WO2023276334A1 - 固体高分子電解質、蓄電素子及び蓄電装置 - Google Patents

固体高分子電解質、蓄電素子及び蓄電装置 Download PDF

Info

Publication number
WO2023276334A1
WO2023276334A1 PCT/JP2022/013460 JP2022013460W WO2023276334A1 WO 2023276334 A1 WO2023276334 A1 WO 2023276334A1 JP 2022013460 W JP2022013460 W JP 2022013460W WO 2023276334 A1 WO2023276334 A1 WO 2023276334A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid polymer
power storage
polymer electrolyte
mass
positive electrode
Prior art date
Application number
PCT/JP2022/013460
Other languages
English (en)
French (fr)
Inventor
栄人 渡邉
平祐 西川
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Priority to JP2023531431A priority Critical patent/JPWO2023276334A1/ja
Publication of WO2023276334A1 publication Critical patent/WO2023276334A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to solid polymer electrolytes, power storage elements, and power storage devices.
  • Non-aqueous electrolyte secondary batteries typified by lithium-ion secondary batteries
  • the non-aqueous electrolyte secondary battery generally has a pair of electrodes electrically isolated by a separator and a non-aqueous electrolyte interposed between the electrodes, and exchanges lithium ions between the electrodes. It is configured to charge and discharge by performing.
  • Capacitors such as lithium ion capacitors and electric double layer capacitors are also widely used as storage elements other than non-aqueous electrolyte secondary batteries.
  • An object of the present invention is to provide a solid polymer electrolyte with high lithium ion conductivity, an electric storage element and an electric storage device comprising the same.
  • the solid polymer electrolyte according to one aspect of the present invention includes a lithium salt, a polymer material in which the lithium salt is mixed and has lithium ion conductivity, the lithium salt and the polymer material are attached, and a polysaccharide and a porous substrate having a polysaccharide content of 10% by mass or more and 40% by mass or less.
  • a power storage device includes a positive electrode, a negative electrode, and the solid polymer electrolyte interposed between the positive electrode and the negative electrode.
  • a power storage device includes two or more power storage elements and one or more power storage elements according to another aspect of the present invention.
  • the solid polymer electrolyte according to one aspect of the present invention has high lithium ion conductivity.
  • a power storage element and a power storage device have high lithium ion conductivity.
  • FIG. 1 is a see-through perspective view showing one embodiment of a power storage device.
  • FIG. 2 is a schematic diagram showing an embodiment of a power storage device configured by assembling a plurality of power storage elements.
  • the solid polymer electrolyte according to one aspect of the present invention includes a lithium salt, a polymer material in which the lithium salt is mixed and has lithium ion conductivity, the lithium salt and the polymer material are attached, and a polysaccharide and a porous substrate having a polysaccharide content of 20% by mass or more and 40% by mass or less.
  • This solid polymer electrolyte has high lithium ion conductivity by including the lithium salt, the polymer material, and the porous substrate.
  • the reason for such high lithium ion conductivity is not necessarily clear, but is presumed as follows, for example.
  • the polysaccharide contained in the porous substrate has a large number of hydroxyl groups. These hydroxyl groups tend to coordinate with cations such as lithium ions due to the high electronegativity of the oxygen atoms of the hydroxyl groups, thereby promoting the dissociation of the lithium salt.
  • these hydroxyl groups are dispersed in the porous base material, the hydroxyl groups exposed on the surface among the dispersed hydroxyl groups promote the dissociation of the lithium salt.
  • the polymer material has lithium ion conductivity, the lithium ions generated by the dissociation can easily conduct in the solid polymer electrolyte while maintaining the dissociated state.
  • the dissociation of the lithium salt mixed in the polymer material is promoted by the hydroxyl groups of the polysaccharide contained in the porous substrate, and the lithium ions generated by the dissociation are dissociated by the polymer material. It can move in the solid polymer electrolyte while being maintained. Therefore, when the lithium ion conductivity is compared with paths of the same length, the lithium ion conductivity is relatively high. Therefore, it is presumed that the lithium ion conductivity of the solid polymer electrolyte increases.
  • the polysaccharide can be contained in the porous substrate. It is possible to include at the content of By including a relatively large amount of polysaccharide in the solid polymer electrolyte, the dissociation of the lithium ions is promoted. In addition, since the polysaccharide is contained in the porous base material, a plurality of hydroxyl groups are arranged relatively continuously due to the shape thereof, so that a relatively long lithium ion conduction path can be formed. From these points as well, it is presumed that the lithium ion conductivity of the solid polymer electrolyte increases.
  • the solid polymer electrolyte having a porous substrate is a solid polymer that does not have a porous substrate (including those containing polysaccharides as fillers (particles that reinforce the strength of the solid polymer electrolyte)) Since it has higher strength than electrolyte, it is excellent in shape retention. Moreover, since the solid polymer electrolyte has such excellent shape retention properties, it is possible to suppress the occurrence of a short circuit when the power storage element including the solid polymer electrolyte is pressed.
  • polysaccharide content in the solid polymer electrolyte means the mass of the polysaccharide contained in the porous substrate relative to the mass of the solid polymer electrolyte.
  • the polysaccharide may be ⁇ -glucan.
  • the polysaccharide is ⁇ -glucan
  • the molecular structure of ⁇ -glucan is chemically more stable than other polysaccharides. It can be expected that oxidation-reduction decomposition of the porous substrate is suppressed.
  • the polymer material may have at least one of ether oxygen and carbonate structures.
  • the oxygen contained in the ether oxygen and the carbonate structure tends to maintain the state in which lithium ions are dissociated. Lithium ion conductivity becomes higher.
  • the content of the carbonate structure in the polymer material may be 60 mol% or more.
  • the content of the carbonate structure in the polymer material is 60 mol% or more, the state in which the lithium ions are dissociated by the oxygen contained in the carbonate structure is more likely to be maintained. more conductive.
  • the polysaccharide may be cellulose.
  • the polysaccharide is cellulose, it is easier to obtain than other ⁇ -glucans, so it is possible to supply cheaper power storage devices.
  • a power storage device includes a positive electrode, a negative electrode, and the solid polymer electrolyte interposed between the positive electrode and the negative electrode.
  • this power storage device includes the solid polymer electrolyte described above, it has high lithium ion conductivity.
  • a power storage device includes two or more power storage elements, and one or more power storage elements according to another aspect of the present invention.
  • this power storage device includes two or more of the above-described power storage elements with high lithium ion conductivity, the lithium ion conductivity is high.
  • the solid polymer electrolyte is a solid polymer electrolyte for a power storage device, and is a mixture of a lithium salt and a polymer material having lithium ion conductivity, the lithium salt and the polymer material adhering to each other. and a porous substrate having a polysaccharide, wherein the content of the polysaccharide is 10% by mass or more and 40% by mass or less.
  • Examples of the aspect in which the mixture of the lithium salt and the polymer material is attached to the porous substrate include an aspect in which the pores of the porous substrate are impregnated with the mixture. By impregnating the pores of the porous substrate with the mixture, the pores of the porous substrate are filled with the mixture, and the lithium ion conductivity can be easily increased. Alternatively, the admixture may be impregnated into the pores of the porous substrate and laminated to one or both surfaces of the porous substrate.
  • the mixture of the lithium salt and the polymer material is, for example, in the form of a composite obtained by mixing the lithium salt and the polymer material with a solvent to dissolve or disperse the mixture, and then removing the solvent. There may be.
  • the average thickness of the solid polymer electrolyte is preferably 1 ⁇ m or more from the viewpoint of the strength of the solid polymer electrolyte, and preferably 200 ⁇ m or less from the viewpoint of the internal resistance of the solid polymer electrolyte.
  • this "average thickness" is obtained by measuring the thickness at arbitrary 10 points and calculating the average value of the measurement results.
  • lithium salt functions as an electrolyte salt.
  • examples of the lithium salt include inorganic lithium salts such as LiPF 6 , LiPO 2 F 2 , LiBF 4 , LiClO 4 , lithium bis(fluorosulfonyl)imide (LiN(SO 2 F) 2 , LiFSI), and lithium bis(oxalate) borate.
  • LiBOB lithium difluorooxalate borate
  • LiFOB lithium bis(oxalate) difluorophosphate
  • LiFOP lithium bis(oxalate) difluorophosphate
  • LiSO3CF3 lithium bis(trifluoromethanesulfonyl)imide
  • LiN ( SO2CF3 ) 2 LiTFSI
  • LiN ( SO2C2F5 ) 2 LiN ( SO2CF3 ) ( SO2C4F9 )
  • LiC ( SO2CF3 ) 3 LiC ( SO2C2F5 ) and lithium salts having a halogenated hydrocarbon group such as 3 .
  • lithium salts such as LiFSI and LiTFSI are preferred, and LiFSI and LiTFSI are more preferred.
  • the lithium salt one type of these lithium salts may be used alone, or two or more types may be mixed and used.
  • the content of the lithium salt in the solid polymer electrolyte is preferably 10% by mass or more and 90% by mass or less, more preferably 20% by mass or more and 80% by mass or less, and even more preferably 40% by mass or more and 70% by mass or less. .
  • the lithium ion conductivity in the solid polymer electrolyte can be further enhanced.
  • the polymeric material is compatible with the lithium salt and has lithium ion conductivity. Lithium ion conductivity is imparted to the solid polymer electrolyte by the polymer material having lithium ion conductivity.
  • the polymer material is not particularly limited as long as it has lithium ion conductivity.
  • the polymer material is preferably a compound having at least one of an ether oxygen structure and a carbonate structure. When the polymer material has at least one of an ether oxygen structure and a carbonate structure, the oxygen contained in the ether oxygen structure and the carbonate structure tends to maintain the dissociated state of lithium ions. become more sexual.
  • Examples of compounds having a carbonate structure include polycarbonates containing a carbonate structure as a structural unit of a chain structure, such as polypropylene carbonate (PPC), polyethylene carbonate (PEC), polytrimethylene carbonate (PTMC), polyvinylene carbonate (PVCA ), etc., as a constituent unit of a cyclic structure.
  • polycarbonates containing a carbonate structure as a constituent unit of a chain structure are preferred.
  • Examples of the ether oxygen-containing compound include polyethylene oxide (PEO) and polypropylene oxide (PPO).
  • the content of the carbonate structure in the polymer material is preferably 60 mol% or more, more preferably 70 mol% or more.
  • the content of the carbonate structure in the polymer material is equal to or higher than the lower limit, the state in which lithium ions are dissociated by oxygen contained in the carbonate structure is more likely to be maintained. can be higher.
  • the upper limit of the content of the carbonate structure in the polymer material may be 100 mol %, and the polymer material may be a compound substantially having only the carbonate structure.
  • the content of the polymer material in the solid polymer electrolyte is preferably 5% by mass or more and 80% by mass or less, more preferably 10% by mass or more and 70% by mass or less, and even more preferably 15% by mass or more and 60% by mass or less. .
  • the lithium ion conductivity in the solid polymer electrolyte can be further enhanced.
  • the lithium salt is mixed in the polymer material.
  • Inorganic fillers such as aluminum oxide and silicon dioxide may be mixed with the polymer material, in addition to the lithium salt.
  • the content of the inorganic filler and the like in the solid polymer electrolyte is preferably 1% by mass or more and 20% by mass or less, for example. When the content of the inorganic filler or the like is within the above range, there is an advantage that the lithium ion conductivity of the solid polymer electrolyte increases.
  • the porous substrate has a polysaccharide.
  • the polysaccharide By including the polysaccharide in the porous substrate, it is possible to form a relatively long lithium ion conducting path due to the shape of the porous substrate.
  • the strength of the solid polymer electrolyte can be made higher than that of the solid polymer electrolyte without the porous substrate.
  • Examples of the shape of the porous substrate include woven fabric, nonwoven fabric, and porous resin film.
  • a nonwoven fabric is preferable from the viewpoint of ease of adhesion of the lithium salt and the polymer material, more specifically, ease of impregnation.
  • a porous substrate having such a morphology can be produced by a known method.
  • a non-woven fabric can be produced from the polysaccharide-containing fibers using a known non-woven fabric manufacturing machine.
  • the porous base material contains a polysaccharide as a main component.
  • the "main component” is a component with the largest content (% by mass), for example, a component with a content of 50% by mass or more.
  • the polysaccharide content in the porous substrate is preferably 50% by mass or more, more preferably 70% by mass or more, and even more preferably 90% by mass or more, as described above.
  • the content of the polysaccharide in the porous substrate is equal to or higher than the lower limit, the content of the hydroxyl group becomes relatively large, and the frequency of proximity between the hydroxyl group and the lithium salt increases. The dissociation of lithium ions in the salt is promoted more.
  • the porous substrate may substantially contain only the polysaccharide, or the content of the polysaccharide in the porous substrate may be 100% by mass.
  • the content of the polysaccharide in the solid polymer electrolyte is 10% by mass or more and 40% by mass or less, preferably 15% by mass or more and 35% by mass or less.
  • the content of the polysaccharide in the solid polymer electrolyte is equal to or higher than the lower limit, the content of the hydroxyl group becomes relatively large, and the dissociation of lithium ions in the lithium salt is further promoted. Moreover, the strength of the solid polymer electrolyte can be increased.
  • the content of the polysaccharide in the solid polymer electrolyte is equal to or less than the upper limit, the content of other components such as lithium salts and polymer materials can be relatively increased. A decrease in lithium ion conductivity due to a decrease in the content of the component can be suppressed.
  • polysaccharides examples include ⁇ -glucans, ⁇ -glucans such as amylose and amylopectin, and inulin. Among these, ⁇ -glucans are preferred.
  • ⁇ -glucans When the polysaccharide is ⁇ -glucan, it has high chemical stability, and when the solid polymer electrolyte is used to form, for example, a lithium ion secondary battery, oxidation-reduction decomposition of the porous substrate is suppressed, and Coulomb There is an advantage that a decrease in efficiency can be suppressed.
  • the ⁇ -glucan include cellulose and callose, and among these, cellulose is preferred.
  • Cellulose may be in the form of salts such as sodium salts and calcium salts.
  • the porous substrate may contain components other than the polysaccharide.
  • components other than the polysaccharide include polyolefins such as polyethylene and polypropylene, polyimides and aramids.
  • the content of components other than the polysaccharide in the porous substrate is preferably, for example, 10% by mass or more and 50% by mass or less.
  • the content of components other than the polysaccharide in the porous substrate in the solid polymer electrolyte is preferably, for example, 1% by mass or more and 40% by mass or less.
  • the solid polymer electrolyte can contain a large amount of the polymer material and the lithium salt while maintaining the strength as a porous substrate. There is an advantage that the lithium ion conductivity of the solid polymer electrolyte can be sufficiently ensured.
  • the porosity of the porous substrate is preferably 80% by volume or less from the viewpoint of strength, and preferably 20% by volume or more from the viewpoint of discharge performance.
  • the "porosity” is a volume-based value and means a value measured with a mercury porosimeter.
  • the average thickness of the porous substrate is preferably 10 ⁇ m or more from the viewpoint of strength, and preferably 200 ⁇ m or less from the viewpoint of internal resistance.
  • this "average thickness” is obtained by measuring the thickness at arbitrary 10 points and calculating the average value of the measurement results.
  • the degree of impregnation is not particularly limited. can be set as appropriate so that the can move.
  • all the voids of the porous substrate may be filled with the mixture, or some voids of the porous substrate may not be filled with the mixture.
  • the solid polymer electrolyte comprises, for example, mixing the lithium salt and the polymer material, and attaching the mixture obtained by the mixing to the porous substrate.
  • the mixing includes, for example, dissolving or dispersing the lithium salt and the polymer material in a solvent by mixing using a known mixer.
  • the solvent include acetonitrile, dimethylformamide, dimethoxysulfoxide, chloroform, methylene chloride, N-methylpyrrolidone and the like.
  • the adhering includes, for example, impregnating the porous substrate with the mixture obtained by the above mixing, and then removing the solvent, and applying the mixture to one or both of the porous substrates.
  • the solvent is removed after application to the surface. Removal of the solvent includes drying using a known dryer.
  • a power storage device includes an electrode body having a positive electrode, a negative electrode, and a solid polymer electrolyte, and a container that accommodates the electrode body.
  • the electrode body is usually a laminated type in which a plurality of positive electrodes and a plurality of negative electrodes are laminated with a solid polymer electrolyte interposed therebetween, or a winding in which a positive electrode and a negative electrode are laminated with a solid polymer electrolyte interposed therebetween. It is a circular type.
  • a non-aqueous electrolyte secondary battery hereinafter also simply referred to as a “secondary battery” will be described as an example of the storage element.
  • the positive electrode has a positive electrode base material and a positive electrode active material layer disposed directly on the positive electrode base material or via an intermediate layer.
  • a positive electrode base material has electroconductivity. Whether or not a material has "conductivity" is determined using a volume resistivity of 10 7 ⁇ cm as a threshold measured according to JIS-H-0505 (1975).
  • the material for the positive electrode substrate metals such as aluminum, titanium, tantalum and stainless steel, or alloys thereof are used. Among these, aluminum or an aluminum alloy is preferable from the viewpoint of potential resistance, high conductivity, and cost.
  • the positive electrode substrate include foil, deposited film, mesh, porous material, and the like, and foil is preferable from the viewpoint of cost. Therefore, aluminum foil or aluminum alloy foil is preferable as the positive electrode substrate. Examples of aluminum or aluminum alloys include A1085, A3003, A1N30, etc. defined in JIS-H-4000 (2014) or JIS-H4160 (2006).
  • the average thickness of the positive electrode substrate is preferably 3 ⁇ m or more and 50 ⁇ m or less, more preferably 5 ⁇ m or more and 40 ⁇ m or less, even more preferably 8 ⁇ m or more and 30 ⁇ m or less, and particularly preferably 10 ⁇ m or more and 25 ⁇ m or less.
  • the "average thickness of the base material” refers to a value obtained by dividing the punched mass when a base material having a predetermined area is punched out by the true density and the punched area of the base material, and the same applies to the negative electrode base material.
  • the intermediate layer is a layer arranged between the positive electrode substrate and the positive electrode active material layer.
  • the intermediate layer contains a conductive agent such as carbon particles to reduce the contact resistance between the positive electrode substrate and the positive electrode active material layer.
  • the composition of the intermediate layer is not particularly limited, and includes, for example, a binder and a conductive agent.
  • the positive electrode active material layer may further contain a mixture of a lithium salt and a polymer material having lithium ion conductivity. Although the lithium salt and polymer material are not particularly limited, they can be selected from the configurations of the lithium salt and polymer material provided in the solid polymer electrolyte.
  • the positive electrode active material layer contains a positive electrode active material.
  • the positive electrode active material layer contains arbitrary components such as a conductive agent, a binder (binding agent), a thickener, a filler, etc., as required.
  • the positive electrode active material can be appropriately selected from known positive electrode active materials.
  • a positive electrode active material for lithium ion secondary batteries a material capable of intercalating and deintercalating lithium ions is usually used.
  • positive electrode active materials include lithium-transition metal composite oxides having an ⁇ -NaFeO 2 type crystal structure, lithium-transition metal composite oxides having a spinel-type crystal structure, polyanion compounds, chalcogen compounds, and sulfur.
  • lithium transition metal composite oxides having an ⁇ -NaFeO 2 type crystal structure examples include Li[Li x Ni (1-x) ]O 2 (0 ⁇ x ⁇ 0.5), Li[Li x Ni ⁇ Co ( 1-x- ⁇ ) ]O 2 (0 ⁇ x ⁇ 0.5, 0 ⁇ 1), Li[Li x Co (1-x) ]O 2 (0 ⁇ x ⁇ 0.5), Li[ Li x Ni ⁇ Mn (1-x- ⁇ ) ]O 2 (0 ⁇ x ⁇ 0.5, 0 ⁇ 1), Li[Li x Ni ⁇ Mn ⁇ Co (1-x- ⁇ - ⁇ ) ] O 2 (0 ⁇ x ⁇ 0.5, 0 ⁇ , 0 ⁇ , 0.5 ⁇ + ⁇ 1), Li[Li x Ni ⁇ Co ⁇ Al (1-x- ⁇ - ⁇ ) ]O 2 ( 0 ⁇ x ⁇ 0.5, 0 ⁇ , 0 ⁇ , 0.5 ⁇ + ⁇ 1) and the like.
  • lithium transition metal composite oxides having a spinel crystal structure examples include Li x Mn 2 O 4 and Li x Ni ⁇ Mn (2- ⁇ ) O 4 .
  • polyanion compounds include LiFePO4 , LiMnPO4 , LiNiPO4 , LiCoPO4, Li3V2(PO4)3 , Li2MnSiO4 , Li2CoPO4F and the like.
  • chalcogen compounds include titanium disulfide, molybdenum disulfide, and molybdenum dioxide.
  • the atoms or polyanions in these materials may be partially substituted with atoms or anionic species of other elements. These materials may be coated with other materials on their surfaces. In the positive electrode active material layer, one kind of these materials may be used alone, or two or more kinds may be mixed and used.
  • the positive electrode active material is usually particles (powder).
  • the average particle size of the positive electrode active material is preferably, for example, 0.1 ⁇ m or more and 20 ⁇ m or less. By making the average particle size of the positive electrode active material equal to or more than the above lower limit, manufacturing or handling of the positive electrode active material becomes easy. By setting the average particle size of the positive electrode active material to the above upper limit or less, the electron conductivity of the positive electrode active material layer is improved. Note that when a composite of a positive electrode active material and another material is used, the average particle size of the composite is taken as the average particle size of the positive electrode active material.
  • Average particle size is based on JIS-Z-8825 (2013), based on the particle size distribution measured by a laser diffraction / scattering method for a diluted solution in which particles are diluted with a solvent, JIS-Z-8819 -2 (2001) means a value at which the volume-based integrated distribution calculated according to 50%.
  • Pulverizers, classifiers, etc. are used to obtain powder with a predetermined particle size.
  • Pulverization methods include, for example, methods using a mortar, ball mill, sand mill, vibrating ball mill, planetary ball mill, jet mill, counter jet mill, whirling jet mill, or sieve.
  • wet pulverization in which water or an organic solvent such as hexane is allowed to coexist can also be used.
  • a sieve, an air classifier, or the like is used as necessary, both dry and wet.
  • the content of the positive electrode active material in the positive electrode active material layer is preferably 50% by mass or more and 99% by mass or less, more preferably 70% by mass or more and 98% by mass or less, and even more preferably 80% by mass or more and 95% by mass or less.
  • the conductive agent is not particularly limited as long as it is a conductive material.
  • Examples of such conductive agents include carbonaceous materials, metals, and conductive ceramics.
  • Carbonaceous materials include graphite, non-graphitic carbon, graphene-based carbon, and the like.
  • Examples of non-graphitic carbon include carbon nanofiber, pitch-based carbon fiber, and carbon black.
  • Examples of carbon black include furnace black, acetylene black, and ketjen black.
  • Graphene-based carbon includes graphene, carbon nanotube (CNT), fullerene, and the like.
  • the shape of the conductive agent may be powdery, fibrous, or the like.
  • As the conductive agent one type of these materials may be used alone, or two or more types may be mixed and used. Also, these materials may be combined for use.
  • a composite material of carbon black and CNT may be used.
  • carbon black is preferable from the viewpoint of electron conductivity and coatability
  • acetylene black is particularly preferable
  • the content of the conductive agent in the positive electrode active material layer is preferably 1% by mass or more and 10% by mass or less, more preferably 3% by mass or more and 9% by mass or less.
  • Binders include, for example, fluorine resins (polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), etc.), thermoplastic resins such as polyethylene, polypropylene, polyacryl, and polyimide; ethylene-propylene-diene rubber (EPDM), sulfone Elastomers such as modified EPDM, styrene-butadiene rubber (SBR) and fluororubber; polysaccharide polymers and the like.
  • fluorine resins polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), etc.
  • thermoplastic resins such as polyethylene, polypropylene, polyacryl, and polyimide
  • EPDM ethylene-propylene-diene rubber
  • SBR styrene-butadiene rubber
  • fluororubber polysaccharide polymers and the like.
  • the content of the binder in the positive electrode active material layer is preferably 1% by mass or more and 10% by mass or less, more preferably 3% by mass or more and 9% by mass or less.
  • thickeners examples include polysaccharide polymers such as carboxymethylcellulose (CMC) and methylcellulose.
  • CMC carboxymethylcellulose
  • methylcellulose examples include polysaccharide polymers such as carboxymethylcellulose (CMC) and methylcellulose.
  • the functional group may be previously deactivated by methylation or the like.
  • the filler is not particularly limited.
  • Fillers include polyolefins such as polypropylene and polyethylene, inorganic oxides such as silicon dioxide, alumina, titanium dioxide, calcium oxide, strontium oxide, barium oxide, magnesium oxide and aluminosilicate, magnesium hydroxide, calcium hydroxide, hydroxide Hydroxides such as aluminum, carbonates such as calcium carbonate, sparingly soluble ionic crystals such as calcium fluoride, barium fluoride, and barium sulfate, nitrides such as aluminum nitride and silicon nitride, talc, montmorillonite, boehmite, zeolite, Mineral resource-derived substances such as apatite, kaolin, mullite, spinel, olivine, sericite, bentonite, and mica, or artificial products thereof may be used.
  • the positive electrode active material layer contains typical nonmetallic elements such as B, N, P, F, Cl, Br, and I, Li, Na, Mg, Al, K, Ca, Zn, Ga, Ge, Sn, Sr, Ba, and the like.
  • typical metal elements, transition metal elements such as Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Zr, Nb, W are used as positive electrode active materials, conductive agents, binders, thickeners, fillers It may be contained as a component other than
  • the negative electrode has a negative electrode base material and a negative electrode active material layer disposed directly on the negative electrode base material or via an intermediate layer.
  • the structure of the intermediate layer is not particularly limited, and can be selected from, for example, the structures exemplified for the positive electrode.
  • the negative electrode base material has conductivity.
  • materials for the negative electrode substrate metals such as copper, nickel, stainless steel, nickel-plated steel, aluminum, alloys thereof, carbonaceous materials, and the like are used. Among these, copper or a copper alloy is preferred.
  • the negative electrode substrate include foil, deposited film, mesh, porous material, and the like, and foil is preferable from the viewpoint of cost. Therefore, copper foil or copper alloy foil is preferable as the negative electrode substrate.
  • Examples of copper foil include rolled copper foil and electrolytic copper foil.
  • the average thickness of the negative electrode substrate is preferably 2 ⁇ m or more and 35 ⁇ m or less, more preferably 3 ⁇ m or more and 30 ⁇ m or less, even more preferably 4 ⁇ m or more and 25 ⁇ m or less, and particularly preferably 5 ⁇ m or more and 20 ⁇ m or less.
  • the negative electrode active material layer contains a negative electrode active material.
  • the negative electrode active material layer contains arbitrary components such as a conductive agent, a binder, a thickener, a filler, etc., as required.
  • Optional components such as conductive agents, binders, thickeners, and fillers can be selected from the materials exemplified for the positive electrode.
  • the negative electrode active material layer may further contain a mixture of a lithium salt and a polymer material having lithium ion conductivity.
  • the lithium salt and polymer material are not particularly limited, they can be selected from the configurations of the lithium salt and polymer material provided in the solid polymer electrolyte.
  • the negative electrode active material layer contains typical nonmetallic elements such as B, N, P, F, Cl, Br, and I, Li, Na, Mg, Al, K, Ca, Zn, Ga, Ge, Sn, Sr, Ba, and the like. and transition metal elements such as Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Zr, Ta, Hf, Nb, and W are used as negative electrode active materials, conductive agents, binders, and thickeners. You may contain as a component other than a sticky agent and a filler.
  • the negative electrode active material can be appropriately selected from known negative electrode active materials. Materials capable of intercalating and deintercalating lithium ions are usually used as negative electrode active materials for lithium ion secondary batteries.
  • the negative electrode active material include metal Li; metals or metalloids such as Si and Sn; metal oxides and metalloid oxides such as Si oxide, Ti oxide and Sn oxide; Li 4 Ti 5 O 12 ; Titanium-containing oxides such as LiTiO 2 and TiNb 2 O 7 ; polyphosphate compounds; silicon carbide; carbon materials such as graphite and non-graphitizable carbon (easily graphitizable carbon or non-graphitizable carbon) be done. Among these materials, graphite and non-graphitic carbon are preferred.
  • one type of these materials may be used alone, or two or more types may be mixed and used.
  • Graphite refers to a carbon material having an average lattice spacing (d 002 ) of the (002) plane of 0.33 nm or more and less than 0.34 nm as determined by X-ray diffraction before charging/discharging or in a discharged state.
  • Graphite includes natural graphite and artificial graphite. Artificial graphite is preferable from the viewpoint that a material with stable physical properties can be obtained.
  • Non-graphitic carbon refers to a carbon material having an average lattice spacing (d 002 ) of the (002) plane of 0.34 nm or more and 0.42 nm or less as determined by X-ray diffraction before charging/discharging or in a discharged state.
  • Non-graphitizable carbon includes non-graphitizable carbon and graphitizable carbon. Examples of non-graphitic carbon include resin-derived materials, petroleum pitch or petroleum pitch-derived materials, petroleum coke or petroleum coke-derived materials, plant-derived materials, and alcohol-derived materials.
  • the discharged state means a state in which the carbon material, which is the negative electrode active material, is discharged such that lithium ions that can be inserted and released are sufficiently released during charging and discharging.
  • the open circuit voltage is 0.7 V or higher.
  • non-graphitizable carbon refers to a carbon material having a d 002 of 0.36 nm or more and 0.42 nm or less.
  • Graphitizable carbon refers to a carbon material having a d 002 of 0.34 nm or more and less than 0.36 nm.
  • the negative electrode active material is usually particles (powder).
  • the average particle size of the negative electrode active material can be, for example, 1 nm or more and 100 ⁇ m or less.
  • the negative electrode active material is a carbon material, a titanium-containing oxide or a polyphosphate compound
  • the average particle size may be 1 ⁇ m or more and 100 ⁇ m or less.
  • the negative electrode active material is Si, Sn, Si oxide, Sn oxide, or the like
  • the average particle size may be 1 nm or more and 1 ⁇ m or less.
  • the electron conductivity of the active material layer is improved.
  • a pulverizer, a classifier, or the like is used to obtain powder having a predetermined particle size.
  • the pulverization method and classification method can be selected from, for example, the methods exemplified for the positive electrode.
  • the negative electrode active material is metal such as metal Li
  • the negative electrode active material may be foil-shaped.
  • the content of the negative electrode active material in the negative electrode active material layer is preferably 60% by mass or more and 99% by mass or less, more preferably 90% by mass or more and 98% by mass or less.
  • solid polymer electrolyte The solid polymer electrolyte described above is used as the solid polymer electrolyte provided in the electric storage device.
  • the solid polymer electrolyte is arranged as a layer (solid polymer electrolyte layer) arranged between the positive electrode and the negative electrode.
  • the solid polymer electrolyte functions as both an electrolyte and a separator.
  • FIG. 1 shows a storage element 1 as an example of a square battery. In addition, the same figure is taken as the figure which saw through the inside of a container.
  • An electrode body 2 having a positive electrode and a negative electrode wound with a solid polymer electrolyte sandwiched therebetween is housed in a rectangular container 3 .
  • the positive electrode is electrically connected to the positive electrode terminal 4 via a positive electrode lead 41 .
  • the negative electrode is electrically connected to the negative terminal 5 via a negative lead 51 .
  • the power storage device of the present embodiment is a power source for automobiles such as electric vehicles (EV), hybrid vehicles (HEV), and plug-in hybrid vehicles (PHEV), power sources for electronic devices such as personal computers and communication terminals, or power sources for power storage.
  • EV electric vehicles
  • HEV hybrid vehicles
  • PHEV plug-in hybrid vehicles
  • power sources for electronic devices such as personal computers and communication terminals
  • power sources for power storage
  • it can be mounted as a power storage unit (battery module) configured by assembling a plurality of power storage elements 1 .
  • the technology of the present invention may be applied to at least one power storage element included in the power storage unit.
  • a power storage device according to one embodiment of the present invention includes two or more power storage elements and one or more power storage elements according to one embodiment of the present invention (hereinafter referred to as "second embodiment").
  • FIG. 2 shows an example of a power storage device 30 according to a second embodiment, in which power storage units 20 each including two or more electrically connected power storage elements 1 are assembled.
  • the power storage device 30 may include a bus bar (not shown) that electrically connects two or more power storage elements 1, a bus bar (not shown) that electrically connects two or more power storage units 20, and the like.
  • the power storage unit 20 or power storage device 30 may include a state monitoring device (not shown) that monitors the state of one or more power storage elements.
  • a method for manufacturing the electric storage device of the present embodiment can be appropriately selected from known methods.
  • the manufacturing method includes, for example, preparing an electrode assembly and housing the electrode assembly in a container.
  • Preparing the electrode body includes preparing a positive electrode, a negative electrode and a solid polymer electrolyte, and forming the electrode body by laminating or winding the positive electrode and the negative electrode with the solid polymer electrolyte interposed therebetween.
  • the electric storage device of the present invention is not limited to the above-described embodiments, and various modifications may be made without departing from the gist of the present invention.
  • the configuration of another embodiment can be added to the configuration of one embodiment, and part of the configuration of one embodiment can be replaced with the configuration of another embodiment or a known technique.
  • some of the configurations of certain embodiments can be deleted.
  • well-known techniques can be added to the configuration of a certain embodiment.
  • the storage element is used as a chargeable/dischargeable non-aqueous electrolyte secondary battery (for example, a lithium ion secondary battery), but the type, shape, size, capacity, etc. of the storage element are arbitrary. .
  • the present invention can also be applied to capacitors such as various secondary batteries, electric double layer capacitors, and lithium ion capacitors.
  • Example 1 A nonwoven fabric made of cellulose (specifically, a nonwoven fabric manufactured by Nippon Kodoshi Co., Ltd. (disc shape with a diameter of 26 mm, average thickness: 35 ⁇ m)) was used as the porous substrate.
  • PPC a polymer material
  • LiTFSI a lithium salt
  • the content of lithium salt was 35.6% by mass
  • the content of polymer material was 53.3% by mass
  • the content of cellulose (i.e., porous substrate) as polysaccharide was 11.1% by mass.
  • the average thickness of the solid polymer electrolyte of Example 1 was 50 ⁇ m.
  • the obtained solid polymer electrolyte was sandwiched between two stainless steel (SUS) plates with a diameter of 26 mm, one SUS plate was used as a working electrode and the other SUS plate was used as a counter electrode to prepare a simulated battery.
  • the lithium ion conductivity of the electrolyte was measured. Table 1 shows the results.
  • Example 2 to Example 4 Solid polymer electrolytes of Examples 2 to 4 were produced in the same manner as in Example 1 except that the polymer materials and lithium salts shown in Table 1 were used in the mass ratios shown in Table 1.
  • the content of the lithium salt in the solid polymer electrolyte of Example 2 was 71.1% by mass, the content of the polymer material was 17.8% by mass, and the content of cellulose (i.e., porous substrate) as a polysaccharide was 11.1% by mass.
  • the average thickness of the solid polymer electrolyte of Example 2 was 50 ⁇ m.
  • the content of the lithium salt in the solid polymer electrolyte of Example 3 was 35.6% by mass, the content of the polymer material was 53.3% by mass, and the content of cellulose (i.e., porous substrate) as a polysaccharide was 11.1% by mass.
  • the average thickness of the solid polymer electrolyte of Example 3 was 50 ⁇ m.
  • the content of the lithium salt in the solid polymer electrolyte of Example 4 was 71.1% by mass, the content of the polymer material was 17.8% by mass, and the content of cellulose (i.e., porous substrate) as a polysaccharide was 11.1% by mass.
  • the average thickness of the solid polymer electrolyte of Example 4 was 50 ⁇ m.
  • ⁇ Comparative Example 5> A glass fiber assembly (disc shape with a diameter of 26 mm, average thickness: 40 ⁇ m) was used as the porous substrate. A mixture was prepared by mixing and dissolving the polymer material and lithium salt shown in Table 1 in dimethylformamide as a solvent at the mass ratio shown in Table 1. A solid polymer electrolyte of Comparative Example 5 was produced by impregnating the obtained mixture into the glass fiber and then removing the solvent using a hot plate and a vacuum dryer. In the solid polymer electrolyte of Comparative Example 5, the lithium salt content was 31.5% by mass, the polymer material content was 47.2% by mass, and the glass fiber content was 21.3% by mass. The average thickness of the solid polymer electrolyte of Comparative Example 5 was 50 ⁇ m. The lithium ion conductivity of the solid polymer electrolyte of Comparative Example 5 was measured in the same manner as in Example 1. Table 1 shows the results.
  • ⁇ Comparative Example 6> A polypropylene (PP) nonwoven fabric (disc-shaped with a diameter of 26 mm and an average thickness of 17 ⁇ m) was used as the porous substrate. A mixture was prepared by mixing and dissolving the polymer material and lithium salt shown in Table 1 in dimethylformamide as a solvent at the mass ratio shown in Table 1. After the PP nonwoven fabric was impregnated with the obtained mixture, the solvent was removed using a hot plate and a vacuum dryer to prepare a solid polymer electrolyte of Comparative Example 6. In the solid polymer electrolyte of Comparative Example 6, the lithium salt content was 36.3% by mass, the polymer material content was 54.5% by mass, and the PP nonwoven fabric content was 9.2% by mass. The average thickness of the solid polymer electrolyte of Comparative Example 6 was 50 ⁇ m. The lithium ion conductivity of the solid polymer electrolyte of Comparative Example 6 was measured in the same manner as in Example 1. Table 1 shows the results.
  • the solid polymer electrolytes of Examples 1 to 4 are compared with the solid polymer electrolytes of Comparative Examples 1, 5, and 6 that can function as solid polymer electrolytes of power storage elements. As a result, it was shown that the lithium ion conductivity was remarkably large. In addition, it was shown that the solid polymer electrolytes of Comparative Examples 2 to 4 are not suitable for use as solid polymer electrolytes for electric storage devices. As a result, it was shown that the solid polymer electrolytes of Examples 1 to 4 can be used to fabricate an electric storage element, and that the lithium ion conductivity of the electric storage element can be increased.
  • the present invention can be applied to personal computers, electronic devices such as communication terminals, and power storage elements and power storage devices used as power sources for automobiles and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)

Abstract

本発明の一側面に係る固体高分子電解質は、リチウム塩と、上記リチウム塩が混和され、かつリチウムイオン伝導性を有するポリマー材料と、上記リチウム塩及び上記ポリマー材料が付着し、かつ多糖類を有する多孔性基材とを備え、上記多糖類の含有量が10質量%以上40質量%以下である。

Description

固体高分子電解質、蓄電素子及び蓄電装置
 本発明は、固体高分子電解質、蓄電素子及び蓄電装置に関する。
 リチウムイオン二次電池に代表される非水電解質二次電池は、エネルギー密度の高さから、パーソナルコンピュータ、通信端末等の電子機器、自動車等に多用されている。上記非水電解質二次電池は、一般的には、セパレータで電気的に隔離された一対の電極と、この電極間に介在する非水電解質とを有し、両電極間でリチウムイオンの受け渡しを行うことで充放電するよう構成される。また、非水電解質二次電池以外の蓄電素子として、リチウムイオンキャパシタや電気二重層キャパシタ等のキャパシタも広く普及している。
 近年、液漏れの心配がないといった理由から、固体の非水電解質が提案されている。例えば、このような非水電解質として、ポリマーと、セルロースナノファイバーと、金属塩とを含む固体電解質が提案されている(特許文献1参照)。
国際公開第2018/008500号
 しかし、上記特許文献1に記載されたような固体電解質では、リチウムイオン伝導性が十分に高いとはいい難く、それゆえ、これを備える蓄電素子のリチウムイオン伝導性が十分に高いとはいい難い。
 本発明の目的は、リチウムイオン伝導性が高い固体高分子電解質、それを備える蓄電素子及び蓄電装置を提供することである。
 本発明の一側面に係る固体高分子電解質は、リチウム塩と、上記リチウム塩が混和され、かつリチウムイオン伝導性を有するポリマー材料と、上記リチウム塩及び上記ポリマー材料が付着し、かつ多糖類を有する多孔性基材とを備え、上記多糖類の含有量が10質量%以上40質量%以下である。
 本発明の他の一側面に係る蓄電素子は、正極と、負極と、上記正極及び上記負極の間に介在する上記固体高分子電解質とを備える。
 本発明の他の一態様に係る蓄電装置は、蓄電素子を二以上備え、かつ上記本発明の他の一態様に係る蓄電素子を一以上備える。
 本発明の一側面に係る固体高分子電解質は、リチウムイオン伝導性が高い。
 本発明の他の一側面に係る蓄電素子及び蓄電装置は、リチウムイオン伝導性が高い。
図1は、蓄電素子の一実施形態を示す透視斜視図である。 図2は、蓄電素子を複数個集合して構成した蓄電装置の一実施形態を示す概略図である。
 初めに、本明細書によって開示される固体高分子電解質、蓄電素子及び蓄電装置の概要について説明する。
 本発明の一側面に係る固体高分子電解質は、リチウム塩と、上記リチウム塩が混和され、かつリチウムイオン伝導性を有するポリマー材料と、上記リチウム塩及び上記ポリマー材料が付着し、かつ多糖類を有する多孔性基材とを備え、上記多糖類の含有量が20質量%以上40質量%以下である。
 この固体高分子電解質は、リチウム塩と、上記ポリマー材料と、上記多孔性基材とを備えることで、リチウムイオン伝導性が高い。このようにリチウムイオン伝導性が高い理由は、必ずしも明確ではないが、例えば以下のように推察される。
 すなわち、上記多孔性基材に含まれる多糖類は、多数の水酸基を有する。これら水酸基は、当該水酸基の有する酸素原子の電気陰性度が高いことに起因してリチウムイオン等のカチオンに配位し易いことから、リチウム塩の解離を促す。これら水酸基が多孔性基材中に分散されていると、この分散された水酸基のうち、表面に露出した水酸基によって上記リチウム塩の解離が促される。また、上記ポリマー材料は、リチウムイオン伝導性を有するため、上記解離で発生したリチウムイオンが、解離した状態が維持された状態で固体高分子電解質中を伝導し易くすることができる。このように、上記ポリマー材料に混和されたリチウム塩の解離が、上記多孔性基材に含まれる多糖類の水酸基で促され、上記解離で発生したリチウムイオンが、上記ポリマー材料によって解離した状態が維持された状態で当該固体高分子電解質内を移動することができる。よって、同じ長さの経路でリチウムイオン伝導性を比較したとき、相対的にリチウムイオン伝導性が高くなる。従って、当該固体高分子電解質のリチウムイオン伝導性が高くなると推察される。
 さらに、多孔性基材が用いられることで、この多孔性基材に多糖類を含ませることができるため、当該固体高分子電解質中に多糖類を上記10質量%以上40質量%という比較的多量の含有量で含ませることが可能となる。このように当該固体高分子電解質中に多糖類が比較的多量に含まれることで、上記リチウムイオンの解離が促進される。また、多糖類が多孔性基材に含まれることで、その形状に起因して複数の水酸基が比較的連続して配置されるため、比較的長いリチウムイオン伝導パスを形成することもできる。これらの点でも、当該固体高分子電解質のリチウムイオン伝導性が高くなると推察される。
 加えて、多孔性基材を有する当該固体高分子電解質は、多孔性基材を有しない(多糖類をフィラー(固体高分子電解質の強度を補強する粒子)として含有するものを含む)固体高分子電解質と比較して高い強度を有するため、形状保持性に優れる。しかも、このように当該固体高分子電解質が形状保持性に優れることで、当該固体高分子電解質を備える蓄電素子が圧迫された際に、短絡の発生を抑制し得る。
 ここで、固体高分子電解質中の「多糖類の含有量」とは、固体高分子電解質の質量に対する多孔性基材に含有される多糖類の質量を意味する。
 ここで、上記多糖類はβグルカンであってもよい。
 このように上記多糖類がβグルカンである場合には、βグルカンの分子構造が他の多糖類に比べて化学的に安定であることから、リチウムイオン二次電池等に用いられた際に、多孔性基材の酸化還元分解が抑制されることが期待できる。
 ここで、上記ポリマー材料が、エーテル酸素及びカーボネート構造の少なくとも一方を有してもよい。
 このように上記ポリマー材料がエーテル酸素及びカーボネート構造の少なくとも一方を有する場合には、上記エーテル酸素及びカーボネート構造に含まれる酸素によりリチウムイオンが解離した状態が維持され易いため、当該固体高分子電解質のリチウムイオン伝導性がより高くなる。
 ここで、上記ポリマー材料における上記カーボネート構造の含有量が60モル%以上であってもよい。
 上記ポリマー材料における上記カーボネート構造の含有量が60モル%以上である場合には、上記カーボネート構造に含まれる酸素によりリチウムイオンが解離した状態がより維持され易いため、当該固体高分子電解質のリチウムイオン伝導性がより高くなる。
 ここで、上記多糖類はセルロースであってもよい。
 このように上記多糖類がセルロースである場合には、他のβグルカンに比べて容易に入手することができるため、より安価な蓄電素子を供給することが可能となる。
 本発明の他の一側面に係る蓄電素子は、正極と、負極と、上記正極及び上記負極の間に介在する上記固体高分子電解質とを備える。
 この蓄電素子は、上述した当該固体高分子電解質を備えるため、リチウムイオン伝導性が高い。
 本発明の他の一側面に係る蓄電装置は、蓄電素子を二以上備え、かつ上記本発明の他の一側面に係る蓄電素子を一以上備える。
 この蓄電装置は、上述したリチウムイオン伝導性が高い当該蓄電素子を二以上備えるため、リチウムイオン伝導性が高い。
 本発明の一実施形態に係る固体高分子電解質の構成、蓄電素子の構成、蓄電装置の構成及び蓄電素子の製造方法、並びにその他の実施形態について詳述する。なお、各実施形態に用いられる各構成部材(各構成要素)の名称は、背景技術に用いられる各構成部材(各構成要素)の名称と異なる場合がある。
<固体高分子電解質>
 当該固体高分子電解質は、蓄電素子用の固体高分子電解質であり、リチウム塩と、上記リチウム塩が混和され、かつリチウムイオン伝導性を有するポリマー材料と、上記リチウム塩及び上記ポリマー材料が付着し、かつ多糖類を有する多孔性基材とを備え、上記多糖類の含有量が10質量%以上40質量%以下である。
 上記リチウム塩と上記ポリマー材料との混和物が上記多孔性基材に付着される態様としては、上記混和物が上記多孔性基材の空孔に含浸されている態様等が挙げられる。上記混和物が上記多孔性基材の空孔に含浸されることで、多孔性基材の空孔を上記混和物で満たし、リチウムイオン伝導性を高め易くすることができる。また、上記混和物が上記多孔性基材の空孔に含浸され、かつ上記多孔性基材の一方又は両方の面に積層されていてもよい。上記リチウム塩と上記ポリマー材料との混和物としては、例えば上記リチウム塩及び上記ポリマー材料と溶媒とを混合することにより溶解又は分散させた後、上記溶媒を除去して得られる複合体の形態であってもよい。
 当該固体高分子電解質の平均厚さは、この固体高分子電解質の強度の観点から1μm以上が好ましく、この固体高分子電解質の内部抵抗の観点から200μm以下が好ましい。ここで、この「平均厚さ」は、任意の10カ所で厚さを測定し、測定結果の平均値を算出することによって得る。
(リチウム塩)
 上記リチウム塩は、電解質塩として機能する。上記リチウム塩としては、LiPF、LiPO、LiBF、LiClO、リチウムビス(フルオロスルホニル)イミド(LiN(SOF)、LiFSI)等の無機リチウム塩、リチウムビス(オキサレート)ボレート(LiBOB)、リチウムジフルオロオキサレートボレート(LiFOB)、リチウムビス(オキサレート)ジフルオロホスフェート(LiFOP)等のシュウ酸リチウム塩、LiSOCF、リチウムビス(トリフルオロメタンスルホニル)イミド(LiN(SOCF、LiTFSI)、LiN(SO、LiN(SOCF)(SO)、LiC(SOCF、LiC(SO等のハロゲン化炭化水素基を有するリチウム塩等が挙げられる。これらの中でも、LiFSI、LiTFSI等のスルホニルイミドリチウム塩が好ましく、LiFSI、LiTFSIがより好ましい。上記リチウム塩としては、これらリチウム塩の1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 当該固体高分子電解質中の上記リチウム塩の含有量としては、10質量%以上90質量%以下が好ましく、20質量%以上80質量%以下がより好ましく、40質量%以上70質量%以下がさらに好ましい。上記リチウム塩の含有量が上記範囲内である場合、当該固体高分子電解質におけるリチウムイオン伝導性をより高めることができる。
(ポリマー材料)
 上記ポリマー材料は、上記リチウム塩と混和され、かつリチウムイオン伝導性を有するものである。上記ポリマー材料がリチウムイオン伝導性を有することで、当該固体高分子電解質にリチウムイオン伝導性が付与される。上記ポリマー材料は、リチウムイオン伝導性を有するものであればよく、特に限定されない。例えば上記ポリマー材料としては、エーテル酸素及びカーボネート構造の少なくとも一方を有する化合物が好ましい。上記ポリマー材料がエーテル酸素及びカーボネート構造の少なくとも一方を有する場合には、上記エーテル酸素及びカーボネート構造に含まれる酸素によりリチウムイオンが解離した状態が維持され易いため、当該固体高分子電解質のリチウムイオン伝導性がより高くなる。上記カーボネート構造を有する化合物としては、例えば、ポリプロピレンカーボネート(PPC)、ポリエチレンカーボネート(PEC)、ポリトリメチレンカーボネート(PTMC)等のカーボネート構造を鎖状構造の構成単位に含むポリカーボネート、ポリビニレンカーボネート(PVCA)等のカーボネート構造を環状構造の構成単位に含むポリカーボネートが挙げられ、これらのうち、カーボネート構造を鎖状構造の構成単位に含むポリカーボネートが好ましい。上記エーテル酸素を有する化合物としては、例えば、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)等が挙げられる。
 上記ポリマー材料における上記カーボネート構造の含有量としては、60モル%以上が好ましく、70モル%以上がより好ましい。上記ポリマー材料における上記カーボネート構造の含有量が上記下限以上である場合、上記カーボネート構造に含まれる酸素によりリチウムイオンが解離した状態がより維持され易いため、当該固体高分子電解質におけるリチウムイオン伝導性をより高めることができる。一方、上記ポリマー材料における上記カーボネート構造の含有量の上限は100モル%であってもよく、上記ポリマー材料は実質的に上記カーボネート構造のみを有する化合物であってもよい。
 当該固体高分子電解質中の上記ポリマー材料の含有量としては、5質量%以上80質量%以下が好ましく、10質量%以上70質量%以下がより好ましく、15質量%以上60質量%以下がさらに好ましい。上記ポリマー材料の含有量が上記範囲内である場合、当該固体高分子電解質におけるリチウムイオン伝導性をより高めることができる。
 上記ポリマー材料には、上記リチウム塩が混和されている。上記ポリマー材料には、上記リチウム塩以外に、酸化アルミニウムや二酸化ケイ素等の無機フィラー等が混和されてもよい。当該固体高分子電解質中の上記無機フィラー等の含有量は、例えば1質量%以上20質量%以下が好ましい。上記無機フィラー等の含有量が上記範囲内である場合、当該固体高分子電解質のリチウムイオン伝導度が高くなるという利点がある。
(多孔性基材)
 上記多孔性基材は、多糖類を有する。上記多糖類が上記多孔性基材に含まれることで、上記多孔性基材の形状に起因して比較的長いリチウムイオン伝導パスを形成することができる。また、上記多孔性基材を有することで、上記多孔性基材を有しない固体高分子電解質よりも、当該固体高分子電解質の強度を高くすることができる。
 上記多孔性基材の形状としては、織布、不織布、多孔質樹脂フィルム等が挙げられる。これらの形状の中でも、上記リチウム塩及び上記ポリマー材料の付着し易さ、より具体的には含浸させ易さの観点から不織布が好ましい。このような形態を有する多孔性基材は、公知の方法によって作製することができる。例えば上記多孔性基材が不織布の形状である場合、公知の不織布製造機を用いて、上記多糖類を有する繊維によって不織布を製造することができる。
 上記多孔性基材が、多糖類を主成分として有することが好ましい。ここで、「主成分」とは最も含有量(質量%)が大きい成分であり、例えば含有量が50質量%以上の成分を意味する。例えば上記多孔性基材中の上記多糖類の含有量としては、上記のように50質量%以上が好ましく、加えて、70質量%以上がさらに好ましく、90質量%以上がよりさらに好ましい。上記多孔性基材中の上記多糖類の含有量が上記下限以上である場合、上記水酸基の含有量が比較的大きくなり、上記水酸基と上記リチウム塩とが近接する頻度が大きくなるため、上記リチウム塩におけるリチウムイオンの解離がより促進される。一方、上記多孔性基材は、実質的に上記多糖類のみを含有していてもよく、上記多孔性基材中の上記多糖類の含有量が100質量%であってもよい。
 当該固体高分子電解質中の上記多糖類の含有量としては、10質量%以上40質量%以下であり、15質量%以上35質量%以下が好ましい。当該固体高分子電解質中の上記多糖類の含有量が上記下限以上である場合、上記水酸基の含有量が比較的大きくなり、上記リチウム塩におけるリチウムイオンの解離がより促進される。また、当該固体高分子電解質の強度を高めることができる。一方、当該固体高分子電解質中の上記多糖類の含有量が上記上限以下である場合、相対的にリチウム塩、ポリマー材料等の他の成分の含有量を大きくすることができるため、これら他の成分の含有量の低下に起因するリチウムイオン伝導度の低下を抑制することができる。
 上記多糖類としては、例えばβグルカン、アミロース、アミロペクチン等のαグルカン、イヌリン等が挙げられ、これらのうち、βグルカンが好ましい。上記多糖類がβグルカンである場合、化学的安定性が高く、当該固体高分子電解質を用いて例えばリチウムイオン二次電池を形成した際に、多孔性基材の酸化還元分解が抑制され、クーロン効率の低下を抑制することができるという利点がある。上記βグルカンとしては、セルロース、カロース等が挙げられ、これらのうち、セルロースが好ましい。セルロースは、ナトリウム塩、カルシウム塩等の塩の形態であってもよい。
 上記多孔性基材は、上記多糖類以外の成分を含有してもよい。このような成分としては、例えばポリエチレン、ポリプロピレン等のポリオレフィン、ポリイミドやアラミド等が挙げられる。当該多孔性基材中の上記多糖類以外の成分の含有量は、例えば10質量%以上50質量%以下が好ましい。当該固体高分子電解質中の上記多孔性基材の上記多糖類以外の成分の含有量は、例えば1質量%以上40質量%以下が好ましい。上記多糖類以外の成分の含有量が上記範囲内である場合、多孔性基材としての強度を維持しつつ当該固体高分子電解質が上記ポリマー材料及び上記リチウム塩を多量に含むことができるため当該固体高分子電解質のリチウムイオン伝導度をより十分に確保することができるという利点がある。
 上記多孔性基材の空孔率は、強度の観点から80体積%以下が好ましく、放電性能の観点から20体積%以上が好ましい。ここで、「空孔率」とは、体積基準の値であり、水銀ポロシメータでの測定値を意味する。
 上記多孔性基材の平均厚さは、強度の観点から、10μm以上が好ましく、内部抵抗の観点から、200μm以下が好ましい。ここで、この「平均厚さ」は、任意の10カ所で厚さを測定し、測定結果の平均値を算出することによって得る。
 上記多孔性基材に上記リチウム塩と上記ポリマー材料との混和物が含浸される場合、その含浸の程度は、特に限定されず、当該固体高分子電解質を通って正極及び負極の間でリチウムイオンが移動できるように適宜設定され得る。例えば上記多孔性基材の全ての空隙が上記混和物で満たされていてもよいし、上記多孔性基材の一部の空隙が上記混和物で満たされていなくてもよい。
(固体高分子電解質の製造方法)
 当該固体高分子電解質は、例えば上記リチウム塩と上記ポリマー材料とを混和することと、上記混和することによって得られた混和物を上記多孔性基材に付着させることとを備える。
 上記混和することとしては、例えば溶媒中に上記リチウム塩及び上記ポリマー材料を、公知の混合機を用いて混合することにより溶解又は分散させることが挙げられる。上記溶媒としては、アセトニトリル、ジメチルホルムアミド、ジメトキシスルホキシド、クロロホルム、塩化メチレン、N-メチルピロリドン等が挙げられる。
 上記付着させることとしては、例えば上記混和することで得られた混和物を上記多孔性基材に含浸させた後、上記溶媒を除去すること、上記混合物を上記多孔性基材の一方又は両方の面に塗布した後、上記溶媒を除去すること等が挙げられる。上記溶媒を除去することとしては、公知の乾燥器を用いて乾燥すること等が挙げられる。
<蓄電素子の構成>
 本発明の一実施形態に係る蓄電素子は、正極、負極及び固体高分子電解質を有する電極体と、上記電極体を収容する容器と、を備える。電極体は、通常、複数の正極及び複数の負極が固体高分子電解質を介して積層された積層型、又は、正極及び負極が固体高分子電解質を介して積層された状態で巻回された巻回型である。蓄電素子の一例として、非水電解質二次電池(以下、単に「二次電池」ともいう。)について説明する。
(正極)
 正極は、正極基材と、当該正極基材に直接又は中間層を介して配される正極活物質層とを有する。
 正極基材は、導電性を有する。「導電性」を有するか否かは、JIS-H-0505(1975年)に準拠して測定される体積抵抗率が10Ω・cmを閾値として判定する。正極基材の材質としては、アルミニウム、チタン、タンタル、ステンレス鋼等の金属又はこれらの合金が用いられる。これらの中でも、耐電位性、導電性の高さ、及びコストの観点からアルミニウム又はアルミニウム合金が好ましい。正極基材としては、箔、蒸着膜、メッシュ、多孔質材料等が挙げられ、コストの観点から箔が好ましい。したがって、正極基材としてはアルミニウム箔又はアルミニウム合金箔が好ましい。アルミニウム又はアルミニウム合金としては、JIS-H-4000(2014年)又はJIS-H4160(2006年)に規定されるA1085、A3003、A1N30等が例示できる。
 正極基材の平均厚さは、3μm以上50μm以下が好ましく、5μm以上40μm以下がより好ましく、8μm以上30μm以下がさらに好ましく、10μm以上25μm以下が特に好ましい。正極基材の平均厚さを上記の範囲とすることで、正極基材の強度を高めつつ、二次電池の体積当たりのエネルギー密度を高めることができる。「基材の平均厚さ」とは、所定の面積の基材を打ち抜いた際の打ち抜き質量を、基材の真密度及び打ち抜き面積で除した値をいい、負極基材も同様である。
 中間層は、正極基材と正極活物質層との間に配される層である。中間層は、炭素粒子等の導電剤を含むことで正極基材と正極活物質層との接触抵抗を低減する。中間層の構成は特に限定されず、例えば、バインダ及び導電剤を含む。正極活物質層は、さらにリチウム塩と、リチウムイオン伝導性を有するポリマー材料とからなる混和物を含んでいてもよい。上記リチウム塩及びポリマー材料は特に限定されないが、当該固体高分子電解質が備えるリチウム塩及びポリマー材料の構成から選択することができる。
 正極活物質層は、正極活物質を含む。正極活物質層は、必要に応じて、導電剤、バインダ(結着剤)、増粘剤、フィラー等の任意成分を含む。
 正極活物質としては、公知の正極活物質の中から適宜選択できる。リチウムイオン二次電池用の正極活物質としては、通常、リチウムイオンを吸蔵及び放出することができる材料が用いられる。正極活物質としては、例えば、α-NaFeO型結晶構造を有するリチウム遷移金属複合酸化物、スピネル型結晶構造を有するリチウム遷移金属複合酸化物、ポリアニオン化合物、カルコゲン化合物、硫黄等が挙げられる。α-NaFeO型結晶構造を有するリチウム遷移金属複合酸化物として、例えば、Li[LiNi(1-x)]O(0≦x<0.5)、Li[LiNiγCo(1-x-γ)]O(0≦x<0.5、0<γ<1)、Li[LiCo(1-x)]O(0≦x<0.5)、Li[LiNiγMn(1-x-γ)]O(0≦x<0.5、0<γ<1)、Li[LiNiγMnβCo(1-x-γ-β)]O(0≦x<0.5、0<γ、0<β、0.5<γ+β<1)、Li[LiNiγCoβAl(1-x-γ-β)]O(0≦x<0.5、0<γ、0<β、0.5<γ+β<1)等が挙げられる。スピネル型結晶構造を有するリチウム遷移金属複合酸化物として、LiMn、LiNiγMn(2-γ)等が挙げられる。ポリアニオン化合物として、LiFePO、LiMnPO、LiNiPO、LiCoPO,Li(PO、LiMnSiO、LiCoPOF等が挙げられる。カルコゲン化合物として、二硫化チタン、二硫化モリブデン、二酸化モリブデン等が挙げられる。これらの材料中の原子又はポリアニオンは、他の元素からなる原子又はアニオン種で一部が置換されていてもよい。これらの材料は表面が他の材料で被覆されていてもよい。正極活物質層においては、これら材料の1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 正極活物質は、通常、粒子(粉体)である。正極活物質の平均粒径は、例えば、0.1μm以上20μm以下とすることが好ましい。正極活物質の平均粒径を上記下限以上とすることで、正極活物質の製造又は取り扱いが容易になる。正極活物質の平均粒径を上記上限以下とすることで、正極活物質層の電子伝導性が向上する。なお、正極活物質と他の材料との複合体を用いる場合、該複合体の平均粒径を正極活物質の平均粒径とする。「平均粒径」とは、JIS-Z-8825(2013年)に準拠し、粒子を溶媒で希釈した希釈液に対しレーザ回折・散乱法により測定した粒径分布に基づき、JIS-Z-8819-2(2001年)に準拠し計算される体積基準積算分布が50%となる値を意味する。
 粉体を所定の粒径で得るためには粉砕機や分級機等が用いられる。粉砕方法として、例えば、乳鉢、ボールミル、サンドミル、振動ボールミル、遊星ボールミル、ジェットミル、カウンタージェットミル、旋回気流型ジェットミル又は篩等を用いる方法が挙げられる。粉砕時には水、あるいはヘキサン等の有機溶剤を共存させた湿式粉砕を用いることもできる。分級方法としては、篩や風力分級機等が、乾式、湿式ともに必要に応じて用いられる。
 正極活物質層における正極活物質の含有量は、50質量%以上99質量%以下が好ましく、70質量%以上98質量%以下がより好ましく、80質量%以上95質量%以下がさらに好ましい。正極活物質の含有量を上記の範囲とすることで、正極活物質層の高エネルギー密度化と製造性を両立できる。
 導電剤は、導電性を有する材料であれば特に限定されない。このような導電剤としては、例えば、炭素質材料、金属、導電性セラミックス等が挙げられる。炭素質材料としては、黒鉛、非黒鉛質炭素、グラフェン系炭素等が挙げられる。非黒鉛質炭素としては、カーボンナノファイバー、ピッチ系炭素繊維、カーボンブラック等が挙げられる。カーボンブラックとしては、ファーネスブラック、アセチレンブラック、ケッチェンブラック等が挙げられる。グラフェン系炭素としては、グラフェン、カーボンナノチューブ(CNT)、フラーレン等が挙げられる。導電剤の形状としては、粉状、繊維状等が挙げられる。導電剤としては、これらの材料の1種を単独で用いてもよく、2種以上を混合して用いてもよい。また、これらの材料を複合化して用いてもよい。例えば、カーボンブラックとCNTとを複合化した材料を用いてもよい。これらの中でも、電子伝導性及び塗工性の観点よりカーボンブラックが好ましく、中でもアセチレンブラックが好ましい。
 正極活物質層における導電剤の含有量は、1質量%以上10質量%以下が好ましく、3質量%以上9質量%以下がより好ましい。導電剤の含有量を上記の範囲とすることで、二次電池のエネルギー密度を高めることができる。
 バインダとしては、例えば、フッ素樹脂(ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)等)、ポリエチレン、ポリプロピレン、ポリアクリル、ポリイミド等の熱可塑性樹脂;エチレン-プロピレン-ジエンゴム(EPDM)、スルホン化EPDM、スチレンブタジエンゴム(SBR)、フッ素ゴム等のエラストマー;多糖類高分子等が挙げられる。
 正極活物質層におけるバインダの含有量は、1質量%以上10質量%以下が好ましく、3質量%以上9質量%以下がより好ましい。バインダの含有量を上記の範囲とすることで、活物質を安定して保持することができる。
 増粘剤としては、例えば、カルボキシメチルセルロース(CMC)、メチルセルロース等の多糖類高分子が挙げられる。増粘剤がリチウム等と反応する官能基を有する場合、予めメチル化等によりこの官能基を失活させてもよい。
 フィラーは、特に限定されない。フィラーとしては、ポリプロピレン、ポリエチレン等のポリオレフィン、二酸化ケイ素、アルミナ、二酸化チタン、酸化カルシウム、酸化ストロンチウム、酸化バリウム、酸化マグネシウム、アルミノケイ酸塩等の無機酸化物、水酸化マグネシウム、水酸化カルシウム、水酸化アルミニウム等の水酸化物、炭酸カルシウム等の炭酸塩、フッ化カルシウム、フッ化バリウム、硫酸バリウム等の難溶性のイオン結晶、窒化アルミニウム、窒化ケイ素等の窒化物、タルク、モンモリロナイト、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、セリサイト、ベントナイト、マイカ等の鉱物資源由来物質又はこれらの人造物等が挙げられる。
 正極活物質層は、B、N、P、F、Cl、Br、I等の典型非金属元素、Li、Na、Mg、Al、K、Ca、Zn、Ga、Ge、Sn、Sr、Ba等の典型金属元素、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo、Zr、Nb、W等の遷移金属元素を正極活物質、導電剤、バインダ、増粘剤、フィラー以外の成分として含有してもよい。
(負極)
 負極は、負極基材と、当該負極基材に直接又は中間層を介して配される負極活物質層とを有する。中間層の構成は特に限定されず、例えば上記正極で例示した構成から選択することができる。
 負極基材は、導電性を有する。負極基材の材質としては、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼、アルミニウム等の金属又はこれらの合金、炭素質材料等が用いられる。これらの中でも銅又は銅合金が好ましい。負極基材としては、箔、蒸着膜、メッシュ、多孔質材料等が挙げられ、コストの観点から箔が好ましい。したがって、負極基材としては銅箔又は銅合金箔が好ましい。銅箔の例としては、圧延銅箔、電解銅箔等が挙げられる。
 負極基材の平均厚さは、2μm以上35μm以下が好ましく、3μm以上30μm以下がより好ましく、4μm以上25μm以下がさらに好ましく、5μm以上20μm以下が特に好ましい。負極基材の平均厚さを上記の範囲とすることで、負極基材の強度を高めつつ、二次電池の体積当たりのエネルギー密度を高めることができる。
 負極活物質層は、負極活物質を含む。負極活物質層は、必要に応じて導電剤、バインダ、増粘剤、フィラー等の任意成分を含む。導電剤、バインダ、増粘剤、フィラー等の任意成分は、上記正極で例示した材料から選択できる。負極活物質層は、さらにリチウム塩と、リチウムイオン伝導性を有するポリマー材料とからなる混和物を含んでいてもよい。上記リチウム塩及びポリマー材料は特に限定されないが、当該固体高分子電解質が備えるリチウム塩及びポリマー材料の構成から選択することができる。
 負極活物質層は、B、N、P、F、Cl、Br、I等の典型非金属元素、Li、Na、Mg、Al、K、Ca、Zn、Ga、Ge、Sn、Sr、Ba等の典型金属元素、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo、Zr、Ta、Hf、Nb、W等の遷移金属元素を負極活物質、導電剤、バインダ、増粘剤、フィラー以外の成分として含有してもよい。
 負極活物質としては、公知の負極活物質の中から適宜選択できる。リチウムイオン二次電池用の負極活物質としては、通常、リチウムイオンを吸蔵及び放出することができる材料が用いられる。負極活物質としては、例えば、金属Li;Si、Sn等の金属又は半金属;Si酸化物、Ti酸化物、Sn酸化物等の金属酸化物又は半金属酸化物;LiTi12、LiTiO2、TiNb等のチタン含有酸化物;ポリリン酸化合物;炭化ケイ素;黒鉛(グラファイト)、非黒鉛質炭素(易黒鉛化性炭素又は難黒鉛化性炭素)等の炭素材料等が挙げられる。これらの材料の中でも、黒鉛及び非黒鉛質炭素が好ましい。負極活物質層においては、これら材料の1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 「黒鉛」とは、充放電前又は放電状態において、エックス線回折法により決定される(002)面の平均格子面間隔(d002)が0.33nm以上0.34nm未満の炭素材料をいう。黒鉛としては、天然黒鉛、人造黒鉛が挙げられる。安定した物性の材料を入手できるという観点で、人造黒鉛が好ましい。
 「非黒鉛質炭素」とは、充放電前又は放電状態においてエックス線回折法により決定される(002)面の平均格子面間隔(d002)が0.34nm以上0.42nm以下の炭素材料をいう。非黒鉛質炭素としては、難黒鉛化性炭素や、易黒鉛化性炭素が挙げられる。非黒鉛質炭素としては、例えば、樹脂由来の材料、石油ピッチまたは石油ピッチ由来の材料、石油コークスまたは石油コークス由来の材料、植物由来の材料、アルコール由来の材料等が挙げられる。
 ここで、「放電状態」とは、負極活物質である炭素材料から、充放電に伴い吸蔵放出可能なリチウムイオンが十分に放出されるように放電された状態を意味する。例えば、負極活物質として炭素材料を含む負極を作用極として、金属Liを対極として用いたセルにおいて、開回路電圧が0.7V以上である状態である。
 「難黒鉛化性炭素」とは、上記d002が0.36nm以上0.42nm以下の炭素材料をいう。
 「易黒鉛化性炭素」とは、上記d002が0.34nm以上0.36nm未満の炭素材料をいう。
 負極活物質は、通常、粒子(粉体)である。負極活物質の平均粒径は、例えば、1nm以上100μm以下とすることができる。負極活物質が炭素材料、チタン含有酸化物又はポリリン酸化合物である場合、その平均粒径は、1μm以上100μm以下であってもよい。負極活物質が、Si、Sn、Si酸化物、又は、Sn酸化物等である場合、その平均粒径は、1nm以上1μm以下であってもよい。負極活物質の平均粒径を上記下限以上とすることで、負極活物質の製造又は取り扱いが容易になる。負極活物質の平均粒径を上記上限以下とすることで、活物質層の電子伝導性が向上する。粉体を所定の粒径で得るためには粉砕機や分級機等が用いられる。粉砕方法及び分級方法は、例えば、上記正極で例示した方法から選択できる。負極活物質が金属Li等の金属である場合、負極活物質は、箔状であってもよい。
 負極活物質層における負極活物質の含有量は、60質量%以上99質量%以下が好ましく、90質量%以上98質量%以下がより好ましい。負極活物質の含有量を上記の範囲とすることで、負極活物質層の高エネルギー密度化と製造性を両立できる。
(固体高分子電解質)
 当該蓄電素子に備えられる固体高分子電解質として、上述した固体高分子電解質を用いる。当該蓄電素子において、当該固体高分子電解質は、正極及び負極間に配置される層(固体高分子電解質層)として配置される。当該固体高分子電解質は、電解質及びセパレータの双方の機能を備える。
 本実施形態の蓄電素子の形状については特に限定されるものではなく、例えば、円筒型電池、角型電池、扁平型電池、コイン型電池、ボタン型電池等が挙げられる。
 図1に角型電池の一例としての蓄電素子1を示す。なお、同図は、容器内部を透視した図としている。固体高分子電解質を挟んで巻回された正極及び負極を有する電極体2が角型の容器3に収納される。正極は正極リード41を介して正極端子4と電気的に接続されている。負極は負極リード51を介して負極端子5と電気的に接続されている。
<蓄電装置の構成>
 本実施形態の蓄電素子は、電気自動車(EV)、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHEV)等の自動車用電源、パーソナルコンピュータ、通信端末等の電子機器用電源、又は電力貯蔵用電源等に、複数の蓄電素子1を集合して構成した蓄電ユニット(バッテリーモジュール)として搭載することができる。この場合、蓄電ユニットに含まれる少なくとも一つの蓄電素子に対して、本発明の技術が適用されていればよい。
 本発明の一実施形態に係る蓄電装置は、蓄電素子を二以上備え、かつ上記本発明の一実施形態に係る蓄電素子を一以上備える(以下、「第二の実施形態」という。)。第二の実施形態に係る蓄電装置に含まれる少なくとも一つの蓄電素子に対して、本発明の一実施形態に係る技術が適用されていればよく、上記本発明の一実施形態に係る蓄電素子を一備え、かつ上記本発明の一実施形態に係らない蓄電素子を一以上備えていてもよく、上記本発明の一実施形態に係る蓄電素子を二以上備えていてもよい。
 図2に、電気的に接続された二以上の蓄電素子1が集合した蓄電ユニット20をさらに集合した第二の実施形態に係る蓄電装置30の一例を示す。蓄電装置30は、二以上の蓄電素子1を電気的に接続するバスバ(図示せず)、二以上の蓄電ユニット20を電気的に接続するバスバ(図示せず)等を備えていてもよい。蓄電ユニット20又は蓄電装置30は、一以上の蓄電素子の状態を監視する状態監視装置(図示せず)を備えていてもよい。
<蓄電素子の製造方法>
 本実施形態の蓄電素子の製造方法は、公知の方法から適宜選択できる。当該製造方法は、例えば、電極体を準備することと、電極体を容器に収容することと、を備える。電極体を準備することは、正極、負極及び固体高分子電解質を準備することと、固体高分子電解質を介して正極及び負極を積層又は巻回することにより電極体を形成することとを備える。
<その他の実施形態>
 尚、本発明の蓄電素子は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加えてもよい。例えば、ある実施形態の構成に他の実施形態の構成を追加することができ、また、ある実施形態の構成の一部を他の実施形態の構成又は周知技術に置き換えることができる。さらに、ある実施形態の構成の一部を削除することができる。また、ある実施形態の構成に対して周知技術を付加することができる。
 上記実施形態では、蓄電素子が充放電可能な非水電解質二次電池(例えばリチウムイオン二次電池)として用いられる場合について説明したが、蓄電素子の種類、形状、寸法、容量等は任意である。本発明は、種々の二次電池、電気二重層キャパシタ又はリチウムイオンキャパシタ等のキャパシタにも適用できる。
 以下、実施例によって本発明をさらに具体的に説明する。本発明は以下の実施例に限定されない。
<実施例1>
 多孔性基材としてセルロース製の不織布(具体的にはニッポン高度紙工業社製の不織布(直径26mmの円板状、平均厚さ:35μm))を用いた。溶媒としてのジメチルホルムアミドに、ポリマー材料としてのPPC及びリチウム塩としてのLiTFSIを60:40の質量比で混合して溶解させ、混和物を作製した。得られた混和物を上記セルロース製の不織布に含浸させた後、ホットプレート及び減圧乾燥器を用いて上記溶媒を除去することで、実施例1の固体高分子電解質を作製した。実施例1の固体高分子電解質中におけるリチウム塩の含有量は35.6質量%、ポリマー材料の含有量は53.3質量%、多糖類としてのセルロース(すなわち、多孔性基材)の含有量は11.1質量%であった。実施例1の固体高分子電解質の平均厚さは50μmであった。
 得られた固体高分子電解質を直径26mmの2枚のステンレス(SUS)板で挟み、一方のSUS板を作用極、他方のSUS板を対極として模擬電池を作製し、下記の方法で固体高分子電解質のリチウムイオン伝導度を測定した。結果を表1に示す。
(リチウムイオン伝導度の測定)
 得られた模擬電池について、25℃環境下で電気化学インピーダンス測定により、振幅10mV、周波数7MHzから100mHzにてCole-Coleプロットを取得し、得られた第一円弧の実抵抗から、リチウムイオン伝導度を算出した。
<実施例2から実施例4>
 表1に示すポリマー材料及びリチウム塩を表1の質量比で用いること以外は実施例1と同様にして実施例2から実施例4の固体高分子電解質を作製した。
 実施例2の固体高分子電解質中におけるリチウム塩の含有量は71.1質量%、ポリマー材料の含有量は17.8質量%、多糖類としてのセルロース(すなわち、多孔性基材)の含有量は11.1質量%であった。実施例2の固体高分子電解質の平均厚さは50μmであった。
 実施例3の固体高分子電解質中におけるリチウム塩の含有量は35.6質量%、ポリマー材料の含有量は53.3質量%、多糖類としてのセルロース(すなわち、多孔性基材)の含有量は11.1質量%であった。実施例3の固体高分子電解質の平均厚さは50μmであった。
 実施例4の固体高分子電解質中におけるリチウム塩の含有量は71.1質量%、ポリマー材料の含有量は17.8質量%、多糖類としてのセルロース(すなわち、多孔性基材)の含有量は11.1質量%であった。実施例4の固体高分子電解質の平均厚さは50μmであった。
 実施例2から実施例4の固体高分子電解質について、実施例1と同様にしてリチウムイオン伝導度を測定した。結果を表1に示す。
<比較例1>
 溶媒としてのジメチルホルムアミドに、表1に示すポリマー材料及びリチウム塩を表1の質量比で混合して溶解させ、混和物を作製した。得られた混和物を、実施例1で用いたものと同様の2枚のSUS板の一方の面に、400μmのギャップを有するアプリケーターを用いて塗布した後、ホットプレート及び減圧乾燥器を用いて上記溶媒を除去することで、比較例1の固体高分子電解質を作製した。次いで、得られた固体高分子電解質の上記一方のSUS板と反対側の面に他方のSUS板を被せることで模擬電池を作製し、実施例1と同様にリチウムイオン伝導度を測定した。結果を表1に示す。
<比較例2から比較例4>
 表1に示すポリマー材料及びリチウム塩を表1の質量比で用いること以外は比較例1と同様にして比較例2から比較例4の固体高分子電解質を作製した。次いで、比較例1と同様に、得られた固体分子電解質の上記一方のSUS板と反対側の面に他方のSUS板を被せた。その結果、2枚のSUS板で挟まれる程度の圧力で固体高分子電解質がSUS板間から流出し、SUS板同士が接触した。よって、比較例2から比較例4の固体高分子電解質については、リチウムイオン伝導度を測定するまでもなく、短絡が生じると判断した。結果を表1に示す。
<比較例5>
 多孔性基材としてガラス繊維の集合体(直径26mmの円板状、平均厚さ:40μm)を用いた。溶媒としてのジメチルホルムアミドに、表1に示すポリマー材料及びリチウム塩を表1の質量比で混合して溶解させ、混和物を作製した。得られた混和物を上記ガラス繊維に含浸させた後、ホットプレート及び減圧乾燥器を用いて上記溶媒を除去することで、比較例5の固体高分子電解質を作製した。比較例5の固体高分子電解質中におけるリチウム塩の含有量は31.5質量%、ポリマー材料の含有量は47.2質量%、ガラス繊維の含有量は21.3質量%であった。比較例5の固体高分子電解質の平均厚さは50μmであった。比較例5の固体高分子電解質について、実施例1と同様にしてリチウムイオン伝導度を測定した。結果を表1に示す。
<比較例6>
 多孔性基材としてポリプロピレン(PP)製の不織布(直径26mmの円板状、平均厚さ:17μm)を用いた。溶媒としてのジメチルホルムアミドに、表1に示すポリマー材料及びリチウム塩を表1の質量比で混合して溶解させ、混和物を作製した。得られた混和物を上記PP製の不織布に含浸させた後、ホットプレート及び減圧乾燥器を用いて上記溶媒を除去することで、比較例6の固体高分子電解質を作製した。比較例6の固体高分子電解質中におけるリチウム塩の含有量は36.3質量%、ポリマー材料の含有量は54.5質量%、PP製不織布の含有量は9.2質量%であった。比較例6の固体高分子電解質の平均厚さは50μmであった。比較例6の固体高分子電解質について、実施例1と同様にしてリチウムイオン伝導度を測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1から実施例4の固体高分子電解質は、蓄電素子の固体高分子電解質として機能し得る比較例1、比較例5及び比較例6の固体高分子電解質と比較して、リチウムイオン伝導度が顕著に大きいことが示された。また、比較例2から比較例4の固体高分子電解質は、蓄電素子の固体高分子電解質としての使用に堪えないことが示された。この結果、上記実施例1から実施例4の固体高分子電解質は、これらを用いて蓄電素子を作製することができ、しかも、この蓄電素子のリチウムイオン伝導度を高め得ることが示された。
 本発明は、パーソナルコンピュータ、通信端末等の電子機器、自動車等の電源として使用される蓄電素子及び蓄電装置に適用できる。
1  蓄電素子
2  電極体
3  容器
4  正極端子
41 正極リード
5  負極端子
51 負極リード
20 蓄電ユニット
30 蓄電装置

Claims (7)

  1.  リチウム塩と、
     上記リチウム塩が混和され、かつリチウムイオン伝導性を有するポリマー材料と、
     上記リチウム塩及び上記ポリマー材料が付着し、かつ多糖類を有する多孔性基材と
     を備え、
     上記多糖類の含有量が10質量%以上40質量%以下である蓄電素子用の固体高分子電解質。
  2.  上記多糖類がβグルカンである請求項1に記載の固体高分子電解質。
  3.  上記ポリマー材料が、エーテル酸素及びカーボネート構造の少なくとも一方を有する請求項1又は請求項2に記載の固体高分子電解質。
  4.  上記ポリマー材料における上記カーボネート構造の含有量が60モル%以上である請求項1から請求項3のいずれか1項に記載の固体高分子電解質。
  5.  上記多糖類がセルロースである請求項1から請求項4のいずれか1項に記載の固体高分子電解質。
  6.  正極と、
     負極と、
     上記正極及び上記負極の間に介在する請求項1から請求項5のいずれか1項に記載の固体高分子電解質と
     を備える蓄電素子。
  7.  蓄電素子を二以上備え、かつ請求項6に記載の蓄電素子を一以上備える蓄電装置。
PCT/JP2022/013460 2021-06-30 2022-03-23 固体高分子電解質、蓄電素子及び蓄電装置 WO2023276334A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023531431A JPWO2023276334A1 (ja) 2021-06-30 2022-03-23

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-109579 2021-06-30
JP2021109579 2021-06-30

Publications (1)

Publication Number Publication Date
WO2023276334A1 true WO2023276334A1 (ja) 2023-01-05

Family

ID=84692618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/013460 WO2023276334A1 (ja) 2021-06-30 2022-03-23 固体高分子電解質、蓄電素子及び蓄電装置

Country Status (2)

Country Link
JP (1) JPWO2023276334A1 (ja)
WO (1) WO2023276334A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003263982A (ja) * 2002-03-08 2003-09-19 Jfe Steel Kk 黒鉛質粒子の製造方法およびリチウムイオン二次電池用負極材料
JP2005530882A (ja) * 2002-06-21 2005-10-13 アンスティテュ ナシオナル ポリテクニク ド グルノーブル イオン伝導をもつ強化物質、電極および電解質におけるその使用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003263982A (ja) * 2002-03-08 2003-09-19 Jfe Steel Kk 黒鉛質粒子の製造方法およびリチウムイオン二次電池用負極材料
JP2005530882A (ja) * 2002-06-21 2005-10-13 アンスティテュ ナシオナル ポリテクニク ド グルノーブル イオン伝導をもつ強化物質、電極および電解質におけるその使用

Also Published As

Publication number Publication date
JPWO2023276334A1 (ja) 2023-01-05

Similar Documents

Publication Publication Date Title
JP2022073197A (ja) 蓄電素子用正極活物質合剤、蓄電素子用正極及び蓄電素子
JP7476478B2 (ja) 負極、負極の製造方法、非水電解質蓄電素子及び非水電解質蓄電素子の製造方法
JP7472579B2 (ja) 蓄電素子用正極及び蓄電素子
JP2022018845A (ja) 正極及び非水電解質蓄電素子
JP7215331B2 (ja) 非水電解質蓄電素子の製造方法及び非水電解質蓄電素子
WO2021193500A1 (ja) 蓄電素子用正極及び蓄電素子
JP7409132B2 (ja) 非水電解質蓄電素子
WO2023276334A1 (ja) 固体高分子電解質、蓄電素子及び蓄電装置
JP2021077641A (ja) 蓄電素子
JP2022134613A (ja) 非水電解質蓄電素子用正極合剤、非水電解質蓄電素子用正極及び非水電解質蓄電素子
JP2022017033A (ja) 正極活物質粒子、その製造方法、蓄電素子、及び蓄電装置
JP2022052579A (ja) 蓄電素子
JP2021190165A (ja) 正極及び蓄電素子
WO2023248769A1 (ja) 活物質粒子、電極、蓄電素子及び蓄電装置
WO2022102767A1 (ja) 固体高分子電解質、固体高分子電解質を用いた蓄電素子及び蓄電装置
WO2022168845A1 (ja) 非水電解質蓄電素子、及び蓄電装置
WO2022260001A1 (ja) 高分子固体電解質、蓄電素子及び蓄電装置
WO2024053496A1 (ja) 電極、蓄電素子及び蓄電装置
WO2023189140A1 (ja) 蓄電素子用正極、蓄電素子及び蓄電装置
WO2022239520A1 (ja) 蓄電素子、その製造方法及び蓄電装置
WO2022091825A1 (ja) 電極、蓄電素子及び蓄電装置
WO2024062862A1 (ja) 電極、蓄電素子及び蓄電装置
WO2022097612A1 (ja) 非水電解質蓄電素子用正極、非水電解質蓄電素子及び蓄電装置
WO2023286718A1 (ja) 蓄電素子
WO2023224070A1 (ja) 非水電解質蓄電素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22832497

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023531431

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE