WO2023276304A1 - 偏光板及び液晶表示装置 - Google Patents

偏光板及び液晶表示装置 Download PDF

Info

Publication number
WO2023276304A1
WO2023276304A1 PCT/JP2022/011239 JP2022011239W WO2023276304A1 WO 2023276304 A1 WO2023276304 A1 WO 2023276304A1 JP 2022011239 W JP2022011239 W JP 2022011239W WO 2023276304 A1 WO2023276304 A1 WO 2023276304A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical film
film
polarizing plate
range
adhesive layer
Prior art date
Application number
PCT/JP2022/011239
Other languages
English (en)
French (fr)
Inventor
達希 萩原
大樹 巽
健三 笠原
元昭 杉野
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to CN202280045721.7A priority Critical patent/CN117581123A/zh
Priority to KR1020237044549A priority patent/KR20240011801A/ko
Priority to JP2023531411A priority patent/JPWO2023276304A1/ja
Publication of WO2023276304A1 publication Critical patent/WO2023276304A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/42Polarizing, birefringent, filtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/202LCD, i.e. liquid crystal displays

Definitions

  • the present invention relates to a polarizing plate and a liquid crystal display device, and in particular, even when an optical film containing a cycloolefin polymer having a polar group is used, it is possible to prevent poor adhesion, reduce display unevenness in the liquid crystal display device, and and a polarizing plate capable of improving durability of a polarizer layer in a high-temperature and high-humidity environment.
  • Various optical films are arranged in the image display area of the liquid crystal display device.
  • polymer (resin) films having excellent transparency such as cellulose ester films and cycloolefin polymers (cycloolefin polymer (resin) (COP)) are used.
  • cycloolefin polymer films which are particularly excellent in moisture resistance and heat resistance, has increased, and there is also a demand for the production of wide polarizing plates as display devices become larger. More specifically, it is requested not to lower it.
  • a film having a certain degree of polarity including an antistatic effect.
  • a polarizing plate is produced by laminating an optical film and a polarizer layer with an adhesive.
  • Patent Document 1 discloses a technique of bonding an optical film and a polarizer layer using a specific ultraviolet curable glue in the production of the polarizing plate.
  • Patent Document 2 discloses a technique of applying a solvent-coated surface treatment to an optical film in order to improve the adhesion between an optical film made of a cycloolefin polymer and a polarizer layer.
  • the present invention has been made in view of the above problems and circumstances, and an object thereof is to prevent poor adhesion even when an optical film containing a cycloolefin polymer having a polar group is used, and to provide a liquid crystal display device.
  • An object of the present invention is to provide a polarizing plate and a liquid crystal display device, which can reduce display unevenness in a high-temperature and high-humidity environment and can improve the durability of a polarizer layer in a high-temperature and high-humidity environment.
  • an adhesive layer containing a cured product of a specific polymerizable monomer and a surface of a cycloolefin polymer having a polar group Provided are a polarizing plate and a liquid crystal display device capable of preventing poor adhesion, reducing display unevenness, and improving the durability of a polarizer layer in a high-temperature and high-humidity environment by controlling the degree of orientation of the It was found that it is possible to achieve the present invention. That is, the above problems related to the present invention are solved by the following means.
  • a polarizing plate comprising at least an optical film, an adhesive layer and a polarizer layer,
  • the optical film contains at least a cycloolefin polymer having a polar group,
  • the half-value width of the diffraction peak when the surface of the optical film is irradiated with X-rays at an angle of 0.1 degree before the adhesion of the adhesive layer is in the range of 4.6 to 5.4 degrees
  • the adhesive layer contains at least a cured product of a polymerizable monomer
  • a polarizing plate in which 60% by mass or more of the polymerizable monomer is a monomer in which the energy ⁇ D due to the intermolecular dispersion force in the Hansen solubility parameter satisfies the following formula (1).
  • the peel surface is positioned within the range of 0.5 to 15% of the total thickness of the optical film when viewed from the adhesive layer side.
  • a liquid crystal display device comprising the polarizing plate according to any one of items 1 to 3.
  • the specific The value of ⁇ D of the polymerizable monomer and the value of ⁇ D of the cycloolefin polymer having a polar group become close to each other, and the specific polymerizable monomer or its low-molecular-weight polymer (eg, oligomer) easily penetrates into the optical film.
  • the adhesion between the optical film and the adhesive layer is improved, and display unevenness in the liquid crystal display device can be reduced.
  • the adhesion between the adhesive layer and the polarizer layer is also improved, it becomes difficult for moisture to enter from the adhesive surface between the polarizer layer and the adhesive layer in a high-temperature and high-humidity environment, and deterioration of the polarizer layer is also prevented.
  • the term "orientation" means that the molecular chains in the polymer are arranged in a certain direction.
  • a state in which the molecular chains in the polymer are highly aligned in the direction perpendicular to the thickness of the film is called “highly oriented.” Therefore, in a polymer with a small polymer-to-polymer interaction, stretching creates highly oriented regions on the surface.
  • the highly oriented region has a structure in which the main chain spacing is relatively uniform (high crystallinity).
  • the half-value width of the diffraction peak is set to a specific range, and the surface of the optical film is oriented to a specific degree to control the permeation of the specific polymerizable monomer, thereby improving the adhesiveness.
  • a polarizing plate of the present invention is a polarizing plate comprising at least an optical film, an adhesive layer and a polarizer layer, wherein the optical film contains at least a cycloolefin polymer having a polar group, and The half width of the diffraction peak when the surface of the optical film is irradiated with X-rays at an angle of 0.1 degree is in the range of 4.6 to 5.4 degrees, and the adhesive layer contains at least a polymerizable monomer and 60% by mass or more of the polymerizable monomer is a monomer in which the energy ⁇ D due to the intermolecular dispersion force in the Hansen solubility parameter satisfies the relationship of the following formula (1).
  • Formula (1) 16.0 MPa 0.5 ⁇ ⁇ D ⁇ 17.7 MPa 0.5 This feature is a technical feature common to or corresponding to each of the following embodiments.
  • the peel surface is 0.5 to 15% of the total thickness of the optical film when viewed from the adhesive layer side. is preferable in that the adhesive layer and the optical film are properly adhered to each other.
  • a polarizing plate of the present invention is a polarizing plate comprising at least an optical film, an adhesive layer and a polarizer layer, wherein the optical film contains at least a cycloolefin polymer having a polar group, and The half width of the diffraction peak when the surface of the optical film is irradiated with X-rays at an angle of 0.1 degree is in the range of 4.6 to 5.4 degrees, and the adhesive layer contains at least a polymerizable monomer and 60% by mass or more of the polymerizable monomer is a monomer in which the energy ⁇ D due to the intermolecular dispersion force in the Hansen solubility parameter satisfies the relationship of the following formula (1).
  • the polymerizable monomers 60% by mass or more of the polymerizable monomer (specific polymerizable monomer) satisfying the formula (1) is contained because ⁇ D of the specific polymerizable monomer and cyclo having a polar group This is because the value of ⁇ D of the olefin polymer is brought close to each other, which facilitates permeation of the specific polymerizable monomer or its low-molecular-weight polymer into the optical film. As a result, the adhesion between the optical film and the adhesive layer is improved. Moreover, a mixed layer, which will be described later, can be formed at the interface between the adhesive layer and the optical film. When the content of the specific polymerizable monomer is less than 60% by mass, the effect of the specific polymerizable monomer is small, and the adhesion between the adhesive layer and the optical film cannot be improved.
  • ⁇ Hansen Solubility Parameter> among the polymerizable monomers of the cured product contained in the adhesive layer, 60% by mass or more of the polymerizable monomer has an energy ⁇ D due to an intermolecular dispersion force in the Hansen solubility parameter (HSP value), which is expressed by the formula (1 ) satisfies the relationship
  • HSP value Hansen solubility parameter
  • the 60% by mass or more of polymerizable monomers substantially do not contain polymerizable monomers within the range of 18.7 ⁇ D ⁇ 20.
  • Hildebrand's SP value (solubility parameter; ⁇ ) is conventionally used as an index for evaluating the physical properties of substances, particularly the dissolution behavior of solvents.
  • the "SP value” is a physical property value peculiar to a substance indicated by the square root of the cohesive energy density of the substance.
  • HSP value The Hansen solubility parameter (HSP value) is based on the idea that "two substances with similar intermolecular interactions are more likely to dissolve each other.” can be regarded as coordinates in a three-dimensional space (also called “Hansen space”). It is considered that the closer the distance between the coordinates of the two substances, the higher the mutual affinity and the easier the dissolution.
  • ⁇ D Energy due to intermolecular dispersion force
  • ⁇ P Energy due to intermolecular dipole interaction
  • ⁇ H Energy due to intermolecular hydrogen bonding
  • the value of the energy ⁇ D due to the intermolecular dispersion force in the Hansen solubility parameters in the present invention is determined as follows.
  • the definition and calculation method of the Hansen Solubility Parameter are described in the following references. Charles M. Hansen, "Hansen Solubility Parameters: A Users Handbook," CRC Press, 2007.
  • Hansen solubility parameters can be easily calculated from the chemical structure.
  • the Hansen solubility parameter obtained in this manner is represented by three components ⁇ D, ⁇ P, and ⁇ H, and the value of ⁇ D (unit: MPa 0.5 ) according to HSPiP is used in the present invention.
  • polymerizable monomer that satisfies the above relational expression (1) are preferably epoxy monomers, acrylic monomers or oxetane monomers, and particularly preferably epoxy monomers, as will be described later.
  • an X-ray diffraction method is suitable for evaluating the orientation of the surface of the optical film.
  • a method called a thin film method is preferable, in which the incident angle ⁇ of incident X-rays is made small so that the information depth of X-rays detected by diffraction is shallow.
  • the incident angle ⁇ of incident X-rays is fixed at about 0.1 degrees, and the X-ray intensity is measured while changing the angle of the detector.
  • an X-ray diffractometer RINT-TTRII manufactured by Rigaku Denki Co., Ltd. was used as the X-ray diffractometer.
  • the anticathode was Cu and operated at 50 kV-300 mA.
  • the height limiting slit was set to 10 mm, the divergence slit was set to 2/3, and the optical system was adjusted so that the peak half width of Al (200) when measuring the aluminum foil was 0.35 degrees.
  • the film was fixed, ⁇ was fixed at 0.1 degrees, 2 ⁇ was scanned from 5 to 35 degrees in steps of 0.02 degrees, and each step was integrated for 1 second to obtain a diffraction pattern. Background treatment was performed and the half width of the diffraction peak was determined.
  • the half width of the diffraction peak By setting the half width of the diffraction peak within the range of 4.6 to 5.4 degrees, it is possible to properly maintain the permeation of the polymerizable monomer into the optical film. If the temperature is less than 4.6 degrees, the permeation of the polymerizable monomer is inhibited, and sufficient adhesive force cannot be secured. On the other hand, when the temperature is higher than 5.4 degrees, the penetration of the polymerizable monomer is so excellent that it penetrates into the inside of the optical film and does not stay in the vicinity of the surface that contributes to adhesion, resulting in a weak adhesion. It is preferably within the range of 4.8 to 5.2 degrees.
  • the half width of the diffraction peak represents the distance between crystals, and the lower the orientation, the more random the spacing of the main chains in the polymer (resin), so the half width widens.
  • the amount of residual solvent at the start of stretching can be controlled by the drying temperature and drying time during preliminary drying before the stretching step, as will be described later.
  • the peel surface of the optical film is 0.5 to 15% of the total thickness of the optical film before peeling. is preferably within the range of , more preferably within the range of 5 to 12%.
  • a peel adhesion strength test is performed by the following method. 1A to 1F are diagrams for illustrating the method of peel adhesion strength test. First, a polarizing plate is cut into strips of 150 mm ⁇ 25 mm so that the long side is in the direction of the polarization axis of the polarizer layer.
  • the “thickness m of optical film adhering to adhesive layer side” refers to the shortest distance from the surface of the optical film 100 on the adhesive layer 600 side to the release surface 101 .
  • the polarizing plate of the invention comprises at least an optical film, an adhesive layer and a polarizer layer. Moreover, the polarizing plate of the present invention preferably has a mixed layer at the interface between the optical film and the adhesive layer.
  • the polarizing plate 200 of the present invention includes at least an optical film 100, a mixed layer 700, an adhesive layer 600, a polarizer layer 400 and a polarizing plate protective film 300 laminated in this order. It is preferable to be Further, between the polarizing plate protective film 300 and the polarizer layer 400, an adhesive layer 800 for a protective film is further provided, and the liquid crystal cell 30 (Fig. 5), it preferably further has an adhesive sheet 48 (see FIG. 5).
  • FIG. 5 Each structure will be described below in the order of the adhesive layer 600, the mixed layer 700, the optical film 100, the polarizer layer 400, the polarizing plate protective film 300, and the adhesive sheet 48.
  • the adhesive layer according to the present invention is provided on one of the two surfaces of the optical film to which the polarizer layer is attached.
  • the adhesive layer contains at least a cured polymerizable monomer.
  • the term "cured product of a polymerizable monomer” refers to a product obtained by polymerizing a polymerizable monomer, which substantially contains additives such as the polymerizable monomer and a polymerization initiator.
  • a polymerizable composition (for example, an ultraviolet curable adhesive to be described later) that is cured by a polymerization reaction. That is, the cured product of the polymerizable composition containing the polymer of the polymerizable monomer, the additive, and the like becomes the adhesive layer.
  • the polymerizable monomer, polymerization initiator, etc. contained in the polymerizable composition are described below.
  • 60% by mass or more of the polymerizable monomer is a monomer in which the energy ⁇ D due to the intermolecular dispersion force in the Hansen solubility parameter satisfies the relationship of the formula (1).
  • Examples of the polymerizable monomer that satisfies the relationship of formula (1) include epoxy monomers, acrylic monomers, oxetane monomers, and the like. Epoxy monomers are particularly preferable in terms of excellent adhesion to the optical film. .
  • Examples of the polymerizable monomer that satisfies the relationship of the formula (1) include the following exemplary compounds A-1 to A-35. or may be used alone.
  • ⁇ D of each exemplary compound was calculated from its chemical structure by using computer software (Hansen Solubility Parameters in Practice (HSPiP)) as described above.
  • usable polymerizable monomers include the following exemplified compounds B-1 to B-10, etc., preferably the exemplified compounds used in the examples described later. B-1, B-6 and B-8.
  • the polymerizable monomer that satisfies the relationship of formula (1) is preferably contained in the range of 60 to 100% by mass, preferably 70 to 100% by mass, based on the entire polymerizable composition. It is preferable to use two or more kinds of polymerizable monomers satisfying the relationship of the formula (1) in combination, and it is more preferable to use three or more kinds of polymerizable monomers. When two or more types are used in combination, it is preferable to select one or more types from epoxy monomers and acrylic monomers.
  • the polymerizable composition forming the cured product preferably contains a polymerization initiator, a photosensitizer, and the like in addition to the polymerizable monomers.
  • the polymerization initiator is a cationic photopolymerization initiator because the polymerizable monomer is cationic polymerized and cured by irradiation with actinic rays to form an adhesive layer. preferable.
  • the photocationic polymerization initiator generates cationic species or Lewis acid upon irradiation with actinic rays such as visible rays, ultraviolet rays, X-rays, and electron beams, and initiates the polymerization reaction of the polymerizable monomer according to the present invention. be.
  • aromatic diazonium salts examples include benzenediazonium hexafluoroantimonate, benzenediazonium hexafluorophosphate, and benzenediazonium hexafluoroborate.
  • aromatic iodonium salts include diphenyliodonium tetrakis(pentafluorophenyl)borate, diphenyliodonium hexafluorophosphate, diphenyliodonium hexafluoroantimonate, di(4-nonylphenyl)iodonium hexafluorophosphate, and the like.
  • aromatic sulfonium salts include triphenylsulfonium hexafluorophosphate, triphenylsulfonium hexafluoroantimonate, triphenylsulfonium tetrakis(pentafluorophenyl)borate, 4,4′-bis[diphenylsulfonio]diphenylsulfide bishexa Fluorophosphate, 4,4'-bis[di( ⁇ -hydroxyethoxy)phenylsulfonio]diphenylsulfide bishexafluoroantimonate, 4,4'-bis[di( ⁇ -hydroxyethoxy)phenylsulfonio]diphenylsulfidebis Hexafluorophosphate, 7-[di(p-toluyl)sulfonio]-2-isopropylthioxanthone hexafluoroantimonate, 7-[di(
  • iron-allene complexes examples include xylene-cyclopentadienyl iron (II) hexafluoroantimonate, cumene-cyclopentadienyl iron (II) hexafluorophosphate, xylene-cyclopentadienyl iron (II) tris (tri fluoromethylsulfonyl)methanide and the like.
  • photocationic polymerization initiators may be used alone or in combination of two or more.
  • aromatic sulfonium salts are particularly preferable from the viewpoint of being able to give a cured product having excellent curability and good mechanical strength and adhesive strength because they have ultraviolet absorption properties even in the wavelength region around 300 nm. Used.
  • the blending amount of the photocationic polymerization initiator is preferably 1 to 10 parts by mass, more preferably 2 to 6 parts by mass, per 100 parts by mass of the polymerizable composition.
  • the photosensitizer is preferably a photosensitizer that exhibits maximum absorption for light with a wavelength longer than 380 nm.
  • the photocationic polymerization initiator exhibits a maximum absorption at a wavelength near or shorter than 300 nm, and responds to light at a wavelength near that to generate a cationic species or a Lewis acid to initiate cationic polymerization of the polymerizable monomer.
  • the photosensitizers described in paragraphs [0253] to [0258] of JP-A-2014-66955 can be used.
  • the blending amount of the photosensitizer is preferably within the range of 0.1 to 2 parts by mass, and within the range of 0.1 to 0.5 parts by mass, with respect to 100 parts by mass of the polymerizable composition. More preferably, it is in the range of 0.1 to 0.3 parts by mass. As a result, the effect of improving curability is exhibited, and precipitation during low-temperature storage can be prevented.
  • photosensitizing auxiliary agent it is preferable to use a naphthalene-based photosensitizing auxiliary agent.
  • a photosensitizing aid for example, the photosensitizing aids described in paragraphs [0259] to [0263] of JP-A-2014-66955 can be used. Specific examples include 1,4-dimethoxynaphthalene, 1-ethoxy-4-methoxynaphthalene, 1,4-diethoxynaphthalene, 1,4-dipropoxynaphthalene, 1,4-dibutoxynaphthalene and the like.
  • the amount of the photosensitizing aid is preferably in the range of 0.1 to 10 parts by mass, more preferably in the range of 0.1 to 5 parts by mass, with respect to 100 parts by mass of the polymerizable composition. preferable. As a result, the effect of improving curability is exhibited, and precipitation during low-temperature storage can be prevented.
  • the polymerizable composition according to the present invention may optionally contain other additive components as long as the effects of the present invention are not impaired.
  • Additive components include thermal cationic polymerization initiators, polyols, ion trapping agents, antioxidants, light stabilizers, and chain transfer agents described in paragraphs [0265] to [0288] of JP-A-2014-66955. , tackifiers, thermoplastic resins, fillers, fluidity regulators, plasticizers, antifoaming agents, leveling agents, pigments, organic solvents, and the like can be added.
  • the polarizing plate of the invention preferably has a mixed layer at the interface between the optical film and the adhesive layer.
  • a polymerizable monomer satisfying the formula (1) or a low-molecular-weight polymer thereof penetrates into the optical film and dissolves the surface of the optical film. It is a layer formed by a polar group-containing cycloolefin polymer and the polymerizable monomer or its low-molecular-weight polymer.
  • Detection of the mixed layer and calculation of the thickness of the mixed layer are performed, for example, by time-of-flight secondary ion mass spectrometry (TOF-SIMS) and surface etching using ion sputtering. While performing the sputtering and measurement alternately, it is possible to obtain a profile in the depth direction of the composition or molecular structure of the element from the spectral information obtained. Specifically, the count number of the mass-to-charge ratio m/z attributed to the element component derived from the cycloolefin polymer contained in the optical film and the element component derived from the specific polymerizable monomer contained in the adhesive layer is Measurement is continuously performed from the surface of the optical film opposite to the adhesive layer to the adhesive layer.
  • the count of the elemental components derived from the cycloolefin polymer on the back surface of the optical film (the surface opposite to the adhesive layer) was 100%, and the count of the elemental components derived from the cycloolefin polymer in the adhesive layer 0% of the element component count number, and among the count numbers of the element component derived from the specific polymerizable monomer that satisfies the relationship of the formula (1), the element component count number derived from the specific polymerizable monomer on the back surface of the optical film is 0%, and when the element component count number derived from the specific polymerizable monomer in the adhesive layer is 100%, the count number of both the element component derived from the cycloolefin polymer and the element component derived from the specific polymerizable monomer is 5 to 95%.
  • a mixed layer was defined as a region where The location measured by TOF-SIMS is observed with a non-contact three-dimensional microscopic surface profile measurement system (RSTPLUS manufactured by WYKO), the thickness of the optical film and adhesive layer cut by TOF-SIMS measurement is measured, and the sputtering rate is determined. Convert to thickness.
  • RSTPLUS non-contact three-dimensional microscopic surface profile measurement system
  • FIG. 3 shows the depth measured by TOF-SIMS after etching in the thickness direction from the back surface of the optical film (the surface opposite to the adhesive layer (the bottom surface of the optical film 100 in FIG. 2)) in the polarizing plate of the present invention. It is a diagram showing the vicinity of the interface in the directional profile As shown in Fig. 3, from the measurement start position to the position near 200 nm, only the elemental component derived from the cycloolefin polymer having a polar group is contained. , between a depth of 200 nm and about 450 nm (mixed layer) contains both the cycloolefin polymer and the element component derived from the specific polymerizable monomer.
  • the (adhesive layer) contains only the elemental component derived from the specific polymerizable monomer.
  • black circles indicate the count number of elemental components derived from the cycloolefin polymer contained in the optical film, and white circles indicate the count number of elemental components derived from the specific polymerizable monomer contained in the adhesive layer.
  • the thickness of the mixed layer is preferably in the range of 50-500 nm, more preferably in the range of 150-400 nm. This improves the adhesion between the adhesive layer and the optical film.
  • the type and content of the specific polymerizable monomer contained in the polymerizable composition for forming the adhesive layer are adjusted. can be controlled by
  • optical film according to the present invention contains a cycloolefin polymer having a polar group (also referred to as “cycloolefin-based polymer (resin)").
  • the cycloolefin polymer according to the present invention may be a polymer of a cycloolefin monomer (monomer) or a copolymer of a cycloolefin monomer and another copolymerizable monomer. preferable.
  • the cycloolefin monomer is preferably a cycloolefin monomer having a norbornene skeleton, more preferably a cycloolefin monomer having a structure represented by the following general formula (a-1) or (a-2). .
  • R 1 to R 4 represents a polar group, and the others each independently represent a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms.
  • p represents an integer of 0 to 2; However, R 1 and R 2 do not represent a hydrogen atom at the same time, and R 3 and R 4 do not represent a hydrogen atom at the same time.
  • the hydrocarbon group having 1 to 30 carbon atoms represented by R 1 to R 4 in general formula (a-1) is preferably, for example, a hydrocarbon group having 1 to 10 carbon atoms. 1 to 5 hydrocarbon groups are more preferred.
  • a hydrocarbon group having 1 to 30 carbon atoms may further have a linking group containing, for example, a halogen atom, an oxygen atom, a nitrogen atom, a sulfur atom or a silicon atom. Examples of such linking groups include divalent polar groups such as carbonyl groups, imino groups, ether bonds, silyl ether bonds and thioether bonds. Examples of hydrocarbon groups having 1 to 30 carbon atoms include methyl, ethyl, propyl, butyl and the like.
  • Examples of polar groups represented by R 1 to R 4 in general formula (a-1) include a carboxy group, a hydroxy group, an alkoxy group, an alkoxycarbonyl group, an aryloxycarbonyl group, an amino group, an amido group and a cyano group. is included. Among them, a carboxy group, a hydroxy group, an alkoxycarbonyl group and an aryloxycarbonyl group are preferred, and an alkoxycarbonyl group and an aryloxycarbonyl group are preferred from the viewpoint of ensuring solubility during solution film formation.
  • R 5 represents a hydrogen atom, a hydrocarbon group having 1 to 5 carbon atoms, or an alkylsilyl group having an alkyl group having 1 to 5 carbon atoms.
  • R6 represents a polar group, specifically a carboxy group, a hydroxy group, an alkoxycarbonyl group, an aryloxycarbonyl group, an amino group, an amide group, a cyano group, or a halogen atom (fluorine atom, chlorine atom, bromine atom or iodine atom).
  • p represents an integer of 0 to 2;
  • R 5 in general formula (a-2) preferably represents a hydrocarbon group having 1 to 5 carbon atoms, more preferably a hydrocarbon group having 1 to 3 carbon atoms.
  • R 6 in general formula (a-2) preferably represents a carboxy group, a hydroxy group, an alkoxycarbonyl group and an aryloxycarbonyl group.
  • An oxycarbonyl group is more preferred.
  • p in the general formula (a-2) preferably represents 1 or 2 from the viewpoint of enhancing the heat resistance of the optical film. This is because when p is 1 or 2, the resulting polymer becomes bulky and the glass transition temperature tends to be improved.
  • a cycloolefin monomer (monomer) having a structure represented by general formula (a-2) is preferable from the viewpoint of improving the solubility in organic solvents.
  • breaking the symmetry of an organic compound lowers the crystallinity, thereby improving the solubility in an organic solvent.
  • R 5 and R 6 in general formula (a-2) are substituted only on one ring-constituting carbon atom with respect to the symmetry axis of the molecule, the symmetry of the molecule is low, that is, general formula (a- Since the cycloolefin monomer (monomer) having the structure represented by 2) has high solubility, it is suitable for producing an optical film by a solution casting method.
  • the content ratio of the cycloolefin monomer (monomer) having the structure represented by the general formula (a-2) in the polymer of the cycloolefin monomer (monomer) is the total cycloolefin monomer ( monomer), for example, 70 mol% or more, preferably 80 mol% or more, more preferably 100 mol%.
  • the cycloolefin monomer (monomer) having the structure represented by the general formula (a-2) is contained at a certain level or more, the orientation of the polymer (resin) increases, so the retardation value tends to increase. .
  • cycloolefin monomers (monomers) having a structure represented by general formula (a-1) are shown below as exemplary compounds 2, 3, and 9 to 14, and represented by general formula (a-2).
  • Specific examples of cycloolefin monomers (monomers) having a structure are shown in Exemplary Compounds 15 to 34.
  • copolymerizable monomers (monomers) copolymerizable with cycloolefin monomers (monomers) examples include copolymerizable monomers (monomers) capable of ring-opening copolymerization with cycloolefin monomers (monomers). ), and copolymerizable monomers (monomers) capable of addition copolymerization with cycloolefin monomers (monomers).
  • addition-copolymerizable copolymerizable monomers include unsaturated double bond-containing compounds, vinyl-based cyclic hydrocarbon monomers (monomers) and (meth)acrylates.
  • unsaturated double bond-containing compounds include olefinic compounds having 2 to 12 (preferably 2 to 8) carbon atoms, examples of which include ethylene, propylene and butene.
  • vinyl-based cyclic hydrocarbon monomers examples include vinylcyclopentene-based monomers (monomers) such as 4-vinylcyclopentene and 2-methyl-4-isopropenylcyclopentene.
  • (meth)acrylates examples include alkyl (meth)acrylates having 1 to 20 carbon atoms such as methyl (meth)acrylate, 2-ethylhexyl (meth)acrylate and cyclohexyl (meth)acrylate.
  • the content of the cycloolefin monomer (monomer) in the copolymer of the cycloolefin monomer (monomer) and the copolymerizable monomer (monomer) is the total monomer (monomer) constituting the copolymer.
  • it can be in the range of 20 to 80 mol %, preferably in the range of 30 to 70 mol %.
  • the cycloolefin polymer is a cycloolefin monomer (monomer) having a norbornene skeleton, preferably a cycloolefin monomer (monomer) having a structure represented by general formula (a-1) or (a-2) Polymer) is a polymer obtained by polymerizing or copolymerizing the polymer), examples of which include the following polymers (1) to (7).
  • Ring-opening polymer of cycloolefin monomer (monomer) (2) Ring-opening copolymerization of cycloolefin monomer (monomer) and copolymerizable monomer (monomer) capable of ring-opening copolymerization Polymer (3) Hydrogenated product of the ring-opening (co)polymer of (1) or (2) above (4) The ring-opening (co)polymer of (1) or (2) above by Friedel-Crafts reaction (Co)polymer obtained by adding hydrogen after cyclization (5) Saturated copolymer of cycloolefin monomer (monomer) and unsaturated double bond-containing compound (6) Cycloolefin monomer (monomer ) with vinyl-based cyclic hydrocarbon monomers (monomers) and hydrogenated products thereof (7) Alternating copolymers of cycloolefin monomers (monomers) and (meth)acrylate
  • the above polymers (1) to (7) can all be obtained by known methods, for example, the methods described in JP-A-2008-107534 and JP-A-2005-227606.
  • the polymers (1) to (3) and (5) above are preferred, and the polymers (3) and (5) above are more preferred.
  • the cycloolefin polymer can increase the glass transition temperature of the resulting cycloolefin polymer and increase the light transmittance.
  • At least one of the structural units represented by formula (b-2) is preferably included, and only the structural unit represented by general formula (b-2) is included, or represented by general formula (b-1) and a structural unit represented by general formula (b-2).
  • the structural unit represented by general formula (b-1) is a structural unit derived from the cycloolefin monomer (monomer) represented by general formula (a-1) above, and general formula (b-2)
  • the structural unit represented by is a structural unit derived from the cycloolefin monomer (monomer) represented by the above general formula (a-2).
  • R 1 to R 4 and p have the same definitions as R 1 to R 4 and p in general formula (a-1), respectively.
  • the intrinsic viscosity [ ⁇ ]inh of the cycloolefin polymer is preferably in the range of 0.2 to 5 cm 3 /g, more preferably in the range of 0.3 to 3 cm 3 /g, as measured at 30°C. More preferably, it is in the range of 0.4 to 1.5 cm 3 /g.
  • the number average molecular weight (Mn) of the cycloolefin polymer is preferably within the range of 8,000 to 100,000, more preferably within the range of 10,000 to 80,000, and even more preferably within the range of 12,000 to 50,000.
  • the weight average molecular weight (Mw) of the cycloolefin polymer is preferably within the range of 20,000 to 300,000, more preferably within the range of 30,000 to 250,000, and even more preferably within the range of 40,000 to 200,000.
  • the number average molecular weight and weight average molecular weight of the cycloolefin polymer can be measured by gel permeation chromatography (GPC) in terms of polystyrene.
  • the weight average molecular weight (Mw) is preferably 10,000 or less.
  • a preferred weight average molecular weight (Mw) range is 100 to 10,000, more preferably 400 to 8,000.
  • the optical film according to the present invention may contain a sugar ester compound for the purpose of preventing hydrolysis.
  • a sugar ester compound for the purpose of preventing hydrolysis.
  • the sugar ester compound it is possible to use a sugar ester having at least 1 to 12 pyranose structures or at least one furanose structure and esterifying all or part of the OH groups in the structure. can.
  • a styrenic compound may be used in addition to or instead of the above sugar ester and polyester for the purpose of improving the water resistance of the optical film.
  • the styrene-based compound may be a homopolymer of a styrene-based monomer, or a copolymer of a styrene-based monomer and another copolymerizable monomer.
  • the content of structural units derived from styrene-based monomers in the styrene-based compound is preferably in the range of 30 to 100 mol%, more preferably 50 to 100 mol%, in order for the molecular structure to have a certain or higher bulkiness. can be in range.
  • styrenic monomers include styrene; alkyl-substituted styrenes such as ⁇ -methylstyrene, ⁇ -methylstyrene and p-methylstyrene; halogen-substituted styrenes such as 4-chlorostyrene and 4-bromostyrene; hydroxystyrenes such as styrene, ⁇ -methyl-p-hydroxystyrene, 2-methyl-4-hydroxystyrene, 3,4-dihydroxystyrene; vinylbenzyl alcohols; p-methoxystyrene, p-tert-butoxystyrene, m Alkoxy-substituted styrenes such as -tert-butoxystyrene; vinyl benzoic acids such as 3-vinylbenzoic acid and 4-vinylbenzoic acid; 4-vinylbenzyl acetate; 4-acetoxy
  • the optical film according to the present invention may contain other optional components such as antioxidants, colorants, ultraviolet absorbers, matting agents, acrylic particles, hydrogen-bonding solvents, and ionic surfactants.
  • matting agent fine particles
  • These components can be added within the range of 0.01 to 20 parts by mass with respect to 100 parts by mass of the base polymer (resin).
  • antioxidants and the like are added within the range of 0.05 to 20% by mass, preferably within the range of 0.1 to 1% by mass, relative to the polymer (resin) that is the main raw material of the optical film.
  • a synergistic effect can be obtained by using several kinds of compounds of different types in combination rather than using only one kind of these antioxidants. For example, combined use of lactone, phosphorus, phenol and double bond compounds is preferred.
  • the optical film according to the present invention preferably contains a coloring agent for color adjustment within a range that does not impair the effects of the present invention.
  • a coloring agent means a dye or a pigment, and in the present invention, refers to a substance that has the effect of making the color tone of the liquid crystal screen bluish, adjusting the yellow index, or reducing haze.
  • the optical film according to the present invention can be used on the viewing side or the backlight side of the polarizing plate, it may contain an ultraviolet absorber for the purpose of imparting an ultraviolet absorbing function.
  • the ultraviolet absorber is not particularly limited, but includes, for example, benzotriazole-based, 2-hydroxybenzophenone-based, and salicylic acid phenyl ester-based ultraviolet absorbers.
  • benzotriazole-based 2-hydroxybenzophenone-based
  • salicylic acid phenyl ester-based ultraviolet absorbers for example 2-(5-methyl-2-hydroxyphenyl)benzotriazole, 2-[2-hydroxy-3,5-bis( ⁇ , ⁇ -dimethylbenzyl)phenyl]-2H-benzotriazole, 2-(3,5 -triazoles such as di-t-butyl-2-hydroxyphenyl)benzotriazole, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone and 2,2′-dihydroxy-4-methoxybenzophenone, etc.
  • benzophenones can be exemplified.
  • the ultraviolet absorbers may be used singly or in combination of two or more.
  • the amount of the ultraviolet absorber used varies depending on the type of ultraviolet absorber, usage conditions, etc., but is generally within the range of 0.05 to 10% by mass, preferably It is added within the range of 0.1 to 5% by mass.
  • the optical film according to the present invention preferably contains a matting agent in order to impart unevenness to the film surface, ensure smoothness, and achieve a stable roll-up shape during film formation.
  • the matting agent can also function to prevent the produced film from being scratched or from being deteriorated in transportability when it is handled.
  • Matting agents include fine particles of inorganic compounds and fine particles of polymers (resins).
  • fine particles of inorganic compounds include silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, silicic acid.
  • Magnesium and calcium phosphate etc. can be mentioned. Fine particles containing silicon are preferable in terms of low turbidity, and silicon dioxide is particularly preferable.
  • Fine particles of silicon dioxide are commercially available, for example, under the trade names of Aerosil R972, R972V, R974, R812, 200, 200V, 300, R202, OX50, and TT600 (manufactured by Nippon Aerosil Co., Ltd.), and can be used.
  • Aerosil R972, R972V, R974, R812, 200, 200V, 300, R202, OX50, and TT600 manufactured by Nippon Aerosil Co., Ltd.
  • Zirconium oxide fine particles are commercially available, for example, under the trade names of Aerosil R976 and R811 (manufactured by Nippon Aerosil Co., Ltd.), and can be used.
  • fine particles of polymers include silicone polymers (resins), fluoropolymers (resins) and acrylic polymers (resins).
  • Silicone polymers (resins) are preferred, and those having a three-dimensional network structure are particularly preferred. is commercially available under the trade name of and can be used.
  • Aerosil 200V, Aerosil R972V, and Aerosil R812 are particularly preferably used because they are highly effective in lowering the coefficient of friction while keeping the haze of the base film low.
  • the stretching step stretching is performed at a stretching ratio in the range of 1.2 to 3.5 times in terms of area ratio. It can be within the scope of the present invention, and it is preferable in that the surface can achieve both low orientation and moderate moisture permeability.
  • the stretch ratio referred to in the present invention means the ratio (%) of the area of the film after stretching to the area of the original film before stretching. That is, the original film is stretched in a range of 1.2 to 3.5 times the area ratio of the total stretch ratio of stretching in the machine direction (longitudinal direction) and transverse direction (width direction).
  • the amount of residual solvent in the original film at the start of stretching may be within the range of 700 to 30000 ppm by mass. is within the scope of the present invention.
  • FIG. 4 is a diagram schematically showing an example of the dope preparation process, the casting process, the drying process, and the winding process of the solution casting film forming method preferred for the present invention.
  • a dispersion of fine particles in which a solvent and a matting agent are dispersed by a disperser is passed from a loading pot 61 through a filter 64 and stocked in a stock pot 62 .
  • the cycloolefin polymer which is the main dope
  • the filter 6 added with additives through the confluence tube 20, mixed in the mixer 21, and fed to the pressure die 22.
  • an additive for example, an ultraviolet absorber, etc.
  • a solvent passed through the filter 12 from the additive feeding pot 10 and stocked in the stock pot 13 . After that, it is mixed with the main dope by a confluence tube 20 and a mixer 21 through a filter 15 and a conduit 16 .
  • the main dope fed to the pressure die 22 is cast on a metal belt-shaped support 31 to form a web 32, which is dried and then peeled at a peeling position 33 to obtain a raw film.
  • the peeled web 32 is passed through a number of transport rollers in the first drying device 34, dried to a predetermined amount of residual solvent, and then stretched in the longitudinal direction or the width direction by the stretching device 35. It is stretched so as to have a magnification and heated so as to have a predetermined amount of residual solvent. After stretching, the film is dried while being passed through a conveying roller 37 by a second drying device 36 until a predetermined amount of residual solvent is reached, and then wound into a roll by a winding device 38 . Each step will be described below.
  • Dope preparation step Stir the cycloolefin polymer and optionally a phase difference increasing agent, a matting agent (fine particles) or other compounds in an organic solvent, which is mainly a good solvent for the cycloolefin polymer, in a dissolution vessel. or a step of mixing a retardation increasing agent, a matting agent or other compound solution with the cycloolefin polymer solution to prepare a dope, which is the main solution.
  • organic solvents examples include chlorine solvents such as chloroform and dichloromethane; aromatic solvents such as toluene, xylene, benzene, and mixed solvents thereof; methanol, ethanol, isopropanol, n-butanol, 2-butanol, and the like.
  • alcoholic solvents methyl cellosolve, ethyl cellosolve, butyl cellosolve, dimethylformamide, dimethyl sulfoxide, dioxane, cyclohexanone, tetrahydrofuran, acetone, methyl ethyl ketone (MEK), ethyl acetate, diethyl ether;
  • MEK methyl ethyl ketone
  • ethyl acetate diethyl ether
  • the organic solvent used in the present invention is preferably a mixed solvent of a good solvent and a poor solvent
  • the good solvent includes, for example, dichloromethane as a chlorinated organic solvent, methyl acetate as a non-chlorinated organic solvent, ethyl acetate, amyl acetate, acetone, methyl ethyl ketone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate, 2,2,2-trifluoroethanol, 2,2,3,3-hexafluoro- 1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3-hexafluoro-2-methyl-2-propanol, 1,1,1,3,3,3-hexa fluoro-2-propanol, 2,2,3,3,3-pentafluoro-1-propanol, nitroethane, m
  • the poor solvent is preferably an alcohol-based solvent
  • the alcohol-based solvent is preferably selected from methanol, ethanol and butanol from the viewpoint of improving peelability and enabling high-speed casting.
  • a higher percentage of alcohol in the dope gels the web, making it easier to peel from the metal substrate, and a lower percentage of alcohol improves the performance of cycloolefin polymers and other compounds in non-chlorinated organic solvent systems. It also plays a role in promoting dissolution.
  • Dissolution of cycloolefin polymers and other compounds can be carried out under normal pressure, below the boiling point of the main solvent, or above the boiling point of the main solvent under pressure.
  • -95557, or a cooling dissolution method as described in JP-A-9-95538, a high-pressure method described in JP-A-11-21379, and various other dissolution methods can be used.
  • a method in which pressure is applied at a temperature higher than the boiling point of the main solvent is particularly preferred.
  • the concentration of the cycloolefin polymer in the dope is preferably in the range of 10-40% by weight.
  • the dope is filtered with a filter medium, degassed, and sent to the next step by a liquid-sending pump.
  • a filter medium having a 90% collection particle size of 10 to 100 times the average particle size of fine particles, preferably in a main filter 3 having a leaf disk filter.
  • the filter medium used for filtration has a small absolute filtration accuracy. , there is a problem of lowering productivity. Therefore, in the present invention, the filter medium used for the cycloolefin polymer dope preferably has an absolute filtration accuracy of 0.008 mm or less, more preferably 0.001 to 0.008 mm, more preferably 0.003 to 0.006 mm. is more preferred.
  • the material of the filter medium is not particularly limited, and a normal filter medium can be used. It is preferable because there is no
  • the flow rate of the dope during filtration is preferably 10-80 kg/(h ⁇ m 2 ), preferably 20-60 kg/(h ⁇ m 2 ).
  • the productivity becomes efficient, and the flow rate of the dope during filtration is within 80 kg/(h ⁇ m 2 ). If so, the pressure applied to the filter medium becomes appropriate and the filter medium is not damaged, which is preferable.
  • the filtration pressure is preferably 3500 kPa or less, more preferably 3000 kPa or less, and even more preferably 2500 kPa or less.
  • the filtration pressure can be controlled by appropriately selecting the filtration flow rate and filtration area.
  • the main dope may contain about 10 to 50% by mass of returned materials.
  • Returned material is, for example, finely pulverized cycloolefin polymer (resin) film, which is produced by cutting off both sides of the film or scratching it when forming the cycloolefin polymer (resin) film.
  • a raw cycloolefin polymer (resin) film exceeding the prescribed value for the film is used.
  • pelletized cycloolefin polymer and other compounds can be preferably used in advance.
  • step (b) Casting step (b-1) Casting of dope The endless metal support 31 that feeds the dope to the pressurized die 22 through a liquid-sending pump (for example, pressurized metering gear pump) and transfers it endlessly; For example, it is a step of casting the dope from a pressurized die slit onto a casting position on a metal support such as a stainless steel belt or a rotating metal drum.
  • a liquid-sending pump for example, pressurized metering gear pump
  • the metal support in the casting process preferably has a mirror-finished surface, and as the metal support, a stainless steel belt or a casting drum with a plated surface is preferably used.
  • the width of the cast can be in the range 1-4 m, preferably in the range 1.3-3 m, more preferably in the range 1.5-2.8 m.
  • the surface temperature of the metal support in the casting step is set in the range of -50.degree.
  • a higher temperature is preferable because the drying speed of the web (a dope film formed by casting dope on a casting support is called a web) can be increased. Flatness may deteriorate.
  • a preferable support temperature is appropriately determined in the range of 0 to 100°C, more preferably in the range of 5 to 30°C. Alternatively, it is also a preferred method to gel the web by cooling and remove it from the drum in a state containing a large amount of residual solvent.
  • a method for controlling the temperature of the metal support is not particularly limited, but there are a method of blowing hot or cold air and a method of contacting the back side of the metal support with hot water. Heat transfer is more efficient when hot water is used, which is preferable because it takes less time for the temperature of the metal support to become constant.
  • hot air considering the temperature drop of the web due to the latent heat of evaporation of the solvent, hot air above the boiling point of the solvent may be used while preventing foaming and using air with a temperature higher than the target temperature. .
  • the die is preferably a pressurized die that can adjust the shape of the slit in the mouthpiece part of the die and makes it easy to achieve a uniform film thickness.
  • the pressure die includes a coat hanger die, a T die, and the like, both of which are preferably used.
  • the surface of the metal support is a mirror surface. In order to increase the film-forming speed, two or more pressurizing dies may be provided on the metal support, and the doping amount may be divided for lamination.
  • (b-2) Solvent Evaporation Step This is a step of heating the web on the casting support to evaporate the solvent, and is a step of controlling the residual solvent amount at the time of peeling, which will be described later.
  • the web on the support after casting is preferably dried on the support in an atmosphere of 30 to 100°C. In order to maintain the atmosphere at 30 to 100° C., it is preferable to apply hot air at this temperature to the upper surface of the web or heat it by means such as infrared rays.
  • (b-3) Peeling Step This is a step of peeling off the web from which the solvent has evaporated on the metal support at the peeling position.
  • the peeled web is sent to the next process as a raw film.
  • the temperature at the peeling position on the metal support is preferably in the range of 10-40°C, more preferably in the range of 11-30°C.
  • the solvent in the web is evaporated in the solvent evaporation step, and the amount of the solvent remaining in the web on the metal support at the time of peeling is preferably in the range of 15 to 100% by mass.
  • the amount of residual solvent is preferably controlled by the drying temperature and drying time in the solvent evaporation step. If the web is peeled with a large amount of residual solvent, the web will be too soft and the flatness of the peeled web will be easily lost, and wrinkles and vertical streaks will easily occur due to peeling tension. A solvent amount is determined.
  • the amount of residual solvent in the web or original film is defined by the following formula (Z2).
  • Formula (Z2): Residual solvent amount (%) (mass of web or raw film before heat treatment - mass of web or raw film after heat treatment) / (mass of web or raw film after heat treatment) ⁇ 100 Note that the heat treatment for measuring the amount of residual solvent means heat treatment at 115° C. for 1 hour.
  • the peel tension when peeling the web from the metal support to form the original film is usually in the range of 196 to 245 N / m, but if wrinkles are likely to occur during peeling, the tension is 190 N / m or less. It is preferable to peel with.
  • the temperature at the peeling position on the metal support is preferably in the range of -50 to 40°C, more preferably in the range of 10 to 40°C, and in the range of 15 to 30°C. is most preferred.
  • the drying process can be divided into a preliminary drying process (first drying process) and a main drying process (second drying process).
  • preliminary drying step (first drying step)
  • the original film obtained by web-peeling from the metal support is pre-dried in the first drying device 34 .
  • Pre-drying of the raw film may be carried out while conveying the raw film with a number of rollers arranged vertically, or may be conveyed by fixing both ends of the raw film with clips as in a tenter dryer. It may be dried while
  • the drying temperature in the pre-drying step of the web is preferably (Tg-5) ° C. or lower and (Tg + 30) ° C. or higher for 1 to 30 minutes when the glass transition temperature of the raw film is Tg. It is effective to perform heat treatment within the range. Specifically, the drying temperature is in the range of 40 to 150°C, more preferably in the range of 80 to 100°C.
  • the amount of residual solvent in the original film during stretching is preferable to adjust the amount of residual solvent in the original film during stretching, which will be described later, in this drying step, but the amount of residual solvent may be adjusted in the initial stage of the stretching step.
  • the residual solvent amount is preferably controlled by the drying temperature and drying time in the preliminary drying step.
  • the amount of residual solvent in the raw film at the start of stretching is preferably within the range of 700 to 30000 ppm by mass, and within the range of 2000 to 20000 ppm by mass. is more preferable.
  • the half width of the diffraction peak when the surface of the stretched optical film according to the present invention is irradiated with X-rays at an angle of 0.1 degree is within the above-described specific range.
  • the amount of residual solvent in the original film is within the above range even at least once.
  • the amount of residual solvent in the original film at the start of stretching is defined by the following formula (Z3).
  • Residual solvent amount (ppm) (mass of raw film before heat treatment - mass of raw film after heat treatment) / (mass of raw film after heat treatment) ⁇ 10 6
  • the heat treatment for measuring the amount of residual solvent means heat treatment at 115° C. for 1 hour.
  • the stretching operation may be performed in multiple steps. Moreover, when performing biaxial stretching, simultaneous biaxial stretching may be performed and you may implement in steps. In this case, stepwise, for example, it is possible to sequentially perform stretching in different stretching directions, or to divide stretching in the same direction into multiple stages and add stretching in different directions to any of the stages. is also possible.
  • ⁇ Stretching in the longitudinal direction ⁇ stretching in the width direction ⁇ stretching in the longitudinal direction ⁇ stretching in the longitudinal direction ⁇ Stretching in the width direction ⁇ stretching in the width direction ⁇ stretching in the longitudinal direction ⁇ stretching in the longitudinal direction also includes stretching in one direction and shrinking the other by relaxing the tension.
  • the glass transition temperature of the raw film is Tg, in the longitudinal direction and / or in the width direction, preferably in the width direction, so that the film thickness after stretching is in the desired range, (Tg- 30) to (Tg+50)°C.
  • Tg- 30 glass transition temperature of the raw film
  • Tg+50 glass transition temperature
  • the stretching temperature is preferably in the range of (Tg-40) to (Tg+40)°C. Drying is performed at a drawing temperature of 100 to 200°C.
  • the original film is stretched at a stretch ratio within the range of 1.2 to 3.5 times in terms of area magnification, so that the half width of the diffraction peak and the amount of residual solvent of the obtained optical film are reduced. It can be within the scope of the present invention, and it is preferable in that the surface can achieve both low orientation and moderate moisture permeability.
  • the original film may be stretched in either the widthwise direction or the lengthwise direction, and is more preferably stretched in both the widthwise direction and the lengthwise direction. Stretching should be within the range of 5 times.
  • the method of stretching in the longitudinal direction there is no particular limitation on the method of stretching in the longitudinal direction.
  • these methods may be used in combination.
