WO2023241087A1 - 硫代二甘酰胺酸类萃取剂及其制备方法和应用 - Google Patents

硫代二甘酰胺酸类萃取剂及其制备方法和应用 Download PDF

Info

Publication number
WO2023241087A1
WO2023241087A1 PCT/CN2023/077324 CN2023077324W WO2023241087A1 WO 2023241087 A1 WO2023241087 A1 WO 2023241087A1 CN 2023077324 W CN2023077324 W CN 2023077324W WO 2023241087 A1 WO2023241087 A1 WO 2023241087A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
extractant
extraction agent
extraction
ions
Prior art date
Application number
PCT/CN2023/077324
Other languages
English (en)
French (fr)
Inventor
崔红敏
石劲松
晏南富
柳跃伟
翁雅青
邓朝阳
Original Assignee
江西省科学院应用化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江西省科学院应用化学研究所 filed Critical 江西省科学院应用化学研究所
Publication of WO2023241087A1 publication Critical patent/WO2023241087A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/50Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton
    • C07C323/51Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C323/60Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton with the carbon atom of at least one of the carboxyl groups bound to nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/04Obtaining noble metals by wet processes
    • C22B11/042Recovery of noble metals from waste materials
    • C22B11/046Recovery of noble metals from waste materials from manufactured products, e.g. from printed circuit boards, from photographic films, paper or baths
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/34Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds containing sulfur, e.g. sulfonium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention belongs to the field of extraction and separation technology in the field of extractant synthesis and hydrometallurgy, and specifically relates to thiodiglycinamic acid extractants and their preparation methods and applications, especially the application of extracting precious metal ions from acidic feed liquids.
  • thioether and sulfoxide extraction agents are mainly used at home and abroad to process and recover precious metals.
  • Neutral thioether extractants have excellent extraction properties for precious metals, which makes them important in extraction chemistry and hydrometallurgy. Value.
  • traditional thioether extraction agents still have problems such as acid intolerance and long extraction equilibrium time, which obviously cannot meet the extraction agent requirements of the acid leachate system of electronic waste.
  • the separation effect of traditional extraction agents on precious metals and base metals is still not ideal. Multiple methods are often required for coupling, and the processing technology is complex and costly. Therefore, it is necessary to develop a new type of matching efficient precious metal extraction agent.
  • the purpose of the present invention is to provide a thiodiglycinamic acid extractant and its preparation method and application, so as to solve or at least partially solve the above-mentioned technologies existing in the prior art. defect.
  • the synthesis method of the thiodiglycinamic acid extractant of the present invention is simple, easy to operate, has good salt resistance and acid resistance, has high extraction efficiency and good selectivity for precious metal ions, and can realize short-process, Highly efficient recovery of precious metal ions, with certain industrial application value value.
  • the technical solution adopted by the present invention is as follows:
  • the thioglycomic acid extraction agent of the present invention has a thioglycomic acid structure, and its structural formula is as shown in the following formula 1:
  • R 1 and R 2 are independently linear or branched alkyl groups, and the total number of carbon atoms of R 1 and R 2 is greater than 6.
  • the total number of carbon atoms of R 1 and R 2 ranges from 7 to 24.
  • the second object of the present invention is to provide a method for preparing the above-mentioned thioglycolic acid extractant, which method specifically includes the following steps:
  • R 1 and R 2 are independently linear or branched alkyl groups, and the total number of carbon atoms of R 1 and R 2 ranges from 7 to 24.
  • the alkyl-substituted secondary amine is any one of diisooctylamine, di-n-octylamine, di-n-hexylamine, and N-methyloctylamine.
  • the molar ratio of the thiodiglycolic anhydride and the alkyl-substituted secondary amine is 1:1 to 1:2.
  • the organic reagent is any one of dichloromethane, chloroform, tetrahydrofuran, acetonitrile, N,N-dimethylformamide, and toluene.
  • the amount of the organic reagent is not specifically limited, as long as it can achieve a uniform dispersant of thiodiglycolic anhydride and alkyl-substituted secondary amine.
  • the time for stirring the mixed reactants in an ice-water bath is preferably 30 minutes.
  • the washing process is specifically as follows: the organic phase obtained by the reaction is first washed with dilute hydrochloric acid solution to remove excess alkyl-substituted secondary amines, and then washed repeatedly with deionized water until the pH value is 3-4.
  • the reagent used in the drying is preferably anhydrous magnesium sulfate.
  • the above-mentioned thioglycolic acid extractant of the present invention is prepared by a ring-opening reaction, and the specific reaction formula is as shown in Formula 3:
  • the secondary amine attacks thiodiglycol anhydride to generate N-substituted thiodiglycol amic acid; the steric hindrance of the secondary amine directly affects the ring-opening direction of thiodiglycol anhydride and the product yield.
  • the purpose of the present invention's reaction in an ice-water bath is to prevent thiodiglycolic anhydride and secondary amines with less steric hindrance from reacting strongly at the beginning and exotherming violently, causing side reactions to occur easily when the temperature is too high.
  • An ice-water bath controls the reaction at a lower temperature.
  • the purpose of the present invention to continue the reaction at 20-50°C is that for secondary amines with large steric hindrance, the reactivity with thiodiglycolic anhydride is weak. Raising the reaction temperature to a certain temperature can speed up the reaction rate and improve the reaction rate. Yield.
  • the third object of the present invention is to provide the application of the above-mentioned thiodiglycinamic acid extractant in extracting precious metal ions from acidic feed liquid.
  • the above-mentioned application uses an organic relatively acidic precious metal liquid composed of a thioglycolic acid extractant and a diluent for extraction.
  • the specific application method includes the following steps:
  • step (2) Mix the extraction agent solution described in step (1) and the acidic precious metal liquid in a constant-temperature oscillator to perform extraction.
  • the precious metals are extracted into the extraction agent solution and enriched.
  • the diluent is any one or more of toluene, methylene chloride, kerosene, and n-heptane.
  • the concentration of the extraction agent solution in step (1) is 0.05-0.2 mol/L.
  • the acidic precious metal liquid in step (2) contains any one or more of gold ions, palladium ions, copper ions, lead ions, cobalt ions, nickel ions, calcium ions and magnesium ions. .
  • the pH value of the acidic precious metal liquid in step (2) is 0-5.
  • the volume ratio of the extractant solution and the acidic noble metal liquid described in step (2) is 1:10.
  • the temperature of the constant temperature oscillator in step (2) is 20-30°C, more preferably 25°C.
  • the rotation speed of the constant temperature oscillator in step (2) is 100-300 rpm.
  • the thioglycolic acid extractant provided by the invention has good extraction ability and high selectivity for precious metal ions under acidic conditions, can directly and efficiently separate precious metals from multi-metal systems, and shortens the recovery time of precious metals.
  • the technological process avoids environmental pollution caused by the pre-impurity removal process, and the extraction performance is significantly better than that of ordinary thiodiamide extractants.
  • the extraction agent synthesis method is simple and easy to operate, and is convenient for industrial production.
  • the present invention has the following beneficial effects:
  • the flexibility of the ether sulfur bonds in the structure and the coordination of the sulfur atoms on the bonds make the thioglycinamic acid extractants of the present invention better at extracting precious metal ions. It is much better than ordinary thiodiamide extractants, and the active hydrogen in the carboxylic acid functional group in the structure of this extractant can form hydrogen bonds with the solvent to cause solvation, which is beneficial to the dissolution of the extract compound in the organic phase. And the back-extraction of metal ions can be achieved by controlling the acidity of the water phase; on the other hand, thiodiglycinamic acid extractants have high selectivity for precious metal ions and can directly separate and recover precious metals from acidic feed liquids, avoiding the need for traditional extraction agents.
  • Figure 1 is an infrared spectrum of N,N'-diisooctyl-3-thiodiglycinamic acid prepared in Example 1 of the present invention
  • Figure 2 is a 1 H-NMR spectrum of N,N'-diisooctyl-3-thioglycarmic acid prepared in Example 1 of the present invention in deuterated chloroform;
  • Figure 3 is an infrared spectrum of N,N’-methyloctyl-3-thiodiglycinamic acid prepared in Example 2 of the present invention
  • Figure 4 is a 1 N NMR pattern of N,N'-methyloctyl-3-thiodiglycinamic acid prepared in Example 2 of the present invention
  • Figure 5 is an infrared spectrum of N,N'-di-n-octyl-3-thiodiglycinamic acid prepared in Example 3 of the present invention
  • Figure 6 is a 1 N NMR pattern of N,N'-di-n-octyl-3-thiodiglycinamic acid prepared in Example 3 of the present invention
  • Figure 7 is an infrared spectrum of N,N’-di-n-hexyl-3-thiodiglycinamic acid prepared in Example 4 of the present invention.
  • Figure 8 is a 1 N NMR chart of N,N'-di-n-hexyl-3-thiodiglycinamic acid prepared in Example 4 of the present invention.
  • the invention provides a type of thiodiglycinamic acid extracting agent with the following structural formula:
  • R 1 and R 2 are independently linear or branched alkyl groups, and the total number of carbon atoms of R 1 and R 2 is greater than 6, preferably 7 to 24.
  • the preparation method of the thiodiglycinamic acid extractant of the present invention includes the following steps:
  • R 1 and R 2 are independently linear or branched alkyl groups, and the total number of carbon atoms of R 1 and R 2 ranges from 7 to 24.
  • the equipment and raw materials used in the present invention can be purchased from the market, or are commonly used in this field.
  • the methods in the following examples are all conventional methods in the art unless otherwise specified.
  • the preparation method of an N,N’-diisooctyl-3-thiodiglycinamic acid extractant in this embodiment includes the following steps:
  • the stretching vibration absorption peak of 1457cm -1 is the stretching vibration absorption peak of the CN bond of amide, and 1269cm -1 is the asymmetric stretching vibration absorption peak of CSC. These characteristic peaks indicate the presence of carboxylic acid, amide and thioether functional groups.
  • Figure 2 is the 1 H-NMR spectrum of the product prepared in Example 1 in deuterated chloroform.
  • the chemical shifts of each proton are as follows: 9.55 (s, 1H, COOH), 3.52 (s, 2H, -SCH 2 -), 3.37(s,2H,-CH 2 S-), 3.20-3.33(m,4H,2 ⁇ CH 2 -N), 2.86-2.88(m,2H,2 ⁇ CH), 1.24-1.33(m,16H, 8 ⁇ CH 2 ), 0.86-0.91 (m, 12H, 4 ⁇ CH 3 ).
  • the preparation method of an N,N’-methyloctyl-3-thiodiglycinamic acid extractant in this embodiment includes the following steps:
  • the stretching vibration absorption peak of 1403cm -1 is the stretching vibration absorption peak of the CN bond of amide, and 1261cm -1 is the asymmetric stretching vibration absorption peak of CSC. These characteristic peaks indicate the presence of carboxylic acid, amide and thioether functional groups.
  • Figure 4 is the 1 H-NMR spectrum of the product prepared in this example in deuterated chloroform.
  • the chemical shifts of each proton are as follows: 10.0 (s, 1H, COOH), 3.53 (s, 2H, -SCH 2 -), 3.40(s,2H,-CH 2 S-), 3.30-3.37(m,2H,CH 2 -N), 2.96-3.07(m,3H,CH 3 -N), 1.28-1.29(m,8H,4 ⁇ CH 2 ), 0.87-0.89(m,3H,CH 3 ).
  • the preparation method of an N,N’-di-n-octyl-3-thiodiglycinamic acid extractant in this embodiment includes the following steps:
  • the obtained organic phase was first washed with dilute hydrochloric acid to remove excess di-n-octylamine, then the organic phase was washed with deionized water until the pH value was 4, and then the organic phase was dried with anhydrous magnesium sulfate, filtered with suction, and the obtained organic phase filtrate was reduced to The solvent was removed by pressure distillation to obtain N,N'-di-n-octyl Base-3-thiodiglycine acid extractant.
  • the stretching vibration absorption peak of 1464cm -1 is the stretching vibration absorption peak of the CN bond of amide, and 1277cm -1 is the asymmetric stretching vibration absorption peak of CSC. These characteristic peaks indicate the presence of carboxylic acid, amide and thioether functional groups.
  • Figure 6 is a 1 H-NMR spectrum of the product prepared in Example 3 in deuterated chloroform.
  • the chemical shifts of each proton are as follows: 9.9 (s, 1H, COOH), 3.50 (s, 2H, -SCH 2 -), 3.38(s,2H,-CH 2 S-), 3.25-3.34(m,4H,2 ⁇ CH 2 -N), 1.54-1.61(m,4H,2 ⁇ -CH 2 CH 2 -N), 1.28- 1.29(m,10H,5 ⁇ CH 2 ), 0.88-0.90(m,6H,2 ⁇ CH 3 ).
  • the preparation method of an N,N’-di-n-hexyl-3-thiodiglycinamic acid extractant in this embodiment includes the following steps:
  • the obtained organic phase was first washed with dilute hydrochloric acid to remove excess di-n-hexylamine, and then the organic phase was washed with deionized water until the pH value was 4, and then the organic phase was dried with anhydrous magnesium sulfate, suction filtered, and the obtained organic phase filtrate was reduced to The solvent was removed by pressure distillation to obtain N,N'-di-n-hexyl-3-thiodiglycinamic acid extractant.
  • the stretching vibration absorption peak of 1463cm -1 is the stretching vibration absorption peak of the CN bond of amide, and 1271cm -1 is the asymmetric stretching vibration absorption peak of CSC. These characteristic peaks indicate the presence of carboxylic acid, amide and thioether functional groups.
  • Figure 8 is a 1 H-NMR spectrum of the product prepared in Example 4 in deuterated chloroform.
  • the chemical shifts of each proton are as follows: 10.1 (s, 1H, COOH), 3.51 (s, 2H, -SCH 2 -), 3.38(s,2H,-CH 2 S-), 3.26-3.33(m,4H,2 ⁇ CH 2 -N), 1.54-1.60(m,4H,2 ⁇ -CH 2 CH 2 -N), 1.29-1.31(m,6H,3 ⁇ CH 2 ), 0.88 -0.90(m,6H,2 ⁇ CH 3 ).
  • the extraction agent prepared in the above embodiment of the present invention is used to extract precious metal ions from acidic feed liquid.
  • the components of the precious metal liquid in the following application examples are all the same.
  • the specific components are: gold ions, palladium ions, copper ions, lead ions, cobalt ions, nickel ions, calcium ions and magnesium ions.
  • the concentration of each metal ion is 100mg/L; the specific configuration method is: dilute the standard solution of each metal ion with a concentration of 1000mg/L in a volumetric flask, and then use 0.5mol/L HCl solution and 0.5mol/L NaOH solution to adjust the solution
  • the pH value was used to obtain precious metal liquids with different pH values.
  • the N,N’-methyloctyl-3-thiodiglycinamic acid extractant prepared in Example 2 is used to extract precious metal ions in acidic feed liquid.
  • the specific application method includes the following steps:
  • the N,N'-di-n-hexyl-3-thiodiglycinamic acid extractant prepared in Example 4 is used to extract precious metal ions in the acidic feed liquid.
  • the specific application method includes the following steps:
  • the N,N’-diisooctyl-3-thioglycolic acid extractant prepared in Example 1 is used to extract precious metal ions in acidic feed liquid.
  • the specific application method includes the following steps:
  • the N,N’-di-n-octyl-3-thioglycolic acid extractant prepared in Example 3 is used to extract precious metal ions in acidic feed liquid.
  • the specific application method includes the following steps:
  • the N,N’-diisooctyl-3-thioglycolic acid extractant prepared in Example 1 is used to extract precious metal ions in acidic feed liquid.
  • the specific application method includes the following steps:
  • the N,N’-diisooctyl-3-thioglycolic acid extractant prepared in Example 1 is used to extract precious metal ions in acidic feed liquid.
  • the specific application method includes the following steps:
  • the N,N’-diisooctyl-3-thioglycolic acid extractant prepared in Example 1 is used to extract precious metal ions in acidic feed liquid.
  • the specific application method includes the following steps:
  • the N,N’-diisooctyl-3-thioglycolic acid extractant prepared in Example 1 is used to extract precious metal ions in acidic feed liquid.
  • the specific application method includes the following steps:
  • the N,N’-diisooctyl-3-thioglycolic acid extractant prepared in Example 1 is used to extract precious metal ions in acidic feed liquid.
  • the specific application method includes the following steps:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Extraction Or Liquid Replacement (AREA)

Abstract

本发明提供了硫代二甘酰胺酸类萃取剂及其制备方法和应用,属于萃取剂合成和湿法冶金领域的萃取分离技术领域。本发明的萃取剂是按配比将硫代二甘醇酸酐、烷基取代的仲胺和有机试剂混合,将所得混合反应物在冰水浴中搅拌反应10~60min,然后转移至20~50℃条件下继续搅拌反应6~24h,反应结束后,萃取产物,将所得有机相洗涤、干燥,抽滤,旋蒸得到。该类萃取剂合成方法简单易操作,具有良好的耐盐和耐酸性,对贵金属离子萃取效率高且选择性好,能够实现从酸性料液中短流程、高效率的回收贵金属离子,具有一定的工业化应用价值。

Description

硫代二甘酰胺酸类萃取剂及其制备方法和应用
本申请要求于2022年6月16日提交中国专利局、申请号为CN202210677900.4、发明名称为“硫代二甘酰胺酸类萃取剂及其制备方法和应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于萃取剂合成和湿法冶金领域的萃取分离技术领域,具体涉及硫代二甘酰胺酸类萃取剂及其制备方法和应用,特别是在酸性料液中萃取贵金属离子的应用。
背景技术
随着科技的高速发展,贵金属的需求量日益增大,从而导致电子废弃物的数量随之快速增加,如处理不当,将导致严重的环境问题;同时,电子废弃物中含有多种高品位的贵金属元素,具有很高的再生利用价值。因此,从电子废弃物中回收贵金属具有重要的经济意义和环境意义。
在贵金属湿法冶金中,溶剂萃取法因选择性好,金属回收率高等优点被认为是最有前景的回收贵金属的方法。目前,国内外主要采用硫醚类和亚砜两类萃取剂处理回收贵金属,中性硫醚类萃取剂对贵金属具有优良的萃取性能,这使它们在萃取化学和湿法冶金等方面具有重要的应用价值。但传统的硫醚类萃取剂仍存在不耐酸、萃取平衡时间长等问题,这显然不能满足电子废弃物的酸浸出液体系对萃取剂的要求。另外,传统萃取剂对贵金属与贱金属的分离效果仍不理想,往往需要多种方法进行耦合,处理工艺复杂且成本较高。因此,需要开发出一类新型的、与之相匹配的高效贵金属萃取剂。
发明内容
基于上述理由,针对现有技术中存在的问题或缺陷,本发明的目的在于提供硫代二甘酰胺酸类萃取剂及其制备方法和应用,解决或至少部分解决现有技术中存在的上述技术缺陷。
本发明硫代二甘酰胺酸类萃取剂的合成方法简单,易操作,并且具有良好的耐盐和耐酸性,对贵金属离子萃取效率高且选择性好,能够实现从酸性料液中短流程、高效率的回收贵金属离子,具有一定的工业化应用价 值。
为了实现上述目的,根据本发明的一个方面,本发明采用的技术方案如下:
本发明所述的硫代二甘酰胺酸类萃取剂,所述萃取剂具有硫代二甘酰胺酸结构,其结构式如下式1所示:
其中:R1和R2独立地为直链或支链的烷基,R1和R2的碳原子总数大于6。
进一步地,上述技术方案,所述R1和R2的碳原子总数范围为7~24。
本发明的第二个目的在于提供上述所述硫代二甘酰胺酸类萃取剂的制备方法,所述方法具体包括如下步骤:
按配比将硫代二甘醇酸酐、烷基取代的仲胺和有机试剂混合,将所得混合反应物在冰水浴中搅拌反应10~60min,然后转移至20~50℃条件下继续搅拌反应6~24h,反应结束后,将反应得到的有机相洗涤,干燥,抽滤,将得到的有机相滤液减压蒸馏除去溶剂,得到所述的硫代二甘酰胺酸类萃取剂。
进一步地,上述技术方案,所述烷基取代的仲胺的结构式如下式2所示:
其中,R1和R2独立地为直链或支链的烷基,R1和R2的碳原子总数范围为7~24。
优选地,上述技术方案,所述烷基取代的仲胺为二异辛胺、二正辛胺、二正已胺、N-甲基辛基胺中的任一种。
进一步地,上述技术方案,所述硫代二甘醇酸酐与烷基取代的仲胺的摩尔比为1:1~1:2。
进一步地,上述技术方案,所述有机试剂为二氯甲烷、三氯甲烷、四氢呋喃、乙腈、N,N-二甲基甲酰胺、甲苯中的任一种。
具体地,上述技术方案,所述有机试剂的用量可不做具体限定,只要能实现硫代二甘醇酸酐、烷基取代的仲胺的均匀分散剂即可。
进一步地,上述技术方案,所述混合反应物在冰水浴中搅拌反应的时间优选为30min。
进一步地,上述技术方案,所述洗涤工艺具体如下:将反应得到的有机相先用稀盐酸溶液洗涤除去过量烷基取代的仲胺,再用去离子水反复洗涤至pH值为3~4。
进一步地,上述技术方案,所述干燥采用的试剂优选为无水硫酸镁。
具体地,本发明上述所述硫代二甘酰胺酸类萃取剂具体是采用开环反应制备得到的,具体反应式如式3所示:
上述采用的各原料在本发明中所起的作用以及制备反应机理如下:
仲胺进攻硫代二甘醇酸酐,生成N-取代硫代二甘醇酰胺酸;仲胺的位阻大小直接影响硫代二甘醇酸酐的开环去向及产物收率。
另外,本发明在冰水浴中反应的目的是:防止硫代二甘醇酸酐和空间位阻较小的仲胺在开始反应活性较强,放热剧烈,导致温度太高容易发生副反应,用冰水浴将反应控制在较低温度进行。
本发明在20~50℃继续反应的目的在于:对于空间位阻较大的仲胺,与硫代二甘醇酸酐反应活性较弱,将反应温度提高到一定温度,可以加快反应速率,提高反应收率。
本发明的第三个目的在于提供上述所述硫代二甘酰胺酸类萃取剂在酸性料液中萃取贵金属离子的应用。
进一步地,上述所述的应用,是利用硫代二甘酰胺酸类萃取剂与稀释剂组成的有机相对酸性贵金属料液进行萃取,具体应用的方法包括如下步骤:
(1)将硫代二甘酰胺酸类萃取剂溶解于稀释剂中,得到萃取剂溶液;
(2)将步骤(1)所述萃取剂溶液与酸性贵金属料液在恒温振荡器中混合,进行萃取,贵金属被萃取至萃取剂溶液中得到富集。
优选地,上述技术方案,步骤(1)中,所述稀释剂为甲苯、二氯甲烷、煤油、正庚烷中的任一种或几种。
优选地,上述技术方案,步骤(1)中所述萃取剂溶液的浓度为0.05~0.2mol/L。
优选地,上述技术方案,步骤(2)中所述酸性贵金属料液包含金离子、钯离子、铜离子、铅离子、钴离子、镍离子、钙离子和镁离子中的任一种或多种。
优选地,上述技术方案,步骤(2)中所述酸性贵金属料液的pH值为0~5。
优选地,上述技术方案,步骤(2)中所述萃取剂溶液与酸性贵金属料液的体积比为1:10。
优选地,上述技术方案,步骤(2)中所述恒温振荡器的温度为20~30℃,较优选为25℃。
优选地,上述技术方案,步骤(2)中所述恒温振荡器的转速为100~300rpm。
本发明提供的硫代二甘酰胺酸类萃取剂在酸性条件下对贵金属离子具有很好的萃取能力和较高的选择性,能够直接从多金属体系中高效分离出贵金属,缩短了贵金属回收的工艺流程,避免了预除杂工序造成的环境污染,萃取性能明显优于普通的硫代二酰胺萃取剂,且萃取剂合成方法简单易操作,便于工业化生产。
与现有技术相比,本发明具有如下有益效果:
本发明提出的硫代二甘酰胺酸类萃取剂,一方面,其结构中醚硫键的柔性及键上硫原子的配位作用使得硫代二甘酰胺酸类萃取剂对贵金属离子的萃取能力大大优于普通的硫代二酰胺类萃取剂,并且该类萃取剂结构中羧酸官能团中活泼的氢可以与溶剂形成氢键导致溶剂化,从而有利于萃合物在有机相中的溶解,且可以通过控制水相酸度实现金属离子的反萃取;另一方面,硫代二甘酰胺酸类萃取剂对贵金属离子选择性高,能够从酸性料液中直接分离回收贵金属,避免了传统萃取剂在贵金属分离回收过程中需要经过沉淀除杂的预处理工序,克服了贵金属综合收率不高,环境污染严重等缺点,实现了短流程、高效率从酸性料液中分离回收贵金属。
附图说明
图1为本发明实施例1制备的N,N’-二异辛基-3-硫代二甘酰胺酸的红外光谱图;
图2为本发明实施例1制备的N,N’-二异辛基-3-硫代二甘酰胺酸在氘代氯仿中的1H-NMR谱图;
图3为本发明实施例2制备的N,N’-甲基辛基-3-硫代二甘酰胺酸的红外光谱图;
图4为本发明实施例2制备的N,N’-甲基辛基-3-硫代二甘酰胺酸的1N NMR图;
图5为本发明实施例3制备的N,N’-二正辛基-3-硫代二甘酰胺酸的红外光谱图;
图6为本发明实施例3制备的N,N’-二正辛基-3-硫代二甘酰胺酸的1N NMR图;
图7为本发明实施例4制备的N,N’-二正己基-3-硫代二甘酰胺酸的红外光谱图;
图8为本发明实施例4制备的N,N’-二正己基-3-硫代二甘酰胺酸的1N NMR图。
具体实施方式
本发明提供了一类硫代二甘酰胺酸萃取剂,结构式如下:
其中,R1和R2独立地为直链或支链的烷基,R1和R2的碳原子总数大于6,优选为7~24。
本发明的硫代二甘酰胺酸类萃取剂的制备方法包括如下步骤:
在500mL圆底烧瓶中,加入硫代二甘醇酸酐、烷基取代的仲胺和有机试剂,在冰水浴中搅拌反应10~60min,然后继续在20~50℃条件下搅拌反应6~24h,有机相先用稀盐酸溶液洗涤除去过量仲胺,再用去离子水反复洗涤至pH值为3~4,然后用无水硫酸镁干燥有机相,减压抽滤,将滤液旋蒸出溶剂,得到硫代二甘酰胺酸萃取剂,其中,所述的烷基取代的 仲胺具有如下结构式:
其中,R1和R2独立地为直链或支链的烷基,R1和R2的碳原子总数范围为7~24。
下面通过实施案例对本发明作进一步详细说明。本实施案例在以本发明技术为前提下进行实施,现给出详细的实施方式和具体的操作过程来说明本发明具有创造性,但本发明的保护范围不限于以下的实施案例。
本发明中所采用的设备和原料等均可从市场购得,或是本领域常用的。下述实施例中的方法,如无特别说明,均为本领域的常规方法。
实施例1
本实施例的一种N,N’-二异辛基-3-硫代二甘酰胺酸萃取剂的制备方法,包括如下步骤:
在500mL圆底烧瓶中,加入0.2mmol硫代二甘醇酸酐、0.22mmol二异辛胺和200mL四氢呋喃,在冰水浴中搅拌反应30min,然后继续在40℃条件下搅拌反应24h,将反应得到的有机相先用稀盐酸洗涤除去过量二异辛胺,然后用去离子水洗涤有机相至pH值为4,再用无水硫酸镁干燥有机相,抽滤,将得到的有机相滤液减压蒸馏除去溶剂,得到所述的N,N’-二异辛基-3-硫代二甘酰胺酸。
对本实施例制备的产物进行表征,结果如图1到图2所示。
图1为实施例1制备的产物的红外光谱图。其主要特征吸收峰为:在2926cm-1处的峰,说明有饱和C-H键的伸缩振动,1723cm-1为羧基的C=O键的伸缩振动吸收峰,1599cm-1为酰胺的C=O键的伸缩振动吸收峰,1457cm-1为酰胺的C-N键的伸缩振动吸收峰,1269cm-1为C-S-C的不对称伸缩振动吸收峰,这些特征峰表明有羧酸、酰胺和硫醚官能团的存在。
图2为实施例1制备的产物在氘代氯仿中的1H-NMR谱图,各质子的化学位移如下:9.55(s,1H,COOH),3.52(s,2H,-SCH2-),3.37(s,2H,-CH2S-),3.20-3.33(m,4H,2×CH2-N),2.86-2.88(m,2H,2×CH),1.24-1.33(m,16H,8×CH2),0.86-0.91(m,12H,4×CH3)。
由图1和图2的数据可知,本发明实施例1制备的产物为N,N’-二异 辛基-3-硫代二甘酰胺酸。
实施例2
本实施例的一种N,N’-甲基辛基-3-硫代二甘酰胺酸萃取剂的制备方法,包括如下步骤:
在500mL圆底烧瓶中,加入0.2mmol硫代二甘醇酸酐、0.4mmol N-甲基辛基胺和300mLN,N-二甲基甲酰胺,在冰水浴中搅拌反应30min,然后继续在20℃条件下搅拌反应24h,将反应得到的有机相先用稀盐酸洗涤除去过量N-甲基辛基胺,然后用去离子水洗涤有机相至pH值为4,再用无水硫酸镁干燥有机相,抽滤,将得到的有机相滤液减压蒸馏除去溶剂,得到N,N’-甲基辛基-3-硫代二甘酰胺酸萃取剂。
对本实施例制备的萃取剂进行表征,结果如图3到图4所示。
图3为本实施例制备的产物的红外光谱图。其主要特征吸收峰为:在2924cm-1处的峰,说明有饱和C-H键的伸缩振动,1723cm-1为羧基的C=O键的伸缩振动吸收峰,1600cm-1为酰胺的C=O键的伸缩振动吸收峰,1403cm-1为酰胺的C-N键的伸缩振动吸收峰,1261cm-1为C-S-C的不对称伸缩振动吸收峰,这些特征峰表明有羧酸、酰胺和硫醚官能团的存在。
图4为本实施例制备的产物在氘代氯仿中的1H-NMR谱图,各质子的化学位移如下:10.0(s,1H,COOH),3.53(s,2H,-SCH2-),3.40(s,2H,-CH2S-),3.30-3.37(m,2H,CH2-N),2.96-3.07(m,3H,CH3-N),1.28-1.29(m,8H,4×CH2),0.87-0.89(m,3H,CH3)。
由图3和图4的数据可知,本实施例制备的产物为N,N’-甲基辛基-3-硫代二甘酰胺酸。
实施例3
本实施例的一种N,N’-二正辛基-3-硫代二甘酰胺酸萃取剂的制备方法,包括如下步骤:
在500mL圆底烧瓶中,加入0.2mmol硫代二甘醇酸酐、0.3mmol二正辛胺和250mL二氯甲烷,在冰水浴中搅拌反应30min,然后继续在50℃条件下搅拌反应24h,将反应得到的有机相先用稀盐酸洗涤除去过量二正辛胺,然后用去离子水洗涤有机相至pH值为4,再用无水硫酸镁干燥有机相,抽滤,将得到的有机相滤液减压蒸馏除去溶剂,得到N,N’-二正辛 基-3-硫代二甘酰胺酸萃取剂。
对本实施例制备的萃取剂进行表征,结果如图5到图6所示。
图5为实施例3制备的产物的红外光谱图。其主要特征吸收峰为:在2923cm-1处的峰,说明有饱和C-H键的伸缩振动,1724cm-1为羧基的C=O键的伸缩振动吸收峰,1600cm-1为酰胺的C=O键的伸缩振动吸收峰,1464cm-1为酰胺的C-N键的伸缩振动吸收峰,1277cm-1为C-S-C的不对称伸缩振动吸收峰,这些特征峰表明有羧酸、酰胺和硫醚官能团的存在。
图6为实施例3制备的产物在氘代氯仿中的1H-NMR谱图,各质子的化学位移如下:9.9(s,1H,COOH),3.50(s,2H,-SCH2-),3.38(s,2H,-CH2S-),3.25-3.34(m,4H,2×CH2-N),1.54-1.61(m,4H,2×-CH2CH2-N),1.28-1.29(m,10H,5×CH2),0.88-0.90(m,6H,2×CH3)。
由图5和图6的数据可知,本实施例制备的产物为N,N’-二正辛基-3-硫代二甘酰胺酸。
实施例4
本实施例的一种N,N’-二正己基-3-硫代二甘酰胺酸萃取剂的制备方法,包括如下步骤:
在500mL圆底烧瓶中,加入0.2mmol硫代二甘醇酸酐、0.2mmol二正已胺和200mL三氯甲烷,在冰水浴中搅拌反应30min,然后继续在30℃条件下搅拌反应24h,将反应得到的有机相先用稀盐酸洗涤除去过量二正已胺,然后用去离子水洗涤有机相至pH值为4,再用无水硫酸镁干燥有机相,抽滤,将得到的有机相滤液减压蒸馏除去溶剂,得到N,N’-二正己基-3-硫代二甘酰胺酸萃取剂。
对本实施例制备的产物进行表征,结果如图7到图8所示。
图7为实施例4制备的产物的红外光谱图。其主要特征吸收峰为:在2926cm-1处的峰,说明有饱和C-H键的伸缩振动,1723cm-1为羧基的C=O键的伸缩振动吸收峰,1598cm-1为酰胺的C=O键的伸缩振动吸收峰,1463cm-1为酰胺的C-N键的伸缩振动吸收峰,1271cm-1为C-S-C的不对称伸缩振动吸收峰,这些特征峰表明有羧酸、酰胺和硫醚官能团的存在。
图8为实施例4制备的产物在氘代氯仿中的1H-NMR谱图,各质子的化学位移如下:10.1(s,1H,COOH),3.51(s,2H,-SCH2-),3.38(s,2H,-CH2S-), 3.26-3.33(m,4H,2×CH2-N),1.54-1.60(m,4H,2×-CH2CH2-N),1.29-1.31(m,6H,3×CH2),0.88-0.90(m,6H,2×CH3)。
由图7和图8的数据可知,本实施例制备的产物为N,N’-二正己基-3-硫代二甘酰胺酸。
应用实施例
将本发明上述实施例制备得到的萃取剂应用在酸性料液中萃取贵金属离子。
下述各应用实施例中贵金属料液的成分都相同,具体成分为:金离子、钯离子、铜离子、铅离子、钴离子、镍离子、钙离子和镁离子,每种金属离子的浓度为100mg/L;具体配置方法为:取浓度为1000mg/L的每种金属离子的标准溶液于一个容量瓶中进行稀释,然后采用0.5mol/L的HCl溶液和0.5mol/L的NaOH溶液调节溶液的pH值,分别得到不同pH值的贵金属料液。
并且,下述各应用实施例中涉及的萃取率的计算方法如下:
萃取率用E(%)表示,
C0:起始水溶液中金属离子浓度(mg/L);
Ce:萃取平衡后水相中金属离子浓度(mg/L)。
应用实施例1
将实施例2制备的N,N’-甲基辛基-3-硫代二甘酰胺酸萃取剂应用在酸性料液中萃取贵金属离子,具体应用的方法包括如下步骤:
取2.75g实施例2制备的N,N’-甲基辛基-3-硫代二甘酰胺酸萃取剂溶于煤油中,配成0.1mol/L萃取剂溶液;
将配制的0.1mol/L萃取剂溶液和pH值为1.03的贵金属料液按照1:10体积比在恒温振荡器中混合,在25℃恒温条件下以230rpm速度振荡萃取15min后,测试萃取前后水相中金属离子的浓度,并计算各金属离子的萃取率,具体结果见表1。
应用实施例2
将实施例4制备的N,N’-二正己基-3-硫代二甘酰胺酸萃取剂应用在酸性料液中萃取贵金属离子,具体应用的方法包括如下步骤:
取3.18g实施例4制备的N,N’-二正己基-3-硫代二甘酰胺酸萃取剂溶于煤油中,配成0.1mol/L萃取剂溶液;
将配制的0.1mol/L萃取剂溶液和pH值为1.03的贵金属料液按照1:10体积比在恒温振荡器中混合,在25℃恒温条件下以230rpm速度振荡萃取15min后,测试萃取前后水相中金属离子的浓度,并计算各金属离子的萃取率,具体结果见表1。
应用实施例3
将实施例1制备的N,N’-二异辛基-3-硫代二甘酰胺酸萃取剂应用在酸性料液中萃取贵金属离子,具体应用的方法包括如下步骤:
取3.74g实施例1制备的N,N’-二异辛基-3-硫代二甘酰胺酸萃取剂溶于煤油中,配成0.1mol/L萃取剂溶液;
将配制的0.1mol/L萃取剂溶液和pH值为1.03的贵金属料液按照1:10体积比在恒温振荡器中混合,在25℃恒温条件下以230rpm速度振荡萃取15min后,测试萃取前后水相中金属离子的浓度,并计算各金属离子的萃取率,具体结果见表1。
应用实施例4
将实施例3制备的N,N’-二正辛基-3-硫代二甘酰胺酸萃取剂应用在酸性料液中萃取贵金属离子,具体应用的方法包括如下步骤:
取3.74gN,N’-二正辛基-3-硫代二甘酰胺酸萃取剂溶于煤油中,配成0.1mol/L萃取剂溶液;
将配制的0.1mol/L萃取剂溶液和pH值为1.03的贵金属料液按照1:10体积比在恒温振荡器中混合,在25℃恒温条件下以230rpm速度振荡萃取15min后,测试萃取前后水相中金属离子的浓度,并计算各金属离子的萃取率,具体结果见表1。
表1应用实施例1-4的萃取率结果对比表

从表1的结果可以看出,萃取剂结构中氮原子上取代烷基的碳链越长,对贵金属离子的萃取率越高,而且随着取代烷基的碳链支链化程度越高,对贵金属离子的萃取率会降低,原因为随着萃取剂结构中氮原子上取代烷基的碳链增长,萃取剂与金属离子在萃取过程中形成萃合物的稳定性越高,有利于萃取过程进行,而取代烷基的碳链支链化程度越高,萃取剂与金属离子萃取位阻越大,越不利于萃合物的生成,因此,金属离子的萃取率会降低。
应用实施例5
将实施例1制备的N,N’-二异辛基-3-硫代二甘酰胺酸萃取剂应用在酸性料液中萃取贵金属离子,具体应用的方法包括如下步骤:
取7.48g实施例1制备的N,N’-二异辛基-3-硫代二甘酰胺酸萃取剂溶于煤油中,配成0.2mol/L萃取剂溶液;
将配制的0.2mol/L萃取剂溶液和pH值为1.03的贵金属料液按照1:10体积比在恒温振荡器中混合,在25℃恒温条件下以230rpm速度振荡萃取15min后,测试萃取前后水相中金属离子的浓度,并计算各金属离子的萃取率,具体结果见表2。
应用实施例6
将实施例1制备的N,N’-二异辛基-3-硫代二甘酰胺酸萃取剂应用在酸性料液中萃取贵金属离子,具体应用的方法包括如下步骤:
取7.48gN,N’-二异辛基-3-硫代二甘酰胺酸萃取剂溶于煤油中,配成0.2mol/L萃取剂溶液;
将配制的0.2mol/L萃取剂溶液和pH值为0.3的贵金属料液按照1:10体积比在恒温振荡器中混合,在25℃恒温条件下以230rpm速度振荡萃取15min后,测试萃取前后水相中金属离子的浓度,并计算各金属离子的萃取率,具体结果见表2。
应用实施例7
将实施例1制备的N,N’-二异辛基-3-硫代二甘酰胺酸萃取剂应用在酸性料液中萃取贵金属离子,具体应用的方法包括如下步骤:
取7.48gN,N’-二异辛基-3-硫代二甘酰胺酸萃取剂溶于煤油中,配成 0.2mol/L萃取剂溶液;
将配制的0.2mol/L萃取剂溶液和pH值为2.43的贵金属料液按照1:10体积比在恒温振荡器中混合,在25℃恒温条件下以230rpm速度振荡萃取15min后,测试萃取前后萃取后水相中金属离子的浓度,并计算各金属离子的萃取率,具体结果见表2。
应用实施例8
将实施例1制备的N,N’-二异辛基-3-硫代二甘酰胺酸萃取剂应用在酸性料液中萃取贵金属离子,具体应用的方法包括如下步骤:
取7.48gN,N’-二异辛基-3-硫代二甘酰胺酸萃取剂溶于煤油中,配成0.2mol/L萃取剂溶液;
将配制的0.2mol/L萃取剂溶液和pH值为3.2的贵金属料液按照1:10体积比在恒温振荡器中混合,在25℃恒温条件下以230rpm速度振荡萃取15min后,测试萃取前后萃取后水相中金属离子的浓度,并计算各金属离子的萃取率,具体结果见表2。
应用实施例9
将实施例1制备的N,N’-二异辛基-3-硫代二甘酰胺酸萃取剂应用在酸性料液中萃取贵金属离子,具体应用的方法包括如下步骤:
取7.48gN,N’-二异辛基-3-硫代二甘酰胺酸萃取剂溶于煤油中,配成0.2mol/L萃取剂溶液;
将配制的0.2mol/L萃取剂溶液和pH值为4.05的贵金属料液按照1:10体积比在恒温振荡器中混合,在25℃恒温条件下以230rpm速度振荡萃取15min后,测试萃取前后萃取后水相中金属离子的浓度,并计算各金属离子的萃取率,具体结果见表2。
表2应用实施例5-9萃取率对比表

从表2的结果可以看出,应用实施例5~9的N,N’-二异辛基-3-硫代二甘酰胺酸萃取剂对贵金属的萃取率均是随着pH值的升高而增大,而对贱金属的萃取率随着pH值的升高而减小,可以通过调控合适的pH值实现贵金属与贱金属的有效分离。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (18)

  1. 一种硫代二甘酰胺酸类萃取剂,其特征在于:所述硫代二甘酰胺酸类萃取剂的结构式如式1所示:
    式1中:R1和R2独立地为直链或支链的烷基,R1和R2的碳原子总数大于6。
  2. 根据权利要求1所述的硫代二甘酰胺酸类萃取剂,其特征在于:所述R1和R2的碳原子总数范围为7~24。
  3. 一种硫代二甘酰胺酸类萃取剂,其特征在于,包括N,N’-二异辛基-3-硫代二甘酰胺酸、N,N’-甲基辛基-3-硫代二甘酰胺酸、N,N’-二正辛基-3-硫代二甘酰胺酸或N,N’-二正己基-3-硫代二甘酰胺酸。
  4. 权利要求1~3任意一项所述的硫代二甘酰胺酸类萃取剂的制备方法,其特征在于:所述方法具体包括如下步骤:
    按配比将硫代二甘醇酸酐、烷基取代的仲胺和有机试剂混合,将所得混合反应物在冰水浴中搅拌反应10~60min,然后转移至20~50℃条件下继续搅拌反应6~24h,反应结束后,将反应得到的有机相洗涤,干燥,抽滤,将得到的有机相滤液减压蒸馏除去溶剂,得到所述的硫代二甘酰胺酸类萃取剂。
  5. 根据权利要求4所述的制备方法,其特征在于:所述烷基取代的仲胺的结构式如式2所示:
    其中,R1和R2独立地为直链或支链的烷基,R1和R2的碳原子总数范围为7~24。
  6. 根据权利要求4或5所述的制备方法,其特征在于:所述烷基取代的仲胺为二异辛胺、二正辛胺、二正已胺和N-甲基辛基胺中的任一种。
  7. 根据权利要求4所述的制备方法,其特征在于:所述硫代二甘醇酸酐与烷基取代的仲胺的摩尔比为1:1~1:2。
  8. 根据权利要求4所述的制备方法,其特征在于:所述有机试剂为二氯甲烷、三氯甲烷、四氢呋喃、乙腈、N,N-二甲基甲酰胺和甲苯中的任一种。
  9. 根据权利要求4所述的制备方法,其特征在于:所述洗涤为:将反应得到的有机相先用稀盐酸溶液洗涤除去过量烷基取代的仲胺,再用去离子水反复洗涤至pH值为3~4。
  10. 权利要求1~3任意一项所述的硫代二甘酰胺酸类萃取剂或权利要求4~9任一项所述方法制备的硫代二甘酰胺酸类萃取剂在酸性料液中萃取贵金属离子的应用。
  11. 根据权利要求10所述的应用,其特征在于:具体应用的方法包括如下步骤:
    (1)将硫代二甘酰胺酸类萃取剂溶解于稀释剂中,得到萃取剂溶液;
    (2)将步骤(1)所述萃取剂溶液与酸性贵金属料液在恒温振荡器中混合,进行萃取,贵金属被萃取至萃取剂溶液中得到富集。
  12. 根据权利要求11所述的应用,其特征在于,步骤(1)中所述稀释剂为甲苯、二氯甲烷、煤油和正庚烷中的一种或几种。
  13. 根据权利要求11或12所述的应用,其特征在于:步骤(1)中所述萃取剂溶液的浓度为0.05~0.2mol/L。
  14. 根据权利要求11所述的应用,其特征在于:步骤(2)中所述酸性贵金属料液包含金离子、钯离子、铜离子、铅离子、钴离子、镍离子、钙离子和镁离子中的一种或多种。
  15. 根据权利要求11或14所述的应用,其特征在于:步骤(2)中所述酸性贵金属料液的pH值为0~5。
  16. 根据权利要求12所述的应用,其特征在于:步骤(2)中所述萃取剂溶液与酸性贵金属料液的体积比为1:10。
  17. 根据权利要求11所述的应用,其特征在于:步骤(2)中所述恒温振荡器的温度为20~30℃。
  18. 根据权利要求11或17所述的应用,其特征在于:步骤(2)中所述恒温振荡器的转速为100~300rpm。
PCT/CN2023/077324 2022-06-16 2023-02-21 硫代二甘酰胺酸类萃取剂及其制备方法和应用 WO2023241087A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210677900.4 2022-06-16
CN202210677900.4A CN115028561B (zh) 2022-06-16 2022-06-16 硫代二甘酰胺酸类萃取剂及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2023241087A1 true WO2023241087A1 (zh) 2023-12-21

Family

ID=83125103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/077324 WO2023241087A1 (zh) 2022-06-16 2023-02-21 硫代二甘酰胺酸类萃取剂及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN115028561B (zh)
WO (1) WO2023241087A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115028561B (zh) * 2022-06-16 2023-12-22 江西省科学院应用化学研究所 硫代二甘酰胺酸类萃取剂及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103068792A (zh) * 2010-07-05 2013-04-24 信越化学工业株式会社 用于合成稀土金属萃取剂的方法
CN103509947A (zh) * 2012-06-18 2014-01-15 独立行政法人日本原子力研究开发机构 从盐酸溶液中萃取分离贵金属的溶剂萃取分离方法
CN104524808A (zh) * 2014-12-29 2015-04-22 东南大学 3-硫戊二酰胺类萃取剂及其在萃取钯上的应用
CN104531993A (zh) * 2014-12-29 2015-04-22 东南大学 3-硫戊二酰胺类萃取剂及其在萃取金上的应用
CN107513614A (zh) * 2016-06-15 2017-12-26 东南大学 3‑氧戊二酰胺类萃取剂在萃取金上的应用
CN114853617A (zh) * 2022-04-06 2022-08-05 山东大学 一种萃取分离钕(ⅲ)的萃取剂及其制备方法与应用
CN115028561A (zh) * 2022-06-16 2022-09-09 江西省科学院应用化学研究所 硫代二甘酰胺酸类萃取剂及其制备方法和应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6004529A (en) * 1997-04-11 1999-12-21 Nycomed Imaging As Chelating agents
CN109082544B (zh) * 2017-06-14 2021-05-18 厦门稀土材料研究所 一种含有有效官能团的萃取剂和吸附剂及其在钍金属萃取分离中的应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103068792A (zh) * 2010-07-05 2013-04-24 信越化学工业株式会社 用于合成稀土金属萃取剂的方法
CN103509947A (zh) * 2012-06-18 2014-01-15 独立行政法人日本原子力研究开发机构 从盐酸溶液中萃取分离贵金属的溶剂萃取分离方法
CN104524808A (zh) * 2014-12-29 2015-04-22 东南大学 3-硫戊二酰胺类萃取剂及其在萃取钯上的应用
CN104531993A (zh) * 2014-12-29 2015-04-22 东南大学 3-硫戊二酰胺类萃取剂及其在萃取金上的应用
CN107513614A (zh) * 2016-06-15 2017-12-26 东南大学 3‑氧戊二酰胺类萃取剂在萃取金上的应用
CN114853617A (zh) * 2022-04-06 2022-08-05 山东大学 一种萃取分离钕(ⅲ)的萃取剂及其制备方法与应用
CN115028561A (zh) * 2022-06-16 2022-09-09 江西省科学院应用化学研究所 硫代二甘酰胺酸类萃取剂及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A. S. SUNEESH , K. A. VENKATESAN , K. V. SYAMALA , M. P. ANTONY AND P. R. VASUDEVA RAO: "Mutual separation of americium(III) and europium(III) using glycolamic acid and thioglycolamic acid", RADIOCHIMICA ACTA, OLDENBOURG WISSENSCHAFTSVERLAG GMBH MUNICH, DE, vol. 100, no. 7, 12 March 2012 (2012-03-12), DE , pages 425 - 430, XP009551143, ISSN: 0033-8230, DOI: 10.1524/ract.2012.1941 *
JIN CHANG, LIU QIAN, DU YU, XU CHAO, LIU TINGTING, FANG TUO, WANG GANLIN, ZHU LIYANG, ZHANG YAN, YANG SULIANG, TIAN GUOXIN: "Extraction of Ln(III) and An(III) by N,N-di(2-ethylhexyl)- thio-diglycolamic Acid", SOLVENT EXTRACTION AND ION EXCHANGE., TAYLOR & FRANCIS GROUP LLC,, US, vol. 40, no. 6, 19 September 2022 (2022-09-19), US , pages 641 - 653, XP093117684, ISSN: 0736-6299, DOI: 10.1080/07366299.2022.2032938 *

Also Published As

Publication number Publication date
CN115028561B (zh) 2023-12-22
CN115028561A (zh) 2022-09-09

Similar Documents

Publication Publication Date Title
JP2023528091A (ja) カルボン酸類化合物、その調製方法及び使用
CN102206755B (zh) 一种从钕铁硼废料中分离回收有价元素的方法
WO2023241087A1 (zh) 硫代二甘酰胺酸类萃取剂及其制备方法和应用
CN110042235B (zh) 一种分离金的萃取剂及萃取方法
CN111041203B (zh) 一种用于镍锂分离的混合萃取剂及分离方法
CN109502613B (zh) 一种从盐湖卤水制备高纯氯化镁的方法
CN112063861B (zh) 一种从高铝稀土料液中分离稀土的萃取方法
CN110218866B (zh) 一种p204掺杂聚噻吩轻稀土固相萃取剂的制备方法及其应用
CN104531993A (zh) 3-硫戊二酰胺类萃取剂及其在萃取金上的应用
CN113831222A (zh) 一种联萘酚的生产方法
CN103290239A (zh) 从氧化铝生产流程中提取钒的方法
CN104524808A (zh) 3-硫戊二酰胺类萃取剂及其在萃取钯上的应用
CN110699546B (zh) 一种萃取剂及其制备方法与应用
CN109680169B (zh) 一种p204掺杂聚苯胺的固相萃取剂及其萃取轻稀土方法
CN114853617B (zh) 一种萃取分离钕(ⅲ)的萃取剂及其制备方法与应用
WO2023005031A1 (zh) 一种镍钴锰三元前驱体材料的制备方法以及锂离子电池
CN112645998B (zh) 硼酸酯催化下合成牛磺熊去氧胆酸的方法
CN114645143B (zh) 一种红土镍矿中镍钴铜锰的分离方法
WO2018040703A1 (zh) 一种从重金属污泥中回收制备高纯阻燃型氢氧化镁的方法
CN109110741B (zh) 一种磷酸铁锰制备过程中母液分步回收利用的方法
CN114773244B (zh) 一种由酸性含铜蚀刻废液制备二乙基二硫代氨基甲酸铜的方法
CN114622105B (zh) 一种用于提取铌的复合材料及其制备方法和应用方法
CN115029552B (zh) 一种含烷氧基伯胺类萃取剂及其制备方法和作为钨萃取剂的应用
CN115466847B (zh) 基于草酸钴与四氧化三钴残次品协同浸出制备高纯钴产品的方法
CN114933533B (zh) 一种桐油基酸性萃取剂及其制备方法和在选择性萃取分离过渡金属离子中的应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23822659

Country of ref document: EP

Kind code of ref document: A1