WO2012050019A1 - 前面板付き液晶表示装置の製造方法、前面板付き液晶表示装置 - Google Patents

前面板付き液晶表示装置の製造方法、前面板付き液晶表示装置 Download PDF

Info

Publication number
WO2012050019A1
WO2012050019A1 PCT/JP2011/072948 JP2011072948W WO2012050019A1 WO 2012050019 A1 WO2012050019 A1 WO 2012050019A1 JP 2011072948 W JP2011072948 W JP 2011072948W WO 2012050019 A1 WO2012050019 A1 WO 2012050019A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
liquid crystal
film
plate
display device
Prior art date
Application number
PCT/JP2011/072948
Other languages
English (en)
French (fr)
Inventor
範江 谷原
村上 隆
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to JP2012538649A priority Critical patent/JP5678964B2/ja
Priority to US13/823,960 priority patent/US8947621B2/en
Publication of WO2012050019A1 publication Critical patent/WO2012050019A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0073Optical laminates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133308Support structures for LCD panels, e.g. frames or bezels
    • G02F1/133331Cover glasses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133638Waveplates, i.e. plates with a retardation value of lambda/n

Definitions

  • the present invention relates to a method for manufacturing a liquid crystal display device with a front plate and a liquid crystal display device with a front plate.
  • a stereoscopic image display device such as a television capable of displaying a stereoscopic image.
  • the methods for displaying the stereoscopic image there is a method for allowing the observer to recognize the two-dimensional image as a stereoscopic image by wearing dedicated stereoscopic image viewing glasses by the observer.
  • the right-eye image and the left-eye image which are parallax images, are alternately displayed in time series on the display that displays the image, and the observer uses glasses for viewing stereoscopic images.
  • This is a method in which an image on a liquid crystal display is viewed while wearing (G) (see, for example, Patent Document 1).
  • the polarizing plate uses two glasses, the polarizing plate uses a pair of glasses, and the display performance when the head is tilted in either method.
  • the ⁇ / 4 plate is necessary.
  • a ⁇ / 4 plate is also required on the viewing side of the stereoscopic image display device, and the larger the stereoscopic image display device, the greater the effect of stereoscopic vision. Therefore, there is a demand for a large ⁇ / 4 plate that can be used for a large display.
  • a sealing layer that seals the gap and adheres the front plate and the liquid crystal panel will be used. It is preferable to provide it.
  • various methods such as thermal curing and adhesion for curing the sealing layer, the method of ultraviolet curing using an ultraviolet curing resin for the sealing layer is most suitable.
  • Patent Document 2 when a liquid crystal panel and a front plate are brought into close contact with each other through a photocurable resin, only light having a wavelength of 340 nm or more is irradiated, and light having a wavelength of less than 340 nm that adversely affects liquid crystal molecules, adhesives, and the like is emitted.
  • a technique for shielding and preventing deterioration in display quality without damaging the liquid crystal panel is disclosed.
  • the glass or acrylic front plate is not usually used as it is, and a resin film having a hard coat layer for preventing scratches and preventing reflection is provided. Therefore, in consideration of productivity, on the viewing side surface of the liquid crystal panel having polarizing plates on both sides of the liquid crystal cell, a sealing layer having an ultraviolet curable adhesive, a front plate made of glass or acrylic, an adhesive layer, and a hard coat layer are provided. A method of curing the sealing layer by irradiating ultraviolet rays from the hard coat layer side after stacking the resin films having the layers in this order is preferable.
  • an object of the present invention is to produce a liquid crystal display device with a front plate in which a front plate bonded with a ⁇ / 4 plate having a hard coat layer is adhered to the liquid crystal panel via a sealing layer having an ultraviolet curable adhesive.
  • a sealing layer having an ultraviolet curable adhesive high contrast, having a ⁇ / 4 plate that can sufficiently cure the sealing layer by ultraviolet rays, without wrinkling or distortion between the hard coat layer and the ⁇ / 4 plate, and without peeling of the hard coat layer
  • Another object of the present invention is to provide a method for manufacturing a liquid crystal display device with a front plate having high visibility.
  • the ⁇ / 4 plate having ⁇ / 4 contains 0.005 to 0.5 parts by mass of a compound having an absorption maximum peak ( ⁇ max) at a wavelength of 260 nm to 400 nm with respect to 100 parts by mass of the thermoplastic resin of the ⁇ / 4 plate.
  • a method for producing a liquid crystal display device with a front plate characterized in that:
  • the compound in which the ⁇ / 4 plate has the absorption maximum peak ( ⁇ max) at a wavelength of 260 nm to 400 nm is within 50% of the thickness direction of the ⁇ / 4 plate from the side in contact with the hard coat layer of the ⁇ / 4 plate. 4.
  • the ⁇ / 4 plate is a laminate of two or more layers formed by co-casting, the thickness of the film layer on the hard coat layer side is 0.5 to 10 ⁇ m, and the film on the hard coat layer side Any of the above 1 to 4, wherein the layer contains 90% by mass or more of the total amount contained in the ⁇ / 4 plate, with the compound having the absorption maximum peak ( ⁇ max) at the wavelength of 260 nm to 400 nm.
  • thermoplastic resin which is a main component of the ⁇ / 4 plate is cellulose acylate or an alicyclic polyolefin resin. Production method.
  • a liquid crystal display device with a front plate manufactured by the method for manufacturing a liquid crystal display device with a front plate according to any one of the above 1 to 6.
  • a method of manufacturing a liquid crystal display device with a front plate in which a front plate bonded with a ⁇ / 4 plate having a hard coat layer is adhered to a liquid crystal panel via a sealing layer having an ultraviolet curable adhesive.
  • the sealing layer can be sufficiently cured by ultraviolet rays, and at this time, it has a ⁇ / 4 plate that has no wrinkles or distortion between the hard coat layer and the ⁇ / 4 plate and does not peel off the hard coat layer.
  • a method for manufacturing a liquid crystal display device with a front plate having high visibility can be provided.
  • liquid crystal display device for stereoscopic image display with a front plate that does not have luminance reduction, color change, and crosstalk when the head is tilted during stereoscopic (3D) video viewing.
  • a liquid crystal panel having polarizing plates on both surfaces of a liquid crystal cell has a hard coat layer on the viewing side surface and a thermoplastic resin as a main component on the viewing side surface.
  • 4 plates, adhesive layer, front plate made of glass or acrylic, sealing layer with UV curable adhesive are provided in this order, with front plate that cures the sealing layer by irradiating UV from the hard coat layer side
  • a method for producing a liquid crystal display device wherein the ⁇ / 4 plate having the hard coat layer has a compound having an absorption maximum peak ( ⁇ max) at a wavelength of 260 nm to 400 nm with respect to 100 parts by mass of the thermoplastic resin of the ⁇ / 4 plate. And 0.005 to 0.5 parts by mass.
  • FIG. 1 is a schematic view of a method for producing a liquid crystal display device with a front plate according to the present invention.
  • FIG. 1 shows a minimum configuration of a method for manufacturing a liquid crystal display device with a front plate according to the present invention, and the present invention is not limited to this.
  • a ⁇ / 4 plate 6 having a hard coat layer from the viewing side, an adhesive layer 5, a front plate 4 made of glass or acrylic, ultraviolet rays
  • the sealing layer 3 having a curable pressure-sensitive adhesive is provided in this order, and the sealing layer 3 is cured by irradiating ultraviolet rays from the hard coat layer side so that the liquid crystal panel and the front plate are brought into close contact with each other.
  • the inventors made a prototype of a ⁇ / 4 plate in which a hard coat layer is provided on a ⁇ / 4 plate that does not contain an ultraviolet absorber so as not to inhibit photocuring of the sealing layer having an ultraviolet curable adhesive by ultraviolet rays. Then, the sealing layer was cured by irradiating with ultraviolet rays to produce a liquid crystal display device with a front plate. When adjusted to an ultraviolet light amount range that does not cause a problem with curing of the sealing layer, the ⁇ / 4 plate hard It was found that wrinkles and distortion between the coat layer and the base film and peeling of the hard coat layer occurred and there were practical problems.
  • the inventors of the present invention have made extensive studies on this problem. As a result, a compound having an absorption maximum peak ( ⁇ max) at a wavelength of 260 nm to 400 nm is added to 100 parts by mass of the thermoplastic resin of the ⁇ / 4 plate. On the other hand, by adding 0.005 to 0.5 parts by mass, the present inventors have found the surprising fact that wrinkles and distortion between the hard coat layer and the ⁇ / 4 plate and the peeling of the hard coat layer can be greatly improved. It is up to the conclusion.
  • the ⁇ / 4 plate according to the present invention preferably has a light transmittance at a wavelength of 380 nm of 30% or more. With such a configuration, the sealing layer is cured, and wrinkles and distortion between the hard coat layer and the ⁇ / 4 plate are caused. Further, it is possible to achieve both the provision of a ⁇ / 4 plate with a hard coat without peeling off of the hard coat layer.
  • the compound having an absorption maximum peak ( ⁇ max) at a wavelength of 260 nm to 400 nm according to the present invention is preferably a benzotriazole compound, a benzophenone compound or a triazine compound.
  • the ultraviolet rays to be irradiated cause wrinkles and distortion between the hard coat layer and the base film, and the hard coat layer is peeled off.
  • the content of the compound exceeds 0.5 parts by mass, the calorific value is too large, and the distortion between the hard coat layer and the ⁇ / 4 plate increases, or the adhesiveness deteriorates by bleeding out. .
  • the compound may not be uniformly contained in the entire ⁇ / 4 plate, and the total content is 90% within 50% of the thickness direction of the ⁇ / 4 plate from the side in contact with the hard coat layer of the ⁇ / 4 plate. It is more preferable that the content is greater than or equal to mass% in order to strengthen the adhesion.
  • the ⁇ / 4 plate is a laminate of two or more layers formed by co-casting, the thickness of the film layer on the hard coat layer side is 0.5 to 10 ⁇ m, and the film layer is composed of the compound It is preferable to contain 90% by mass or more of the total amount contained in the ⁇ / 4 plate.
  • FIG. 1 represents irradiation of UV light.
  • the liquid crystal panel according to the present invention has polarizing plates 1 and 1a on both surfaces of a liquid crystal cell 2.
  • the polarizing plates may be the same or different.
  • the liquid crystal cell 2 may be any of a reflection type, a transmission type, and a transflective LCD, and various driving methods such as a TN type, STN type, OCB type, HAN type, VA type (PVA type, MVA type), and IPS type.
  • the LCD is preferably used.
  • the polarizing plate 1, 1a uses a stretched polyvinyl alcohol doped with iodine or a dichroic dye as a polarizer, and at least one surface of the polarizer is sandwiched between polarizing plate protective films. Yes.
  • the thickness of the polarizer is 5 to 40 ⁇ m, preferably 5 to 30 ⁇ m, and particularly preferably 5 to 20 ⁇ m.
  • the polarizing plate protective film is not particularly limited, but is preferably a polymer film, easy to produce, optically uniform, and preferably optically transparent. Any of these may be used, for example, cellulose acylate film, polyester film, polycarbonate film, polyarylate film, polysulfone (including polyethersulfone) film, polyethylene terephthalate, polyethylene naphthalate.
  • Polyester film such as phthalate, polyethylene film, polypropylene film, cellophane, cellulose diacetate film, cellulose acetate butyrate film, polyvinylidene chloride film, polyvinyl alcohol film, ethylene vinyl alcohol film, syndiotactic polystyrene film, polycarbonate film, norbornene Resin-based film, polymethylpentene film, polyetherketone film, Examples include, but are not limited to, ether ketone imide films, polyamide films, fluororesin films, nylon films, cycloolefin polymer films, polyvinyl acetal resin films, polymethyl methacrylate films, and acrylic films. .
  • films formed by a solution casting method or a melting method are preferably used.
  • a cellulose acylate film, a polycarbonate film, polysulfone (including polyether sulfone), and a cycloolefin polymer film are preferable.
  • a cellulose acylate film and a cycloolefin polymer film are manufactured, in terms of cost, It is preferable from the aspects of transparency, uniformity, adhesiveness and the like.
  • cellulose acylate films include Konica Minoltack KC8UX, KC4UX, KC5UX, KC8UCR3, KC8UCR4, KC8UCR5, KC8UY, KC4UY, KC12UR, KC16UR, KC4UE, KC8UE, KC8UE, KC8UE Etc.) are preferably used.
  • the polarizing plate can be produced by a general method.
  • the protective film subjected to the alkali saponification treatment is preferably bonded to both sides of the polarizer using a completely saponified polyvinyl alcohol aqueous solution.
  • the liquid crystal panel according to the present invention may be a stereoscopic image display device.
  • a stereoscopic image display device including a liquid crystal panel and liquid crystal shutter glasses, wherein the liquid crystal shutter glasses are provided with (1) a protective film, a liquid crystal cell, and a polarizer in this order, or (2) protection Liquid crystal shutter glasses in which a film, a polarizer, a liquid crystal cell, and a polarizer are provided in this order can be used.
  • the liquid crystal panel alternately displays a right-eye image and a left-eye image, which are stereoscopic parallax images that are target objects, and is imaged on the right eye and the left eye by the liquid crystal shutter glasses and can be viewed stereoscopically.
  • the sealing layer 3 according to the present invention is a sealing layer having an ultraviolet curable pressure-sensitive adhesive, which is cured by irradiation with ultraviolet rays so as to adhere the liquid crystal panel and the front plate.
  • an ultraviolet curable component As the ultraviolet curable pressure-sensitive adhesive, an ultraviolet curable component, a photopolymerization initiator, and a conventional additive such as a crosslinking agent, a tackifier, a filler, an anti-aging agent, and a colorant as necessary are added. Used.
  • the ultraviolet curing component may be any monomer, dimer, oligomer, or polymer having a carbon-carbon double bond in the molecule and curable by radical polymerization.
  • trimethylolpropane tri (meth) acrylate penta (Meth) acrylic such as erythritol tri (meth) acrylate, tetraethylene glycol di (meth) acrylate, 1,6-hexanediol (meth) acrylate, neopentyl glycol di (meth) acrylate, dipentaerythritol hexa (meth) acrylate, etc.
  • esters of acids and polyhydric alcohols include ester acrylate oligomers, 2-propenyl di-3-butenyl cyanurate, 2-hydroxyethylbis (2-acryloxyethyl) isocyanurate, tris (2-methacryloxyethyl) Isocyanurate, and tris (2-methacryloxyethyl) isocyanurate or isocyanurate compounds such as isocyanurate.
  • an ultraviolet curable polymer having a carbon-carbon double bond in the polymer side chain is used as the acrylic polymer, it is not particularly necessary to add the above ultraviolet curable component.
  • an optical elastic resin “SVR” manufactured by Sony Chemical & Information Device Co., Ltd. mainly composed of an acrylic ultraviolet curable resin is suitable.
  • the present invention is not limited to a specific ultraviolet curable component, and is a substance that does not depart from the technical idea of the present invention. Curing components can be used.
  • Any photopolymerization initiator may be used as long as it is a substance that can be cleaved by irradiation with ultraviolet rays of an appropriate wavelength that can trigger the polymerization reaction to generate radicals.
  • benzoin methyl ether benzoin isopropyl ether
  • benzoin isobutyl ether Benzoin alkyl ethers such as: benzyl, benzoyl, benzophene, aromatic ketones such as ⁇ -hydroxycyclohexyl phenyl ketone, aromatic ketals such as benzyldimethyl ketal; polyvinyl benzophenone; chlorothioxanthone, dodecylthioxanthone, dimethylthioxanthone, diethylthioxanthone And thioxanthones.
  • the crosslinking agent include polyisocyanate compounds, melamine resins, urea resins, polyamines, and carboxyl group-containing polymers.
  • a solvent type, an emulsion type, a hot melt type and the like are used, and generally a solvent type and an emulsion type are used.
  • another auxiliary agent can be added and mixed as needed, and it can produce as a coating liquid.
  • auxiliary agents include a thickener, a thickener, a pH adjuster, an antifoaming agent, an antiseptic / antifungal, a pigment, an inorganic filler, a stabilizer, a wetting agent, and a wetting agent.
  • a sealing layer is a gravure coater, a dip coater, a reverse coater, a wire bar coater, a die coater, a coating method for forming a sealing layer is applied using a known method such as an inkjet method, and after application, is heated and dried. It can be formed by ultraviolet curing.
  • the dry film thickness of the sealing layer is an average film thickness of 0.1 to 50 ⁇ m, preferably 1 to 40 ⁇ m, particularly preferably 10 to 30 ⁇ m.
  • any light source that generates ultraviolet light can be used without limitation.
  • a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, or the like can be used.
  • Irradiation conditions vary depending on each lamp, but the irradiation amount of ultraviolet rays is usually 1000 to 6000 mJ / cm 2, and preferably 2000 to 5000 mJ / cm 2.
  • the front plate 4 is required to be transparent, smooth and have high physical strength, and a glass plate, an acrylic resin plate, or the like is used.
  • the adhesive layer 5 according to the present invention is a layer containing an adhesive (including an adhesive) that adheres the front plate and the ⁇ / 4 plate having the hard coat layer according to the present invention.
  • the base polymer preferably has a weight average molecular weight of about 300,000 to 2.5 million.
  • alkyl (meth) acrylates As monomers used in the acrylic polymer that is the base polymer of the acrylic adhesive, various alkyl (meth) acrylates ⁇ (meth) alkyl alkyl refers to alkyl acrylate and / or alkyl methacrylate, (Meta) has the same meaning. ⁇ Can be used. Specific examples of such alkyl (meth) acrylates include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and the like. Can be used alone or in combination.
  • N-methylol (meth) acrylamide and the like can also be used in combination.
  • other copolymerizable monomers such as vinyl acetate and styrene may be used in combination as long as the adhesive properties of the acrylic polymer are not impaired.
  • the acrylic polymer can be produced by various known methods.
  • a radical polymerization method such as a bulk polymerization method, a solution polymerization method, or a suspension polymerization method can be appropriately selected.
  • the radical polymerization initiator various known azo and peroxide initiators can be used.
  • a solution polymerization method is preferable, and a polar solvent such as ethyl acetate or toluene is generally used as the solvent for the acrylic polymer.
  • Examples of the rubber-based adhesive base polymer include natural rubber, isoprene rubber, styrene-butadiene rubber, recycled rubber, polyisobutylene rubber, styrene-isoprene-styrene rubber, and styrene-butadiene-styrene rubber. Etc.
  • Examples of the base polymer of the silicone pressure-sensitive adhesive include dimethylpolysiloxane and diphenylpolysiloxane.
  • the pressure-sensitive adhesive preferably contains a cross-linking agent.
  • the crosslinking agent include polyisocyanate compounds, polyamine compounds, melamine resins, urea resins, epoxy resins, metal chelates and the like.
  • the pressure-sensitive adhesive suitably includes a tackifier, a plasticizer, a filler, an antioxidant, an ultraviolet absorber, a silane coupling agent and the like as long as they do not depart from the object of the present invention. You can also
  • the thickness of the pressure-sensitive adhesive layer is preferably thinner from the viewpoint of the retardation of the pressure-sensitive adhesive layer itself and from the viewpoint of dimensional stability, but specifically, it is preferably about 5 to 30 ⁇ m.
  • the ⁇ / 4 plate according to the present invention has a function of converting linearly polarized light having a specific wavelength into circularly polarized light (or converting circularly polarized light into linearly polarized light).
  • the ⁇ / 4 plate is designed such that the in-plane retardation value Ro is about 1/4 with respect to a predetermined wavelength of light (usually in the visible light region).
  • the ⁇ / 4 plate according to the present invention has an in-plane retardation Ro (590) measured at a wavelength of 590 nm of 110 to 170 nm.
  • the ⁇ / 4 plate according to the present invention is a retardation plate (resin film) having a retardation of approximately 1 ⁇ 4 of the wavelength in the visible light wavelength range in order to obtain almost perfect circularly polarized light in the visible light wavelength range. ) Is preferable.
  • “Retardation of approximately 1 ⁇ 4 in the wavelength range of visible light” is a retardation value represented by the following formula (i) measured at a wavelength of 450 nm, and the longer the wavelength is from 400 to 700 nm, the larger the retardation.
  • Ro (590) which is a retardation value measured at a certain Ro (450) and a wavelength of 590 nm satisfies 1 ⁇ Ro (590) / Ro (450) ⁇ 1.6.
  • Ro (450) is in the range of 100 to 125 nm
  • the retardation value Ro (550) measured at a wavelength of 550 nm is in the range of 125 to 142 nm.
  • Ro (590) is more preferably a retardation film in the range of 130 to 152 nm.
  • nx and ny are refractive indexes nx (also referred to as the maximum in-plane refractive index and refractive index in the slow axis direction) at 23 ° C./55% RH, 450 nm, 550 nm, and 590 nm, ny. (Refractive index in the direction perpendicular to the slow axis in the film plane), and d is the thickness (nm) of the film.
  • Ro and Rt can be measured using an automatic birefringence meter.
  • Ro is calculated by birefringence measurement at each wavelength in an environment of 23 ° C. and 55% RH.
  • a circularly polarizing plate is obtained by laminating so that the angle between the slow axis of the ⁇ / 4 plate and the transmission axis of the polarizer is 45 °. “Substantially 45 °” means 40 to 50 °.
  • the angle between the slow axis in the plane of the ⁇ / 4 plate and the transmission axis of the polarizer is preferably 41 to 49 °, more preferably 42 to 48 °, and more preferably 43 to 47 °. Is more preferably 44 to 46 °.
  • the ⁇ / 4 plate according to the present invention is a film containing a thermoplastic resin.
  • the thermoplastic resin used include cellulose acylate resin, polyester resin, polycarbonate resin, polyarylate resin, polysulfone oil, polyethylene terephthalate resin, polypropylene Resins, alicyclic polyolefin resins, polyamide resins, fluororesins, nylons, polyvinyl acetal resins, acrylics, and the like can be mentioned, but are not limited thereto.
  • cellulose acylate resins and alicyclic polyolefin resins are preferable from the viewpoints of production, cost, ease of processing, transparency, uniformity, adhesion, and the like.
  • a cellulose acylate film using a cellulose acylate resin and an alicyclic polyolefin resin film using an alicyclic polyolefin resin will be described.
  • the cellulose acylate film used as the ⁇ / 4 plate according to the present invention preferably contains cellulose acylate for optical film use.
  • the cellulose acylate is preferably a cellulose acylate having an aliphatic acyl group having 2 or more carbon atoms, and more preferably the cellulose acylate has a total acyl substitution degree of 1.0 to 2.95 and an acyl group.
  • the total acyl group carbon number of cellulose acylate is preferably 4.0 to 9.0, and more preferably 5.0 to 8.5.
  • the acyl group total carbon number is the total sum of the products of the substitution degree and carbon number of each acyl group substituted in the glucose unit of cellulose acylate.
  • the number of carbon atoms of the aliphatic acyl group is preferably 2 or more and 6 or less, more preferably 2 or more and 4 or less, from the viewpoint of productivity and cost of cellulose synthesis.
  • the portion not substituted with an acyl group usually exists as a hydroxyl group.
  • the glucose unit constituting cellulose with ⁇ -1,4-glycosidic bonds has free hydroxyl groups at the 2nd, 3rd and 6th positions.
  • the cellulose acylate according to the present invention is a polymer obtained by esterifying some or all of these hydroxyl groups with an acyl group.
  • the acyl group substitution degree represents the total ratio of cellulose esterified at the 2nd, 3rd and 6th positions of the repeating unit. Specifically, the degree of substitution is 1 when the hydroxyl groups at the 2-position, 3-position and 6-position of cellulose are each 100% esterified. Therefore, when all of the 2nd, 3rd and 6th positions of cellulose are 100% esterified, the degree of substitution is 3 at the maximum.
  • acyl group examples include an acetyl group, a propionyl group, a butyryl group, a pentanate group, and a hexanate group.
  • cellulose acylate examples include cellulose acetate, cellulose propionate, cellulose butyrate, and cellulose pentanate. It is done. Further, mixed fatty acid esters such as cellulose acetate, cellulose acetate propionate, cellulose propionate, cellulose acetate butyrate, and cellulose acetate pentanate may be used as long as the above-mentioned side chain carbon number is satisfied. Among these, cellulose acetate such as cellulose triacetate and diacetylcellulose is particularly preferable for optical film use.
  • Preferred cellulose acylates other than cellulose triacetate have an acyl group having 2 to 4 carbon atoms as a substituent, and when the substitution degree of acetyl group is X and the substitution degree of propionyl group or butyryl group is Y, the following formula A cellulose acylate satisfying both (I) and (II) is preferred.
  • cellulose acetate propionate is preferably used, and among them, cellulose acetate propionate satisfying 1.5 ⁇ X ⁇ 2.5 and 0.1 ⁇ Y ⁇ 1.45 is preferable.
  • the portion that is not substituted with an acyl group usually exists as a hydroxyl group.
  • the method for measuring the degree of acyl group substitution can be measured according to ASTM-D817-96.
  • the cellulose acylate according to the present invention preferably has a weight average molecular weight Mw of 50,000 to 500,000, more preferably 100,000 to 300,000, still more preferably 150,000 to 250,000.
  • the measurement conditions are as follows.
  • the raw material cellulose of the cellulose acylate used in the present invention may be wood pulp or cotton linter, and the wood pulp may be softwood or hardwood. Softwood pulp is preferably used. Cellulose acylates made from these can be used in appropriate mixture or singly.
  • the ratio of cellulose acylate derived from cotton linter: cellulose acylate derived from wood pulp (conifer): cellulose acylate derived from wood pulp (hardwood) is 100: 0: 0, 90: 10: 0, 85: 15: 0, 50. : 50: 0, 20: 80: 0, 10: 90: 0, 0: 100: 0, 0: 0: 100, 80:10:10, 85: 0: 15, 40:30:30 I can do it.
  • cellulose having a high degree of polymerization is preferable.
  • linter pulp is preferable, and it is preferable to use cellulose composed of at least linter pulp.
  • the ⁇ -cellulose content which is an index of the crystallinity of cellulose, is 90% or more (eg, 92 to 100%, preferably 95 to 100%, more preferably about 99.5 to 100%).
  • the cellulose acylate according to the present invention can be produced by a known method.
  • cellulose is esterified by mixing cellulose as a raw material, a predetermined organic acid (such as acetic acid or propionic acid), an acid anhydride (such as acetic anhydride or propionic anhydride), and a catalyst (such as sulfuric acid).
  • a predetermined organic acid such as acetic acid or propionic acid
  • an acid anhydride such as acetic anhydride or propionic anhydride
  • a catalyst such as sulfuric acid
  • the reaction proceeds until the triester is formed.
  • three hydroxyl groups (hydroxyl groups) of the glucose unit are substituted with an acyl acid of an organic acid.
  • a mixed ester type cellulose acylate such as cellulose acetate propionate or cellulose acetate butyrate can be produced.
  • cellulose acylate having a desired degree of acyl substitution is synthesized by hydrolyzing cellulose triester. Thereafter,
  • the alicyclic polyolefin resin of the alicyclic polyolefin resin film used as the ⁇ / 4 plate according to the present invention is an amorphous resin having an alicyclic structure in the main chain and / or side chain.
  • Examples of the alicyclic structure in the alicyclic polyolefin resin include a saturated alicyclic hydrocarbon (cycloalkane) structure and an unsaturated alicyclic hydrocarbon (cycloalkene) structure. From the viewpoint of mechanical strength, heat resistance, and the like. A cycloalkane structure is preferred.
  • the number of carbon atoms constituting the alicyclic structure is not particularly limited, but is usually 4 to 30, preferably 5 to 20, more preferably 5 to 15, when the mechanical strength, heat resistance, In addition, the moldability characteristics of the film are highly balanced and suitable.
  • the ratio of the repeating unit having an alicyclic structure constituting the alicyclic polyolefin resin is preferably 55% by mass or more, more preferably 70% by mass or more, and particularly preferably 90% by mass or more. It is preferable from a viewpoint of transparency and heat resistance that the ratio of the repeating unit which has an alicyclic structure in alicyclic polyolefin resin exists in this range.
  • alicyclic polyolefin resins examples include norbornene resins, monocyclic olefin resins, cyclic conjugated diene resins, vinyl alicyclic hydrocarbon resins, and hydrides thereof.
  • norbornene-based resins can be suitably used because of their good transparency and moldability.
  • Examples of the norbornene-based resin include a ring-opening polymer of a monomer having a norbornene structure, a ring-opening copolymer of a monomer having a norbornene structure and another monomer, or a hydride thereof; norbornene structure
  • the addition polymer of the monomer which has this, the addition copolymer of the monomer which has a norbornene structure, and another monomer, those hydrides, etc. can be mentioned.
  • a ring-opening (co) polymer hydride of a monomer having a norbornene structure is particularly suitable from the viewpoints of transparency, moldability, heat resistance, low hygroscopicity, dimensional stability, lightness, and the like. Can be used.
  • bicyclo [2.2.1] hept-2-ene (common name: norbornene), tricyclo [4.3.0.12,5] deca-3,7-diene ( Common name: dicyclopentadiene), 7,8-benzotricyclo [4.3.12,5] dec-3-ene (common name: methanotetrahydrofluorene), tetracyclo [4.4.0.12, 5.17,10] dodec-3-ene (common name: tetracyclododecene), and derivatives of these compounds (for example, those having a substituent in the ring).
  • examples of the substituent include an alkyl group, an alkylene group, and a polar group. Moreover, these substituents may be the same or different and a plurality may be bonded to the ring. Monomers having a norbornene structure can be used singly or in combination of two or more.
  • Examples of the polar group include heteroatoms or atomic groups having heteroatoms.
  • Examples of the hetero atom include an oxygen atom, a nitrogen atom, a sulfur atom, a silicon atom, and a halogen atom.
  • Specific examples of the polar group include a carboxyl group, a carbonyloxycarbonyl group, an epoxy group, a hydroxyl group, an oxy group, an ester group, a silanol group, a silyl group, an amino group, a nitrile group, and a sulfone group.
  • the amount of polar groups is small, and it is more preferable that there are no polar groups.
  • monomers capable of ring-opening copolymerization with monomers having a norbornene structure include monocyclic olefins such as cyclohexene, cycloheptene, and cyclooctene and derivatives thereof; cyclic conjugated dienes such as cyclohexadiene and cycloheptadiene; Derivatives thereof; and the like.
  • a ring-opening polymer of a monomer having a norbornene structure and a ring-opening copolymer of a monomer having a norbornene structure and another monomer copolymerizable with the monomer have a known ring-opening polymerization catalyst. It can be obtained by (co) polymerization in the presence.
  • Examples of other monomers that can be addition copolymerized with a monomer having a norbornene structure include, for example, ⁇ -olefins having 2 to 20 carbon atoms such as ethylene, propylene, 1-butene, and derivatives thereof; cyclobutene, cyclopentene, Examples thereof include cycloolefins such as cyclohexene and derivatives thereof; non-conjugated dienes such as 1,4-hexadiene, 4-methyl-1,4-hexadiene, and 5-methyl-1,4-hexadiene. These monomers can be used alone or in combination of two or more. Among these, ⁇ -olefin is preferable, and ethylene is more preferable.
  • An addition polymer of a monomer having a norbornene structure and an addition copolymer of a monomer having a norbornene structure with another monomer copolymerizable with a monomer having a norbornene structure are prepared in the presence of a known addition polymerization catalyst. It can be obtained by polymerization.
  • Hydrogenated product of ring-opening polymer of monomer having norbornene structure hydrogenated product of ring-opening copolymer of monomer having norbornene structure and other monomer capable of ring-opening copolymerization, norbornene structure
  • the hydride of an addition polymer of a monomer having a monomer, and the hydride of an addition copolymer of a monomer having a norbornene structure and another monomer capable of addition copolymerization with these ring-opening (copolymerization) A known hydrogenation catalyst containing a transition metal such as nickel or palladium is added to a polymer or addition (co) polymer solution, and brought into contact with hydrogen so that the carbon-carbon unsaturated bond is preferably 90% or more. It can be obtained by hydrogenation.
  • X bicyclo [3.3.0] octane-2,4-diyl-ethylene structure and Y: tricyclo [4.3.0.12,5] decane-7, 9-diyl-ethylene structure
  • the content of these repeating units is 90% by mass or more with respect to the entire repeating units of the norbornene resin
  • the content ratio of X and the content ratio of Y The ratio is preferably 100: 0 to 40:60 in terms of mass ratio of X: Y.
  • the molecular weight of the alicyclic polyolefin resin suitably used in the present invention is appropriately selected according to the purpose of use, and was measured by gel permeation chromatography using cyclohexane (toluene when the resin is not dissolved) as a solvent.
  • the weight average molecular weight (Mw) of polyisoprene (when converted to polystyrene when the solvent is toluene) is usually 15000 to 50000, preferably 18000 to 45000, more preferably 20000 to 40000. When the weight average molecular weight is in such a range, the mechanical strength and formability of the film are highly balanced, which is preferable.
  • the molecular weight distribution (weight average molecular weight (Mw) / number average molecular weight (Mn)) of the alicyclic polyolefin resin suitably used in the present invention is not particularly limited, but is usually 1.0 to 10.0, preferably 1.1. It is in the range of ⁇ 4.0, more preferably 1.2 to 3.5.
  • the glass transition temperature of the alicyclic polyolefin resin used in the present invention may be appropriately selected according to the purpose of use, but is preferably 80 ° C. or higher, more preferably in the range of 100 to 250 ° C.
  • a film made of a thermoplastic resin having a glass transition temperature in such a range is excellent in durability without being deformed or stressed at a high temperature.
  • the ⁇ / 4 plate having the hard coat layer according to the present invention and mainly composed of a thermoplastic resin has a compound having an absorption maximum peak ( ⁇ max) at a wavelength of 260 nm to 400 nm (hereinafter referred to as an adhesion improving agent). Is characterized by containing 0.005 to 0.5 parts by mass with respect to 100 parts by mass of the thermoplastic resin.
  • the content of the adhesion improving agent is an amount that does not affect the amount of ultraviolet light applied to the sealing layer, and that can prevent wrinkles and distortion between the hard coat layer and the ⁇ / 4 plate and peeling of the hard coat layer.
  • the amount is preferably 0.005 to 0.1 parts by mass.
  • the ⁇ / 4 plate preferably has a light transmittance at a wavelength of 380 nm of 30% or more, more preferably 50% or more, and particularly preferably 70% or more.
  • the adhesion improver is a compound having an absorption maximum peak ( ⁇ max) at a wavelength of 260 nm to 400 nm
  • a spectrophotometer in a conventional manner by dissolving the compound in a solvent (eg, dichloromethane, toluene, etc.).
  • a solvent eg, dichloromethane, toluene, etc.
  • adhesion improver examples include oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone compounds, cyanoacrylate compounds, nickel complex compounds, triazine compounds, and the like.
  • benzotriazole compounds, benzophenone compounds, and triazine compounds that are less colored are preferred.
  • adhesion improver those having excellent absorption ability of ultraviolet light having a wavelength of 370 nm or less and having little absorption of visible light having a wavelength of 400 nm or more are preferable from the viewpoint of liquid crystal display properties.
  • ultraviolet rays are irradiated to cure the sealing layer as described later. Therefore, as an adhesion improving agent having a high adhesion improving effect with respect to the amount of UV irradiation, those having an absorption maximum at a wavelength of 260 nm to 355 nm or less are more preferable.
  • Benzotriazole compounds As the benzotriazole compound according to the present invention, a compound represented by the following general formula (A) is preferably used.
  • R1, R2, R3, R4 and R5 may be the same or different, and are a hydrogen atom, a halogen atom, a nitro group, a hydroxyl group, an alkyl group, an alkenyl group, an aryl group, an alkoxy group, an acyloxy group, an aryloxy group.
  • Benzotriazole compounds useful in the present invention include 2- (2'-hydroxy-5'-methylphenyl) benzotriazole, 2- (2'-hydroxy-3 ', 5'-di-tert-butylphenyl) benzo Triazole, 2- (2'-hydroxy-3'-tert-butyl-5'-methylphenyl) benzotriazole, 2- (2'-hydroxy-3 ', 5'-di-tert-butylphenyl) -5 Chlorobenzotriazole, 2- (2′-hydroxy-3 ′-(3 ′′, 4 ′′, 5 ′′, 6 ′′ -tetrahydrophthalimidomethyl) -5′-methylphenyl) benzotriazole, 2,2-methylenebis (4- (1,1,3,3-tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol), 2- (2'-hydroxy-3 -Tert-butyl-5'-methylphenyl) -5-chlorobenzotriazole
  • Benzophenone compounds As the benzophenone-based compound according to the present invention, a compound represented by the following general formula (B) is preferably used.
  • Y represents a hydrogen atom, a halogen atom or an alkyl group, an alkenyl group, an alkoxy group, and a phenyl group, and these alkyl group, alkenyl group, and phenyl group may have a substituent.
  • A represents a hydrogen atom, an alkyl group, an alkenyl group, a phenyl group, a cycloalkyl group, an alkylcarbonyl group, an alkylsulfonyl group or a —CO (NH) n-1-D group, and D represents an alkyl group, an alkenyl group or a substituent.
  • the alkyl group represents, for example, a linear or branched aliphatic group having up to 24 carbon atoms
  • the alkoxy group has, for example, an alkoxy group having up to 18 carbon atoms
  • the alkenyl group has, for example, up to 16 carbon atoms.
  • the alkenyl group represents, for example, an allyl group or a 2-butenyl group.
  • substituents to alkyl groups alkenyl groups and phenyl groups, halogen atoms such as chloro, bromo and fluorine atoms, hydroxy groups and phenyl groups (this phenyl group is substituted with alkyl groups or halogen atoms, etc.) May be included).
  • benzophenone compound represented by the general formula (B) are shown below, but the present invention is not limited thereto.
  • CHIMASSORB 81 manufactured by BASF Japan
  • BASF Japan can be preferably used as a commercial product.
  • an ultraviolet absorber described in JP-A-6-148430 can be preferably used.
  • Triazine compound As the triazine compound, a compound having at least two aromatic rings can be used.
  • aromatic ring includes an aromatic heterocycle in addition to an aromatic hydrocarbon ring.
  • the aromatic hydrocarbon ring is particularly preferably a 6-membered ring (that is, a benzene ring).
  • the aromatic heterocycle is generally an unsaturated heterocycle.
  • the aromatic heterocycle is preferably a 5-membered ring, 6-membered ring or 7-membered ring, more preferably a 5-membered ring or 6-membered ring.
  • Aromatic heterocycles generally have the most double bonds.
  • a nitrogen atom, an oxygen atom and a sulfur atom are preferable, and a nitrogen atom is particularly preferable.
  • aromatic heterocycles include furan ring, thiophene ring, pyrrole ring, oxazole ring, isoxazole ring, thiazole ring, isothiazole ring, imidazole ring, pyrazole ring, furazane ring, triazole ring, pyran ring, pyridine ring , Pyridazine ring, pyrimidine ring, pyrazine ring and 1,3,5-triazine ring.
  • aromatic ring a benzene ring, a condensed benzene ring and biphenyls are preferable.
  • 1,3,5-triazine ring is preferably used.
  • compounds disclosed in JP-A No. 2001-166144 are preferably used.
  • the number of carbon atoms in the aromatic ring is preferably 2 to 20, more preferably 2 to 12, still more preferably 2 to 8, and most preferably 2 to 6.
  • the bonding relationship between two aromatic rings can be classified into (a) when a condensed ring is formed, (b) when directly linked by a single bond, and (c) when linked via a linking group (for aromatic rings). , Spiro bonds cannot be formed).
  • the bond relationship may be any of (a) to (c).
  • condensed ring examples include an indene ring, a naphthalene ring, an azulene ring, a fluorene ring, a phenanthrene ring, an anthracene ring, an acenaphthylene ring, a biphenylene ring, a naphthacene ring, Pyrene ring, indole ring, isoindole ring, benzofuran ring, benzothiophene ring, indolizine ring, benzoxazole ring, benzothiazole ring, benzimidazole ring, benzotriazole ring, purine ring, indazole ring, chromene ring, quinoline ring, isoquinoline Ring, quinolidine ring, quinazoline ring, cinnoline ring, quinoxaline ring, phthalazine
  • the single bond is preferably a bond between carbon atoms of two aromatic rings.
  • Two aromatic rings may be bonded with two or more single bonds to form an aliphatic ring or a non-aromatic heterocyclic ring between the two aromatic rings.
  • the linking group in (c) is also preferably bonded to carbon atoms of two aromatic rings.
  • the linking group is preferably an alkylene group, an alkenylene group, an alkynylene group, —CO—, —O—, —NH—, —S—, or a combination thereof. Examples of linking groups composed of combinations are shown below. In addition, the relationship between the left and right in the following examples of the linking group may be reversed.
  • substituents include halogen atoms (F, Cl, Br, I), hydroxyl groups, carboxyl groups, cyano groups, amino groups, nitro groups, sulfo groups, carbamoyl groups, sulfamoyl groups, ureido groups, alkyl groups, alkenyls.
  • alkynyl group alkynyl group, aliphatic acyl group, aliphatic acyloxy group, alkoxy group, alkoxycarbonyl group, alkoxycarbonylamino group, alkylthio group, alkylsulfonyl group, aliphatic amide group, aliphatic sulfonamido group, aliphatic substituted amino group
  • the number of carbon atoms in the alkyl group is preferably 1-8.
  • a chain alkyl group is preferable to a cyclic alkyl group, and a linear alkyl group is particularly preferable.
  • the alkyl group may further have a substituent (for example, a hydroxy group, a carboxy group, an alkoxy group, an alkyl-substituted amino group).
  • Examples of alkyl groups (including substituted alkyl groups) include methyl, ethyl, n-butyl, n-hexyl, 2-hydroxyethyl, 4-carboxybutyl, 2-methoxyethyl, and 2- Each group of a diethylaminoethyl group is included.
  • the alkenyl group preferably has 2 to 8 carbon atoms.
  • a chain alkenyl group is preferable to a cyclic alkenyl group, and a linear alkenyl group is particularly preferable.
  • the alkenyl group may further have a substituent. Examples of the alkenyl group include a vinyl group, an allyl group, and a 1-hexenyl group.
  • the number of carbon atoms of the alkynyl group is preferably 2-8.
  • a chain alkynyl group is preferable to a cyclic alkynyl group, and a linear alkynyl group is particularly preferable.
  • the alkynyl group may further have a substituent. Examples of the alkynyl group include ethynyl group, 1-butynyl group and 1-hexynyl group.
  • the number of carbon atoms in the aliphatic acyl group is preferably 1-10.
  • Examples of the aliphatic acyl group include an acetyl group, a propanoyl group, and a butanoyl group.
  • the number of carbon atoms in the aliphatic acyloxy group is preferably 1-10.
  • Examples of the aliphatic acyloxy group include an acetoxy group.
  • the number of carbon atoms of the alkoxy group is preferably 1-8.
  • the alkoxy group may further have a substituent (for example, an alkoxy group).
  • a substituent for example, an alkoxy group.
  • Examples of the alkoxy group (including a substituted alkoxy group) include a methoxy group, an ethoxy group, a butoxy group, and a methoxyethoxy group.
  • the number of carbon atoms of the alkoxycarbonyl group is preferably 2 to 10.
  • Examples of the alkoxycarbonyl group include a methoxycarbonyl group and an ethoxycarbonyl group.
  • the number of carbon atoms of the alkoxycarbonylamino group is preferably 2 to 10.
  • Examples of the alkoxycarbonylamino group include a methoxycarbonylamino group and an ethoxycarbonylamino group.
  • the number of carbon atoms of the alkylthio group is preferably 1-12.
  • Examples of the alkylthio group include a methylthio group, an ethylthio group, and an octylthio group.
  • the number of carbon atoms of the alkylsulfonyl group is preferably 1-8.
  • Examples of the alkylsulfonyl group include a methanesulfonyl group and an ethanesulfonyl group.
  • the number of carbon atoms in the aliphatic amide group is preferably 1-10.
  • Examples of the aliphatic amide group include acetamide.
  • the number of carbon atoms in the aliphatic sulfonamide group is preferably 1-8.
  • Examples of the aliphatic sulfonamido group include a methanesulfonamido group, a butanesulfonamido group, and an n-octanesulfonamido group.
  • the number of carbon atoms of the aliphatic substituted amino group is preferably 1-10.
  • Examples of the aliphatic substituted amino group include a dimethylamino group, a diethylamino group, and a 2-carboxyethylamino group.
  • the number of carbon atoms in the aliphatic substituted carbamoyl group is preferably 2 to 10.
  • Examples of the aliphatic substituted carbamoyl group include a methylcarbamoyl group and a diethylcarbamoyl group.
  • the number of carbon atoms of the aliphatic substituted sulfamoyl group is preferably 1-8.
  • Examples of the aliphatic substituted sulfamoyl group include a methylsulfamoyl group and a diethylsulfamoyl group.
  • the number of carbon atoms of the aliphatic substituted ureido group is preferably 2 to 10.
  • Examples of the aliphatic substituted ureido group include a methylureido group.
  • non-aromatic heterocyclic groups examples include piperidino groups and morpholino groups.
  • the molecular weight of the triazine compound is preferably 300 to 800.
  • triazine compound represented by the following general formula (I) is preferable to use as the triazine compound.
  • R201 each independently represents an aromatic ring or a heterocyclic ring having a substituent in at least one of the ortho, meta and para positions.
  • X201 each independently represents a single bond or —NR202—.
  • each R202 independently represents a hydrogen atom, a substituted or unsubstituted alkyl group, an alkenyl group, an aryl group, or a heterocyclic group.
  • the aromatic ring represented by R201 is preferably phenyl or naphthyl, particularly preferably phenyl.
  • the aromatic ring represented by R201 may have at least one substituent at any substitution position.
  • substituents include halogen atom, hydroxyl group, cyano group, nitro group, carboxyl group, alkyl group, alkenyl group, aryl group, alkoxy group, alkenyloxy group, aryloxy group, acyloxy group, alkoxycarbonyl group, Alkenyloxycarbonyl group, aryloxycarbonyl group, sulfamoyl group, alkyl-substituted sulfamoyl group, alkenyl-substituted sulfamoyl group, aryl-substituted sulfamoyl group, sulfonamide group, carbamoyl, alkyl-substituted carbamoyl group, alkenyl-sub
  • the heterocyclic group represented by R201 has aromaticity.
  • the heterocycle having aromaticity is generally an unsaturated heterocycle, preferably a heterocycle having the largest number of double bonds.
  • the heterocyclic ring is preferably a 5-membered ring, 6-membered ring or 7-membered ring, more preferably a 5-membered ring or 6-membered ring, and most preferably a 6-membered ring.
  • the hetero atom of the heterocyclic ring is preferably a nitrogen atom, a sulfur atom or an oxygen atom, and particularly preferably a nitrogen atom.
  • a pyridine ring (2-pyridyl or 4-pyridyl as the heterocyclic group) is particularly preferable.
  • the heterocyclic group may have a substituent. Examples of the substituent of the heterocyclic group are the same as the examples of the substituent of the aryl moiety.
  • the heterocyclic group is preferably a heterocyclic group having a free valence on the nitrogen atom.
  • the heterocyclic group having a free valence on the nitrogen atom is preferably a 5-membered ring, 6-membered ring or 7-membered ring, more preferably a 5-membered ring or 6-membered ring, and a 5-membered ring. Is most preferred.
  • the heterocyclic group may have a plurality of nitrogen atoms. Further, the heterocyclic group may have a hetero atom other than the nitrogen atom (for example, O, S). Examples of heterocyclic groups having free valences on nitrogen atoms are shown below. Here, -C4H9n represents n-C4H9.
  • the alkyl group represented by R202 may be a cyclic alkyl group or a chain alkyl group, but is preferably a chain alkyl group, more preferably a linear alkyl group than a branched chain alkyl group. .
  • the alkyl group preferably has 1 to 30 carbon atoms, more preferably 1 to 20, more preferably 1 to 10, still more preferably 1 to 8, and further preferably 1 to 6. Most preferred.
  • the alkyl group may have a substituent. Examples of the substituent include a halogen atom, an alkoxy group (for example, methoxy group, ethoxy group) and an acyloxy group (for example, acryloyloxy group, methacryloyloxy group).
  • the alkenyl group represented by R202 may be a cyclic alkenyl group or a chain alkenyl group, but preferably represents a chain alkenyl group, and is a straight chain alkenyl group rather than a branched chain alkenyl group. Is more preferable.
  • the number of carbon atoms of the alkenyl group is preferably 2 to 30, more preferably 2 to 20, further preferably 2 to 10, still more preferably 2 to 8, and further preferably 2 to 6 is most preferred.
  • the alkenyl group may have a substituent. Examples of the substituent are the same as those of the alkyl group described above.
  • the aromatic ring group and heterocyclic group represented by R202 are the same as the aromatic ring and heterocyclic ring represented by R201, and the preferred range is also the same.
  • the aromatic ring group and the heterocyclic group may further have a substituent, and examples of the substituent are the same as those of the aromatic ring and heterocyclic ring of R201.
  • the compound represented by the general formula (I) can be synthesized by a known method such as a method described in JP-A-2003-344655.
  • the method for adding the adhesion improver to the dope can be used without limitation as long as it dissolves the adhesion improver in the dope, but in the present invention, the adhesion improver may be methylene chloride, methyl acetate, dioxolane and the like.
  • a good solvent for cellulose acylate or a mixture of a good solvent and a poor solvent such as a lower aliphatic alcohol (methanol, ethanol, propanol, butanol, etc.) is dissolved in an organic solvent and added to the cellulose acylate solution as an adhesion improver solution.
  • the dope method is preferable. In this case, it is preferable to make the dope solvent composition and the solvent composition of the adhesion improving agent solution the same or as close as possible.
  • the ⁇ / 4 plate according to the present invention preferably contains a plasticizer, and many compounds generally known as plasticizers can be usefully used.
  • plasticizer phosphoric acid ester or carboxylic acid ester is used.
  • phosphate esters include triphenyl phosphate (TPP) and tricresyl phosphate (TCP).
  • carboxylic acid ester include phthalic acid esters and citric acid esters.
  • phthalic acid esters examples include dimethyl phthalate (DMP), diethyl phthalate (DEP), dibutyl phthalate (DBP), dioctyl phthalate (DOP), diphenyl phthalate (DPP) and diethylhexyl phthalate (DEHP).
  • citrate esters include triethyl O-acetylcitrate (OACTE) and tributyl O-acetylcitrate (OACTB).
  • Examples of other carboxylic acid esters include butyl oleate, methylacetyl ricinoleate, dibutyl sebacate, and various trimellitic acid esters.
  • Phthalate plasticizers DMP, DEP, DBP, DOP, DPP, DEHP
  • DEP and DPP are particularly preferred.
  • a known deterioration (oxidation) inhibitor such as 2,6-di-tert-butyl-4-methylphenol, 4,4′-thiobis- ( 6-tert-butyl-3-methylphenol), 1,1'-bis (4-hydroxyphenyl) cyclohexane, 2,2'-methylenebis (4-ethyl-6-tert-butylphenol), 2,5-di- Phenolic or hydroquinone antioxidants such as tert-butylhydroquinone and pentaerythrityl-tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] can be added.
  • oxidation such as 2,6-di-tert-butyl-4-methylphenol, 4,4′-thiobis- ( 6-tert-butyl-3-methylphenol), 1,1'-bis (4-hydroxyphenyl) cyclohexane, 2,2'-methylenebis (4-ethyl-6-tert
  • the addition amount of the deterioration inhibitor is 0.05 to 5.0 parts by mass with respect to 100 parts by mass of the base resin.
  • the ⁇ / 4 plate according to the present invention preferably contains a peeling accelerator from the viewpoint of further improving the peelability.
  • the release accelerator can be included, for example, in a proportion of 0.001 to 1% by mass, and the addition of 0.5% by mass or less is preferable because separation of the release agent from the film hardly occurs. 005% by mass or more is preferable because a desired peeling reduction effect can be obtained. Therefore, it is preferably included at a rate of 0.005 to 0.5% by mass, and at a rate of 0.01 to 0.3% by mass. More preferably.
  • peeling accelerator known ones can be adopted, and organic and inorganic acidic compounds, surfactants, chelating agents and the like can be used. Among them, polyvalent carboxylic acids and esters thereof are effective, and in particular, ethyl esters of citric acid can be used effectively.
  • the ⁇ / 4 plate according to the present invention is generally added with fine particles in order to prevent scratches or deterioration of transportability when handled. They are called matting agents, anti-blocking agents or anti-scratching agents and have been used conventionally. They are not particularly limited as long as they have the above-described functions, and may be an inorganic compound matting agent or an organic compound matting agent.
  • the inorganic compound matting agent include silicon-containing inorganic compounds (for example, silicon dioxide, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, magnesium silicate, etc.), titanium oxide, and zinc oxide.
  • silicon-containing inorganic compounds for example, silicon dioxide, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, magnesium silicate, etc.
  • titanium oxide titanium oxide
  • zinc oxide Aluminum oxide, barium oxide, zirconium oxide, strongtium oxide, antimony oxide, tin oxide, tin oxide / antimony, calcium carbonate, talc, clay, calcined kaolin, calcium phosphate, etc., more preferably silicon-containing inorganic compounds and oxides
  • silicon dioxide is particularly preferably used.
  • silicon dioxide fine particles for example, commercially available products having trade names such as Aerosil R972, R974, R812, 200, 300, R202, OX50, TT600 (manufactured by Nippon Aerosil Co., Ltd.) can be used.
  • zirconium oxide fine particles for example, those commercially available under trade names such as Aerosil R976 and R811 (manufactured by Nippon Aerosil Co., Ltd.) can be used.
  • the organic compound matting agent include, for example, polymers such as silicone resin, fluorine resin, and acrylic resin, and among them, silicone resin is preferably used.
  • silicone resins those having a three-dimensional network structure are particularly preferable.
  • Tospearl 103, Tospearl 105, Tospearl 108, Tospearl 120, Tospearl 145, Tospearl 3120 and Tospearl 240 A commercial product having a trade name can be used.
  • the method is not particularly limited, and any method can be used as long as a desired thermoplastic resin solution can be obtained.
  • an additive may be included at the stage of mixing the thermoplastic resin and the solvent, or the additive may be added after preparing a mixed solution with the thermoplastic resin and the solvent. Further, it may be added and mixed immediately before casting the dope, which is a so-called immediately preceding addition method, and the mixing is used by installing screw-type kneading online.
  • a static mixer such as an in-line mixer is preferable, and examples of the in-line mixer include a static mixer SWJ (Toray static type in-pipe mixer Hi-Mixer) (manufactured by Toray Engineering).
  • Japanese Patent Laid-Open No. 2003-053752 adds an additive solution having a different composition to the main raw material dope in a method for producing a thermoplastic resin film.
  • the distance L between the nozzle tip and the starting end portion of the in-line mixer is 5 times or less of the main raw material pipe inner diameter d, thereby eliminating concentration unevenness, matting particles and the like.
  • the distance (L) between the tip opening of the additive liquid supply nozzle having a composition different from that of the main raw material dope and the starting end of the in-line mixer is 10 times or less the inner diameter (d) of the supply nozzle tip opening.
  • the in-line mixer is a static unstirred in-tube mixer or a dynamic agitated in-tube mixer. More specifically, it is disclosed that the flow rate ratio of the thermoplastic resin film main raw material dope / in-line additive liquid is 10/1 to 500/1, preferably 50/1 to 200/1.
  • the additive is also disclosed in JP-A-2003-014933 of the invention aimed at a retardation film with little additive bleed-out, no delamination phenomenon, excellent slipperiness and excellent transparency.
  • the additive or additive may be added to the melting pot, or a solution in which the additive or additive is dissolved or dispersed between the melting pot and the co-casting die may be added to the dope being fed.
  • a mixing means such as a static mixer in order to improve the mixing property.
  • the matting agent is not added in a large amount, the haze of the film does not increase, and when actually used in an LCD, inconveniences such as a decrease in contrast and generation of bright spots occur. Hateful. Moreover, if it is not too small, it is possible to realize creaking and scratch resistance. From these viewpoints, it is preferably included in a proportion of 0.01 to 5.0% by mass, more preferably included in a proportion of 0.03 to 3.0% by mass, and a proportion of 0.05 to 1.0% by mass. It is particularly preferable to include
  • the ⁇ / 4 plate according to the present invention may be produced by a solution casting method or a melt casting method as a film containing a thermoplastic resin, but is preferably produced by a solution casting method.
  • the manufacturing method will be described by taking a cellulose acylate film suitable as a ⁇ / 4 plate according to the present invention as an example.
  • the ⁇ / 4 plate according to the present invention will be described as a cellulose acylate film.
  • the cellulose acylate film used in the present invention is prepared by dissolving cellulose acylate and the additive in a solvent to prepare a dope, and casting the dope on a belt-shaped or drum-shaped metal support. , A process of drying the cast dope as a web, a process of peeling from the metal support, a process of stretching, a process of further drying, a process of further heat treating the obtained film if necessary, and a process of winding after cooling. Is called.
  • the cellulose acylate film used in the present invention preferably contains 60 to 95% by mass of cellulose acylate in the solid content.
  • the concentration of cellulose acylate in the dope is preferably higher because the drying load after casting on the metal support can be reduced, but if the concentration of cellulose acylate is too high, the load during filtration increases. Filtration accuracy deteriorates.
  • the concentration that achieves both of these is preferably 10 to 35% by mass, and more preferably 15 to 25% by mass.
  • the dope solvent used in the present invention may be used alone or in combination of two or more, but it is preferable in terms of production efficiency to use a mixture of a good solvent and a poor solvent of cellulose acylate, A larger amount of good solvent is preferred from the viewpoint of the solubility of cellulose acylate.
  • the preferable range of the mixing ratio of the good solvent and the poor solvent is 70 to 98% by mass for the good solvent and 2 to 30% by mass for the poor solvent.
  • the good solvent used in the present invention is not particularly limited, and examples thereof include organic halogen compounds such as methylene chloride, dioxolanes, acetone, methyl acetate, and methyl acetoacetate. Particularly preferred is methylene chloride or methyl acetate.
  • the poor solvent used in the present invention is not particularly limited, but for example, methanol, ethanol, n-butanol, cyclohexane, cyclohexanone and the like are preferably used.
  • the dope preferably contains 0.01 to 2% by mass of water.
  • a general method can be used. When heating and pressurization are combined, it is possible to heat above the boiling point at normal pressure. It is preferable to stir and dissolve while heating at a temperature that is equal to or higher than the boiling point of the solvent at normal pressure and that the solvent does not boil under pressure, in order to prevent the generation of massive undissolved materials called gels and macos.
  • a method in which cellulose acylate is mixed with a poor solvent and wetted or swollen, and then a good solvent is added and dissolved is also preferably used.
  • Pressurization may be performed by a method of injecting an inert gas such as nitrogen gas or a method of increasing the vapor pressure of the solvent by heating. Heating is preferably performed from the outside.
  • a jacket type is preferable because temperature control is easy.
  • the heating temperature with the addition of a solvent is preferably higher from the viewpoint of the solubility of cellulose acylate. However, if the heating temperature is too high, the required pressure increases and the productivity deteriorates.
  • a preferred heating temperature is 45 to 120 ° C, more preferably 60 to 110 ° C, and still more preferably 70 ° C to 105 ° C. The pressure is adjusted so that the solvent does not boil at the set temperature.
  • a cooling dissolution method is also preferably used, whereby cellulose acylate can be dissolved in a solvent such as methyl acetate.
  • the cellulose acylate solution is filtered using a suitable filter medium such as filter paper.
  • a suitable filter medium such as filter paper.
  • the absolute filtration accuracy is small in order to remove insoluble matters and the like.
  • a filter medium with an absolute filtration accuracy of 0.008 mm or less is preferable, a filter medium with 0.001 to 0.008 mm is more preferable, and a filter medium with 0.003 to 0.006 mm is more preferable.
  • the material of the filter medium there are no particular restrictions on the material of the filter medium, and ordinary filter media can be used. However, plastic filter media such as polypropylene and Teflon (registered trademark), and metal filter media such as stainless steel do not drop off fibers. preferable. It is preferable to remove and reduce impurities, particularly bright spot foreign matter, contained in the raw material cellulose acylate by filtration.
  • the bright spot foreign material is arranged in a crossed Nicols state with two polarizing plates, a cellulose acylate film is placed between them, light is applied from the side of one polarizing plate, and observation is performed from the side of the other polarizing plate. It is a point (foreign matter) where light from the opposite side sometimes appears to leak, and the number of bright spots having a diameter of 0.01 mm or more is preferably 200 / cm 2 or less. More preferably, it is 100 pieces / cm 2 or less, further preferably 50 pieces / m 2 or less, and further preferably 0 to 10 pieces / cm 2. Further, it is preferable that the number of bright spots of 0.01 mm or less is small.
  • the dope can be filtered by a normal method, but the method of filtering while heating at a temperature not lower than the boiling point of the solvent at normal pressure and in a range where the solvent does not boil under pressure is the filtration pressure before and after filtration.
  • the increase in the difference (referred to as differential pressure) is small and preferable.
  • a preferred temperature is 45 to 120 ° C., more preferably 45 to 70 ° C., and still more preferably 45 to 55 ° C.
  • the filtration pressure is preferably 1.6 MPa or less, more preferably 1.2 MPa or less, and further preferably 1.0 MPa or less.
  • the cellulose acylate film has a total content of the adhesion improver according to the present invention within 50% of the thickness direction of the cellulose acylate film from the side in contact with the hard coat layer of the cellulose acylate film.
  • the cellulose acylate film is a laminate of two or more layers formed by co-casting, the thickness of the film layer on the hard coat layer side is 0.5 to 10 ⁇ m, and the film on the hard coat layer side It is preferable that the layer contains 90% by mass or more of the total amount of the adhesion improver contained in the cellulose acylate film.
  • a dope containing an adhesion improver and a dope not containing the dope are prepared, and both dopes are co-cast or sequentially cast. This can be realized by forming a laminated film.
  • the prepared cellulose acylate solution (dope) is preferably formed by casting the two or more cellulose acylate solutions on a smooth band or drum as a support.
  • the two or more types of dopes may be cast on the support at the same time, or may be cast separately on the support.
  • the dope on the support side can be cast first and dried to some extent on the support, and then overlaid on the support.
  • a film having a laminated structure can be produced by appropriately combining simultaneous casting (also called co-casting) and sequential casting.
  • the method for producing a cellulose acylate film used in the present invention is preferably carried out by co-casting from the viewpoint of productivity, and a known co-casting method can be used.
  • the film may be produced by casting and laminating a solution containing cellulose acylate from a plurality of casting openings provided at intervals in the traveling direction of the metal support.
  • the methods described in JP-A Nos. 158414, 1-122419, and 11-198285 can be applied.
  • it may be formed into a film by casting a cellulose acylate solution from two casting ports.
  • the film cast on the metal support is peeled off by the first casting port, and the second casting is performed on the side in contact with the metal support surface.
  • a film may be produced, for example, a method described in Japanese Patent Publication No. 44-20235.
  • FIG. 2 is a schematic view showing a co-casting die and cast to form a multilayered web (the web may also be referred to as a dope film immediately after casting).
  • the co-casting has a plurality of (three in FIG. 2) skin layer slits 13 and 15 and a core layer slit 14 in the die part 11 of the co-casting die 10, and is made of metal.
  • the skin layer dope 17 By simultaneously casting the skin layer dope 17, the core layer dope 18, and the skin layer dope 19 on the support 16 from the respective slits, a multilayer structure of skin layer 21 / core layer 22 / skin layer 23 is obtained.
  • the web 20 is formed.
  • the cellulose acylate solutions to be cast may be the same solution or different cellulose acylate solutions, but different cellulose acylate solutions are preferred for providing the adhesion improving agent with distribution.
  • a cellulose acylate solution corresponding to the function may be extruded from each casting port.
  • the cellulose acylate solution according to the present invention can be simultaneously cast with other functional layers (for example, an adhesive layer, a dye layer, an antistatic layer, an antihalation layer, a UV absorbing layer, a polarizing layer).
  • the film formation is simultaneous or sequential multilayer casting.
  • the inner and outer thicknesses are not particularly limited, but the thickness of the film layer on the hard coat layer side is preferably 0.5 to 10 ⁇ m.
  • the film layer on the hard coat layer side contains the adhesion improver in an amount of 90% by mass or more of the total amount contained in the cellulose acylate film, and the content is 0.05 to 5 mass with respect to 100 parts by mass of the cellulose acylate film. It is preferable to contain a part.
  • the adhesion improver is distributed unevenly on the hard coat layer side of the film and the portion is thin to about 1/25 to 1/10 of the film thickness, it is uniformly dispersed in the film. Compared with the case where it exists, more adhesion improvement agents can be contained in this part, maintaining the ultraviolet-ray transmittance required for a sealing layer.
  • cellulose acylate solutions having different additive concentrations and types of additives such as the above-mentioned adhesion improver, plasticizer, matting agent, and other additives are co-cast to obtain a desired laminated structure.
  • the cellulose acylate film can also be produced.
  • the multilayer cast dope is dried and peeled off from the support.
  • the dope is cast on a drum or a metal support, and the solvent is evaporated to form a film.
  • the dope before casting is preferably adjusted in concentration so that the solid content is 18 to 35% by mass.
  • the surface of the drum or metal support is preferably finished in a mirror state.
  • the dope is preferably cast on a drum or metal support having a surface temperature of 10 ° C. or less. After casting, it is preferable to dry it by applying air for 2 seconds or more.
  • the obtained film can be peeled off from a drum or a metal support, and further dried by high-temperature air whose temperature is successively changed from 100 ° C. to 160 ° C. to evaporate the residual solvent.
  • the above method is described in Japanese Patent Publication No. 5-17844. According to this method, it is possible to shorten the time from casting to stripping. In order to carry out this method, it is necessary for the dope to gel at the surface temperature of the drum or metal support during casting.
  • the metal support in the casting process is preferably a mirror-finished surface, and a stainless steel belt or a drum whose surface is plated with a casting is preferably used as the metal support.
  • the cast width can be 1 to 4 m.
  • the surface temperature of the metal support in the casting step is set to ⁇ 50 ° C. to below the temperature at which the solvent boils and does not foam. A higher temperature is preferable because the web can be dried faster, but if it is too high, the web may foam or the flatness may deteriorate.
  • a preferable support temperature is appropriately determined at 0 to 100 ° C., and more preferably 5 to 30 ° C.
  • the web is gelled by cooling and peeled from the drum in a state containing a large amount of residual solvent.
  • the method for controlling the temperature of the metal support is not particularly limited, and there are a method of blowing warm air or cold air, and a method of contacting hot water with the back side of the metal support. It is preferable to use warm water because heat transfer is performed efficiently, so that the time until the temperature of the metal support becomes constant is short.
  • warm air considering the temperature drop of the web due to the latent heat of vaporization of the solvent, while using warm air above the boiling point of the solvent, there may be cases where wind at a temperature higher than the target temperature is used while preventing foaming. .
  • the amount of residual solvent when peeling the web from the metal support is preferably 10 to 150% by mass, more preferably 20 to 40% by mass. Alternatively, it is 60 to 130% by mass, and particularly preferably 20 to 30% by mass or 70 to 120% by mass.
  • the temperature at the peeling position on the metal support is preferably ⁇ 50 to 40 ° C., more preferably 10 to 40 ° C., and most preferably 15 to 30 ° C.
  • the amount of residual solvent is defined by the following formula.
  • Residual solvent amount (% by mass) ⁇ (MN) / N ⁇ ⁇ 100 Note that M is the mass of a sample collected during or after the production of the web or film, and N is the mass after heating M at 115 ° C. for 1 hour.
  • the web is peeled off from the metal support, further dried, and dried until the residual solvent amount is 0.5% by mass or less.
  • a roll drying method (a method in which a plurality of rolls arranged at the top and bottom are alternately passed through the web for drying) or a tenter method for drying while transporting the web is employed.
  • the web When peeling from the metal support, the web is stretched in the longitudinal direction due to the peeling tension and the subsequent conveying tension. Therefore, in the present invention, when peeling the web from the casting support, the peeling and conveying tensions are reduced as much as possible. It is preferable to carry out in the state. Specifically, for example, it is effective to set it to 50 to 170 N / m or less. At that time, it is preferable to apply a cold air of 20 ° C. or less to fix the web rapidly.
  • the cellulose acylate film is further adjusted by adjusting the refractive index (the refractive index nx in the in-plane slow axis direction, the refractive index ny in the direction perpendicular to the in-plane slow axis and the refractive index nz in the thickness direction). can do.
  • an adhesion improving agent layer can be provided by coating as described later.
  • the in-plane retardation Ro (590) measured at a wavelength of 590 nm is preferably in the range of 110 to 170 nm, but the retardation is preferably imparted by film stretching. .
  • the stretching method There is no particular limitation on the stretching method.
  • a method of stretching in the vertical direction a method of stretching in the horizontal direction and stretching in the horizontal direction, a method of stretching in the vertical and horizontal directions and stretching in both the vertical and horizontal directions, and the like.
  • these methods may be used in combination. That is, the film may be stretched in the transverse direction, longitudinally, or in both directions with respect to the film forming direction, and when stretched in both directions, simultaneous stretching or sequential stretching may be used. May be.
  • driving the clip portion by the linear drive method is preferable because smooth stretching can be performed and the risk of breakage and the like can be reduced.
  • stretching is performed in the transport direction using the difference in peripheral speed of the film transport roll, or both ends of the web are gripped with clips or the like in the direction perpendicular to the transport direction (also referred to as the width direction or the TD direction)
  • a tenter method it is also preferable to use a tenter that can independently control the web gripping length (distance from the start of gripping to the end of gripping) by the left and right gripping means.
  • either the ⁇ / 4 plate or the polarizer according to the present invention is stretched in a 45 ° direction with respect to the film transport direction in the stretching step.
  • a ⁇ / 4 plate provided on the surface of a display device whose polarization axis is parallel to the long side direction or the short side direction of the polarizing plate, such as a polarizing plate used in a VA or IPS type display device,
  • the angle between the longitudinal direction of the ⁇ / 4 plate made of a roll-shaped polymer film and the in-plane slow axis is substantially 45 °, the longitudinal direction or the lateral direction of the long roll-shaped ⁇ / 4 plate
  • a cut ⁇ / 4 plate can be used, which is advantageous in production with little cut loss of the film.
  • the ⁇ / 4 plate in which the angle between the longitudinal direction and the in-plane slow axis is substantially 45 ° stretches the rolled cellulose acylate film in a direction substantially 45 ° with respect to the longitudinal direction. Can be manufactured.
  • FIG. 3 is a schematic diagram showing oblique stretching by a tenter.
  • the stretched film is manufactured using a tenter.
  • This tenter is a device that widens a film fed from a film roll (feeding roll) in an oblique direction with respect to its traveling direction (moving direction of the middle point in the film width direction) in a heating environment by an oven.
  • the tenter includes an oven, a pair of rails on the left and right on which a gripping tool for transporting the film travels, and a number of gripping tools that travel on the rails. Both ends of the film fed out from the film roll and sequentially supplied to the entrance portion of the tenter are gripped by a gripping tool, the film is guided into the oven, and the film is released from the gripping tool at the exit portion of the tenter.
  • the film released from the gripping tool is wound around the core.
  • Each of the pair of rails has an endless continuous track, and the gripping tool which has released the grip of the film at the exit portion of the tenter travels outside and is sequentially returned to the entrance portion.
  • the rail shape of the tenter is asymmetrical on the left and right according to the orientation angle, stretch ratio, etc. given to the stretched film to be manufactured, and can be finely adjusted manually or automatically.
  • a long thermoplastic resin film is stretched, and the orientation angle ⁇ can be set to an arbitrary angle within the range of 40 ° to 80 ° with respect to the winding direction after stretching. Yes.
  • the gripping tool of the tenter is configured to travel at a constant speed with a certain distance from the front and rear gripping tools.
  • FIG. 3 shows the track (rail pattern) of the tenter rail used for oblique stretching.
  • the feeding direction DR1 of the cellulose acylate film is different from the winding direction (MD direction) DR2 of the stretched film, thereby obtaining a wide and uniform optical characteristic even in a stretched film having a relatively large orientation angle. It is possible.
  • the feeding angle ⁇ i is an angle formed by the feeding direction DR1 of the film before stretching and the winding direction DR2 of the film after stretching.
  • the feeding angle ⁇ i is set to 10 ° ⁇ i ⁇ 60 °, preferably 15 ° ⁇ i ⁇ 50 °. The By setting the feeding angle ⁇ i in the above range, the variation in the optical characteristics in the width direction of the obtained film becomes good (becomes small).
  • the cellulose acylate film fed from the film roll is gripped by the right and left gripping tools at the tenter inlet (position a), and then traveled as the gripping tool travels.
  • the left and right grips CL and CR which are opposed to the direction of the film traveling direction (feeding direction DR1) at the tenter entrance (position a), run on a rail that is asymmetrical to the left and right, and are in a preheating zone. Through an oven having a stretching zone and a heat setting zone.
  • substantially perpendicular indicates that the angle formed by the straight line connecting the aforementioned gripping tools CL and CR and the film feeding direction DR1 is within 90 ⁇ 1 °.
  • Preheating zone refers to the section that runs while the interval between the gripping tools gripping both ends is kept constant at the oven entrance.
  • the stretching zone refers to an interval until the gap between the gripping tools gripping both ends starts to become constant again.
  • the cooling zone refers to a section in which the temperature in the zone is set to be equal to or lower than the glass transition temperature Tg ° C. of the thermoplastic resin constituting the film during a period in which the interval between the gripping tools after the stretching zone becomes constant again. .
  • the temperature of each zone is set to Tg + 5 to Tg + 20 ° C for the preheating zone, Tg to Tg + 20 ° C for the stretching zone, and Tg-30 to Tg ° C for the cooling zone, relative to the glass transition temperature Tg of the thermoplastic resin. It is preferable to do.
  • the draw ratio R (W / Wo) in the drawing step is preferably 1.3 to 3.0 times, more preferably 1.5 to 2.8 times. When the draw ratio is within this range, thickness unevenness in the width direction is reduced, which is preferable. In the stretching zone of the tenter stretching machine, if the stretching temperature is differentiated in the width direction, the thickness unevenness in the width direction can be further improved.
  • Wo represents the width of the film before stretching
  • W represents the width of the film after stretching.
  • the step of stretching in the oblique direction may be performed in the film forming step (online), or may be unwound after being wound up once and performed in the tenter (offline).
  • the means for drying the web is not particularly limited, and can be generally performed with hot air, infrared rays, a heating roll, microwave, or the like, but is preferably performed with hot air in terms of simplicity.
  • the drying temperature in the web drying step is preferably a glass transition temperature of the film of ⁇ 5 ° C. or lower, and it is effective to perform heat treatment at 100 ° C. or higher and 10 minutes or longer and 60 minutes or shorter. Drying is performed at a drying temperature of 100 to 200 ° C., more preferably 110 to 160 ° C.
  • the knurling process can be formed by pressing a heated embossing roll. Fine embossing is formed on the embossing roll, and the embossing roll can be pressed to form asperity on the film and make the end bulky.
  • the height of the knurling at both ends of the width of the cellulose acylate film used in the present invention is preferably 4 to 20 ⁇ m and the width is 5 to 20 mm.
  • the knurling process is preferably provided after the drying in the film forming process and before winding.
  • the cellulose acylate film used in the present invention preferably has a haze of less than 1%, more preferably less than 0.5%. By setting the haze to less than 1%, there is an advantage that the transparency of the film becomes higher and it becomes easier to use as an optical film.
  • the cellulose acylate film used in the present invention preferably has an equilibrium moisture content of 4% or less at 25 ° C. and 60% relative humidity, more preferably 3% or less.
  • an equilibrium moisture content of 4% or less at 25 ° C. and 60% relative humidity, more preferably 3% or less.
  • the cellulose acylate film used in the present invention is preferably 30 to 100 ⁇ m. By setting the thickness to 30 ⁇ m or more, the handling property when creating a web-like film is improved, which is preferable.
  • the cellulose acylate film used in the present invention is preferably long, specifically, preferably has a length of about 100 to 10,000 m, and is wound into a roll.
  • the width of the cellulose acylate film used in the present invention is preferably 1 m or more, more preferably 1.4 m or more, and particularly preferably 1.4 to 4 m.
  • an adhesion improving agent layer can be provided on the cellulose acylate film by coating.
  • the preferred film thickness of the adhesion improving agent layer is 0.1 to 10 nm.
  • the ⁇ / 4 plate according to the present invention using cellulose acylate as the thermoplastic resin can be produced.
  • a hard coat layer is provided on the ⁇ / 4 plate according to the present invention, and the hard coat layer is preferably either a clear hard coat layer or an antiglare hard coat layer.
  • the hard coat layer according to the present invention is provided on the ⁇ / 4 plate, and preferably provided on the surface on the side containing a large amount of the adhesion improving agent.
  • an antireflection layer including at least a low refractive index layer is provided on the hard coat layer in order to improve visibility.
  • the clear hard coat layer When the hard coat layer according to the present invention is a clear hard coat layer, the clear hard coat layer has a center line average roughness (Ra) defined by JIS B 0601 of 0.001 to 0.1 ⁇ m, and Ra is 0. It is preferably 0.002 to 0.05 ⁇ m.
  • the center line average roughness (Ra) is preferably measured by an optical interference type surface roughness measuring instrument, and can be measured, for example, using a non-contact surface fine shape measuring device WYKO NT-2000 manufactured by WYKO.
  • the hard coat layer according to the present invention When the hard coat layer according to the present invention is anti-glare, it has a fine uneven shape on the surface, but the fine uneven shape is formed by containing fine particles in the hard coat layer, and has the following average It can be formed by incorporating fine particles having a particle size of 0.01 ⁇ m to 4 ⁇ m in the hard coat layer. Further, as will be described later, as the surface roughness of the outermost surface of the antireflection layer provided on the antiglare hard coat layer, the centerline average roughness (Ra) defined by JIS B 0601 is 0.08 ⁇ m. It is preferable to adjust to a range of ⁇ 0.5 ⁇ m.
  • particles contained in the hard coat layer according to the present invention for example, inorganic or organic fine particles are used.
  • inorganic fine particles examples include silicon oxide, titanium oxide, aluminum oxide, tin oxide, zinc oxide, calcium carbonate, barium sulfate, talc, kaolin, and calcium sulfate.
  • the organic fine particles include polymethyl methacrylate methyl acrylate resin fine particles, acrylic styrene resin fine particles, polymethyl methacrylate resin fine particles, silicone resin fine particles, polystyrene resin fine particles, polycarbonate resin fine particles, benzoguanamine resin fine particles, and melamine resin.
  • examples thereof include fine particles, polyolefin resin fine particles, polyester resin fine particles, polyamide resin fine particles, polyimide resin fine particles, and polyfluoroethylene resin fine particles.
  • silicon oxide fine particles or polystyrene resin fine particles are particularly preferable.
  • the above-described inorganic or organic fine particles are preferably used in addition to a coating composition containing a resin or the like used for producing an antiglare hard coat layer.
  • the content of the inorganic or organic fine particles is from 0.1 parts by mass to 100 parts by mass of the resin for preparing the antiglare hard coat layer. It is preferably 30 parts by mass, more preferably 0.1 to 20 parts by mass. In order to impart a more preferable antiglare effect, it is preferable to use 1 part by mass to 15 parts by mass of fine particles having an average particle diameter of 0.1 ⁇ m to 1 ⁇ m with respect to 100 parts by mass of the resin for preparing the antiglare hard coat layer. . It is also preferable to use two or more kinds of fine particles having different average particle diameters.
  • the hard coat layer according to the present invention preferably contains an antistatic agent, and the antistatic agent comprises Sn, Ti, In, Al, Zn, Si, Mg, Ba, Mo, W, and V.
  • a conductive material containing at least one element selected from the group as a main component and having a volume resistivity of 107 ⁇ ⁇ cm or less is preferable.
  • antistatic agent examples include metal oxides and composite oxides having the above elements.
  • ZnO, TiO2, SnO2, Al2O3, In2O3, SiO2, MgO, BaO, MoO2, V2O5, etc., or composite oxides thereof are preferable, and ZnO, In2O3, TiO2 and SnO2 are particularly preferable.
  • containing different atoms include, for example, addition of Al, In, etc. to ZnO, addition of Nb, Ta, etc. to TiO2, and addition of Sb, Nb, halogen elements, etc. to SnO2. It is effective.
  • the amount of these different atoms added is preferably in the range of 0.01 to 25 mol%, particularly preferably in the range of 0.1 to 15 mol%.
  • the volume resistivity of these metal oxide powders having conductivity is 107 ⁇ ⁇ cm or less, particularly 105 ⁇ ⁇ cm or less.
  • the film thickness of the clear hard coat layer or antiglare hard coat layer is preferably in the range of 0.5 ⁇ m to 15 ⁇ m, more preferably 1.0 ⁇ m to 7 ⁇ m. .
  • the hard coat layer according to the present invention preferably contains an active energy ray-curable resin that is cured by irradiation with active energy rays such as ultraviolet rays.
  • the active energy ray curable resin is a resin that is cured through a crosslinking reaction or the like by irradiation with an active energy ray such as an ultraviolet ray or an electron beam.
  • an active energy ray such as an ultraviolet ray or an electron beam.
  • Typical examples of the active energy ray curable resin include an ultraviolet curable resin and an electron beam curable resin, but a resin that is cured by irradiation with an active energy ray other than an ultraviolet ray or an electron beam may be used.
  • Examples of the ultraviolet curable resin include an ultraviolet curable acrylic urethane resin, an ultraviolet curable polyester acrylate resin, an ultraviolet curable epoxy acrylate resin, an ultraviolet curable polyol acrylate resin, and an ultraviolet curable epoxy resin. be able to.
  • UV curable acrylic urethane resins generally include 2-hydroxyethyl acrylate and 2-hydroxyethyl methacrylate (hereinafter referred to as acrylate) in products obtained by reacting a polyester polyol with an isocyanate monomer or a prepolymer. It can be easily obtained by reacting an acrylate monomer having a hydroxyl group (hydroxyl group) such as 2-hydroxypropyl acrylate.
  • a mixture of 100 parts of Unidic 17-806 (manufactured by DIC Corporation) and 1 part of Coronate L (manufactured by Nippon Polyurethane Corporation) described in JP-A-59-151110 is preferably used.
  • the UV curable polyester acrylate resin can be easily obtained by reacting a monomer such as 2-hydroxyethyl acrylate, glycidyl acrylate, or acrylic acid with a hydroxyl group (hydroxyl group) or a carboxyl group at the end of the polyester. JP, 59-151112, A).
  • An ultraviolet curable epoxy acrylate resin is obtained by reacting a terminal hydroxyl group (hydroxyl group) of an epoxy resin with a monomer such as acrylic acid, acrylic acid chloride, or glycidyl acrylate.
  • ultraviolet curable polyol acrylate resins include ethylene glycol (meth) acrylate, polyethylene glycol di (meth) acrylate, glycerin tri (meth) acrylate, trimethylolpropane triacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, and dipenta.
  • examples include erythritol pentaacrylate, dipentaerythritol hexaacrylate, and alkyl-modified dipentaerythritol pentaacrylate.
  • an ultraviolet curable epoxy acrylate resin and an ultraviolet curable epoxy resin an epoxy-based active energy ray reactive compound that is useful is shown.
  • A Glycidyl ether of bisphenol A (this compound is obtained as a mixture having different degrees of polymerization by reaction of epichlorohydrin and bisphenol A)
  • B A compound having a glycidyl ether group by reacting a compound having two phenolic OHs such as bisphenol A with epichlorohydrin, ethylene oxide and / or propylene oxide
  • c Glycidyl ether of 4,4'-methylenebisphenol
  • D Epoxy compound of phenol formaldehyde resin of novolak resin or resol resin
  • e Compound having alicyclic epoxide, for example, bis (3,4-epoxycyclohexylmethyl) oxalate, bis (3,4-epoxycyclohexylmethyl) ) Adipate, bis (3,4-epoxy-6-cyclohexylmethyl) adipate, bis (3,4-epoxycyclohexylmethyl pimelate), 3,4-epoxy
  • the molecular weight of the epoxy compound is 2000 or less, preferably 1000 or less as an average molecular weight.
  • the photopolymerization initiator or photosensitizer for cationically polymerizing an epoxy-based active energy ray-reactive compound is a compound capable of releasing a cationic polymerization initiator by irradiation with active energy rays, and particularly preferably a cation by irradiation. It is a group of double salts of onium salts that release Lewis acids capable of initiating polymerization.
  • the active energy ray-reactive compound epoxy resin forms a polymerized, crosslinked structure or network structure not by radical polymerization but by cationic polymerization. Unlike radical polymerization, it is not affected by oxygen in the reaction system, and is therefore a preferred active energy ray reactive resin.
  • the active energy ray-reactive epoxy resin useful in the present invention is polymerized by a photopolymerization initiator or a photosensitizer that releases a substance that initiates cationic polymerization by irradiation with active energy rays.
  • a photopolymerization initiator a group of double salts of onium salts that release a Lewis acid that initiates cationic polymerization by light irradiation is particularly preferable.
  • a typical example of such a compound is a compound represented by the following general formula (a).
  • cation is onium
  • R1, R2 , R3 and R4 are organic groups which may be the same or different.
  • a, b, c, and d are each an integer of 0 to 3
  • a + b + c + d is equal to the valence of Z.
  • Me is a metal or metalloid which is a central atom of a halide complex
  • B P, As, Sb, Fe, Sn, Bi, Al, Ca, In, Ti, Zn, Sc, V, Cr, Mn, Co, etc.
  • X is halogen
  • w is the net charge of the halogenated complex ion
  • v is the number of halogen atoms in the halogenated complex ion.
  • anion [MeXv] w- of the general formula (a) include tetrafluoroborate (BF4-), tetrafluorophosphate (PF4-), tetrafluoroantimonate (SbF4-), tetrafluoroarsenate ( AsF4-), tetrachloroantimonate (SbCl4-) and the like can be mentioned.
  • anions include perchlorate ion (ClO4-), trifluoromethylsulfite ion (CF3SO3-), fluorosulfonate ion (FSO3-), toluenesulfonate ion, trinitrobenzene acid anion, and the like. Can do.
  • aromatic onium salts As a cationic polymerization initiator.
  • aromatic halonium salts described in JP-A-50-151996, 50-158680, etc. VIA group aromatic onium salts described in Kaikai 50-151997, 52-30899, 59-55420, 55-125105, JP-A-56-8428, 56-149402, The oxosulfoxonium salts described in JP-A-57-192429, aromatic diazonium salts described in JP-B-49-17040, thiopyridium salts described in US Pat. No. 4,139,655, and the like are preferable.
  • an aluminum complex a photodegradable silicon compound type
  • the cationic polymerization initiator can be used in combination with a photosensitizer such as benzophenone, benzoin isopropyl ether, or thioxanthone.
  • a photosensitizer such as n-butylamine, triethylamine, or tri-n-butylphosphine can be used.
  • the photosensitizer and photoinitiator used for the active energy ray-reactive compound are sufficient to initiate the photoreaction at 0.1 to 15 parts by mass with respect to 100 parts by mass of the UV-reactive compound.
  • the amount is preferably 1 to 10 parts by mass.
  • the sensitizer preferably has an absorption maximum from the near ultraviolet region to the visible light region.
  • the polymerization initiator is generally 0.1 to 15 parts by mass with respect to 100 parts by mass of the active energy ray-curable epoxy resin (prepolymer). Is more preferable, and addition of 1 to 10 parts by mass is more preferable.
  • an epoxy resin can be used in combination with the urethane acrylate type resin, polyether acrylate type resin, or the like.
  • an active energy ray radical polymerization initiator and an active energy ray cationic polymerization initiator in combination.
  • an oxetane compound can be used for the hard coat layer according to the present invention.
  • the oxetane compound used is a compound having a three-membered oxetane ring containing oxygen or sulfur. Among them, a compound having an oxetane ring containing oxygen is preferable.
  • the oxetane ring may be substituted with a halogen atom, a haloalkyl group, an arylalkyl group, an alkoxyl group, an allyloxy group, or an acetoxy group.
  • a binder such as a known thermoplastic resin, thermosetting resin or hydrophilic resin such as gelatin can be mixed with the above-described active energy ray-curable resin.
  • These resins preferably have a polar group in the molecule.
  • Polar groups include -COOM, -OH, -NR2, -NR3X, -SO3M, -OSO3M, -PO3M2, -OPO3M (where M is a hydrogen atom, alkali metal or ammonium group, and X is an amine salt)
  • R represents a hydrogen atom or an alkyl group.
  • the active energy ray is irradiated by a hard coat layer, an antireflection layer (medium to high refractive index layer and low refractive index) on a support.
  • the active energy rays may be irradiated after the coating of the layer), but it is preferable to irradiate the active energy rays when the hard coat layer is applied.
  • the active energy ray used in the present invention can be used without limitation as long as it is an energy source that activates a compound such as ultraviolet ray, electron beam, ⁇ ray, etc., but ultraviolet ray and electron beam are preferable, especially easy handling and high energy. UV rays are preferred in that they can be easily obtained.
  • the ultraviolet light source for photopolymerizing the ultraviolet reactive compound any light source that generates ultraviolet light can be used. For example, a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, or the like can be used.
  • An ArF excimer laser, a KrF excimer laser, an excimer lamp, synchrotron radiation, or the like can also be used. It is preferable to use a light source having an emission spectrum in the ultraviolet region having a wavelength of 250 nm to 420 nm. Irradiation conditions vary depending on each lamp, but the amount of irradiation light is preferably 20 mJ / cm 2 or more, more preferably 50 mJ / cm 2 to 2000 mJ / cm 2, and particularly preferably 50 mJ / cm 2 to 1000 mJ / cm 2.
  • the ultraviolet irradiation may be performed every time one layer is provided for each of a plurality of layers (medium refractive index layer, high refractive index layer, low refractive index layer) constituting the hard coat layer and the antireflection layer described later.
  • the film may be irradiated after lamination. Or you may irradiate combining these. From the viewpoint of productivity, it is preferable to irradiate ultraviolet rays after laminating multiple layers.
  • an electron beam can be used in the same manner.
  • the electron beam 50 to 1000 keV, preferably 100 to 100, emitted from various electron beam accelerators such as cockroft walton type, bandegraph type, resonance transformer type, insulated core transformer type, linear type, dynamitron type, and high frequency type.
  • An electron beam having an energy of 300 keV can be given.
  • the active energy ray-reactive compound used in the present invention In order to initiate the photopolymerization or photocrosslinking reaction of the active energy ray-reactive compound used in the present invention, the active energy ray-reactive compound alone is initiated, but the polymerization induction period is long or the polymerization initiation is slow. Therefore, it is preferable to use a photosensitizer or a photoinitiator, which can accelerate the polymerization.
  • the hard coat layer according to the present invention contains an active energy ray-curable resin
  • a photoinitiator or a photosensitizer can be used at the time of irradiation with active energy rays.
  • acetophenone benzophenone, hydroxybenzophenone, Michler's ketone, ⁇ -amyloxime ester, thioxanthone, and derivatives thereof.
  • a sensitizer such as n-butylamine, triethylamine, tri-n-butylphosphine can be used.
  • the amount of the photoreaction initiator and / or photosensitizer used in the ultraviolet curable resin composition excluding the solvent component that volatilizes after coating and drying is preferably 1% by mass to 10% by mass, particularly preferably. Is 2.5% by mass to 6% by mass.
  • an ultraviolet absorber described later may be included in the ultraviolet curable resin composition to the extent that the photocuring of the ultraviolet curable resin is not hindered.
  • an antioxidant that does not inhibit the photocuring reaction can be selected and used.
  • examples include hindered phenol derivatives, thiopropionic acid derivatives, phosphite derivatives, and the like.
  • 4,4′-thiobis (6-tert-3-methylphenol), 4,4′-butylidenebis (6-tert-butyl-3-methylphenol), 1,3,5-tris (3,5-di-tert-butyl-4-hydroxybenzyl) isocyanurate, 2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) mesitylene, di-octadecyl-4-
  • examples include hydroxy-3,5-di-tert-butylbenzyl phosphate.
  • Examples of the ultraviolet curable resin include ADEKA OPTMER KR, BY series KR-400, KR-410, KR-550, KR-566, KR-567, BY-320B (above, manufactured by ADEKA Corporation), Koeihard A-101-KK, A-101-WS, C-302, C-401-N, C-501, M-101, M-102, T-102, D-102, NS-101, FT -102Q8, MAG-1-P20, AG-106, M-101-C (manufactured by Guangei Chemical Industry Co., Ltd.), Seika Beam PHC2210 (S), PHCX-9 (K-3), PHC2213, DP- 10, DP-20, DP-30, P1000, P1100, P1200, P1300, P1400, P1500, P1600, SCR900 (above, Dainichi Chemical Industries) Manufactured by K.K.
  • the coating composition containing the active energy ray-curable resin preferably has a solid content concentration of 10% by mass to 95% by mass, and an appropriate concentration is selected depending on the coating method.
  • the hard coat layer according to the present invention preferably contains a surfactant, and the surfactant is preferably a silicone-based or fluorine-based surfactant.
  • silicone-based surfactant a nonionic surfactant having a hydrophobic group composed of dimethylpolysiloxane and a hydrophilic group composed of polyoxyalkylene is preferable.
  • a nonionic surfactant is a generic term for a system surfactant that does not have a group capable of dissociating into ions in an aqueous solution.
  • a hydroxyl group (hydroxyl group) of a polyhydric alcohol is used as a hydrophilic group. It has an oxyalkylene chain (polyoxyethylene) or the like as a hydrophilic group.
  • the hydrophilicity increases as the number of alcoholic hydroxyl groups (hydroxyl groups) increases and as the polyoxyalkylene chain (polyoxyethylene chain) becomes longer.
  • the nonionic surfactant according to the present invention is characterized by having dimethylpolysiloxane as a hydrophobic group.
  • nonionic surfactants include, for example, silicone surfactants SILWET L-77, L-720, L-7001, L-7002, L-7604, Y-7006, manufactured by Nippon Unicar Co., Ltd. FZ-2101, FZ-2104, FZ-2105, FZ-2110, FZ-2118, FZ-2120, FZ-2122, FZ-2123, FZ-2130, FZ-2154, FZ-2161, FZ-2162, FZ- 2163, FZ-2164, FZ-2166, FZ-2191 and the like.
  • SUPERSILWET SS-2801, SS-2802, SS-2803, SS-2804, SS-2805 and the like can be mentioned.
  • the nonionic surfactant in which the hydrophobic group is composed of dimethylpolysiloxane and the hydrophilic group is composed of polyoxyalkylene a dimethylpolysiloxane structure portion and a polyoxyalkylene chain are alternately and repeatedly bonded. It is preferably a linear block copolymer. Since the main chain skeleton has a long chain length and a linear structure, it is excellent. This is considered to be due to the fact that one activator molecule can be adsorbed on the surface of the silica fine particle at a plurality of locations so as to cover the surface of the silica fine particle by being a block copolymer in which hydrophilic groups and hydrophobic groups are alternately repeated.
  • silicone surfactants ABN SILWET FZ-2203, FZ-2207, FZ-2208, etc., manufactured by Nippon Unicar Co., Ltd.
  • a surfactant having a hydrophobic group having a perfluorocarbon chain can be used.
  • the types are fluoroalkylcarboxylic acid, N-perfluorooctanesulfonyl glutamate disodium, sodium 3- (fluoroalkyloxy) -1-alkylsulfonate, 3- ( ⁇ -fluoroalkanoyl-N-ethylamino) -1- Sodium propanesulfonate, N- (3-perfluorooctanesulfonamido) propyl-N, N-dimethyl-N-carboxymethyleneammonium betaine, perfluoroalkylcarboxylic acid, perfluorooctanesulfonic acid diethanolamide, perfluoroalkylsulfonic acid Salt, N-propyl-N- (2-hydroxyethyl) perfluorooctanesulfonamide, perfluoroalky
  • fluorosurfactants are commercially available under the trade names such as Megafac, Ftop, Surflon, Footagen, Unidyne, Florard, Zonyl and others.
  • a preferred addition amount is 0.01 to 3.0%, more preferably 0.02 to 1.0%, based on the solid content contained in the hard coat layer coating solution.
  • surfactants can be used in combination.
  • anionic surfactants such as sulfonates, sulfates, phosphates, etc., and ethers having polyoxyethylene chain hydrophilic groups
  • Type, ether ester type nonionic surfactants and the like may be used in combination.
  • the solvent for coating the hard coat layer in the present invention can be appropriately selected from, for example, hydrocarbons, alcohols, ketones, esters, glycol ethers, and other solvents, or can be used by mixing. .
  • a solvent containing 5% by mass or more, more preferably 5% by mass to 80% by mass or more of propylene glycol mono (C1-C4) alkyl ether or propylene glycol mono (C1-C4) alkyl ether ester is used.
  • a coating method of the hard coat layer composition coating solution a known method such as a gravure coater, a spinner coater, a wire bar coater, a roll coater, a reverse coater, an extrusion coater, an air doctor coater, a spray coat, an ink jet method can be used.
  • the coating amount is suitably 5 ⁇ m to 30 ⁇ m, preferably 10 ⁇ m to 20 ⁇ m in terms of wet film thickness.
  • the coating speed is preferably 10 m / min to 200 m / min.
  • the hard coat layer composition is preferably coated and dried and then irradiated with an active energy ray such as an ultraviolet ray or an electron beam to be cured.
  • an active energy ray such as an ultraviolet ray or an electron beam to be cured.
  • the irradiation time of the active energy ray is preferably 0.5 seconds to 5 minutes. More preferably, it is 3 seconds to 2 minutes from the viewpoint of curing efficiency and work efficiency of the ultraviolet curable resin.
  • An antireflection layer is also preferably provided on the hard coat layer of the ⁇ / 4 plate having the hard coat layer according to the present invention to improve visibility.
  • the antireflection layer to be used may have a single layer structure composed of only a low refractive index layer, but it is also preferable to provide a multilayer refractive index layer.
  • a hard coat layer is provided on the ⁇ / 4 plate, and can be laminated on the surface in consideration of the refractive index, the film thickness, the number of layers, the layer order, etc. so that the reflectance is reduced by optical interference.
  • the antireflection layer is composed of a combination of a high refractive index layer having a higher refractive index than that of the support and a low refractive index layer having a lower refractive index than that of the support, and particularly preferably from three or more refractive index layers.
  • An anti-reflection layer comprising three layers having different refractive indexes from the support side, a medium refractive index layer (having a higher refractive index than the support or anti-glare hard coat layer, and having a higher refractive index than the high refractive index layer). It is preferable that the layers are laminated in the order of (low layer) / high refractive index layer / low refractive index layer.
  • an antireflection layer having a layer structure of four or more layers in which two or more high refractive index layers and two or more low refractive index layers are alternately laminated is also preferably used.
  • Examples of preferred layer configurations of the antireflection layer according to the present invention are shown below.
  • / indicates that the layers are arranged in layers.
  • an intermediate layer may be provided as appropriate.
  • an antistatic layer containing conductive polymer fine particles (for example, crosslinked cation fine particles) or metal oxide fine particles (for example, SnO 2, ITO, etc.) is preferable.
  • the low refractive index layer, the middle refractive index layer, and the high refractive index layer can be formed in a known configuration, but the low refractive index layer is particularly preferably a hollow spherical silica-based fine particle, and (I) porous Composite particles composed of porous particles and a coating layer provided on the surface of the porous particles, or (II) hollow particles having a cavity inside and filled with a solvent, gas or porous substance It is done.
  • each refractive index layer constituting the antireflection layer is preferably in the range of 1 nm to 200 nm, and more preferably 5 nm to 150 nm. However, depending on the refractive index of each layer, an appropriate thickness is required. It is preferable to select.
  • the antireflection layer used in the present invention preferably has an average reflectance at 450 nm to 650 nm of 1% or less, particularly preferably 0.5% or less. Further, the minimum reflectance in this range is particularly preferably from 0.00 to 0.3%.
  • the refractive index and film thickness of the antireflection layer can be calculated and calculated by measuring the spectral reflectance.
  • the reflective optical characteristic of the produced low reflection film can measure a reflectance on the conditions of a 5-degree regular reflection using a spectrophotometer.
  • the degree of substitution was determined by the method specified in ASTM-D817-96.
  • cellulose acylate described as CAP in Tables 1 and 2 is cellulose acetate propionate (acetyl substitution degree 1.90, propionyl substitution degree 0.54).
  • the benzotriazole compounds (A-1 to A-3), triazine compounds (A-4, A-5) and benzophenone compounds used in the examples are the following compounds.
  • A-1 Tinuvin 928 ( ⁇ max 348 nm: manufactured by BASF Japan)
  • A-2 Tinuvin 326 ( ⁇ max 353 nm: manufactured by BASF Japan)
  • A-3 Tinuvin (TINUVIN) 517 ( ⁇ max 344 nm: manufactured by BASF Japan)
  • A-4 Tinuvin (TINUVIN) 1577FF ( ⁇ max 274 nm: manufactured by BASF Japan)
  • A-5 UV-1164 ( ⁇ max 350 nm: manufactured by Cytec)
  • A-6 CHIMASSORB 81 ( ⁇ max 327 nm: manufactured by BASF Japan)
  • the absorption maximum peak ( ⁇ max) was measured with a spectrophotometer UVIDFC-610 manufactured by Shimadzu Corporation using a solution in which the above compound was dissolved in a solvent (dichloromethane or toluene). As a result, both were in the range of 260 nm to 400 nm. It was confirmed that there was an absorption maximum peak ( ⁇ max).
  • Fine particles (Aerosil R812 manufactured by Nippon Aerosil Co., Ltd.) 11 parts by weight Ethanol 89 parts by weight The above was stirred and mixed with a dissolver for 50 minutes, and then dispersed with Manton Gorin.
  • Fine particle addition liquid 1 The fine particle dispersion 1 was slowly added to the dissolution tank containing methylene chloride with sufficient stirring. Further, the particles were dispersed by an attritor so that the secondary particles had a predetermined particle size. This was filtered through Finemet NF manufactured by Nippon Seisen Co., Ltd. to prepare a fine particle additive solution 1.
  • a main dope solution having the following composition was prepared. First, methylene chloride and ethanol were added to the pressure dissolution tank. Cellulose acetate with an acetyl substitution degree of 2.75 was added to a pressure dissolution tank containing a solvent while stirring. This is completely dissolved with heating and stirring. This was designated as Azumi Filter Paper No. The main dope solution was prepared by filtration using 244.
  • the above was put into the sealed main dissolution kettle 1 and dissolved while stirring to prepare a dope solution.
  • an endless belt casting apparatus was used to uniformly cast the dope solution on a stainless steel belt support at a temperature of 33 ° C. and a width of 2000 mm.
  • the temperature of the stainless steel belt was controlled at 30 ° C.
  • the solvent was evaporated until the amount of residual solvent in the cast (cast) film reached 75%, and then peeled off from the stainless steel belt support with a peeling tension of 130 N / m.
  • the film was conveyed while being stretched.
  • the stretching ratio and the stretching speed were appropriately adjusted so that the phase difference Ro in the in-plane direction described in Table 1 was obtained.
  • drying was completed, conveying a film with many rolls in a drying zone.
  • the slow axis forms 45 ° with the film longitudinal direction at a temperature of 170 ° C. and a magnification of 1.5 times.
  • the film was stretched in an oblique direction.
  • drying was terminated while the drying zone was conveyed by a number of rolls.
  • the drying temperature was 130 ° C. and the transport tension was 100 N / m.
  • ⁇ / 4 plates 102 to 108 were produced in the same manner except that the cellulose acylate and the addition amount of adhesion improver shown in Table 1 were adjusted to the film thickness.
  • ⁇ Production of ⁇ / 4 plates 109 to 122> The following three types of dopes were prepared, and a ⁇ / 4 plate 109, which is a laminated cellulose acylate film having a core and a skin part, was prepared by co-casting.
  • each cellulose acylate dope was prepared by filtering through a filter paper having an average pore size of 34 ⁇ m and a sintered metal filter having an average pore size of 10 ⁇ m.
  • the dope was co-cast using a die shown in FIG. 2 so as to have a three-layer structure of hard coat layer side skin layer / core layer / skin layer using a band casting machine.
  • the core layer was made thickest by adjusting the casting amount of each dope, and as a result, simultaneous multilayer casting was performed so that the film thickness after stretching was 5 ⁇ m / 80 ⁇ m / 5 ⁇ m.
  • the film peeled off from the band with a residual solvent amount of about 30% by mass was heated to 140 ° C with a tenter and widened to a stretch rate of 32%, and then relaxed at 140 ° C for 60 seconds so that the stretch rate was 30%. I let you. Thereafter, the tenter transport was shifted to the roll transport, and further dried at 120 to 150 ° C. and wound up.
  • the slow axis forms 45 ° with the film longitudinal direction at a temperature of 170 ° C. and a magnification of 1.5 times.
  • the film was stretched in an oblique direction.
  • drying was terminated while the drying zone was conveyed by a number of rolls.
  • the drying temperature was 130 ° C. and the transport tension was 100 N / m.
  • ⁇ / 4 plates 110 to 122 which are laminated cellulose acylate films, were produced in the same manner except that the cellulose acylate and the type and amount of adhesion improver described in Table 1 were changed to the film thickness.
  • Norbornene resin (Zeonor 1420, manufactured by Nippon Zeon Co., Ltd.) 100 parts by mass
  • Adhesion improving agent A-1 0.1 part by mass
  • a mixture of the above materials was melt-mixed at 250 ° C. using a twin-screw extruder, and Nippon Seisen The mixture was filtered through Finemet NF (nominal filtration accuracy: 15 ⁇ m) and then pelletized. Using this pellet, after filtration for the second time with Finemet NF manufactured by Nippon Seisen Co., Ltd. (nominal filtration accuracy is 20 ⁇ m), it is melted at a melting temperature of 250 ° C. from a T die on a cooling drum of 30 ° C. in a sheet shape as described above. It was extruded and cooled and solidified to obtain a norbornene resin sheet.
  • Example 1 of JP-A-2009-214441 (stretching machine A: FIG. 11)
  • the obtained resin sheet was used at a temperature of 170 ° C. and a magnification of 1.5 times, and the slow axis was the film longitudinal direction.
  • ⁇ / 4 plate 123 which is an alicyclic polyolefin resin film, was produced.
  • ⁇ Preparation of ⁇ / 4 plate 124> (Production of laminated alicyclic polyolefin resin film) (Core layer material) Norbornene resin (Zeonor 1420, manufactured by Nippon Zeon Co., Ltd.) 100 parts by mass (hard coat layer side skin layer material) Norbornene resin (Zeonor 1420, manufactured by Nippon Zeon Co., Ltd.) 100 parts by mass Adhesion improver: A-1 0.1 part by mass (skin layer material) Norbornene resin (Zeonor 1420, manufactured by Nippon Zeon Co., Ltd.) 100 parts by mass A mixture of the above materials was melt-mixed at 250 ° C.
  • Example 1 of JP-A-2009-214441 (stretching machine A: FIG. 11)
  • the obtained resin sheet was used at a temperature of 170 ° C. and a magnification of 1.5 times, and the slow axis was the film longitudinal direction.
  • ⁇ / 4 plate 124 which is an alicyclic polyolefin resin film, was produced.
  • Comparative ⁇ / 4 plates 125 to 132 were produced in the same manner except that the type of cellulose acylate, the addition amount of the adhesion improver, and the film thickness were changed as shown in Table 2 in the ⁇ / 4 plate 101. .
  • Comparative ⁇ / 4 plates 133 to 140 were prepared in the same manner except that the type of cellulose acylate, the addition amount of the adhesion improver, and the film thickness were changed as shown in Table 2 in the ⁇ / 4 plate 109. .
  • a hard coat layer was similarly provided using the hard coat layer coating solution 1 to prepare a ⁇ / 4 plate 141 with a hard coat.
  • the sealing layer was cured by irradiating ultraviolet rays with a light amount of 5000 mJ / cm 2 from the hard coat layer side on the outermost surface, and a liquid crystal display device 101 with a front plate having the configuration shown in FIG.
  • liquid crystal display devices 102 to 141 with front plates having the configuration shown in FIG.
  • PET film polyethylene terephthalate film
  • a liquid crystal display device with a front plate 142 was produced using a polyethylene terephthalate film (PET film) in the same manner as the hard coat film 101.
  • PET film polyethylene terephthalate film
  • nx, ny, and nz are the refractive index nx at 23 ° C./55% RH and 590 nm (also referred to as the maximum refractive index in the plane of the film and the refractive index in the slow axis direction), ny (film surface).
  • nz the refractive index of the film in the thickness direction
  • d the thickness (nm) of the film.
  • the light transmittance at a wavelength of 380 nm is 50% or more.
  • the light transmittance at a wavelength of 380 nm is 30% or more and less than 50%.
  • the light transmittance at a wavelength of 380 nm is 10% or more and less than 30%.
  • Transmittance is less than 10% ⁇ Adhesion between hard coat layer and cellulose acylate film>
  • the prepared liquid crystal display device with a front plate was conditioned for 24 hours under conditions of a temperature of 23 ° C. and a relative humidity of 55%, and then the adhesion of the hard coat layer of the ⁇ / 4 plate with a hard coat was evaluated by a cross-cut test.
  • the evaluation area is 1 cm square, and the depth is slightly reached to the surface of the transparent plastic film, and a 1 mm square grid is cut into the surface of the cured film layer using a single blade razor blade.
  • Apply a commercially available 25 mm wide cellophane tape across the slit, leaving one end of the tape, rub it well, hold the end of the tape that has not been pasted by hand, pull it as hard as possible, peel it off, and cut The ratio of the area where the cured film layer was peeled to the tape area applied from the wire was evaluated as follows. When the peeling area is 15% or more with respect to the evaluation area, it is at a low practical level.
  • Front contrast (brightness of white display measured from the normal direction of the display device) / (Luminance of black display measured from normal direction of display device) The front contrast at any 10 points of the liquid crystal display device was measured and evaluated according to the following criteria.
  • Contrast unevenness may occur due to wrinkles and distortions generated in the hard coat film, or may occur due to poor curing of the sealing layer.
  • There is no variation in front contrast and there is no unevenness. ⁇ : The variation in front contrast is less than 1 to 5% and the variation is small. ⁇ : The front contrast is less than 5 to 10% and the variation is slightly Yes ⁇ : Front contrast is more than 10% variation and large variation ⁇ Evaluation of crosstalk when tilting neck when viewing 3D video> The produced liquid crystal display device was evaluated for crosstalk when the head was tilted during 3D video viewing.
  • the liquid crystal display devices 101 to 124 with front plates in which the ⁇ / 4 plates with hard coat according to the present invention are bonded to the front plates are harder than the liquid crystal display devices with front plates 125 to 142 of the comparative example. It can be seen that adhesion between the coat layer and the ⁇ / 4 plate, contrast unevenness, and 3D display crosstalk are excellent.
  • the ⁇ / 4 plate is formed by co-casting, the thickness of the film layer on the hard coat layer side is 0.5 to 10 ⁇ m, and the film layer on the hard coat layer side applies the adhesion improving agent to the ⁇ / 4 plate.
  • ⁇ / 4 plates 109 to 122 and 124 with hard coat which contain 90% by mass or more of the total amount contained in the film, are found to have particularly excellent properties for adhesion, contrast unevenness, and 3D display crosstalk. It was.
  • the liquid crystal display device 141 with a front plate in which a ⁇ / 4 plate with a hard coat in which an undercoat layer is provided between the ⁇ / 4 plate and the hard coat layer is bonded has an effect of improving adhesion, contrast unevenness, and 3D display crosstalk. Was small.
  • liquid crystal display device 142 using a PET film as the front plate produces moiré, has poor display quality, has a large 3D image crosstalk, and is not suitable for practical use.
  • the present invention is suitable for a method for manufacturing a liquid crystal display device with a front plate having high contrast and high visibility, and a liquid crystal display device with a front plate.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Physics (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)
  • Optical Filters (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

 前面板付き液晶表示装置の製造方法において、偏光板を液晶セルの両面に有する液晶パネルの視認側表面に、視認側からハードコート層を有し熱可塑性樹脂を主成分とするλ/4板、接着層、ガラスまたはアクリルである前面板、紫外線硬化型粘着剤を有する封止層をこの順に設け、該ハードコート層側から紫外線を照射して該封止層を硬化する工程と、該ハードコート層を有するλ/4板が波長260nm~400nmに吸収極大ピークを有する化合物をλ/4板の該熱可塑性樹脂100質量部に対して0.005~0.5質量部を含有する特徴と、を有する。

Description

前面板付き液晶表示装置の製造方法、前面板付き液晶表示装置
 本発明は、前面板付き液晶表示装置の製造方法、前面板付き液晶表示装置に関する。
 近年、立体画像の表示が可能なテレビなどの立体画像表示装置が提唱されている。この立体画像を表示させる方式の一つに、専用の立体画像視認用眼鏡を観測者が着用することで、2次元画像を立体画像として観測者に認識させる方式がある。この方式で現在有力視されているのが、画像を表示するディスプレイに視差画像である右眼用画像と左眼用画像とを時系列で交互に切り替えて映し出し、観測者は立体画像視認用眼鏡(G)を着用して、液晶ディスプレイの画像を見るという方式である(例えば特許文献1参照。)。
 このような液晶シャッタを使用した方式においては、偏光板が二枚の眼鏡を使用する方式、偏光板が一枚の眼鏡を使用する方式、どちらの方式においても、首を傾けた際の表示性能を改善するためにλ/4板が必要である。とりわけ偏光板が一枚の眼鏡を使用する方式では、より重要である。
 また、上記立体画像視認用眼鏡に対応して、立体画像表示装置の視認側にもλ/4板が必要であり、立体画像表示装置は大型であるほど立体視の効果が大きいため、大型化の要望が非常に強く、大型ディスプレイに使用できる大型のλ/4板が求められている。
 一方、液晶表示装置の更なるコントラスト向上のため、従来の液晶パネルの視認側にガラスまたはアクリル製の前面板の導入が検討されている。前面板を設けることにより、従来の偏光板保護フィルム表面の凹凸による乱反射が低減されることで、コントラストが高くめりはりのある色彩の再現が可能である。
 該前面板は液晶パネルに貼合する場合、空隙があるとその界面で外部光が多重反射してコントラストが低下するため、空隙を封止して前面板と液晶パネルを密着する封止層を設けることが好ましい。この封止層を硬化するのに、熱硬化、粘着などさまざまな方法があるなかで、封止層に紫外線硬化樹脂を用いて紫外線硬化する方法が最も適している。
 例えば、特許文献2では、液晶パネルと前面板とを光硬化性樹脂を介して密着させる際に340nm以上の波長光のみ照射し、液晶分子や接着剤等に悪影響を及ぼす340nm未満の波長光を遮蔽し、液晶パネルにダメージを与えることがなく、表示品質の低下を防止する技術が開示されている。
 また、上記ガラスまたはアクリル製の前面板は通常そのままでは使用せず、耐傷防止や反射防止の為のハードコート層を有する樹脂フィルム等を設ける。従って、生産性を考慮すると偏光板を液晶セルの両面に有する液晶パネルの視認側表面に、紫外線硬化型粘着剤を有する封止層、ガラスまたはアクリルである前面板、接着層、ハードコート層を有する樹脂フィルムをこの順に重ねた後、ハードコート層側から紫外線を照射して該封止層を硬化する方法が好ましい。
 上記立体画像表示装置に前面板を装着する際に、前面板にλ/4板を貼合することが生産上好ましいが、上記樹脂フィルムとしてハードコート層を有するλ/4板を用いると、別にハードコートフィルム、もしくはλ/4板を用意する必要がなく、立体画像表示装置の部材数の削減、薄型化に寄与でき好都合である。
 しかしながら、上記ハードコート層側から紫外線を照射して該封止層を硬化する場合、硬化に必要十分な光量を封止層に届けるために紫外線の光量を増やすと、上記ハードコート層を有するλ/4板に熱や紫外線そのものの負荷がかかり、ハードコート層とλ/4板間でのしわやゆがみ、ハードコート層の剥がれが生じ新たな課題になった。特に微細なしわやゆがみであっても、精密な視差が要求される立体画像表示装置にあっては、輝度低下及び色味変化、また立体(3D)映像観賞時に首を傾けた際のクロストークが生じ問題となった。
特開平8-201942号公報 特開2003-107433号公報
 従って本発明の目的は、ハードコート層を有するλ/4板を貼合した前面板を、液晶パネルに紫外線硬化型粘着剤を有する封止層を介して密着させる前面板付き液晶表示装置の製造方法であって、紫外線によって該封止層を十分に硬化でき、その際ハードコート層とλ/4板間でのしわやゆがみ、ハードコート層の剥がれがないλ/4板を有する、高コントラストで視認性の高い前面板付き液晶表示装置の製造方法を提供することにある。
 更に、輝度低下及び色味変化、また立体(3D)映像観賞時に首を傾けた際のクロストークがない前面板付き立体画像表示用液晶表示装置を提供することにある。
 本発明の上記目的は以下の構成により達成される。
 1.偏光板を液晶セルの両面に有する液晶パネルの視認側表面に、視認側からハードコート層を有し熱可塑性樹脂を主成分とするλ/4板、接着層、ガラスまたはアクリルである前面板、紫外線硬化型粘着剤を有する封止層をこの順に設け、該ハードコート層側から紫外線を照射して該封止層を硬化する前面板付き液晶表示装置の製造方法であって、該ハードコート層を有するλ/4板が波長260nm~400nmに吸収極大ピーク(λmax)を有する化合物をλ/4板の該熱可塑性樹脂100質量部に対して0.005~0.5質量部含有していることを特徴とする前面板付き液晶表示装置の製造方法。
 2.前記λ/4板が、波長380nmの光線透過率が30%以上であることを特徴とする前記1に記載の前面板付き液晶表示装置の製造方法。
 3.前記波長260nm~400nmに吸収極大ピーク(λmax)を有する化合物がベンゾトリアゾール系化合物、ベンゾフェノン系化合物またはトリアジン系化合物であることを特徴とする前記1または2に記載の前面板付き液晶表示装置の製造方法。
 4.前記λ/4板が、前記波長260nm~400nmに吸収極大ピーク(λmax)を有する化合物を、前記λ/4板のハードコート層と接する側から当該λ/4板の厚み方向の50%以内に、総含有量の90質量%以上を含有していることを特徴とする前記1~3のいずれか1項に記載の前面板付き液晶表示装置の製造方法。
 5.前記λ/4板が共流延によって形成される2層以上の積層体であり、前記ハードコート層側のフィルム層の厚さが0.5~10μmであり、かつ該ハードコート層側のフィルム層が前記波長260nm~400nmに吸収極大ピーク(λmax)を有する化合物を、前記λ/4板に含有される総量の90質量%以上を含有していることを特徴とする前記1~4のいずれか1項に記載の前面板付き液晶表示装置の製造方法。
 6.前記λ/4板の主成分である熱可塑性樹脂がセルロースアシレート、または脂環式ポリオレフィン樹脂であることを特徴とする前記1~5のいずれか1項に記載の前面板付き液晶表示装置の製造方法。
 7.前記1~6のいずれか1項に記載の前面板付き液晶表示装置の製造方法によって製造されたことを特徴とする前面板付き液晶表示装置。
 8.立体画像表示用液晶表示装置であることを特徴とする前記7に記載の前面板付き液晶表示装置。
 本発明によれば、ハードコート層を有するλ/4板を貼合した前面板を、液晶パネルに紫外線硬化型粘着剤を有する封止層を介して密着させる前面板付き液晶表示装置の製造方法であって、紫外線によって該封止層を十分に硬化でき、その際ハードコート層とλ/4板間でのしわやゆがみ、ハードコート層の剥がれがないλ/4板を有する、高コントラストで視認性の高い前面板付き液晶表示装置の製造方法を提供することができる。
 更に、輝度低下及び色味変化、また立体(3D)映像観賞時に首を傾けた際のクロストークがない前面板付き立体画像表示用液晶表示装置を提供することができる。
本発明の前面板付き液晶表示装置の製造方法の概略図である。 共流延ダイ及び流延して多層構造ウェブを形成したところを表した模式図である。 テンターによる斜め延伸を示す模式図である。
 以下本発明を実施するための形態について詳細に説明するが、本発明はこれらに限定されるものではない。
 本発明の前面板付き液晶表示装置の製造方法は、偏光板を液晶セルの両面に有する液晶パネルの視認側表面に、視認側からハードコート層を有し熱可塑性樹脂を主成分とするλ/4板、接着層、ガラスまたはアクリルである前面板、紫外線硬化型粘着剤を有する封止層をこの順に設け、該ハードコート層側から紫外線を照射して該封止層を硬化する前面板付き液晶表示装置の製造方法であって、該ハードコート層を有するλ/4板が波長260nm~400nmに吸収極大ピーク(λmax)を有する化合物をλ/4板の該熱可塑性樹脂100質量部に対して0.005~0.5質量部含有していることを特徴とする。
 図1は、本発明の前面板付き液晶表示装置の製造方法の概略図である。図1は本発明の前面板付き液晶表示装置の製造方法の最少構成を示しており、これに限定されるものではない。
 偏光板1、1aによって液晶セル2を挟持している液晶パネルの視認側表面に、視認側からハードコート層を有するλ/4板6、接着層5、ガラスまたはアクリルである前面板4、紫外線硬化型粘着剤を有する封止層3をこの順に設け、該ハードコート層側から紫外線を照射して封止層3を硬化して液晶パネルと前面板を密着させる。
 本発明者らは、紫外線硬化型粘着剤を有する封止層の紫外線による光硬化を阻害しないように、紫外線吸収剤を含まないλ/4板にハードコート層を設けたλ/4板を試作し、紫外線照射を行って封止層を硬化して前面板付き液晶表示装置を作製したところ、封止層の硬化に問題のない紫外線の光量範囲に調整した場合、該λ/4板のハードコート層と基材フィルム間でのしわやゆがみ、ハードコート層の剥がれが生じ実用上問題があることが判明した。
 本発明者らは、かかる問題について鋭意検討を重ねたところ、λ/4板に、波長260nm~400nmに吸収極大ピーク(λmax)を有する化合物をλ/4板の前記熱可塑性樹脂100質量部に対して0.005~0.5質量部含有させることで、ハードコート層とλ/4板間でのしわやゆがみ、ハードコート層の剥がれが大幅に改善できるという驚くべき事実を見出し本発明を成すに至った次第である。
 本発明に係るλ/4板は、波長380nmの光線透過率が30%以上であることが好ましく、係る構成により封止層の硬化と、ハードコート層とλ/4板間でのしわやゆがみ、ハードコート層の剥がれのないハードコート付きλ/4板の提供とを両立することができる。
 本発明に係る波長260nm~400nmに吸収極大ピーク(λmax)を有する化合物は、ベンゾトリアゾール系化合物、ベンゾフェノン系化合物またはトリアジン系化合物であることが好ましい。
 これは、未だ推定の域をでないが、該化合物を特定の範囲の量に調整してλ/4板に含有させることで、封止層に照射される紫外線を適量吸収して発熱し、その熱が伝播してλ/4板表面とハードコート層を構成する樹脂間の密着性を強固にするものと推定される。
 該化合物の含有量が0.005質量部未満である場合は、照射する紫外線によってハードコート層と基材フィルム間でのしわやゆがみ、ハードコート層の剥がれが生じる。また、該化合物の含有量が0.5質量部を越えると、発熱量が大きすぎてハードコート層とλ/4板間のゆがみが大きくなったり、ブリードアウトして密着性を劣化させたりする。
 前記化合物はλ/4板全体に均一に含有されなくてもよく、前記λ/4板のハードコート層と接する側から当該λ/4板の厚み方向の50%以内に、総含有量の90質量%以上を含有されていることが密着性を強固にする上でより好ましい。更に、λ/4板が共流延によって形成される2層以上の積層体であり、前記ハードコート層側のフィルム層の厚さが0.5~10μmであり、かつ該フィルム層が前記化合物の前記λ/4板に含有される総量の90質量%以上を含有していることが好ましい。
 以下、本発明の構成を図1の1~7の順に詳細に説明する。尚、図1中の矢印記号はUV光の照射を表している。
 <液晶パネル>
 本発明に係る液晶パネルは、偏光板1、1aを液晶セル2の両面に有することを特徴とする。偏光板は、同一のものでも異なっているものでよい。
 (液晶セル)
 液晶セル2は、反射型、透過型、半透過型LCDのいずれでもよく、またTN型、STN型、OCB型、HAN型、VA型(PVA型、MVA型)、IPS型等の各種駆動方式のLCDが好ましく用いられる。
 (偏光板)
 本発明に係る偏光板1、1aは、偏光子としてヨウ素、又は二色性染料をドープしたポリビニルアルコールを延伸したものを使用し、偏光板保護フィルムによって偏光子の少なくとも一方の面が挟持されている。偏光子の膜厚は5~40μm、好ましくは5~30μmであり、特に好ましくは5~20μmである。
 上記偏光板保護フィルムは、特に限定されるものではないが、ポリマーフィルムであることが好ましく、製造が容易であること、光学的に均一性であること、光学的に透明性であることが好ましい。これらの性質を有していれば何れでもよく、例えば、セルロースアシレート系フィルム、ポリエステル系フィルム、ポリカーボネート系フィルム、ポリアリレート系フィルム、ポリスルホン(ポリエーテルスルホンも含む)系フィルム、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステルフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、セロファン、セルロースジアセテートフィルム、セルロースアセテートブチレートフィルム、ポリ塩化ビニリデンフィルム、ポリビニルアルコールフィルム、エチレンビニルアルコールフィルム、シンジオタクティックポリスチレン系フィルム,ポリカーボネートフィルム、ノルボルネン樹脂系フィルム、ポリメチルペンテンフィルム、ポリエーテルケトンフィルム、ポリエーテルケトンイミドフィルム、ポリアミドフィルム、フッ素樹脂フィルム、ナイロンフィルム、シクロオレフィンポリマーフィルム、ポリビニルアセタール系樹脂フィルム、ポリメチルメタクリレートフィルム又はアクリルフィルム等を挙げることができるが、これらに限定されるわけではない。これらのフィルムは溶液流延法或いは溶融法で製膜されたフィルムが好ましく用いられる。これらのうちセルロースアシレートフィルム、ポリカーボネートフィルム、ポリスルホン(ポリエーテルスルホンを含む)、シクロオレフィンポリマーフィルムが好ましく、本発明においては、特にセルロースアシレートフィルム、シクロオレフィンポリマーフィルムが、製造上、コスト面、透明性、均一性、接着性等の面から好ましい。例えば、市販のセルロースアシレートフィルムとしては、コニカミノルタタック KC8UX、KC4UX、KC5UX、KC8UCR3、KC8UCR4、KC8UCR5、KC8UY、KC4UY、KC12UR、KC16UR、KC4UE、KC8UE、KC4FR-1、KC4FR-2(以上コニカミノルタオプト(株)製)などが好ましく用いられる。
 偏光板は一般的な方法で作製することができる。アルカリ鹸化処理した保護フィルムは、偏光子の両面に、完全鹸化型ポリビニルアルコール水溶液を用いて貼り合わせることが好ましい。
 (立体画像表示パネル)
 本発明に係る液晶パネルは、立体画像表示装置としてもよい。
 例えば、液晶パネルと液晶シャッタメガネとからなる立体画像表示装置であって、当該液晶シャッタメガネが、(1)保護フィルム、液晶セル、及び偏光子がこの順に設けられている、又は(2)保護フィルム、偏光子、液晶セル、及び偏光子がこの順に設けられている液晶シャッタメガネを用いることができる。
 液晶パネルは対象物体である立体の視差画像である右眼用画像、左眼用画像が交互に表示され、上記液晶シャッタメガネによって右眼、左眼に結像され立体的に可視できる。
 <封止層>
 本発明に係る封止層3は紫外線硬化型粘着剤を有する封止層であり、紫外線照射によって硬化して、液晶パネルと前面板を密着するものである。
 紫外線硬化型粘着剤としては、紫外線硬化成分、および光重合開始剤と、必要に応じて架橋剤、粘着付与剤、充填剤、老化防止剤、着色剤などの慣用の添加剤を加えたものが用いられる。
 前記紫外線硬化成分としては、分子中に炭素-炭素二重結合を有し、ラジカル重合により硬化可能なモノマー、ダイマー、オリゴマー、ポリマーであればよく、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオール(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の(メタ)アクリル酸と多価アルコールとのエステル;エステルアクリレートオリゴマー、2-プロペニルジ-3-ブテニルシアヌレート、2-ヒドロキシエチルビス(2-アクリロキシエチル)イソシアヌレート、トリス(2-メタクリロキシエチル)イソシアヌレート、トリス(2-メタクリロキシエチル)イソシアヌレート等のイソシアヌレートまたはイソシアヌレート化合物などが挙げられる。なお、アクリル系ポリマーとして、ポリマー側鎖に炭素-炭素二重結合を有する紫外線硬化型ポリマーを使用する場合においては、特に上記の紫外線硬化成分を加える必要はない。
 また、市販の紫外線硬化成分としては、例えばアクリル系紫外線硬化型樹脂を主成分とするソニーケミカル&インフォメーションデバイス株式会社製の光学弾性樹脂「SVR」などが適する。
 しかしながら、本発明は、特定の紫外線硬化成分に限定されるものではなく、本発明の技術的思想から外れない物質であり、かつ工程の容易性のための紫外線硬化が可能であれば、様々な硬化成分を使用できる。
 光重合開始剤としては、その重合反応のきっかけとなり得る適当な波長の紫外線を照射することにより開裂し、ラジカルを生成する物質であればよく、例えば、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテルなどのベンゾインアルキルエーテル類;ベンジル、ベンゾイル、ベンゾフェン、α-ヒドロキシシクロヘキシルフェニルケトンなどの芳香族ケトン類、ベンジルジメチルケタールなどの芳香族ケタール類;ポリビニルベンゾフェノン;クロロチオキサントン、ドデシルチオキサントン、ジメチルチオキサントン、ジエチルチオキサントンなどのチオキサントン類などを挙げることができる。なお、前記架橋剤には、例えば、ポリイソシアネート化合物、メラミン樹脂、尿素樹脂、ポリアミン、カルボキシル基含有ポリマーなどが含まれる。
 以上の粘着剤の形態としては、溶剤型、エマルジョン型、ホットメルト型等が使用され、一般的には溶剤型、エマルジョン型のものが利用される。また、必要に応じて他の助剤を添加混合し、塗工液として作製することができる。他の助剤としては、減粘剤、増粘剤、pH調整剤、消泡剤、防腐防黴、顔料、無機充填剤、安定剤、濡れ剤、湿潤剤等を挙げることができる。
 封止層はグラビアコーター、ディップコーター、リバースコーター、ワイヤーバーコーター、ダイコーター、インクジェット法等公知の方法を用いて、封止層を形成する塗布組成物を塗布し、塗布後、加熱乾燥し、紫外線硬化処理することで形成できる。
 封止層のドライ膜厚としては平均膜厚0.1~50μm、好ましくは1~40μm、特に好ましくは10~30μmである。
 紫外線硬化処理の光源としては、紫外線を発生する光源であれば制限なく使用できる。例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等を用いることができる。
 照射条件はそれぞれのランプによって異なるが、紫外線の照射量は、通常積算光量1000~6000mJ/cm2、好ましくは2000~5000mJ/cm2である。
 <前面板>
 前面板4としては、透明であること、平滑であること、物理的強度が高いことが求められ、ガラス板、またはアクリル樹脂板等が用いられる。
 <接着層>
 本発明に係る接着層5は前面板と本発明に係るハードコート層を有するλ/4板とを接着する粘着剤(接着剤を含む)を含有する層である。
 粘着剤としてはゴム系粘着剤、アクリル系粘着剤、シリコーン系粘着剤等の各種の感圧粘着剤を使用できるが、無色透明で、液晶セルとの接着性の良好なアクリル系粘着剤が一般的には用いられる。アクリル系粘着剤としては、そのベースポリマーの重量平均分子量が、30万~250万程度であるのが好ましい。
 アクリル系粘着剤のベースポリマーであるアクリル系重合体に使用されるモノマーとしては、各種(メタ)アクリル酸アルキル{(メタ)アクリル酸アルキルとはアクリル酸アルキルおよび/またはメタクリル酸アルキルをいい、以下(メタ)とは同様の意味である。}を使用できる。かかる(メタ)アクリル酸アルキルの具体例としては、たとえば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-エチルヘキシル等を例示でき、これらを単独もしくは組合せて使用できる。また、得られるアクリル系重合体に極性を付与するために前記(メタ)アクリル酸アルキルの一部に代えて(メタ)アクリル酸、(メタ)アクリル酸グリシジル、(メタ)アクリル酸2-ヒドロキシエチル、N-メチロール(メタ)アクリルアミド等も併用しうる。更に所望により、アクリル系重合体の粘着特性を損なわない程度において他の共重合可能な単量体、たとえば酢酸ビニル、スチレン等を併用しうる。
 前記アクリル系重合体の製造は、各種公知の方法により製造でき、たとえば、バルク重合法、溶液重合法、懸濁重合法等のラジカル重合法を適宜選択できる。ラジカル重合開始剤としては、アゾ系、過酸化物系の各種公知のものを使用できる。前記製造法のなかでも溶液重合法が好ましく、アクリル系重合体の溶媒としては一般に酢酸エチル、トルエン等の極性溶剤が用いられる。
 ゴム系粘着剤のベースポリマーとしては、たとえば、天然ゴム、イソプレン系ゴム、スチレン-ブタジエン系ゴム、再生ゴム、ポリイソブチレン系ゴム、さらにはスチレン-イソプレン-スチレン系ゴム、スチレン-ブタジエン-スチレン系ゴム等があげられる。シリコーン系粘着剤のベースポリマーとしては、たとえば、ジメチルポリシロキサン、ジフェニルポリシロキサン等があげられる。
 また、前記粘着剤は、架橋剤を含有するのが好ましい。架橋剤としては、ポリイソシアネート化合物、ポリアミン化合物、メラミン樹脂、尿素樹脂、エポキシ樹脂、金属キレート等があげられる。さらに、前記粘着剤には、必要に応じて、粘着付与剤、可塑剤、充填剤、酸化防止剤、紫外線吸収剤、シランカップリング剤等を本発明の目的を逸脱しない範囲で各適宜に使用することもできる。
 粘着剤層(乾燥膜)の厚さは、粘着剤層自身のレターデーションを考慮することおよび寸法安定の観点から薄い方が好ましいが、具体的には5~30μm程度とするのが好ましい。
 <λ/4板>
 本発明に係るλ/4板とは、ある特定の波長の直線偏光を円偏光に(または、円偏光を直線偏光に)変換する機能を有するものをいう。λ/4板は、所定の光の波長(通常、可視光領域)に対して、層の面内の位相差値Roが約1/4となるように設計されている。
 本発明に係るλ/4板は、波長590nmで測定した面内方向のレターデーションRo(590)が110~170nmの範囲である。
 本発明に係るλ/4板は、可視光の波長の範囲においてほぼ完全な円偏光を得るため、可視光の波長の範囲において概ね波長の1/4のレターデーションを有する位相差板(樹脂フィルム)であることが好ましい。
 「可視光の波長の範囲において概ね1/4のレターデーション」とは、波長400から700nmにおいて長波長ほどレターデーションが大きく、波長450nmで測定した下記式(i)で表されるレターデーション値であるRo(450)と波長590nmで測定したレターデーション値であるRo(590)が、1<Ro(590)/Ro(450)≦1.6 を満たすことが好ましい。さらにλ/4板として有効に機能するためには、Ro(450)が100~125nmの範囲内であり、波長550nmで測定したレターデーション値であるRo(550)が125~142nmの範囲内であり、Ro(590)が130~152nmの範囲内の位相差フィルムであることがより好ましい。
 式(i):Ro=(nx-ny)×d
 式(ii):Rt={(nx+ny)/2-nz}×d
 式中、nx、nyは、23℃・55%RH、450nm、550nm、590nmの各々における屈折率nx(フィルムの面内の最大の屈折率、遅相軸方向の屈折率ともいう。)、ny(フィルム面内で遅相軸に直交する方向の屈折率)であり、dはフィルムの厚さ(nm)である。
 Ro、Rtは自動複屈折率計を用いて測定することができる。自動複屈折率計KOBRA-21ADH(王子計測機器(株)製)を用いて、23℃、55%RHの環境下で、各波長での複屈折率測定によりRoを算出する。
 λ/4板の遅相軸と前述の偏光子の透過軸との角度が実質的に45°になるように積層すると円偏光板が得られる。「実質的に45°」とは、40~50°であることを意味する。λ/4板の面内の遅相軸と偏光子の透過軸との角度は、41~49°であることが好ましく、42~48°であることがより好ましく、43~47°であることが更に好ましく、44~46°であることが最も好ましい。
 本発明に係るλ/4板は熱可塑性樹脂を含有するフィルムであり、用いられる熱可塑性樹脂としては、セルロースアシレート樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリアリレート樹脂、ポリスルホン油脂、ポリエチレンテレフタレート樹脂、ポリプロピレン樹脂、脂環式ポリオレフィン樹脂、ポリアミド樹脂、フッ素樹脂、ナイロン、ポリビニルアセタール系樹脂、アクリル等を挙げることができるが、これらに限定されるわけではない。これらのうちセルロースアシレート樹脂、脂環式ポリオレフィン樹脂が、製造上、コスト面、加工のし易さ、透明性、均一性、接着性等の面から好ましい。
 以下、本発明に係るλ/4板として、セルロースアシレート樹脂を用いたセルロースアシレートフィルム、脂環式ポリオレフィン樹脂を用いた脂環式ポリオレフィン樹脂フィルムについて説明する。
 <セルロースアシレートフィルム>
 本発明に係るλ/4板として用いられるセルロースアシレートフィルムは、光学フィルム用途のセルロースアシレートを含有することが好ましい。
 該セルロースアシレートは、炭素数2以上の脂肪族アシル基を有するセルロースアシレートであることが好ましく、更に好ましくは、セルロースアシレートの総アシル置換度が1.0~2.95、かつアシル基総炭素数が2.0~9.5であるセルロースアシレートである。
 セルロースアシレートのアシル基総炭素数は、好ましくは、4.0~9.0であり、さらに好ましくは5.0~8.5である。但し、アシル基総炭素数は、セルロースアシレートのグルコース単位に置換されている各アシル基の置換度と炭素数の積の総和である。
 さらに、脂肪族アシル基の炭素数は、セルロース合成の生産性、コストの観点から、2以上6以下が好ましく、2以上4以下がさらに好ましい。なお、アシル基で置換されていない部分は通常水酸基として存在している。
 β-1,4-グリコシド結合でセルロースを構成しているグルコース単位は、2位、3位および6位に遊離の水酸基を有している。本発明に係るセルロースアシレートは、これらの水酸基の一部または全部をアシル基によりエステル化した重合体(ポリマー)である。アシル基置換度とは、繰り返し単位の2位、3位および6位について、セルロースがエステル化している割合の合計を表す。具体的には、セルロースの2位、3位および6位のそれぞれの水酸基が100%エステル化した場合をそれぞれ置換度1とする。したがって、セルロースの2位、3位および6位のすべてが100%エステル化した場合、置換度は最大の3となる。
 アシル基としては、例えば、アセチル基、プロピオニル基、ブチリル基、ペンタネート基、ヘキサネート基等が挙げられ、セルロースアシレートとしては、セルロースアセテート、セルロースプロピオネート、セルロースブチレート、セルロースペンタネート等が挙げられる。また、上述の側鎖炭素数を満たせば、セルロースアセテート、セルロースアセテートプロピオネート、セルロースプロピオネート、セルロースアセテートブチレート、セルロースアセテートペンタネート等のように混合脂肪酸エステルでもよい。この中でも、特にセルローストリアセテートやジアセチルセルロースなどのセルロースアセテートが光学フィルム用途として好ましい。
 セルローストリアセテート以外で好ましいセルロースアシレートは炭素原子数2~4のアシル基を置換基として有し、アセチル基の置換度をXとし、プロピオニル基又はブチリル基の置換度をYとした時、下記式(I)および(II)を同時に満たすセルロースアシレートであることが好ましい。
 式(I) 1.5≦X+Y≦2.95
 式(II) 1.5≦X≦2.95
 本発明では、セルロースアセテートプロピオネートが好ましく用いられ、中でも1.5≦X≦2.5、0.1≦Y≦1.45であるセルロースアセテートプロピオネートであることが好ましい。アシル基で置換されていない部分は通常水酸基として存在しているものである。アシル基置換度の測定方法はASTM-D817-96に準じて測定することができる。
 本発明に係るセルロースアシレートは、重量平均分子量Mwが50000~500000のものが好ましく、より好ましくは100000~300000であり、更に好ましくは150000~250000である。
 セルロースアシレートの平均分子量および分子量分布は、高速液体クロマトグラフィーを用い測定できるので、これを用いて重量平均分子量(Mw)、分子量分布を算出する。
 測定条件は以下の通りである。
 溶媒:メチレンクロライド
 カラム:Shodex K806、K805、K803G(昭和電工(株)製を3本接続して使用した)
 カラム温度:25℃
 試料濃度:0.1質量%
 検出器:RI Model 504(GLサイエンス社製)
 ポンプ:L6000(日立製作所(株)製)
 流量:1.0ml/min
 校正曲線:標準ポリスチレンSTK standard ポリスチレン(東ソー(株)製)
 Mw=1000000~500迄の13サンプルによる校正曲線を使用した。13サンプルは、ほぼ等間隔に用いることが好ましい。
 本発明で用いられるセルロースアシレートの原料セルロースは、木材パルプでも綿花リンターでもよく、木材パルプは針葉樹でも広葉樹でもよいが。針葉樹パルプが好ましく用いられる。これらから作られたセルロースアシレートは適宜混合して、或いは単独で使用することが出来る。
 例えば、綿花リンター由来セルロースアシレート:木材パルプ(針葉樹)由来セルロースアシレート:木材パルプ(広葉樹)由来セルロースアシレートの比率が100:0:0、90:10:0、85:15:0、50:50:0、20:80:0、10:90:0、0:100:0、0:0:100、80:10:10、85:0:15、40:30:30で用いることが出来る。
 本発明では重合度の高いセルロースが好ましく、例えば、リンターパルプが好ましく、セルロースは、少なくともリンターパルプで構成されたセルロースを使用することが好ましい。セルロースの結晶化度の指標となるα-セルロース含有量は、90%以上(例えば、92~100%、好ましくは95~100%、さらに好ましくは99.5~100%程度)である。
 本発明に係るセルロースアシレートは、公知の方法により製造することができる。一般的には、原料のセルロースと所定の有機酸(酢酸、プロピオン酸など)と酸無水物(無水酢酸、無水プロピオン酸など)、触媒(硫酸など)と混合して、セルロースをエステル化し、セルロースのトリエステルができるまで反応を進める。トリエステルにおいてはグルコース単位の三個のヒドロキシル基(水酸基)は、有機酸のアシル酸で置換されている。同時に二種類の有機酸を使用すると、混合エステル型のセルロースアシレート、例えばセルロースアセテートプロピオネートやセルロースアセテートブチレートを作製することができる。次いで、セルロースのトリエステルを加水分解することで、所望のアシル置換度を有するセルロースアシレートを合成する。その後、濾過、沈殿、水洗、脱水、乾燥などの工程を経て、セルロースアシレートが出来あがる。
 具体的には特開平10-45804号公報に記載の方法を参考にして合成することができる。
 <脂環式ポリオレフィン樹脂フィルム>
 本発明に係るλ/4板として用いられる脂環式ポリオレフィン樹脂フィルムの脂環式ポリオレフィン樹脂は、主鎖及び/または側鎖に脂環構造を有する非晶性の樹脂である。脂環式ポリオレフィン樹脂中の脂環構造としては、飽和脂環炭化水素(シクロアルカン)構造、不飽和脂環炭化水素(シクロアルケン)構造などが挙げられるが、機械強度、耐熱性などの観点から、シクロアルカン構造が好ましい。脂環構造を構成する炭素原子数には、格別な制限はないが、通常4~30個、好ましくは5~20個、より好ましくは5~15個であるときに、機械強度、耐熱性、及びフィルムの成形性の特性が高度にバランスされ、好適である。
 脂環式ポリオレフィン樹脂を構成する脂環構造を有する繰り返し単位の割合は、好ましくは55質量%以上、さらに好ましくは70質量%以上、特に好ましくは90質量%以上である。脂環式ポリオレフィン樹脂中の脂環式構造を有する繰り返し単位の割合がこの範囲にあると透明性および耐熱性の観点から好ましい。
 脂環式ポリオレフィン樹脂としては、ノルボルネン系樹脂、単環の環状オレフィン系樹脂、環状共役ジエン系樹脂、ビニル脂環式炭化水素系樹脂、及び、これらの水素化物等を挙げることができる。これらの中で、ノルボルネン系樹脂は、透明性と成形性が良好なため、好適に用いることができる。
 ノルボルネン系樹脂としては、例えば、ノルボルネン構造を有する単量体の開環重合体若しくはノルボルネン構造を有する単量体と他の単量体との開環共重合体、又はそれらの水素化物;ノルボルネン構造を有する単量体の付加重合体若しくはノルボルネン構造を有する単量体と他の単量体との付加共重合体、又はそれらの水素化物等を挙げることができる。これらの中で、ノルボルネン構造を有する単量体の開環(共)重合体水素化物は、透明性、成形性、耐熱性、低吸湿性、寸法安定性、軽量性などの観点から、特に好適に用いることができる。
 ノルボルネン構造を有する単量体としては、ビシクロ[2.2.1]ヘプト-2-エン(慣用名:ノルボルネン)、トリシクロ[4.3.0.12,5]デカ-3,7-ジエン(慣用名:ジシクロペンタジエン)、7,8-ベンゾトリシクロ[4.3.0.12,5]デカ-3-エン(慣用名:メタノテトラヒドロフルオレン)、テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン(慣用名:テトラシクロドデセン)、およびこれらの化合物の誘導体(例えば、環に置換基を有するもの)などを挙げることができる。ここで、置換基としては、例えばアルキル基、アルキレン基、極性基などを挙げることができる。また、これらの置換基は、同一または相異なって複数個が環に結合していてもよい。ノルボルネン構造を有する単量体は1種単独で、あるいは2種以上を組み合わせて用いることができる。
 極性基の種類としては、ヘテロ原子、またはヘテロ原子を有する原子団などが挙げられる。ヘテロ原子としては、酸素原子、窒素原子、硫黄原子、ケイ素原子、ハロゲン原子などが挙げられる。極性基の具体例としては、カルボキシル基、カルボニルオキシカルボニル基、エポキシ基、ヒドロキシル基、オキシ基、エステル基、シラノール基、シリル基、アミノ基、ニトリル基、スルホン基などが挙げられる。飽和吸水率の小さいフィルムを得るためには。極性基の量が少ない方が好ましく、極性基を持たない方がより好ましい。
 ノルボルネン構造を有する単量体と開環共重合可能な他の単量体としては、シクロヘキセン、シクロヘプテン、シクロオクテンなどのモノ環状オレフィン類およびその誘導体;シクロヘキサジエン、シクロヘプタジエンなどの環状共役ジエンおよびその誘導体;などが挙げられる。
 ノルボルネン構造を有する単量体の開環重合体およびノルボルネン構造を有する単量体と共重合可能な他の単量体との開環共重合体は、単量体を公知の開環重合触媒の存在下に(共)重合することにより得ることができる。
 ノルボルネン構造を有する単量体と付加共重合可能な他の単量体としては、例えば、エチレン、プロピレン、1-ブテンなどの炭素数2~20のα-オレフィンおよびこれらの誘導体;シクロブテン、シクロペンテン、シクロヘキセンなどのシクロオレフィンおよびこれらの誘導体;1,4-ヘキサジエン、4-メチル-1,4-ヘキサジエン、5-メチル-1,4-ヘキサジエンなどの非共役ジエンなどが挙げられる。これらの単量体は1種単独で、あるいは2種以上を組み合わせて用いることができる。これらの中でも、α-オレフィンが好ましく、エチレンがより好ましい。
 ノルボルネン構造を有する単量体の付加重合体およびノルボルネン構造を有する単量体と共重合可能な他の単量体との付加共重合体は、単量体を公知の付加重合触媒の存在下に重合することにより得ることができる。
 ノルボルネン構造を有する単量体の開環重合体の水素化物、ノルボルネン構造を有する単量体とこれと開環共重合可能なその他の単量体との開環共重合体の水素化物、ノルボルネン構造を有する単量体の付加重合体の水素化物、およびノルボルネン構造を有する単量体とこれと付加共重合可能なその他の単量体との付加共重合体の水素化物は、これら開環(共)重合体又は付加(共)重合体の溶液に、ニッケル、パラジウムなどの遷移金属を含む公知の水素化触媒を添加し、水素を接触させて、炭素-炭素不飽和結合を好ましくは90%以上水素化することによって得ることができる。
 ノルボルネン系樹脂の中でも、繰り返し単位として、X:ビシクロ[3.3.0]オクタン-2,4-ジイル-エチレン構造と、Y:トリシクロ[4.3.0.12,5]デカン-7,9-ジイル-エチレン構造とを有し、これらの繰り返し単位の含有量が、ノルボルネン系樹脂の繰り返し単位全体に対して90質量%以上であり、かつ、Xの含有割合とYの含有割合との比が、X:Yの質量比で100:0~40:60であるものが好ましい。このような樹脂を用いることにより、長期的に寸法変化がなく、光学特性の安定性に優れる光学フィルムを得ることができる。
 本発明に好適に用いられる脂環式ポリオレフィン樹脂の分子量は使用目的に応じて適宜選定されるが、溶媒としてシクロヘキサン(樹脂が溶解しない場合はトルエン)を用いるゲル・パーミエーション・クロマトグラフィーで測定したポリイソプレン(溶媒がトルエンのときは、ポリスチレン換算)の重量平均分子量(Mw)で、通常15000~50000、好ましくは18000~45000、より好ましくは20000~40000である。重量平均分子量がこのような範囲にあるときに、フィルムの機械的強度および成形性とが高度にバランスされ好適である。
 本発明に好適に用いられる脂環式ポリオレフィン樹脂の分子量分布(重量平均分子量(Mw)/数平均分子量(Mn))は特に制限されないが、通常1.0~10.0、好ましくは1.1~4.0、より好ましくは1.2~3.5の範囲である。
 本発明に用いられる脂環式ポリオレフィン樹脂のガラス転移温度は、使用目的に応じて適宜選択されればよいが、好ましくは80℃以上、より好ましくは100~250℃の範囲である。ガラス転移温度がこのような範囲にある熱可塑性樹脂からなるフィルムは、高温下で変形や応力が生じることがなく耐久性に優れる。
 <波長260nm~400nmに吸収極大ピーク(λmax)を有する化合物>
 本発明に係るハードコート層を有し、熱可塑性樹脂を主成分とするλ/4板は、波長260nm~400nmに吸収極大ピーク(λmax)を有する化合物(以降、密着改良剤と呼称する。)を該熱可塑性樹脂100質量部に対して0.005~0.5質量部含有していることが特徴である。
 該密着改良剤の含有量は、封止層への紫外線照射光量に影響せず、かつハードコート層とλ/4板間でのしわやゆがみ、ハードコート層の剥がれを防止できる量であることが好ましく、0.005~0.1質量部であることがより好ましい。
 また、該λ/4板は、波長380nmにおける光線透過率が30%以上であることが好ましく、より好ましくは50%以上、特に好ましくは70%以上である。
 密着改良剤が、波長260nm~400nmに吸収極大ピーク(λmax)を有する化合物であることは、該化合物を適宜溶媒(例えばジクロロメタン、トルエンなど)等に溶解し常法により分光光度計により測定できる。例えば、島津製作所社製の分光光度計UVIDFC-610、日立製作所社製の330型自記分光光度計、U-3210型自記分光光度計、U-3410型自記分光光度計、U-4000型自記分光光度計等を用いて測定することにより求めることができる。
 本発明に係る密着改良剤としては、例えば、オキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系化合物、シアノアクリレート系化合物、ニッケル錯塩系化合物、トリアジン系化合物等を挙げることができるが、着色の少ないベンゾトリアゾール系化合物、ベンゾフェノン系化合物、トリアジン系化合物が好ましい。
 密着改良剤としては、波長370nm以下の紫外線の吸収能に優れており、かつ、液晶表示性の観点から、波長400nm以上の可視光の吸収が少ないものが好ましい。
 また、本発明では後述のように封止層を硬化するため紫外線を照射する。そのため、紫外線照射量に対する密着改良効果が高い密着改良剤としては波長260nm~355nm以下の吸収極大を持つものがより好ましい。
 (ベンゾトリアゾール系化合物)
 本発明に係るベンゾトリアゾール系化合物としては下記一般式(A)で示される化合物が好ましく用いられる。
Figure JPOXMLDOC01-appb-C000001
 
 式中、R1、R2、R3、R4及びR5は同一でも異なってもよく、水素原子、ハロゲン原子、ニトロ基、ヒドロキシル基、アルキル基、アルケニル基、アリール基、アルコキシ基、アシルオキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基、モノ若しくはジアルキルアミノ基、アシルアミノ基または5~6員の複素環基を表し、R4とR5は閉環して5~6員の炭素環を形成してもよい。
 また、上記記載のこれらの基は、任意の置換基を有していて良い。
 以下に一般式(A)で示される化合物の具体例を挙げるが、これらに限定されない。
 本発明に有用なベンゾトリアゾール系化合物は、2-(2′-ヒドロキシ-5′-メチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-3′,5′-ジ-tert-ブチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-3′-tert-ブチル-5′-メチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-3′,5′-ジ-tert-ブチルフェニル)-5-クロロベンゾトリアゾール、2-(2′-ヒドロキシ-3′-(3″,4″,5″,6″-テトラヒドロフタルイミドメチル)-5′-メチルフェニル)ベンゾトリアゾール、2,2-メチレンビス(4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール)、2-(2′-ヒドロキシ-3′-tert-ブチル-5′-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2H-ベンゾトリアゾール-2-イル)-6-(直鎖及び側鎖ドデシル)-4-メチルフェノール、オクチル-3-〔3-tert-ブチル-4-ヒドロキシ-5-(クロロ-2H-ベンゾトリアゾール-2-イル)フェニル〕プロピオネートと2-エチルヘキシル-3-〔3-tert-ブチル-4-ヒドロキシ-5-(5-クロロ-2H-ベンゾトリアゾール-2-イル)フェニル〕プロピオネートの混合物等を挙げることができるが、これらに限定されない。また、市販品として、チヌビン(TINUVIN)109、チヌビン(TINUVIN)171、チヌビン(TINUVIN)326、チヌビン(TINUVIN)928(何れもBASFジャパン社製)を好ましく使用できる。
 (ベンゾフェノン系化合物)
 本発明に係るベンゾフェノン系化合物としては下記一般式(B)で示される化合物が好ましく用いられる。
Figure JPOXMLDOC01-appb-C000002
 
 式中、Yは水素原子、ハロゲン原子又はアルキル基、アルケニル基、アルコキシ基、及びフェニル基を表し、これらのアルキル基、アルケニル基及びフェニル基は置換基を有していてもよい。Aは水素原子、アルキル基、アルケニル基、フェニル基、シクロアルキル基、アルキルカルボニル基、アルキルスルホニル基又は-CO(NH)n-1-D基を表し、Dはアルキル基、アルケニル基又は置換基を有していてもよいフェニル基を表す。m及びnは1又は2を表す。
 上記において、アルキル基としては例えば、炭素数24までの直鎖又は分岐の脂肪族基を表し、アルコキシ基としては例えば、炭素数18までのアルコキシ基で、アルケニル基としては例えば、炭素数16までのアルケニル基で例えばアリル基、2-ブテニル基などを表す。又、アルキル基、アルケニル基、フェニル基への置換分としてはハロゲン原子、例えばクロール、ブロム、フッ素原子など、ヒドロキシ基、フェニル基(このフェニル基にはアルキル基又はハロゲン原子などを置換していてもよい)などが挙げられる。
 以下に一般式(B)で表されるベンゾフェノン系化合物の具体例を示すが、本発明はこれらに限定されない。
 例えば、2,4-ジヒドロキシベンゾフェノン、2,2′-ジヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-5-スルホベンゾフェノン、ビス(2-メトキシ-4-ヒドロキシ-5-ベンゾイルフェニルメタン)等が挙げられる。
 市販品として,CHIMASSORB81(BASFジャパン社製)を好ましく使用できる。
 また、特開平6-148430号記載の紫外線吸収剤も好ましく用いることができる。
 (トリアジン系化合物)
 トリアジン系化合物としては少なくとも二つの芳香族環を有する化合物を用いることができる。
 本明細書において、「芳香族環」は、芳香族炭化水素環に加えて、芳香族性ヘテロ環を含む。
 芳香族炭化水素環は、6員環(すなわち、ベンゼン環)であることが特に好ましい。
 芳香族性ヘテロ環は一般に、不飽和ヘテロ環である。芳香族性ヘテロ環は、5員環、6員環または7員環であることが好ましく、5員環または6員環であることがさらに好ましい。芳香族性ヘテロ環は一般に、最多の二重結合を有する。ヘテロ原子としては、窒素原子、酸素原子および硫黄原子が好ましく、窒素原子が特に好ましい。芳香族性ヘテロ環の例には、フラン環、チオフェン環、ピロール環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、イミダゾール環、ピラゾール環、フラザン環、トリアゾール環、ピラン環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環および1,3,5-トリアジン環が含まれる。
 芳香族環としては、ベンゼン環、縮合ベンゼン環、ビフェニル類が好ましい。特に1,3,5-トリアジン環が好ましく用いられる。具体的には例えば特開2001-166144号公報に開示の化合物が好ましく用いられる。
 芳香族環の炭素数は、2~20であることが好ましく、2~12であることがより好ましく、2~8であることがさらに好ましく、2~6であることが最も好ましい。
 二つの芳香族環の結合関係は、(a)縮合環を形成する場合、(b)単結合で直結する場合および(c)連結基を介して結合する場合に分類できる(芳香族環のため、スピロ結合は形成できない)。結合関係は、(a)~(c)のいずれでもよい。
 (a)の縮合環(二つ以上の芳香族環の縮合環)の例には、インデン環、ナフタレン環、アズレン環、フルオレン環、フェナントレン環、アントラセン環、アセナフチレン環、ビフェニレン環、ナフタセン環、ピレン環、インドール環、イソインドール環、ベンゾフラン環、ベンゾチオフェン環、インドリジン環、ベンゾオキサゾール環、ベンゾチアゾール環、ベンゾイミダゾール環、ベンゾトリアゾール環、プリン環、インダゾール環、クロメン環、キノリン環、イソキノリン環、キノリジン環、キナゾリン環、シンノリン環、キノキサリン環、フタラジン環、プテリジン環、カルバゾール環、アクリジン環、フェナントリジン環、キサンテン環、フェナジン環、フェノチアジン環、フェノキサチイン環、フェノキサジン環およびチアントレン環が含まれる。ナフタレン環、アズレン環、インドール環、ベンゾオキサゾール環、ベンゾチアゾール環、ベンゾイミダゾール環、ベンゾトリアゾール環およびキノリン環が好ましい。
 (b)の単結合は、二つの芳香族環の炭素原子間の結合であることが好ましい。二以上の単結合で二つの芳香族環を結合して、二つの芳香族環の間に脂肪族環または非芳香族性複素環を形成してもよい。
 (c)の連結基も、二つの芳香族環の炭素原子と結合することが好ましい。連結基は、アルキレン基、アルケニレン基、アルキニレン基、-CO-、-O-、-NH-、-S-またはそれらの組み合わせであることが好ましい。組み合わせからなる連結基の例を以下に示す。なお、以下の連結基の例の左右の関係は、逆になってもよい。
c1:-CO-O-
c2:-CO-NH-
c3:-アルキレン-O-
c4:-NH-CO-NH-
c5:-NH-CO-O-
c6:-O-CO-O-
c7:-O-アルキレン-O-
c8:-CO-アルケニレン-
c9:-CO-アルケニレン-NH-
c10:-CO-アルケニレン-O-
c11:-アルキレン-CO-O-アルキレン-O-CO-アルキレン-
c12:-O-アルキレン-CO-O-アルキレン-O-CO-アルキレン-O-
c13:-O-CO-アルキレン-CO-O-
c14:-NH-CO-アルケニレン-
c15:-O-CO-アルケニレン-
 芳香族環および連結基は、置換基を有していてもよい。
 置換基の例には、ハロゲン原子(F、Cl、Br、I)、ヒドロキシル基、カルボキシル基、シアノ基、アミノ基、ニトロ基、スルホ基、カルバモイル基、スルファモイル基、ウレイド基、アルキル基、アルケニル基、アルキニル基、脂肪族アシル基、脂肪族アシルオキシ基、アルコキシ基、アルコキシカルボニル基、アルコキシカルボニルアミノ基、アルキルチオ基、アルキルスルホニル基、脂肪族アミド基、脂肪族スルホンアミド基、脂肪族置換アミノ基、脂肪族置換カルバモイル基、脂肪族置換スルファモイル基、脂肪族置換ウレイド基および非芳香族性複素環基が含まれる。
 アルキル基の炭素原子数は、1~8であることが好ましい。環状アルキル基よりも鎖状アルキル基の方が好ましく、直鎖状アルキル基が特に好ましい。アルキル基は、さらに置換基(例えば、ヒドロキシ基、カルボキシ基、アルコキシ基、アルキル置換アミノ基)を有していてもよい。アルキル基の(置換アルキル基を含む)例には、メチル基、エチル基、n-ブチル基、n-ヘキシル基、2-ヒドロキシエチル基、4-カルボキシブチル基、2-メトキシエチル基および2-ジエチルアミノエチル基の各基が含まれる。
 アルケニル基の炭素原子数は、2~8であることが好ましい。環状アルケニル基よりも鎖状アルケニル基の方が好ましく、直鎖状アルケニル基が特に好ましい。アルケニル基は、さらに置換基を有していてもよい。アルケニル基の例には、ビニル基、アリル基および1-ヘキセニル基が含まれる。
 アルキニル基の炭素原子数は、2~8であることが好ましい。環状アルキニル基よりも鎖状アルキニル基の方が好ましく、直鎖状アルキニル基が特に好ましい。アルキニル基は、さらに置換基を有していてもよい。アルキニル基の例には、エチニル基、1-ブチニル基および1-ヘキシニル基が含まれる。
 脂肪族アシル基の炭素原子数は、1~10であることが好ましい。脂肪族アシル基の例には、アセチル基、プロパノイル基およびブタノイル基が含まれる。
 脂肪族アシルオキシ基の炭素原子数は、1~10であることが好ましい。脂肪族アシルオキシ基の例には、アセトキシ基が含まれる。
 アルコキシ基の炭素原子数は、1~8であることが好ましい。アルコキシ基は、さらに置換基(例えば、アルコキシ基)を有していてもよい。アルコキシ基の(置換アルコキシ基を含む)例には、メトキシ基、エトキシ基、ブトキシ基およびメトキシエトキシ基が含まれる。
 アルコキシカルボニル基の炭素原子数は、2~10であることが好ましい。アルコキシカルボニル基の例には、メトキシカルボニル基およびエトキシカルボニル基が含まれる。
 アルコキシカルボニルアミノ基の炭素原子数は、2~10であることが好ましい。アルコキシカルボニルアミノ基の例には、メトキシカルボニルアミノ基およびエトキシカルボニルアミノ基が含まれる。
 アルキルチオ基の炭素原子数は、1~12であることが好ましい。アルキルチオ基の例には、メチルチオ基、エチルチオ基およびオクチルチオ基が含まれる。
 アルキルスルホニル基の炭素原子数は、1~8であることが好ましい。アルキルスルホニル基の例には、メタンスルホニル基およびエタンスルホニル基が含まれる。
 脂肪族アミド基の炭素原子数は、1~10であることが好ましい。脂肪族アミド基の例には、アセトアミドが含まれる。
 脂肪族スルホンアミド基の炭素原子数は、1~8であることが好ましい。脂肪族スルホンアミド基の例には、メタンスルホンアミド基、ブタンスルホンアミド基およびn-オクタンスルホンアミド基が含まれる。
 脂肪族置換アミノ基の炭素原子数は、1~10であることが好ましい。脂肪族置換アミノ基の例には、ジメチルアミノ基、ジエチルアミノ基および2-カルボキシエチルアミノ基が含まれる。
 脂肪族置換カルバモイル基の炭素原子数は、2~10であることが好ましい。脂肪族置換カルバモイル基の例には、メチルカルバモイル基およびジエチルカルバモイル基が含まれる。
 脂肪族置換スルファモイル基の炭素原子数は、1~8であることが好ましい。脂肪族置換スルファモイル基の例には、メチルスルファモイル基およびジエチルスルファモイル基が含まれる。
 脂肪族置換ウレイド基の炭素原子数は、2~10であることが好ましい。脂肪族置換ウレイド基の例には、メチルウレイド基が含まれる。
 非芳香族性複素環基の例には、ピペリジノ基およびモルホリノ基が含まれる。
 トリアジン系化合物の分子量は、300~800であることが好ましい。
 トリアジン系化合物として下記一般式(I)で表されるトリアジン化合物を用いることが好ましい。
Figure JPOXMLDOC01-appb-C000003
 
 上記一般式(I)中:
 R201は、各々独立に、オルト位、メタ位およびパラ位の少なくともいずれかに置換基を有する芳香族環または複素環を表す。
 X201は、各々独立に、単結合または-NR202-を表す。ここで、R202は、各々独立に、水素原子、置換もしくは無置換のアルキル基、アルケニル基、アリール基または複素環基を表す。
 R201が表す芳香族環は、フェニルまたはナフチルであることが好ましく、フェニルであることが特に好ましい。R201が表す芳香族環はいずれかの置換位置に少なくとも一つの置換基を有してもよい。前記置換基の例には、ハロゲン原子、ヒドロキシル基、シアノ基、ニトロ基、カルボキシル基、アルキル基、アルケニル基、アリール基、アルコキシ基、アルケニルオキシ基、アリールオキシ基、アシルオキシ基、アルコキシカルボニル基、アルケニルオキシカルボニル基、アリールオキシカルボニル基、スルファモイル基、アルキル置換スルファモイル基、アルケニル置換スルファモイル基、アリール置換スルファモイル基、スルオンアミド基、カルバモイル、アルキル置換カルバモイル基、アルケニル置換カルバモイル基、アリール置換カルバモイル基、アミド基、アルキルチオ基、アルケニルチオ基、アリールチオ基およびアシル基が含まれる。
 R201が表す複素環基は、芳香族性を有することが好ましい。芳香族性を有する複素環は、一般に不飽和複素環であり、好ましくは最多の二重結合を有する複素環である。複素環は5員環、6員環または7員環であることが好ましく、5員環または6員環であることがさらに好ましく、6員環であることが最も好ましい。複素環のヘテロ原子は、窒素原子、硫黄原子または酸素原子であることが好ましく、窒素原子であることが特に好ましい。芳香族性を有する複素環としては、ピリジン環(複素環基としては、2-ピリジルまたは4-ピリジル)が特に好ましい。複素環基は、置換基を有していてもよい。複素環基の置換基の例は、上記アリール部分の置換基の例と同様である。
 X201が単結合である場合の複素環基は、窒素原子に遊離原子価をもつ複素環基であることが好ましい。窒素原子に遊離原子価をもつ複素環基は、5員環、6員環または7員環であることが好ましく、5員環または6員環であることがさらに好ましく、5員環であることが最も好ましい。複素環基は、複数の窒素原子を有していてもよい。また、複素環基は、窒素原子以外のヘテロ原子(例えば、O、S)を有していてもよい。以下に、窒素原子に遊離原子価をもつ複素環基の例を示す。ここで、-C4H9nは、n-C4H9を示す。
Figure JPOXMLDOC01-appb-C000004
 
 R202が表すアルキル基は、環状アルキル基であっても鎖状アルキル基であってもよいが、鎖状アルキル基が好ましく、分岐を有する鎖状アルキル基よりも、直鎖状アルキル基がより好ましい。アルキル基の炭素原子数は、1~30であることが好ましく、1~20であることがより好ましく、1~10であることがさらに好ましく、1~8がさらにまた好ましく、1~6であることが最も好ましい。アルキル基は、置換基を有していてもよい。置換基の例には、ハロゲン原子、アルコキシ基(例えば、メトキシ基、エトキシ基)およびアシルオキシ基(例えば、アクリロイルオキシ基、メタクリロイルオキシ基)が含まれる。
 R202が表すアルケニル基は、環状アルケニル基であっても鎖状アルケニル基であってもよいが、鎖状アルケニル基を表すのが好ましく、分岐を有する鎖状アルケニル基よりも、直鎖状アルケニル基を表すのがより好ましい。アルケニル基の炭素原子数は、2~30であることが好ましく、2~20であることがより好ましく、2~10であることがさらに好ましく、2~8であることがさらにまた好ましく、2~6であることが最も好ましい。アルケニル基は置換基を有していてもよい。置換基の例には、前述のアルキル基の置換基と同様である。
 R202が表す芳香族環基および複素環基は、R201が表す芳香族環および複素環と同様であり、好ましい範囲も同様である。芳香族環基および複素環基はさらに置換基を有していてもよく、置換基の例にはR201の芳香族環および複素環の置換基と同様である。
 以下に一般式(I)で表される化合物の具体例を挙げるが、こられに限定されない。
Figure JPOXMLDOC01-appb-C000005
 
Figure JPOXMLDOC01-appb-C000006
 
Figure JPOXMLDOC01-appb-C000007
 
Figure JPOXMLDOC01-appb-C000008
 
Figure JPOXMLDOC01-appb-C000009
 
Figure JPOXMLDOC01-appb-C000010
 
Figure JPOXMLDOC01-appb-C000011
 
Figure JPOXMLDOC01-appb-C000012
 
Figure JPOXMLDOC01-appb-C000013
 
Figure JPOXMLDOC01-appb-C000014
 
Figure JPOXMLDOC01-appb-C000015
 
 一般式(I)で表される化合物は、例えば特開2003-344655号公報に記載の方法等、公知の方法により合成することができる。
 上記密着改良剤のドープへの添加方法は、ドープ中で密着改良剤を溶解するようなものであれば制限なく使用できるが、本発明においては密着改良剤をメチレンクロライド、酢酸メチル、ジオキソラン等のセルロースアシレートに対する良溶媒、又は良溶媒と低級脂肪族アルコール(メタノール、エタノール、プロパノール、ブタノール等)のような貧溶媒との混合有機溶媒に溶解し密着改良剤溶液としてセルロースアシレート溶液に添加してドープとする方法が好ましい。この場合できるだけドープ溶媒組成と密着改良剤溶液の溶媒組成とを同じとするか近づけることが好ましい。
 <可塑剤>
 本発明に係るλ/4板は可塑剤を含有することが好ましく、一般的に可塑剤として知られる多くの化合物も有用に使用することができる。可塑剤としては、リン酸エステルまたはカルボン酸エステルが用いられる。リン酸エステルの例には、トリフェニルホスフェート(TPP)およびトリクレジルホスフェート(TCP)が含まれる。カルボン酸エステルとしては、フタル酸エステルおよびクエン酸エステルが代表的である。フタル酸エステルの例には、ジメチルフタレート(DMP)、ジエチルフタレート(DEP)、ジブチルフタレート(DBP)、ジオクチルフタレート(DOP)、ジフェニルフタレート(DPP)およびジエチルヘキシルフタレート(DEHP)が含まれる。クエン酸エステルの例には、O-アセチルクエン酸トリエチル(OACTE)およびO-アセチルクエン酸トリブチル(OACTB)が含まれる。その他のカルボン酸エステルの例には、オレイン酸ブチル、リシノール酸メチルアセチル、セバシン酸ジブチル、種々のトリメリット酸エステルが含まれる。フタル酸エステル系可塑剤(DMP、DEP、DBP、DOP、DPP、DEHP)が好ましく用いられる。DEPおよびDPPが特に好ましい。
 (劣化防止剤)
 本発明に係るλ/4板においては、熱可塑性樹脂溶液に公知の劣化(酸化)防止剤、例えば、2,6-ジ-tert-ブチル-4-メチルフェノール、4,4′-チオビス-(6-tert-ブチル-3-メチルフェノール)、1,1′-ビス(4-ヒドロキシフェニル)シクロヘキサン、2,2′-メチレンビス(4-エチル-6-tert-ブチルフェノール)、2,5-ジ-tert-ブチルヒドロキノン、ペンタエリスリチル-テトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]などのフェノール系あるいはヒドロキノン系酸化防止剤を添加することができる。さらに、トリス(4-メトキシ-3,5-ジフェニル)ホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールジホスファイトなどのリン系酸化防止剤をすることが好ましい。劣化防止剤の添加量は、基材樹脂100質量部に対して、0.05~5.0質量部を添加する。
 (剥離促進剤)
 本発明に係るλ/4板には、溶液流延法によって生産される場合、剥離促進剤を含むことがより剥離性を高める観点から好ましい。剥離促進剤は、例えば、0.001~1質量%の割合で含めることができ、0.5質量%以下の添加であれば剥離剤のフィルムからの分離等が発生し難いため好ましく、0.005質量%以上であれば所望の剥離低減効果を得ることができるため好ましいため、0.005~0.5質量%の割合で含めることが好ましく、0.01~0.3質量%の割合で含めることがより好ましい。剥離促進剤としては、公知のものが採用でき、有機、無機の酸性化合物、界面活性剤、キレート剤等を使用することができる。中でも、多価カルボン酸およびそのエステルが効果的であり、特に、クエン酸のエチルエステル類が効果的に使用することができる。
 (マット剤)
 本発明に係るλ/4板には、ハンドリングされる際に、傷が付いたり搬送性が悪化することを防止するために、微粒子を添加することが一般に行われる。それらは、マット剤、ブロッキング防止剤あるいはキシミ防止剤と称されて、従来から利用されている。それらは、前述の機能を呈する素材であれば特に限定されず、無機化合物のマット剤であっても、有機化合物のマット剤であってもよい。
 前記無機化合物のマット剤の好ましい具体例としては、ケイ素を含む無機化合物(例えば、二酸化ケイ素、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウムなど)、酸化チタン、酸化亜鉛、酸化アルミニウム、酸化バリウム、酸化ジルコニウム、酸化ストロングチウム、酸化アンチモン、酸化スズ、酸化スズ・アンチモン、炭酸カルシウム、タルク、クレイ、焼成カオリン及びリン酸カルシウム等が好ましく、更に好ましくはケイ素を含む無機化合物や酸化ジルコニウムであるが、セルロースアシレートフィルムの濁度を低減できるので、二酸化ケイ素が特に好ましく用いられる。前記二酸化ケイ素の微粒子としては、例えば、アエロジルR972、R974、R812、200、300、R202、OX50、TT600(以上日本アエロジル(株)製)等の商品名を有する市販品が使用できる。前記酸化ジルコニウムの微粒子としては、例えば、アエロジルR976及びR811(以上日本アエロジル(株)製)等の商品名で市販されているものが使用できる。
 前記有機化合物のマット剤の好ましい具体例としては、例えば、シリコーン樹脂、弗素樹脂及びアクリル樹脂等のポリマーが好ましく、中でも、シリコーン樹脂が好ましく用いられる。シリコーン樹脂の中でも、特に三次元の網状構造を有するものが好ましく、例えば、トスパール103、トスパール105、トスパール108、トスパール120、トスパール145、トスパール3120及びトスパール240(以上東芝シリコーン(株)製)等の商品名を有する市販品が使用できる。
 これらのマット剤を熱可塑性樹脂溶液へ添加する場合は、特にその方法に限定されずいずれの方法でも所望の熱可塑性樹脂溶液を得ることができれば問題ない。例えば、熱可塑性樹脂と溶媒を混合する段階で添加物を含有させてもよいし、熱可塑性樹脂と溶媒で混合溶液を作製した後に、添加物を添加してもよい。更にはドープを流延する直前に添加混合してもよく、所謂直前添加方法でありその混合はスクリュー式混練をオンラインで設置して用いられる。具体的には、インラインミキサーのような静的混合機が好ましく、また、インラインミキサーとしては、例えば、スタチックミキサーSWJ(東レ静止型管内混合器Hi-Mixer)(東レエンジニアリング製)のようなものが好ましい。なお、インライン添加に関しては、濃度ムラ、粒子の凝集等をなくすために、特開2003-053752号公報は、熱可塑性樹脂フィルムの製造方法において、主原料ドープに異なる組成の添加液を混合する添加ノズル先端とインラインミキサーの始端部の距離Lが、主原料配管内径dの5倍以下とする事で、濃度ムラ、マット粒子等の凝集をなくす発明が記載されている。さらに好ましい態様として、主原料ドープと異なる組成の添加液供給ノズルの先端開口部とインラインミキサーの始端部との間の距離(L)が、供給ノズル先端開口部の内径(d)の10倍以下とし、インラインミキサーが、静的無攪拌型管内混合器または動的攪拌型管内混合器であることが記載されている。さらに具体的には、熱可塑性樹脂フィルム主原料ドープ/インライン添加液の流量比は、10/1~500/1、好ましくは50/1~200/1であることが開示されている。さらに、添加剤のブリードアウトが少なく、かつ層間の剥離現象もなく、しかも滑り性が良好で透明性に優れた位相差フィルムを目的とした発明の特開2003-014933号にも、添加剤を添加する方法として、溶解釜中に添加してもよいし、溶解釜~共流延ダイまでの間で添加剤や添加剤を溶解または分散した溶液を、送液中のドープに添加してもよいが、後者の場合は混合性を高めるため、スタチックミキサー等の混合手段を設けることが好ましいことが記載されている。
 本発明に係るλ/4板において、前記マット剤は、多量に添加しなければフィルムのヘイズが大きくならず、実際にLCDに使用した場合、コントラストの低下、輝点の発生等の不都合が生じにくい。また、少なすぎなければキシミ、耐擦傷性を実現することができる。これらの観点から0.01~5.0質量%の割合で含めることが好ましく、0.03~3.0質量%の割合で含めることがより好ましく、0.05~1.0質量%の割合で含めることが特に好ましい。
 <λ/4板の製造方法>
 本発明に係るλ/4板は、熱可塑性樹脂を含有するフィルムとして溶液流延法、溶融流延法のいずれの方法で製造されてもよいが、溶液流延法により製造することが好ましい。
 以下、本発明に係るλ/4板として好適であるセルロースアシレートフィルムを例にとって、その製造方法について説明する。(以下、本発明に係るλ/4板をセルロースアシレートフィルムとして説明する。)
 本発明に用いられるセルロースアシレートフィルムの製造は、セルロースアシレート、及び前記添加剤を溶剤に溶解させてドープを調製する工程、ドープをベルト状若しくはドラム状の金属支持体上に流延する工程、流延したドープをウェブとして乾燥する工程、金属支持体から剥離する工程、延伸する工程、更に乾燥する工程、必要であれば得られたフィルムを更に熱処理する工程、冷却後巻き取る工程により行われる。本発明に用いられるセルロースアシレートフィルムは固形分中に好ましくはセルロースアシレートを60~95質量%含有するものである。
 (ドープ調製)
 ドープを調製する工程について述べる。ドープ中のセルロースアシレートの濃度は、濃度が高い方が金属支持体に流延した後の乾燥負荷が低減出来て好ましいが、セルロースアシレートの濃度が高過ぎると濾過時の負荷が増えて、濾過精度が悪くなる。これらを両立する濃度としては、10~35質量%が好ましく、更に好ましくは、15~25質量%である。
 本発明に用いられるドープの溶剤は、単独で用いても二種以上を併用してもよいが、セルロースアシレートの良溶剤と貧溶剤を混合して使用することが生産効率の点で好ましく、良溶剤が多い方がセルロースアシレートの溶解性の点で好ましい。良溶剤と貧溶剤の混合比率の好ましい範囲は、良溶剤が70~98質量%であり、貧溶剤が2~30質量%である。良溶剤、貧溶剤とは、使用するセルロースアシレートを単独で溶解するものを良溶剤、単独で膨潤するか又は溶解しないものを貧溶剤と定義している。そのため、セルロースアシレートのアセチル置換度によっては、良溶剤、貧溶剤が変わり、例えばアセトンを溶剤として用いる時には、セルロースの酢酸エステル(アセチル置換度2.4)では良溶剤になり、セルロースの酢酸エステル(アセチル置換度2.8)では貧溶剤となる。
 本発明に用いられる良溶剤は特に限定されないが、メチレンクロライド等の有機ハロゲン化合物やジオキソラン類、アセトン、酢酸メチル、アセト酢酸メチル等が挙げられる。特に好ましくはメチレンクロライド又は酢酸メチルが挙げられる。
 また、本発明に用いられる貧溶剤は特に限定されないが、例えば、メタノール、エタノール、n-ブタノール、シクロヘキサン、シクロヘキサノン等が好ましく用いられる。また、ドープ中には水を0.01~2質量%含有していることが好ましい。
 上記記載のドープを調製する時の、セルロースアシレートの溶解方法としては、一般的な方法を用いることができる。加熱と加圧を組み合わせると常圧における沸点以上に加熱できる。溶剤の常圧での沸点以上でかつ加圧下で溶剤が沸騰しない範囲の温度で加熱しながら攪拌溶解すると、ゲルやママコと呼ばれる塊状未溶解物の発生を防止するため好ましい。また、セルロースアシレートを貧溶剤と混合して湿潤或いは膨潤させた後、更に良溶剤を添加して溶解する方法も好ましく用いられる。
 加圧は窒素ガス等の不活性気体を圧入する方法や、加熱によって溶剤の蒸気圧を上昇させる方法によって行ってもよい。加熱は外部から行うことが好ましく、例えばジャケットタイプのものは温度コントロールが容易で好ましい。
 溶剤を添加しての加熱温度は、高い方がセルロースアシレートの溶解性の観点から好ましいが、加熱温度が高過ぎると必要とされる圧力が大きくなり生産性が悪くなる。好ましい加熱温度は45~120℃であり、60~110℃がより好ましく、70℃~105℃が更に好ましい。また、圧力は設定温度で溶剤が沸騰しないように調整される。
 若しくは冷却溶解法も好ましく用いられ、これによって酢酸メチルなどの溶媒にセルロースアシレートを溶解させることができる。
 次に、このセルロースアシレート溶液を濾紙等の適当な濾過材を用いて濾過する。濾過材としては、不溶物等を除去するために絶対濾過精度が小さい方が好ましいが、絶対濾過精度が小さ過ぎると濾過材の目詰まりが発生しやすいという問題がある。このため絶対濾過精度0.008mm以下の濾材が好ましく、0.001~0.008mmの濾材がより好ましく、0.003~0.006mmの濾材が更に好ましい。
 濾材の材質は特に制限はなく、通常の濾材を使用することができるが、ポリプロピレン、テフロン(登録商標)等のプラスチック製の濾材や、ステンレススティール等の金属製の濾材が繊維の脱落等がなく好ましい。濾過により、原料のセルロースアシレートに含まれていた不純物、特に輝点異物を除去、低減することが好ましい。
 輝点異物とは、二枚の偏光板をクロスニコル状態にして配置し、その間にセルロースアシレートフィルムを置き、一方の偏光板の側から光を当てて、他方の偏光板の側から観察した時に反対側からの光が漏れて見える点(異物)のことであり、径が0.01mm以上である輝点数が200個/cm2以下であることが好ましい。より好ましくは100個/cm2以下であり、更に好ましくは50個/m2以下であり、更に好ましくは0~10個/cm2以下である。また、0.01mm以下の輝点も少ない方が好ましい。
 ドープの濾過は通常の方法で行うことができるが、溶剤の常圧での沸点以上で、かつ加圧下で溶剤が沸騰しない範囲の温度で加熱しながら濾過する方法が、濾過前後の濾圧の差(差圧という)の上昇が小さく、好ましい。好ましい温度は45~120℃であり、45~70℃がより好ましく、45~55℃であることが更に好ましい。
 濾圧は小さい方が好ましい。濾圧は1.6MPa以下であることが好ましく、1.2MPa以下であることがより好ましく、1.0MPa以下であることが更に好ましい。
 ここで、ドープの流延について説明する。
 本発明では、セルロースアシレートフィルムが、本発明に係る前記密着改良剤を、前記セルロースアシレートフィルムのハードコート層と接する側から当該セルロースアシレートフィルムの厚み方向の50%以内に、総含有量の90質量%以上を含有していることが、本発明の効果を得る上で好ましい。含有量はフィルムを表面から厚み方向に削り取りながら、その中に含まれる密着改良剤の量を定量することで求めることができる。
 更に該セルロースアシレートフィルムが共流延によって形成される2層以上の積層体であり、ハードコート層側のフィルム層の厚さが0.5~10μmであり、かつ該ハードコート層側のフィルム層が前記密着改良剤を、前記セルロースアシレートフィルムに含有される総量の90質量%以上を含有していることが好ましい。
 本発明に用いられるセルロースアシレートフィルム中の密着改良剤に上記のような分布を持たせるには、密着改良剤を含むドープと含まないドープを調製し、両ドープを共流延または逐次流延によって積層製膜することで実現できる。
 (共流延)
 本発明では調製されたセルロースアシレート溶液(ドープ)は、支持体としての平滑なバンド上或いはドラム上に前記2種以上の複数のセルロースアシレート溶液を流延して製膜することが好ましい。
 上記2種以上のドープを同時に支持体上に流延してもよいし、別々に支持体上に流延してもよい。別々に流延する逐次流延法の場合は、支持体側のドープを先に流延して支持体上である程度乾燥させた後に、その上に重ねて流延することが出来る。また、3種以上のドープを使用する場合、同時流延(共流延ともいう)と逐次流延を適宜組み合せて流延し、積層構造のフィルムを作製することも出来る。共流延若しくは逐次流延によって製膜されるこれらの方法は、乾燥されたフィルム上に塗布する方法とは異なり、積層構造の各層の境界が不明確になり、断面の観察で積層構造が明確には分かれないことがあるという特徴があり、各層間の密着性を向上させる効果がある。
 本発明に用いられるセルロースアシレートフィルムの製造方法は、生産性の観点からは共流延で行うことが好ましく、公知の共流延方法を用いることができる。例えば、金属支持体の進行方向に間隔を置いて設けた複数の流延口からセルロースアシレートを含む溶液をそれぞれ流延させて積層させながらフィルムを作製してもよく、例えば特開昭61-158414号、特開平1-122419号、特開平11-198285号の各公報などに記載の方法が適応できる。また、2つの流延口からセルロースアシレート溶液を流延することによってもフィルム化することでもよく、例えば特公昭60-27562号、特開昭61-94724号、特開昭61-947245号、特開昭61-104813号、特開昭61-158413号、特開平6-134933号の各公報に記載の方法で実施できる。また、特開昭56-162617号公報に記載の高粘度セルロースアシレート溶液の流れを低粘度のセルロースアシレート溶液で包み込み、その高,低粘度のセルロースアシレート溶液を同時に押出すセルロースアシレートフィルム流延方法でもよい。更に又、特開昭61-94724号、特開昭61-94725号の各公報に記載の外側の溶液が内側の溶液よりも貧溶媒であるアルコール成分を多く含有させることも好ましい態様である。
 あるいは、また、2個の流延口を用いて、第一の流延口により金属支持体に成型したフィルムを剥離し、金属支持体面に接していた側に第二の流延を行うことでより、フィルムを作製することでもよく、例えば特公昭44-20235号公報に記載されている方法である。
 図2は共流延ダイ及び流延して多層構造ウェブ(流延直後はウェブをドープ膜ともいうことがある)を形成したところを表した模式図である。共流延は図2に示すように、共流延ダイ10の口金部分11に複数(図2では三つ)のスキン層用スリット13と15、コア層用スリット14を有しており、金属支持体16の上に同時にそれぞれのスリットからスキン層用ドープ17、コア層用ドープ18、及びスキン層用ドープ19を流延することにより、スキン層21/コア層22/スキン層23の多層構造のウェブ20を形成する。
 流延するセルロースアシレート溶液は同一の溶液でもよいし、異なるセルロースアシレート溶液でもよいが、前記密着改良剤に分布を持たせるには異なるセルロースアシレート溶液が好ましい。複数のセルロースアシレート層に機能を持たせるために、その機能に応じたセルロースアシレート溶液を、それぞれの流延口から押出せばよい。さらに本発明に係るセルロースアシレート溶液は、他の機能層(例えば、接着層、染料層、帯電防止層、アンチハレーション層、UV吸収層、偏光層など)を同時に流延することも実施しうる。本発明のフィルムを製造する方法としては、製膜が同時または逐次での多層流延製膜であることが好ましい。
 共流延の場合、内側と外側の厚さは特に限定されないが、好ましくはハードコート層側のフィルム層の厚さが0.5~10μmである。かつ該ハードコート層側のフィルム層が前記密着改良剤を、セルロースアシレートフィルムに含有される総量の90質量%以上、含有量としてセルロースアシレートフィルム100質量部に対して0.05~5質量部含有することが好ましい。密着改良剤がフィルムのハードコート層側に偏って分布しており、かつ該部分がフィルムの膜厚の25分の1~10分の1程度にまで薄い場合は、フィルムに均一に分散されている場合と比べて、該部分に封止層に必要な紫外線透過性を維持したまま、より多くの密着改良剤を含有することができる。
 以上から、共流延の場合、前述の密着改良剤、可塑剤、マット剤、その他添加剤等の添加物濃度、添加物種類が異なるセルロースアシレート溶液を共流延して、所望の積層構造のセルロースアシレートフィルムを作製することもできる。
 本発明では、多層流延したドープを乾燥させて支持体から剥離する。
 ドープは、ドラムまたは金属支持体上に流延し、溶媒を蒸発させてフィルムを形成する。流延前のドープは、固形分量が18~35質量%となるように濃度を調整することが好ましい。ドラムまたは金属支持体の表面は、鏡面状態に仕上げておくことが好ましい。ソルベントキャスト法における流延および乾燥方法については、米国特許2336310号、同2367603号、同2492078号、同2492977号、同2492978号、同2607704号、同2739069号、同2739070号、英国特許640731号、同736892号の各明細書、特公昭45-4554号、同49-5614号、特開昭60-176834号、同60-203430号、同62-115035号の各公報に記載がある。
 ドープは、表面温度が10℃以下のドラムまたは金属支持体上に流延することが好ましい。流延してから2秒以上風に当てて乾燥することが好ましい。得られたフィルムをドラムまたは金属支持体から剥ぎ取り、さらに100℃から160℃まで逐次温度を変えた高温風で乾燥して残留溶媒を蒸発させることもできる。以上の方法は、特公平5-17844号公報に記載がある。この方法によると、流延から剥ぎ取りまでの時間を短縮することが可能である。この方法を実施するためには、流延時のドラムまたは金属支持体の表面温度においてドープがゲル化することが必要である。
 流延(キャスト)工程における金属支持体は、表面を鏡面仕上げしたものが好ましく、金属支持体としては、ステンレススティールベルト若しくは鋳物で表面をメッキ仕上げしたドラムが好ましく用いられる。キャストの幅は1~4mとすることができる。流延工程の金属支持体の表面温度は-50℃~溶剤が沸騰して発泡しない温度以下に設定される。温度が高い方がウェブの乾燥速度が速くできるので好ましいが、余り高過ぎるとウェブが発泡したり、平面性が劣化する場合がある。好ましい支持体温度としては0~100℃で適宜決定され、5~30℃が更に好ましい。或いは、冷却することによってウェブをゲル化させて残留溶媒を多く含んだ状態でドラムから剥離することも好ましい方法である。金属支持体の温度を制御する方法は特に制限されないが、温風又は冷風を吹きかける方法や、温水を金属支持体の裏側に接触させる方法がある。温水を用いる方が熱の伝達が効率的に行われるため、金属支持体の温度が一定になるまでの時間が短く好ましい。温風を用いる場合は溶媒の蒸発潜熱によるウェブの温度低下を考慮して、溶媒の沸点以上の温風を使用しつつ、発泡も防ぎながら目的の温度よりも高い温度の風を使う場合がある。特に、流延から剥離するまでの間で支持体の温度及び乾燥風の温度を変更し、効率的に乾燥を行うことが好ましい。
 本発明に用いられるセルロースアシレートフィルムが良好な平面性を示すためには、金属支持体からウェブを剥離する際の残留溶媒量は10~150質量%が好ましく、更に好ましくは20~40質量%又は60~130質量%であり、特に好ましくは、20~30質量%又は70~120質量%である。また、該金属支持体上の剥離位置における温度を-50~40℃とするのが好ましく、10~40℃がより好ましく、15~30℃とするのが最も好ましい。
 本発明においては、残留溶媒量は下記式で定義される。
 残留溶媒量(質量%)={(M-N)/N}×100
 なお、Mはウェブ又はフィルムを製造中又は製造後の任意の時点で採取した試料の質量で、NはMを115℃で1時間の加熱後の質量である。
 また、セルロースアシレートフィルムの乾燥工程においては、ウェブを金属支持体より剥離し、更に乾燥し、残留溶媒量が0.5質量%以下となるまで乾燥される。
 フィルム乾燥工程では一般にロール乾燥方式(上下に配置した多数のロールをウェブを交互に通し乾燥させる方式)やテンター方式でウェブを搬送させながら乾燥する方式が採られる。
 前記金属支持体から剥離する際に、剥離張力及びその後の搬送張力によってウェブは縦方向に延伸する為、本発明においては流延支持体からウェブを剥離する際は剥離及び搬送張力をできるだけ下げた状態で行うことが好ましい。具体的には、例えば50~170N/m以下にすることが効果的である。その際、20℃以下の冷風を当て、ウェブを急速に固定化することが好ましい。
 セルロースアシレートフィルムは、更に延伸処理により屈折率(面内の遅相軸方向の屈折率nx、面内の遅相軸に垂直な方向の屈折率ny及び厚さ方向の屈折率nz)を調整することができる。
 また、共流延以外の方法では、後述のように、塗布により密着改良剤層を設けることができる。
 (延伸工程)
 本発明に係るλ/4板は、波長590nmで測定した面内方向のレターデーションRo(590)が110~170nmの範囲であることが好ましいが、該レターデーションはフィルム延伸によって付与することが好ましい。
 延伸する方法には特に限定はない。例えば、複数のロールに周速差をつけ、その間でロール周速差を利用して縦方向に延伸する方法、ウェブの両端をクリップやピンで固定し、クリップやピンの間隔を進行方向に広げて縦方向に延伸する方法、同様に横方向に広げて横方向に延伸する方法、あるいは縦横同時に広げて縦横両方向に延伸する方法などが挙げられる。もちろんこれ等の方法は、組み合わせて用いてもよい。すなわち、製膜方向に対して横方向に延伸しても、縦方向に延伸しても、両方向に延伸してもよく、さらに両方向に延伸する場合は同時延伸であっても、逐次延伸であってもよい。なお、いわゆるテンター法の場合、リニアドライブ方式でクリップ部分を駆動すると滑らかな延伸が行うことができ、破断等の危険性が減少できるので好ましい。
 本発明においては特に、延伸はフィルム搬送ロールの周速差を利用して搬送方向に行うか、若しくは搬送方向と直交方向(幅手方向又はTD方向ともいう)にウェブの両端をクリップ等で把持するテンター方式で行うことが好ましく、更に左右把持手段によってウェブの把持長(把持開始から把持終了までの距離)を左右で独立に制御できるテンターを用いることも好ましい。
 また、本発明では本発明に係るλ/4板又は偏光子のいずれかを、延伸工程でフィルム搬送方向に対して45°方向に延伸することも好ましい。
 これは、VAやIPS型表示装置などに用いられている偏光板のように、偏光軸が偏光板の長辺方向あるいは短辺方向に平行である表示装置の表面に設けるλ/4板では、ロール状のポリマーフィルムからなるλ/4板の長手方向と面内の遅相軸との角度が実質的に45°であると、長尺ロール状λ/4板の長手方向もしくは幅手方向にカットしたλ/4板を用いることができるので、フィルムのカットロスが少なく生産上有利であるからである。
 長手方向と面内の遅相軸との角度が実質的に45°であるλ/4板は、ロール状のセルロースアシレートフィルムを長手方向に対して実質的に45°の方向に延伸処理することにより製造することができる。
 以下、45°の方向に延伸する方法を説明する。
 セルロースアシレートフィルムを長手方向に対して実質的に45°の方向に斜め延伸するためには、図3で示されるテンターを用いることが好ましい。図3は、テンターによる斜め延伸を示す模式図である。
 延伸フィルムの製造は、テンターを用いて行う。このテンターは、フィルムロール(繰出しロール)から繰り出されるフィルムを、オーブンによる加熱環境下で、その進行方向(フィルム幅方向の中点の移動方向)に対して斜め方向に拡幅する装置である。このテンターは、オーブンと、フィルムを搬送するための把持具が走行する左右で一対のレールと、該レール上を走行する多数の把持具とを備えている。フィルムロールから繰り出され、テンターの入口部に順次供給されるフィルムの両端を、把持具で把持し、オーブン内にフィルムを導き、テンターの出口部で把持具からフィルムを開放する。把持具から開放されたフィルムは巻芯に巻き取られる。一対のレールは、それぞれ無端状の連続軌道を有し、テンターの出口部でフィルムの把持を開放した把持具は、外側を走行して順次入口部に戻されるようになっている。
 なお、テンターのレール形状は、製造すべき延伸フィルムに与える配向角、延伸倍率等に応じて、左右で非対称な形状となっており、手動で又は自動で微調整できるようになっている。本発明においては、長尺の熱可塑性樹脂フィルムを延伸し、配向角θが延伸後の巻取り方向に対して、40°~80°の範囲内で、任意の角度に設定できるようになっている。本発明において、テンターの把持具は、前後の把持具と一定間隔を保って、一定速度で走行するようになっている。
 図3は、斜め延伸するために用いるテンターのレールの軌道(レールパターン)を示している。セルロースアシレートフィルムの繰出し方向DR1は、延伸後のフィルムの巻取り方向(MD方向)DR2と異なっており、これにより、比較的大きな配向角をもつ延伸フィルムにおいても広幅で均一な光学特性を得ることが可能となっている。繰出し角度θiは、延伸前のフィルムの繰出し方向DR1と延伸後のフィルムの巻取り方向DR2とのなす角度である。本発明においては、上述のように40°~80°の配向角を持つフィルムを製造するため、繰出し角度θiは、10°<θi<60°、好ましくは15°<θi<50°で設定される。繰出し角度θiを前記範囲とすることにより、得られるフィルムの幅方向の光学特性のバラツキが良好となる(小さくなる。)。
 フィルムロール(繰出しロール)から繰出されたセルロースアシレートフィルムは、テンター入口(符号aの位置)において、その両端(両側)を左右の把持具によって順次把持されて、把持具の走行に伴い走行される。テンター入口(符号aの位置)で、フィルム進行方向(繰り出し方向DR1)に対して略垂直な方向に相対している左右の把持具CL,CRは、左右非対称なレール上を走行し、予熱ゾーン、延伸ゾーン、熱固定ゾーンを有するオーブンを通過する。ここで、略垂直とは、前述の向かい合う把持具CL,CR同士を結んだ直線とフィルム繰出し方向DR1とがなす角度が、90±1°以内にあることを示す。
 予熱ゾーンとは、オーブン入口部において、両端を把持した把持具の間隔が一定の間隔を保ったまま走行する区間をさす。延伸ゾーンとは、両端を把持した把持具の間隔が開きだし、再び一定となるまでの区間をさす。また、冷却ゾーンとは、延伸ゾーンより後の把持具の間隔が再び一定となる期間において、ゾーン内の温度がフィルムを構成する熱可塑性樹脂のガラス転移温度Tg℃以下に設定される区間をさす。
 各ゾーンの温度は、熱可塑性樹脂のガラス転移温度Tgに対し、予熱ゾーンの温度はTg+5~Tg+20℃、延伸ゾーンの温度はTg~Tg+20℃、冷却ゾーンの温度はTg-30~Tg℃に設定することが好ましい。
 延伸工程における延伸倍率R(W/Wo)は、好ましくは1.3~3.0倍、より好ましくは1.5~2.8倍である。延伸倍率がこの範囲にあると幅方向厚さムラが小さくなるので好ましい。テンター延伸機の延伸ゾーンにおいて、幅方向で延伸温度に差を付けると幅方向厚さムラをさらに良好なレベルにすることが可能になる。なお、Woは延伸前のフィルムの幅、Wは延伸後のフィルムの幅を表す。
 上記斜め方向に延伸する工程は、製膜工程内(オンライン)で行ってもよく、また一度フィルムを巻き取った後に繰り出して上記テンターにて行ってもよい(オフライン)。
 ウェブを乾燥させる手段は特に制限なく、一般的に熱風、赤外線、加熱ロール、マイクロ波等で行うことができるが、簡便さの点で、熱風で行うことが好ましい。
 ウェブの乾燥工程における乾燥温度は好ましくはフィルムのガラス転移点-5℃以下、100℃以上で10分以上60分以下の熱処理を行うことが効果的である。乾燥温度は100~200℃、更に好ましくは110~160℃で乾燥が行われる。
 所定の熱処理の後、巻き取り前にスリッターを設けて端部を切り落とすことが良好な巻姿を得るため好ましい。更に、幅手両端部にはナーリング加工をすることが好ましい。
 ナーリング加工は、加熱されたエンボスロールを押し当てることにより形成することができる。エンボスロールには細かな凹凸が形成されており、これを押し当てることでフィルムに凹凸を形成し、端部を嵩高くすることができる。
 本発明に用いられるセルロースアシレートフィルムの幅手両端部のナーリングの高さは4~20μm、幅5~20mmが好ましい。
 また、本発明においては、上記のナーリング加工は、フィルムの製膜工程において乾燥終了後、巻き取りの前に設けることが好ましい。
 (ヘイズ)
 本発明に用いられるセルロースアシレートフィルムは、ヘイズが1%未満であることが好ましく、0.5%未満であることがより好ましい。ヘイズを1%未満とすることにより、フィルムの透明性がより高くなり、光学フィルムとしてより用いやすくなるという利点がある。
 (平均含水率)
 本発明に用いられるセルロースアシレートフィルムは、25℃、相対湿度60%における平衡含水率が4%以下であることが好ましく、3%以下であることがより好ましい。平均含水率を4%以下とすることにより、湿度変化に対応しやすく、光学特性や寸法がより変化しにくく好ましい。
 (膜厚)
 本発明に用いられるセルロースアシレートフィルムは、30~100μmであることが好ましい。30μm以上とすることにより、ウェブ状のフィルムを作成する際のハンドリング性が向上し、好ましい。
 (フィルム長、幅)
 本発明に用いられるセルロースアシレートフィルムは、長尺であることが好ましく、具体的には、100~10000m程度の長さであることが好ましく、ロール状に巻き取られる。また、本発明に用いられるセルロースアシレートフィルムの幅は1m以上であることが好ましく、更に好ましくは1.4m以上であり、特に1.4~4mであることが好ましい。
 また、共流延以外の方法では、セルロースアシレートフィルムに密着改良剤層を塗布により設けることができる。この場合、密着改良剤層の好ましい膜厚は0.1~10nmである。
 以上のようにして熱可塑性樹脂としてセルロースアシレートを用いた、本発明に係るλ/4板を製造することができる。
 <ハードコート層>
 本発明に係るλ/4板上には、ハードコート層が設けられており、当該ハードコート層はクリアハードコート層又は防眩性ハードコート層のいずれかであることが好ましい。
 本発明に係るハードコート層は、λ/4板上に設けられ、好ましくは密着改良剤が多く含有される側の表面上に設けられる。
 本発明においては、前記ハードコート層上に、少なくとも低屈折率層を含む反射防止層が視認性を向上させる為に設けられることがより好ましい。
 本発明に係るハードコート層がクリアハードコート層の場合は、JIS B 0601で規定される中心線平均粗さ(Ra)が0.001~0.1μmのクリアハードコート層であり、Raが0.002~0.05μmであることが好ましい。中心線平均粗さ(Ra)は光干渉式の表面粗さ測定器で測定することが好ましく、例えばWYKO社製非接触表面微細形状計測装置WYKO NT-2000を用いて測定することができる。
 本発明に係るハードコート層が防眩性である場合は、表面に微細な凹凸形状を有するが、該微細凹凸形状は、ハードコート層に微粒子を含有させることで形成し、下記のような平均粒径0.01μm~4μmの微粒子をハードコート層中に含有させることで形成できる。また、後述するように、該防眩性ハードコート層上に設けられた反射防止層の最表面の表面粗さとして、JIS B 0601で規定される中心線平均粗さ(Ra)が0.08μm~0.5μmの範囲に調整されることが好ましい。
 本発明に係るハードコート層中に含有される粒子としては、例えば、無機又は有機の微粒子が用いられる。
 無機微粒子としては酸化ケイ素、酸化チタン、酸化アルミニウム、酸化錫、酸化亜鉛、炭酸カルシウム、硫酸バリウム、タルク、カオリン、硫酸カルシウム等を挙げることができる。
 また、有機微粒子としては、ポリメタアクリル酸メチルアクリレート樹脂微粒子、アクリルスチレン系樹脂微粒子、ポリメチルメタクリレート樹脂微粒子、シリコーン系樹脂微粒子、ポリスチレン系樹脂微粒子、ポリカーボネート樹脂微粒子、ベンゾグアナミン系樹脂微粒子、メラミン系樹脂微粒子、ポリオレフィン系樹脂微粒子、ポリエステル系樹脂微粒子、ポリアミド系樹脂微粒子、ポリイミド系樹脂微粒子、又はポリ弗化エチレン系樹脂微粒子等を挙げることができる。
 本発明では特に、酸化ケイ素微粒子又はポリスチレン系樹脂微粒子であることが好ましい。
 上記記載の無機又は有機の微粒子は、防眩性ハードコート層の作製に用いられる樹脂等を含む塗布組成物に加えて用いることが好ましい。
 本発明に係るハードコート層に防眩性を付与するためには、無機又は有機微粒子の含有量は、防眩性ハードコート層作製用の樹脂100質量部に対して、0.1質量部~30質量部が好ましく、更に好ましくは、0.1質量部~20質量部となるように配合することである。より好ましい防眩効果を付与するには、平均粒径0.1μm~1μmの微粒子を防眩性ハードコート層作製用の樹脂100質量部に対して1質量部~15質量部を用いるのが好ましい。又、異なる平均粒径の微粒子を二種以上用いることも好ましい。
 また、本発明に係るハードコート層には帯電防止剤を含有させることも好ましく、帯電防止剤としては、Sn、Ti、In、Al、Zn、Si、Mg、Ba、Mo、W及びVからなる群から選択される少なくとも一つの元素を主成分として含有し、かつ、体積抵抗率が107Ω・cm以下であるような導電性材料が好ましい。
 前記帯電防止剤としては、上記の元素を有する金属酸化物、複合酸化物等が挙げられる。
 金属酸化物の例としては、ZnO、TiO2、SnO2、Al2O3、In2O3、SiO2、MgO、BaO、MoO2、V2O5等、或いはこれらの複合酸化物が好ましく、特にZnO、In2O3、TiO2及びSnO2が好ましい。異種原子を含む例としては、例えばZnOに対してはAl、In等の添加、TiO2に対してはNb、Ta等の添加、またSnO2に対しては、Sb、Nb、ハロゲン元素等の添加が効果的である。これら異種原子の添加量は0.01~25mol%の範囲が好ましいが、0.1~15mol%の範囲が特に好ましい。
 また、これらの導電性を有するこれら金属酸化物粉体の体積抵抗率は107Ω・cm以下、特に105Ω・cm以下である。
 十分な耐久性、耐衝撃性を付与する観点から、クリアハードコート層又は防眩性ハードコート層の膜厚は0.5μm~15μmの範囲が好ましく、更に好ましくは、1.0μm~7μmである。
 (活性エネルギー線硬化樹脂)
 本発明に係るハードコート層は、紫外線等活性エネルギー線照射により硬化する活性エネルギー線硬化樹脂を含有することが好ましい。
 活性エネルギー線硬化樹脂とは紫外線や電子線のような活性エネルギー線照射により架橋反応等を経て硬化する樹脂である。活性エネルギー線硬化樹脂としては紫外線硬化性樹脂や電子線硬化性樹脂等が代表的なものとして挙げられるが、紫外線や電子線以外の活性エネルギー線照射によって硬化する樹脂でもよい。
 紫外線硬化性樹脂としては、例えば、紫外線硬化型アクリルウレタン系樹脂、紫外線硬化型ポリエステルアクリレート系樹脂、紫外線硬化型エポキシアクリレート系樹脂、紫外線硬化型ポリオールアクリレート系樹脂、又は紫外線硬化型エポキシ樹脂等を挙げることができる。
 紫外線硬化型アクリルウレタン系樹脂は、一般にポリエステルポリオールにイソシアネートモノマー、又はプレポリマーを反応させて得られた生成物に更に2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート(以下アクリレートにはメタクリレートを包含するものとしてアクリレートのみを表示する)、2-ヒドロキシプロピルアクリレート等のヒドロキシル基(水酸基)を有するアクリレート系のモノマーを反応させることによって容易に得ることができる。例えば、特開昭59-151110号に記載の、ユニディック17-806(DIC(株)製)100部とコロネートL(日本ポリウレタン(株)製)1部との混合物等が好ましく用いられる。
 紫外線硬化型ポリエステルアクリレート系樹脂は、一般にポリエステル末端のヒドロキシル基(水酸基)やカルボキシル基に2-ヒドロキシエチルアクリレート、グリシジルアクリレート、アクリル酸のようなモノマーを反応させることによって容易に得ることができる(例えば、特開昭59-151112号)。
 紫外線硬化型エポキシアクリレート系樹脂は、エポキシ樹脂の末端のヒドロキシル基(水酸基)にアクリル酸、アクリル酸クロライド、グリシジルアクリレートのようなモノマーを反応させて得られる。
 紫外線硬化型ポリオールアクリレート系樹脂としては、エチレングリコール(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、アルキル変性ジペンタエリスリトールペンタアクリレート等を挙げることができる。
 紫外線硬化型エポキシアクリレート系樹脂、紫外線硬化型エポキシ樹脂の例として、有用に用いられるエポキシ系活性エネルギー線反応性化合物を示す。
 (a)ビスフェノールAのグリシジルエーテル(この化合物はエピクロルヒドリンとビスフェノールAとの反応により、重合度の異なる混合物として得られる)
 (b)ビスフェノールA等のフェノール性OHを2個有する化合物に、エピクロルヒドリン、エチレンオキサイド及び/又はプロピレンオキサイドを反応させ末端にグリシジルエーテル基を有する化合物
 (c)4,4′-メチレンビスフェノールのグリシジルエーテル
 (d)ノボラック樹脂又はレゾール樹脂のフェノールフォルムアルデヒド樹脂のエポキシ化合物
 (e)脂環式エポキシドを有する化合物、例えば、ビス(3,4-エポキシシクロヘキシルメチル)オキザレート、ビス(3,4-エポキシシクロヘキシルメチル)アジペート、ビス(3,4-エポキシ-6-シクロヘキシルメチル)アジペート、ビス(3,4-エポキシシクロヘキシルメチルピメレート)、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、3,4-エポキシ-1-メチルシクロヘキシルメチル-3′,4′-エポキシシクロヘキサンカルボキシレート、3,4-エポキシ-1-メチル-シクロヘキシルメチル-3′,4′-エポキシ-1′-メチルシクロヘキサンカルボキシレート、3,4-エポキシ-6-メチル-シクロヘキシルメチル-3′,4′-エポキシ-6′-メチル-1′-シクロヘキサンカルボキシレート、2-(3,4-エポキシシクロヘキシル-5′,5′-スピロ-3″,4″-エポキシ)シクロヘキサン-メタ-ジオキサン
 (f)2塩基酸のジグリシジルエーテル、例えば、ジグリシジルオキザレート、ジグリシジルアジペート、ジグリシジルテトラヒドロフタレート、ジグリシジルヘキサヒドロフタレート、ジグリシジルフタレート
 (g)グリコールのジグリシジルエーテル、例えば、エチレングリコールジグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、コポリ(エチレングリコール-プロピレングリコール)ジグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル
 (h)ポリマー酸のグリシジルエステル、例えば、ポリアクリル酸ポリグリシジルエステル、ポリエステルジグリシジルエステル
 (i)多価アルコールのグリシジルエーテル、例えば、グリセリントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ペンタエリスリトールジグリシジルエーテル、ペンタエリスリトールトリグリシジルエーテル、ペンタエリスリトールテトラグリシジルエーテル、グルコーストリグリシジルエーテル
 (j)2-フルオロアルキル-1,2-ジオールのジグリシジルエーテルとしては、前記低屈折率物質のフッ素含有樹脂のフッ素含有エポキシ化合物に挙げた化合物例と同様のもの  
 (k)含フッ素アルカン末端ジオールグリシジルエーテルとしては、上記低屈折率物質のフッ素含有樹脂のフッ素含有エポキシ化合物等を挙げることができる。
 上記エポキシ化合物の分子量は、平均分子量として2000以下で、好ましくは1000以下である。
 上記のエポキシ化合物を活性エネルギー線により硬化する場合、より硬度を上げるためには、(h)又は(i)の多官能のエポキシ基を有する化合物を混合して用いると効果的である。
 エポキシ系活性エネルギー線反応性化合物をカチオン重合させる光重合開始剤又は光増感剤は、活性エネルギー線照射によりカチオン重合開始物質を放出することが可能な化合物であり、特に好ましくは、照射によりカチオン重合開始能のあるルイス酸を放出するオニウム塩の一群の複塩である。
 活性エネルギー線反応性化合物エポキシ樹脂は、ラジカル重合によるのではなく、カチオン重合により重合、架橋構造又は網目構造を形成する。ラジカル重合と異なり反応系中の酸素に影響を受けないため好ましい活性エネルギー線反応性樹脂である。
 本発明に有用な活性エネルギー線反応性エポキシ樹脂は、活性エネルギー線照射によりカチオン重合を開始させる物質を放出する光重合開始剤又は光増感剤により重合する。光重合開始剤としては、光照射によりカチオン重合を開始させるルイス酸を放出するオニウム塩の複塩の一群が特に好ましい。
 かかる代表的なものは下記一般式(a)で表される化合物である。
 一般式(a):〔(R1)a(R2)b(R3)c(R4)dZ〕w+〔MeXv〕w-
 式中、カチオンはオニウムであり、ZはS、Se、Te、P、As、Sb、Bi、O、ハロゲン(例えばI、Br、Cl)、又はN=N(ジアゾ)であり、R1、R2、R3、R4は同一であっても異なっていてもよい有機の基である。a、b、c、dはそれぞれ0~3の整数であって、a+b+c+dはZの価数に等しい。Meはハロゲン化物錯体の中心原子である金属又は半金属(metalloid)であり、B、P、As、Sb、Fe、Sn、Bi、Al、Ca、In、Ti、Zn、Sc、V、Cr、Mn、Co等である。Xはハロゲンであり、wはハロゲン化錯体イオンの正味の電荷であり、vはハロゲン化錯体イオン中のハロゲン原子の数である。
 上記一般式(a)の陰イオン〔MeXv〕w-の具体例としては、テトラフルオロボレート(BF4-)、テトラフルオロホスフェート(PF4-)、テトラフルオロアンチモネート(SbF4-)、テトラフルオロアルセネート(AsF4-)、テトラクロロアンチモネート(SbCl4-)等を挙げることができる。
 また、その他の陰イオンとしては過塩素酸イオン(ClO4-)、トリフルオロメチル亜硫酸イオン(CF3SO3-)、フルオロスルホン酸イオン(FSO3-)、トルエンスルホン酸イオン、トリニトロベンゼン酸陰イオン等を挙げることができる。
 このようなオニウム塩の中でも特に芳香族オニウム塩をカチオン重合開始剤として使用するのが有効であり、中でも特開昭50-151996号、同50-158680号等に記載の芳香族ハロニウム塩、特開昭50-151997号、同52-30899号、同59-55420号、同55-125105号等に記載のVIA族芳香族オニウム塩、特開昭56-8428号、同56-149402号、同57-192429号等に記載のオキソスルホキソニウム塩、特公昭49-17040号等に記載の芳香族ジアゾニウム塩、米国特許第4,139,655号等に記載のチオピリリューム塩等が好ましい。また、アルミニウム錯体や光分解性けい素化合物系重合開始剤等を挙げることができる。上記カチオン重合開始剤と、ベンゾフェノン、ベンゾインイソプロピルエーテル、チオキサントン等の光増感剤を併用することができる。
 また、エポキシアクリレート基を有する活性エネルギー線反応性化合物の場合は、n-ブチルアミン、トリエチルアミン、トリ-n-ブチルホスフィン等の光増感剤を用いることができる。この活性エネルギー線反応性化合物に用いられる光増感剤や光開始剤は、紫外線反応性化合物100質量部に対して0.1質量部~15質量部で光反応を開始するには十分であり、好ましくは1質量部~10質量部である。この増感剤は近紫外線領域から可視光線領域に吸収極大のあるものが好ましい。
 本発明に有用な活性エネルギー線硬化樹脂組成物において、重合開始剤は、一般的には、活性エネルギー線硬化性エポキシ樹脂(プレポリマー)100質量部に対して0.1質量部~15質量部の使用が好ましく、更に好ましくは、1質量部~10質量部の範囲の添加が好ましい。
 また、エポキシ樹脂を上記ウレタンアクリレート型樹脂、ポリエーテルアクリレート型樹脂等と併用することもでき、この場合、活性エネルギー線ラジカル重合開始剤と活性エネルギー線カチオン重合開始剤を併用することが好ましい。
 また、本発明に係るハードコート層には、オキセタン化合物を用いることもできる。用いられるオキセタン化合物は、酸素又は硫黄を含む3員環のオキセタン環を有する化合物である。中でも酸素を含むオキセタン環を有する化合物が好ましい。オキセタン環は、ハロゲン原子、ハロアルキル基、アリールアルキル基、アルコキシル基、アリルオキシ基、アセトキシ基で置換されていてもよい。具体的には、3,3-ビス(クロルメチル)オキセタン、3,3-ビス(ヨードメチル)オキセタン、3,3-ビス(メトキシメチル)オキセタン、3,3-ビス(フェノキシメチル)オキセタン、3-メチル-3クロルメチルオキセタン、3,3-ビス(アセトキシメチル)オキセタン、3,3-ビス(フルオロメチル)オキセタン、3,3-ビス(ブロモメチル)オキセタン、3,3-ジメチルオキセタン等が挙げられる。なお、本発明ではモノマー、オリゴマー、ポリマーのいずれであってもよい。
 本発明に係るハードコート層には、公知の熱可塑性樹脂、熱硬化性樹脂又はゼラチン等の親水性樹脂等のバインダーを上記記載の活性エネルギー線硬化樹脂に混合して使用することができる。これらの樹脂は、その分子中に極性基を持っていることが好ましい。極性基としては、-COOM、-OH、-NR2、-NR3X、-SO3M、-OSO3M、-PO3M2、-OPO3M(ここで、Mは水素原子、アルカリ金属又はアンモニウム基を、Xはアミン塩を形成する酸を、Rは水素原子、アルキル基を表す)等を挙げることができる。
 本発明に係るハードコート層が活性エネルギー線硬化型樹脂を含む場合、活性エネルギー線の照射方法としては、支持体上に、ハードコート層、反射防止層(中~高屈折率層及び低屈折率層)等の塗設後に活性エネルギー線を照射してもよいが、ハードコート層塗設時に活性エネルギー線を照射することが好ましい。
 本発明に使用する活性エネルギー線は、紫外線、電子線、γ線等で、化合物を活性化させるエネルギー源であれば制限なく使用できるが、紫外線、電子線が好ましく、特に取り扱いが簡便で高エネルギーが容易に得られるという点で紫外線が好ましい。紫外線反応性化合物を光重合させる紫外線の光源としては、紫外線を発生する光源であれば何れも使用できる。例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等を用いることができる。また、ArFエキシマレーザ、KrFエキシマレーザ、エキシマランプ又はシンクロトロン放射光等も用いることができる。波長250nm~420nmの紫外領域に発光スペクトルを持つ光源を使用するのが好ましい。照射条件はそれぞれのランプによって異なるが、照射光量は20mJ/cm2以上が好ましく、更に好ましくは、50mJ/cm2~2000mJ/cm2であり、特に好ましくは、50mJ/cm2~1000mJ/cm2である。
 紫外線照射は、ハードコート層と後述する反射防止層を構成する複数の層(中屈折率層、高屈折率層、低屈折率層)それぞれに対して1層設ける毎に照射してもよいし、積層後照射してもよい。或いはこれらを組み合わせて照射してもよい。生産性の点から、多層を積層後、紫外線を照射することが好ましい。
 また、電子線も同様に使用できる。電子線としては、コックロフトワルトン型、バンデグラフ型、共振変圧型、絶縁コア変圧器型、直線型、ダイナミトロン型、高周波型等の各種電子線加速器から放出される50~1000keV、好ましくは100~300keVのエネルギーを有する電子線を挙げることができる。
 本発明に使用する上記活性エネルギー線反応性化合物を光重合又は光架橋反応を開始させるには、上記活性エネルギー線反応性化合物のみでも開始するが、重合の誘導期が長かったり、重合開始が遅かったりするため、光増感剤や光開始剤を用いることが好ましく、それにより重合を早めることができる。
 本発明に係るハードコート層が活性エネルギー線硬化樹脂を含有する場合、活性エネルギー線の照射時においては、光反応開始剤、光増感剤を用いることができる。
 具体的には、アセトフェノン、ベンゾフェノン、ヒドロキシベンゾフェノン、ミヒラーケトン、α-アミロキシムエステル、チオキサントン等及びこれらの誘導体を挙げることができる。また、エポキシアクリレート系樹脂の合成に光反応剤を使用する際に、n-ブチルアミン、トリエチルアミン、トリ-n-ブチルホスフィン等の増感剤を用いることができる。塗布乾燥後に揮発する溶媒成分を除いた紫外線硬化性樹脂組成物に含まれる光反応開始剤及び/又は光増感剤の使用量は、組成物の1質量%~10質量%が好ましく、特に好ましくは2.5質量%~6質量%である。
 また、活性エネルギー線硬化樹脂として、紫外線硬化性樹脂を用いる場合、前記紫外線硬化性樹脂の光硬化を妨げない程度に、後述する紫外線吸収剤を紫外線硬化性樹脂組成物に含ませてもよい。
 ハードコート層の耐熱性を高めるために、光硬化反応を抑制しないような酸化防止剤を選んで用いることができる。例えば、ヒンダードフェノール誘導体、チオプロピオン酸誘導体、ホスファイト誘導体等を挙げることができる。具体的には、例えば、4,4′-チオビス(6-tert-3-メチルフェノール)、4,4′-ブチリデンビス(6-tert-ブチル-3-メチルフェノール)、1,3,5-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)イソシアヌレート、2,4,6-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)メシチレン、ジ-オクタデシル-4-ヒドロキシ-3,5-ジ-tert-ブチルベンジルホスフェート等を挙げることができる。
 紫外線硬化性樹脂としては、例えば、アデカオプトマーKR、BYシリーズのKR-400、KR-410、KR-550、KR-566、KR-567、BY-320B(以上、(株)ADEKA製)、コーエイハードのA-101-KK、A-101-WS、C-302、C-401-N、C-501、M-101、M-102、T-102、D-102、NS-101、FT-102Q8、MAG-1-P20、AG-106、M-101-C(以上、広栄化学工業(株)製)、セイカビームのPHC2210(S)、PHCX-9(K-3)、PHC2213、DP-10、DP-20、DP-30、P1000、P1100、P1200、P1300、P1400、P1500、P1600、SCR900(以上、大日精化工業(株)製)、KRM7033、KRM7039、KRM7130、KRM7131、UVECRYL29201、UVECRYL29202(以上、ダイセル・ユーシービー(株))、RC-5015、RC-5016、RC-5020、RC-5031、RC-5100、RC-5102、RC-5120、RC-5122、RC-5152、RC-5171、RC-5180、RC-5181(以上、DIC(株)製)、オーレックスNo.340クリヤ(中国塗料(株)製)、サンラッド H-601(三洋化成工業(株)製)、SP-1509、SP-1507(以上、昭和高分子(株)製)、RCC-15C(グレース・ジャパン(株)製)、アロニックスM-6100、M-8030、M-8060(以上、東亞合成(株)製)、又はその他の市販のものから適宜選択して利用することができる。
 活性エネルギー線硬化樹脂を含む塗布組成物は、固形分濃度は10質量%~95質量%であることが好ましく、塗布方法により適当な濃度が選ばれる。
 本発明に係るハードコート層は界面活性剤を含有することも好ましく、界面活性剤としては、シリコーン系又はフッ素系界面活性剤が好ましい。
 シリコーン系界面活性剤としては、疎水基がジメチルポリシロキサン、親水基がポリオキシアルキレンから構成される非イオン界面活性剤が好ましい。
 非イオン面活性剤は、水溶液中でイオンに解離する基を有しない系面活性剤を総称していうが、疎水基のほか親水性基として多価アルコール類のヒドロキシル基(水酸基)、また、ポリオキシアルキレン鎖(ポリオキシエチレン)等を親水基として有するものである。親水性はアルコール性ヒドロキシル基(水酸基)の数が多くなるに従って、またポリオキシアルキレン鎖(ポリオキシエチレン鎖)が長くなるに従って強くなる。本発明に係わる非イオン界面活性剤は疎水基としてジメチルポリシロキサンを有することに特徴がある。
 疎水基がジメチルポリシロキサン、親水基がポリオキシアルキレンから構成される非イオン界面活性剤を用いると、防眩性ハードコート層や低屈折率層のムラや膜表面の防汚性が向上する。ポリメチルシロキサンからなる疎水基が表面に配向し汚れにくい膜表面を形成するものと考えられる。他の界面活性剤を用いることでは得られない効果である。
 これらの非イオン活性剤の具体例としては、例えば、日本ユニカー(株)製、シリコーン界面活性剤 SILWET L-77、L-720、L-7001、L-7002、L-7604、Y-7006、FZ-2101、FZ-2104、FZ-2105、FZ-2110、FZ-2118、FZ-2120、FZ-2122、FZ-2123、FZ-2130、FZ-2154、FZ-2161、FZ-2162、FZ-2163、FZ-2164、FZ-2166、FZ-2191等が挙げられる。
 また、SUPERSILWET SS-2801、SS-2802、SS-2803、SS-2804、SS-2805等が挙げられる。
 また、これら、疎水基がジメチルポリシロキサン、親水基がポリオキシアルキレンから構成される非イオン系の界面活性剤の好ましい構造としては、ジメチルポリシロキサン構造部分とポリオキシアルキレン鎖が交互に繰り返し結合した直鎖状のブロックコポリマーであることが好ましい。主鎖骨格の鎖長が長く、直鎖状の構造であることから、優れている。親水基と疎水基が交互に繰り返したブロックコポリマーであることにより、シリカ微粒子の表面を1つの活性剤分子が、複数の箇所で、これを覆うように吸着することができるためと考えられる。
 これらの具体例としては、例えば、日本ユニカー(株)製、シリコーン界面活性剤 ABN SILWET FZ-2203、FZ-2207、FZ-2208等が挙げられる。
 フッ素系界面活性剤としては、疎水基がパーフルオロカーボンチェインをもつ界面活性剤を用いることができる。種類としては、フルオロアルキルカルボン酸、N-パーフルオロオクタンスルホニルグルタミン酸ジナトリウム、3-(フルオロアルキルオキシ)-1-アルキルスルホン酸ナトリウム、3-(ω-フルオロアルカノイル-N-エチルアミノ)-1-プロパンスルホン酸ナトリウム、N-(3-パーフルオロオクタンスルホンアミド)プロピル-N,N-ジメチル-N-カルボキシメチレンアンモニウムベタイン、パーフルオロアルキルカルボン酸、パーフルオロオクタンスルホン酸ジエタノールアミド、パーフルオロアルキルスルホン酸塩、N-プロピル-N-(2-ヒドロキシエチル)パーフルオロオクタンスルホンアミド、パーフルオロアルキルスルホンアミドプロピルトリメチルアンモニウム塩、パーフルオロアルキル-N-エチルスルホニルグリシン塩、リン酸ビス(N-パーフルオロオクチルスルホニル-N-エチルアミノエチル)等が挙げられる。本発明では非イオン界面活性剤が好ましい。
 これらのフッ素系界面活性剤はメガファック、エフトップ、サーフロン、フタージェント、ユニダイン、フローラード、ゾニール等の商品名で市販されている。
 好ましい添加量はハードコート層の塗布液に含まれる固形分当たり0.01~3.0%であり、より好ましくは0.02~1.0%である。
 他の界面活性剤を併用して用いることもでき、適宜、例えばスルホン酸塩系、硫酸エステル塩系、リン酸エステル塩系等のアニオン界面活性剤、また、ポリオキシエチレン鎖親水基として有するエーテル型、エーテルエステル型等の非イオン界面活性剤等を併用してもよい。
 本発明にハードコート層を塗設する際の溶媒は、例えば、炭化水素類、アルコール類、ケトン類、エステル類、グリコールエーテル類、その他の溶媒の中から適宜選択し、又は混合して使用できる。好ましくは、プロピレングリコールモノ(C1~C4)アルキルエーテル又はプロピレングリコールモノ(C1~C4)アルキルエーテルエステルを5質量%以上、更に好ましくは5質量%~80質量%以上含有する溶媒が用いられる。
 ハードコート層組成物塗布液の塗布方法としては、グラビアコーター、スピナーコーター、ワイヤーバーコーター、ロールコーター、リバースコーター、押出コーター、エアードクターコーター、スプレーコート、インクジェット法等公知の方法を用いることができる。塗布量はウエット膜厚で5μm~30μmが適当で、好ましくは10μm~20μmである。塗布速度は10m/分~200m/分が好ましい。
 ハードコート層組成物は塗布乾燥された後、紫外線や電子線等の活性エネルギー線を照射され硬化処理されることが好ましいが、前記活性エネルギー線の照射時間は0.5秒~5分が好ましく、紫外線硬化性樹脂の硬化効率、作業効率等から更に好ましくは、3秒~2分である。
 (反射防止層)
 本発明に係るハードコート層を有するλ/4板のハードコート層上には、反射防止層を設けることも視認性向上のため好ましい。
 用いられる反射防止層は低屈折率層のみの単層構成でもよいが、多層の屈折率層を設けることも好ましい。λ/4板上にハードコート層を有し、その表面上に光学干渉によって反射率が減少するように屈折率、膜厚、層の数、層順等を考慮して積層できる。反射防止層は、支持体よりも屈折率の高い高屈折率層と、支持体よりも屈折率の低い低屈折率層を組み合わせて構成したり、特に好ましくは、3層以上の屈折率層から構成される反射防止層であり、支持体側から屈折率の異なる3層を、中屈折率層(支持体又は防眩性ハードコート層よりも屈折率が高く、高屈折率層よりも屈折率の低い層)/高屈折率層/低屈折率層の順に積層されているものが好ましい。
 又は、2層以上の高屈折率層と2層以上の低屈折率層とを交互に積層した4層以上の層構成の反射防止層も好ましく用いられる。
 本発明に係る反射防止層の好ましい層構成の例を下記に示す。ここで/は積層配置されていることを示している。
  (λ/4板)/クリアハードコート層/低屈折率層
  (λ/4板)/クリアハードコート層/高屈折率層/低屈折率層
  (λ/4板)/クリアハードコート層/中屈折率層/高屈折率層/低屈折率層
  (λ/4板)/防眩性ハードコート層/低屈折率層
  (λ/4板)/防眩性ハードコート層/高屈折率層/低屈折率層
  (λ/4板)/防眩性ハードコート層/中屈折率層/高屈折率層/低屈折率層
 汚れや指紋のふき取りが容易となるように、最表面の低屈折率層の上に、更に防汚層を設けることもできる。防汚層としては、含フッ素有機化合物が好ましく用いられる。
 光学干渉により反射率を低減できるものであれば、特にこれらの層構成のみに限定されるものではない。また、上記層構成では、適宜中間層を設けてもよく、例えば導電性ポリマー微粒子(例えば架橋カチオン微粒子)又は金属酸化物微粒子(例えば、SnO2、ITO等)を含む帯電防止層等は好ましい。
 低屈折率層、中屈折率層、高屈折率層は公知の構成で形成することができるが、特に低屈折率層は中空球状シリカ系微粒子が好適に用いられることが好ましく、(I)多孔質粒子と該多孔質粒子表面に設けられた被覆層とからなる複合粒子、又は(II)内部に空洞を有し、かつ内容物が溶媒、気体又は多孔質物質で充填された空洞粒子が用いられる。
 上記、低屈折率層、中屈折率層、高屈折率層に関しては、特開2005-266051号公報に詳述されている。
 反射防止層を構成する各屈折率層の膜厚としては、各々1nm~200nmの範囲が好ましく、更に好ましくは、5nm~150nmであるが、各層の屈折率に応じて、各々適切な膜厚を選択することが好ましい。
 本発明に用いられる反射防止層は、450nm~650nmにおける平均反射率が1%以下であることが好ましく、特に好ましくは0.5%以下である。また、この範囲における最低反射率は0.00~0.3%にあることが特に好ましい。
 反射防止層の屈折率と膜厚は、分光反射率の測定より計算して算出することができる。また、作製した低反射フィルムの反射光学特性は、分光光度計を用い、5度正反射の条件にて反射率を測定することができる。
 以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
 (セルロースアシレートの合成)
 特開平10-45804号公報、同08-231761号公報に記載の方法で、表1、2記載のアセチル置換度を有するセルロースアシレートを合成し、その置換度を測定した。具体的には、触媒として硫酸(セルロース100質量部に対し7.8質量部)を添加し、アシル置換基の原料となるカルボンを添加し40℃でアシル化反応を行った。この時、カルボン酸の種類、量を調整することで置換度を調整した。またアシル化後に40℃で熟成を行った。さらにこのセルロースアシレートの低分子量成分をアセトンで洗浄し除去した。
 置換度の測定は、ASTM-D817-96に規定の方法により求めた。
 尚、表1、2中CAPと記載されているセルロースアシレートは、セルロースアセテートプロピオネート(アセチル置換度1.90、プロピオニル置換度0.54)である。
 (密着改良剤)
 実施例で用いるベンゾトリアゾール系化合物(A-1~A-3)、トリアジン系化合物(A-4、A-5)、ベンゾフェノン系化合物は下記化合物である。
 A-1:チヌビン(TINUVIN)928(λmax348nm:BASFジャパン社製)
 A-2:チヌビン(TINUVIN)326(λmax353nm:BASFジャパン社製)
 A-3:チヌビン(TINUVIN)517(λmax344nm:BASFジャパン社製)
 A-4:チヌビン(TINUVIN)1577FF(λmax274nm:BASFジャパン社製)
 A-5:UV-1164(λmax350nm:サイテック社製)
 A-6:CHIMASSORB81(λmax327nm:BASFジャパン社製)
 吸収極大ピーク(λmax)は、上記化合物を溶媒(ジクロロメタンまたはトルエン)に溶解した液を用いて、島津製作所社製の分光光度計UVIDFC-610で測定した結果、いずれも、260nm~400nmの範囲に吸収極大ピーク(λmax)があることが確認された。
 <λ/4板101~108の作製>
 下記ドープを作製し、セルロースアシレートフィルムであるλ/4板101を作製した。
 〈微粒子分散液1〉
 微粒子(アエロジル R812 日本アエロジル(株)製)     11質量部
 エタノール                           89質量部
 以上をディゾルバーで50分間攪拌混合した後、マントンゴーリンで分散を行った。
 〈微粒子添加液1〉
 メチレンクロライドを入れた溶解タンクに十分攪拌しながら、微粒子分散液1をゆっくりと添加した。更に、二次粒子の粒径が所定の大きさとなるようにアトライターにて分散を行った。これを日本精線(株)製のファインメットNFで濾過し、微粒子添加液1を調製した。
 メチレンクロライド                       99質量部
 微粒子分散液1                          5質量部
 下記組成の主ドープ液を調製した。まず加圧溶解タンクにメチレンクロライドとエタノールを添加した。溶剤の入った加圧溶解タンクにアセチル置換度2.75のセルロースアセテートを攪拌しながら投入した。これを加熱し、攪拌しながら、完全に溶解し。これを安積濾紙(株)製の安積濾紙No.244を使用して濾過し、主ドープ液を調製した。
 〈主ドープ液の組成〉
 メチレンクロライド                      340質量部
 エタノール                           64質量部
 セルロースアセテート(アセチル置換度2.75)        100質量部
 下記円盤状化合物A                        5質量部
 下記棒状化合物B                        10質量部
 密着改良剤:A-1                      0.1質量部
 微粒子添加液1                          1質量部
Figure JPOXMLDOC01-appb-C000016
 
 以上を密閉されている主溶解釜1に投入し、攪拌しながら溶解してドープ液を調製した。次いで、無端ベルト流延装置を用い、ドープ液を温度33℃、2000mm幅でステンレスベルト支持体上に均一に流延した。ステンレスベルトの温度は30℃に制御した。
 ステンレスベルト支持体上で、流延(キャスト)したフィルム中の残留溶媒量が75%になるまで溶媒を蒸発させ、次いで剥離張力130N/mで、ステンレスベルト支持体上から剥離した。
 剥離したセルロースアセテートフィルムを、剥離後、剥離部分の張力をカットする部分(ロール)とその次に搬送張力をかける部分(ロール)との速度差をつけた状態で、流延方向と平行な方向に延伸しながら搬送を行った。延伸倍率や延伸速度は、表1に記載の面内方向の位相差Roになるように、適宜調整して延伸を行った。さらにフィルムを乾燥ゾーンで多数のロールで搬送させながら乾燥を終了させた。
 さらに、特開2009-214441号公報の実施例1に記載の装置(延伸機A:図11)を用い、温度170℃、倍率1.5倍で遅相軸がフィルム長手方向と45°をなす様に斜め方向に延伸を行った。
 次いで、乾燥ゾーンを多数のロールで搬送させながら乾燥を終了させた。乾燥温度は130℃で、搬送張力は100N/mとした。
 以上のようにして、乾燥膜厚80μmのλ/4板101を得た。
 次いで表1に記載のセルロースアシレート、密着改良剤の添加量、膜厚に調整した以外は同様にして、λ/4板102~108を作製した。
 <λ/4板109~122の作製>
 下記3種のドープを作製し、共流延によってコア、スキン部分を有する積層セルロースアシレートフィルムであるλ/4板109を作製した。
 (コア層用セルロースアシレートドープの調製)
 メチレンクロライド                      340質量部
 エタノール                           64質量部
 セルロースアセテート(アセチル置換度2.82)        100質量部
 トリフェニレンホスフェート                   20質量部
 (ハードコート層側スキン層用セルロースアシレートドープの調製)
 メチレンクロライド                      340質量部
 エタノール                           64質量部
 セルロースアセテート(アセチル置換度2.88)        100質量部
 前記円盤状化合物A                        5質量部
 前記棒状化合物B                        10質量部
 密着改良剤:A-1                    0.005質量部
 微粒子添加液1                          1質量部
 (スキン層用セルロースアシレートドープの調製)
 メチレンクロライド                      340質量部
 エタノール                           64質量部
 セルロースアセテート(アセチル置換度2.88)        100質量部
 トリフェニレンホスフェート                   20質量部
 微粒子添加液1                          1質量部
 上記の組成物を各々ミキシングタンクに投入し、攪拌して各成分を溶解した後、平均孔径34μmのろ紙及び平均孔径10μmの焼結金属フィルターでろ過し、各セルロースアシレートドープを調製した。ドープを図2で示すダイスを用い、バンド流延機にてハードコート層側スキン層/コア層/スキン層の3層構成になるように共流延した。ここで、各ドープの流延量を調整することによりコア層を最も厚くし、結果的に延伸後のフィルムの膜厚が各々5μm/80μm/5μmとなるように同時多層流延を行った。残留溶剤量が約30質量%でバンドから剥ぎ取ったフィルムをテンターにより140℃の熱風を当てて、延伸率32%まで拡幅した後、延伸率が30%となるように140℃で60秒間緩和させた。その後テンター搬送からロール搬送に移行し、更に120℃から150℃で乾燥し巻き取った。
 さらに、特開2009-214441号公報の実施例1に記載の装置(延伸機A:図11)を用い、温度170℃、倍率1.5倍で遅相軸がフィルム長手方向と45°をなす様に斜め方向に延伸を行った。
 次いで、乾燥ゾーンを多数のロールで搬送させながら乾燥を終了させた。乾燥温度は130℃で、搬送張力は100N/mとした。
 以上のようにして、乾燥膜厚90μmのλ/4板109を得た。
 次いで、表1記載のセルロースアシレート、密着改良剤の種類と添加量、膜厚に変更した以外は同様にして、積層セルロースアシレートフィルムであるλ/4板110~122を作製した。
 <λ/4板123の作製>
 (脂環式ポリオレフィン樹脂フィルムの作製)
 溶融流延製膜装置により目標ドライ膜厚87μmのノルボルネン樹脂フィルムを製造した。
 ノルボルネン樹脂(ゼオノア1420、日本ゼオン社製)      100質量部
 密着改良剤:A-1                       0.1質量部
 上記材料の混合物を2軸式押し出し機を用いて250℃で溶融混合し、日本精線社製ファインメットNF(公称濾過精度は15μm)で濾過した後、ペレット化した。このペレットを用いて日本精線社製ファインメットNF(公称濾過精度は20μm)で2回目の濾過した後、上記同様Tダイから、シート状に30℃の冷却ドラム上に溶融温度250℃で溶融押し出しし、冷却固化させてノルボルネン樹脂シートを得た。
 得られた樹脂シートを、特開2009-214441号公報の実施例1に記載の装置(延伸機A:図11)を用い、温度170℃、倍率1.5倍で遅相軸がフィルム長手方向と45°をなす様に斜め方向に延伸を行い、脂環式ポリオレフィン樹脂フィルムであるλ/4板123を作製した。
 <λ/4板124の作製>
 (積層脂環式ポリオレフィン樹脂フィルムの作製)
 (コア層用材料)
 ノルボルネン樹脂(ゼオノア1420、日本ゼオン社製)      100質量部
 (ハードコート層側スキン層用材料)
 ノルボルネン樹脂(ゼオノア1420、日本ゼオン社製)      100質量部
 密着改良剤:A-1                       0.1質量部
 (スキン層用材料)
 ノルボルネン樹脂(ゼオノア1420、日本ゼオン社製)      100質量部
 上記材料の混合物を2軸式押し出し機を用いて250℃で溶融混合し、日本精線社製ファインメットNF(公称濾過精度は15μm)で濾過した後、ペレット化した。このペレットを用いて日本精線社製ファインメットNF(公称濾過精度は20μm)で2回目の濾過した後、図2で示すダイスを用いて、積層シート状に30℃の冷却ドラム上に溶融温度250℃で溶融押し出しし、冷却固化させて積層ノルボルネン樹脂シートを得た。
 得られた樹脂シートを、特開2009-214441号公報の実施例1に記載の装置(延伸機A:図11)を用い、温度170℃、倍率1.5倍で遅相軸がフィルム長手方向と45°をなす様に斜め方向に延伸を行い、脂環式ポリオレフィン樹脂フィルムであるλ/4板124を作製した。
 <比較のλ/4板125~140の作製>
 λ/4板101において、セルロースアシレートの種類、密着改良剤の添加量、膜厚を表2に記載のように変更した以外は同様にして、比較のλ/4板125~132を作製した。
 λ/4板109において、セルロースアシレートの種類、密着改良剤の添加量、膜厚を表2に記載のように変更した以外は同様にして、比較のλ/4板133~140を作製した。
 <ハードコート付きλ/4板101~140の作製>
 作製したλ/4板上に、下記ハードコート層塗布液1をダイコートし、80℃で乾燥した後、120mJ/cm2の紫外線を高圧水銀灯で照射して硬化後の膜厚が6μmになるようにクリアハードコート層を設けた。
 (ハードコート層用塗布液1)
 アセトン                             45質量部
 酢酸エチル                            45質量部
 プロピレングリコールモノメチルエーテル              10質量部
 ペンタエリスリトールトリアクリレート               30質量部
 ペンタエリスリトールテトラアクリレート              45質量部
 ウレタンアクリレート(商品名U-4HA 新中村化学工業社製)   25質量部
 1-ヒドロキシ-シクロヘキシル-フェニル-ケトン
  (イルガキュア184、BASFジャパン社製)           5質量部
 2-メチル-1-[4-(メチルチオ)フェニル]-2-モノフォリノ-1-オン
  (イルガキュア907、BASFジャパン社製)           3質量部
 BYK-331(シリコーン界面活性剤、ビックケミー・ジャパン(株)製)
                                 0.5質量部
 <ハードコート付きλ/4板141の作製>
 λ/4板130の表面に下記下引き層用塗布液1を用いて下引き層を、乾燥膜厚約0.2μmとなるように塗布し、80℃に設定された乾燥部で乾燥した。
 次いで、上記ハードコート層用塗布液1を用いてハードコート層を同様に設け、ハードコート付きλ/4板141を作製した。
 (下引き層用塗布液1)
 ポリメチルメタクリレート(重量平均分子量3万)         0.5質量部
 プロピレングリコールモノメチルエーテル              70質量部
 メチルエチルケトン                        30質量部
 <前面板付き液晶表示装置101~142の作製>
 3D表示可能なSONY製60型ディスプレイBRAVIA LX900の予め貼合されていた前面板を剥がして、パネル前面の偏光板と前面板の間にあった充填剤を除去し、新たに封止層として紫外線硬化樹脂を含有するソニーケミカル&インフォメーションデバイス株式会社製SVR1100を厚さ100μmで塗布し、その上にアクリル樹脂系粘着剤を介して上記作製したハードコート付きλ/4板101を貼合したガラス板を乗せ、最表面にあるハードコート層側から紫外線を5000mJ/cm2の光量で照射して封止層を硬化し、図1の構成の前面板付き液晶表示装置101を作製した。
 同様にしてハードコート付きλ/4板102~141を用いて、図1の構成の前面板付き液晶表示装置102~141を作製した。
 更に、特開2009-169393号公報に記載を参考にポリエチレンテレフタレートフィルム(PETフィルム)を作製した。
 ハードコートフィルム101と同様にして、ポリエチレンテレフタレートフィルム(PETフィルム)を用いて、前面板付き液晶表示装置142を作製した。
 (3Dメガネ)
 また、SONY製3DメガネTDG-BR100のパネル側に上記ハードコート付きλ/4板101を貼合した。
 《評価》
 <レターデーション値Ro、Rtの測定>
 アッベ屈折率計と分光光源を用いて上記作製したλ/4板試料の平均屈折率を測定した。また市販のマイクロメーターを用いてフィルムの厚さを測定した。
 自動複屈折計KOBRA-21ADH(王子計測機器(株)製)を用いて、23℃55%RHの環境下24時間放置したフィルムにおいて、同環境下、波長590nmにおいてフィルムのレターデーション測定を行った。上述の平均屈折率と膜厚を下記式に入力し、面内位相差Ro、厚さ方向の位相差Rtを求めた。
 式(i):Ro=(nx-ny)×d
 式(ii):Rt={(nx+ny)/2-nz}×d
 (式中、nx、ny、nzは、23℃・55%RH、590nmにおける屈折率nx(フィルムの面内の最大の屈折率、遅相軸方向の屈折率ともいう。)、ny(フィルム面内で遅相軸に直交する方向の屈折率)、nz(厚み方向におけるフィルムの屈折率)であり、dはフィルムの厚さ(nm)である。)
 <光線透過率>
 上記作製したλ/4板の波長380nmの光線透過率は、島津製作所社製の分光光度計UVIDFC-610で測定した。
 ◎:波長380nmの光線透過率が50%以上
 ○:波長380nmの光線透過率が30%以上、50%未満
 △:波長380nmの光線透過率が10%以上、30%未満
 ×:波長380nmの光線透過率が10%未満
 <ハードコート層とセルロースアシレートフィルム間の密着性>
 作製した前面板付き液晶表示装置を、温度23℃、相対湿度55%の条件で24時間調湿後、碁盤目試験によりハードコート付きλ/4板のハードコート層の密着性を評価した。具体的には、評価面積は1cm四方で、深さは透明なプラスチックフィルムの表面に僅か達する程度に、硬化皮膜層の表面に1mm角の碁盤目を片刃のカミソリの刃を用いて切り込みを入れ、市販の25mm幅のセロファンテープを切れ込み部分をまたいでテープの一端を残して貼り、擦ってよく接着させ、貼られてないテープのその一端を手で持ってなるべく垂直に力強く引っ張って剥がし、切り込み線からの貼られたテープ面積に対する硬化皮膜層が剥がされた面積の割合を下記の如く評価した。剥がれの面積が、評価面積に対して15%以上あると、実用性の低いレベルである。
 ◎:全く剥離しなかった
 ○:剥がれの面積が、評価面積に対して15%未満であった
 △:剥がれの面積が、評価面積に対して15%以上~30%未満であった
 ×:剥がれの面積が、評価面積に対して30%以上であった
 <コントラストムラ>
 23℃55%RHの環境で、各々の液晶表示装置のバックライトを1時間連続点灯した後、測定を行った。測定にはELDIM社製EZ-Contrast160Dを用いて、液晶表示装置で白表示と黒表示の表示画面の法線方向からの輝度を測定し、その比を正面コントラストとした。
 正面コントラスト=(表示装置の法線方向から測定した白表示の輝度)
/(表示装置の法線方向から測定した黒表示の輝度)
 液晶表示装置の任意の10点の正面コントラストを測定し、以下の基準にて評価した。
 コントラストムラはハードコートフィルムに発生するしわやゆがみによって発生する場合と、封止層の硬化不良によって発生する場合がある。
 ◎:正面コントラストのばらつきがなく、ムラもない
 ○:正面コントラストのばらつきが1~5%未満のばらつきであり、ムラが小さい
 △:正面コントラストが5~10%未満のばらつきであり、ムラがややある
 ×:正面コントラストが10%以上のばらつきであり、ムラが大きい
 <3D映像視聴時の首を傾けた際のクロストークの評価>
 作製した液晶表示装置について3D映像視聴時の首を傾けた際のクロストークについて評価した。
 23℃・55%RHの環境で、各々の液晶表示装置のバックライトを点灯させた直後、前記3Dメガネをかけて、メガネが25°傾いた状態になるよう首を傾けた状態で3D映像を視聴し、クロストークを下記基準で評価した。
 ◎:クロストークがまったくない
 ○:非常に弱いクロストークが見える
 △:弱いクロストークが見える
 ×:クロストークがはっきり見える
 ハードコート付きλ/4板の構成並びに、以上の評価結果を表1、表2に示した。
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
 上表から、本発明に係るハードコート付きλ/4板を前面板に貼合した前面板付き液晶表示装置101~124は、比較例の前面板付き液晶表示装置125~142に対して、ハードコート層とλ/4板間の密着性、コントラストムラ、3D表示のクロストークに優れることが分かる。
 またλ/4板が共流延によって形成され、ハードコート層側のフィルム層の厚さが0.5~10μmであり、かつ該ハードコート層側のフィルム層が密着改良剤をλ/4板に含有される総量の90質量%以上を含有している、ハードコート付きλ/4板109~122、124は密着性、コントラストムラ、3D表示のクロストークに特に優れた特性を有することが分かった。
 一方、λ/4板とハードコート層間に下引き層を設けたハードコート付きλ/4板を貼合した前面板付き液晶表示装置141は密着性、コントラストムラ、3D表示のクロストークの改善効果が小さかった。
 また、PETフィルムを前面板に用いた液晶表示装置142は、モアレを生じ表示品位が劣っており、3D画像のクロストークも大きく実用に適しないことが分かった。
 なお、明細書、請求の範囲、図面および要約を含む2010年10月13日に出願された日本語特許出願No.2010-230318号の全ての開示は、そのまま本出願の一部に組み込まれる。
 以上のように、本発明は、高コントラストで視認性の高い前面板付き液晶表示装置の製造方法、前面板付き液晶表示装置に適している。
 1、1a 偏光板
 2 液晶セル
 3 封止層
 4 前面板
 5 接着層
 6 λ/4板
 7 ハードコート層
 10 共流延ダイ
 11 口金部分
 13、15 スキン層用スリット
 14 コア層用スリット
 16 金属支持体
 17、19 スキン層用ドープ
 18 コア層用ドープ
 20 多層構造ウェブ
 21 スキン層
 22 コア層
 23 スキン層
 DR1 繰出し方向
 DR2 巻取り方向
 θi 繰出し角度(繰出し方向と巻取り方向のなす角度)
 CR,CL 把持具
 Wo 延伸前のフィルムの幅
 W 延伸後のフィルムの幅

Claims (8)

  1.  偏光板を液晶セルの両面に有する液晶パネルの視認側表面に、視認側からハードコート層を有し熱可塑性樹脂を主成分とするλ/4板、接着層、ガラスまたはアクリルである前面板、紫外線硬化型粘着剤を有する封止層をこの順に設け、該ハードコート層側から紫外線を照射して該封止層を硬化する前面板付き液晶表示装置の製造方法であって、該ハードコート層を有するλ/4板が波長260nm~400nmに吸収極大ピーク(λmax)を有する化合物をλ/4板の該熱可塑性樹脂100質量部に対して0.005~0.5質量部含有していることを特徴とする前面板付き液晶表示装置の製造方法。
  2.  前記λ/4板が、波長380nmの光線透過率が30%以上であることを特徴とする請求項1に記載の前面板付き液晶表示装置の製造方法。
  3.  前記波長260nm~400nmに吸収極大ピーク(λmax)を有する化合物がベンゾトリアゾール系化合物、ベンゾフェノン系化合物またはトリアジン系化合物であることを特徴とする請求項1または2に記載の前面板付き液晶表示装置の製造方法。
  4.  前記λ/4板が、前記波長260nm~400nmに吸収極大ピーク(λmax)を有する化合物を、前記λ/4板のハードコート層と接する側から当該λ/4板の厚み方向の50%以内に、総含有量の90質量%以上を含有していることを特徴とする請求項1~3のいずれか1項に記載の前面板付き液晶表示装置の製造方法。
  5.  前記λ/4板が共流延によって形成される2層以上の積層体であり、前記ハードコート層側のフィルム層の厚さが0.5~10μmであり、かつ該ハードコート層側のフィルム層が前記波長260nm~400nmに吸収極大ピーク(λmax)を有する化合物を、前記λ/4板に含有される総量の90質量%以上を含有していることを特徴とする請求項1~4のいずれか1項に記載の前面板付き液晶表示装置の製造方法。
  6.  前記λ/4板の主成分である熱可塑性樹脂がセルロースアシレート、または脂環式ポリオレフィン樹脂であることを特徴とする請求項1~5のいずれか1項に記載の前面板付き液晶表示装置の製造方法。
  7.  請求項1~6のいずれか1項に記載の前面板付き液晶表示装置の製造方法によって製造されたことを特徴とする前面板付き液晶表示装置。
  8.  立体画像表示用液晶表示装置であることを特徴とする請求項7に記載の前面板付き液晶表示装置。
PCT/JP2011/072948 2010-10-13 2011-10-05 前面板付き液晶表示装置の製造方法、前面板付き液晶表示装置 WO2012050019A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012538649A JP5678964B2 (ja) 2010-10-13 2011-10-05 前面板付き液晶表示装置の製造方法、前面板付き液晶表示装置
US13/823,960 US8947621B2 (en) 2010-10-13 2011-10-05 Liquid crystal display device comprising a front plate having a lamda/4 plate that includes a hard coat layer and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010230318 2010-10-13
JP2010-230318 2010-10-13

Publications (1)

Publication Number Publication Date
WO2012050019A1 true WO2012050019A1 (ja) 2012-04-19

Family

ID=45938248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072948 WO2012050019A1 (ja) 2010-10-13 2011-10-05 前面板付き液晶表示装置の製造方法、前面板付き液晶表示装置

Country Status (3)

Country Link
US (1) US8947621B2 (ja)
JP (1) JP5678964B2 (ja)
WO (1) WO2012050019A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014185389A1 (ja) * 2013-05-17 2014-11-20 コニカミノルタ株式会社 偏光板およびそれを備えた表示装置
JP2015031753A (ja) * 2013-07-31 2015-02-16 日本ゼオン株式会社 光学積層体及び液晶表示装置
JP2017203835A (ja) * 2016-05-10 2017-11-16 日東電工株式会社 有機el表示装置用光学フィルム、有機el表示装置用偏光フィルム、有機el表示装置用粘着剤層付き偏光フィルム、及び有機el表示装置
WO2023276304A1 (ja) * 2021-06-30 2023-01-05 コニカミノルタ株式会社 偏光板及び液晶表示装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102102351B1 (ko) 2013-04-25 2020-04-21 삼성디스플레이 주식회사 기능성 편광 필름 및 이를 채용하는 유기발광표시장치.
WO2014189040A1 (ja) * 2013-05-21 2014-11-27 富士フイルム株式会社 偏光板およびその製造方法ならびに転写材料
KR101702707B1 (ko) 2014-04-30 2017-02-07 제일모직주식회사 편광판용 접착필름, 이를 위한 편광판용 접착제 조성물, 이를 포함하는 편광판 및 이를 포함하는 광학표시장치
JP6393651B2 (ja) * 2015-03-31 2018-09-19 富士フイルム株式会社 セルロースアシレートフィルムの製造方法
JP2017194672A (ja) * 2016-04-18 2017-10-26 日東電工株式会社 液晶表示装置
CN206440916U (zh) * 2017-01-23 2017-08-25 合肥鑫晟光电科技有限公司 封框胶涂布装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004157312A (ja) * 2002-11-06 2004-06-03 Sony Corp 分割波長板フィルターの製造方法
JP2008083307A (ja) * 2006-09-27 2008-04-10 Konica Minolta Opto Inc 偏光板、偏光板の製造方法、及び液晶表示装置
WO2011102493A1 (ja) * 2010-02-18 2011-08-25 富士フイルム株式会社 液晶表示装置及びその製造方法、並びに画像表示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08201942A (ja) 1995-01-27 1996-08-09 Sanyo Electric Co Ltd 液晶シャッター及び立体画像認識眼鏡
JP2003107433A (ja) 2001-09-27 2003-04-09 Sony Corp 液晶表示装置の製造方法および製造装置
JP2006146088A (ja) * 2004-11-24 2006-06-08 Tohoku Univ 液晶表示装置
US20090161044A1 (en) * 2007-12-21 2009-06-25 Zhibing Ge Wide viewing angle circular polarizers
KR101029287B1 (ko) * 2008-12-03 2011-04-18 하이디스 테크놀로지 주식회사 터치스크린을 적용한 액정표시장치
JP5527790B2 (ja) * 2009-03-05 2014-06-25 日東電工株式会社 積層光学フィルム、液晶パネル、および液晶表示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004157312A (ja) * 2002-11-06 2004-06-03 Sony Corp 分割波長板フィルターの製造方法
JP2008083307A (ja) * 2006-09-27 2008-04-10 Konica Minolta Opto Inc 偏光板、偏光板の製造方法、及び液晶表示装置
WO2011102493A1 (ja) * 2010-02-18 2011-08-25 富士フイルム株式会社 液晶表示装置及びその製造方法、並びに画像表示装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014185389A1 (ja) * 2013-05-17 2014-11-20 コニカミノルタ株式会社 偏光板およびそれを備えた表示装置
CN105209945A (zh) * 2013-05-17 2015-12-30 柯尼卡美能达株式会社 偏振片及具备其的显示装置
JP2015031753A (ja) * 2013-07-31 2015-02-16 日本ゼオン株式会社 光学積層体及び液晶表示装置
JP2017203835A (ja) * 2016-05-10 2017-11-16 日東電工株式会社 有機el表示装置用光学フィルム、有機el表示装置用偏光フィルム、有機el表示装置用粘着剤層付き偏光フィルム、及び有機el表示装置
KR20190005836A (ko) * 2016-05-10 2019-01-16 닛토덴코 가부시키가이샤 유기 el 표시 장치용 광학 필름, 유기 el 표시 장치용 편광 필름, 유기 el 표시 장치용 점착제층 구비 편광 필름, 및 유기 el 표시 장치
TWI744308B (zh) * 2016-05-10 2021-11-01 日商日東電工股份有限公司 有機el顯示裝置用光學薄膜、有機el顯示裝置用偏光薄膜、有機el顯示裝置用附黏著劑層之偏光薄膜及有機el顯示裝置
KR102339860B1 (ko) 2016-05-10 2021-12-16 닛토덴코 가부시키가이샤 유기 el 표시 장치용 광학 필름, 유기 el 표시 장치용 편광 필름, 유기 el 표시 장치용 점착제층 구비 편광 필름, 및 유기 el 표시 장치
WO2023276304A1 (ja) * 2021-06-30 2023-01-05 コニカミノルタ株式会社 偏光板及び液晶表示装置

Also Published As

Publication number Publication date
US8947621B2 (en) 2015-02-03
JPWO2012050019A1 (ja) 2014-02-24
US20130169897A1 (en) 2013-07-04
JP5678964B2 (ja) 2015-03-04

Similar Documents

Publication Publication Date Title
JP5678964B2 (ja) 前面板付き液晶表示装置の製造方法、前面板付き液晶表示装置
JP5678965B2 (ja) 前面板付き液晶表示装置の製造方法、前面板付き液晶表示装置
JP2008083307A (ja) 偏光板、偏光板の製造方法、及び液晶表示装置
WO2013038807A1 (ja) 円偏光板及び立体画像表示装置
WO2012014595A1 (ja) 立体映像表示装置
JP2008291204A (ja) 環状ポリオレフィン系樹脂フィルムとその製造方法、偏光板および液晶表示装置
WO2015159679A1 (ja) 偏光板、偏光板の製造方法、液晶表示装置及び有機エレクトロルミネッセンス表示装置
JP5565281B2 (ja) 斜め延伸フィルムの製造方法、及び光学フィルムの製造方法
JP2012198282A (ja) λ/4板、その製造方法、偏光板、液晶表示装置、及び立体画像表示装置
JP5652211B2 (ja) ハードコート付きλ/4板の製造方法、該ハードコート付きλ/4板を用いた偏光板の製造方法及び液晶表示装置の製造方法
JP5707811B2 (ja) 長尺状λ/4板、円偏光板、偏光板、OLED表示装置、及び立体画像表示装置
JP5589648B2 (ja) ハードコート付きλ/4板、その製造方法、偏光板、液晶表示装置、及びタッチパネル部材
JPWO2014203637A1 (ja) 偏光板及び液晶表示装置
JP2007094396A (ja) 偏光板及びこれを用いた液晶表示装置
JP6819604B2 (ja) 偏光板、偏光板の製造方法及び液晶表示装置
JP5655634B2 (ja) λ/4板、λ/4板の製造方法、円偏光板、液晶表示装置、及び立体映像表示装置
JP5510198B2 (ja) 前面板付き液晶表示装置の製造方法、前面板付き液晶表示装置
JP2016136171A (ja) 光学フィルム、円偏光板及び有機エレクトロルミネッセンス表示装置
JP2012173677A (ja) 位相差フィルムとその製造方法、長尺状偏光板、及び液晶表示装置
JP5521832B2 (ja) λ/4板及び立体映像表示装置
JP5569323B2 (ja) 長尺延伸フィルムの製造方法、及び長尺偏光板の製造方法
JP2005096095A (ja) ハードコートフィルム及びその製造方法
JPWO2018070131A1 (ja) 偏光板および液晶表示装置
JP2011128592A (ja) 偏光板、ならびにこれを用いた液晶パネルおよび液晶表示装置
JP2016177238A (ja) 光学フィルム、円偏光板、及びタッチパネル表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11832454

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012538649

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13823960

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11832454

Country of ref document: EP

Kind code of ref document: A1