  • the stretching rate is 250%/min or more, the flatness is improved and the film can be processed at high speed, which is preferable from the viewpoint of production suitability. If it is 500%/min or less, the film breaks. It is preferable because it can be processed without
  • the optical film according to the present invention has a desired retardation value by stretching as described above.
  • the in-plane retardation value Ro and the thickness direction retardation value Rt were measured using an automatic birefringence meter AxoScan (Axo Scan Mueller Matrix Polarimeter: manufactured by Axometrics) under an environment of 23°C and 55% RH. It can be calculated from the refractive indices nx, ny, and nz obtained by three-dimensional refractive index measurement at a wavelength of 590 nm.
  • the retardation value Ro in the in-plane direction of the optical film is within the range of 40 to 60 nm, represented by the following formulas (i) and (ii), and the retardation value in the film thickness direction It is preferable that Rt is in the range of 110 to 140 nm from the viewpoint of improving visibility such as viewing angle and contrast when it is provided in a VA type liquid crystal display device.
  • the optical film can be adjusted within the range of the retardation value by stretching at least in the lateral direction while adjusting the stretching rate.
  • nx represents the refractive index in the direction x in which the refractive index is maximized in the in-plane direction of the film.
  • ny represents the refractive index in the direction y perpendicular to the direction x in the in-plane direction of the film.
  • nz represents the refractive index in the thickness direction z of the film.
  • d represents the film thickness (nm).
  • holding and relaxation are usually performed after stretching. That is, in this step, it is preferable to carry out, in this order, a stretching step of stretching the raw film, a holding step of holding the raw film in the stretched state, and a relaxing step of relaxing the raw film in the stretched direction.
  • the stretching at the stretching ratio achieved in the stretching stage is held at the stretching temperature in the stretching stage.
  • the relaxation stage the stretching in the stretching stage is held in the holding stage, and then the stretching is relaxed by releasing the tension for stretching.
  • the relaxation stage may be performed at a temperature equal to or lower than the stretching temperature in the stretching stage.
  • (c-3) Main Drying Step the second drying device 36 heats and dries the stretched film.
  • This main drying step can also control the half-value width of the diffraction peak and the residual solvent amount of the optical film according to the present invention within the above ranges.
  • a nozzle capable of exhausting used hot air (solvent-containing air or wetting air) to prevent the used hot air from being mixed.
  • the hot air temperature is preferably in the range of (Tg-20) to (Tg+50) ° C., specifically, when the glass transition temperature of the original film is Tg, specifically in the range of 40 to 250 ° C. preferable.
  • the drying time is preferably about 5 seconds to 60 minutes, more preferably 10 seconds to 30 minutes.
  • the heating and drying means is not limited to hot air, and infrared rays, heating rollers, microwaves, flash lamp annealing, etc. can be used, for example. From the viewpoint of simplicity, it is preferable to dry the film with hot air or the like while transporting the film with transport rollers 37 arranged in a zigzag pattern.
  • the drying temperature is more preferably in the range of 40 to 350° C. in consideration of the amount of residual solvent, the expansion ratio during transportation, and the like.
  • flash lamp annealing it is preferable to irradiate within the range of 200 to 1000 V for 100 to 5000 ⁇ sec.
  • the film is preferably dried until the amount of residual solvent is 100 ppm by mass or less.
  • the knurling process can be formed by pressing a heated embossing roller against the width edge of the film.
  • the embossing roller has fine unevenness, and by pressing it against the film, unevenness is formed on the film, and the edges can be made bulky.
  • the knurling height at both lateral ends of the optical film according to the present invention is preferably 4 to 20 ⁇ m and the width is preferably 5 to 20 mm. Further, in the present invention, the knurling process is preferably provided after drying and before winding in the film forming process.
  • (d-2) Winding step This is a step of winding the optical film as an optical film after the amount of residual solvent in the optical film reaches 500 ppm by mass or less. A good film can be obtained.
  • a commonly used winding method may be used, and there are constant torque method, constant tension method, taper tension method, program tension control method with constant internal stress, etc., and they can be used properly.
  • the method for producing an optical film according to the present invention stretching is performed at a stretching ratio of 1.2 to 3.0 times in terms of area ratio in the stretching step, and the amount of residual solvent at the start of stretching is By adjusting the amount within the range of 700 to 30,000 ppm by mass, the half width of the diffraction peak when the surface of the optical film according to the present invention is irradiated with X-rays at an angle of 0.1 degree is 4.6 to 5.5. It can be within the range of 4 degrees, and the amount of residual solvent in the optical film can be controlled within the range described above. As a result, the surface of the optical film becomes low in orientation, and appropriate moisture permeability can be secured, resulting in excellent adhesiveness.
  • the moisture permeability (40° C., 95% RH) of the optical film according to the present invention is in the range of 1 to 500 g/(m 2 ⁇ 24 h) and in the range of 10 to 200 g/(m 2 ⁇ 24 h). is more preferable.
  • it is preferable to appropriately select the type and film thickness of the polymer (resin) constituting the optical film although it is not particularly limited.
  • the moisture permeability was measured by leaving the film to be measured under conditions of 40° C. and 95% RH for 24 hours based on the calcium chloride-cup method described in JIS Z 0208.
  • the optical film according to the present invention preferably has a long length, specifically, preferably has a length of about 100 to 15,000 m, and is wound into a roll.
  • the width of the optical film according to the present invention is preferably 1 m or more, more preferably 1.3 m or more, and particularly preferably 1.3 to 4 m.
  • the thickness (thickness) of the film after stretching is preferably in the range of 10 to 50 ⁇ m from the viewpoint of thinning the display device and productivity. If the thickness is 10 ⁇ m or more, film strength and retardation above a certain level can be expressed. If the thickness is 50 ⁇ m or less, a desired retardation can be obtained, and the thickness can be reduced for polarizing plates and display devices. Preferably, it is in the range of 20-40 ⁇ m.
  • the term “polarizer layer” refers to an optical layer having a property of transmitting linearly polarized light having a vibration plane perpendicular to the absorption axis when unpolarized light is incident. In other words, it refers to an optical layer that transmits only light with a plane of polarization in a certain direction.
  • a polarizing film (also referred to as a “polarizer film” and a “polarizer film”) constituting a typical polarizer layer known at present is a polyvinyl alcohol-based polarizing film.
  • the polyvinyl alcohol-based polarizing film includes a polyvinyl alcohol-based film dyed with iodine and a polyvinyl alcohol-based film dyed with a dichroic dye.
  • the polyvinyl alcohol-based polarizing film may be a film obtained by uniaxially stretching a polyvinyl alcohol-based film and then dyeing it with iodine or a dichroic dye (preferably a film further subjected to durability treatment with a boron compound); A film obtained by dyeing an alcohol-based film with iodine or a dichroic dye and then uniaxially stretching the film (preferably, a film further subjected to a durability treatment with a boron compound) may be used.
  • the absorption axis of the polarizing film (polarizer layer) is generally parallel to the maximum stretching direction.
  • JP 2003-248123, JP 2003-342322, etc. ethylene unit content 1 to 4 mol%, degree of polymerization 2000 to 4000, degree of saponification 99.0 to 99.99 mol% Ethylene modified polyvinyl alcohol is used.
  • an ethylene-modified polyvinyl alcohol film having a hot water cutting temperature of 66 to 73° C. is preferably used.
  • the thickness of the polarizer layer is preferably in the range of 5 to 30 ⁇ m, and more preferably in the range of 5 to 20 ⁇ m for thinning the polarizing plate.
  • the angle formed by the in-plane slow axis of the optical film according to the present invention and the absorption axis of the polarizer layer is in the range of 20 to 70 degrees. It is preferably in the range of 30 to 60 degrees, even more preferably in the range of 40 to 50 degrees.
  • the in-plane slow axis of the optical film according to the present invention and the absorption axis of the polarizer layer can be substantially orthogonal.
  • the adhesion between the polarizer layer and the optical film uses an adhesive layer containing a cured product of a specific polymerizable monomer that satisfies the relationship of formula (1) according to the present invention as described above. That is, the adhesion is achieved by curing the polymerizable composition containing the specific polymerizable monomer.
  • the pressure-sensitive adhesive composition preferably comprises, for example, an acrylic pressure-sensitive adhesive main agent, a cross-linking agent, an antioxidant, and the like.
  • acrylic pressure-sensitive adhesive main agent include 4-hydroxybutyl acrylate units (4-HBA), butyl acrylate units, and methyl acrylate units.
  • cross-linking agent include tolylene diisocyanate-based compounds and xylylene diisocyanate.
  • antioxidants examples include hindered phenolic antioxidants such as pentaerythritol-tetrakis(3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate) (manufactured by BASF Japan, IRGANOX1010), Phosphorus antioxidants such as tris(2,4-di-t-butylphenyl)phosphite (IRGAFOS168, manufactured by BASF Japan).
  • hindered phenolic antioxidants such as pentaerythritol-tetrakis(3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate) (manufactured by BASF Japan, IRGANOX1010)
  • Phosphorus antioxidants such as tris(2,4-di-t-butylphenyl)phosphite (IRGAFOS168, manufactured by BASF Japan).
  • the pressure-sensitive adhesive sheet preferably has a low water content in order to suppress the occurrence of high-humidity shock. . Therefore, the moisture content of the pressure-sensitive adhesive sheet is preferably in the range of 3.0 to 10.0%, particularly preferably in the range of 3.5 to 5.5%.
  • Polarizing Plate Protective Film A polarizing plate protective film is arranged on the surface of the polarizer layer opposite to the optical film.
  • polarizing plate protective films that can be used include cellulose acylate films, polyester films (eg, polyethylene terephthalate films), cycloolefin polymer (resin) films, acrylic polymer (resin) films, and the like.
  • the cycloolefin-based polymer (resin) film the optical film according to the present invention may be employed.
  • the thickness of the polarizing plate protective film is not particularly limited, it is preferably in the range of 1 to 100 ⁇ m, more preferably in the range of 3 to 40 ⁇ m.
  • the polarizing plate protective film and the polarizer layer are adhered by the protective film adhesive layer.
  • the protective film adhesive layer may be formed of a known adhesive, or an adhesive layer containing a cured product of a specific polymerizable monomer that satisfies the relationship of formula (1) according to the present invention is applied.
  • Known adhesives include, for example, isocyanate-based adhesives, polyvinyl alcohol-based adhesives, gelatin-based adhesives, vinyl-based latex-based adhesives, and water-based polyesters. These adhesives are usually used as adhesives composed of an aqueous solution (water-based adhesives), and the solid content concentration of the adhesive in the aqueous solution is preferably within the range of 0.5 to 60% by mass.
  • polyvinyl alcohol-based adhesives are preferred, and acetoacetyl group-containing polyvinyl alcohol-based adhesives are more preferred.
  • Pretreatment Step It is preferable to perform pretreatment on the surface of the optical film to which the polarizer layer is attached. Specific examples include corona treatment and plasma treatment.
  • (ii) Bonding step As the polymerizable composition (ultraviolet curable adhesive) forming the adhesive layer, the polymerizable monomer and the polymerization initiator described above are mixed in a predetermined composition, and the resulting polymerizable composition is Apply to the surface of the optical film after pretreatment.
  • the coating method is not particularly limited, and examples thereof include a doctor blade, wire bar, die coater, comma coater, gravure coater and the like. Then, the polarizer layer and the optical film are bonded together with the polymerizable composition interposed therebetween. After that, it is preferable to sandwich and press both surfaces of the bonded laminate with pressure rollers or the like. Metal or rubber can be used as the material of the pressure roller.
  • the irradiation conditions of the ultraviolet rays may be any conditions as long as the polymerizable composition is cured.
  • the cumulative amount of light is preferably within the range of 50 to 1500 mJ/cm 2 , and is within the range of 100 to 500 mJ/cm 2 . is more preferable.
  • the line speed during production of the polarizing plate depends on the curing time of the polymerizable composition, but is preferably, for example, within the range of 1 to 500 m/min, more preferably within the range of 5 to 300 m/min.
  • productivity can be easily increased, and damage to the optical film can be further reduced.
  • the line speed is 500 m/min or less, the curing of the polymerizable composition is sufficient, and good adhesiveness is likely to be obtained.
  • the polarizing plate protective film is attached to the surface of the polarizer layer opposite to the adhesive layer via the protective film adhesive layer.
  • the protective film adhesive layer is an adhesive layer containing a cured product of a specific polymerizable monomer that satisfies the relationship of formula (1) according to the present invention
  • the (ii) bonding step The polymerizable composition is applied to the surfaces of the optical film and the polarizing plate protective film on the polarizer layer side, and the optical film, the polarizer layer and the polarizing plate protective film are laminated to form a laminate.
  • the curing of the polymerizable composition on one side of the polarizer layer by ultraviolet irradiation and the curing of the polymerizable composition on the other side of the polarizer layer by ultraviolet irradiation are sequentially performed. You can do it either at the same time or at the same time. From the viewpoint of increasing the production efficiency of the polarizing plate, it is preferable to carry out at the same time.
  • the liquid crystal display device of the present invention comprises a polarizing plate having at least the above optical film, adhesive layer and polarizer layer.
  • the liquid crystal display device of the present invention is a liquid crystal display device in which the polarizing plate is attached to at least one surface of a liquid crystal cell, and the adhesive sheet is preferably adjacent to the liquid crystal cell. .
  • FIG. 5 is a schematic diagram showing an example of the basic configuration of a liquid crystal display device.
  • the liquid crystal display device 20 of the present invention includes a liquid crystal cell 30, a first polarizing plate 40 and a second polarizing plate 50 sandwiching it, and a backlight 60.
  • FIG. 5 is a schematic diagram showing an example of the basic configuration of a liquid crystal display device.
  • the liquid crystal display device 20 of the present invention includes a liquid crystal cell 30, a first polarizing plate 40 and a second polarizing plate 50 sandwiching it, and a backlight 60.
  • FIG. 5 is a schematic diagram showing an example of the basic configuration of a liquid crystal display device.
  • the liquid crystal display device 20 of the present invention includes a liquid crystal cell 30, a first polarizing plate 40 and a second polarizing plate 50 sandwiching it, and a backlight 60.
  • FIG. 5 is a schematic diagram showing an example of the basic configuration of a liquid crystal display device.
  • the liquid crystal display device 20 of the present invention includes a
  • the display mode of the liquid crystal cell 30 may be any display mode such as TN (Twisted Nematic), VA (Visual Alignment), or IPS (InPlane Switching).
  • TN Transmission Nematic
  • VA Visual Alignment
  • IPS InPlane Switching
  • the IPS mode is preferable.
  • the VA mode is preferable.
  • the first polarizing plate 40 is arranged on the surface of the liquid crystal cell 30 on the viewing side, and is arranged on the first polarizer layer 41 and the surface of the first polarizer layer 41 opposite to the liquid crystal cell. and a protective film 45 (F2) disposed on the surface of the first polarizer layer 41 on the liquid crystal cell side.
  • the second polarizing plate 50 is arranged on the backlight side surface of the liquid crystal cell 30 , the second polarizer layer 51 and the protective layer 51 arranged on the liquid crystal cell side surface of the second polarizer layer 51 . It includes a film 53 (F3) and a protective film 55 (F4) disposed on the side of the second polarizer layer 51 opposite to the liquid crystal cell.
  • the absorption axis of the first polarizer layer 41 and the absorption axis of the second polarizer layer 51 are preferably orthogonal.
  • the protective film 45 (F2) can be an optical film according to the invention.
  • the protective film 45 (F2) and the first polarizer layer 41 are laminated via an adhesive layer (not shown) according to the present invention.
  • the in-plane slow axis of the protective film 45 (F2) and the absorption axis of the first polarizer layer 41 can be substantially orthogonal.
  • the protective film 45 (F2) and the liquid crystal cell 30 are adhered with an adhesive sheet 48 interposed therebetween.
  • the protective films 43 (F1), 53 (F3) and 55 (F4) can be, for example, the polarizing plate protective films described above.
  • Cycloolefin resin As the cycloolefin resin used in the examples, the following cycloolefin resin was used. Cycloolefin resin: ARTON G7810 (manufactured by JSR)
  • Finemet NF manufactured by Nippon Seisen Co., Ltd.
  • a main dope having the following composition was prepared.
  • Dichloromethane and ethanol were first added to the pressurized dissolution tank.
  • a cycloolefin resin and a fine particle addition liquid were put into a pressurized dissolution tank containing dichloromethane while stirring. This is heated and stirred to dissolve the resin, which is passed through Azumi Filter Paper No. 1 (manufactured by Azumi Filter Paper Co., Ltd.). 244 was used to prepare the main dope.
  • Cycloolefin resin (ARTON G7810 (manufactured by JSR)) 100 parts by mass Dichloromethane 200 parts by mass Ethanol 10 parts by mass Microparticle additive liquid 3 parts by mass
  • the main dope was uniformly cast on a stainless steel belt support at a temperature of 31°C and a width of 1800 mm using an endless belt casting apparatus.
  • the temperature of the stainless steel belt was controlled at 28°C.
  • the conveying speed of the stainless steel belt was 20 m/min.
  • the solvent was evaporated on a stainless steel belt support until the amount of residual solvent in the cast film reached 30.3% by mass.
  • the unstretched optical film A was obtained by peeling from the stainless steel belt support with a peel tension of 128 N/m.
  • the unstretched optical film A was dried by heating at 100°C in a dryer, and after controlling the residual solvent amount at the start of stretching to 1800 mass ppm, it was heated at Tg + 15°C (180°C). , and stretched 2.0 times in the width direction to obtain a stretched optical film 101 having a thickness of 35 ⁇ m.
  • Preparation of polarizing plate ⁇ Preparation of polarizer layer> A long polyvinyl alcohol film with a thickness of 60 ⁇ m is immersed in a dyeing bath (30 ° C.) containing iodine and potassium iodide while being continuously conveyed through a guide roll, and subjected to dyeing treatment and 2.5 times stretching treatment.
  • the ⁇ D of each polymerizable monomer used above was calculated from its chemical structure by using computer software (Hansen Solubility Parameters in Practice (HSPiP)) as described above.
  • the UV-curing adhesive 1 prepared above was applied using a coating device equipped with a chamber doctor to a dry thickness of 3 ⁇ m.
  • the bonding surface of Konica Minolta Tack KC4UA (thickness 40 ⁇ m, manufactured by Konica Minolta Co., Ltd.) as the facing film was similarly subjected to corona treatment, and then the above ultraviolet curable adhesive 1 was applied to a dry thickness of 3 ⁇ m. was applied as follows.
  • the optical film 101 was placed on one side of the polarizer layer prepared above, and the TAC film, which is a facing film, was placed on the other side of the polarizer layer, respectively, via the UV-curable adhesive 1, in a roll-to-roll manner. pasted together.
  • the bonding was performed so that the width direction of the optical film 101 and the absorption axis (or transmission axis) of the polarizer layer were aligned.
  • ultraviolet rays were irradiated from the optical film 101 side by a metal halide lamp so that the integrated amount of light at a wavelength of 280 to 320 nm was 320 mJ/cm 2 .
  • the ultraviolet curing adhesive 1 was cured to obtain a polarizing plate 201 . Since the polarizing plate 201 is produced by a roll-to-roll method, the long polarizing plate is finally cut along the width direction to obtain a sheet-like polarizing plate 201 .
  • Polarizing plates 202 to 215 were prepared in the same manner as in the preparation of the polarizing plate 201, except that the ultraviolet curable adhesive 1 was changed to the ultraviolet curable adhesives 2 to 15 shown in Table II below.
  • the obtained polarizing plate was subjected to the following peel adhesion strength test to evaluate the adhesive force.
  • Peel adhesion strength test Specifically, the polarizing plate was cut into strips of 150 mm ⁇ 25 mm so that the polarizing axis direction of the polarizer layer was the long side. Then, only the optical film 100 was cut with a razor R at an angle of about 30 degrees from the side of the optical film for measuring the peeling force of the polarizer layer (see FIG. 1A). Next, a double-sided tape T was pasted on the surface with the cut S on the center side of the cut (see FIG. 1B).
  • the release paper of the double-sided tape T was peeled off and attached to the glass plate G (see FIG. 1C).
  • the portion of the polarizing plate to which the double-sided tape T is not attached is pulled up to create a peeling state between the polarizer layer 400 and the optical film 100 (see FIG. 1D).
  • RTC-1225A manufactured by RTC-1225A
  • the razor R used was Feather Razor S single-edged (carbon steel, blade thickness 0.245 mm, manufactured by Feather Safety Razor Co., Ltd.).
  • the 90 degree peel test was performed according to JIS K 6584-1: 1999 under the conditions of a tensile speed (peeling speed) of 100 mm/min and a peeling angle of 90 degrees, and the peel strength when the optical film was peeled from the adhesive layer. (Peel strength) was measured using a peel test jig (RTC-1225A manufactured by ORIENTEC). It was evaluated according to the following criteria, and if it was ⁇ or above, it was judged to be good.
  • Peel strength is 3.0 (N / 25 mm) or more ⁇ : Peel strength is 2.5 or more and less than 3.0 (N / 25 mm) ⁇ ⁇ : Peel strength is 2.0 or more and 2.5 (N / 25 mm) Less than ⁇ : Peel strength is 1.5 or more and less than 2.5 (N / 25 mm) ⁇ : Peel strength is less than 1.5 (N / 25 mm)
  • ⁇ Durability> The obtained polarizing plate was exposed to a high-temperature and high-humidity environment under conditions of 80° C. and 90% RH for 500 hours, then taken out and subjected to temperature and humidity control at 23° C. and 55% RH for 24 hours. Thereafter, fading of the polarizer layer was visually observed, and the durability of the polarizer layer was evaluated according to the following criteria. (Evaluation criteria) ⁇ : No change in color tone is observed in the polarizer. ⁇ : Discoloration is observed in the polarizer, but the quality is acceptable for practical use. x: Almost no color of the polarizer remains due to irradiation with xenon light.
  • Measuring device TIRFTV nano-TOF (manufactured by ULVAC-PHI) Primary ions: Bi 3 2 + acceleration voltage 30 kV Measurement area 50 ⁇ m square Sputtered ions: Ar2500 + (argon gas cluster ion beam: GCIB) Accelerating voltage: 5 kV Sputtering area: 500 ⁇ m square
  • GCIB argon gas cluster ion beam
  • Accelerating voltage 5 kV
  • Sputtering area 500 ⁇ m square
  • the directional secondary ion distribution was measured. The analysis was performed using Win Cadence N manufactured by ULVAC-Phi.
  • the count of the elemental components derived from the cycloolefin polymer on the back surface of the optical film (the surface opposite to the adhesive layer) was 100%, and the cycloolefin polymer in the adhesive layer
  • the count number of the element component derived from 0%, and the count number of the element component derived from the specific polymerizable monomer that satisfies the relationship of the formula (1), the element component count derived from the specific polymerizable monomer on the back surface of the optical film When the number is 0% and the element component count number derived from the specific polymerizable monomer in the adhesive layer is 100%, both the element component derived from the cycloolefin polymer and the element component derived from the specific polymerizable monomer are 5 to 95%.
  • the area to be counted was defined as the mixed layer.
  • the location measured by TOF-SIMS is observed with a non-contact three-dimensional microscopic surface profile measurement system (RSTPLUS manufactured by WYKO), the thickness of the optical film and adhesive layer cut by TOF-SIMS measurement is measured, and the sputtering rate is determined. converted to thickness.
  • optical film 108 A ZB film (a cycloolefin resin film having no polar group), which is a retardation film manufactured by Zeon Corporation, was used as the optical film 108 . Note that the ZB film is a stretched film that has been stretched without residual solvent.
  • the half width of the diffraction peak was measured as follows.
  • the incident angle ⁇ of the incident X-ray was fixed at 0.1 degree, and the X-ray intensity was measured while changing the angle of the detector.
  • an X-ray diffractometer RINT-TTRII manufactured by Rigaku Denki Co., Ltd.
  • the anticathode was Cu and operated at 50 kV-300 mA.
  • the height limiting slit was set to 10 mm, the divergence slit was set to 2/3, and the optical system was adjusted so that the peak half width of Al (200) when measuring the aluminum foil was 0.35 degrees.
  • the film was fixed, ⁇ was fixed at 0.1 degrees, 2 ⁇ was scanned from 5 to 35 degrees in steps of 0.02 degrees, and each step was integrated for 1 second to obtain a diffraction pattern. Background treatment was performed and the half width of the diffraction peak was determined. The results are shown in Table II below.
  • Polarizing plates 301 to 307 were prepared in the same manner as in the preparation of the polarizing plate 201, except that the optical film 101 was changed to the optical films shown in Table II below.
  • the polarizing plate of the present invention is superior to the polarizing plate of the comparative example in adhesive strength and durability in a high-temperature and high-humidity environment.
  • the present invention prevents poor adhesion, reduces display unevenness in a liquid crystal display device, and maintains a polarizer layer in a high-temperature and high-humidity environment even when an optical film containing a cycloolefin polymer having a polar group is used.
  • the present invention relates to a polarizing plate and a liquid crystal display device capable of improving durability.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Organic Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)

Abstract

本発明の偏光板は、少なくとも光学フィルム、接着層及び偏光子層を備えた偏光板であって、前記光学フィルムが少なくとも極性基を有するシクロオレフィンポリマーを含有し、前記接着層の接着前における前記光学フィルムの表面に、X線を0.1度の角度で照射したときの回折ピークの半値幅が、4.6~5.4度の範囲で、前記接着層が、少なくとも重合性モノマーの硬化物を含有し、かつ、前記重合性モノマーの60質量%以上が、ハンセン溶解度パラメーターにおける分子間の分散力によるエネルギーδDが式(1)の関係を満たすモノマーである。 式(1):16.0MPa0.5≦δD<17.7MPa0.5

Description

偏光板及び液晶表示装置
 本発明は、偏光板及び液晶表示装置に関し、特に、極性基を有するシクロオレフィンポリマーを含有する光学フィルムを用いた場合においても、接着不良を防止し、液晶表示装置における表示ムラを低減し、かつ、高温高湿環境下における偏光子層の耐久性の向上を図ることができる偏光板等に関する。
 液晶表示装置の画像表示領域には、種々の光学フィルム(例えば、偏光板の偏光子層を保護するための透明保護フィルム)が配置されている。このような光学フィルムとしては、例えばセルロースエステルフィルム、シクロオレフィンポリマー(シクロオレフィン系ポリマー(樹脂)(COP))のような透明性に優れたポリマー(樹脂)フィルムが用いられている。
 近年では特に耐湿性、耐熱性に優れるシクロオレフィンポリマーフィルムの需要が高まり、さらに、表示装置の大型化に伴った広幅での偏光板の作製が要望されており、その際には生産収率を下げないことがより具体的には要望されている。さらに、大型化に伴って、帯電防止の効果も含めてある程度の極性を有するフィルムが求められている。
 一般に、偏光板は、光学フィルムと偏光子層を接着剤にて貼合することで作製される。当該偏光板の作製において、光学フィルムと偏光子層とを特定の紫外線硬化糊を使用して接着する技術が、例えば特許文献1に開示されている。
 さらに、シクロオレフィンポリマーからなる光学フィルムと偏光子層との接着性を改良するために、光学フィルム上に溶剤塗布の表面処理を行う技術が、例えば特許文献2に開示されている。
 しかしながら、前記特許文献1及び2に記載の手法を用いて極性基を有するシクロオレフィンポリマーからなる光学フィルムを用いた場合には、接着不良により表示ムラが生じたり、また、高温高湿環境下における偏光子層の劣化が生じてしまい、改善が求められていた。
特開2004-245925号公報 特開2019-28109号公報
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、極性基を有するシクロオレフィンポリマーを含有する光学フィルムを用いた場合においても、接着不良を防止し、液晶表示装置における表示ムラを低減でき、かつ、高温高湿環境下における偏光子層の耐久性の向上を図ることができる偏光板及び液晶表示装置を提供することである。
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において、特定の重合性モノマーの硬化物を含有した接着層を用い、かつ、極性基を有するシクロオレフィンポリマーの表面の配向度を制御することで、接着不良を防止して、表示ムラを低減し、高温高湿環境下での偏光子層の耐久性を向上させることができる偏光板及び液晶表示装置を提供することができることを見いだし本発明に至った。
 すなわち、本発明に係る上記課題は、以下の手段により解決される。
 1.少なくとも光学フィルム、接着層及び偏光子層を備えた偏光板であって、
 前記光学フィルムが少なくとも極性基を有するシクロオレフィンポリマーを含有し、
 前記接着層の接着前における前記光学フィルムの表面に、X線を0.1度の角度で照射したときの回折ピークの半値幅が、4.6~5.4度の範囲内であり、
 前記接着層が、少なくとも重合性モノマーの硬化物を含有し、かつ、
 前記重合性モノマーの60質量%以上が、ハンセン溶解度パラメーターにおける分子間の分散力によるエネルギーδDが、下記式(1)の関係を満たすモノマーである偏光板。
 式(1):16.0MPa0.5≦δD<17.7MPa0.5
 2.前記偏光板の剥離接着強さ試験をしたときに、剥離面が、前記接着層側から見て、前記光学フィルムの厚さ全体に対して0.5~15%の範囲内の位置にある第1項に記載の偏光板。
 3.前記光学フィルムと前記接着層との界面に混合層を有し、
 前記混合層の厚さが、50~500nmの範囲内である第1項又は第2項に記載の偏光板。
 4.第1項から第3項までのいずれか一項に記載の偏光板を具備する液晶表示装置。
 本発明の上記手段により、極性基を有するシクロオレフィンポリマーを含有する光学フィルムを用いた場合においても、接着不良を防止し、液晶表示装置における表示ムラを低減でき、かつ、高温高湿環境下における偏光子層の耐久性の向上を図ることができる偏光板及び液晶表示装置を提供することができる。
 本発明の効果の発現機構又は作用機構については、明確にはなっていないが、以下のように推察している。
 ハンセン溶解度パラメーターにおける分子間の分散力によるエネルギーδDが前記式(1)を満たす重合性モノマー(以下、「特定の重合性モノマー」ともいう。)の硬化物を接着層として用いることにより、前記特定の重合性モノマーのδDと、極性基を有するシクロオレフィンポリマーのδDの値が近くなり、光学フィルムに前記特定の重合性モノマー又はその低分子重合体(例えばオリゴマー)が浸透し易くなる。その結果、光学フィルムと接着層との接着性が向上し、液晶表示装置における表示ムラを低減することができる。
 また、接着層と偏光子層との接着性も向上することから、高温高湿環境下における偏光子層と接着層との間の接着面から水分が侵入しにくくなり、偏光子層の劣化も防止することができる。
 さらに、接着層の接着前における光学フィルムの表面に、X線を0.1度の角度で照射したときの回折ピークの半値幅を、4.6~5.4度の範囲内とすることにより、光学フィルムの表面のポリマー(樹脂)分子鎖が適度な配向となり、前記特定の重合性モノマーの光学フィルムへの浸透を適正に保つことができ、接着層との接着性に優れる。
 したがって、本発明では、特定の重合性モノマーを接着層に用い、かつ、表面のポリマー分子鎖を低配向に制御した光学フィルムを用いることにより、光学フィルムに接着層を浸透し易くすることができ、接着不良を防止して、液晶表示装置における表示ムラを低減することができる。
 なお、本発明において、「配向」とは、ポリマー中の分子鎖が一定方向に配列することをいう。例えばフィルムの膜厚に対して垂直な方向に、ポリマー中の分子鎖が配列している度合いが高い状態を「高配向」という。
 したがって、ポリマー間の相互作用の小さいポリマーでは、延伸することによって表面に高配向領域ができる。高配向領域は比較的、主鎖間隔が揃った(結晶性の高い)構造を取る。本発明では、前記したように回折ピークの半値幅を特定範囲とし、光学フィルムの表面を特定の配向度合いにすることによって、前記特定の重合性モノマーの浸透を制御することにより、接着性の向上を図っている。
本発明の偏光板の剥離接着強さ試験を説明するための模式図 本発明の偏光板の剥離接着強さ試験を説明するための模式図 本発明の偏光板の剥離接着強さ試験を説明するための模式図 本発明の偏光板の剥離接着強さ試験を説明するための模式図 本発明の偏光板の剥離接着強さ試験を説明するための模式図 本発明の偏光板の剥離接着強さ試験を説明するための模式図 本発明の偏光板の構成の一例を示した模式図 TOF-SIMSにより測定された光学フィルム、混合層及び接着層のプロファイルを示した図 本発明に係る光学フィルムの製造方法を模式的に示した図 本発明の液晶表示装置の構成の一例を示した模式図
 本発明の偏光板は、少なくとも光学フィルム、接着層及び偏光子層を備えた偏光板であって、前記光学フィルムが少なくとも極性基を有するシクロオレフィンポリマーを含有し、前記接着層の接着前における前記光学フィルムの表面に、X線を0.1度の角度で照射したときの回折ピークの半値幅が、4.6~5.4度の範囲内であり、前記接着層が、少なくとも重合性モノマーの硬化物を含有し、かつ、前記重合性モノマーの60質量%以上が、ハンセン溶解度パラメーターにおける分子間の分散力によるエネルギーδDが、下記式(1)の関係を満たすモノマーである。
 式(1):16.0MPa0.5≦δD<17.7MPa0.5
 この特徴は、下記各実施形態に共通又は対応する技術的特徴である。
 本発明の実施態様としては、前記偏光板の剥離接着強さ試験をしたときに、剥離面が、前記接着層側から見て、前記光学フィルムの厚さ全体に対して0.5~15%の範囲内の位置にあることが、接着層と光学フィルムが適正に接着できている点で好ましい。
 また、前記光学フィルムと前記接着層との界面に混合層を有し、前記混合層の厚さが、50~500nmの範囲内であることが、光学フィルムと接着層との間の接着性がより良好となる点で好ましい。
 本発明の偏光板は、液晶表示装置に好適に用いられる。
 以下、本発明とその構成要素及び本発明を実施するための形態・態様について説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。
[本発明の偏光板の概要]
 本発明の偏光板は、少なくとも光学フィルム、接着層及び偏光子層を備えた偏光板であって、前記光学フィルムが少なくとも極性基を有するシクロオレフィンポリマーを含有し、前記接着層の接着前における前記光学フィルムの表面に、X線を0.1度の角度で照射したときの回折ピークの半値幅が、4.6~5.4度の範囲内であり、前記接着層が、少なくとも重合性モノマーの硬化物を含有し、かつ、前記重合性モノマーの60質量%以上が、ハンセン溶解度パラメーターにおける分子間の分散力によるエネルギーδDが、下記式(1)の関係を満たすモノマーである。
 式(1):16.0MPa0.5≦δD<17.7MPa0.5
 前記重合性モノマーのうち、前記式(1)を満たす重合性モノマー(特定の重合性モノマー)を60質量%以上含有させたのは、当該特定の重合性モノマーのδDと、極性基を有するシクロオレフィンポリマーのδDの値を近づけるためであり、これによって光学フィルムに前記特定の重合性モノマー又はその低分子重合体が浸透し易くなる。その結果、光学フィルムと接着層との接着性が向上する。また、接着層と光学フィルムとの界面に、後述する混合層を形成することができる。
 前記特定の重合性モノマーを60質量%未満含有させた場合には、当該特定の重合性モノマーによる効果が小さく、接着層と光学フィルムとの接着性向上を図れない。
<ハンセン溶解度パラメーター>
 本発明において、接着層に含有する硬化物の重合性モノマーのうち、60質量%以上の重合性モノマーが、ハンセン溶解度パラメーター(HSP値)における分子間の分散力によるエネルギーδDが、前記式(1)の関係を満たす。
 好ましくは、前記60質量%以上の重合性モノマーが、18.7≦δD≦20の範囲内の重合性モノマーを実質含有しない。
 以下において、SP値とHSP値について説明する。
 物質の物性、特に溶媒の溶解挙動を評価する指標として、ヒルデブラントのSP値(溶解度パラメータ;δ)が従来用いられている。当該「SP値」とは、物質の凝集エネルギー密度の平方根で示される物質固有の物性値である。
 また、このSP値は、ハンセンによって、分散力項(δD)、極性項(δP)、水素結合項(δH)の3成分に分割して物質の極性を考慮したパラメーターとして提案されたハンセン溶解度パラメーター(HSP値)を用いて、下記式のとおり表される。
 SP値=(δD+δP+δH0.5
 ハンセン溶解度パラメーター(HSP値)は、「分子間の相互作用が似ている2つの物質は、互いに溶解しやすい」との考えに基づいており、以下の3つのパラメーターで構成され、これら3つのパラメーターは三次元空間(「ハンセン空間」ともいう。)における座標とみなすことができる。2つの物質の当該座標間の距離が近ければ近いほど互いに親和性が高く、溶解しやすいと考えられる。
 δD:分子間の分散力によるエネルギー
 δP:分子間の双極子相互作用によるエネルギー
 δH:分子間の水素結合によるエネルギー
 本発明におけるハンセン溶解度パラメーターにおける分子間の分散力によるエネルギーδDの値については下記のとおりに求められる。
 ハンセン溶解度パラメーターの定義及び計算方法は、下記の文献に記載されている。CharlesM.Hansen著、「HansenSolubilityParameters:AUsersHandbook」、CRCプレス、2007年。
 さらに、コンピュータソフトウエア(HansenSolubilityParametersinPractice(HSPiP))を用いることによって、その化学構造から簡便にハンセン溶解度パラメーターを算出できる。このようにして求められたハンセン溶解度パラメーターは、δD、δP、δHの3成分で表現され、本発明においてはこのHSPiPによるδDの値(単位:MPa0.5)を使用する。
 前記関係式(1)を満たす重合性モノマーの具体例としては、後述するが、エポキシモノマー、アクリル系モノマー又はオキセタンモノマーであることが好ましく、特にエポキシモノマーであることが好ましい。
<X線回折ピーク>
 本発明において、光学フィルムの表面の配向性を評価するため、X線回折法が適切である。特に、入射X線の入射角θを小さくして、回折して検出されるX線の情報深さを浅くする薄膜法と呼ばれる方法が好ましい。
 具体的には、入射X線の入射角θを0.1度程度に固定し、検出器の角度を変えつつX線の強度を測定する。
 本発明においては、X線回折装置として、X線回折装置RINT-TTRII(理学電気社製)を用いた。対陰極をCuとし、50kV-300mAで動作させた。高さ制限スリットは10mm、発散スリットは2/3とし、アルミニウムフォイルを測定した際のAl(200)のピーク半値幅が0.35度となるように光学系を調整した。フィルムを固定し、θを0.1度に固定し2θを5~35度まで0.02度ステップで走査し、各ステップで1秒積算し、回折パターンを得た。バックグラウンド処理を行い、回折ピークの半値幅を求めた。
 前記回折ピークの半値幅は、4.6~5.4度の範囲内とすることで、重合性モノマーの光学フィルムへの浸透を適正に保つことができる。4.6度未満では重合性モノマーの浸透を阻害してしまい、十分な接着力を確保することできない。また、5.4度よりも大きいと重合性モノマーの浸透に優れるあまり、光学フィルムの内部にまで浸透しまい接着に寄与する表面近傍に重合性モノマーが留まらないため接着力が弱くなってしまう。好ましくは4.8~5.2度の範囲内である。
 前記回折ピークの半値幅は、結晶間の距離を表し、低配向であるほどポリマー(樹脂)中の主鎖間隔がランダムとなるため、半値幅が広がることになる。
 このような回折ピークの半値幅を前記範囲内とするための手段としては、延伸工程における延伸開始時の残留溶媒量や、延伸時の延伸倍率、延伸時における加熱温度、延伸工程後の本乾燥時における乾燥時間と乾燥時間等を制御することが挙げられる。
 具体的に、前記延伸開始時の残留溶媒量は、700~30000質量ppmの範囲内とすることが好ましい。
 前記延伸倍率は、面積倍率(面積比)で1.2~3.5倍の範囲内とすることが好ましい。
 延伸時の加熱温度は、100~200℃の範囲内とすることが好ましい。
 また、前記延伸開始時の残留溶媒量は、後述するが、延伸工程前の予備乾燥時における乾燥温度と乾燥時間によって制御することができる。
<剥離接着強さ試験>
 本発明の偏光板の剥離接着強さ試験をしたときに、光学フィルムの剥離面が、前記接着層側から見て、剥離前の前記光学フィルムの厚さ全体に対して0.5~15%の範囲内の位置にあることが好ましく、5~12%の範囲内であることがより好ましい。
 剥離接着強さ試験は下記の方法で行う。図1A~図1Fは、剥離接着強さ試験の方法を示すための図である。
 まず、偏光板を、偏光子層の偏光軸方向が長辺となるように、150mm×25mmの短冊状に切り出す。
 次いで、偏光子層400の剥離力を測定する光学フィルム100側からを約30度の角度で、光学フィルム100のみに剃刀Rで切り込みを入れる(図1A参照。)。
 次いで、切り込みSを入れた面の切込みよりも中央側に両面テープTを貼る(図1B参照。)。
 次いで、両面テープTの剥離紙を剥がしてガラス板Gに貼り付ける(図1C参照。)。
 次いで、偏光板の両面テープTを貼っていない部分を引っ張り上げて、偏光子層400と光学フィルム100の間で剥離する状態を作る(図1D参照。)。
 最後に、テンシロン試験機(ORIENTEC社製、RTC-1225A)を用いて90度ピール試験を行う(図1E参照。)。
 使用した剃刀Rは、フェザー剃刀S片刃(炭素鋼、刃厚0.245mm、フェザー安全剃刀株式会社製)とした。また、90度ピール試験は、JIS K 6854-1:1999(接着剤‐はく離接着強さ試験方法-第1部:90度はく離)に準じて、引張速度(剥離速度)100mm/min、剥離角度90度の条件で行った。
<剥離位置の観察方法>
 前記剥離接着強さ試験で剥離した光学フィルム100をエポキシポリマー(樹脂)で包埋した後、ウルトラミクロトームにより約100nm厚の超薄切片を作製し、日本電子製透過型電子顕微鏡2000FX(加速電圧:200kV)により2500~10000倍のTEM画像を撮影する。
 撮影した画像より、接着層600側に付着した光学フィルム100の厚さm(例えば、図1(f)参照。)を算出し、剥離前の光学フィルム全体の厚さMに対する剥離面101の位置(「接着層側に付着した光学フィルムの厚さm」/「剥離前の光学フィルム全体の厚さM(図1(e)参照。)」×100)を算出する。
 なお、前記「接着層側に付着した光学フィルムの厚さm」とは、光学フィルム100の接着層600側の面から剥離面101までのうちの最短距離をいう。
[偏光板の構成]
 本発明の偏光板は、少なくとも光学フィルム、接着層及び偏光子層を備える。また、本発明の偏光板は、光学フィルムと接着層との界面に混合層を有することが好ましい。
 具体的には、図2に示すように、本発明の偏光板200は、少なくとも、光学フィルム100、混合層700、接着層600、偏光子層400及び偏光板保護フィルム300がこの順に積層されてなることが好ましい。
 また、偏光板保護フィルム300と偏光子層400との間に、さらに保護フィルム用接着層800を有し、かつ、光学フィルム100の前記混合層700と反対側の面に、液晶セル30(図5参照。)に接着するための粘着シート48(図5参照。)をさらに有することが好ましい。
 以下、接着層600、混合層700、光学フィルム100、偏光子層400、偏光板保護フィルム300及び粘着シート48の順で各構成について説明する。
1.接着層
 本発明に係る接着層は、光学フィルムの両面のうち、偏光子層を貼り付ける側の面に設けられる。前記接着層は、少なくとも重合性モノマーの硬化物を含有する。
 本発明において、「重合性モノマーの硬化物」とは、重合性モノマーが重合体(ポリマー)化したものをいうが、実質上は、前記重合性モノマーや、重合開始剤等の添加剤を含有する重合性組成物(例えば、後述する紫外線硬化型接着剤)が重合反応により硬化してなるものをいう。すなわち、前記重合性モノマーの重合体や添加剤等を含有する重合性組成物の硬化物が接着層となる。以下、重合性組成物に含有される前記重合性モノマー、重合開始剤等について説明する。
 (1.1)重合性モノマー
 前記重合性モノマーのうち、60質量%以上の重合性モノマーが、ハンセン溶解度パラメーターにおける分子間の分散力によるエネルギーδDが、前記式(1)の関係を満たすモノマーである。
 このような前記式(1)の関係を満たす重合性モノマーとしては、例えば、エポキシモノマー、アクリル系モノマー又はオキセタンモノマー等が挙げられ、特に、光学フィルムとの接着性に優れる点でエポキシモノマーが好ましい。
 前記式(1)の関係を満たす重合性モノマーとしては、例えば、下記例示化合物A-1~A-35が挙げられ、これらの例示化合物のうち複数種類の重合性モノマーを混合して用いてもよいし、単独で用いてもよい。
 また、各例示化合物のδDは、前記したように、コンピュータソフトウエア(HansenSolubilityParametersinPractice(HSPiP))を用いることによって、その化学構造から算出した。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
 また、前記式(1)の関係を満たさないが、使用可能な重合性モノマーとしては、下記例示化合物B-1~B-10等が挙げられ、好ましくは、後述する実施例で使用した例示化合物B-1、B-6及びB-8が挙げられる。
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
 前記式(1)の関係を満たす重合性モノマーは、重合性組成物全体に対して60~100質量%、好ましくは70~100質量%の範囲内で含有することが好ましい。前記式(1)の関係を満たす重合性モノマーは2種類以上を併用することが好ましく、3種類以上含有することがより好ましい。2種類以上を併用する際には、エポキシモノマーとアクリル系モノマーからそれぞれ1種類以上選ばれることが好ましい。
 (1.2)その他の添加剤
 前記硬化物を形成する重合性組成物は、前記重合性モノマー以外に、重合開始剤、光増感剤等を含有することが好ましい。
 (1.2.1)重合開始剤
 前記重合開始剤は、前記重合性モノマーを活性光線の照射によってカチオン重合させて硬化させ、接着層を形成することから、光カチオン重合開始剤であることが好ましい。
 光カチオン重合開始剤は、可視光線、紫外線、X線、電子線のような活性光線の照射によって、カチオン種又はルイス酸を発生させ、本発明に係る重合性モノマーの重合反応を開始するものである。
 活性光線の照射によりカチオン種やルイス酸を生じる化合物としては、例えば、芳香族ジアゾニウム塩、芳香族ヨードニウム塩や芳香族スルホニウム塩のようなオニウム塩、又は鉄-アレン錯体等を挙げることができる。
 芳香族ジアゾニウム塩としては、例えば、ベンゼンジアゾニウムヘキサフルオロアンチモネート、ベンゼンジアゾニウムヘキサフルオロホスフェート、ベンゼンジアゾニウムヘキサフルオロボレート等が挙げられる。
 芳香族ヨードニウム塩としては、例えば、ジフェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボレート、ジフェニルヨードニウムヘキサフルオロホスフェート、ジフェニルヨードニウムヘキサフルオロアンチモネート、ジ(4-ノニルフェニル)ヨードニウムヘキサフルオロホスフェート等が挙げられる。
 芳香族スルホニウム塩としては、例えば、トリフェニルスルホニウムヘキサフルオロホスフェート、トリフェニルスルホニウムヘキサフルオロアンチモネート、トリフェニルスルホニウムテトラキス(ペンタフルオロフェニル)ボレート、4,4′-ビス〔ジフェニルスルホニオ〕ジフェニルスルフィドビスヘキサフルオロホスフェート、4,4′-ビス〔ジ(β-ヒドロキシエトキシ)フェニルスルホニオ〕ジフェニルスルフィドビスヘキサフルオロアンチモネート、4,4′-ビス〔ジ(β-ヒドロキシエトキシ)フェニルスルホニオ〕ジフェニルスルフィドビスヘキサフルオロホスフェート、7-〔ジ(p-トルイル)スルホニオ〕-2-イソプロピルチオキサントンヘキサフルオロアンチモネート、7-〔ジ(p-トルイル)スルホニオ〕-2-イソプロピルチオキサントンテトラキス(ペンタフルオロフェニル)ボレート、4-フェニルカルボニル-4′-ジフェニルスルホニオ-ジフェニルスルフィドヘキサフルオロホスフェート、4-(p-tert-ブチルフェニルカルボニル)-4′-ジフェニルスルホニオ-ジフェニルスルフィドヘキサフルオロアンチモネート、4-(p-tert-ブチルフェニルカルボニル)-4′-ジ(p-トルイル)スルホニオ-ジフェニルスルフィドテトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。
 鉄-アレン錯体としては、例えばキシレン-シクロペンタジエニル鉄(II)ヘキサフルオロアンチモネート、クメン-シクロペンタジエニル鉄(II)ヘキサフルオロホスフェート、キシレン-シクロペンタジエニル鉄(II)トリス(トリフルオロメチルスルホニル)メタナイド等が挙げられる。
 これらの光カチオン重合開始剤は、それぞれ単独で使用してもよいし、2種以上を混合して使用してもよい。これらの中でも、特に芳香族スルホニウム塩は、300nm付近の波長領域でも紫外線吸収特性を有することから、硬化性に優れ、良好な機械強度や接着強度を有する硬化物を与えることができる観点から、好ましく用いられる。
 光カチオン重合開始剤の配合量は、前記重合性組成物100質量部に対して1~10質量部とすることが好ましく、2~6質量部の範囲内とすることがより好ましい。これにより、前記重合性モノマーを十分に硬化させることができ、得られる偏光板に高い機械強度と接着強度を与える。
 (1.2.2)光増感剤
 前記光増感剤は、380nmより長い波長の光に極大吸収を示す光増感剤であることが好ましい。
 上記光カチオン重合開始剤は、300nm付近又はそれより短い波長に極大吸収を示し、その付近の波長の光に感応して、カチオン種又はルイス酸を発生させ、前記重合性モノマーのカチオン重合を開始させるが、それよりも長い波長の光にも感応するように、380nmより長い波長の光に極大吸収を示す光増感剤を配合することが好ましい。
 このような光増感剤としては、例えば、特開2014-66955号公報の段落[0253]~[0258]に記載の光増感剤を用いることができる。具体的には、9,10-ジメトキシアントラセン、9,10-ジエトキシアントラセン、9,10-ジプロポキシアントラセン、9,10-ジイソプロポキシアントラセン、9,10-ジブトキシアントラセン、9,10-ジペンチルオキシアントラセン、9,10-ジヘキシルオキシアントラセン、9,10-ビス(2-メトキシエトキシ)アントラセン、9,10-ビス(2-エトキシエトキシ)アントラセン、9,10-ビス(2-ブトキシエトキシ)アントラセン、9,10-ビス(3-ブトキシプロポキシ)アントラセン、2-メチル又は2-エチル-9,10-ジメトキシアントラセン、2-メチル又は2-エチル-9,10-ジエトキシアントラセン、2-メチル又は2-エチル-9,10-ジプロポキシアントラセン、2-メチル又は2-エチル-9,10-ジイソプロポキシアントラセン、2-メチル又は2-エチル-9,10-ジブトキシアントラセン、2-メチル又は2-エチル-9,10-ジペンチルオキシアントラセン、2-メチル又は2-エチル-9,10-ジヘキシルオキシアントラセン等が挙げられる。
 光増感剤の配合量は、前記重合性組成物100質量部に対して、0.1~2質量部の範囲内とすることが好ましく、0.1~0.5質量部の範囲内がより好ましく、0.1~0.3質量部の範囲内がさらに好ましい。これにより、硬化性が向上する効果が発現し、また、低温保管時の析出を防ぐことができる。
 (1.2.3)光増感助剤
 前記光増感助剤としては、ナフタレン系光増感助剤を使用することが好ましい。
 このような光増感助剤としては、例えば、特開2014-66955号公報の段落[0259]~[0263]に記載の光増感助剤を用いることができる。具体的には、1,4-ジメトキシナフタレン、1-エトキシ-4-メトキシナフタレン、1,4-ジエトキシナフタレン、1,4-ジプロポキシナフタレン、1,4-ジブトキシナフタレン等が挙げられる。
 光増感助剤の配合量は、前記重合性組成物100質量部に対して、0.1~10質量部の範囲内とすることが好ましく、0.1~5質量部の範囲内がより好ましい。これにより、硬化性が向上する効果が発現し、また、低温保管時の析出を防ぐことができる。
 本発明に係る重合性組成物には、本発明の効果を損なわない限り、任意成分で他の添加剤成分を含有させることができる。添加剤成分としては、特開2014-66955号公報の段落[0265]~[0288]に記載の、熱カチオン重合開始剤、ポリオール類、イオントラップ剤、酸化防止剤、光安定剤、連鎖移動剤、粘着付与剤、熱可塑性樹脂、充填剤、流動調整剤、可塑剤、消泡剤、レベリング剤、色素、有機溶媒等を配合することが
できる。
 本発明に係る接着層の厚さは、500~5000nmの範囲内であることが好ましい。
2.混合層
 本発明の偏光板は、光学フィルムと前記接着層との界面に混合層を有していることが好ましい。
 本発明に係る混合層は、光学フィルムに接着層を形成することによって、光学フィルムに前記式(1)を満たす重合性モノマー又はその低分子重合体が浸透し、光学フィルムの表面を溶解することによって形成される層であり、極性基を有するシクロオレフィンポリマーと前記重合性モノマー又はその低分子重合体が入り込んだ層である。
 前記混合層の検出及び混合層の厚さの算出は、例えば、飛行時間型二次イオン質量分析法(TOF-SIMS:Time-of-Flight Secondary Ion Mass Spectrometry)かつイオンスパッタリングを利用して表面エッチングを行いながら、スパッタと測定を交互に繰り返して得られたスペクトル情報から元素の組成又は分子構造について深さ方向プロファイルを得ることにより行うことができる。
 具体的には、光学フィルムに含有される前記シクロオレフィンポリマー由来の元素成分及び接着層に含有される前記特定の重合性モノマー由来の元素成分に帰属する質量電荷比m/zのカウント数を、光学フィルムの接着層と反対側の面から接着層に至るまで連続的に測定する。「m/z」とは、質量mを電荷zで割った値である。
 測定装置:TIRFTV nano-TOF(アルバック・ファイ社製)
 一次イオン:Bi 2+、加速電圧30kV、測定領域50μm角
 スパッタイオン:Ar2500+(アルゴンガスクラスターイオンビーム:GCIB)、加速電圧5kV、スパッタ領域500μm角
 二次イオンとして、m/zが0.5から2000の測定を3フレーム、次いでGCIBでのスパッタリングを5秒、次いで電子銃による中和を3秒、の順で繰り返し、深さ方向の二次イオン分布を計測する。解析はアルバック・ファイ製Win Cadence Nにて行う。
 前記解析により、シクロオレフィンポリマー由来の元素成分のカウント数のうち、光学フィルム裏面(接着層と反対側の面)におけるシクロオレフィンポリマー由来の元素成分カウント数を100%、接着層におけるシクロオレフィンポリマー由来の元素成分カウント数を0%、前記式(1)の関係を満たす特定の重合性モノマー由来の元素成分のカウント数のうち、光学フィルム裏面における前記特定の重合性モノマー由来の元素成分カウント数を0%、接着層における前記特定の重合性モノマー由来の元素成分カウント数を100%としたとき、シクロオレフィンポリマー由来の元素成分、特定の重合性モノマー由来の元素成分ともに5~95%のカウント数となる領域を混合層とした。
 TOF-SIMSで測定した箇所を非接触三次元微小表面形状測定システム(WYKO社製RSTPLUS)で観察し、TOF-SIMS測定によって削られた光学フィルム及び接着層の厚さを計測し、スパッタレートを厚さに換算する。
 図3は、本発明の偏光板において、光学フィルムの裏面(接着層と反対側の面(図2において光学フィルム100の下面)から厚さ方向にエッチングを行い、TOF-SIMSで測定した深さ方向プロファイルのうち界面近傍を示した図である。この図3に示されるように、測定開始位置から200nm近傍の位置までは、極性基を有するシクロオレフィンポリマー由来の元素成分のみが含有されており、深さ200nmから450nm近傍の間(混合層)は、前記シクロオレフィンポリマー及び前記特定の重合性モノマー由来の元素成分の両方が含有されていることが分かる。また、深さ450nm近傍の位置以降(接着層)では、前記特定の重合性モノマー由来の元素成分のみが含有されている。
 図3において、黒丸は、光学フィルムに含有されるシクロオレフィンポリマー由来の元素成分のカウント数、白丸は、接着層に含有される特定の重合性モノマー由来の元素成分のカウント数を示す。
 前記混合層の厚さは、50~500nmの範囲内であることが好ましく、150~400nmの範囲内であることがより好ましい。これにより接着層と光学フィルムとの接着性が良好となる。
 前記混合層の厚さを50~500nmの範囲内とするためには、例えば、接着層を形成するための重合性組成物に含有する前記特定の重合性モノマーの種類及びその含有量を調整することによって制御することができる。
3.光学フィルム
 本発明に係る光学フィルムは、極性基を有するシクロオレフィンポリマー(「シクロオレフィン系ポリマー(樹脂)」ともいう。)を含有する。
 (3.1)シクロオレフィンポリマー
 本発明に係るシクロオレフィンポリマーは、シクロオレフィンモノマー(単量体)の重合体、又はシクロオレフィンモノマーとそれ以外の共重合性モノマーとの共重合体であることが好ましい。
 シクロオレフィンモノマー)としては、ノルボルネン骨格を有するシクロオレフィンモノマーであることが好ましく、下記一般式(a-1)又は(a-2)で表される構造を有するシクロオレフィンモノマーであることがより好ましい。
Figure JPOXMLDOC01-appb-C000008
 一般式(a-1)中、R~Rのうち少なくとも一つは、極性基を表し、その他は、各々独立して、水素原子又は炭素原子数1~30の炭化水素基を表す。pは、0~2の整数を表す。ただし、RとRが同時に水素原子を表すことはなく、RとRが同時に水素原子を表すことはないものとする。
 一般式(a-1)においてR~Rで表される炭素原子数1~30の炭化水素基としては、例えば炭素原子数1~10の炭化水素基であることが好ましく、炭素原子数1~5の炭化水素基であることがより好ましい。
 炭素原子数1~30の炭化水素基は、例えばハロゲン原子、酸素原子、窒素原子、硫黄原子又はケイ素原子を含む連結基を更に有していても良い。
 そのような連結基の例には、カルボニル基、イミノ基、エーテル結合、シリルエーテル結合、チオエーテル結合等の2価の極性基が含まれる。
 炭素原子数1~30の炭化水素基の例には、メチル基、エチル基、プロピル基及びブチル基等が含まれる。
 一般式(a-1)においてR~Rで表される極性基の例には、カルボキシ基、ヒドロキシ基、アルコキシ基、アルコキシカルボニル基、アリールオキシカルボニル基、アミノ基、アミド基及びシアノ基が含まれる。
 中でも、カルボキシ基、ヒドロキシ基、アルコキシカルボニル基及びアリールオキシカルボニル基が好ましく、溶液製膜時の溶解性を確保する観点から、アルコキシカルボニル基及びアリールオキシカルボニル基が好ましい。
 一般式(a-1)におけるpは、光学フィルムの耐熱性を高める観点から、1又は2であることが好ましい。
 pが1又は2であると、得られる重合体がかさ高くなり、ガラス転移温度が向上しやすいためである。
Figure JPOXMLDOC01-appb-C000009
 一般式(a-2)中、Rは、水素原子、炭素数1~5の炭化水素基、又は炭素数1~5のアルキル基を有するアルキルシリル基を表す。Rは、極性基を表し、具体的には、カルボキシ基、ヒドロキシ基、アルコキシカルボニル基、アリールオキシカルボニル基、アミノ基、アミド基、シアノ基、又はハロゲン原子(フッ素原子、塩素原子、臭素原子若しくはヨウ素原子)を表す。pは、0~2の整数を表す。
 一般式(a-2)におけるRは、炭素数1~5の炭化水素基を表すことが好ましく、炭素数1~3の炭化水素基を表すことがより好ましい。
 一般式(a-2)におけるRは、カルボキシ基、ヒドロキシ基、アルコキシカルボニル基及びアリールオキシカルボニル基を表すことが好ましく、溶液製膜時の溶解性を確保する観点から、アルコキシカルボニル基及びアリールオキシカルボニル基がより好ましい。
 一般式(a-2)におけるpは、光学フィルムの耐熱性を高める観点から、1又は2を表すことが好ましい。
 pが1又は2を表すと、得られる重合体がかさ高くなり、ガラス転移温度が向上しやすいためである。
 一般式(a-2)で表される構造を有するシクロオレフィンモノマー(単量体)は、有機溶媒への溶解性を向上させる点から好ましい。
 一般的に有機化合物は対称性を崩すことによって結晶性が低下するため、有機溶媒への溶解性が向上する。
 一般式(a-2)におけるR及びRは、分子の対称軸に対して片側の環構成炭素原子のみに置換されているので、分子の対称性が低く、すなわち、一般式(a-2)で表される構造を有するシクロオレフィンモノマー(単量体)は溶解性が高いため、光学フィルムを溶液流延法によって製造する場合に適している。
 シクロオレフィンモノマー(単量体)の重合体における一般式(a-2)で表される構造を有するシクロオレフィンモノマー(単量体)の含有割合は、シクロオレフィンポリマーを構成する全シクロオレフィンモノマー(単量体)の合計に対して、例えば70モル%以上、好ましくは80モル%以上、より好ましくは100モル%とし得る。
 一般式(a-2)で表される構造を有するシクロオレフィンモノマー(単量体)を一定以上含むと、ポリマー(樹脂)の配向性が高まるため、位相差(リターデーション)値が上昇しやすい。
 以下、一般式(a-1)で表される構造を有するシクロオレフィンモノマー(単量体)の具体例を例示化合物2、3、9~14に示し、一般式(a-2)で表される構造を有するシクロオレフィンモノマー(単量体)の具体例を例示化合物15~34に示す。
Figure JPOXMLDOC01-appb-C000010
 シクロオレフィンモノマー(単量体)と共重合可能な共重合性モノマー(単量体)の例には、シクロオレフィンモノマー(単量体)と開環共重合可能な共重合性モノマー(単量体)、及びシクロオレフィンモノマー(単量体)と付加共重合可能な共重合性モノマー(単量体)等が含まれる。
 開環共重合可能な共重合性モノマー(単量体)の例には、シクロブテン、シクロペンテン、シクロヘプテン、シクロオクテン及びジシクロペンタジエン等のシクロオレフィンが含まれる。
 付加共重合可能な共重合性モノマー(単量体)の例には、不飽和二重結合含有化合物、ビニル系環状炭化水素モノマー(単量体)及び(メタ)アクリレート等が含まれる。
 不飽和二重結合含有化合物の例には、炭素原子数2~12(好ましくは2~8)のオレフィン系化合物が含まれ、その例には、エチレン、プロピレン及びブテン等が含まれる。
 ビニル系環状炭化水素モノマー(単量体)の例には、4-ビニルシクロペンテン及び2-メチル-4-イソプロペニルシクロペンテン等のビニルシクロペンテン系モノマー(単量体)が含まれる。
 (メタ)アクリレートの例には、メチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート及びシクロヘキシル(メタ)アクリレート等の炭素原子数1~20のアルキル(メタ)アクリレートが含まれる。
 シクロオレフィンモノマー(単量体)と共重合性モノマー(単量体)との共重合体におけるシクロオレフィンモノマー(単量体)の含有割合は、共重合体を構成する全モノマー(単量体)の合計に対して、例えば20~80mol%の範囲内、好ましくは30~70mol%の範囲内とし得る。
 シクロオレフィンポリマーは、前述のとおり、ノルボルネン骨格を有するシクロオレフィンモノマー(単量体)、好ましくは一般式(a-1)又は(a-2)で表される構造を有するシクロオレフィンモノマー(単量体)を重合又は共重合して得られる重合体であり、その例には、以下(1)~(7)の重合体が含まれる。
 (1)シクロオレフィンモノマー(単量体)の開環重合体
 (2)シクロオレフィンモノマー(単量体)と、それと開環共重合可能な共重合性モノマー(単量体)との開環共重合体
 (3)上記(1)又は(2)の開環(共)重合体の水素添加物
 (4)上記(1)又は(2)の開環(共)重合体をフリーデルクラフツ反応により環化した後、水素を添加した(共)重合体
 (5)シクロオレフィンモノマー(単量体)と、不飽和二重結合含有化合物との飽和共重合体
 (6)シクロオレフィンモノマー(単量体)のビニル系環状炭化水素モノマー(単量体)との付加共重合体及びその水素添加物
 (7)シクロオレフィンモノマー(単量体)と、(メタ)アクリレートとの交互共重合体
 上記(1)~(7)の重合体は、いずれも公知の方法、例えば特開2008-107534号公報や特開2005-227606号公報に記載の方法で得ることができる。
 例えば上記(2)の開環共重合に用いられる触媒や溶媒は、例えば特開2008-107534号公報の段落0019~0024に記載のものを使用できる。
 上記(3)及び(6)の水素添加物に用いられる触媒は、例えば特開2008-107534号公報の段落0025~0028に記載のものを使用できる。
 上記(4)のフリーデルクラフツ反応に用いられる酸性化合物は、例えば特開2008-107534号公報の段落0029に記載のものを使用できる。
 上記(5)~(7)の付加重合に用いられる触媒は、例えば特開2005-22760
6号公報の段落0058~0063に記載のものを使用できる。
 上記(7)の交互共重合反応は、例えば特開2005-227606号公報の段落0071及び0072に記載の方法で行うことができる。
 中でも、上記(1)~(3)及び(5)の重合体が好ましく、上記(3)及び(5)の重合体がより好ましい。
 すなわち、シクロオレフィンポリマーは、得られるシクロオレフィンポリマーのガラス転移温度を高くし、かつ光透過率を高くすることができる点で、下記一般式(b-1)で表される構造単位と下記一般式(b-2)で表される構造単位の少なくとも一方を含むことが好ましく、一般式(b-2)で表される構造単位のみを含むか、又は一般式(b-1)で表される構造単位と一般式(b-2)で表される構造単位の両方を含むことがより好ましい。
 一般式(b-1)で表される構造単位は、前述の一般式(a-1)で表されるシクロオレフィンモノマー(単量体)由来の構造単位であり、一般式(b-2)で表される構造単位は、前述の一般式(a-2)で表されるシクロオレフィンモノマー(単量体)由来の構造単位である。
Figure JPOXMLDOC01-appb-C000011
 一般式(b-1)中、Xは、-CH=CH-又は-CHCH-を表す。R~R及びpは、それぞれ一般式(a-1)のR~R及びpと同義である。
Figure JPOXMLDOC01-appb-C000012
 一般式(b-2)中、Xは、-CH=CH-又は-CHCH-を表す。R~R及びpは、それぞれ一般式(a-2)のR~R及びpと同義である。
 本発明に係るシクロオレフィンポリマーは、市販品であっても良い。
 シクロオレフィンポリマーの市販品の例には、JSR(株)製のアートン(Arton)G(例えばG7810等)、アートンF、アートンR(例えばR4500、R4900及びR5000等)、及びアートンRXが含まれる。
 シクロオレフィンポリマーの固有粘度〔η〕inhは、30℃の測定において、0.2~5cm/gの範囲内であることが好ましく、0.3~3cm/gの範囲内であることがより好ましく、0.4~1.5cm/gの範囲内であることが更に好ましい。
 シクロオレフィンポリマーの数平均分子量(Mn)は、8000~100000の範囲内であることが好ましく、10000~80000の範囲内であることがより好ましく、12000~50000の範囲内であることが更に好ましい。
 シクロオレフィンポリマーの重量平均分子量(Mw)は、20000~300000の範囲内であることが好ましく、30000~250000の範囲内であることがより好ましく、40000~200000の範囲内であることが更に好ましい。
 シクロオレフィンポリマーの数平均分子量や重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)にてポリスチレン換算にて測定することができる。
 (ゲルパーミエーションクロマトグラフィー)
 溶媒:   メチレンクロライド
 カラム:  Shodex K806、K805、K803G(昭和電工(株)製を3本接続して使用した)
 カラム温度:25℃
 試料濃度: 0.1質量%
 検出器:  RI Model 504(GLサイエンス社製)
 ポンプ:  L6000(日立製作所(株)製)
 流量:   1.0ml/min
 校正曲線: 標準ポリスチレンSTK standard ポリスチレン(東ソー(株)製)Mw=500~2800000の範囲内の13サンプルによる校正曲線を使用した。13サンプルは、ほぼ等間隔に用いることが好ましい。
 固有粘度〔η〕inh、数平均分子量及び重量平均分子量が上記範囲にあると、シクロオレフィンポリマーの耐熱性、耐水性、耐薬品性、機械的特性、及びフィルムとしての成形加工性が良好となる。
 シクロオレフィンポリマーのガラス転移温度(Tg)は、通常、110℃以上であり、110~350℃の範囲内であることが好ましく、120~250℃の範囲内であることがより好ましく、120~220℃の範囲内であることが更に好ましい。
 ガラス転移温度(Tg)が110℃以上であると、高温条件下での変形を抑制しやすい。
 一方、ガラス転移温度(Tg)が350℃以下であると、成形加工が容易となり、成形加工時の熱によるポリマー(樹脂)の劣化も抑制しやすい。
 シクロオレフィンポリマーの含有量は、フィルムに対して70質量%以上であることが好ましく、80質量%以上であることがより好ましい。
 (3.2)その他の添加剤
 本発明に係る光学フィルムは、その他の添加剤として上記シクロオレフィンポリマーの他に以下のものを含有していてもよい。
 (3.2.1)可塑剤
 本発明に係る光学フィルムは、例えば偏光板保護フィルム等に加工性を付与する目的で少なくとも1種の可塑剤を含むことが好ましい。
 可塑剤は単独で又は2種以上混合して用いることが好ましい。
 可塑剤の中でも、糖エステル、ポリエステル、及びスチレン系化合物からなる群から選択される少なくとも1種の可塑剤を含むことが、透湿性の効果的な制御及びセルロースエステル等の基材ポリマー(樹脂)との相溶性を高度に両立できる観点から好ましい。
 当該可塑剤は、分子量が15000以下、さらには10000以下であることが、耐湿熱性の改善とセルロースエステル等の基材ポリマー(樹脂)との相溶性を両立する観点から好ましい。
 当該分子量が10000以下である化合物が重合体である場合は、重量平均分子量(Mw)が10000以下であることが好ましい。
 好ましい重量平均分子量(Mw)の範囲は100~10000の範囲内であり、更に好ましくは、400~8000の範囲内である。
 特に本発明の効果を得るためには、当該分子量が1500以下の化合物を、基材ポリマー(樹脂)100質量部に対して6~40質量部の範囲内で含有することが好ましく、10~20質量部の範囲内で含有させることがより好ましい。
 上記範囲内で含有させることにより、透湿性の効果的な制御と基材ポリマー(樹脂)との相溶性を両立することができ、好ましい。
 〈糖エステル〉
 本発明に係る光学フィルムには、加水分解防止を目的として、糖エステル化合物を含有させてもよい。
 具体的には、糖エステル化合物として、ピラノース構造又はフラノース構造の少なくとも1種を1個以上12個以下有し、その構造のOH基の全て若しくは一部をエステル化した糖エステルを使用することができる。
 〈ポリエステル〉
 本発明に係る光学フィルムには、ポリエステルを含有させることもできる。
 ポリエステルは特に限定されないが、例えばジカルボン酸、又はこれらのエステル形成性誘導体とグリコールとの縮合反応により得ることができる末端がヒドロキシ基となる重合体(ポリエステルポリオール)、又は当該ポリエステルポリオールの末端のヒドロキシ基がモノカルボン酸で封止された重合体(末端封止ポリエステル)を用いることができる。
 ここでいうエステル形成性誘導体とは、ジカルボン酸のエステル化物、ジカルボン酸クロライド、ジカルボン酸の無水物のことである。
 〈スチレン系化合物〉
 本発明に係る光学フィルムには、上記糖エステル、ポリエステルに加えて又はこれに代えて、光学フィルムの耐水性改善を目的として、スチレン系化合物を用いることもできる。
 スチレン系化合物は、スチレン系モノマーの単独重合体であってもよいし、スチレン系モノマーとそれ以外の共重合モノマーとの共重合体であってもよい。
 スチレン系化合物におけるスチレン系モノマー由来の構成単位の含有割合は、分子構造が一定以上の嵩高さを有するためには、好ましくは30~100モル%の範囲内、より好ましくは50~100モル%の範囲内でありうる。
 スチレン系モノマーの例には、スチレン;α-メチルスチレン、β-メチルスチレン、p-メチルスチレン等のアルキル置換スチレン類;4-クロロスチレン、4-ブロモスチレン等のハロゲン置換スチレン類;p-ヒドロキシスチレン、α-メチル-p-ヒドロキシスチレン、2-メチル-4-ヒドロキシスチレン、3,4-ジヒドロキシスチレン等のヒドロキシスチレン類;ビニルベンジルアルコール類;p-メトキシスチレン、p-tert-ブトキシスチレン、m-tert-ブトキシスチレン等のアルコキシ置換スチレン類;3-ビニル安息香酸、4-ビニル安息香酸等のビニル安息香酸類;4-ビニルベンジルアセテート;4-アセトキシスチレン;2-ブチルアミドスチレン、4-メチルアミドスチレン、p-スルホンアミドスチレン等のアミドスチレン類;3-アミノスチレン、4-アミノスチレン、2-イソプロペニルアニリン、ビニルベンジルジメチルアミン等のアミノスチレン類;3-ニトロスチレン、4-ニトロスチレン等のニトロスチレン類;3-シアノスチレン、4-シアノスチレン等のシアノスチレン類;ビニルフェニルアセトニトリル;フェニルスチレン等のアリールスチレン類、インデン類等が含まれる。
 スチレン系モノマーは、一種類であっても、二種類以上を組み合わせてもよい。
 (3.2.2)任意成分
 本発明に係る光学フィルムは、酸化防止剤、着色剤、紫外線吸収剤、マット剤、アクリル粒子、水素結合性溶媒及びイオン性界面活性剤等の他の任意成分を含みうる。特に、マット剤(微粒子)を含むことが好ましい。
 これらの成分は、基材ポリマー(樹脂)100質量部に対して0.01~20質量部の範囲内で添加することができる。
 〈酸化防止剤〉
 本発明に係る光学フィルムは、酸化防止剤としては、通常知られているものを使用することができる。
 特に、ラクトン系、イオウ系、フェノール系、二重結合系、ヒンダードアミン系、リン系の各化合物を好ましく用いることができる。
 これらの酸化防止剤等は、光学フィルムの主原料であるポリマー(樹脂)に対して0.05~20質量%の範囲内、好ましくは0.1~1質量%の範囲内で添加される。
 これらの酸化防止剤等は、1種のみを用いるよりも数種の異なった系の化合物を併用することで相乗効果を得ることができる。
 例えばラクトン系、リン系、フェノール系及び二重結合系化合物の併用は好ましい。
 〈着色剤〉
 本発明に係る光学フィルムは、本発明の効果を損なわない範囲内で、色味調整のために、着色剤を含むことが好ましい。
 着色剤というのは染料や顔料を意味し、本発明では、液晶画面の色調を青色調にする効果又はイエローインデックスの調整、ヘイズの低減を有するものを指す。
 着色剤としては各種の染料、顔料が使用可能だが、アントラキノン染料、アゾ染料、フタロシアニン顔料等が有効である。
 〈紫外線吸収剤〉
 本発明に係る光学フィルムは、偏光板の視認側やバックライト側に用いられることもで
きることから、紫外線吸収機能を付与することを目的として、紫外線吸収剤を含有してもよい。
 紫外線吸収剤としては、特に限定されないが、例えばベンゾトリアゾール系、2-ヒドロキシベンゾフェノン系又はサリチル酸フェニルエステル系等の紫外線吸収剤が挙げられる。
 例えば2-(5-メチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2H-ベンゾトリアゾール、2-(3,5-ジ-t-ブチル-2-ヒドロキシフェニル)ベンゾトリアゾール等のトリアゾール類、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-オクトキシベンゾフェノン及び2,2’-ジヒドロキシ-4-メトキシベンゾフェノン等のベンゾフェノン類を例示することができる。
 上記紫外線吸収剤は、1種単独で又は2種以上組み合わせて用いることができる。
 紫外線吸収剤の使用量は、紫外線吸収剤の種類、使用条件等により一様ではないが、一般には、基材ポリマー(樹脂)に対して、0.05~10質量%の範囲内、好ましくは0.1~5質量%の範囲内で添加される。
 〈マット剤〉
 本発明に係る光学フィルムには、フィルムの製膜時に、フィルム表面に凹凸を付与し、すべり性を確保し、安定な巻取り形状を達成するためにマット剤を含有することが好ましい。
 また、作製されたフィルムがハンドリングされる際に、傷が付いたり、搬送性が悪化することを防止するためにも、当該マット剤は機能することができる。
 マット剤としては、無機化合物の微粒子やポリマー(樹脂)の微粒子が挙げられる。
 無機化合物の微粒子の例として、二酸化ケイ素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム及びリン酸カルシウム等を挙げることができる。微粒子はケイ素を含むものが、濁度が低くなる点で好ましく、特に二酸化ケイ素が好ましい。
 微粒子の一次粒子の平均粒径は、5~400nmの範囲内が好ましく、さらに好ましいのは10~300nmの範囲内である。これらは主に粒径0.05~0.3μmの範囲内の二次凝集体として含有されていてもよく、平均粒径80~400nmの範囲内の粒子であれば凝集せずに一次粒子として含まれていることも好ましい。
 フィルム中のこれらの微粒子の含有量は、0.01~1質量%の範囲内であることが好ましく、特に0.05~0.5質量%の範囲内であることが好ましい。
 また、共流延法による多層構成の場合は、表面にこの添加量の微粒子を含有することが好ましい。
 二酸化ケイ素の微粒子は、例えば、アエロジルR972、R972V、R974、R812、200、200V、300、R202、OX50、TT600(以上日本アエロジル株式会社製)の商品名で市販されており、使用することができる。
 酸化ジルコニウムの微粒子は、例えば、アエロジルR976及びR811(以上日本アエロジル株式会社製)の商品名で市販されており、使用することができる。
 ポリマー(樹脂)の微粒子の例として、シリコーンポリマー(樹脂)、フッ素ポリマー(樹脂)及びアクリルポリマー(樹脂)を挙げることができる。シリコーンポリマー(樹脂)が好ましく、特に三次元の網状構造を有するものが好ましく、例えば、トスパール103、同105、同108、同120、同145、同3120及び同240(以上東芝シリコーン株式会社製)の商品名で市販されており、使用することができる。
 これらの中でもアエロジル200V、アエロジルR972V、アエロジルR812が、基材フィルムのヘイズを低く保ちながら、摩擦係数を下げる効果が大きいため特に好ましく用いられる。
 (3.3)光学フィルムの製造方法
 本発明に係る光学フィルムは、溶液流延製膜法により製造する。
 具体的に、本発明に係る光学フィルムの製造方法は、(a)前記極性基を有するシクロオレフィンポリマーを含有するドープを調製する工程(ドープ調製工程)と、(b)前記ドープを支持体上に流延してウェブ(流延膜ともいう。)を形成する工程(流延工程)と、(c)支持体上でウェブから溶媒を蒸発させる工程(溶媒蒸発工程)、(d)ウェブを支持体から剥離する工程(剥離工程)、(e)得られたフィルム(以下、「原反フィルム」ともいう。)を乾燥させる工程(第1乾燥工程)、(f)フィルムを延伸する工程(延伸工程)、(g)延伸後のフィルムをさらに乾燥させる工程(第2乾燥工程)、(h)得られた光学フィルムを巻き取る工程(巻取り工程)によって製造されることが好ましい。
 特に、(f)延伸工程では、延伸倍率を面積倍率で1.2~3.5倍の範囲内で延伸処理を施すことが、得られる光学フィルムの前記回折ピークの半値幅及び残留溶媒量を本発明の範囲内とすることができ、表面が低配向でかつ適度な透湿性の両立を図ることができる点で好ましい。
 本発明でいう、延伸倍率とは、延伸前の原反フィルムの面積に対して、延伸後のフィルムの面積の比率(%)をいう。すなわち、原反フィルムの縦(長手)方向及び横(幅手)方向の延伸による合計延伸率が、面積倍率で1.2~3.5倍の範囲内で延伸処理を行う。
 また、(f)延伸工程では、延伸開始時における原反フィルムの残留溶媒量を、700~30000質量ppmの範囲内とすることも、得られる光学フィルムの前記回折ピークの半値幅及び残留溶媒量を本発明の範囲内とすることができる点で好ましい。
 以上の工程について、図を参照して説明する。
 図4は、本発明に好ましい溶液流延製膜法のドープ調製工程、流延工程、乾燥工程及び巻取り工程の一例を模式的に示した図である。
 分散機によって溶媒とマット剤を分散させた微粒子分散液は仕込み釜61から濾過器64を通過しストック釜62にストックされる。一方、主ドープであるシクロオレフィンポリマーは溶媒とともに溶解釜1にて溶解され、適宜ストック釜62に保管されているマット剤が添加されて混合され主ドープを形成する。得られた主ドープは、濾過器3、ストック釜4から濾過器6によって濾過され、合流管20によって添加剤が添加されて、混合機21で混合されて加圧ダイ22に液送される。
 一方、添加剤(例えば紫外線吸収剤など)は、溶媒に溶解され、添加剤仕込み釜10から濾過器12を通過してストック釜13にストックされる。その後、濾過器15を通して導管16を経由して合流管20、混合機21によって主ドープと混合される。
 加圧ダイ22に液送された主ドープは、金属ベルト状の支持体31上に流延されてウェブ32を形成し、所定の乾燥後剥離位置33で剥離され原反フィルムを得る。剥離されたウェブ32は、第1乾燥装置34にて多数の搬送ローラーに通しながら、所定の残留溶媒量になるまで乾燥された後、延伸装置35によって、長手方向又は幅手方向に所定の延伸倍率となるように延伸するとともに所定の残留溶媒量となるように加熱される。延伸後、第2乾燥装置36によって所定の残留溶媒量になるまで、搬送ローラー37に通しながら乾燥し、巻取り装置38によって、ロール状に巻取られる。
 以下、各工程について説明する。
(a)ドープ調製工程
 前記シクロオレフィンポリマーに対する良溶媒を主とする有機溶媒に、溶解釜中で当該シクロオレフィンポリマー、場合によって、位相差上昇剤、マット剤(微粒子)又はその他の化合物を撹拌しながら溶解しドープを調製する工程、又は当該シクロオレフィンポリマー溶液に、位相差上昇剤、マット剤又はその他の化合物溶液を混合して主溶解液であるドープを調製する工程である。
 本発明に係る光学フィルムを溶液流延製膜法で製造する場合、ドープを形成するのに有用な有機溶媒は、シクロオレフィンポリマー、及びその他の化合物を同時に溶解するものであれば制限なく用いることができる。
 用いられる有機溶媒としては、例えば、クロロホルム、ジクロロメタンなどの塩素系溶媒;トルエン、キシレン、ベンゼン、及びこれらの混合溶媒などの芳香族系溶媒;メタノール、エタノール、イソプロパノール、n-ブタノール、2-ブタノールなどのアルコール系溶媒;メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、ジメチルホルムアミド、ジメチルスルホキシド、ジオキサン、シクロヘキサノン、テトラヒドロフラン、アセトン、メチルエチルケトン(MEK)、酢酸エチル、ジエチルエーテル;などが挙げられる。これら溶媒は1種のみ用いてもよいし、2種以上を併用してもよい。
 本発明に用いられる有機溶媒は、良溶媒と貧溶媒の混合溶媒であることが好ましく、当該良溶媒は、例えば、塩素系有機溶媒としては、ジクロロメタン、非塩素系有機溶媒としては、酢酸メチル、酢酸エチル、酢酸アミル、アセトン、メチルエチルケトン、テトラヒドロフラン、1,3-ジオキソラン、1,4-ジオキサン、シクロヘキサノン、ギ酸エチル、2,2,2-トリフルオロエタノール、2,2,3,3-ヘキサフルオロ-1-プロパノール、1,3-ジフルオロ-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-メチル-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、2,2,3,3,3-ペンタフルオロ-1-プロパノール、ニトロエタン、メタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、sec-ブタノール、tert-ブタノール等が挙げられ、中でもジクロロメタンであることが好ましい。当該良溶媒は、溶媒全体量に対して55質量%以上を用いることが好ましく、より好ましくは70質量%以上、さらに好ましくは80質量%以上用いることである。
 貧溶媒はアルコール系溶媒であることが好ましく、当該アルコール系溶媒が、メタノール、エタノール及びブタノールから選択されることが、剥離性を改善し、高速度流延を可能にする観点から好ましい。中でもメタノール又はエタノールを用いることが好ましい。ドープ中のアルコールの比率が高くなるとウェブがゲル化し、金属支持体からの剥離が容易になり、また、アルコールの割合が少ないときは非塩素系有機溶媒系でのシクロオレフィンポリマー及びその他の化合物の溶解を促進する役割もある。本発明に係る光学フィルムの製膜においては、得られる光学フィルムの平面性を高める点から、アルコール濃度が0.5~15.0質量%の範囲内にあるドープを用いて製膜することが好ましい。
 シクロオレフィンポリマー、その他の化合物の溶解には、常圧で行う方法、主溶媒の沸点以下で行う方法、主溶媒の沸点以上で加圧して行う方法、特開平9-95544号公報、特開平9-95557号公報、又は特開平9-95538号公報に記載の如き冷却溶解法で行う方法、特開平11-21379号公報に記載されている高圧で行う方法等種々の溶解方法を用いることができるが、特に主溶媒の沸点以上で加圧して行う方法が好ましい。
 ドープ中のシクロオレフィンポリマーの濃度は、10~40質量%の範囲であることが好ましい。溶解中又は後のドープに化合物を加えて溶解及び分散した後、濾材で濾過し、脱泡して送液ポンプで次工程に送る。
 ドープの濾過については、好ましくはリーフディスクフィルターを具備する主な濾過器3で、ドープを例えば90%捕集粒子径が微粒子の平均粒径の10~100倍の濾材で濾過することが好ましい。
 本発明において、濾過に使用する濾材は、絶対濾過精度が小さい方が好ましいが、絶対濾過精度が小さすぎると、濾過材の目詰まりが発生しやすく、濾材の交換を頻繁に行わなければならず、生産性を低下させるという問題点ある。
 このため、本発明において、シクロオレフィンポリマードープに使用する濾材は、絶対濾過精度0.008mm以下のものが好ましく、0.001~0.008mmの範囲が、より好ましく、0.003~0.006mmの範囲の濾材がさらに好ましい。
 濾材の材質には、特に制限はなく、通常の濾材を使用することができるが、ポリプロピレン、テフロン(登録商標)等のプラスチック繊維製の濾材やステンレス繊維等の金属製の濾材が繊維の脱落等がなく好ましい。
 本発明において、濾過の際のドープの流量が、10~80kg/(h・m)、好ましくは20~60kg/(h・m)であることが好ましい。ここで、濾過の際のドープの流量が、10kg/(h・m)以上であれば、効率的な生産性となり、濾過の際のドープの流量が、80kg/(h・m)以内であれば、濾材にかかる圧力が適正となり、濾材を破損させることがなく、好ましい。
 濾圧は、3500kPa以下であることが好ましく、3000kPa以下が、より好ましく、2500kPa以下であることがさらに好ましい。なお、濾圧は、濾過流量と濾過面積を適宜選択することで、コントロールできる。
 多くの場合、主ドープには返材が10~50質量%程度含まれることがある。
 返材とは、例えばシクロオレフィンポリマー(樹脂)フィルムを細かく粉砕した物で、シクロオレフィンポリマー(樹脂)フィルムを製膜するときに発生する、フィルムの両サイド部分を切り落とした物や、擦り傷などでフィルムの規定値を越えたシクロオレフィンポリマー(樹脂)フィルム原反が使用される。
 また、ドープ調製に用いられるポリマー(樹脂)の原料としては、あらかじめシクロオレフィンポリマー及びその他の化合物などをペレット化したものも、好ましく用いることができる。
(b)流延工程
(b-1)ドープの流延
 ドープを、送液ポンプ(例えば、加圧型定量ギヤポンプ)を通して加圧ダイ22に送液し、無限に移送する無端の金属支持体31、例えば、ステンレスベルト、又は回転する金属ドラム等の金属支持体上の流延位置に、加圧ダイスリットからドープを流延する工程である。
 流延(キャスト)工程における金属支持体は、表面を鏡面仕上げしたものが好ましく、金属支持体としては、ステンレススティールベルト若しくは鋳物で表面をメッキ仕上げしたドラムが好ましく用いられる。キャストの幅は1~4mの範囲、好ましくは1.3~3mの範囲、さらに好ましくは1.5~2.8mの範囲とすることができる。
 流延工程の金属支持体の表面温度は-50℃~溶剤が沸騰して発泡しない温度以下、さらに好ましくは-30~100℃の範囲に設定される。温度が高い方がウェブ(流延用支持体上にドープを流延し、形成されたドープ膜をウェブという。)の乾燥速度が速くできるので好ましいが、余り高すぎるとウェブが発泡したり、平面性が劣化する場合がある。
 好ましい支持体温度としては0~100℃で適宜決定され、5~30℃の範囲がさらに好ましい。又は、冷却することによってウェブをゲル化させて残留溶媒を多く含んだ状態でドラムから剥離することも好ましい方法である。
 金属支持体の温度を制御する方法は特に制限されないが、温風又は冷風を吹きかける方法や、温水を金属支持体の裏側に接触させる方法がある。温水を用いる方が熱の伝達が効率的に行われるため、金属支持体の温度が一定になるまでの時間が短く好ましい。
 温風を用いる場合は溶媒の蒸発潜熱によるウェブの温度低下を考慮して、溶媒の沸点以上の温風を使用しつつ、発泡も防ぎながら目的の温度よりも高い温度の風を使う場合がある。特に、流延から剥離するまでの間で支持体の温度及び乾燥風の温度を変更し、効率的に乾燥を行うことが好ましい。
 ダイは、ダイの口金部分のスリット形状を調整でき、膜厚を均一にしやすい加圧ダイが好ましい。加圧ダイには、コートハンガーダイやTダイ等があり、いずれも好ましく用いられる。金属支持体の表面は鏡面となっている。製膜速度を上げるために加圧ダイを金属支持体上に2基以上設け、ドープ量を分割して積層してもよい。
(b-2)溶媒蒸発工程
 ウェブを流延用支持体上で加熱し、溶媒を蒸発させる工程であり、後述する剥離時の残留溶媒量を制御する工程である。
 溶媒を蒸発させるには、ウェブ側から風を吹かせる方法又は支持体の裏面から液体により伝熱させる方法、輻射熱により表裏から伝熱する方法等があるが、裏面液体伝熱方法が、乾燥効率が良く好ましい。また、それらを組み合わせる方法も好ましく用いられる。流延後の支持体上のウェブを30~100℃の雰囲気下、支持体上で乾燥させることが好ましい。30~100℃の雰囲気下に維持するには、この温度の温風をウェブ上面に当てるか赤外線等の手段により加熱することが好ましい。
 面品質、透湿性、剥離性の観点から、30~180秒以内で当該ウェブを支持体から剥離することが好ましい。
(b-3)剥離工程
 金属支持体上で溶媒が蒸発したウェブを、剥離位置で剥離する工程である。剥離されたウェブは原反フィルムとして次工程に送られる。
 金属支持体上の剥離位置における温度は好ましくは10~40℃の範囲であり、さらに好ましくは11~30℃の範囲である。
 本発明では、前記溶媒蒸発工程でウェブ中の溶媒を蒸発するが、剥離する時点での金属支持体上でのウェブの残留溶媒量は、15~100質量%の範囲内とすることが好ましい。残留溶媒量の制御は、前記溶媒蒸発工程における乾燥温度及び乾燥時間で行うことが好ましい。
 残留溶媒量が多い状態で剥離すると、ウェブが柔らか過ぎて、剥離時平面性が損なわれやすく、剥離張力によるシワや縦スジが発生しやすいため、これらの点を考慮して、剥離時の残留溶媒量が決められる。
 ウェブ又は原反フィルムの残留溶媒量は下記式(Z2)で定義される。
式(Z2):残留溶媒量(%)=(ウェブ又は原反フィルムの加熱処理前質量-ウェブ又は原反フィルムの加熱処理後質量)/(ウェブ又は原反フィルムの加熱処理後質量)×100
 なお、残留溶媒量を測定する際の加熱処理とは、115℃で1時間の加熱処理を行うことを表す。
 金属支持体からウェブを剥離して原反フィルムとする際の剥離張力は、通常、196~245N/mの範囲内であるが、剥離の際に皺が入りやすい場合、190N/m以下の張力で剥離することが好ましい。
 本発明においては、当該金属支持体上の剥離位置における温度を-50~40℃の範囲内とするのが好ましく、10~40℃の範囲内がより好ましく、15~30℃の範囲内とするのが最も好ましい。
(c)乾燥及び延伸工程
 乾燥工程は予備乾燥工程(第1乾燥工程)、本乾燥工程(第2乾燥工程)に分けて行うこともできる。
(c-1)予備乾燥工程(第1乾燥工程)
 金属支持体からウェブ剥離して得られた原反フィルムは第1乾燥装置34にて予備乾燥させる。原反フィルムの予備乾燥は、原反フィルムを、上下に配置した多数のローラーにより搬送しながら乾燥させてもよいし、テンター乾燥機のように原反フィルムの両端部をクリップで固定して搬送しながら乾燥させてもよい。
 乾燥させる手段は特に制限なく、一般的に熱風、赤外線、加熱ローラー、マイクロ波等で行うことができるが、簡便さの点で、熱風で行うことが好ましい。
 ウェブの予備乾燥工程における乾燥温度は好ましくは、原反フィルムのガラス転移温度をTgとしたときに、(Tg-5)℃以下であって、(Tg+30)℃以上の温度で1~30分の範囲内の熱処理を行うことが効果的である。具体的に、乾燥温度は40~150℃の範囲内、さらに好ましくは80~100℃の範囲内で乾燥が行われる。
 本発明では、この乾燥工程にて後述する原反フィルム中の延伸時の残留溶媒量を調整することが好ましいが、当該残留溶媒量は延伸工程の初期に行ってもよい。前記残留溶媒量の制御は、前記予備乾燥工程における乾燥温度及び乾燥時間で行うことが好ましい。
(c-2)延伸工程
 予備乾燥工程後の原反フィルムは、延伸装置35にて、後述する特定の残留溶媒量下で特定の延伸倍率でかつ特定の加熱温度下で延伸処理を行う。
 (残留溶媒量)
 具体的には、原反フィルムを延伸する工程において、延伸開始時の原反フィルム中の残留溶媒量は、700~30000質量ppmの範囲内であることが好ましく、2000~20000質量ppmの範囲内であることがより好ましい。このような残留溶媒量とすることで、延伸後の本発明に係る光学フィルムの表面に、X線を0.1度の角度で照射したときの回折ピークの半値幅を前記した特定範囲内とし、かつ、光学フィルムの残留溶媒量を制御することができ、表面が低配向で適度な透湿性を備えた接着性に優れた光学フィルムを得ることができる。
 なお、複数回、延伸する場合には、その中の少なくとも一回でも、原反フィルム中の残
留溶媒量が前記範囲内に入ることが好ましい。
 ここで、延伸開始時における前記原反フィルム中の残留溶媒量は、下記式(Z3)で定義される。
式(Z3):残留溶媒量(ppm)=(原反フィルムの加熱処理前質量-原反フィルムの加熱処理後質量)/(原反フィルムの加熱処理後質量)×10
 なお、残留溶媒量を測定する際の加熱処理とは、115℃で1時間の加熱処理を行うことを表す。
 本発明に係る原反フィルムは、長手方向(MD方向、流延方向ともいう。)及び/又は幅手方向(TD方向ともいう。)に延伸することが好ましく、少なくとも延伸装置によって、幅手方向に延伸して製造することが好ましい。
 延伸操作は多段階に分割して実施してもよい。また、二軸延伸を行う場合には同時二軸延伸を行ってもよいし、段階的に実施してもよい。この場合、段階的とは、例えば、延伸方向の異なる延伸を順次行うことも可能であるし、同一方向の延伸を多段階に分割し、かつ異なる方向の延伸をそのいずれかの段階に加えることも可能である。
 すなわち、例えば、次のような延伸ステップも可能である:
・長手方向に延伸→幅手方向に延伸→長手方向に延伸→長手方向に延伸
・幅手方向に延伸→幅手方向に延伸→長手方向に延伸→長手方向に延伸
 また、同時二軸延伸には、一方向に延伸し、もう一方を、張力を緩和して収縮させる場合も含まれる。
 (延伸温度)
 また、延伸後の膜厚が所望の範囲になるように、長手方向及び/又は幅手方向に、好ましくは幅手方向に、原反フィルムのガラス転移温度をTgとしたときに、(Tg-30)~(Tg+50)℃の温度範囲で延伸することが好ましい。上記温度範囲で延伸することにより、得られる本発明に係る光学フィルムの前記回折ピークの半値幅や前記残留溶媒量が前記した範囲に制御でき、表面が低配向で、接着性に優れた光学フィルムが得られる。また、位相差の調整がしやすく、また延伸応力を低下できるのでヘイズが低くなる。また、破断の発生を抑制し、平面性、フィルム自身の着色性に優れた光学フィルムが得られる。延伸温度は、(Tg-40)~(Tg+40)℃の範囲で行うことが好ましい。延伸温度は、100~200℃の範囲内で乾燥が行われる。
 なお、ここでいうガラス転移温度Tgとは、市販の示差走査熱量測定器を用いて、昇温速度20℃/分で測定し、JIS K7121(1987)に従い求めた中間点ガラス転移温度(Tmg)である。具体的な光学フィルムのガラス転移温度Tgの測定方法は、JIS K7121(1987)に従って、セイコーインスツル(株)製の示差走査熱量計DSC220を用いて測定する。
 (延伸倍率)
 本発明では、原反フィルムを、面積倍率で1.2~3.5倍の範囲内の延伸倍率で延伸処理を施すことが、得られる光学フィルムの前記回折ピークの半値幅及び残留溶媒量を本発明の範囲内とすることができ、表面が低配向でかつ適度な透湿性の両立を図ることができる点で好ましい。
 具体的に、原反フィルムは、幅手方向又は長手方向のいずれかに延伸すればよく、幅手方向及び長手方向の双方向に延伸することがより好ましく、面積倍率で1.2~3.5倍の範囲内で延伸すればよい。
 長手方向に延伸する方法には特に限定はない。例えば、複数のロールに周速差をつけ、その間でロール周速差を利用して縦方向に延伸する方法、ウェブの両端をクリップやピンで固定し、クリップやピンの間隔を進行方向に広げて縦方向に延伸する方法、又は縦横同時に広げて縦横両方向に延伸する方法などが挙げられる。もちろんこれ等の方法は、組み合わせて用いてもよい。
 幅手方向に延伸するには、例えば、特開昭62-46625号公報に示されているような乾燥全工程又は一部の工程を幅方向にクリップ又はピンでウェブの幅両端を幅保持しつつ乾燥させる方法(テンター方式と呼ばれる)、中でも、クリップを用いるテンター方式、ピンを用いるピンテンター方式が好ましく用いられる。
 幅手方向への延伸に際し、フィルム幅手方向に250~500%/minの延伸速度で延伸することが、フィルムの平面性を向上する観点から、好ましい。
 延伸速度は250%/min以上であれば、平面性が向上し、またフィルムを高速で処理することができるため、生産適性の観点で好ましく、500%/min以内であれば、フィルムが破断することなく処理することができ、好ましい。
 好ましい延伸速度は、300~400%/minの範囲内であり、低倍率の延伸時に有効である。延伸速度は下記式1によって定義されるものである。
式1 
延伸速度(%/min)=[(d1/d2)-1]×100(%)/t
(式1において、d1は延伸後の本発明に係る光学フィルムの前記延伸方向の幅寸法であり、d2は延伸前の原反フィルムの前記延伸方向の幅寸法であり、tは延伸に要する時間(min)である。)
 本発明に係る光学フィルムは前記したように延伸することにより所望の位相差値を有する。面内位相差値Ro、及び厚さ方向の位相差値Rtは自動複屈折率計アクソスキャン(Axo Scan Mueller Matrix Polarimeter:アクソメトリックス社製)を用いて、23℃・55%RHの環境下、590nmの波長において、三次元屈折率測定を行い、得られた屈折率nx、ny、nzから算出することができる。
 本発明に係る光学フィルムは、下記式(i)及び(ii)で表される、光学フィルムの面内方向の位相差値Roが40~60nmの範囲内であり、膜厚方向の位相差値Rtが110~140nmの範囲内であることが、VA型液晶表示装置に具備された場合に、視野角やコントラスト等の視認性を向上する観点から好ましい。光学フィルムは、少なくとも前記幅手方向に延伸率を調整しながら延伸することで、上記位相差値の範囲内に調整することができる。
式(i):Ro=(n-n)×d(nm)
式(ii):Rt={(n+n)/2-n}×d(nm)
〔式(i)及び式(ii)において、nは、フィルムの面内方向において屈折率が最大になる方向xにおける屈折率を表す。nは、フィルムの面内方向において、前記方向xと直交する方向yにおける屈折率を表す。nは、フィルムの厚さ方向zにおける屈折率を表す。dは、フィルムの厚さ(nm)を表す。〕
 延伸工程では、通常、延伸した後、保持・緩和が行われる。すなわち、本工程は、原反フィルムを延伸する延伸段階、原反フィルムを延伸状態で保持する保持段階及び原反フィルムを延伸した方向に緩和する緩和段階をこれらの順序で行うことが好ましい。保持段階では、延伸段階で達成された延伸率での延伸を、延伸段階における延伸温度で保持する。緩和段階では、延伸段階における延伸を保持段階で保持した後、延伸のための張力を解除することによって、延伸を緩和する。緩和段階は、延伸段階における延伸温度以下で行えば良い。
(c-3)本乾燥工程
 本乾燥工程では、第2乾燥装置36によって延伸後のフィルムを加熱して乾燥させる。この本乾燥工程によっても、本発明に係る光学フィルムの前記回折ピークの半値幅及び前記残留溶媒量を前記範囲に制御することができる。
 熱風等によりフィルムを加熱する場合、使用済みの熱風(溶媒を含んだエアーや濡れ込みエアー)を排気できるノズルを設置して、使用済み熱風の混入を防ぐ手段も好ましく用いられる。
 熱風温度は、好ましくは、原反フィルムのガラス転移温度をTgとしたときに、(Tg-20)~(Tg+50)℃の範囲内が好ましく、具体的には、40~250℃の範囲内が好ましい。また、乾燥時間は5秒~60分程度が好ましく、10秒~30分がより好ましい。
 また、加熱乾燥手段は熱風に制限されず、例えば、赤外線、加熱ローラー、マイクロ波、フラッシュランプアニール等を用いることができる。簡便さの観点からは、千鳥状に配置した搬送ローラー37でフィルムを搬送しながら、熱風等で乾燥を行うことが好ましい。乾燥温度は残留溶媒量、搬送における伸縮率等を考慮して、40~350℃の範囲がより好ましい。
 また、フラッシュランプアニールを用いる場合には、200~1000V、100~5000μsecの範囲内で照射することが好ましい。
 乾燥工程においては、残留溶媒量が100質量ppm以下になるまで、フィルムを乾燥することが好ましい。
(d)巻取り工程
(d-1)ナーリング加工
 所定の熱処理又は冷却処理の後、巻取り前にスリッターを設けて端部を切り落とすことが良好な巻姿を得るため好ましい。さらに、幅手両端部にはナーリング加工をすることが好ましい。
 ナーリング加工は、加熱されたエンボスローラーをフィルム幅手端部に押し当てることにより形成することができる。エンボスローラーには細かな凹凸が形成されており、これを押し当てることでフィルムに凹凸を形成し、端部を嵩高くすることができる。
 本発明に係る光学フィルムの幅手両端部のナーリングの高さは4~20μm、幅5~20mmが好ましい。
 また、本発明においては、上記のナーリング加工は、フィルムの製膜工程において乾燥終了後、巻取りの前に設けることが好ましい。
(d-2)巻取り工程
 光学フィルム中の残留溶媒量が500質量ppm以下となってから光学フィルムとして巻取る工程であり、残留溶媒量を好ましくは100質量ppm以下にすることにより寸法安定性の良好なフィルムを得ることができる。
 巻取り方法は、一般に使用されているものを用いればよく、定トルク法、定テンション法、テーパーテンション法、内部応力一定のプログラムテンションコントロール法等があり、それらを使い分ければよい。
 本発明に係る光学フィルムの製造方法によれば、延伸工程における延伸倍率が、面積倍率で1.2~3.0倍の範囲内で延伸したり、また、延伸開始時における残留溶媒量を、700~30000質量ppmの範囲内とすることによって、本発明に係る光学フィルムの表面に、X線を0.1度の角度で照射したときの回折ピークの半値幅を、4.6~5.4度の範囲内とすることができ、また、光学フィルムの残留溶媒量を前記した範囲内に制御することができる。その結果、光学フィルムの表面が低配向となり、適度な透湿性を確保することができ、接着性に優れる。
 (3.4)光学フィルムの物性
 (透湿度)
 本発明に係る光学フィルムの透湿度(40℃、95%RH)は、1~500g/(m・24h)の範囲内であり、10~200g/(m・24h)の範囲内であることがより好ましい。
 透湿度を前記範囲内とするためには、特に限定されるものではないが、光学フィルムを構成するポリマー(樹脂)の種類と膜厚を適宜選択して用いることが好ましい。
 本発明において、透湿度は、JIS Z 0208記載の塩化カルシウム-カップ法に基づき、測定対象のフィルムを温度40℃、95%RHの条件下で24時間放置して測定を行った。
 (光学フィルム長、幅、厚さ)
 本発明に係る光学フィルムは、長尺であることが好ましく、具体的には、100~15000m程度の長さであることが好ましく、ロール状に巻き取られる。
 また、本発明に係る光学フィルムの幅は1m以上であることが好ましく、さらに好ましくは1.3m以上であり、特に1.3~4mであることが好ましい。
 延伸後のフィルムの厚さ(膜厚)は、表示装置の薄型化、生産性の観点から、10~50μmの範囲内であることが好ましい。厚さが10μm以上であれば、一定以上のフィルム強度や位相差を発現させることができる。厚さが50μm以下であれば、所望の位相差を具備し、かつ偏光板及び表示装置の薄型化に適用できる。好ましくは、20~40μmの範囲内である。
4.偏光子層
 本発明において、「偏光子層」とは、無偏光の光を入射させたとき、吸収軸に直交する振動面をもつ直線偏光を透過させる性質を有する光学層をいう。すなわち、一定方向の偏波面の光だけを通す光学層をいう。
 現在知られている代表的な偏光子層を構成する偏光フィルム(「偏光子フィルム」及び「偏光子膜」ともいう。)は、ポリビニルアルコール系偏光フィルムである。ポリビニルアルコール系偏光フィルムには、ポリビニルアルコール系フィルムにヨウ素を染色させたものと、二色性染料を染色させたものとがある。
 ポリビニルアルコール系偏光フィルムは、ポリビニルアルコール系フィルムを一軸延伸した後、ヨウ素又は二色性染料で染色したフィルム(好ましくはさらにホウ素化合物で耐久性処理を施したフィルム)であってもよいし;ポリビニルアルコール系フィルムをヨウ素又は二色性染料で染色した後、一軸延伸したフィルム(好ましくは、さらにホウ素化合物で耐久性処理を施したフィルム)であってもよい。偏光フィルム(偏光子層)の吸収軸は、通常、最大延伸方向と平行である。
 例えば、特開2003-248123号公報、特開2003-342322号公報等に記載のエチレン単位の含有量1~4モル%、重合度2000~4000、けん化度99.0~99.99モル%のエチレン変性ポリビニルアルコールが用いられる。中でも、熱水切断温度が66~73℃であるエチレン変性ポリビニルアルコールフィルムが好ましく用いられる。
 偏光子層の厚さは、5~30μmの範囲内であることが好ましく、偏光板を薄型化するため等から、5~20μmの範囲内であることがより好ましい。
 本発明に係る光学フィルムがλ/4フィルムとして用いられる場合、本発明に係る光学フィルムの面内遅相軸と偏光子層の吸収軸とのなす角度は、20~70度の範囲内であることが好ましく、30~60度であることがより好ましく、40~50度の範囲内であることがさらに好ましい。本発明に係る光学フィルムが、VA用の位相差フィルムとして用いられる場合、本発明に係る光学フィルムの面内遅相軸と偏光子層の吸収軸とは略直交し得る。
 また、偏光子層と光学フィルムとの間の接着は、前記したように本発明に係る前記式(1)の関係を満たす特定の重合性モノマーの硬化物を含有する接着層を用いる。すなわち、前記特定の重合性モノマーを含有する重合性組成物を硬化することにより接着する。
5.粘着シート
 粘着シートは、粘着剤組成物より形成された粘着剤層を有する。
 粘着シートとしては、例えば、粘着剤層のみを有する両面粘着シート、基材と、基材の両面に形成された粘着剤層とを有し、少なくとも一方の粘着剤層が粘着剤組成物より形成された粘着剤層である両面粘着シート、基材と、基材の一方の面に形成された上記粘着剤層を有する片面粘着シート、及びそれら粘着シートの粘着剤層における基材と接していない面にセパレーターが貼付された粘着シートが挙げられる。
 前記粘着剤組成物としては、例えば、アクリル系粘着剤主剤と、架橋剤と、酸化防止剤等からなることが好ましい。
 前記アクリル系粘着剤主剤としては、例えば、アクリル酸4-ヒドロキシブチル単位(4-HBA)、アクリル酸ブチル単位、アクリル酸メチル単位等が挙げられる。
 前記架橋剤としては、トリレンジイソシアネート系化合物、キシリレンジイソシアネート等が挙げられる。
 前記酸化防止剤としては、ペンタエリスリトール-テトラキス(3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート)(BASFジャパン社製、IRGANOX1010)等のヒンダードフェノール系酸化防止剤、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト(BASFジャパン社製、IRGAFOS168)等のリン系酸化防止剤が挙げられる。
 粘着剤組成物中の、アクリル系粘着剤主剤は、10~90質量%の範囲内で含有していることが好ましく、架橋剤は0.01~5.00質量%の範囲内で含有していることが好ましく、酸化防止剤は、0.01~5.00質量%の範囲内で含有していることが好ましい。
 (含水率)
 前記粘着シートは、高湿ショックの発生を抑制するために含水量は少ないことが好ましく、一方で、含水量が少ないと接着不良を起こすことから、少なからず粘着シートは含水していることが好ましい。そのため、粘着シートの含水率は、3.0~10.0%の範囲内であることが好ましく、3.5~5.5%の範囲内であることが特に好ましい。
 粘着シートの含水率は、厚さ50μmのポリエステルフィルム上に粘着剤層を形成し、60mm×130mmに裁断した後に、その粘着シートを70mm×150mmに裁断された厚さ1mmのポリカーボネートに貼り付け、40℃、95%RH環境下に48時間静置し、粘着剤の質量増加を測定することにより求める。
 前記粘着シートの含水率を、3.0~10.0%の範囲内とするためには、例えば、前記粘着剤組成物中のアクリル酸4-ヒドロキシブチル単位(4-HBA)の含有量を4.0~25質量%の範囲内とすることが挙げられる。
6.偏光板保護フィルム
 偏光子層の光学フィルムと反対側の面には、偏光板保護フィルムが配置されている。
 偏光板保護フィルムの例には、セルロースアシレートフィルム、ポリエステルフィルム(例えば、ポリエチレンテレフタレートフィルム等)、シクロオレフィン系ポリマー(樹脂)フィルム、アクリル系ポリマー(樹脂)フィルム等を用いることができる。前記シクロオレフィン系ポリマー(樹脂)フィルムとしては、前記した本発明に係る光学フィルムを採用してもよい。
 セルロースアシレートフィルムの市販品としては、例えば、コニカミノルタアドバンストレイヤー株式会社製のコニカミノルタタックKC8UX、KC5UX、KC4UX、KC8UCR3、KC4SR、KC4BR、KC4CR、KC4DR、KC4FR、KC4KR、KC8UY、KC6UY、KC4UY、KC4UE、KC8UE、KC8UY-HA、KC2UA、KC4UA、KC6UA、KC2UAH、KC4UAH、KC6UAH等が挙げられる。
 偏光板保護フィルムの厚さは、特に限定はないが、1~100μmの範囲内であることが好ましく、3~40μmの範囲内であることがより好ましい。
 偏光板保護フィルムと偏光子層とは、保護フィルム用接着層により接着されている。保護フィルム用接着層は、公知の接着剤により形成されてもよいし、前記した本発明に係る、前記式(1)の関係を満たす特定の重合性モノマーの硬化物を含有する接着層を適用してもよい。
 公知の接着剤としては、例えば、イソシアネート系接着剤、ポリビニルアルコール系接着剤、ゼラチン系接着剤、ビニル系ラテックス系、水系ポリエステル等が挙げられる。これらの接着剤は、通常、水溶液からなる接着剤(水系接着剤)として用いられ、水溶液における接着剤の固形分濃度が、0.5~60質量%の範囲内であることが好ましい。これらの中でも、ポリビニルアルコール系接着剤であることが好ましく、アセトアセチル基含有ポリビニルアルコール系接着剤であることがより好ましい。
 水系接着剤は、架橋剤を含んでいてもよい。架橋剤としては、通常、接着剤を構成するポリマー等の成分と反応性を有する官能基を1分子中に少なくとも2つ有する化合物が用いられ、例えば、アルキレンジアミン類;イソシアネート類;エポキシ類;アルデヒド類;メチロール尿素、メチロールメラミン等のアミノ-ホルムアルデヒド等が挙げられる。接着剤における架橋剤の含有量は、接着剤を構成するポリマー等の成分に対して、10~60質量%の範囲内であることが好ましい。
[偏光板の製造方法]
 本発明の偏光板は、光学フィルムと偏光子層とを接着層を介して貼り合わせる工程を経て得ることができる。
 具体的には、(i)光学フィルムの偏光子層を貼り合わせる面に、前処理を行う工程(前処理工程)と、(ii)前処理を行った後、接着層を形成する重合性組成物(紫外線硬化型接着剤)を塗布して、光学フィルムと偏光子層とを貼り合わせる工程(貼り合わせ工程)と、(iii)貼り合わせて得られた積層物に紫外線を照射して前記重合性組成物を硬化させる工程(硬化工程)を経て得ることができる。
 (i)前処理工程
 光学フィルムの偏光子層を貼り合わせる面に、前処理を行うことが好ましい。具体的には、コロナ処理やプラズマ処理が挙げられる。
 (ii)貼り合わせ工程
 接着層を形成する重合性組成物(紫外線硬化型接着剤)として、前記した重合性モノマー及び重合開始剤等を所定の組成で混合し、得られた重合性組成物を光学フィルムの前処理後の面に塗布する。
 塗布方法としては、特に制限されず、例えば、ドクターブレード、ワイヤーバー、ダイコーター、カンマコーター、グラビアコーターなどが挙げられる。
 そして、前記重合性組成物を介して、偏光子層と光学フィルムとを貼り合わせる。その後、貼り合わせた積層物の両面を加圧ローラーなどで挟んで加圧することが好ましい。加圧ローラーの材質は、金属やゴムを用いることができる。
 (iii)硬化工程
 次いで、前記重合性組成物を介して貼り合わされた積層物に紫外線を照射して、前記重合性組成物を硬化させる。それにより、偏光子層と光学フィルムを、前記重合性組成物を介して接着させる。
 紫外線の照射条件は、前記重合性組成物が硬化する条件であればよく、例えば積算光量が50~1500mJ/cmの範囲内であることが好ましく、100~500mJ/cmの範囲内であることがより好ましい。
 偏光板の製造時のライン速度は、重合性組成物の硬化時間によるが、例えば1~500m/minの範囲内であることが好ましく、5~300m/minの範囲内であることがより好ましい。ライン速度が1m/min以上であると、生産性を高めやすく、光学フィルムへのダメージもより少なくすることができる。また、ライン速度が500m/min以下であれば、重合性組成物の硬化が十分となり、良好な接着性が得られやすい。
 このように、硬化工程では、紫外線照射や硬化促進のための加熱などにより、高温環境となることがある。
 なお、硬化工程後に、前記偏光子層の前記接着層と反対側の面に、前記偏光板保護フィルムを前記保護フィルム用接着層を介して貼り付ける。
 前記保護フィルム用接着層が、前記した本発明に係る式(1)の関係を満たす特定の重合性モノマーの硬化物を含有する接着層である場合には、前記(ii)貼り合わせ工程において、光学フィルム及び偏光板保護フィルムの、偏光子層側の面に、前記重合性組成物を塗布して、これら、光学フィルム、偏光子層及び偏光板保護フィルムを貼り合わせて積層物を形成する。その後、前記(iii)硬化工程において、偏光子層の一方の側の紫外線照
射による重合性組成物の硬化と、偏光子層の他方の側の紫外線照射による重合性組成物の硬化とは、逐次的に行っても良いし、同時に行ってもよい。偏光板の製造効率を高める観点では、同時に行うことが好ましい。
[液晶表示装置]
 本発明の液晶表示装置は、前記した少なくとも光学フィルム、接着層及び偏光子層を備えた偏光板を具備する。具体的に、本発明の液晶表示装置は、液晶セルに、前記偏光板が少なくとも片側の面に貼合された液晶表示装置であって、前記粘着シートが、前記液晶セルに隣接することが好ましい。
 図5は、液晶表示装置の基本的な構成の一例を示す模式図である。図5に示されるように、本発明の液晶表示装置20は、液晶セル30と、それを挟持する第1の偏光板40及び第2の偏光板50と、バックライト60とを含む。
 液晶セル30の表示モードは、例えばTN(Twisted Nematic)、VA(Vistical Alignment)、又はIPS(InPlaneSwitching)等のいずれの表示モードであってよい。モバイル機器向けの液晶セルは、例えばIPSモードが好ましい。中・大型用途の液晶セルは、例えばVAモードが好ましい。
 第1の偏光板40は、液晶セル30の視認側の面に配置されており、第1の偏光子層41と、第1の偏光子層41の液晶セルとは反対側の面に配置された保護フィルム43(F1)と、第1の偏光子層41の液晶セル側の面に配置された保護フィルム45(F2)とを含む。
 第2の偏光板50は、液晶セル30のバックライト側の面に配置されており、第2の偏光子層51と、第2の偏光子層51の液晶セル側の面に配置された保護フィルム53(F3)と、第2の偏光子層51の液晶セルとは反対側の面に配置された保護フィルム55(F4)とを含む。
 第1の偏光子層41の吸収軸と第2の偏光子層51の吸収軸とは直交していることが好ましい。
 保護フィルム45(F2)は、本発明に係る光学フィルムとし得る。保護フィルム45(F2)と第1の偏光子層41とは、図示しないが本発明に係る接着層を介して積層されている。保護フィルム45(F2)の面内遅相軸と第1の偏光子層41の吸収軸とは略直交し得る。保護フィルム45(F2)と液晶セル30とは、粘着シート48を介して接着されている。
 また、保護フィルム43(F1)、53(F3)及び55(F4)は、例えば前述した偏光板保護フィルムとし得る。
 図5では、保護フィルム45(F2)を本発明に係る光学フィルムとした例を示したが、これに限定されず、53(F3)を本発明に係る光学フィルムとしてもよい。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、下記実施例において、特記しない限り、操作は室温(25℃)で行われた。また、特記しない限り、「%」及び「部」は、それぞれ、「質量%」及び「質量部」を意味する。
・実施例1(接着層の組成を変更)
[光学フィルム101の作製]
<シクロオレフィン樹脂>
 実施例に用いるシクロオレフィン樹脂として、下記シクロオレフィン樹脂を用いた。
 シクロオレフィン樹脂:ARTON G7810(JSR社製)
<微粒子添加液の調製>
 11.3質量部の微粒子(アエロジル R972V、日本アエロジル(株)製)と、84質量部のエタノールとを、ディゾルバーで50分間撹拌混合した後、マントンゴーリンで分散した。
 溶解タンク中で十分撹拌されているジクロロメタン(100質量部)に、5質量部の微粒子分散液を、ゆっくりと添加した。さらに、二次粒子の粒径が所定の大きさとなるようにアトライターにて分散を行った。これを日本精線(株)製のファインメットNFで濾過し、微粒子添加液を調製した。
<主ドープの調製>
 下記組成の主ドープを調製した。まず加圧溶解タンクにジクロロメタン及びエタノールを添加した。ジクロロメタンの入った加圧溶解タンクにシクロオレフィン樹脂、微粒子添加液を撹拌しながら投入した。これを加熱し、撹拌しながら樹脂を溶解し、これを安積濾紙(株)製の安積濾紙No.244を使用して濾過して、主ドープを調製した。
 シクロオレフィン樹脂(ARTON G7810(JSR社製))
                           100質量部
 ジクロロメタン                   200質量部
 エタノール                      10質量部
 微粒子添加液                      3質量部
 次いで、無端ベルト流延装置を用い、主ドープを温度31℃、1800mm幅でステンレスベルト支持体上に均一に流延した。ステンレスベルトの温度は28℃に制御した。ステンレスベルトの搬送速度は20m/minとした。
 ステンレスベルト支持体上で、流延(キャスト)したフィルム中の残留溶媒量が30.3質量%になるまで溶媒を蒸発させた。次いで、剥離張力128N/mで、ステンレスベルト支持体上から剥離し、未延伸光学フィルムAを得た。
 前記未延伸光学フィルムAを、乾燥機にて100℃で加熱して乾燥し、延伸開始時の残留溶媒量を1800質量ppmとなるように制御してから、Tg+15℃(180℃)で加熱し、幅手方向に2.0倍延伸し、厚さ35μmの延伸済みの光学フィルム101を得た。
[偏光板の作製]
<偏光子層の作製>
 厚さ60μmの長尺ポリビニルアルコールフィルムを、ガイドロールを介して連続搬送しつつ、ヨウ素とヨウ化カリウム配合の染色浴(30℃)に浸漬して染色処理と2.5倍の延伸処理を施した後、ホウ酸とヨウ化カリウムを添加した酸性浴(60℃)中で、トータルとして5倍となる延伸処理と架橋処理を施し、得られた厚さ12μmのヨウ素-PVA系偏光子を、乾燥機中で50℃、30分間乾燥させて水分率4.9%の偏光子層を得た。
<紫外線硬化型接着剤(重合性組成物)1~15の調製>
 下記表Iに記載の各成分(重合性モノマー)と、カチオン重合開始剤としてCPI-210(トリアリールスルホニウム塩、サンアプロ社製)3質量部と、ラジカル重合開始剤としてイルガキュア907(2-メチル-1(4-メチルチオフェニル)-2-モルフォリノプロパン1-オン、BASFジャパン株式会社製)0.2質量部を加え、液状の紫外線硬化型接着剤(重合性組成物)1~15をそれぞれ得た。
 使用した重合性モノマーは下記のとおりである。
Figure JPOXMLDOC01-appb-C000013
 なお、前記で使用した各重合性モノマーのδDは、前記したように、コンピュータソフトウエア(HansenSolubilityParametersinPractice(HSPiP))を用いることによって、その化学構造から算出した。
<偏光板201の作製>
 光学フィルム101の貼合面にコロナ処理を施した後、上記調製した紫外線硬化型接着剤1を、チャンバードクターを備えた塗布装置により、乾燥厚みが3μmとなるように塗布した。また、対向フィルムとしてコニカミノルタタックKC4UA(厚み40μm、コニカミノルタ社製)の貼合面にも、同様に、コロナ処理を施した後、上記紫外線硬化型接着剤1を、乾燥厚みが3μmとなるように塗布した。
 その後、直ちに、上記作製した偏光子層の一方の面に光学フィルム101を、他方の面に対向フィルムであるTACフィルムを、それぞれ紫外線硬化型接着剤1を介して、ロール・トゥ・ロール方式で貼り合わせた。貼り合わせは、光学フィルム101の幅方向と偏光子層の吸収軸(又は透過軸)とが一致するように行った。
 その後、貼り合わせ物を、ライン速度20m/分にて搬送しながら、波長280~320nmにおける積算光量が320mJ/cmとなるように、メタルハライドランプにより紫外線を光学フィルム101側から照射した。それにより、紫外線硬化型接着剤1を硬化させて、偏光板201を得た。
 なお、偏光板201の作製は、ロール・トゥ・ロール方式で行われるため、最終的には、長尺状の偏光板を幅方向に沿って切断して、シート状の偏光板201とした。
<偏光板202~215の作製>
 前記偏光板201の作製において、前記紫外線硬化型接着剤1を、それぞれ下記表IIに示す紫外線硬化型接着剤2~15に変更した以外は同様にして偏光板202~215を作製した。
[評価]
<接着力>
 得られた偏光板について、下記に示す剥離接着強さ試験を行い接着力を評価した。
 (剥離接着強さ試験)
 具体的には、偏光板を、偏光子層の偏光軸方向が長辺となるように、150mm×25mmの短冊状に切り出した。次いで、偏光子層の剥離力を測定する光学フィルム側から約30度の角度で、光学フィルム100のみに剃刀Rで切り込みを入れた(図1A参照。)。次いで、切り込みSを入れた面の切込みよりも中央側に両面テープTを貼った(図1B参照。)。次いで、両面テープTの剥離紙を剥がしてガラス板Gに貼り付けた(図1C参照。)。その後、偏光板の両面テープTを貼っていない部分を引っ張り上げて、偏光子層400と光学フィルム100の間で剥離する状態を作り(図1D参照。)、最後に、テンシロン試験機(ORIENTEC社製、RTC-1225A)を用いて90度ピール試験を行った(図1E参照。)。
 使用した剃刀Rは、フェザー剃刀S片刃(炭素鋼、刃厚0.245mm、フェザー安全剃刀株式会社製)とした。また、90度ピール試験は、JIS K 6584-1:1999に準じて、引張速度(剥離速度)100mm/min、剥離角度90度の条件で行い、光学フィルムが接着層から剥離したときの剥離力(剥離強度)を、剥離試験治具(ORIENTEC社製、RTC-1225A)により測定した。以下の基準により評価し、△以上であれば良好と判断した。
 (評価基準)
 ◎:剥離強度が3.0(N/25mm)以上
 ○:剥離強度が2.5以上3.0(N/25mm)未満
 ○△:剥離強度が2.0以上2.5(N/25mm)未満
 △:剥離強度が1.5以上2.5(N/25mm)未満
 ×:剥離強度が1.5(N/25mm)未満
<耐久性>
 得られた偏光板を80℃・90%RHの条件下で500時間、高温高湿環境に曝したのち、偏光板を取り出し、23℃・55%RHで24時間調温、調湿した。その後、偏光子層の退色を目視観察し、下記の基準にしたがって偏光子層の耐久性の評価を行った。
 (評価基準)
 ○:偏光子に色調変化は認められない。
 △:偏光子に退色が認められるが、実用上は許容される品質である。
 ×:キセノン光の照射により、ほとんど偏光子の色が残っていない。
<剥離位置>
 前記剥離接着強さ試験で剥離した光学フィルムをエポキシポリマー(樹脂)で包埋した後、ウルトラミクロトームにより約100nm厚の超薄切片を作製し、日本電子製透過型電子顕微鏡2000FX(加速電圧:200kV)により2500~10000倍のTEM画像を撮影した。撮影した画像より、接着層600側に付着した光学フィルム100の厚さm(例えば、図1F参照。)を算出し、剥離前の光学フィルム全体の厚さMに対する剥離位置(剥離面)(「接着層側に付着した光学フィルムの厚さm」/「剥離前の光学フィルム全体の厚さM」×100)を算出した。
<混合層の確認及び厚さ>
 得られた偏光板について、前記したとおり、TOF-SIMSかつイオンスパッタリングを利用して、光学フィルムに含有される前記シクロオレフィンポリマー由来の元素成分及び接着層に含有される前記重合性モノマー由来の元素成分に帰属する質量電荷比m/zのカウント数を、光学フィルムの接着層と反対側の面から接着層に至るまで下記条件で連続的に測定し、混合層の確認を行った。
 測定装置:TIRFTV nano-TOF(アルバック・ファイ社製)
 一次イオン:Bi 2+ 加速電圧30kV 測定領域50μm角
 スパッタイオン:Ar2500+(アルゴンガスクラスターイオンビーム:GCIB)
 加速電圧:5kV
 スパッタ領域:500μm角
 二次イオンとして、m/z 0.5から2000の測定を3フレーム、次いでGCIBでのスパッタリングを5秒、次いで電子銃による中和を3秒、の順で繰り返し、深さ方向の二次イオン分布を計測した。解析はアルバック・ファイ製Win Cadence Nにて行った。
 前記解析により、シクロオレフィンポリマー由来の元素成分のカウント数のうち、光学フィルム裏面(接着層と反対側の面)におけるシクロオレフィンポリマー由来の元素成分のカウント数を100%、接着層におけるシクロオレフィンポリマー由来の元素成分のカウント数を0%、前記式(1)の関係を満たす特定の重合性モノマー由来の元素成分のカウント数のうち、光学フィルム裏面における前記特定の重合性モノマー由来の元素成分カウント数を0%、接着層における前記特定の重合性モノマー由来の元素成分カウント数を100%としたとき、シクロオレフィンポリマー由来の元素成分、特定の重合性モノマー由来の元素成分ともに5~95%のカウント数となる領域を混合層とした。
 TOF-SIMSで測定した箇所を非接触三次元微小表面形状測定システム(WYKO社製RSTPLUS)で観察し、TOF-SIMS測定によって削られた光学フィルム及び接着層の厚さを計測し、スパッタレートを厚さに換算した。
Figure JPOXMLDOC01-appb-T000014
・実施例2(光学フィルムの延伸倍率及び延伸温度等を変更)
[光学フィルム102~107の作製]
 前記光学フィルム101の作製において、未延伸の光学フィルムAを下記表IIに記載の延伸倍率及び延伸温度に変更した以外は同様にして延伸済みの光学フィルム102~107を得た。なお、下記表IIに記載のTgは165℃である。
[光学フィルム108の作製]
 日本ゼオン社製の位相差フィルムでZBフィルム(極性基を有さないシクロオレフィン系樹脂フィルム)を、光学フィルム108として用いた。なお、ZBフィルムは、残留溶媒が無しで延伸した、延伸済みのフィルムである。
[回折ピークの半値幅]
 得られた各光学フィルムについて、以下のとおりに回折ピークの半値幅を測定した。
 入射X線の入射角θを0.1度に固定し、検出器の角度を変えつつX線の強度を測定した。
 具体的には、X線回折装置として、X線回折装置RINT-TTRII(理学電気社製)を用いた。対陰極をCuとし、50kV-300mAで動作させた。高さ制限スリットは10mm、発散スリットは2/3とし、アルミニウムフォイルを測定した際のAl(200)のピーク半値幅が0.35度となるように光学系を調整した。フィルムを固定し、θを0.1度に固定し2θを5~35度まで0.02度ステップで走査し、各ステップで1秒積算し、回折パターンを得た。バックグラウンド処理を行い、回折ピークの半値幅を求めた。その結果を下記表IIに示した。
[偏光板301~307の作製]
 前記偏光板201の作製において、光学フィルム101を下記表IIに示す光学フィルムにそれぞれ変更した以外は同様にして偏光板301~307を作製した。
[評価]
 前記実施例1と同様に、接着力、剥離位置及び混合層の厚さを評価した。なお、偏光板301~307の偏光子層の耐久性の評価については、偏光板201と接着層の処方は全て同様のため、偏光板201と同様の評価である。
Figure JPOXMLDOC01-appb-T000015
 上記結果に示されるように、本発明の偏光板は、比較例の偏光板に比べて、接着力及び高温高湿環境下における耐久性に優れていることが認められる。
 本発明は、極性基を有するシクロオレフィンポリマーを含有する光学フィルムを用いた場合においても、接着不良を防止し、液晶表示装置における表示ムラを低減し、かつ、高温高湿環境下における偏光子層の耐久性の向上を図ることができる偏光板及び液晶表示装置に関する。
 3、6、12、15 濾過器
 4、13 ストック釜
 2、5、11、14 送液ポンプ
 8、16 導管
 10 添加剤仕込釜
 20 合流管
 21 混合機
 22 加圧ダイ
 31 金属ベルト
 32 ウェブ
 33 剥離位置
 34 第1乾燥装置
 35 延伸装置
 36 第2乾燥装置
 37 搬送ローラー
 38 巻取り装置
 61 仕込釜
 62 ストック釜
 63 ポンプ
 30 液晶セル
 40 第1の偏光板
 41 第1の偏光子層
 43 保護フィルム(F1)
 45 保護フィルム(F2)
 48 粘着シート
 50 第2の偏光板
 51 第2の偏光子層
 53 保護フィルム(F3)
 55 保護フィルム(F4)
 60 バックライト
 100 光学フィルム
 101 剥離面
 200 偏光板
 300 偏光板保護フィルム
 400 偏光子層
 600 接着層
 700 混合層
 800 保護フィルム用接着層

Claims (4)

  1.  少なくとも光学フィルム、接着層及び偏光子層を備えた偏光板であって、
     前記光学フィルムが少なくとも極性基を有するシクロオレフィンポリマーを含有し、
     前記接着層の接着前における前記光学フィルムの表面に、X線を0.1度の角度で照射したときの回折ピークの半値幅が、4.6~5.4度の範囲内であり、
     前記接着層が、少なくとも重合性モノマーの硬化物を含有し、かつ、
     前記重合性モノマーの60質量%以上が、ハンセン溶解度パラメーターにおける分子間の分散力によるエネルギーδDが、下記式(1)の関係を満たすモノマーである偏光板。
     式(1):16.0MPa0.5≦δD<17.7MPa0.5
  2.  前記偏光板の剥離接着強さ試験をしたときに、剥離面が、前記接着層側から見て、前記光学フィルムの厚さ全体に対して0.5~15%の範囲内の位置にある請求項1に記載の偏光板。
  3.  前記光学フィルムと前記接着層との界面に混合層を有し、
     前記混合層の厚さが、50~500nmの範囲内である請求項1又は請求項2に記載の偏光板。
  4.  請求項1から請求項3までのいずれか一項に記載の偏光板を具備する液晶表示装置。
PCT/JP2022/011239 2021-06-30 2022-03-14 偏光板及び液晶表示装置 WO2023276304A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280045721.7A CN117581123A (zh) 2021-06-30 2022-03-14 偏振片及液晶显示装置
KR1020237044549A KR20240011801A (ko) 2021-06-30 2022-03-14 편광판 및 액정 표시 장치
JP2023531411A JPWO2023276304A1 (ja) 2021-06-30 2022-03-14

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021108249 2021-06-30
JP2021-108249 2021-06-30

Publications (1)

Publication Number Publication Date
WO2023276304A1 true WO2023276304A1 (ja) 2023-01-05

Family

ID=84691183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011239 WO2023276304A1 (ja) 2021-06-30 2022-03-14 偏光板及び液晶表示装置

Country Status (4)

Country Link
JP (1) JPWO2023276304A1 (ja)
KR (1) KR20240011801A (ja)
CN (1) CN117581123A (ja)
WO (1) WO2023276304A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010072439A (ja) * 2008-09-19 2010-04-02 Nippon Oil Corp 液晶層用光硬化型接着剤組成物および液晶フィルム
JP2011095514A (ja) * 2009-10-30 2011-05-12 Nippon Kayaku Co Ltd 位相差素子
WO2012050019A1 (ja) * 2010-10-13 2012-04-19 コニカミノルタオプト株式会社 前面板付き液晶表示装置の製造方法、前面板付き液晶表示装置
JP2013234208A (ja) * 2010-09-03 2013-11-21 Denki Kagaku Kogyo Kk 樹脂組成物及び接着剤
JP2020116864A (ja) * 2019-01-25 2020-08-06 株式会社ダイセル 媒体、及び前記媒体を用いた積層セラミックコンデンサの製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4306270B2 (ja) 2003-02-12 2009-07-29 住友化学株式会社 偏光板、その製造法、光学部材及び液晶表示装置
JP2019028109A (ja) 2017-07-26 2019-02-21 日本ゼオン株式会社 複層フィルム及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010072439A (ja) * 2008-09-19 2010-04-02 Nippon Oil Corp 液晶層用光硬化型接着剤組成物および液晶フィルム
JP2011095514A (ja) * 2009-10-30 2011-05-12 Nippon Kayaku Co Ltd 位相差素子
JP2013234208A (ja) * 2010-09-03 2013-11-21 Denki Kagaku Kogyo Kk 樹脂組成物及び接着剤
WO2012050019A1 (ja) * 2010-10-13 2012-04-19 コニカミノルタオプト株式会社 前面板付き液晶表示装置の製造方法、前面板付き液晶表示装置
JP2020116864A (ja) * 2019-01-25 2020-08-06 株式会社ダイセル 媒体、及び前記媒体を用いた積層セラミックコンデンサの製造方法

Also Published As

Publication number Publication date
JPWO2023276304A1 (ja) 2023-01-05
CN117581123A (zh) 2024-02-20
TW202305420A (zh) 2023-02-01
KR20240011801A (ko) 2024-01-26

Similar Documents

Publication Publication Date Title
KR101719883B1 (ko) 광 경화성 접착제 조성물, 편광판과 그 제조법, 광학 부재 및 액정 표시 장치
TWI437033B (zh) A method of manufacturing a polarizing element, a polarizing element, a polarizing plate, an optical film, and an image display device
KR20150022692A (ko) 광경화성 접착제 조성물, 편광판 및 그 제조 방법, 광학 부재, 그리고 액정 표시 장치
KR20150071019A (ko) 광 경화성 접착제 조성물, 편광판과 그 제조법, 광학 부재 및 액정 표시 장치
JP2013152430A (ja) 光学フィルム、積層フィルム、及びそれらの製造方法
JP5720401B2 (ja) セルロースアセテート積層フィルム、偏光板、及び液晶表示装置
WO2014188935A1 (ja) 位相差フィルム、該位相差フィルムを用いた円偏光板および画像表示装置
TW201447399A (zh) 光學薄膜、偏光板、畫像顯示裝置及光學薄膜之製造方法
JP2018077522A (ja) 偏光板、画像表示装置および液晶表示装置
JP2014013283A (ja) 偏光板及び液晶表示装置
JP4449533B2 (ja) 広帯域1/4波長板の長尺巻状体、広帯域円偏光素子の長尺巻状体
JP6007874B2 (ja) 偏光板保護フィルムとその製造方法、偏光板および液晶表示装置
KR101709419B1 (ko) 광학 필름 및 광학 필름의 제조 방법, 편광판 및 액정 표시 장치
JP2009157343A (ja) 偏光板およびそれを用いた液晶表示装置
CN105739002B (zh) 偏振板
JP6081244B2 (ja) 偏光板および液晶表示装置
WO2023276304A1 (ja) 偏光板及び液晶表示装置
JP2011116113A (ja) セルロースエステルフィルム及びその製造方法
JP7242884B2 (ja) 位相差層付偏光板、および、それを用いた画像表示装置
JP5083286B2 (ja) 広帯域1/4波長板の長尺巻状体、広帯域円偏光素子の長尺巻状体
JP6728656B2 (ja) 偏光板保護フィルム及びそれを具備した偏光板
JP5463020B2 (ja) 液晶パネル及び液晶表示装置
WO2022215427A1 (ja) 延伸フィルム、延伸フィルムの製造方法、偏光板及び液晶表示装置
TWI834146B (zh) 偏光板及液晶顯示裝置
WO2022215407A1 (ja) 偏光板保護フィルムの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22832467

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023531411

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237044549

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237044549

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 202280045721.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE