  • stereoregularity is defined as X A /Y A , and this ratio is 0.01 or more and 100 or less, preferably 0.1 or more and 10.0 or less, more preferably 0.2 or more and 5.0 or less, more preferably 0.3 or more and 3.0 or less, more preferably 0.4 or more and 1.5 or less, still more preferably 0.4 or more and 1.2 or less, still more preferably 0 0.5 or more and 1.0 or less, and most preferably 0.5 or more and 0.9 or less.
  • stereoregularity is defined as X B /Y B , and this ratio is 0.01 or more and 100 or less, preferably 0.01 or more and 50.0 or less, more preferably 0.05 or more and 5.0 or less, more preferably 0.25 or more and 4.0 or less, and most preferably 0.3 or more and 3.0 or less.
  • B In the case of a polymer of ethylene and NB, since multiple peaks appear within the range, it is the sum of the integrated values of the signals.
  • the ratio of X D /Y D is 0.01 or more and 100 or less, preferably 0.01 or more and 10.0 or less, more preferably 0.05 or more and 5.0 or less, more preferably 0 .1 or more and 1.0 or less, and most preferably 0.3 or more and 1.0 or less.
  • M D ⁇ Integral value
  • N D ⁇ Integral value of signals in the range of 44.5 to 45.0 ppm
  • the ratio of M D /N D is 0.01 or more and 100 or less, preferably 0.01 or more and 10.0 or less, more preferably 0.05 or more and 5.0 or less, more preferably 0 .1 or more and 1.0 or less, and most preferably 0.3 or more and 1.0 or less.
  • X D and Y D are integrals of TD-ethylene-TD signals.
  • M D and N D are integral values of BNBD-ethylene-BNBD, and stereoregularity is defined as X D /Y D +M D /N D.
  • the stereoregularity XD / YD + MD / ND ratio is preferably 0.01 or more and 100 or less, more preferably 0.01 or more and 10.0 or less, and still more preferably 0.05. 5.0 or less, more preferably 0.1 or more and 1.0 or less, and most preferably 0.3 or more and 1.0 or less.
  • the cyclic olefin polymer according to this embodiment preferably satisfies the following requirement (b).
  • the proportion of the structural unit (B)-the structural unit (B) chain measured by 13 C-NMR in the structural unit (B) is 0.1 mol % or more and 20.0 mol % or less.
  • the chain of the structural unit (B)-the structural unit (B) measured by 13 C-NMR occupies the structural unit (B).
  • the ratio is the sum of integrated values of signals detected in the range of 51.2 to 55.5 ppm in the 13 C-NMR spectrum (P) ⁇ Sum of integrated values of signals detected in the range of 54.0 to 54.6 ppm (Q) can be calculated by dividing the value of (PQ) obtained by subtracting (Q) from (P) by (P).
  • the proportion of the structural unit (B)-the structural unit (B) chain measured by 13 C-NMR in the structural unit (B) is preferably 0.1 mol% or more and 20 mol% or less, More preferably 0.3 mol% or more and 10 mol% or less, still more preferably 0.6 mol% or more and 5.0 mol% or less, still more preferably 0.8 mol% or more and 4.5 mol% or less, still more preferably 1 0 mol % or more and 3.6 mol % or less.
  • the proportion of the chain of the structural unit (B)-the structural unit (B) measured by 13 C-NMR to the structural unit (B). is the sum of integrated values of signals detected in the range of 40.0 to 50.0 ppm in the 13 C-NMR spectrum (T) ⁇ Sum of integrated values of signals detected in the range of 45.0 to 46.0 ppm (U) , the value of (U/T) obtained by dividing (T) from (U) is multiplied by 2.5, multiplied by the composition ratio of BNBD, and then divided by 100.
  • the proportion of the structural unit (B)-the structural unit (B) chain measured by 13 C-NMR in the structural unit (B) is preferably 0.1 mol% or more and 20 mol% or less, More preferably 0.3 mol% or more and 10 mol% or less, still more preferably 0.6 mol% or more and 5.0 mol% or less, still more preferably 0.8 mol% or more and 4.5 mol% or less, still more preferably 1 0 mol % or more and 3.6 mol % or less.
  • the structural unit (B) measured by 13 C-NMR - the structural unit (B) can be calculated by totaling the proportions in the structural unit (B) calculated by the above method.
  • the proportion of the structural unit (B)-the structural unit (B) chain measured by 13 C-NMR in the structural unit (B) is preferably 0.1 mol% or more and 20 mol% or less, More preferably 0.3 mol% or more and 10 mol% or less, still more preferably 0.6 mol% or more and 5.0 mol% or less, still more preferably 0.8 mol% or more and 4.5 mol% or less, still more preferably 1 0 mol % or more and 3.6 mol % or less.
  • the lower limit of the glass transition temperature (Tg) of the cyclic olefin polymer according to the present embodiment is preferably 50°C or higher, more preferably 83°C or higher, and particularly preferably 110°C or higher.
  • the upper limit of Tg is preferably 250° C. or lower, more preferably 200° C. or lower, even more preferably 180° C. or lower, further preferably 169° C. or lower, and 165° C. or lower. and particularly preferably 160° C. or lower.
  • the Tg is at least the above lower limit, so that the cyclic olefin copolymer Solubility in a solvent can be improved without excessively increasing the crystallinity of the polymer. Moreover, when Tg is below the said upper limit, aggregation can be suppressed and the solubility of a polymer can be made higher. Further, when the Tg is within the above range, sufficient heat resistance can be obtained and good moldability can be obtained when used as parts requiring heat resistance.
  • the Tg of a cyclic olefin polymer varies depending on the composition of the structural unit (A) and the structural unit (B), and tends to increase as the content of the structural unit (B) increases.
  • Tg tends to be higher when the number of chains of structural units (B) increases, although the reason is not clear.
  • Such Tg is one or more cyclic monomers selected from the group consisting of the above [ZI] formula, [Z-II] formula, [Z-III] formula or [Z-IV] formula
  • the ratio of the chain of structural units (B) derived from (structural unit (B) - chain of structural units (B)) to the total structural units (B) contained in the cyclic olefin copolymer is, for example, 0.1 mol % or more and 20.0 mol % or less.
  • the glass transition temperature can be measured with a differential scanning calorimeter (DSC). Specific measurement conditions are, for example, using DSC-7020 manufactured by Hitachi High-Tech Science Co., Ltd., heating from room temperature to 250 ° C. at a temperature increase rate of 10 ° C./min in a nitrogen atmosphere, holding for 5 minutes, Then, the temperature was lowered to -20°C at a rate of 10°C/min, and then held for 5 minutes. Then, the glass transition temperature (Tg) of the cyclic olefin polymer can be determined from the endothermic curve when the temperature is increased to 300°C at a rate of temperature increase of 10°C/min.
  • DSC differential scanning calorimeter
  • the molecular weight of the cyclic olefin polymer according to the present embodiment is not particularly limited. g] is preferably 0.1 or more and 5.0 or less, more preferably 0.2 or more and 3.0 or less, and most preferably 0.2 or more and 2.0 or less.
  • the weight average molecular weight determined by gel permeation chromatography (GPC) is 1,000 ⁇ Mw ⁇ 4,500,000, preferably 3,000 ⁇ Mw ⁇ 3,000,000, more preferably 5,000 ⁇ Mw ⁇ 2,000,000, further preferably It is preferably in the range 10,000 ⁇ Mw ⁇ 1,000,000, most preferably 30,000 ⁇ Mw ⁇ 500,000.
  • GPC gel permeation chromatography
  • the cyclic olefin polymer according to the present embodiment preferably has a Tg of 169°C or less and an Mw of 300,000 or less, more preferably a Tg of 165°C or less and an Mw of 300,000 or less, More preferably, Tg is 160° C. or less and Mw is 300,000 or less.
  • Tg is 160° C. or less
  • Mw is 300,000 or less.
  • the density of the cyclic olefin polymer according to the present embodiment is preferably 1000 [kg/m 3 ] or more and 1200 [kg/m 3 ] as measured in water at 23°C by a water substitution method based on JIS K7112. or less, more preferably 1020 [kg/m 3 ] or more and 1100 [kg/m 3 ] or less, still more preferably 1040 [kg/m 3 ] or more and 1080 [kg/m 3 ] or less, still more preferably is 1050 [kg/m 3 ] to 1070 [kg/m 3 ], more preferably 1055 [kg/m 3 ] to 1065 [kg/m 3 ].
  • the heat resistance can be further improved while maintaining a good performance balance between the transparency and the refractive index of the resulting optical component.
  • the test piece at this time is, for example, sandwiching the cyclic olefin polymer according to the present embodiment between super heat-resistant polyimide films (trade name: Upilex, manufactured by Ube Industries, Ltd.), using a 0.1 mm spacer, It can be obtained by vacuum press molding under conditions of 10 MPa and 3 minutes.
  • the cyclic olefin polymer according to the present embodiment may optionally contain a hydrophilic agent, a stabilizer, a weather stabilizer, a heat stabilizer, an antioxidant, a metal deactivator, a hydrochloric acid absorbent, an antistatic agent, a flame retardant, Slip agents, anti-blocking agents, anti-fogging agents, lubricants, natural oils, synthetic oils, waxes, organic or inorganic fillers, etc. can be blended within a range that does not impair the purpose of the present embodiment. An appropriate amount.
  • the cyclic olefin polymer composition according to the present embodiment preferably further contains a hydrophilic agent.
  • a hydrophilic agent By including a hydrophilic agent, it is possible to suppress the deterioration of various properties of the molded article under high temperature and high humidity conditions.
  • fatty acid esters of fatty acids and polyhydric alcohols are preferred. Fatty acid esters of fatty acids and polyhydric alcohols having one or more ether groups are more preferred.
  • fatty acid esters examples include monoglycerin fatty acid ester, diglycerin fatty acid ester, triglycerin fatty acid ester, pentaerythritol monostearate, pentaerythritol distearate, and pentaerythritol tristearate.
  • Fatty acid esters of fatty acids and polyhydric alcohols having one or more ether groups are esters of fatty acids and polyhydric alcohols having one or more ether groups. Note that the ether group of the polyhydric alcohol does not include an ether group in the ether group.
  • polyhydric alcohols having one or more ether groups examples include monoglycerin, diglycerin, triglycerin, tetraglycerin, and sorbitan.
  • the fatty acid ester preferably includes monoglycerin fatty acid ester, diglycerin fatty acid ester, and triglycerin fatty acid ester.
  • a diglycerin fatty acid ester is obtained by esterifying at least one of the four hydroxy groups contained in diglycerin with a fatty acid.
  • Fatty acids include saturated fatty acids such as butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, capric acid, lauric acid, myristic acid, palmitic acid, and stearic acid; crotonic acid, myristoleic acid, palmitoleic acid; , sapienic acid, oleic acid, elaidic acid, gadoleic acid, eicosenoic acid, and other monounsaturated fatty acids; linoleic acid, eicosadienoic acid, docosadienoic acid, and other diunsaturated fatty acids; triunsaturated fatty acids such as enoic acid; tetraunsaturated fatty acids such as stearidonic acid, arachidonic acid and eicosatetraenoic acid; and the like.
  • saturated fatty acids such as butanoic acid
  • diglycerin fatty acid esters examples include diglycerin monocaprylate, diglycerin dicaprylate, diglycerin monocaprate, diglycerin dicaprate, diglycerin monolaurate, diglycerin dilaurate, diglycerin monomyristate, and diglycerin dimyristate.
  • the diglycerin fatty acid ester is preferably an ester of diglycerin with a saturated or unsaturated fatty acid having 12 to 18 carbon atoms selected from the above.
  • a diglycerin unsaturated fatty acid ester as a main component, and among these, it is more preferable to contain diglycerin monooleate as a main component. Since the diglycerin skeleton is hydrophilic and the fatty acid improves the compatibility with the resin, the transparency is maintained and the moisture and heat resistance is excellent.
  • composition as the cyclic olefin polymer according to the present embodiment can contain at least one diglycerin fatty acid ester.
  • Preferred embodiments of the at least one diglycerin fatty acid ester include a monoester alone or a combination of a monoester and a diester.
  • Triglycerin fatty acid esters are esters of fatty acids and triglycerin.
  • the triglycerin fatty acid ester according to this embodiment is obtained by esterifying at least one of the three hydroxy groups contained in triglycerin with a fatty acid.
  • Triglycerin fatty acid esters include triglycerin monocaprylate, triglycerin dicaprylate, triglycerin tricaprylate, triglycerin monocaprate, triglycerin dicaprate, triglycerin tricaprate, triglycerin monolaurate, triglycerin dilaurate, Triglycerin Trilaurate, Triglycerin Monomyristate, Triglycerin Dimyristate, Triglycerin Trimyristate, Triglycerin Monopalmitate, Triglycerin Dipalmitate, Triglycerin Tripalmyrate, Triglycerin Monostearate, Triglycerin Triglycerin saturated fatty acid esters such as distearate, triglycerin tristearate, triglycerin monobehenate, triglycerin dibehenate, triglycerin tribehenate; triglycerin monoole
  • Examples of the triglycerin fatty acid ester according to the present embodiment include monoesters, mixtures of monoesters and diesters, and mixtures of monoesters, diesters and triesters.
  • a triglycerol fatty acid ester for example, compounds described in JP-A-2006-232714, JP-A-2002-275308, JP-A-10-165152, etc. can be used.
  • Commercially available hydrophilic agents according to the present embodiment include, for example, Rikemal DO-100 (manufactured by Riken Vitamin Co., Ltd.) and Excepar PE-MS (manufactured by Kao Corporation).
  • the lower limit of the content of the hydrophilic agent is preferably 0.05 parts by mass or more with respect to 100 parts by mass of the cyclic olefin polymer composition, and more Preferably, it is 0.4 parts by mass or more.
  • the upper limit of the content of the hydrophilic agent is preferably 3.0 parts by mass or less, more preferably 2.5 parts by mass or less, and still more preferably 1.2 parts by mass with respect to 100 parts by mass of the cyclic olefin polymer composition. It is below the department.
  • a known antioxidant can be used as the antioxidant. Specifically, hindered phenol compounds, sulfur-based antioxidants, lactone-based antioxidants, organic phosphite compounds, organic phosphonite compounds, or combinations of several of these can be used.
  • lubricants examples include sodium, calcium, and magnesium salts of saturated or unsaturated fatty acids such as lauric acid, palmitic acid, oleic acid, and stearic acid, and these may be used alone or in combination of two or more. can.
  • the amount of the lubricant to be blended is not particularly limited, but can be, for example, about 0.01 to 3 parts by mass, preferably about 0.01 to 2 parts by mass, per 100 parts by mass of the olefin polymer.
  • amides of saturated or unsaturated fatty acids such as lauric acid, palmitic acid, oleic acid, stearic acid, erucic acid and ariaic acid, or bisamides of these saturated or unsaturated fatty acids.
  • erucamide and ethylenebisstearamide are particularly preferred.
  • These fatty acids can usually be blended in the range of 0.01 to 5 parts by mass per 100 parts by mass of the cyclic olefin polymer.
  • Anti-blocking agents include fine powder silica, fine powder aluminum oxide, fine powder clay, powdered or liquid silicone resin, tetrafluoroethylene resin, fine powder crosslinked resin powder (for example, crosslinked acrylic, methacrylic resin powder, etc.). can be mentioned. Among these, finely divided silica and finely divided crosslinked resin powder are preferred.
  • the cyclic olefin copolymer having a norbornene skeleton and the cyclic olefin ring-opening polymer having a norbornene skeleton according to the present embodiment are lens-shaped, spherical, rod-shaped, plate-shaped, column-shaped, cylindrical, tubular, fibrous, and film-shaped. Alternatively, it can be used in various forms such as a sheet shape. Among them, preferably, it can be used for optical parts, films, and medical parts.
  • optical components include spectacle lenses, f ⁇ lenses, pickup lenses, imaging lenses, sensor lenses, digital camera shooting lenses, projector lenses, optical disk pickup lenses, optical lenses such as vehicle-mounted camera lenses, prisms, light guide plates, Examples include XR devices.
  • films include retardation films for displays, visibility improvement films for displays, films for touch sensors, base film substrates for solar cells, circuit substrates, substrates for high frequency applications, substrates, films or sheets for liquid crystal displays and solar cells. , tablet packaging sheets (PTP), shrinkable films, easily tearable films for food packaging, film capacitors, and the like.
  • medical parts include prefield syringes, plastic vials, infusion bags, blood analysis cells, catheter members, tablet bottles, test containers, sterile sheets, bioplates, biochips, and the like. Cyclic olefin copolymers and cyclic olefin ring-opening polymers are highly soluble in solvents. Can dissolve. Therefore, since a homogeneously dissolved solvent can be obtained, there is no unevenness when formed into a molded article such as a film, and the mechanical strength and elongation are excellent.
  • a molded article according to the present embodiment is obtained by molding a composition containing a cyclic olefin polymer into a predetermined shape.
  • a method for obtaining a molded article by molding a composition containing a cyclic olefin polymer is not particularly limited, and a known method can be used.
  • extrusion molding, injection molding, compression molding, inflation molding, blow molding, extrusion blow molding, injection blow molding, press molding, vacuum molding, powder slush molding, calendar molding, foam molding, etc. is applicable.
  • injection molding and extrusion molding are preferred from the viewpoint of moldability and productivity. Molding conditions are appropriately selected depending on the purpose of use or the molding method. is appropriately selected within the range of
  • the cyclic olefin copolymer and the cyclic olefin ring-opening polymer may be used for preparing the coating agent, or may be mixed in a solvent when preparing the coating agent.
  • the solvent for preparing the coating agent is not particularly limited, but examples include aromatic hydrocarbons such as benzene, toluene and xylene, aliphatic hydrocarbons such as hexane, heptane, octane and decane, cyclohexane, cyclohexene and methylcyclohexane.
  • aromatic hydrocarbons such as benzene, toluene and xylene
  • aliphatic hydrocarbons such as hexane, heptane, octane and decane
  • cyclohexane cyclohexene and methylcyclohexane.
  • Alicyclic hydrocarbons such as methanol, ethanol, isopropyl alcohol, butanol, pentanol, hexanol, propanediol, phenol and other alcohols, acetone, methyl isobutyl ketone, methyl ethyl ketone, pentanone, hexanone, isophorone, acetophenone and other ketone solvents
  • Cellosolves such as , methyl cellosolve, and ethyl cellosolve; esters such as methyl acetate, ethyl acetate, butyl acetate, methyl propionate, and butyl formate; and halogenated hydrocarbons such as trichlorethylene, dichloroethylene, and chlorobenzene.
  • aromatic hydrocarbons, aliphatic hydrocarbons and ketones are preferred. These may be used individually by 1 type, or may combine 2 or more types.
  • the coating method is not particularly limited, and can be carried out by a known method.
  • a coating film can be obtained by drying by an appropriate method.
  • the cyclic olefin polymer according to the present embodiment is produced by, for example, a method of melt-kneading the cyclic olefin polymer and other components added as necessary using a known kneading device such as an extruder and a Banbury mixer; A method of dissolving an olefin polymer and other optional components in a common solvent and then evaporating the solvent; a solution of a cyclic olefin polymer and other optional components in a poor solvent. It can be obtained by a method such as a method of adding and precipitating.
  • the obtained molded article is heated at a temperature of 2 to 2 to 2 to 2 degrees Celsius in the range of (glass transition temperature (Tg) of cyclic olefin polymer -40) °C to (glass transition temperature (Tg) of cyclic olefin polymer -5) °C.
  • a member can be obtained by annealing for 8 hours. By performing the annealing treatment, the molecules of the cyclic olefin polymer in the molded article are relaxed, and the free volume is reduced. Therefore, change in specific gravity (change in volume) is less likely to occur even with heat treatment. Here, if the conditions for the annealing treatment are severe, the molded body will be deformed and will not return.
  • the annealing under the above conditions and within a range in which the molded body is not deformed. That is, it is preferable to perform the annealing treatment at a temperature and for a time that does not cause deformation of the compact.
  • stereoregularity ratio of racemo structure and meso structure
  • stereoregularity ratio of racemo structure and meso structure
  • the catalyst (hereinafter also referred to as main catalyst) according to the present embodiment is not particularly limited as long as it can adjust the ratio of the racemo structure and the meso structure of the cyclic olefin polymer.
  • main catalysts include half-metallocene titanium compounds, zirconium compounds and hafnium compounds, and metallocene titanium compounds, zirconium compounds and hafnium compounds.
  • half-metallocene titanium compounds and zirconium compounds having a cyclopentadienyl group or a pyrazolate group, and metallocene titanium compounds, zirconium compounds and hafnium compounds having a hafnium compound and fluorene are particularly preferred. With these main catalysts, the ratio of racemo structure and meso structure can be easily adjusted.
  • main catalyst examples include 3,5-bismethylethyl-1-pyrazolate-t-butylcyclopentadiene titanium dichloride (paragraphs 0385 to 0388 of JP-A-2019-172954) and bis-t-butyl ketimide.
  • Cyclopentadienyl titanium dichloride (0003 to 0004 paragraphs of JP-A-2018-150273), dimethylmethylenefluorenylcyclopentadienezirconium dimethyl, diphenylmethylenefluorenylcyclopentanylzirconium dimethyl (JP-A-2019-172954) 0088 to 0109 paragraphs), dimethylmethylenebisindenylzirconium dichloride (Japanese Patent Application Laid-Open No. 2019-172954, paragraphs 0081 to 0087), diphenylmethyleneindenylcyclopentanyl zirconium dichloride (International Publication No.
  • the co-catalyst according to the present embodiment is not particularly limited as long as it can improve the catalytic performance of the main catalyst.
  • Such co-catalysts include, for example, ionic compounds, and aluminum compounds and boron compounds are particularly preferred.
  • trialkylaluminum such as trimethylaluminum, triethylaluminum, triisobutylaluminum, and mixtures thereof; triphenylcarbenium tetrakis(pentafluorophenyl)borate;
  • a borate compound having a pentafluorophenyl group is particularly preferred.
  • co-catalysts include triphenylcarbenium tetrakis(pentafluorophenyl)borate, N,N-dimethylaniliniumtetrakis(pentafluorophenyl)borate, MMAO (modified methylaluminoxane), PMAO (polymethylaluminoxane), ).
  • a half-metallocene titanium compound having a cyclopentadienyl group or a pyrazolate group, a zirconium compound, and a hafnium compound as the main catalyst, or a metallocene-based titanium having fluorene A combination of one or more selected from compounds, zirconium compounds, and hafnium compounds, and a borate compound having a pentafluorophenyl group as a cocatalyst is preferred.
  • Specific examples of preferred combinations of the main catalyst and co-catalyst include the following combinations.
  • ⁇ Main catalyst 3,5-bismethylethyl-1-pyrazolate-t-butylcyclopentadienyltitanium dichloride, bis-t-butylketimidecyclopentadienyltitanium diethyl, dimethylmethylenefluorenylcyclopentadienylzirconium Dimethyl, diphenylmethylenefluorenylcyclopentanylzirconium dimethyl, dimethylmethylenebisindenylzirconium dichloride, diphenylmethyleneindenylcyclopentanylzirconium dichloride, 3,5-bis-t-butyl-1-pyrazolate-t-butylcyclopentadiene Titanium dichloride, 3,5-bis-t-butyl-1-pyrazolate-indenyl titanium dichloride, 3-(4-methoxyphenyl)-5-(4-t-butylphenyl)-1-pyrazolate-t-butylcyclo Pentadiene titanium
  • the solubility of the cyclic olefin polymer can be made more suitable by combining the main catalyst and co-catalyst as described above. Although this mechanism is not necessarily clarified, it is considered that the ratio of the meso form in the cyclic olefin polymer can be reduced by using the cocatalyst as the cocatalyst.
  • the method for producing a cyclic olefin polymer according to this embodiment is characterized by copolymerizing an olefin and a cyclic olefin in the presence of the above-mentioned main catalyst and co-catalyst.
  • a copolymer may be produced by copolymerizing two or more olefins and a cyclic olefin.
  • the method of using each component constituting the olefin polymerization catalyst of the present invention and the order of addition to the polymerization vessel are arbitrarily selected, but the following methods are exemplified.
  • the main catalyst (A), co-catalyst (B), carrier (C) and organic compound component (D) are also referred to as "components (A) to (D)" respectively.
  • a method of adding components (A) and (B) to a polymerization vessel in any order (2) A method of adding components (A) and (B) to a polymerization vessel in any order. (3) A method in which the catalyst component in which the component (A) is supported on the component (C) and the component (B) are added in any order to the polymerization reactor. (4) A method of adding a catalyst component in which component (B) is supported on component (C) and component (A) in an arbitrary order to a polymerization vessel. (5) A method of adding a catalyst component in which component (A) and component (B) are supported on component (C) to a polymerization vessel.
  • component (D) may be added at any stage.
  • at least two of each catalyst component may be pre-contacted.
  • component (B) that is not supported may be added in any order, if desired. In this case, the components (B) may be the same or different.
  • the solid catalyst component in which the component (A) is supported on the component (C) and the solid catalyst component in which the component (A) and the component (B) are supported on the component (C), even if the olefin is prepolymerized
  • a further catalyst component may be supported on the prepolymerized solid catalyst component.
  • Copolymerization of an olefin and a cyclic olefin can be carried out by either a liquid phase polymerization method such as solution polymerization or suspension polymerization, or a gas phase polymerization method.
  • a liquid phase polymerization method such as solution polymerization or suspension polymerization
  • a gas phase polymerization method examples include aliphatic hydrocarbons such as propane, butane, pentane, hexane, heptane, octane, decane, dodecane, and kerosene; cyclopentane, cyclohexane, methylcyclopentane, and the like.
  • aromatic hydrocarbons such as benzene, toluene and xylene; and halogenated hydrocarbons such as ethylene chloride, chlorobenzene and dichloromethane.
  • the inert hydrocarbon medium may be used singly or in combination of two or more.
  • the main catalyst (A) is usually 10 -12 to 10 -2 mol, preferably 10 -10 to 10 -2 mol per liter of reaction volume. It is used in such an amount as to give 3 mol.
  • the weight ratio [(A)/(C)] between the main catalyst (A) and the carrier (C) is preferably 0.0001-1, more preferably 0.0005-0. 5, more preferably 0.001 to 0.1.
  • the polymerization temperature in the polymerization step is usually ⁇ 50 to +200° C., preferably 0 to 180° C.; the polymerization pressure is usually normal pressure to 10 MPa gauge pressure, preferably normal pressure to 5 MPa. gauge pressure.
  • the polymerization reaction can be carried out in any of a batch system, a semi-continuous system and a continuous system. Furthermore, the polymerization can be carried out in two or more stages with different reaction conditions.
  • the molecular weight of the resulting cyclic olefin polymer can be adjusted by allowing hydrogen to exist in the polymerization system, by changing the polymerization temperature, or by adjusting the amount of cocatalyst (B) used. When hydrogen is added, the appropriate amount thereof is about 0.001 to 5,000 NL per 1 kg of the produced copolymer.
  • Solubility test Solubility in methylcyclohexane and toluene was evaluated under the following conditions. ⁇ Solubility in methylcyclohexane> For the examples and comparative examples using polymers of ethylene and TD (i.e.
  • Glass transition temperature Tg (°C) Using DSC-7020 manufactured by Hitachi High-Tech Science Co., Ltd., the glass transition temperature (Tg) of the cyclic olefin copolymer was measured under a nitrogen atmosphere. The cyclic olefin copolymer was heated from room temperature to 250°C at a temperature elevation rate of 10°C/min, and then held for 5 minutes. Then, the temperature was lowered to ⁇ 20° C. at a rate of 10° C./min, and held for 5 minutes. Then, the glass transition temperature (Tg) of the cyclic olefin copolymer was obtained from the endothermic curve when the temperature was raised to 300°C at a temperature elevation rate of 10°C/min.
  • Example 1 300 mL of a mixed solution of cyclohexane/hexane at a ratio of 9/1 and tetracyclo[4.4.0.1 2,5 . 1 7,10 ]-3-dodecene (hereinafter also referred to simply as “tetracyclododecene”; Mw: 160.2 (g/mol)) 2.2 g was charged, and 90 liters/hr of ethylene and 0 hydrogen The liquid and gas phases were saturated at 0.24 l/hr. 59.4 mg (0.3 mmol) of TIBAL (triisobutylaluminum) was added.
  • TIBAL triisobutylaluminum
  • borate compound (1) triphenylcarbenium tetrakis(pentafluorophenyl)borate
  • the polymerization activity was 1.38 kg/mmol ⁇ hr, and the obtained ethylene/tetracyclododecene copolymer (structural unit (A): ethylene 62 mol%, structural unit (B): tetracyclododecene 38 mol%). was 0.92 (dL/g), Mw was 217,000 (g/mol), and Mw/Mn was 2.43.
  • the glass transition temperature was 153° C. by differential scanning calorimeter (DSC) measurement, and the racemostructure/mesostructure ratio determined by 13 C-NMR measurement was 0.89. The ratio of racemo structure/meso structure is based on the calculation method for the above A: polymer of ethylene and TD.
  • the ratio of the structural unit (B)-structural unit (B) chain to the structural unit (B) measured by 13 C-NMR was 1.0, and the solubility in methylcyclohexane was good (methyl Solubility in cyclohexane: A). Also, the solubility in toluene was good (solubility in toluene: A). In addition, the formability of the film was good (film formability: A). The density is 1046 (kg/m 3 ). Table 1 shows the results.
  • Example 2 245 mL of a cyclohexane/hexane (9/1) mixed solution and 5.0 g of tetracyclododecene were charged into a glass reactor having an internal volume of 500 mL that was sufficiently purged with nitrogen, and the liquid phase and gas phase were separated with 50 liters/hr of ethylene. saturated. 39.6 mg (0.2 mmol) of TIBAL were added. 0.0005 mmol of bis-t-butyl ketimide cyclopentadienyltitanium diethyl was added, and 0.002 mmol of borate compound (1) was added to initiate polymerization.
  • the intrinsic viscosity [ ⁇ ] was 0.45 (dL/g), Mw was 124,000 (g/mol), and Mw/Mn was 2.07.
  • the glass transition temperature was 151° C. by DSC measurement, and the racemostructure/mesostructure ratio by 13 C-NMR was 0.72.
  • the ratio of racemo structure/meso structure is based on the calculation method for the above A: polymer of ethylene and TD.
  • the ratio of the structural unit (B)-structural unit (B) chain to the structural unit (B) measured by 13 C-NMR was 1.9, and the solubility in methylcyclohexane was good (methyl Solubility in cyclohexane: A).
  • the solubility in toluene was good (solubility in toluene: A).
  • the formability of the film was good (film formability: A). Table 1 shows the results.
  • Example 3 A glass reactor having an internal volume of 500 ml which was sufficiently purged with nitrogen was charged with 289 mL of a cyclohexane/hexane (9/1) mixed solution and 20.9 g of benzonorbornadiene (hereinafter also referred to as BNBD, Mw: 142.2 (g/mol)). The liquid phase and gas phase were saturated with 51 liters/hr of ethylene and 2 liters/hr of hydrogen.
  • BNBD cyclohexane/hexane
  • the reactant was added to 1 liter of acetone/methanol (3/1) mixed solvent containing a small amount of hydrochloric acid to precipitate a polymer. After washing with the same solvent, it was dried under reduced pressure at 130° C. for 0 hour to obtain 0.658 g of an ethylene/benzonorbornadiene copolymer.
  • the polymerization activity was 6.58 kg/mmol ⁇ hr, and the intrinsic viscosity [ ⁇ ] was 0.20 (dL/g), Mw was 34,300 (g/mol), and Mw/Mn was 1.76.
  • the glass transition temperature was 106° C. by DSC measurement, and the racemostructure/mesostructure ratio by 13 C-NMR was 0.79.
  • the ratio of racemo structure/meso structure was based on the calculation method for the above C: polymer of ethylene and BNBD. Further, the ratio of the structural unit (B)-structural unit (B) chain to the structural unit (B) measured by 13 C-NMR was 2.2, and the solubility in methylcyclohexane was good (methyl Solubility in cyclohexane: A). Also, the solubility in toluene was good (solubility in toluene: A). In addition, the formability of the film was good (film formability: A). Table 1 shows the results.
  • Example 4 A glass reactor with an internal volume of 500 mL that was sufficiently purged with nitrogen was charged with 300 mL of a cyclohexane/hexane (9/1) mixed solution and 18.0 g of benzonorbornadiene, and 90 liters/hr of ethylene and 0.24 liters/hr of hydrogen were charged. The liquid and gas phases were saturated. 297.0 mg (1.5 mmol) of TIBAL was added, followed by the addition of 0.001 mmol of 3,5-bis-1-methylethyl-1-pyrazolate-t-butylcyclopentadienyl titanium dichloride to obtain borate compound (1). 0.004 mmol was added to initiate polymerization.
  • the polymerization activity was 89.8 kg/mmol ⁇ hr, and the intrinsic viscosity [ ⁇ ] was 0.72 (dL/g), Mw was 310,000 (g/mol), and Mw/Mn was 1.84.
  • the glass transition temperature was 152° C. by DSC measurement, and the racemostructure/mesostructure ratio by 13 C-NMR was 0.89.
  • the ratio of racemo structure/meso structure was based on the calculation method for the above C: polymer of ethylene and BNBD.
  • the ratio of the structural unit (B)-structural unit (B) chain to the structural unit (B) measured by 13 C-NMR was 4.0, and the solubility in methylcyclohexane was good (methyl Solubility in cyclohexane: A). Also, the solubility in toluene was good (solubility in toluene: A). In addition, the formability of the film was good (film formability: A). Density is 1060 (kg/m 3 ). Table 1 shows the results.
  • Example 5 150 mL of a cyclohexane/hexane (9/1) mixed solution and 4.9 g of tetracyclododecene were charged into a glass reactor having an internal volume of 500 mL which was sufficiently purged with nitrogen, and 51 liters/hr of ethylene and 9.96 liters of hydrogen were charged. hr to saturate the liquid and gas phases. 297.0 mg (1.5 mmol) of TIBAL was added, followed by 0.003 mmol of dimethylmethylenefluorenylcyclopentadienylzirconium dimethyl, and 0.012 mmol of borate compound (1) to initiate polymerization.
  • the intrinsic viscosity [ ⁇ ] was 0.58 (dL/g), Mw was 84,800 (g/mol), and Mw/Mn was 4.75.
  • the glass transition temperature was 145° C. by DSC measurement, and the racemostructure/mesostructure ratio by 13 C-NMR was 0.64.
  • the ratio of racemo structure/meso structure is based on the calculation method for the above A: polymer of ethylene and TD. Further, the ratio of the structural unit (B)-structural unit (B) chain to the structural unit (B) measured by 13 C-NMR was 0.5, and the solubility in methylcyclohexane was good (methyl Solubility in cyclohexane: A).
  • Example 6 A glass reactor having an internal volume of 500 mL which was sufficiently purged with nitrogen was charged with 150 mL of a cyclohexane/hexane (9/1) mixed solution and 9.8 g of tetracyclododecene, and 90 liters/hr of ethylene and 0.24 liters of hydrogen were charged. hr to saturate the liquid and gas phases. 198.0 mg (1.0 mmol) of TIBAL was added, followed by 0.002 mmol of diphenylmethylenefluorenylcyclopentanylzirconium dimethyl, and 0.008 mmol of borate compound (1) to initiate polymerization.
  • the intrinsic viscosity [ ⁇ ] was 0.51 (dL/g), Mw was 112,000 (g/mol), and Mw/Mn was 4.38.
  • the glass transition temperature was 158° C. by DSC measurement, and the racemostructure/mesostructure ratio by 13 C-NMR was 0.54.
  • the ratio of racemo structure/meso structure is based on the calculation method for the above A: polymer of ethylene and TD. Further, the ratio of the structural unit (B)-structural unit (B) chain to the structural unit (B) measured by 13 C-NMR was 2.0, and the solubility in methylcyclohexane was good (methyl Solubility in cyclohexane: A). Also, the solubility in toluene was good (solubility in toluene: A). In addition, the formability of the film was good (film formability: A). Table 1 shows the results.
  • Example 7 276 mL of a cyclohexane/hexane (9/1) mixed solution and 22.4 g of tetracyclododecene were charged into a glass reactor having an internal volume of 500 mL which was sufficiently purged with nitrogen, and 90 liters/hr of ethylene and 0.24 liters of hydrogen were charged. hr to saturate the liquid and gas phases. 59.4 mg (0.3 mmol) of TIBAL was added, and then 0.000125 mmol of 3,5-bis(t-butyl)-1-pyrazolate-t-butylcyclopentadienyl titanium dichloride was added to give borate compound (1). 0.004 mmol was added to initiate polymerization.
  • the intrinsic viscosity [ ⁇ ] was 0.20 (dL/g), Mw was 35,800 (g/mol), and Mw/Mn was 2.19.
  • the glass transition temperature was 176° C. by DSC measurement, and the racemostructure/mesostructure ratio by 13 C-NMR was 1.00.
  • the ratio of racemo structure/meso structure is based on the calculation method for the above A: polymer of ethylene and TD.
  • the ratio of the structural unit (B)-structural unit (B) chain to the structural unit (B) measured by 13 C-NMR was 1.2, and the solubility in methylcyclohexane was good (methyl Solubility in cyclohexane: A).
  • the solubility in toluene was good (solubility in toluene: A).
  • the formability of the film was partially good (film formability: B). Table 1 shows the results.
  • Example 8 300 mL of a cyclohexane/hexane (9/1) mixed solution and 2.9 g of tetracyclododecene were charged into a glass reactor with an internal volume of 500 mL that had been sufficiently purged with nitrogen, and the liquid phase and gas phase were separated with 90 liters/hr of ethylene. saturated. 59.4 mg (0.3 mmol) of TIBAL was added, followed by the addition of 0.003 mmol of 3,5-bisphenyl-1-pyrazolate-t-butylcyclopentadienyl titanium dichloride, and 0.012 mmol of borate compound (1). addition to initiate polymerization.
  • Ethylene was continuously supplied at 90 liters/hr, and polymerization was carried out at 50° C. for 10 minutes under normal pressure. The polymerization was then stopped by adding a small amount of isobutanol. After completion of the polymerization, the reactant was added to 1.25 liter of acetone/methanol (3/1) mixed solvent containing a small amount of hydrochloric acid to precipitate a polymer. After washing with the same solvent, it was dried under reduced pressure at 130° C. for 10 hours to obtain 0.326 g of an ethylene/tetracyclododecene copolymer. The polymerization activity was 0.65 kg/mmol ⁇ hr.
  • the intrinsic viscosity [ ⁇ ] was 1.44 (dL/g), Mw was 450,000 (g/mol), and Mw/Mn was 3.55.
  • the glass transition temperature was 173° C. by DSC measurement, and the ratio of racemostructure/mesostructure by 13 C-NMR was 1.00.
  • the ratio of racemo structure/meso structure is based on the calculation method for the above A: polymer of ethylene and TD. Further, the ratio of the structural unit (B)-structural unit (B) chain to the structural unit (B) measured by 13 C-NMR was 2.6, and the solubility in methylcyclohexane was good (methyl Solubility in cyclohexane: A).
  • Example 9 300 mL of a cyclohexane/hexane (9/1) mixed solution and 1.9 g of tetracyclododecene were charged into a glass reactor with an internal volume of 500 mL that had been sufficiently purged with nitrogen, and the liquid phase and gas phase were separated at 90 liters/hr of ethylene. saturated. 59.4 mg (0.3 mmol) of TIBAL was added, followed by the addition of 0.003 mmol of 3,5-bisphenyl-1-pyrazolate-t-butylcyclopentadienyl titanium dichloride, and 0.012 mmol of borate compound (1). addition to initiate polymerization.
  • Ethylene was continuously supplied at 90 liters/hr, and polymerization was carried out at 50° C. for 10 minutes under normal pressure. The polymerization was then stopped by adding a small amount of isobutanol. After completion of the polymerization, the reactant was added to 1.25 liter of acetone/methanol (3/1) mixed solvent containing a small amount of hydrochloric acid to precipitate a polymer. After washing with the same solvent, it was dried under reduced pressure at 130° C. for 10 hours to obtain 0.545 g of an ethylene/tetracyclododecene copolymer. The polymerization activity was 1.09 kg/mmol ⁇ hr.
  • the intrinsic viscosity [ ⁇ ] was 2.03 (dL/g), Mw was 634,000 (g/mol), and Mw/Mn was 2.33.
  • the glass transition temperature was 154° C. by DSC measurement, and the racemostructure/mesostructure ratio by 13 C-NMR was 1.00.
  • the ratio of racemo structure/meso structure is based on the calculation method for the above A: polymer of ethylene and TD. Further, the ratio of the structural unit (B)-structural unit (B) chain to the structural unit (B) measured by 13 C-NMR was 1.7, and the solubility in methylcyclohexane was good (methyl Solubility in cyclohexane: A). Also, the solubility in toluene was good (solubility in toluene: A). In addition, the formability of the film was good (film formability: A). Table 1 shows the results.
  • Example 10 A glass reactor having an internal volume of 500 mL that was sufficiently purged with nitrogen was charged with 300 mL of a mixed solution of cyclohexane/hexane at a ratio of 9/1, 3.3 g of tetracyclododecene, and 5.7 g of benzonorbornadiene, The liquid phase and gas phase were saturated with 50 liters/hr of ethylene and 0.24 liters/hr of hydrogen. 59.4 mg (0.3 mmol) of TIBAL were added.
  • the ratio of the structural unit (B)-structural unit (B) chain to the structural unit (B) measured by 13 C-NMR was 3.2, and the solubility in methylcyclohexane was good (methyl Solubility in cyclohexane: A). Moreover, the solubility in toluene was also good (solubility in toluene: A). In addition, the formability of the film was good (film formability: A). The density is 1057 (kg/m 3 ). Table 1 shows the results.
  • Example 11 250 mL of a cyclohexane/hexane (9/1) mixed solution, 5 g of tetracyclododecene, and 331 mg (1.50 mmol) of BHT were charged into a glass reactor having an internal volume of 500 mL that was sufficiently purged with nitrogen, and 50 liters/hr of ethylene was added. to saturate the liquid and gas phases. Thereafter, 1.5 mmol of methylaluminoxane in terms of aluminum atom, 0.0030 mmol of 3,5-bismethylethyl-1-pyrazolate-t-butylcyclopentadienyl titanium dichloride, and 0.0030 mmol of borate compound (1) were added. 012 mmol was added to initiate the polymerization reaction.
  • Ethylene was continuously supplied at a rate of 50 liters/hr, and polymerization was carried out at 50° C. for 10 minutes under normal pressure, and then the polymerization was stopped by adding a small amount of isobutanol. After completion of the polymerization, the reactant was added to 1 liter of acetone/methanol (3/1) mixed solvent containing a small amount of hydrochloric acid to precipitate a polymer. After washing with the same solvent, it was dried under reduced pressure at 130° C. for 10 hours to obtain 1.292 g of an ethylene/tetracyclododecene copolymer.
  • the polymerization activity was 2.58 kg/mmol-Ti ⁇ hr, and the resulting ethylene/tetracyclododecene copolymer (structural unit (A): 55 mol% ethylene, structural unit (B): 45 mol% tetracyclododecene ) had an intrinsic viscosity [ ⁇ ] of 1.05 (dL/g), Mw of 320,000 (g/mol), and Mw/Mn of 2.17.
  • the glass transition temperature was 188° C. by differential scanning calorimeter (DSC) measurement, and the racemostructure/mesostructure ratio determined by 13 C-NMR measurement was 1.00.
  • the ratio of racemo structure/meso structure is based on the calculation method for the above A: polymer of ethylene and TD. Further, the ratio of the structural unit (B)-structural unit (B) chain to the structural unit (B) measured by 13 C-NMR was 3.7, and the solubility in methylcyclohexane was good (methyl Solubility in cyclohexane: A). Further, the solubility in toluene was good immediately after dissolution, but it was in an opaque state after standing for one day (solubility in toluene: B). In addition, the formability of the film was good (film formability: A). Table 1 shows the results.
  • Example 12 245 mL of a mixed solution of cyclohexane/hexane mixed in a ratio of 9/1 and 5.0 g of tetracyclododecene were charged into a glass reactor having an internal volume of 500 mL that was sufficiently purged with nitrogen, and 50 liters/hr of ethylene was added. The liquid and gas phases were saturated. 39.6 mg (0.2 mmol) of TIBAL were added. Subsequently, 0.0005 mmol of diphenylmethyleneindenylcyclopentanylzirconium dichloride and 0.002 mmol of borate compound (1) were added to initiate the polymerization reaction.
  • the polymerization activity was 13.18 kg/mmol ⁇ hr, and the resulting ethylene/tetracyclododecene copolymer (structural unit (A): 62 mol% of ethylene, structural unit (B): 38 mol% of tetracyclododecene). was 0.36 (dL/g), Mw was 62,200 (g/mol), and Mw/Mn was 2.05.
  • the glass transition temperature was 150° C. by differential scanning calorimeter (DSC) measurement, and the racemostructure/mesostructure ratio determined by 13 C-NMR measurement was 0.14. The ratio of racemo structure/meso structure is based on the calculation method for the above A: polymer of ethylene and TD.
  • the ratio of the structural unit (B)-structural unit (B) chain to the structural unit (B) measured by 13 C-NMR was 1.4, and the solubility in methylcyclohexane was good immediately after dissolution. However, it remained opaque after standing for one day (solubility in methylcyclohexane: B). Further, the solubility in toluene was good immediately after dissolution, but it was in an opaque state after standing for one day (solubility in toluene: B). In addition, the formability of the film was partially good (film formability: B). Table 1 shows the results.
  • Example 13 300 mL of a mixed solution of cyclohexane/hexane in a ratio of 9/1 and 11.4 g of tetracyclododecene were charged into a glass reactor having an internal volume of 500 mL which was sufficiently purged with nitrogen, and 90 liters/hr of ethylene, The liquid and gas phases were saturated with 0.24 l/hr of hydrogen. 59.4 mg (0.3 mmol) of TIBAL were added.
  • the polymerization activity was 2.97 kg/mmol ⁇ hr, and the obtained ethylene/tetracyclododecene copolymer (structural unit (A): ethylene 51 mol%, structural unit (B): tetracyclododecene 49 mol%). was 0.30 (dL/g), Mw was 67,200 (g/mol), and Mw/Mn was 3.03.
  • the glass transition temperature was 203° C. by differential scanning calorimeter (DSC) measurement, and the racemostructure/mesostructure ratio determined by 13 C-NMR measurement was 1.00.
  • the ratio of racemo structure/meso structure is based on the calculation method for the above A: polymer of ethylene and TD.
  • the ratio of the structural unit (B)-structural unit (B) chain to the structural unit (B) measured by 13 C-NMR was 5.1, and the solubility in methylcyclohexane was good (methyl Solubility in cyclohexane: A). Further, the solubility in toluene was good immediately after dissolution, but remained opaque after standing for one day (solubility in toluene: B). Moreover, the moldability of the film was poor (film moldability: C). Table 1 shows the results.
  • Example 14 300 mL of a cyclohexane/hexane (9/1) mixed solution and 3.0 g of benzonorbornadiene were charged into a glass reactor having an internal volume of 500 mL that was sufficiently purged with nitrogen, and 50 liters/hr of ethylene and 6.0 liters/hr of hydrogen were charged. The liquid and gas phases were saturated. 9.9 mg (0.5 mmol) of TIBAL was added, followed by 0.0005 mmol of diphenylmethyleneindenylcyclopentanyl zirconium dichloride and 0.002 mmol of borate compound (1) to initiate polymerization.
  • the polymerization activity was 84.96 kg/mmol ⁇ hr, and the intrinsic viscosity [ ⁇ ] was 0.33 (dL/g), Mw was 88,000 (g/mol), and Mw/Mn was 6.90.
  • the glass transition temperature was 112° C. by DSC measurement, and the racemostructure/mesostructure ratio by 13 C-NMR was 0.26.
  • the ratio of racemo structure/meso structure was based on the calculation method for the above C: polymer of ethylene and BNBD.
  • the ratio of the structural unit (B)-structural unit (B) chain to the structural unit (B) measured by 13 C-NMR was 0.0, and the solubility in methylcyclohexane was poor (methyl Solubility in cyclohexane: B). Also, the solubility in toluene was good (solubility in toluene: A). In addition, the formability of the film was partially good (film formability: B). Table 1 shows the results.
  • the intrinsic viscosity [ ⁇ ] was 0.50 (dL/g), Mw was 97,200 (g/mol), and Mw/Mn was 2.47.
  • the glass transition temperature was 148° C. by DSC measurement, and the ratio of racemostructure/mesostructure by 13 C-NMR was 0.00.
  • the ratio of the structural unit (B)-structural unit (B) chain to the structural unit (B) measured by 13 C-NMR was 0.0, and the solubility in methylcyclohexane was poor (methyl Solubility in cyclohexane: C).
  • the solubility in toluene was poor (solubility in toluene: C).
  • the moldability of the film was poor (film moldability: C). Table 1 shows the results.
  • the ratio of the structural unit (B)-structural unit (B) chain to the structural unit (B) measured by 13 C-NMR was 0.0, and the solubility in methylcyclohexane was poor (methyl Solubility in cyclohexane: C). Also, the solubility in toluene was poor (solubility in toluene: C). The moldability of the film was poor (film moldability: C). Table 1 shows the results.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

ノルボルネン骨格を有する環状オレフィン重合体であって、上記環状オレフィン重合体が、環状オレフィン共重合体または環状オレフィン開環重合体であり、下記要件(a)を満たすことを特徴とする、環状オレフィン重合体。(要件(a))当該環状オレフィン重合体は、鎖状オレフィンである構成単位(A)とノルボルネン骨格を有する環状オレフィンを含む構成単位(B)とからなり、13C-NMRで測定した上記構成単位(B)-上記構成単位(A)-上記構成単位(B)の連鎖におけるメソ構造とラセモ構造との存在比率(ラセモ構造/メソ構造)が0.01~100である。

Description

環状オレフィン重合体、環状オレフィン重合体組成物および成形体
 本発明は、環状オレフィン重合体、環状オレフィン重合体組成物および成形体に関する。
 環状オレフィン系共重合体は、例えば、撮像レンズ、fθレンズ、ピックアップレンズ等の光学レンズに用いられる。このような光学レンズ等の成形体に用いられる環状オレフィン系共重合体は、透明性が高いこと、寸法安定性に優れること、耐熱性に優れること、耐湿性に優れること等の特性が要求される。
 このような環状オレフィン系共重合体を含む樹脂組成物としては、例えば、特許文献1に記載の発明がある。特許文献1には、(A)炭素原子数が2~20の直鎖状または分岐状のα-オレフィンと、(B)特定の式で表わされる環状オレフィンと、(C)芳香族ビニル化合物とから得られる環状オレフィン系共重合体が開示されている。
 また、特許文献2には、(A)少なくとも2個の相異なるシクロアルカジエニル基またはその置換体が炭化水素基またはシリレン基あるいは置換シリレン基を介して結合した多座配位性化合物を配位子とする周期律表IVB族の配位金属化合物、および(B)有機アルミニウムオキシ化合物から形成される触媒の存在下に、α-オレフィンと環状オレフィンとを共重合させることを特徴とする環状オレフィン系共重合体の製造方法が開示されている。
 また、特許文献3には、(a)エチレンと、特定の式で示される芳香族含有ノルボルネン誘導体とがランダム共重合されてなるエチレン・環状オレフィン共重合体が開示されている。
 また、特許文献4には、遷移金属錯体と、アルミニウム原子の量に換算して上記遷移金属錯体中の遷移金属原子1モルに対し10,000モル以下の割合の有機アルミニウムと、溶媒とを接触させる接触工程、および上記接触工程を経た遷移金属錯体を含み、有機アルミニウムをアルミニウム原子換算で0.005mmol/L以上の濃度で含む溶液の存在下でオレフィンを重合する重合工程を含むオレフィン重合体の製造方法が開示されている。
 また、特許文献5には、炭素原子数が2~20のα-オレフィン由来の構成単位(A)と、芳香環を有さない環状オレフィンから導かれる構成単位(B)と、芳香環を有する環状オレフィンから導かれる構成単位(C)と、を有する環状オレフィン共重合体が開示されている。
 また、特許文献5には、[A]特定の構造から選ばれ、軟化温度が120~300℃である環状オレフィン重合体と、[B]ガラス転移点が50℃以下である環状オレフィン系重合体と、を含んでなり、ASTM D542に準拠して測定した上記環状オレフィン共重合体[B]の屈折率と、上記環状オレフィン共重合体[A]の屈折率との差の絶対値が特定の範囲以下であり、上記[A]50~95重量部に対して、上記[B]を5~50重量部の量で含有していることを特徴とする環状オレフィン共重合体組成物が開示されている。
特開平10-287713号公報 特開平2-173112号公報 特開2005-330465号公報 特開2018-165308号公報 国際公開2008/068897号
Walter Kaminsky,Rudiger Engehausen,and Jurgen Kopf、"A Tailor‐Made Metallocene for the Copolymerization of Ethene with Bulky Cycloalkenes" Angewandte Chemie International Edition in English Volume 34, Issue 20 p.2273-2275. Incoronata Tritto,Laura Boggioni,Cristina Zampa, and Dino R. Ferro、"Ethylene-Norbornen Copolymers by Cs-Symmetric Metallocenes:Determination of the Copolymerization Parameters and Mechanistic Considerations on the Basis of Tetrad Analysis" Macromolecules,2005,38,9910-9919.
 ノルボルネン構造を有する環状オレフィン共重合体または開環重合体は、一般に溶媒への溶解性が低いことが知られている。本発明者らの検討によると、上記特許文献1~5に記載の発明では、特に、メチルシクロヘキサン、トルエン等、ポリマーをコーティングする際に用いる溶媒に室温及び室温付近で溶解しにくく、均質な溶液が得られないことが明らかとなった。
 本発明は上記事情を鑑みなされたものであり、溶媒への溶解性が向上した、ノルボルネン骨格を有する環状オレフィン重合体を提供することを目的とする。
 本発明者らは上記課題を解決すべく鋭意検討を重ねた。その結果、ノルボルネン構造を有する環状オレフィン共重合体またはノルボルネン骨格を有する開環重合体は、特定の立体規則性を有すると溶媒への溶解性が高くなることを見出し、本発明を完成させた。即ち、本発明によれば、以下に示す環状オレフィン重合体、環状オレフィン重合体組成物および成形体が提供される。
[1]
 ノルボルネン骨格を有する環状オレフィン重合体であって、
 上記環状オレフィン重合体が、環状オレフィン共重合体または環状オレフィン開環重合体であり、
 下記要件(a)を満たすことを特徴とする、環状オレフィン重合体。
(要件(a))
 当該環状オレフィン重合体は、鎖状オレフィンである構成単位(A)とノルボルネン骨格を有する環状オレフィンを含む構成単位(B)とからなり、
 13C-NMRで測定した上記構成単位(B)-上記構成単位(A)-上記構成単位(B)の連鎖におけるメソ構造とラセモ構造との存在比率(ラセモ構造/メソ構造)が0.01~100である。
[2]
 上記[1]に記載の環状オレフィン重合体であって、
 上記環状オレフィン重合体は環状オレフィン共重合体であり、
 上記環状オレフィン共重合体は、
 上記構成単位(A)として、エチレンまたは炭素数3~30のα-オレフィンから導かれる構成単位を30~80mol%と、
 上記構成単位(B)として、下記一般式[Z-I]、下記一般式[Z-II]、下記一般式[Z-III]および下記一般式[Z-IV]からなる群より選択される1種または2種以上の環状モノマーから導かれる構成単位を20~70mol%含み、
Figure JPOXMLDOC01-appb-C000005
 (上記式[Z-I]中、uは0または1であり、vは0または正の整数であり、wは0または1である。R61~R78ならびにRa1およびRb1は、それぞれ独立に水素原子、ハロゲン原子、および炭化水素基からなる群より選択される1種または2種以上を含み、R75~R78は、互いに結合して単環または多環を形成していてもよく、かつ上記単環または上記多環が二重結合を有していてもよい。また、R75とR76とで、またはR77とR78とでアルキリデン基を形成していてもよい。)
Figure JPOXMLDOC01-appb-C000006
 (上記式[Z-II]中、xおよびdは0または1以上の整数であり、yおよびzは0、1または2である。R81~R99は、それぞれ独立に水素原子、ハロゲン原子、および炭化水素基から選ばれ、R89およびR90が結合している炭素原子と、R93が結合している炭素原子またはR91が結合している炭素原子とは、直接あるいは炭素原子数1~3のアルキレン基を介して結合していてもよい。また、y=z=0のとき、R95とR92またはR95とR99とは互いに結合して単環または多環の芳香族環を形成していてもよい。)
Figure JPOXMLDOC01-appb-C000007
 (上記式[Z-III]中、nおよびmはそれぞれ独立に0、1または2であり、qは1、2または3である。R18~R31はそれぞれ独立に、水素原子、フッ素原子を除くハロゲン原子、またはフッ素原子を除くハロゲン原子で置換されていてもよい炭素原子数1~20の炭化水素基である。)
Figure JPOXMLDOC01-appb-C000008
 (一般式[Z-IV]中、xは0または1以上の整数であり、R111~R118は、それぞれ独立に水素原子、ハロゲン原子、および炭化水素基から選ばれる。R121~R124は、それぞれ独立に水素原子、ハロゲン原子、および炭化水素基から選ばれ、隣接する2つの基は互いに結合して単環または多環の芳香環を形成していてもよい。)
 上記構成単位(A)と上記構成単位(B)との合計は100mol%である、環状オレフィン重合体。
[3]
 上記[1]または[2]に記載の環状オレフィン重合体であって、
 さらに下記要件(b)を満たすことを特徴とする、環状オレフィン重合体。
(要件(b))
 13C-NMRで測定した上記構成単位(B)-上記構成単位(B)の連鎖が、構成単位(B)に占める割合が0.1mol%以上20.0mol%以下である。
[4]
 上記[1]~[3]のいずれか1つに記載の環状オレフィン重合体であって、
 示差走査熱量計(DSC)で測定される、上記環状オレフィン共重合体または上記環状オレフィン開環重合体のガラス転移温度が50℃以上250℃以下である、環状オレフィン重合体。
[5]
 上記[1]~[4]のいずれか1つに記載の環状オレフィン重合体であって、
 示差走査熱量計(DSC)で測定される、前記環状オレフィン共重合体または前記環状オレフィン開環重合体のガラス転移温度が50℃以上180℃以下である、環状オレフィン重合体。
[6]
 上記[1]~[5]のいずれか1つに記載の環状オレフィン重合体であって、
 上記環状オレフィン共重合体または上記環状オレフィン開環重合体の極限粘度が0.1[dL/g]以上5.0[dL/g]以下である、環状オレフィン重合体。
[7]
 上記[1]~[6]のいずれか1つに記載の環状オレフィン重合体を含む、環状オレフィン重合体組成物。
[8]
 上記[7]に記載の環状オレフィン重合体組成物であって、
 光学部品、フィルム包材、光学フィルム、または医療用部品に用いられる、環状オレフィン重合体組成物。
[9]
 上記[1]~[6]のいずれか1つに記載の環状オレフィン重合体を含む、成形体。
[10]
 上記[9]に記載の成形体であって、
 光学部品、フィルム包材、光学フィルム、または医療用部品である、成形体。
 本発明のノルボルネン骨格を有する環状オレフィン重合体であれば、従来の環状オレフィン共重合体または開環重合体よりも溶媒への溶解性が高い。そのため、メチルシクロヘキサンやトルエン等、ポリマーをコーティングする際に用いられる溶媒に室温及び室温付近で容易に溶解することができる。また、環状オレフィン共重合体または開環重合体が溶解した均質な溶液を得られることから、フィルム等の成形体にした際にムラがなく、機械強度や伸びに優れる。
 以下、本発明を実施形態に基づいて説明する。なお、本実施形態では、数値範囲を示す「A~B」はとくに断りがなければ、A以上B以下を表す。また、「環状オレフィン重合体」は、特に断りがなければ、共重合体および/または開環重合体を意味する。
 上述のように、本発明者らの知見によれば、従来の環状オレフィン共重合体または開環重合体は、一般に溶媒への溶解性が低いことが分かった。本発明者らは、上記課題を解決すべく鋭意検討を重ねた。その結果、特定の立体規則性を有する環状オレフィン重合体であれば溶媒への溶解性が高くなることを見出し、本発明を完成させた。
 すなわち、本実施形態に係る環状オレフィン重合体は、以下である。
 <ノルボルネン骨格を有する環状オレフィン重合体>
 ノルボルネン骨格を有する環状オレフィン重合体であって、
 上記環状オレフィン重合体が、環状オレフィン共重合体または環状オレフィン開環重合体であり、
 下記要件(a)を満たすことを特徴とする、環状オレフィン重合体。
(要件(a))
 当該環状オレフィン重合体は、鎖状オレフィンである構成単位(A)とノルボルネン骨格を有する環状オレフィン構成単位(B)とからなり、13C-NMRで測定した上記構成単位(B)-上記構成単位(A)-上記構成単位(B)の連鎖におけるメソ構造とラセモ構造との存在比率(ラセモ構造/メソ構造)が0.01~100。
 本実施形態に係るノルボルネン骨格を有する環状オレフィン重合体であれば、特定の立体規則性を有することにより、溶媒への溶解性が高くなる。特に、ポリマーをコーティングする際に用いられる溶媒(例えば、メチルシクロヘキサン、トルエン等)に室温および室温付近で容易に溶解することができる。そのため、均質に溶解した溶媒が得られるため、フィルム等の成形体にした際にムラがなく、機械強度や伸びに優れる。
 特定の立体規則性を有する環状オレフィン共重合体はメチルシクロヘキサン以外に、トルエン等の別の溶媒に対しても溶解することができる。環状オレフィン共重合体は、鎖状オレフィンである構成単位(A)とノルボルネン骨格を有する環状オレフィンを含む構成単位(B)の構成成分や組成によって溶解度パラメーター(SP値)が異なるため、SP値の違いによってはトルエン溶媒に対する溶解性が高い場合もある。
 まず、本実施形態に係る特定の立体規則性について説明する。例えば、以下の一般式(I)で表される構造を有する重合体を例に説明する。上記構成単位(B)-構成単位(A)-構成単位(B)の連鎖におけるメソ構造とは、非特許文献2の図5にαβmとして記載されている構造を意味する。また、ラセモ構造とは、同図においてαβrと記載されている構造をいう。
Figure JPOXMLDOC01-appb-C000009
 上記一般式(I)において、mおよびnは繰り返し単位を表す。ここで、ノルボルネン由来の構造をNB、エチレン由来の構造をEとすると、上記の例では、・・・-NB-E-NB-E-NB-E-・・・と連なっている。上記メソ構造およびラセモ構造は、13C-NMRで測定される。この結合様式の一例を下記に示す。
Figure JPOXMLDOC01-appb-C000010
 通常、立体規則性を制御せずに合成されたノルボルネン骨格を有する環状オレフィン共重合体またはノルボルネン骨格を有する環状オレフィン開環重合体は、メソ体またはラセモ体のみであり、溶媒への溶解性が低い。
 一方、本実施形態に係るノルボルネン骨格を有する環状オレフィン重合体は、全体として、ラセモ関係にある構造が占める部分と、メソ関係にある構造が占める部分の比率、すなわち立体規則性を表すラセモ構造およびメソ構造の比率[ラセモ/メソ]が、0.01~100(すなわち、ラセモ:メソ=1:100~100:1)であり、好ましくは、0.05~50.0、より好ましくは0.1~10.0、さらに好ましくは0.25~5.0、さらに好ましくは0.3~3.0、さらに好ましくは0.4~1.5、さらに好ましくは0.4~1.2、さらに好ましくは0.5~1.0、さらに好ましくは0.5~0.9である。ラセモ/メソの比が上記範囲にあることで、溶媒への溶解性が向上する。上記立体規則性は、後述する重合時の触媒や助触媒を選択することで適宜調整される。
 13C-NMR測定は、メソ構造およびラセモ構造を区別して測定できれば特に限定されない。このような13C-NMR測定としては、例えば、下記が例示できる。より詳細な13C-NMR測定については後述の立体規則性にて説明する。
  装置:ブルカーバイオスピン社AVANCEIIIcryo-500型核磁気共鳴
  測定核:13
  周波数:125MHz
  測定モード:シングルパスプロトン(逆ゲート付)デカップリング
  パルス幅:90度
  ポイント数:64000
  測定範囲:-55~195ppm(合計250ppm)
  繰り返し時間:12秒
  積算回数:256回
  溶媒:1,1,2,2-テトラクロロエタン-d2
  濃度:10%w/v
  温度:120℃
  ケミカルシフト基準:テトラメチルシラン基準(1,1,2,2-テトラクロロエタン-d2:74.2ppmに該当)
 [ノルボルネン骨格を有する環状オレフィン重合体]
 本実施形態に係る、ノルボルネン骨格を有する環状オレフィン共重合体(以下、単に環状オレフィン共重合体とも称する)またはノルボルネン骨格を有する環状オレフィン開環重合体(以下、単に環状オレフィン開環重合体とも称する)について詳述する。
 環状オレフィン共重合体および環状オレフィン開環重合体は、ノルボルネン骨格を有し、鎖状オレフィンである構成単位(A)とノルボルネン骨格を有する環状オレフィンを含む構成単位(B)とからなる。
 (環状オレフィン共重合体)
 本実施形態に係る環状オレフィン共重合体は、得られる光学部品の透明性および屈折率の性能バランスを良好に保ちつつ耐熱性をさらに向上できたり、成形性を向上できたりする観点から、以下の構成単位(A)と構成単位(B)とを有することが好ましい。
 構成単位(A):エチレンまたは炭素数3~30のα-オレフィンから導かれる構成単位。
 構成単位(B):下記一般式(Z-I)で表される構成単位と、下記一般式(Z-II)で表される構成単位と、下記一般式(Z-III)で表される構成単位と、下記一般式(Z-IV)で表される構成単位とからなる群より選択される少なくとも1種から導かれる構成単位。
Figure JPOXMLDOC01-appb-C000011
 上記[Z-I]式中、uは0または1であり、vは0または正の整数、好ましくは1以上の整数、より好ましくは1または2、さらに好ましくは1であり、wは0または1である。R61~R78ならびにRa1およびRb1は、それぞれ独立に水素原子、ハロゲン原子、および炭化水素基から選択される。
Figure JPOXMLDOC01-appb-C000012
 上記[Z-II]式中、xおよびdは0または1以上の整数であり、yおよびzは0,1または2である。xは1以上の整数が好ましく、1または2がより好ましく、1がより好ましい。R81~R99は、それぞれ独立に水素原子、ハロゲン原子、および炭化水素基から選択される。R89およびR90が結合している炭素原子と、R93が結合している炭素原子またはR91が結合している炭素原子とは、直接あるいは炭素原子数1~3のアルキレン基を介して結合していてもよい。また、y=z=0のとき、R95とR92またはR95とR99とは互いに結合して単環または多環の芳香族を形成していてもよい。
Figure JPOXMLDOC01-appb-C000013
 上記[Z-III]式中、nおよびmはそれぞれ独立に0,1または2であり、qは1,2または3である。R18~R31はそれぞれ独立に、水素原子、フッ素原子を除くハロゲン原子またはフッ素原子を除くハロゲン原子で置換されていてもよい炭素原子数1~20の炭化水素基である。また、q=1のとき、R28とR29、R29とR30、R30とR31は互いに結合して単環または多環を形成してもよい。また、q=2または3のとき、R28とR28、R28とR29、R29とR30、R30とR31、R31とR31は互いに結合して単環または多環を形成していてもよく、上記単環または上記多環が二重結合を有していてもよく、また上記単環または上記多環が芳香族環であってもよい。[Z-III]式中、nおよびmは0であり、かつqは1,2または3であることが好ましく、[Z-III]式中、nおよびmは0であり、かつqは1であることがより好ましい。
Figure JPOXMLDOC01-appb-C000014
 上記[Z-IV]式中、xは0または1以上の整数である。また、R111~R118は、それぞれ独立に水素原子、ハロゲン原子、および炭化水素基から選ばれ、R121~R124は、それぞれ独立に水素原子、ハロゲン原子、および炭化水素基から選ばれ、隣接する2つの基は互いに結合し単環または複環の芳香族環を形成していてもよい。
 共重合成分として、上記[Z-I]式、上記[Z-II]式、上記[Z-III]式または上記[Z-IV]式で表される環状オレフィンモノマーを用いることにより、環状オレフィン系共重合体の溶媒への溶解性がより向上することにより、成形性が良好となり、製品の歩留まりが向上する。
 構成単位(A)と構成単位(B)の合計を100mol%として、構成単位(A)は好ましくは30~80mol%、より好ましくは40~77mol%、さらに好ましくは50~75mol%であり、構成単位(B)は好ましくは20~70mol%、より好ましくは23~60mol%、さらに好ましくは25~50mol%である。構成単位(A)および構成単位(B)の割合を上記数値範囲とすることにより、環状オレフィン系共重合体の溶媒への溶解性がより向上することにより、成形性が良好となり、製品の歩留まりが向上する。
 オレフィン由来の構成単位(A)の割合は、13C-NMRによって測定することができる。
 本実施形態に係る、オレフィン共重合体の共重合原料の1つであるオレフィンモノマーは、付加重合して上記構成単位(A)を形成するものである。具体的には、例えば、下記一般式(Ia)で表されるオレフィンモノマーを例示できる。
Figure JPOXMLDOC01-appb-C000015
 上記一般式(Ia)において、R300は水素原子または炭素原子数1~28の直鎖または分岐状の炭化水素基を示す。
 上記一般式(Ia)で表されるオレフィンモノマーとしては、例えば、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、3-メチル-1-ブテン、3-メチル-1-ペンテン、3-エチル-1-ペンテン、4-メチル-1-ペンテン、4-メチル-1-ヘキセン、4,4-ジメチル-1-ヘキセン、4,4-ジメチル-1-ペンテン、4-エチル-1-ヘキセン、3-エチル-1-ヘキセン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセン等が挙げられる。より優れた耐熱性、機械的特性および光学特性を有する光学部品を得る観点から、これらの中でも、エチレンとプロピレンが好ましく、エチレンが特に好ましい。上記一般式(Ia)で表されるオレフィンモノマーは、2種類以上を用いても良い。上記一般式(Ia)で表されるオレフィンモノマーは、より優れた成形性および光学特性を有する光学部品を得る観点から、非環状ジエンを有さないことが好ましい。
 上記[Z-I]式、上記[Z-II]式、上記[Z-III]式または上記[Z-IV]式で表される環状オレフィンモノマーの具体例としては、例えば、ビシクロ-2-ヘプテン誘導体(ビシクロヘプト-2-エン誘導体)、トリシクロ-3-デセン誘導体、トリシクロ-3-ウンデセン誘導体、テトラシクロ-3-ドデセン誘導体、ペンタシクロ-4-ペンタデセン誘導体、ペンタシクロペンタデカジエン誘導体、ペンタシクロ-3-ペンタデセン誘導体、ペンタシクロ-4-ヘキサデセン誘導体、ペンタシクロ-3-ヘキサデセン誘導体、ヘキサシクロ-4-ヘプタデセン誘導体、ヘプタシクロ-5-エイコセン誘導体、ヘプタシクロ-4-エイコセン誘導体、ヘプタシクロ-5-ヘンエイコセン誘導体、オクタシクロ-5-ドコセン誘導体、ノナシクロ-5-ペンタコセン誘導体、ノナシクロ-6-ヘキサコセン誘導体、シクロペンタジエン-アセナフチレン付加物、1,4-メタノ-1,4,4a,9a-テトラヒドロフルオレン誘導体、1,4-メタノ-1,4,4a,5,10,10a-ヘキサヒドロアントラセン誘導体、炭素数3~20のシクロアルキレン誘導体が挙げられる。
 上記[Z-I]式、上記[Z-II]式、上記[Z-III]式または上記[Z-IV]式で表される環状オレフィンモノマーの重量平均分子量として、50g/mol以上500g/mol以下が好ましく、100g/mol以上300g/mol以下がさらに好ましく、100g/mol以上250g/mol以下が最も好ましい。
 また、環状オレフィン重合体が、一般式[Z-I]、[Z-II]、[Z-III]または[Z-IV]からなる群より選択される1種または2種以上の環状オレフィンモノマーとして2種類以上の環状オレフィンモノマーを含む場合は、それら環状オレフィンモノマーのうち、少なくとも1種の環状オレフィンモノマーの重量平均分子量が100g/mol以上500g/mol以下であることが好ましい。
 [Z-I]式、[Z-II]式、[Z-III]式または[Z-IV]式から選ばれる単独又は二種で表される環状オレフィンモノマーの中でも、[Z-I]式と[Z-IV]式から選ばれる単独又は二種で表される環状オレフィンが好ましい。
 上記[Z-I]式で表される環状オレフィンモノマーとして、ビシクロ[2.2.1]-2-ヘプテン(ノルボルネンとも呼ぶ。)、テトラシクロ[4.4.0.12,5.17,10]-3-ドデセン(テトラシクロドデセンとも呼ぶ。)、5-フェニル-ビシクロ[2.2.1]ヘプト-2-エン、5-メチル-ビシクロ[2.2.1]ヘプト-2-エン、5-トリル-ビシクロ[2.2.1]ヘプト-2-エン、5-(エチルフェニル)-ビシクロ[2.2.1]ヘプト-2-エンの中から選択される1種または2種以上を用いることが好ましく、テトラシクロ[4.4.0.12,5.17,10]-3-ドデセンを用いることがより好ましい。これらの環状オレフィンは剛直な環構造を有するため共重合体および光学部品の弾性率が保持され易くなる利点がある。上記[Z-I]式で表される環状オレフィンモノマーとしては、より優れた成形性および光学特性を有する光学部品を得る観点から、極性基を有さないことが好ましい。
 本実施形態に係る共重合体の共重合タイプは特に限定されないが、例えば、ランダム共重合体、ブロック共重合体等を挙げることができる。本実施形態においては、透明性、屈折率および複屈折率等の光学物性に優れ、高精度の光学部品を得ることができることから、本実施形態に係る共重合体としては、ランダム共重合体を用いることが好ましい。
 本実施形態に係る共重合体としては、エチレンとテトラシクロ[4.4.0.12,5.17,10]-3-ドデセン(以下、TDとも称する)とのランダム共重合体、エチレンとビシクロ[2.2.1]-2-ヘプテン(以下、ノルボルネン又はNBと呼ぶ)とのランダム共重合体、エチレンと5-フェニル-ビシクロ[2.2.1]ヘプト-2-エンとの共重合体、エチレンと5-メチル-ビシクロ[2.2.1]ヘプト-2-エンとの共重合体、エチレンと5-トリル-ビシクロ[2.2.1]ヘプト-2-エンとの共重合体、エチレンと5-(エチルフェニル)-ビシクロ[2.2.1]ヘプト-2-エンとの共重合体、エチレンと5-(イソプロピルフェニル)―ビシクロ[2.2.1]ヘプト-2-エンとの共重体、エチレンと5-(α-ナフチル)―ビシクロ[2.2.1]ヘプト-2-エンとの共重合体、エチレンと1,4-メタノ-1,4,4a,9a-テトラヒドロフルオレン共重合体、エチレンと1,4-メタノ-1,4,4a,5,10,10a-ヘキサヒドロアントラセン共重合体、エチレンと1,4,4a,9a-テトラヒドロ1、4メタノフルオレン(以下、インデンノルボルネン又はIndNBと呼ぶ)、エチレンと1,4-ジヒドロ-1,4-メタノナフタレン(以下、ベンゾノルボルナジエン又はBNBDと呼ぶ)の共重合体、エチレンとテトラシクロ[4.4.0.12,5.17,10]-3-ドデセンと1,4-ジヒドロ-1,4-メタノナフタレンの共重合体、エチレンとテトラシクロ[4.4.0.12,5.17,10]-3-ドデセンと1,4,4a,9a-テトラヒドロ1、4メタノフルオレン(以下、インデンノルボルネンと呼ぶ)の共重合体、エチレンとノルボルネンと1,4-ジヒドロ-1,4-メタノナフタレンの共重合体、エチレンとノルボルネンとインデンノルボルネンの共重合体、エチレンとテトラシクロ[4.4.0.12,5.17,10]-3-ドデセンとノルボルネンの共重合体であることが好ましく、エチレンとテトラシクロ[4.4.0.12,5.17,10]-3-ドデセンとのランダム共重合体、エチレンと1,4-ジヒドロ-1,4-メタノナフタレンの共重合体、エチレンとテトラシクロ[4.4.0.12,5.17,10]-3-ドデセンと1,4-ジヒドロ-1,4-メタノナフタレンの共重合体、エチレンとテトラシクロ[4.4.0.12,5.17,10]-3-ドデセンとノルボルネンの共重合体がより好ましく、エチレンとテトラシクロ[4.4.0.12,5.17,10]-3-ドデセンとのランダム共重合体、エチレンと1,4-ジヒドロ-1,4-メタノナフタレンとの共重合体、エチレンとテトラシクロ[4.4.0.12,5.17,10]-3-ドデセンと1,4-ジヒドロ-1,4-メタノナフタレンとの共重合体がさらに好ましい。
 本実施形態に係る共重合体は1種類を単独で用いても、2種類以上を組み合わせて用いてもよい。
 本実施形態に係る共重合体は、例えば、特開昭60-168708号公報、特開昭61-120816号公報、特開昭61-115912号公報、特開昭61-115916号公報、特開昭61-271308号公報、特開昭61-272216号公報、特開昭62-252406号公報、特開昭62-252407号公報、特開2018-145349号公報、国際広報2015/122415号、特開2007-063409号公報、特開平2-173112号公報等の方法に従い適宜条件を選択することにより製造することができる。
 (環状オレフィン開環重合体)
 本実施形態に係る環状オレフィン開環重合体は、ノルボルネン骨格を有する環状オレフィン開環重合体である。得られる光学部品の透明性および屈折率の性能バランスを良好に保ちつつ耐熱性をさらに向上できたり、成形性を向上できたりする観点から、上記一般式(Z-I)で表される構成単位と、上記一般式(Z-II)で表される構成単位と、上記一般式(Z-IV)で表される構成単位とからなる群より選択される少なくとも1種から導かれる構造を有することが好ましい。ただし、上記一般式(Z-I)のu=v=0、上記一般式(Z-II)のx=0、上記一般式(Z-IV)のx=0を除く。上記一般式(Z-I)、一般式(Z-II)、一般式(Z-IV)の炭素-炭素二重結合が開環して形成した炭素-炭素結合が構成単位(A)に該当し、上記構成単位(A)に該当する以外の部分が構成単位(B)に該当する。
 すなわち、開環重合体は共重合成分と同様の構成単位から導かれる構成単位を有することが好ましい。
 {立体規則性}
 本実施形態に係る立体規則性は、13C-NMRにて測定される。13C-NMR測定はメソ構造とラセモ構造を区別できれば特に限定されるものではない。具体的な測定条件の一例は、上述の通りである。
 ここで、メソ構造とラセモ構造を示す13C-NMRのシグナル位置は重合体(共重合体、開環重合体)によって異なる。以下に、いくつかの実施形態について、13C-NMRのシグナル位置およびシグナルの測定方法について説明する。
 (A:エチレンとTDの重合体の場合)
 環状オレフィン重合体で、エチレンと上記[Z-I]式で表される構造を有し、u=0、v=1で、[Z-I]式が芳香環を有さない場合(即ち、エチレンとTDの重合体の場合)。
 13C-NMRスペクトルにおける、
  ・38.7~39.7ppmの範囲のシグナルの積分値(X
  ・40.3~41.2ppmの範囲のシグナルの積分値(Y
において、立体規則性=X/Yと定義され、この比が0.01以上100以下であり、好ましくは0.1以上10.0以下であり、より好ましくは0.2以上5.0以下であり、さらに好ましくは0.3以上3.0以下であり、さらに好ましくは0.4以上1.5以下であり、さらに好ましくは0.4以上1.2以下であり、さらに好ましくは0.5以上1.0以下であり、最も好ましくは0.5以上0.9以下である。
 A:エチレンとTDの重合体の場合には、範囲内にピークが1つしか現れないため、シグナルの積分値とする。
 (B:エチレンとNBの重合体の場合)
 環状オレフィン重合体で、エチレンと上記[Z-I]式で表される構成単位を有し、u=v=0で、[Z-I]式が芳香環を有さない場合(即ち、エチレンとNBの重合体の場合)。
 13C-NMRスペクトルにおける、
  ・44.6~45.6ppmの範囲のシグナルの積分値の合計(X
  ・45.6~46.0ppmの範囲のシグナルの積分値の合計(Y
において、立体規則性=X/Yと定義され、この比が0.01以上100以下であり、好ましくは0.01以上50.0以下であり、さらに好ましくは0.05以上5.0以下であり、より好ましくは0.25以上4.0以下であり、最も好ましくは0.3以上3.0以下である。
 B:エチレンとNBの重合体の場合には、範囲内にピークが複数現れるため、シグナルの積分値の合計とする。
 (C:エチレンとBNBDの重合体の場合)
 環状オレフィン重合体で、エチレンと上記[Z-III]式で表される構成単位を有する場合(即ち、エチレンとBNBDの重合体の場合)。
 13C-NMRスペクトルにおける、
  ・30.8~31.3ppmの範囲のシグナルの積分値(X)から30.1~30.8ppmの範囲のシグナルの積分値(Z)を差し引いた値(X-Z)
  ・31.3~31.8ppmの範囲のシグナルの積分値(Y
において、立体規則性=(X-Z)/Yと定義され、この比が0.01以上100以下であり、好ましくは0.01以上10.0以下である。さらに好ましくは、0.05以上5.0以下であり、0.1以上1.0以下であることがより好ましい。最も好ましくは0.3以上1.0以下である。これは、30.8~31.3ppmのピーク中に一部、BNBD-エチレンn-BNBE-(n=2以上)に該当するシグナルが含まれ、30.1~30.8ppmの範囲のシグナルの積分値(Z)を指し引いた値である。
 (D:エチレン、TDとBNBDの重合体の場合)
 環状オレフィン重合体で、エチレンと、上記[Z-I]式で表される構造において、u=0、v=1かつ芳香環を有さない、上記[Z-I]式で表される構造と、上記[Z-III]式で表される構成単位と、を有する場合(即ち、エチレン、TDとBNBDの重合体の場合)。
 13C-NMRスペクトルにおける、
  ・38.7~39.7ppmの範囲のシグナルの積分値(X
  ・40.3~41.2ppmの範囲のシグナルの積分値(Y
において、X/Yの比が0.01以上100以下であり、好ましくは0.01以上10.0以下であり、さらに好ましくは0.05以上5.0以下であり、より好ましくは0.1以上1.0以下であり、最も好ましくは0.3以上1.0以下である。
 また、13C-NMRスペクトルにおける、
  ・43.6~43.8ppmの範囲のシグナルの積分値(M
・44.5~45.0ppmの範囲のシグナルの積分値(N
において、M/Nの比が0.01以上100以下であり、好ましくは0.01以上10.0以下であり、さらに好ましくは0.05以上5.0以下であり、より好ましくは0.1以上1.0以下であり、最も好ましくは0.3以上1.0以下である。
 D:エチレン、TDとBNBDの重合体の場合には、範囲内にTD-エチレン-TDとBNBD-エチレン-BNBDのピークが現れるため、X、YをTD-エチレン-TDのシグナルの積分値とし、M、NをBNBD-エチレン-BNBDの積分値とし、立体規則性=X/Y+M/Nと定義する。この立体規則性=X/Y+M/Nの比は、好ましくは0.01以上100以下であり、より好ましくは0.01以上10.0以下であり、さらに好ましくは0.05以上5.0以下であり、さらに好ましくは0.1以上1.0以下であり、最も好ましくは0.3以上1.0以下である。
 本実施形態に係る環状オレフィン重合体は、下記要件(b)を満たすことが好ましい。
(要件(b))
 13C-NMRで測定した上記構成単位(B)-上記構成単位(B)の連鎖が構成単位(B)に占める割合が0.1mol%以上20.0mol%以下である。
 ここで、51.2~55.5ppmの範囲にシグナルが検出される場合、13C-NMRで測定した上記構成単位(B)-上記構成単位(B)の連鎖が構成単位(B)に占める割合は、13C-NMRスペクトルにおける
  ・51.2~55.5ppmの範囲に検出されるシグナルの積分値の合計(P)
  ・54.0~54.6ppmの範囲に検出されるシグナルの積分値の合計(Q)
を用いて、(P)から(Q)を差し引いた(P-Q)の値を(P)で割ることにより算出することができる。
 このとき、上記13C-NMRで測定した上記構成単位(B)-上記構成単位(B)の連鎖が構成単位(B)に占める割合は、好ましくは0.1mol%以上20mol%以下であり、より好ましくは0.3mol%以上10mol%以下であり、さらに好ましくは0.6mol%以上5.0mol%以下であり、さらに好ましくは0.8mol%以上4.5mol%以下であり、さらに好ましくは1.0mol%以上3.6mol%以下である。これは、ノルボルネン骨格を有する環状オレフィン化合物が連鎖したものの含有量に相当し、例えば、TDとTDが連鎖したものに相当する。これらが上記範囲にあることで、凝集を抑制し、重合体の溶解度がより高くなる。
 また、40.0~50.0ppmの範囲にシグナルが検出される場合、13C-NMRで測定した上記構成単位(B)-上記構成単位(B)の連鎖が構成単位(B)に占める割合は、13C-NMRスペクトルにおける
  ・40.0~50.0ppmの範囲に検出されるシグナルの積分値の合計(T)
  ・45.0~46.0ppmの範囲に検出されるシグナルの積分値の合計(U)
を用いて、(U)から(T)を割った(U/T)の値を2.5倍し、BNBDの組成比で掛け算した後100で割ることにより算出することができる。
 このとき、上記13C-NMRで測定した上記構成単位(B)-上記構成単位(B)の連鎖が構成単位(B)に占める割合は、好ましくは0.1mol%以上20mol%以下であり、より好ましくは0.3mol%以上10mol%以下であり、さらに好ましくは0.6mol%以上5.0mol%以下であり、さらに好ましくは0.8mol%以上4.5mol%以下であり、さらに好ましくは1.0mol%以上3.6mol%以下である。これは、ノルボルネン骨格を有する環状オレフィン化合物が連鎖したものの含有量に相当し、例えば、BNBDとBNBDが連鎖したものに相当する。これらが上記範囲にあることで、凝集を抑制し、重合体の溶解度がより高くなる。
 ここで、40.0~50.0ppmの範囲および51.2~55.5ppmの範囲の両方にシグナルが検出される場合、13C-NMRで測定した上記構成単位(B)-上記構成単位(B)の連鎖が構成単位(B)に占める割合は、上述の方法にてそれぞれ算出した構成単位(B)に占める割合を合計することにより算出することができる。
 このとき、上記13C-NMRで測定した上記構成単位(B)-上記構成単位(B)の連鎖が構成単位(B)に占める割合は、好ましくは0.1mol%以上20mol%以下であり、より好ましくは0.3mol%以上10mol%以下であり、さらに好ましくは0.6mol%以上5.0mol%以下であり、さらに好ましくは0.8mol%以上4.5mol%以下であり、さらに好ましくは1.0mol%以上3.6mol%以下である。これは、ノルボルネン骨格を有する環状オレフィン化合物が連鎖したものの含有量に相当し、例えば、TDとTDが連鎖したものとBNBDとBNBDが連鎖したものとの合計に相当する。これらが上記範囲にあることで、凝集を抑制し、重合体の溶解度がより高くなる。
 本実施形態に係る環状オレフィン重合体のガラス転移温度(Tg)の下限値は、50℃以上であることが好ましく、83℃以上であることがより好ましく、110℃以上であることが特に好ましい。
また、Tgの上限値は、250℃以下であることが好ましく、200℃以下であることがより好ましく、180℃以下であることがさらに好ましく、169℃以下であることがさらに好ましく、165℃以下であることがさらに好ましく、160℃以下であることが特に好ましい。
 本実施形態に係る環状オレフィン重合体が、前記構成単位(A)と前記構成単位(B)とを有する環状オレフィン共重合体の場合は、Tgが上記下限値以上であることにより、環状オレフィン共重合体の結晶性を過度に高くすることなく、溶媒への溶解性を良好なものとすることができる。また、Tgが上記上限値以下であることにより、凝集を抑制し、重合体の溶解度をより高くすることができる。
 さらに、Tgが上記範囲であると、耐熱性が求められる部品として使用する際に、十分な耐熱性を得ることができるとともに、良好な成形性を得ることができる。一般的に、環状オレフィン重合体のTgは構成単位(A)と構成単位(B)との組成により変化し、構成単位(B)の含有量の増加に伴いTgが増加する傾向がある。ただし、同一組成であっても、構成単位(B)の連鎖が多くなると、理由は定かではないがTgはより高くなる傾向がある。このようなTgは、上記[Z-I]式、[Z-II]式、[Z-III]式または[Z-IV]式からなる群より選択される1種または2種以上の環状モノマーから導かれる構成単位(B)の連鎖(構成単位(B)-構成単位(B)の連鎖)が、環状オレフィン共重合体に含まれる構成単位(B)全体中に占める割合を例えば0.1mol%以上20.0mol%以下とすることで得ることができる。
 ガラス転移温度は示差走査熱量計(DSC)により測定できる。具体的な測定条件は、例えば、日立ハイテクサイエンス社製、DSC-7020を用いて、窒素雰囲気下で常温から10℃/分の昇温速度で250℃まで昇温した後に、5分間保持し、次いで10℃/分の降温速度で-20℃まで降温した後に、5分間保持した。そして、10℃/分の昇温速度で300℃まで昇温する際の吸熱曲線から環状オレフィン重合体のガラス転移温度(Tg)を求めることができる。
 本実施形態に係る環状オレフィン重合体の分子量は特に限定されないが、分子量の代替指標として極限粘度[η][dL/g]を用いた場合、ASTM J1601に準じて測定した[η][dL/g]の値は0.1以上5.0以下が好ましく、0.2以上3.0以下がさらに好ましく、0.2以上2.0以下が最も好ましい。
 本実施形態に係る環状オレフィン重合体が、前記構成単位(A)と前記構成単位(B)とを有する環状オレフィン共重合体の場合、ゲルパーミエイションクロマトグラフィー(GPC)により求めた重量平均分子量(Mw)は、1,000≦Mw≦4,500,000、好ましくは、3,000≦Mw≦3,000,000、より好ましくは5,000≦Mw≦2,000,000、さらに好ましくは10,000≦Mw≦1,000,000、最も好ましくは30,000≦Mw≦500,000の範囲にあることが好ましい。
 極限粘度や重量平均分子量(Mw)が上記下限値以上であると、溶媒への溶解性又は成形体の機械的強度を向上させることができる。また、極限粘度が上記上限値以下であると、成形性を向上させることができる。
 また、本実施形態に係る環状オレフィン重合体は、Tgが169℃以下かつMwが300,000以下であることが好ましく、Tgが165℃以下かつMwが300,000以下であることがより好ましく、Tgが160℃以下かつMwが300,000以下であることがさらに好ましい。
 本実施形態に係る環状オレフィン重合体がTgおよびMwの上記数値範囲を同時に満たすことにより、溶媒への溶解性および成形体の機械的強度を同時に向上させることができる。
 本実施形態に係る環状オレフィン重合体の密度は、JIS K7112に基づく水中置換法によって23℃の水中で測定した密度の値が、好ましくは1000[kg/m]以上1200[kg/m]以下であり、より好ましくは1020[kg/m]以上1100[kg/m]以下であり、さらに好ましくは1040[kg/m]以上1080[kg/m]以下であり、さらに好ましくは1050[kg/m]以上1070[kg/m]以下であり、さらに好ましくは1055[kg/m]以上1065[kg/m]以下である。
 密度の値が上記数値範囲内であると、得られる光学部品の透明性および屈折率の性能バランスを良好に保ちつつ耐熱性をさらに向上できる。
 なお、この際の試験片は、たとえば本実施形態に係る環状オレフィン重合体を超耐熱性ポリイミドフィルム(商品名:ユーピレックス、宇部興産社製)に挟み込み、0.1mmスペーサーを用いて、260℃、10MPa、3分間の条件で真空プレス成形することによって得ることができる。
 (その他の成分)
 本実施形態に係る環状オレフィン重合体は、必要に応じて、親水剤、安定剤、耐候安定剤、耐熱安定剤、酸化防止剤、金属不活性剤、塩酸吸収剤、帯電防止剤、難燃剤、スリップ剤、アンチブロッキング剤、防曇剤、滑剤、天然油、合成油、ワックス、有機または無機の充填剤等を、本実施形態の目的を損なわない範囲で配合することができ、その配合割合は適宜量である。
 本実施形態に係る環状オレフィン重合体の組成物は、さらに親水剤を含むことが好ましい。親水剤を含むことで、高温高湿条件下における成形体の諸特性の劣化が抑制できる。
 親水剤としては、脂肪酸と多価アルコールとの脂肪酸エステルが好ましい。脂肪酸とエーテル基を1つ以上有する多価アルコールとの脂肪酸エステルがより好ましい。
 脂肪酸エステルとしては、モノグリセリン脂肪酸エステル、ジグリセリン脂肪酸エステル、トリグリセリン脂肪酸エステル、ペンタエリスリトールモノステアレート、ペンタエリスリトールジステアレート、ペンタエリスリトールトリステアレート等を挙げることができる。
 脂肪酸とエーテル基を1つ以上有する多価アルコールとの脂肪酸エステルは、脂肪酸とエーテル基を1つ以上有する多価アルコールとのエステルである。なお、多価アルコールのエーテル基は、エーテル基中のエーテル基を含まない。
 エーテル基を1つ以上有する多価アルコールとしては、モノグリセリン、ジグリセリン、トリグリセリン、テトラグリセリン、ソルビタン等を挙げることができる。
 本実施形態において、脂肪酸エステルは、モノグリセリン脂肪酸エステル、ジグリセリン脂肪酸エステル、トリグリセリン脂肪酸エステルを含むことが好ましい。ジグリセリン脂肪酸エステルは、ジグリセリンに含まれる4つのヒドロキシ基の少なくとも1つが脂肪酸とエステル化したものである。
 脂肪酸としては、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、カプリン酸、ラウリン酸、ミリスチン酸、パルチミン酸、ステアリン酸等の飽和脂肪酸;クロトン酸、ミリストレイン酸、パルミトレイン酸、サピエン酸、オレイン酸、エライジン酸、ガドレイン酸、エイコセン酸等のモノ不飽和脂肪酸;リノール酸、エイコサジエン酸、ドコサジエン酸等のジ不飽和脂肪酸;リノレン酸、ピノレン酸、エレオステアリン酸、エイコサトリエン酸等のトリ不飽和脂肪酸;ステアリドン酸、アラキドン酸、エイコサテトラエン酸等のテトラ不飽和脂肪酸;等を挙げることができる。
 ジグリセリン脂肪酸エステルとしては、ジグリセリンモノカプリレート、ジグリセリンジカプリレート、ジグリセリンモノカプレート、ジグリセリンジカプレート、ジグリセリンモノラウレート、ジグリセリンジラウレート、ジグリセリンモノミリステート、ジグリセリンジミリステート、ジグリセリンモノパルミテート、ジグリセリンジパルミテート、ジグリセリンモノステアレート、ジグリセリンジステアレート、ジグリセリンモノベヘネート、ジグリセリンジベヘネート等のジグリセリン飽和脂肪酸エステル;ジグリセリンモノオレート、ジグリセリンジオレート等のジグリセリン不飽和脂肪酸エステル;等が挙げられ、これらから選択される1種または2種以上を組み合わせて用いることができる。
 本実施形態において、ジグリセリン脂肪酸エステルは、ジグリセリンと上記から選択される炭素原子数12~18の飽和または不飽和脂肪酸とのエステルであることが好ましい。
 なお、本実施形態の効果の観点から、ジグリセリン不飽和脂肪酸エステルを主成分として含むことが好ましく、そのうちでもジグリセリンモノオレートを主成分として含むことがより好ましい。ジグリセリン骨格が親水性を有し、脂肪酸が樹脂との相溶性を改善するため、透明性が維持されるとともに、耐湿熱性に優れる。
 本実施形態に係る環状オレフィン重合体としての組成物は、少なくとも1種のジグリセリン脂肪酸エステルを含むことができる。少なくとも1種のジグリセリン脂肪酸エステルの好ましい態様としては、モノエステル単独またはモノエステルとジエステルとの組み合わせを挙げることができる。
 トリグリセリン脂肪酸エステルは、脂肪酸と、トリグリセリンとのエステルである。
 本実施形態に係るトリグリセリン脂肪酸エステルは、トリグリセリンに含まれる3つのヒドロキシ基の少なくとも1つが脂肪酸とエステル化したものである。
 トリグリセリン脂肪酸エステルとしては、トリグリセリンモノカプリレート、トリグリセリンジカプリレート、トリグリセリントリカプリレート、トリグリセリンモノカプレート、トリグリセリンジカプレート、トリグリセリントリカプレート、トリグリセリンモノラウレート、トリグリセリンジラウレート、トリグリセリントリラウレート、トリグリセリンモノミリステート、トリグリセリンジミリステート、トリグリセリントリミリステート、トリグリセリンモノパルミテート、トリグリセリンジパルミテート、トリグリセリントリパルミレート、トリグリセリンモノステアレート、トリグリセリンジステアレート、トリグリセリントリステアレート、トリグリセリンモノベヘネート、トリグリセリンジベヘネート、トリグリセリントリベヘネート等のトリグリセリン飽和脂肪酸エステル;トリグリセリンモノオレート、トリグリセリンジオレート、トリグリセリントリオレート等のトリグリセリン不飽和脂肪酸エステル;等が挙げられ、これらから選択される1種または2種以上を組み合わせて用いることができる。
 本実施形態に係るトリグリセリン脂肪酸エステルは、トリグリセリンと炭素原子数8以上24以下の飽和または不飽和脂肪酸とのエステルを含むことが好ましく、トリグリセリンと炭素原子数12以上18以下の飽和または不飽和脂肪酸とのエステルを含むことがより好ましい。
 本実施形態に係るトリグリセリン脂肪酸エステルとしては、モノエステル単独、モノエステルとジエステルとの混合物またはモノエステルとジエステルとトリエステルとの混合物を挙げることができる。
 このようなトリグリセリン脂肪酸エステルとしては、例えば、特開2006-232714号公報、特開2002-275308号公報、特開平10-165152号公報等に記載の化合物を用いることができる。
 本実施形態に係る親水剤の市販品としては、例えば、リケマールDO-100(理研ビタミン社製)、エキセパールPE-MS(花王社製)等が挙げられる。
 本実施形態に係る環状オレフィン重合体としての組成物において、親水剤の含有量の下限は、環状オレフィン重合体組成物100質量部に対して、0.05質量部以上であることが好ましく、より好ましくは0.4質量部以上である。また、親水剤の含有量の上限は、環状オレフィン重合体組成物100質量部に対して、好ましくは3.0質量部以下、より好ましくは2.5質量部以下、さらに好ましくは1.2質量部以下である。
 酸化防止剤としては、公知の酸化防止剤が使用可能である。具体的には、ヒンダードフェノール化合物、硫黄系酸化防止剤、ラクトーン系酸化防止剤、有機ホスファイト化合物、有機ホスフォナイト化合物、あるいはこれらを数種類組み合わせたものが使用できる。
 滑剤としては、例えば、ラウリル酸、パルミチン酸、オレイン酸、ステアリン酸などの飽和または不飽和脂肪酸のナトリウム、カルシウム、マグネシウム塩等があげられ、これらは単独または2種以上を混合して用いることができる。滑剤の配合量は、特に限定されないが、オレフィン系重合体100質量部に対して、例えば、0.01~3質量部、好ましくは0.01~2質量部程度とすることができる。
 スリップ剤としては、ラウリル酸、パルチミン酸、オレイン酸、ステアリン酸、エルカ酸、へベニン酸などの飽和または不飽和脂肪酸のアミド、あるいはこれらの飽和または不飽和脂肪酸のビスアマイドを用いることが好ましい。これらの内では、エルカ酸アミドおよびエチレンビスステアロアマイドが特に好ましい。これらの脂肪酸は環状オレフィン重合体100質量部に対して、通常、0.01~5質量部の範囲で配合することができる。
 アンチブロッキング剤としては、微粉末シリカ、微粉末酸化アルミニウム、微粉末クレー、粉末状または液状のシリコン樹脂、テトラフロロエチレン樹脂、微粉末架橋樹脂粉末(例えば、架橋されたアクリル、メタクリル樹脂粉末等)を挙げることができる。これらの内、微粉末シリカおよび微粉末架橋樹脂粉末が好ましい。
 本実施形態に係るノルボルネン骨格を有する環状オレフィン共重合体およびノルボルネン骨格を有する環状オレフィン開環重合体は、レンズ形状、球状、棒状、板状、円柱状、筒状、チューブ状、繊維状、フィルムまたはシート形状等の種々の形態で使用することができる。中でも、好ましくは、光学部品、フィルム、医療用部品に用いることができる。例えば、光学部品としては、眼鏡レンズ、fθレンズ、ピックアップレンズ、撮像用レンズ、センサーレンズ、デジタルカメラ撮影レンズ、プロジェクター用レンズ、光ディスク用ピックアップレンズ、車載カメラレンズ等の光学レンズ、プリズム、導光板、XRデバイス等が挙げられる。フィルムとしては、例えば、ディスプレイ用位相差フィルム、ディスプレイ用視認性向上フィルム、タッチセンサー用フィルム、太陽電池のベースフィルム基材、回路基板、高周波用途基板、液晶ディスプレイや太陽電池の基板やフィルムまたはシート、錠剤用包装用シート(PTP)、収縮フィルム、食品包装用易引裂フィルム、フィルムコンデンサ等が挙げられる。医療用部品としては、例えば、プレフィールドシリンジ、プラスチックバイアル、輸液バッグ、血液分析セル、カテーテル部材、錠剤ビン、検査用容器、滅菌シート、バイオプレート、バイオチップ等が挙げられる。
 環状オレフィン共重合体および環状オレフィン開環重合体は、溶媒への溶解性が高いため、特にポリマーをコーティングする際に用いられる溶媒(例えば、メチルシクロヘキサン、トルエン等)に室温および室温付近で容易に溶解することができる。そのため、均質に溶解した溶媒が得られるため、フィルム等の成形体にした際にムラがなく、機械強度や伸びに優れる。
 本実施形態に係る成形体は、環状オレフィン重合体を含む組成物を所定の形状に成形することにより得られる。環状オレフィン重合体を含む組成物を成形して成形体を得る方法は、特に限定されず、公知の方法を用いることができる。その用途および形状にもよるが、例えば、押出成形、射出成形、圧縮成形、インフレーション成形、ブロー成形、押出ブロー成形、射出ブロー成形、プレス成形、真空成型、パウダースラッシュ成形、カレンダー成形、発泡成形等が適用可能である。これらの中でも、成形性、生産性の観点から射出成形と押出成形が好ましい。また、成形条件は使用目的または成形方法により適宜選択されるが、例えば、射出成形における組成物温度は、通常150℃~400℃、好ましくは200℃~350℃、より好ましくは230℃~330℃の範囲で適宜選択される。
 環状オレフィン共重合体および環状オレフィン開環重合体は、コーティング剤の調製に用いてもよいし、コーティング剤の調製時に溶媒中で混合しても良い。
 コーティング剤を調製するための溶媒としては、特に限定されないが、例えば、ベンゼン、トルエン、キシレン等の芳香族炭化水素、ヘキサン、ヘプタン、オクタン、デカン等の脂肪族炭化水素、シクロヘキサン、シクロヘキセン、メチルシクロヘキサン等の脂環式炭化水素、メタノール、エタノール、イソプロピルアルコール、ブタノール、ペンタノール、ヘキサノール、プロパンジオール、フェノール等のアルコール、アセトン、メチルイソブチルケトン、メチルエチルケトン、ペンタノン、ヘキサノン、イソホロン、アセトフェノン等のケトン系溶媒、メチルセルソルブ、エチルセルソルブ等のセルソルブ類、酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸メチル、ギ酸ブチル等のエステル類、トリクロルエチレン、ジクロルエチレン、クロルベンゼン等のハロゲン化炭化水素類を挙げることができる。この中では、芳香族炭化水素、脂肪族炭化水素、ケトン類が好ましい。これらは一種を単独で用いても、2種類以上を組み合わせてもよい。
 コーティング剤とした場合、コーティングの方法は特に制限はなく、公知の方法で行うことができる。例えば、ダイコート法、フローコート法、スプレーコート法、バーコート法、グラビアコート法、グラビアリバースコート法、キスリバースコート法、マイクログラビアコート法、ロールコート法、ブレードコート法、ロッドコート法、ロールドクターコート法、エアナイフコート法、コンマロールコート法、リバースロールコート法、トランスファーロールコート法、キスロールコート法、カーテンコート法及びディッピングコート法等の方法で塗布した後、自然乾燥あるいは加熱強制乾燥等、適宜の方法によって乾燥させることで塗膜を得ることができる。
 <環状オレフィン重合体の製造方法>
 本実施形態に係る環状オレフィン重合体は、例えば、環状オレフィン重合体および必要に応じて添加されるその他の成分を、押出機およびバンバリーミキサー等の公知の混練装置を用いて溶融混練する方法;環状オレフィン重合体および必要に応じて添加されるその他の成分を共通の溶媒に溶解した後、溶媒を蒸発させる方法;貧溶媒中に環状オレフィン重合体および必要に応じて添加されるその他の成分の溶液を加えて析出させる方法;等の方法により得ることができる。
 次いで、得られた成形体を、例えば、(環状オレフィン重合体のガラス転移温度(Tg)-40)℃~(環状オレフィン重合体のガラス転移温度(Tg)-5)℃の範囲で、2~8時間アニール処理をすることにより、部材を得ることができる。上記アニール処理をすることにより、成形体中の環状オレフィン重合体の分子が緩和し、自由体積が減少する。そのため加熱処理しても比重の変化(体積の変化)が起きにくくなる。
 ここで、アニール処理の条件を厳しくすると、成形体が変形してしまい、戻らなくなってしまうため、上記の条件で、かつ、成形体が変形しない範囲で行うことが好ましい。すなわち、成形体の変形が起きないような温度および時間でアニール処理を行うことが好ましい。
 重合時、本実施形態に係る環状オレフィン重合体では、触媒と助触媒を選択することで立体規則性(ラセモ構造およびメソ構造の比率)を調整することができる。以下に、触媒と助触媒について詳述する。
 [触媒]
 本実施形態に係る触媒(以下、主触媒とも称する)は、環状オレフィン重合体のラセモ構造およびメソ構造の比率を調整できるものであれば特に限定されない。このような主触媒の具体例としては、例えば、ハーフメタロセン系のチタン化合物、ジルコニウム化合物、およびハフニウム化合物、メタロセン系のチタン化合物、ジルコニウム化合物、およびハフニウム化合物が挙げられる。これらの中でも、特にシクロペンタジエニル基またはピラゾレート基を有するハーフメタロセン系のチタン化合物、ジルコニウム化合物、およびハフニウム化合物とフルオレンを有するメタロセン系チタン化合物、ジルコニウム化合物、およびハフニウム化合物が好ましい。これらの主触媒であれば、ラセモ構造およびメソ構造の比率を容易に調整することができる。
 上記主触媒の具体例としては、3,5-ビスメチルエチル-1-ピラゾレート-t-ブチルシクロペンタジエンチタニウムジクロリド(特開2019-172954号公報の0385~0388段落)、ビス-t-ブチルケチミドシクロペンタジエニルチタニウムジクロリド(特開2018-150273号公報の0003~0004段落)、ジメチルメチレンフルオレニルシクロペンタジエンジルコニウムジメチル、ジフェニルメチレンフルオレニルシクロペンタニルジルコニウムジメチル(特開2019-172954号公報の0088~0109段落)、ジメチルメチレンビスインデニルジルコニウムジクロリド(特開2019-172954号公報の0081~0087段落)、ジフェニルメチレンインデニルシクロペンタニルジルコニウムジクロリド(国際公開公報2014/185253号の0092~0093段落)、3,5-ビス-t-ブチル-1-ピラゾレート-t-ブチルシクロペンタジエンチタニウムジクロリド、3,5-ビス-t-ブチル-1-ピラゾレート-インデニルチタニウムジクロリド、3-(4-メトキシフェニル)-5-(4-t-ブチルフェニル)-1-ピラゾレート-t-ブチルシクロペンタジエンチタニウムジクロリド、3,5-ジフェニル-1-ピラゾレート-t-ブチルシクロペンタジエンチタニウムジクロリド等が例示できる。
 [助触媒]
 本実施形態に係る助触媒は、主触媒の触媒能を向上させることができるものであれば、特に限定されない。このような助触媒としては、例えば、イオン性化合物が挙げられ、特にアルミニウム化合物またはホウ素化合物が好ましい。例えば、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム等のトリアルキルアルミニウム、およびその混合物等;トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート、およびN,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレートが挙げられ、特に、ペンタフルオロフェニル基を有するボレート化合物が好ましい。この助触媒であれば、立体規則性をより好適に制御することができる。
 このような助触媒の具体例としては、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、MMAO(修飾メチルアルミノキサン)、PMAO(ポリメチルアルミノキサン)が挙げられる。
 本実施形態に係る主触媒と助触媒との組み合わせとしては、主触媒としてシクロペンタジエニル基またはピラゾレート基を有するハーフメタロセン系のチタン化合物、ジルコニウム化合物、およびハフニウム化合物とまたはフルオレンを有するメタロセン系チタン化合物、ジルコニウム化合物、およびハフニウム化合物から選択される1種または2種以上、助触媒としてペンタフルオロフェニル基を有するボレート化合物の組み合わせが好ましい。
 主触媒と助触媒の好ましい組み合わせの具体例としては、以下の組み合わせが挙げられる。
 ・主触媒:3,5-ビスメチルエチル-1-ピラゾレート-t-ブチルシクロペンタジエニルチタニウムジクロリド、ビス-t-ブチルケチミドシクロペンタジエニルチタニウムジエチル、ジメチルメチレンフルオレニルシクロペンタジエニルジルコニウムジメチル、ジフェニルメチレンフルオレニルシクロペンタニルジルコニウムジメチル、ジメチルメチレンビスインデニルジルコニウムジクロリド、ジフェニルメチレンインデニルシクロペンタニルジルコニウムジクロリド、3,5-ビス-t-ブチル-1-ピラゾレート-t-ブチルシクロペンタジエンチタニウムジクロリド、3,5-ビス-t-ブチル-1-ピラゾレート-インデニルチタニウムジクロリド、3-(4-メトキシフェニル)-5-(4-t-ブチルフェニル)-1-ピラゾレート-t-ブチルシクロペンタジエンチタニウムジクロリド、3,5-ジフェニル-1-ピラゾレート-t-ブチルシクロペンタジエンチタニウムジクロリド
 ・助触媒:トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート
 ここで、主触媒および助触媒は1種または2種以上を併用して用いても良い。
 上記組み合わせのような主触媒と助触媒の組み合わせとすることにより、環状オレフィン重合体の溶解性をより好適なものとすることができる。このメカニズムは必ずしも明らかとなってはいないが、助触媒を上記助触媒とすることにより、環状オレフィン重合体中のメソ体の比率を減少させることができるためと考えられる。
 本実施形態に係る環状オレフィン重合体の製造方法は、上述した主触媒および助触媒の存在下でオレフィンと環状オレフィンとを共重合することを特徴としている。
 本実施形態に係る環状オレフィン重合体の製造方法においては、2種以上のオレフィンと環状オレフィンを共重合して共重合体を製造してもよい。
 重合における、本発明に係わるオレフィン重合用触媒を構成する各成分の使用法、重合器への添加順序は任意に選ばれるが、以下のような方法が例示される。以下では、主触媒(A)、助触媒(B)、担体(C)および有機化合物成分(D)を、それぞれ「成分(A)~(D)」ともいう。(1)成分(A)を単独で重合器に添加する方法。(2)成分(A)および成分(B)を任意の順序で重合器に添加する方法。(3)成分(A)を成分(C)に担持した触媒成分と、成分(B)とを任意の順序で重合器に添加する方法。(4)成分(B)を成分(C)に担持した触媒成分と、成分(A)とを任意の順序で重合器に添加する方法。(5)成分(A)と成分(B)とを成分(C)に担持した触媒成分を重合器に添加する方法。
 上記の各方法においては、任意の段階で成分(D)が添加されてもよい。
 上記の各方法においては、各触媒成分の少なくとも2種は予め接触されていてもよい。
 成分(B)が担持されている上記(4)、(5)の各方法においては、必要に応じて担持されていない成分(B)を、任意の順序で添加してもよい。この場合、成分(B)は、同一でも異なっていてもよい。また、成分(C)に成分(A)が担持された固体触媒成分、成分(C)に成分(A)および成分(B)が担持された固体触媒成分は、オレフィンが予備重合されていてもよく、予備重合された固体触媒成分上に、さらに触媒成分が担持されていてもよい。
 オレフィンと環状オレフィンとの共重合は、溶液重合、懸濁重合等の液相重合法または気相重合法のいずれにおいても実施できる。液相重合法において用いられる不活性炭化水素媒体としては、例えば、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、灯油等の脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロペンタン等の脂環族炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素;エチレンクロリド、クロルベンゼン、ジクロロメタン等のハロゲン化炭化水素が挙げられる。不活性炭化水素媒体は1種単独で用いてもよく、2種以上を混合して用いてもよい。
 上記のようなオレフィン重合用触媒を用いて、オレフィンの重合を行うに際して、主触媒(A)は、反応容積1リットル当り、通常10-12~10-2モル、好ましくは10-10~10-3モルになるような量で用いられる。
 担体(C)を用いる場合は、主触媒(A)と担体(C)との重量比〔(A)/(C)〕が好ましくは0.0001~1、より好ましくは0.0005~0.5、さらに好ましくは0.001~0.1となるような量で用いられる。
 本実施形態の製造方法において、前記重合工程における重合温度は、通常-50~+200℃、好ましくは0~180℃であり;重合圧力は、通常常圧~10MPaゲージ圧、好ましくは常圧~5MPaゲージ圧である。重合反応は、回分式、半連続式、連続式のいずれの方法において行うことができる。さらに重合を反応条件の異なる二段以上に分けて行う
こともできる。
 得られる環状オレフィン重合体の分子量は、重合系に水素を存在させるか、または重合温度を変化させるか、助触媒(B)の使用量により調節することができる。水素を添加する場合、その量は生成する共重合体1kgあたり0.001から5,000NL程度が適当である。
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
 また、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
 以下、本実施形態を、実施例等を参照して詳細に説明する。なお、本実施形態は、これらの実施例の記載に何ら限定されるものではない。
 まず、実施例で行った測定方法について説明する。
 [13C-NMR測定]
 13C-NMR測定は、下記の条件で行った。
  装置:ブルカーバイオスピン社製AVANCEIIIcryo-500型核磁気共鳴
  測定核:13C(125MHz)
  測定モード:シングルパルスプロトン(逆ゲート付)デカップリング
  パルス幅:90度
  ポイント数:64000
  測定範囲:-55~195ppm(合計250ppm)
  繰り返し時間:12秒
  積算回数:256回
  溶媒:1,1,2,2-テトラクロロエタン-d2
  濃度:10%w/v
  温度:120℃
  ケミカルシフト基準:テトラメチルシラン基準(1,1,2,2-テトラクロロエタン-d2:74.2ppmに相当)
 上記条件で13C-NMR測定を行い、[CO]-[CO]構成単位の割合([CO]-[CO]構造、[E]-[CO]構造、および[E]-[E]構造の合計を100mol%とした)、並びに[CO]-[E]-[CO]ラセモ構造と[CO]-[E]-[CO]メソ構造の割合([CO]-[E]-[CO]ラセモ構造および[CO]-[E]n-[CO]n (n≧2)の合計を100mol%とした)を求めた。
 なお、[CO]は環状オレフィン由来の構成単位、[E]はエチレン由来の構成単位を意味する。
 さらに、51.2~55.5ppmの範囲にシグナルが検出された場合、
  ・51.2~55.5ppmの範囲に検出されるシグナルの積分値の合計(P)
  ・54.0~54.6ppmの範囲にシグナルの積分値(Q)
を測定し、(P)から(Q)を差し引いた(P-Q)の値を(P)で割ることによって、構成単位(B)の連鎖の割合を算出した。
 または、40.0~50.0ppmの範囲にシグナルが検出された場合、
  ・40.0~50.0ppmの範囲に検出されるシグナルの積分値の合計(T)
  ・45.0~46.0ppmの範囲に検出されるシグナルの積分値の合計(U)
を用いて、(U)から(T)を割った(U/T)の値を2.5倍し、BNBDの組成比で掛け算した後100で割ることによって、構成単位(B)の連鎖の割合を算出した。
 または、40.0~50.0ppmの範囲および51.2~55.5ppmの範囲の両方にシグナルが検出された場合、
 上述の方法にてそれぞれ算出した構成単位(B)に占める割合を合計することによって、構成単位(B)の連鎖の割合を算出した。
 [溶解性試験]
 以下の条件にて、メチルシクロヘキサンおよびトルエンに対する溶解性を評価した。
<メチルシクロヘキサンに対する溶解性>
・エチレンとTDの重合体を用いた実施例および比較例(すなわち、実施例1、2、5~9、11~13および比較例1)の場合、
 試料:後述する各実施例および各比較例で製造された環状オレフィン共重合体
 溶媒:メチルシクロヘキサン
 溶液濃度:10wt%
 温度:25℃
 溶解性評価基準:溶解し、一日静置後の溶解性を目視で確認
  A:ポリマーの溶け残りがなく、透明な状態
  B:溶解直後はポリマーの溶け残りがなく、一日静置後は不透明な状態
  C:ポリマーの溶け残りがあり、白濁した状態
 
・エチレンとBNBDの重合体およびエチレン、TDとBNBDの重合体を用いた実施例および比較例(すなわち、実施例3、4、10、14および比較例2)の場合、
 試料:後述する各実施例および各比較例で製造された環状オレフィン共重合体
 溶媒:メチルシクロヘキサン
 溶液濃度:1wt%
 温度:50℃
 溶解性評価基準:溶解し、一日静置後の溶解性を目視で確認
  A:ポリマーの溶け残りがなく、透明な状態
  B:溶解直後はポリマーの溶け残りがなく、一日静置後は不透明な状態
  C:ポリマーの溶け残りがあり、白濁した状態

<トルエンに対する溶解性>
 試料:後述する各実施例および各比較例で製造された環状オレフィン共重合体
 溶媒:トルエン
 溶液濃度:10wt%
 温度:25℃
 溶解性評価基準:溶解し、一日静置後の溶解性を目視で確認
  A:ポリマーの溶け残りがなく、透明な状態
  B:溶解直後はポリマーの溶け残りがなく、一日静置後は不透明な状態
  C:ポリマーの溶け残りがあり、白濁した状態
 [成形性]
 各実施例及び各比較例で得られた環状オレフィン共重合体を、超耐熱性ポリイミドフィルム(商品名:ユーピレックス、宇部興産社製)フィルムに挟み込み、0.1mmスペーサーを用いて、260℃、10MPa、3分間の条件で真空プレス成形した。
  A:目視でクラックが観察されず、80%以上の面積がフィルム形状を維持している。
  B:目視でクラックが観察され、30%超80%未満の面積がフィルム形状を維持している。
  C:目視でクラックが観察され、70%以上の面積がフィルム形状を維持していない。
 [密度]
 各実施例及び各比較例で得られた環状オレフィン共重合体を、超耐熱性ポリイミドフィルム(商品名:ユーピレックス、宇部興産社製)に挟み込み、0.1mmスペーサーを用いて、260℃、10MPa、3分間の条件で真空プレス成形し、試験片を得た。この試験片を、JIS K7112に基づき、23℃の水中で密度を測定した。なお、密度の測定は、水中置換法で測定した。
 [極限粘度[η]]
 移動粘度計(離合社製、タイプVNR053U型)を用い、環状オレフィン共重合体の0.25~0.30gを25mlのデカリンに溶解させたものを試料とした。ASTM J1601に準じ135℃にて環状オレフィン共重合体の比粘度を測定し、これと濃度との比を濃度0に外挿して環状オレフィン共重合体の極限粘度[η]を求めた。
[重合体の重量平均分子量(Mw)、分子量分布(Mw/Mn)]
 オレフィン重合体の重量平均分子量(Mw)、数平均分子量(Mn)は、ゲルパーミエイションクロマトグラフィー(GPC)により求めた。Waters社製「Alliance GPC 2000」ゲル浸透クロマトグラフ(高温サイズ排除クロマトグラフ)により得られる分子量分布曲線から計算したものであり、操作条件は、下記の通りである:
<使用装置および条件>
 測定装置;ゲル浸透クロマトグラフ allianceGPC2000型(Waters社)
 解析ソフト;クロマトグラフィデータシステム Empower(商標、Waters社)
 カラム;TSKgel GMH6-HT×2 + TSKgel GMH6-HT×2
    (内径7.5mm×長さ30cm,東ソー社)
 移動相;o-ジクロロベンゼン〔=ОDCB〕(和光純薬 特級試薬)
 検出器;示差屈折計(装置内蔵)
 カラム温度;140℃
 流速;1.0mL/min
 注入量;400μL
 サンプリング時間間隔;1秒
 試料濃度;0.15%(w/v)
 分子量較正 単分散ポリスチレン(東ソー社)/分子量495から分子量2060万
 [ガラス転移温度Tg(℃)]
 日立ハイテクサイエンス社製、DSC-7020を用いて窒素雰囲気下で環状オレフィン共重合体のガラス転移温度(Tg)を測定した。環状オレフィン共重合体を常温から10℃/分の昇温速度で250℃まで昇温した後に5分保持した。次いで、10℃/分の降温速度で-20℃まで降温した後に、5分保持した。そして、10℃/分の昇温速度で300℃まで昇温する際の吸熱曲線から環状オレフィン共重合体のガラス転移温度(Tg)を求めた。
 (実施例1)
 充分に窒素置換した内容積500mLのガラス製反応器に、シクロヘキサン/ヘキサンを9/1の割合で混合した混合溶液300mLと、テトラシクロ[4.4.0.12,5.17,10]-3-ドデセン(以下、単に「テトラシクロドデセン」とも記載する。Mw:160.2(g/mol))2.2gを装入し、エチレン90リットル/hr、水素0.24リットル/hrで液相及び気相を飽和させた。TIBAL(トリイソブチルアルミニウム)を59.4mg(0.3mmol)添加した。引き続き、3,5-ビスメチルエチル-1-ピラゾレート-t-ブチルシクロペンタジエニルチタニウムジクロリドを0.003mmol加え、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート(以下、ボレート化合物(1)と称する。特開2018-105273号公報を参照に合成。)を0.012mmol加え、重合反応を開始した。
 エチレン90リットル/hr、水素0.24リットル/hrを連続的に供給し、常圧下、50℃で5分間重合を行った後、少量のイソブタノールを添加することにより重合を停止した。重合終了後、反応物を少量の塩酸を含む1リットルのアセトン/メタノール(3/1)混合溶媒中に加え、ポリマーを析出させた。同溶媒で洗浄後、130℃にて10時間減圧乾燥し、エチレン・テトラシクロドデセン共重合体0.346gが得られた。重合活性は、1.38kg/mmol・hrであり、得られたエチレン・テトラシクロドデセン共重合体(構成単位(A):エチレン62mol%、構成単位(B):テトラシクロドデセン38mol%)の極限粘度[η]は0.92(dL/g)、Mwは217,000(g/mol)、Mw/Mnは2.43であった。示差走査熱量計(DSC)測定によるガラス転移温度は153℃であり、13C-NMR測定により求めたラセモ構造/メソ構造の割合は0.89であった。なお、ラセモ構造/メソ構造の比率は、上記A:エチレンとTDの重合体の場合の算出方法に基づいた。また、13C-NMRで測定した構成単位(B)-構成単位(B)の連鎖が構成単位(B)に占める割合は1.0であり、メチルシクロヘキサンに対する溶解性は良好であった(メチルシクロヘキサンに対する溶解性:A)。また、トルエンに対する溶解性は良好であった(トルエンに対する溶解性:A)。また、フィルムの成形性は良好であった(フィルムの成形性:A)。密度は1046(kg/m)である。結果を表1に示す。
 (実施例2)
 充分に窒素置換した内容積500mLのガラス製反応器に、シクロヘキサン/ヘキサン(9/1)混合溶液245mLとテトラシクロドデセン5.0g装入し、エチレン50リットル/hrで液相及び気相を飽和させた。TIBALを39.6mg(0.2mmol)添加した。ビス-t-ブチルケチミドシクロペンタジエニルチタニウムジエチルを0.0005mmol加え、ボレート化合物(1)0.002mmolを加え重合を開始した。
 エチレン50リットル/hrを連続的に供給し、常圧下、50℃で10分間重合を行った。その後、少量のイソブタノールを添加することにより重合を停止した。重合終了後、反応物を少量の塩酸を含む1リットルのアセトン/メタノール(3/1)混合溶媒中に加えてポリマーを析出させた。同溶媒で洗浄後、130℃にて10時間減圧乾燥し、エチレン・テトラシクロドデセン共重合体が0.41g得られた。重合活性は4.91kg/mmol・hrであり、得られたエチレン・テトラシクロドデセン共重合体(構成単位(A):エチレン62mol%、構成単位(B):テトラシクロドデセン38mol%)の極限粘度[η]は0.45(dL/g)、Mwは124,000(g/mol)、Mw/Mnは2.07であった。DSC測定によるガラス転移点温度は151℃であり、13C-NMRによるラセモ構造/メソ構造の割合は0.72であった。なお、ラセモ構造/メソ構造の比率は、上記A:エチレンとTDの重合体の場合の算出方法に基づいた。また、13C-NMRで測定した構成単位(B)-構成単位(B)の連鎖が構成単位(B)に占める割合は1.9であり、メチルシクロヘキサンによる溶解性は良好であった(メチルシクロヘキサンに対する溶解性:A)。また、トルエンに対する溶解性は良好であった(トルエンに対する溶解性:A)。また、フィルムの成形性は良好であった(フィルムの成形性:A)。結果を表1に示す。
 (実施例3)
 充分に窒素置換した内容積500mlのガラス製反応器に、シクロヘキサン/ヘキサン(9/1)混合溶液289mLとベンゾノルボルナジエン(以下BNBDとも称する。Mw:142.2(g/mol))20.9g装入し、エチレン51リットル/hr、水素2リットル/hrで液相及び気相を飽和させた。TIBALを59.4mg(0.3mmol)添加し、引き続き、3,5-ビス-1-メチルエチル―1-ピラゾレート-t-ブチルシクロペンタジエニルチタニウムジクロリドを0.003mmol加え、ボレート化合物(1)0.012mmolを加え重合を開始した。エチレン51リットル/hr、水素2リットル/hrで連続的に供給し、常圧下、50℃で10分間重合を行った。その後、少量のイソブタノールを添加することにより重合を停止した。重合終了後、反応物を少量の塩酸を含む1リットルのアセトン/メタノール(3/1)混合溶媒中に加えてポリマーを析出させた。同溶媒で洗浄後、130℃にて0時間減圧乾燥し、エチレン・ベンゾノルボルナジエン共重合体が0.658g得られた。重合活性は6.58kg/mmol・hrであり、得られたエチレン・ベンゾノルボルナジエン共重合体(構成単位(A):エチレン67mol%、構成単位(B):ベンゾノルボルナジエン33mol%)の極限粘度[η]は0.20(dL/g)、Mwは34,300(g/mol)、Mw/Mnは1.76であった。DSC測定によるガラス転移点温度は106℃であり、13C-NMRによるラセモ構造/メソ構造の割合は0.79であった。なお、ラセモ構造/メソ構造の比率は、上記C:エチレンとBNBDの重合体の場合の算出方法に基づいた。また、13C-NMRで測定した構成単位(B)-構成単位(B)の連鎖が構成単位(B)に占める割合は2.2であり、メチルシクロヘキサンによる溶解性は良好であった(メチルシクロヘキサンに対する溶解性:A)。また、トルエンに対する溶解性は良好であった(トルエンに対する溶解性:A)。また、フィルムの成形性は良好であった(フィルムの成形性:A)。結果を表1に示す。
 (実施例4)
 充分に窒素置換した内容積500mLのガラス製反応器に、シクロヘキサン/ヘキサン(9/1)混合溶液300mLとベンゾノルボルナジエン18.0g装入し、エチレン90リットル/hr、水素0.24リットル/hrで液相及び気相を飽和させた。TIBALを297.0mg(1.5mmol)添加し、引き続き、3,5-ビス-1-メチルエチル―1-ピラゾレート-t-ブチルシクロペンタジエニルチタニウムジクロリドを0.001mmol加え、ボレート化合物(1)0.004mmolを加え重合を開始した。
 エチレン90リットル/hr、水素0.24リットル/hr連続的に供給し、常圧下、50℃で3分間重合を行った。その後、少量のイソブタノールを添加することにより重合を停止した。重合終了後、反応物を少量の塩酸を含む1リットルのアセトン/メタノール(3/1)混合溶媒中に加えてポリマーを析出させた。同溶媒で洗浄後、130℃にて10時間減圧乾燥し、エチレン・ベンゾノルボルナジエン共重合体が4.490g得られた。重合活性は89.8kg/mmol・hrであり、得られたエチレン・ベンゾノルボルナジエン共重合体(構成単位(A):エチレン57mol%、構成単位(B):ベンゾノルボルナジエン43mol%)の極限粘度[η]は0.72(dL/g)、Mwは310,000(g/mol)、Mw/Mnは1.84であった。DSC測定によるガラス転移点温度は152℃であり、13C-NMRによるラセモ構造/メソ構造の割合は0.89であった。なお、ラセモ構造/メソ構造の比率は、上記C:エチレンとBNBDの重合体の場合の算出方法に基づいた。また、13C-NMRで測定した構成単位(B)-構成単位(B)の連鎖が構成単位(B)に占める割合は4.0であり、メチルシクロヘキサンによる溶解性は良好であった(メチルシクロヘキサンに対する溶解性:A)。また、トルエンに対する溶解性は良好であった(トルエンに対する溶解性:A)。また、フィルムの成形性は良好であった(フィルムの成形性:A)。密度は1060(kg/m)である。結果を表1に示す。
 (実施例5)
 充分に窒素置換した内容積500mLのガラス製反応器に、シクロヘキサン/ヘキサン(9/1)混合溶液150mLとテトラシクロドデセン4.9g装入し、エチレン51リットル/hr、水素9.96リットル/hrで液相及び気相を飽和させた。TIBALを297.0mg(1.5mmol)添加し、引き続き、ジメチルメチレンフルオレニルシクロペンタジエニルジルコニウムジメチルを0.003mmol加え、ボレート化合物(1)0.012mmolを加え重合を開始した。
 エチレン51リットル/hr、水素9.96リットル/hrで連続的に供給し、常圧下、50℃で5分間重合を行った。その後、少量のイソブタノールを添加することにより重合を停止した。重合終了後、反応物を少量の塩酸を含む0.75リットルのアセトン/メタノール(3/1)混合溶媒中に加えてポリマーを析出させた。同溶媒で洗浄後、130℃にて10時間減圧乾燥し、エチレン・テトラシクロドデセン共重合体が0.235g得られた。重合活性は0.94kg/mmol・hrであり、得られたエチレン・テトラシクロドデセン共重合体(構成単位(A):エチレン62mol%、構成単位(B):テトラシクロドデセン38mol%)の極限粘度[η]は0.58(dL/g)、Mwは84,800(g/mol)、Mw/Mnは4.75であった。DSC測定によるガラス転移点温度は145℃であり、13C-NMRによるラセモ構造/メソ構造の割合は0.64であった。なお、ラセモ構造/メソ構造の比率は、上記A:エチレンとTDの重合体の場合の算出方法に基づいた。また、13C-NMRで測定した構成単位(B)-構成単位(B)の連鎖が構成単位(B)に占める割合は0.5であり、メチルシクロヘキサンによる溶解性は良好であった(メチルシクロヘキサンに対する溶解性:A)。また、トルエンに対する溶解性は、溶解直後は良好であるが、一日静置後は不透明な状態であった(トルエンに対する溶解性:B)。また、フィルムの成形性は良好であった(フィルムの成形性:A)。結果を表1に示す。
 (実施例6)
 充分に窒素置換した内容積500mLのガラス製反応器に、シクロヘキサン/ヘキサン(9/1)混合溶液150mLとテトラシクロドデセン9.8g装入し、エチレン90リットル/hr、水素0.24リットル/hrで液相及び気相を飽和させた。TIBALを198.0mg(1.0mmol)添加し、引き続き、ジフェニルメチレンフルオレニルシクロペンタニルジルコニウムジメチルを0.002mmol加え、ボレート化合物(1)0.008mmolを加え重合を開始した。
 エチレン90リットル/hr、水素0.24リットル/hrで連続的に供給し、常圧下、50℃で10分間重合を行った。その後、少量のイソブタノールを添加することにより重合を停止した。重合終了後、反応物を少量の塩酸を含む0.75リットルのアセトン/メタノール(3/1)混合溶媒中に加えてポリマーを析出させた。同溶媒で洗浄後、130℃にて10時間減圧乾燥し、エチレン・テトラシクロドデセン共重合体が0.362g得られた。重合活性は1.09kg/mmol・hrであり、得られたエチレン・テトラシクロドデセン共重合体(構成単位(A):エチレン59mol%、構成単位(B):テトラシクロドデセン41mol%)の極限粘度[η]は0.51(dL/g)、Mwは112,000(g/mol)、Mw/Mnは4.38であった。DSC測定によるガラス転移点温度は158℃であり、13C-NMRによるラセモ構造/メソ構造の割合は0.54であった。なお、ラセモ構造/メソ構造の比率は、上記A:エチレンとTDの重合体の場合の算出方法に基づいた。また、13C-NMRで測定した構成単位(B)-構成単位(B)の連鎖が構成単位(B)に占める割合は2.0であり、メチルシクロヘキサンによる溶解性は良好であった(メチルシクロヘキサンに対する溶解性:A)。また、トルエンに対する溶解性は良好であった(トルエンに対する溶解性:A)。また、フィルムの成形性は良好であった(フィルムの成形性:A)。結果を表1に示す。
 (実施例7)
 充分に窒素置換した内容積500mLのガラス製反応器に、シクロヘキサン/ヘキサン(9/1)混合溶液276mLとテトラシクロドデセン22.4g装入し、エチレン90リットル/hr、水素0.24リットル/hrで液相及び気相を飽和させた。TIBALを59.4mg(0.3mmol)添加し、引き続き、3,5-ビス(t-ブチル)―1-ピラゾレート-t-ブチルシクロペンタジエニルチタニウムジクロリドを0.000125mmol加え、ボレート化合物(1)0.004mmolを加え重合を開始した。
 エチレン90リットル/hr、水素0.24リットル/hrで連続的に供給し、常圧下、50℃で10分間重合を行った。その後、少量のイソブタノールを添加することにより重合を停止した。重合終了後、反応物を少量の塩酸を含む1.25リットルのアセトン/メタノール(3/1)混合溶媒中に加えてポリマーを析出させた。同溶媒で洗浄後、130℃にて10時間減圧乾燥し、エチレン・テトラシクロドデセン共重合体が0.932g得られた。重合活性は44.7kg/mmol・hrであり、得られたエチレン・テトラシクロドデセン共重合体(構成単位(A):エチレン54mol%、構成単位(B):テトラシクロドデセン46mol%)の極限粘度[η]は0.20(dL/g)、Mwは35,800(g/mol)、Mw/Mnは2.19であった。DSC測定によるガラス転移点温度は176℃であり、13C-NMRによるラセモ構造/メソ構造の割合は1.00であった。なお、ラセモ構造/メソ構造の比率は、上記A:エチレンとTDの重合体の場合の算出方法に基づいた。また、13C-NMRで測定した構成単位(B)-構成単位(B)の連鎖が構成単位(B)に占める割合は1.2であり、メチルシクロヘキサンによる溶解性は良好であった(メチルシクロヘキサンに対する溶解性:A)。また、トルエンに対する溶解性は良好であった(トルエンに対する溶解性:A)。また、フィルムの成形性は一部において良好であった(フィルムの成形性:B)。結果を表1に示す。
 (実施例8)
 充分に窒素置換した内容積500mLのガラス製反応器に、シクロヘキサン/ヘキサン(9/1)混合溶液300mLとテトラシクロドデセン2.9g装入し、エチレン90リットル/hrで液相及び気相を飽和させた。TIBALを59.4mg(0.3mmol)添加し、引き続き、3,5-ビスフェニル―1-ピラゾレート-t-ブチルシクロペンタジエニルチタニウムジクロリドを0.003mmol加え、ボレート化合物(1)0.012mmolを加え重合を開始した。
 エチレン90リットル/hrで連続的に供給し、常圧下、50℃で10分間重合を行った。その後、少量のイソブタノールを添加することにより重合を停止した。重合終了後、反応物を少量の塩酸を含む1.25リットルのアセトン/メタノール(3/1)混合溶媒中に加えてポリマーを析出させた。同溶媒で洗浄後、130℃にて10時間減圧乾燥し、エチレン・テトラシクロドデセン共重合体が0.326g得られた。重合活性は0.65kg/mmol・hrであり、得られたエチレン・テトラシクロドデセン共重合体(構成単位(A):エチレン58mol%、構成単位(B):テトラシクロドデセン42mol%)の極限粘度[η]は1.44(dL/g)、Mwは450,000(g/mol)、Mw/Mnは3.55であった。DSC測定によるガラス転移点温度は173℃であり、13C-NMRによるラセモ構造/メソ構造の割合は1.00であった。なお、ラセモ構造/メソ構造の比率は、上記A:エチレンとTDの重合体の場合の算出方法に基づいた。また、13C-NMRで測定した構成単位(B)-構成単位(B)の連鎖が構成単位(B)に占める割合は2.6であり、メチルシクロヘキサンによる溶解性は良好であった(メチルシクロヘキサンに対する溶解性:A)。また、トルエンに対する溶解性は、溶解直後は良好であるが、一日静置後は不透明な状態であった(トルエンに対する溶解性:B)。また、フィルムの成形性は良好であった(フィルムの成形性:A)。結果を表1に示す。
 (実施例9)
 充分に窒素置換した内容積500mLのガラス製反応器に、シクロヘキサン/ヘキサン(9/1)混合溶液300mLとテトラシクロドデセン1.9g装入し、エチレン90リットル/hrで液相及び気相を飽和させた。TIBALを59.4mg(0.3mmol)添加し、引き続き、3,5-ビスフェニル―1-ピラゾレート-t-ブチルシクロペンタジエニルチタニウムジクロリドを0.003mmol加え、ボレート化合物(1)0.012mmolを加え重合を開始した。
 エチレン90リットル/hrで連続的に供給し、常圧下、50℃で10分間重合を行った。その後、少量のイソブタノールを添加することにより重合を停止した。重合終了後、反応物を少量の塩酸を含む1.25リットルのアセトン/メタノール(3/1)混合溶媒中に加えてポリマーを析出させた。同溶媒で洗浄後、130℃にて10時間減圧乾燥し、エチレン・テトラシクロドデセン共重合体が0.545g得られた。重合活性は1.09kg/mmol・hrであり、得られたエチレン・テトラシクロドデセン共重合体(構成単位(A):エチレン62mol%、構成単位(B):テトラシクロドデセン38mol%)の極限粘度[η]は2.03(dL/g)、Mwは634,000(g/mol)、Mw/Mnは2.33であった。DSC測定によるガラス転移点温度は154℃であり、13C-NMRによるラセモ構造/メソ構造の割合は1.00であった。なお、ラセモ構造/メソ構造の比率は、上記A:エチレンとTDの重合体の場合の算出方法に基づいた。また、13C-NMRで測定した構成単位(B)-構成単位(B)の連鎖が構成単位(B)に占める割合は1.7であり、メチルシクロヘキサンによる溶解性は良好であった(メチルシクロヘキサンに対する溶解性:A)。また、トルエンに対する溶解性は良好であった(トルエンに対する溶解性:A)。また、フィルムの成形性は良好であった(フィルムの成形性:A)。結果を表1に示す。
 (実施例10)
 充分に窒素置換した内容積500mLのガラス製反応器に、シクロヘキサン/ヘキサンを9/1の割合で混合した混合溶液300mLと、テトラシクロドデセン3.3gとベンゾノルボルナジエン5.7gを装入し、エチレン50リットル/hr、水素0.24リットル/hrで液相及び気相を飽和させた。TIBALを59.4mg(0.3mmol)添加した。引き続き、3,5-ビスメチルエチル-1-ピラゾレート-t-ブチルシクロペンタジエニルチタニウムジクロリドを0.003mmol加え、ボレート化合物(1)を0.012mmol加え、重合反応を開始した。
 エチレン50リットル/hr、水素0.24リットル/hrを連続的に供給し、常圧下、50℃で10分間重合を行った後、少量のイソブタノールを添加することにより重合を停止した。重合終了後、反応物を少量の塩酸を含む1リットルのアセトン/メタノール(3/1)混合溶媒中に加え、ポリマーを析出させた。同溶媒で洗浄後、130℃にて10時間減圧乾燥し、エチレン・テトラシクロドデセン・ベンゾノルボルナジエン共重合体1.671gが得られた。重合活性は、3.34kg/mmol・hrであり、得られたエチレン・テトラシクロドデセン・ベンゾノルボルナジエン共重合体(構成単位(A):エチレン59mol%、構成単位(B):テトラシクロドデセン25mol%、ベンゾノルボルナジエン:16mol%)の極限粘度[η]は0.40(dL/g)、Mwは95,500(g/mol)、Mw/Mnは2.90であった。示差走査熱量計(DSC)測定によるガラス転移温度は163℃であり、13C-NMR測定により求めたラセモ構造/メソ構造の割合は0.50であった。なお、ラセモ構造/メソ構造の比率は、上記A:エチレン、TDとBNBDの重合体の場合の算出方法に基づいた。また、13C-NMRで測定した構成単位(B)-構成単位(B)の連鎖が構成単位(B)に占める割合は3.2であり、メチルシクロヘキサンに対する溶解性は良好であった(メチルシクロヘキサンに対する溶解性:A)。また、トルエンに対する溶解性も良好であった(トルエンに対する溶解性:A)。また、フィルムの成形性は良好であった(フィルムの成形性:A)。密度は1057(kg/m)である。結果を表1に示す。
 (実施例11)
 充分に窒素置換した内容積500mLのガラス製反応器に、シクロヘキサン/ヘキサン(9/1)混合溶液250mLとテトラシクロドデセン5gおよびBHTを331mg(1.50mmol)装入し、エチレン50リットル/hrで液相及び気相を飽和させた。その後、メチルアルミノキサンをアルミニウム原子換算で1.5mmol、引き続き、3,5-ビスメチルエチル-1-ピラゾレート-t-ブチルシクロペンタジエニルチタニウムジクロリドを0.0030mmol加え、ボレート化合物(1)を0.012mmol加え、重合反応を開始した。
 エチレンを50リットル/hrで連続的に供給し、常圧下、50℃で10分間重合を行った後、少量のイソブタノールを添加することにより重合を停止した。重合終了後、反応物を少量の塩酸を含む1リットルのアセトン/メタノール(3/1)混合溶媒中に加えてポリマーを析出させた。同溶媒で洗浄後、130℃にて10時間減圧乾燥し、エチレン・テトラシクロドデセン共重合体が1.292g得られた。重合活性は2.58kg/mmol-Ti・hrであり、得られたエチレン・テトラシクロドデセン共重合体(構成単位(A):エチレン55mol%、構成単位(B):テトラシクロドデセン45mol%)の極限粘度[η]は1.05(dL/g)、Mwは320,000(g/mol)、Mw/Mnは2.17であった。示差走査熱量計(DSC)測定によるガラス転移温度は188℃であり、13C-NMR測定により求めたラセモ構造/メソ構造の割合は1.00であった。なお、ラセモ構造/メソ構造の比率は、上記A:エチレンとTDの重合体の場合の算出方法に基づいた。また、13C-NMRで測定した構成単位(B)-構成単位(B)の連鎖が構成単位(B)に占める割合は3.7であり、メチルシクロヘキサンに対する溶解性は良好であった(メチルシクロヘキサンに対する溶解性:A)。また、トルエンに対する溶解性は、溶解直後は良好であるが、一日静置後は不透明な状態であった(トルエンに対する溶解性:B)。また、フィルムの成形性は良好であった(フィルムの成形性:A)。結果を表1に示す。
 (実施例12)
 充分に窒素置換した内容積500mLのガラス製反応器に、シクロヘキサン/ヘキサンを9/1の割合で混合した混合溶液245mLと、テトラシクロドデセン5.0gを装入し、エチレン50リットル/hrで液相及び気相を飽和させた。TIBALを39.6mg(0.2mmol)添加した。引き続き、ジフェニルメチレンインデニルシクロペンタニルジルコニウムジクロリドを0.0005mmol加え、ボレート化合物(1)を0.002mmol加え、重合反応を開始した。
 エチレン50リットル/hrを連続的に供給し、常圧下、50℃で10分間重合を行った後、少量のイソブタノールを添加することにより重合を停止した。重合終了後、反応物を少量の塩酸を含む1リットルのアセトン/メタノール(3/1)混合溶媒中に加え、ポリマーを析出させた。同溶媒で洗浄後、130℃にて10時間減圧乾燥し、エチレン・テトラシクロドデセン共重合体1.1gが得られた。重合活性は、13.18kg/mmol・hrであり、得られたエチレン・テトラシクロドデセン共重合体(構成単位(A):エチレン62mol%、構成単位(B):テトラシクロドデセン38mol%)の極限粘度[η]は0.36(dL/g)、Mwは62,200(g/mol)、Mw/Mnは2.05であった。示差走査熱量計(DSC)測定によるガラス転移温度は150℃であり、13C-NMR測定により求めたラセモ構造/メソ構造の割合は0.14であった。なお、ラセモ構造/メソ構造の比率は、上記A:エチレンとTDの重合体の場合の算出方法に基づいた。また、13C-NMRで測定した構成単位(B)-構成単位(B)の連鎖が構成単位(B)に占める割合は1.4であり、メチルシクロヘキサンに対する溶解性は、溶解直後は良好であるが、一日静置後は不透明な状態であった(メチルシクロヘキサンに対する溶解性:B)。また、トルエンに対する溶解性は、溶解直後は良好であるが、一日静置後は不透明な状態であった(トルエンに対する溶解性:B)。また、フィルムの成形性は一部において良好であった(フィルムの成形性:B)。結果を表1に示す。
 (実施例13)
 充分に窒素置換した内容積500mLのガラス製反応器に、シクロヘキサン/ヘキサンを9/1の割合で混合した混合溶液300mLと、テトラシクロドデセン11.4gを装入し、エチレン90リットル/hr、水素0.24リットル/hrで液相及び気相を飽和させた。TIBALを59.4mg(0.3mmol)添加した。引き続き、3,5-ビスメチルエチル-1-ピラゾレート-t-ブチルシクロペンタジエニルチタニウムジクロリドを0.003mmol加え、ボレート化合物を0.012mmol加え、重合反応を開始した。
 エチレン90リットル/hr、水素0.24リットル/hrを連続的に供給し、常圧下、50℃で10分間重合を行った後、少量のイソブタノールを添加することにより重合を停止した。重合終了後、反応物を少量の塩酸を含む1リットルのアセトン/メタノール(3/1)混合溶媒中に加え、ポリマーを析出させた。同溶媒で洗浄後、130℃にて10時間減圧乾燥し、エチレン・テトラシクロドデセン共重合体1.483gが得られた。重合活性は、2.97kg/mmol・hrであり、得られたエチレン・テトラシクロドデセン共重合体(構成単位(A):エチレン51mol%、構成単位(B):テトラシクロドデセン49mol%)の極限粘度[η]は0.30(dL/g)、Mwは67,200(g/mol)、Mw/Mnは3.03であった。示差走査熱量計(DSC)測定によるガラス転移温度は203℃であり、13C-NMR測定により求めたラセモ構造/メソ構造の割合は1.00であった。なお、ラセモ構造/メソ構造の比率は、上記A:エチレンとTDの重合体の場合の算出方法に基づいた。また、13C-NMRで測定した構成単位(B)-構成単位(B)の連鎖が構成単位(B)に占める割合は5.1であり、メチルシクロヘキサンに対する溶解性は良好であった(メチルシクロヘキサンに対する溶解性:A)。また、トルエンに対する溶解性は、溶解直後は良好であるが、一日静置後は不透明な状態であった(トルエンに対する溶解性:B)。また、フィルムの成形性は不良であった(フィルムの成形性:C)。結果を表1に示す。
 (実施例14)
 充分に窒素置換した内容積500mLのガラス製反応器に、シクロヘキサン/ヘキサン(9/1)混合溶液300mLとベンゾノルボルナジエン3.0g装入し、エチレン50リットル/hr、水素6.0リットル/hrで液相及び気相を飽和させた。TIBALを9.9mg(0.5mmol)添加し、引き続き、ジフェニルメチレンインデニルシクロペンタニルジルコニウムジクロリドを0.0005mmol加え、ボレート化合物(1)0.002mmolを加え重合を開始した。
 エチレン50リットル/hr、水素6.0リットル/hr連続的に供給し、常圧下、50℃で10分間重合を行った。その後、少量のイソブタノールを添加することにより重合を停止した。重合終了後、反応物を少量の塩酸を含む1リットルのアセトン/メタノール(3/1)混合溶媒中に加えてポリマーを析出させた。同溶媒で洗浄後、130℃にて10時間減圧乾燥し、エチレン・ベンゾノルボルナジエン共重合体が0.413g得られた。重合活性は84.96kg/mmol・hrであり、得られたエチレン・ベンゾノルボルナジエン共重合体(構成単位(A):エチレン68mol%、構成単位(B):ベンゾノルボルナジエン32mol%)の極限粘度[η]は0.33(dL/g)、Mwは88,000(g/mol)、Mw/Mnは6.90であった。DSC測定によるガラス転移点温度は112℃であり、13C-NMRによるラセモ構造/メソ構造の割合は0.26であった。なお、ラセモ構造/メソ構造の比率は、上記C:エチレンとBNBDの重合体の場合の算出方法に基づいた。また、13C-NMRで測定した構成単位(B)-構成単位(B)の連鎖が構成単位(B)に占める割合は0.0であり、メチルシクロヘキサンに対する溶解性は不良であった(メチルシクロヘキサンに対する溶解性:B)。また、トルエンに対する溶解性は良好であった(トルエンに対する溶解性:A)。また、フィルムの成形性は一部において良好であった(フィルムの成形性:B)。結果を表1に示す。
 (比較例1)
 充分に窒素置換した内容積500mLのガラス製反応器に、シクロヘキサン/ヘキサン(9/1)混合溶液240mLとテトラシクロドデセン10.0g装入し、エチレン50リットル/hr、水素3.0リットル/hrで液相及び気相を飽和させた。TIBALを19.8mg(0.1mmol)添加した。引き続き、ジメチルメチレンビスインデニルジルコニウムジクロリドを0.00025mmol加え、ボレート化合物(1)0.001mmolを加え重合を開始した。
 エチレン50リットル/hr、水素3.0リットル/hrで連続的に供給し、常圧下、50℃で10分間重合を行った後、少量のイソブタノールを添加することにより重合を停止した。重合終了後、反応物を少量の塩酸を含む1リットルのアセトン/メタノール(3/1)混合溶媒中に加えてポリマーを析出させた。同溶媒で洗浄後、130℃にて10時間減圧乾燥し、エチレン・テトラシクロドデセン共重合体が1.83g得られた。重合活性は43.82kg/mmol・hrであり、得られたエチレン・テトラシクロドデセン共重合体(構成単位(A):エチレン64mol%、構成単位(B):テトラシクロドデセン36mol%)の極限粘度[η]は0.50(dL/g)、Mwは97,200(g/mol)、Mw/Mnは2.47であった。DSC測定によるガラス転移点温度は148℃であり、13C-NMRによるラセモ構造/メソ構造の割合は0.00であった。また、13C-NMRで測定した構成単位(B)-構成単位(B)の連鎖が構成単位(B)に占める割合は0.0であり、メチルシクロヘキサンに対する溶解性は不良であった(メチルシクロヘキサンに対する溶解性:C)。また、トルエンに対する溶解性は不良であった(トルエンに対する溶解性:C)。また、フィルムの成形性は不良であった(フィルムの成形性:C)。結果を表1に示す。
 (比較例2)
 充分に窒素置換した内容積500mLのガラス製反応器に、シクロヘキサン/ヘキサンを9/1の割合で混合した混合溶液175mLと、テトラシクロドデセン4.0gとベンゾノルボルナジエン5.0gを装入し、エチレン51リットル/hr、水素2リットル/hrで液相及び気相を飽和させた。TIBAL(トリイソブチルアルミニウム)を148.5mg(0.75mmol)添加した。引き続き、ジメチルメチレンビスインデニルジルコニウムジクロリドを0.0015mmol加え、ボレート化合物(1)を0.006mmol加え、重合反応を開始した。
 エチレン51リットル/hr、水素2リットル/hrを連続的に供給し、常圧下、50℃で10分間重合を行った後、少量のイソブタノールを添加することにより重合を停止した。重合終了後、反応物を少量の塩酸を含む1リットルのアセトン/メタノール(3/1)混合溶媒中に加え、ポリマーを析出させた。同溶媒で洗浄後、130℃にて10時間減圧乾燥し、エチレン・テトラシクロドデセン・ベンゾノルボルナジエン共重合体0.814gが得られた。重合活性は、3.26kg/mmol・hrであり、得られたエチレン・テトラシクロドデセン・ベンゾノルボルナジエン共重合体(構成単位(A):エチレン62mol%、構成単位(B):テトラシクロドデセン21mol%、ベンゾノルボルナジエン:17mol%)の極限粘度[η]は0.50(dL/g)、Mwは99,200(g/mol)、Mw/Mnは2.80であった。示差走査熱量計(DSC)測定によるガラス転移温度は137℃であり、13C-NMR測定により求めたラセモ構造/メソ構造の割合は0.00であった。なお、ラセモ構造/メソ構造の比率は、上記A:エチレン、TDとBNBDの重合体の場合の算出方法に基づいた。また、13C-NMRで測定した構成単位(B)-構成単位(B)の連鎖が構成単位(B)に占める割合は0.0であり、メチルシクロヘキサンに対する溶解性は不良であった(メチルシクロヘキサンに対する溶解性:C)。また、トルエンに対する溶解性は不良であった(トルエンに対する溶解性:C)。フィルムの成形性は不良であった(フィルムの成形性:C)。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000016
 各実施例では、ラセモ構造とメソ構造が共存することで、メチルシクロヘキサンおよびトルエンに対する溶解性が高かった。一方、各比較例では、メチルシクロヘキサンおよびトルエンに対する溶解性は低いままであった。
 この出願は、2021年6月28日に出願された日本出願特願2021-106711号および2022年1月20日に出願された日本出願特願2022-006837を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (10)

  1.  ノルボルネン骨格を有する環状オレフィン重合体であって、
     前記環状オレフィン重合体が、環状オレフィン共重合体または環状オレフィン開環重合体であり、
     下記要件(a)を満たすことを特徴とする、環状オレフィン重合体。
    (要件(a))
     当該環状オレフィン重合体は、鎖状オレフィンである構成単位(A)とノルボルネン骨格を有する環状オレフィンを含む構成単位(B)とからなり、
     13C-NMRで測定した前記構成単位(B)-前記構成単位(A)-前記構成単位(B)の連鎖におけるメソ構造とラセモ構造との存在比率(ラセモ構造/メソ構造)が0.01~100である。
  2.  請求項1に記載の環状オレフィン重合体であって、
     前記環状オレフィン重合体は環状オレフィン共重合体であり、
     前記環状オレフィン共重合体が、
     前記構成単位(A)として、エチレンまたは炭素数3~30のα-オレフィンから導かれる構成単位を30~80mol%と、
     前記構成単位(B)として、下記一般式[Z-I]、下記一般式[Z-II]、下記一般式[Z-III]および下記一般式[Z-IV]からなる群より選択される1種または2種以上の環状モノマーから導かれる構成単位を20~70mol%含み、
    Figure JPOXMLDOC01-appb-C000001
    (上記式[Z-I]中、uは0または1であり、vは0または正の整数であり、wは0または1である。R61~R78ならびにRa1およびRb1は、それぞれ独立に水素原子、ハロゲン原子、および炭化水素基からなる群より選択される1種または2種以上を含み、R75~R78は、互いに結合して単環または多環を形成していてもよく、かつ前記単環または前記多環が二重結合を有していてもよい。また、R75とR76とで、またはR77とR78とでアルキリデン基を形成していてもよい。)
    Figure JPOXMLDOC01-appb-C000002
    (上記式[Z-II]中、xおよびdは0または1以上の整数であり、yおよびzは0、1または2である。R81~R99は、それぞれ独立に水素原子、ハロゲン原子、および炭化水素基から選ばれ、R89およびR90が結合している炭素原子と、R93が結合している炭素原子またはR91が結合している炭素原子とは、直接あるいは炭素原子数1~3のアルキレン基を介して結合していてもよい。また、y=z=0のとき、R95とR92またはR95とR99とは互いに結合して単環または多環の芳香族環を形成していてもよい。)
    Figure JPOXMLDOC01-appb-C000003
    (上記式[Z-III]中、nおよびmはそれぞれ独立に0、1または2であり、qは1、2または3である。R18~R31はそれぞれ独立に、水素原子、フッ素原子を除くハロゲン原子、またはフッ素原子を除くハロゲン原子で置換されていてもよい炭素原子数1~20の炭化水素基である。)
    Figure JPOXMLDOC01-appb-C000004
    (一般式[Z-IV]中、xは0または1以上の整数であり、R111~R118は、それぞれ独立に水素原子、ハロゲン原子、および炭化水素基から選ばれる。R121~R124は、それぞれ独立に水素原子、ハロゲン原子、および炭化水素基から選ばれ、隣接する2つの基は互いに結合して単環または多環の芳香環を形成していてもよい。)
     前記構成単位(A)と前記構成単位(B)との合計は100mol%である、環状オレフィン重合体。
  3.  請求項1または2に記載の環状オレフィン重合体であって、
     さらに下記要件(b)を満たすことを特徴とする、環状オレフィン重合体。
    (要件(b))
     13C-NMRで測定した前記構成単位(B)-前記構成単位(B)の連鎖が構成単位(B)に占める割合が0.1mol%以上20.0mol%以下である。
  4.  請求項1~3のいずれか1項に記載の環状オレフィン重合体であって、
     示差走査熱量計(DSC)で測定される、前記環状オレフィン共重合体または前記環状オレフィン開環重合体のガラス転移温度が50℃以上250℃以下である、環状オレフィン重合体。
  5.  請求項1~4のいずれか1項に記載の環状オレフィン重合体であって、
     示差走査熱量計(DSC)で測定される、前記環状オレフィン共重合体または前記環状オレフィン開環重合体のガラス転移温度が50℃以上180℃以下である、環状オレフィン重合体。
  6.  請求項1~5のいずれか1項に記載の環状オレフィン重合体であって、
     前記環状オレフィン共重合体または前記環状オレフィン開環重合体の極限粘度が0.1[dL/g]以上5.0[dL/g]以下である、環状オレフィン重合体。
  7.  請求項1~6のいずれか1項に記載の環状オレフィン重合体を含む、環状オレフィン重合体組成物。
  8.  請求項7に記載の環状オレフィン重合体組成物であって、
     光学部品、フィルム包材、光学フィルム、または医療用部品に用いられる、環状オレフィン重合体組成物。
  9.  請求項1~6のいずれか1項に記載の環状オレフィン重合体を含む、成形体。
  10.  請求項9に記載の成形体であって、
     光学部品、フィルム包材、光学フィルム、または医療用部品である、成形体。
PCT/JP2022/025271 2021-06-28 2022-06-24 環状オレフィン重合体、環状オレフィン重合体組成物および成形体 WO2023276873A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023531896A JPWO2023276873A1 (ja) 2021-06-28 2022-06-24
KR1020237031059A KR20230145152A (ko) 2021-06-28 2022-06-24 환상 올레핀 중합체, 환상 올레핀 중합체 조성물 및 성형체
CN202280020608.3A CN117015562A (zh) 2021-06-28 2022-06-24 环状烯烃聚合物、环状烯烃聚合物组合物和成型体

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-106711 2021-06-28
JP2021106711 2021-06-28
JP2022006837 2022-01-20
JP2022-006837 2022-01-20

Publications (1)

Publication Number Publication Date
WO2023276873A1 true WO2023276873A1 (ja) 2023-01-05

Family

ID=84691383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/025271 WO2023276873A1 (ja) 2021-06-28 2022-06-24 環状オレフィン重合体、環状オレフィン重合体組成物および成形体

Country Status (4)

Country Link
JP (1) JPWO2023276873A1 (ja)
KR (1) KR20230145152A (ja)
TW (1) TW202302679A (ja)
WO (1) WO2023276873A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023171221A1 (ja) * 2022-03-11 2023-09-14 三井化学株式会社 環状オレフィン系共重合体、環状オレフィン系共重合体組成物、成形体及び光学部品

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05262821A (ja) * 1990-10-05 1993-10-12 Idemitsu Kosan Co Ltd 環状オレフィン系重合体の製造方法
JPH09501191A (ja) * 1993-06-30 1997-02-04 エクソン・ケミカル・パテンツ・インク 開環複分解重合用の新規な触媒
JP2000264925A (ja) * 1999-03-15 2000-09-26 Mitsui Chemicals Inc シンジオタクティック性プロピレン・環状オレフィン共重合体及びその成形体
JP2001323028A (ja) * 2000-05-12 2001-11-20 Mitsui Chemicals Inc シンジオタクティック性プロピレン・環状オレフィン共重合体及びその成形体
JP2001354726A (ja) * 2000-06-09 2001-12-25 Mitsui Chemicals Inc シンジオタクティックプロピレン系共重合体及び該共重合体を含む熱可塑性樹脂組成物
JP2004107442A (ja) * 2002-09-17 2004-04-08 Takeshi Shiono 環状オレフィン重合体の製造方法
WO2007060723A1 (ja) * 2005-11-24 2007-05-31 Polyplastics Co., Ltd. シクロオレフィン系共重合体
JP2009003439A (ja) * 2007-05-23 2009-01-08 Daicel Chem Ind Ltd 光学フィルム
JP2014224169A (ja) * 2013-05-15 2014-12-04 富士フイルム株式会社 環状オレフィン共重合体及び環状オレフィン共重合体フィルム
JP2014224170A (ja) * 2013-05-15 2014-12-04 富士フイルム株式会社 環状オレフィン共重合体及び環状オレフィン共重合体フィルム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2730940B2 (ja) 1988-12-27 1998-03-25 三井化学株式会社 環状オレフィン系共重合体の製造方法
JP3817015B2 (ja) 1997-04-14 2006-08-30 三井化学株式会社 環状オレフィン系共重合体およびその用途
JP2005330465A (ja) 2004-04-21 2005-12-02 Mitsui Chemicals Inc エチレン・環状オレフィン共重合体およびその光学部品
US8460926B2 (en) 2005-11-17 2013-06-11 Nippon Zenyaku Kogyo Co., Ltd Aqueous solution for cell preservation
JP6990032B2 (ja) 2017-03-28 2022-02-03 三井化学株式会社 オレフィン重合体の製造方法および遷移金属錯体の保存方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05262821A (ja) * 1990-10-05 1993-10-12 Idemitsu Kosan Co Ltd 環状オレフィン系重合体の製造方法
JPH09501191A (ja) * 1993-06-30 1997-02-04 エクソン・ケミカル・パテンツ・インク 開環複分解重合用の新規な触媒
JP2000264925A (ja) * 1999-03-15 2000-09-26 Mitsui Chemicals Inc シンジオタクティック性プロピレン・環状オレフィン共重合体及びその成形体
JP2001323028A (ja) * 2000-05-12 2001-11-20 Mitsui Chemicals Inc シンジオタクティック性プロピレン・環状オレフィン共重合体及びその成形体
JP2001354726A (ja) * 2000-06-09 2001-12-25 Mitsui Chemicals Inc シンジオタクティックプロピレン系共重合体及び該共重合体を含む熱可塑性樹脂組成物
JP2004107442A (ja) * 2002-09-17 2004-04-08 Takeshi Shiono 環状オレフィン重合体の製造方法
WO2007060723A1 (ja) * 2005-11-24 2007-05-31 Polyplastics Co., Ltd. シクロオレフィン系共重合体
JP2009003439A (ja) * 2007-05-23 2009-01-08 Daicel Chem Ind Ltd 光学フィルム
JP2014224169A (ja) * 2013-05-15 2014-12-04 富士フイルム株式会社 環状オレフィン共重合体及び環状オレフィン共重合体フィルム
JP2014224170A (ja) * 2013-05-15 2014-12-04 富士フイルム株式会社 環状オレフィン共重合体及び環状オレフィン共重合体フィルム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023171221A1 (ja) * 2022-03-11 2023-09-14 三井化学株式会社 環状オレフィン系共重合体、環状オレフィン系共重合体組成物、成形体及び光学部品

Also Published As

Publication number Publication date
TW202302679A (zh) 2023-01-16
KR20230145152A (ko) 2023-10-17
JPWO2023276873A1 (ja) 2023-01-05

Similar Documents

Publication Publication Date Title
JP5598326B2 (ja) 結晶性ノルボルネン系開環重合体水素化物及び成形体
JP4493660B2 (ja) 位相差フィルム
WO2023276873A1 (ja) 環状オレフィン重合体、環状オレフィン重合体組成物および成形体
JP2007119660A (ja) 環状オレフィン付加共重合体、その製造方法、及び成形用材料
JP4712455B2 (ja) 光学用フィルム
JP2021080420A (ja) 光学材料用樹脂組成物、光学フィルム及び画像表示装置
KR101588368B1 (ko) 노보넨계 중합체 용액
JP2010076128A (ja) 光学フィルム
JP7451570B2 (ja) 光学部品
CN117015562A (zh) 环状烯烃聚合物、环状烯烃聚合物组合物和成型体
JPWO2016163371A1 (ja) 共重合体、重合体、成形材料及び樹脂成形体
JP2007039541A (ja) 熱可塑性エラストマーおよび成形体
JP2008231361A (ja) 環状オレフィン系付加共重合体、その製造方法およびその用途
JP2008144013A (ja) ノルボルネン系付加共重合体の製造方法
JP2006083266A (ja) 光学用フィルム
JP2019151723A (ja) 環状オレフィン系樹脂を含む成形用材料および成形体
JP2021147577A (ja) 共重合体及びその用途
JP2020105332A (ja) 樹脂組成物および成形体
WO2023171221A1 (ja) 環状オレフィン系共重合体、環状オレフィン系共重合体組成物、成形体及び光学部品
JP6906605B2 (ja) 成形用環状オレフィン系樹脂組成物、成形体および樹脂
JP7467187B2 (ja) 共重合体の製造方法
JPH0919494A (ja) 医療・医薬用成形体
JP7312580B2 (ja) 環状オレフィン系共重合体ペレット、成形体、及び、環状オレフィン系共重合体ペレットの製造方法
JP2008013709A (ja) 環状オレフィン系付加共重合体およびその製造方法ならびに用途
JP2008045069A (ja) 環状オレフィン系付加共重合体およびその製造方法ならびに用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22833020

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023531896

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280020608.3

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237031059

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237031059

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE