WO2023238840A1 - 共重合体、エラストマー球状粒子、エラストマー球状粒子の分散液及びそれらの製造方法 - Google Patents

共重合体、エラストマー球状粒子、エラストマー球状粒子の分散液及びそれらの製造方法 Download PDF

Info

Publication number
WO2023238840A1
WO2023238840A1 PCT/JP2023/020919 JP2023020919W WO2023238840A1 WO 2023238840 A1 WO2023238840 A1 WO 2023238840A1 JP 2023020919 W JP2023020919 W JP 2023020919W WO 2023238840 A1 WO2023238840 A1 WO 2023238840A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
spherical particles
general formula
independently
carbon atoms
Prior art date
Application number
PCT/JP2023/020919
Other languages
English (en)
French (fr)
Inventor
貴仁 大木
俊司 青木
猪智郎 小野
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Publication of WO2023238840A1 publication Critical patent/WO2023238840A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • C08F2/06Organic solvent
    • C08F2/08Organic solvent with the aid of dispersing agents for the polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • C08F2/24Emulsion polymerisation with the aid of emulsifying agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates

Definitions

  • the present invention relates to elastomer spherical particles, dispersions of elastomer spherical particles, and methods for producing them.
  • raw rubber used for rubber products is [1] Polymers whose repeating units consist only of conjugated diene units, represented by butadiene rubber, isoprene rubber, chloroprene rubber, and natural rubber, [2] Polymers whose repeating units essentially include conjugated diene units and aromatic vinyl units, represented by styrene-butadiene copolymer rubber, styrene-isoprene copolymer rubber, and styrene-isoprene-butadiene copolymer rubber; [3] Polymers whose repeating units essentially include conjugated diene units and ⁇ , ⁇ -unsaturated nitrile units, typified by acrylonitrile-butadiene copolymer rubber; [4] Polymers whose repeating units are essentially acrylate units, typified by acrylic rubber; [5] A polymer whose repeating unit is ethylene, an ⁇ -olefin having 3 to 12 carbon atoms, and optional
  • Elastomer (rubber) spherical particles especially those consisting of an organic skeleton, are used to improve various properties such as impact resistance, thermal shock resistance, and adhesion, mainly in electronic material applications including electronic devices.
  • spherical silicone rubber particles/powders have been proposed for use in a wide range of industrial fields.
  • synthetic resin materials Patent Documents 1 and 2
  • synthetic rubber materials Patent Document 3
  • cosmetics Patent Documents 4 to 7
  • Silicone rubber spherical particles are blended and used, for example, as stress reducing agents for organic resins such as epoxy resins, taking advantage of their "flexibility.” In other words, due to the difference in coefficient of thermal expansion between electronic components and organic resins such as epoxy resins, stress may be applied to the resin, causing cracks and cracks, which can be prevented by adding silicone rubber spherical particles. becomes.
  • Patent Document 8 epoxy resin containing spherical particles of a cured polymer containing linear organopolysiloxane blocks (Patent Document 8), and spherical particles whose surface is coated with polyorganosilsesquioxane of silicone rubber spherical particles are used.
  • An epoxy resin (Patent Document 9) containing such a compound has been proposed.
  • Patent Document 10 a method for preparing silicone-containing rubber spherical particles by copolymerizing (meth)acrylic acid ester and diorganopolysiloxane having a radically polymerizable functional group-containing organic group at one end in an emulsion system.
  • Patent Document 10 a method for preparing silicone-containing rubber spherical particles by copolymerizing (meth)acrylic acid ester and diorganopolysiloxane having a radically polymerizable functional group-containing organic group at one end in an emulsion system.
  • these spherical particles are used for the purpose of imparting slipperiness to the thermoplastic resin.
  • organic crosslinked rubber spherical particles which are obtained by crosslinking a liquid composition consisting of an organic compound having an aliphatic saturated bond and a silicon-containing organic compound having a silicon-bonded hydrogen atom through a hydrosilylation reaction (Patent Document 11). It has been proposed as having excellent dispersibility and handling workability for components such as various resins, paints, and rubbers.
  • silicone rubber spherical particles are used in foundations for the purpose of giving cosmetics a soft feel and smoothness, creating a natural finish by scattering light, and making pores and wrinkles less visible. It is used in a wide range of cosmetics and cosmetic materials, including makeup cosmetics such as makeup bases, basic cosmetics such as creams and emulsions, and sunscreen cosmetics.
  • Patent Document 12 cosmetics containing polymethylsilsesquioxane particles/powder
  • Patent Document 13 makeup cosmetics containing spherical silicone rubber particles/powder
  • Patent Document 14 A cosmetic containing composite silicone powder coated with a resin has been proposed (Patent Document 14).
  • These silicone rubber spherical particles and composite particles obtained by coating silicone rubber spherical particles with a polyorganosilsesquioxane resin can impart a soft feel to cosmetics in addition to the above-mentioned feeling of use.
  • plastics that have leaked into the ocean/microplastics that have become microscopic in size have the ability to adsorb harmful substances and pathogenic bacteria in the environment, and there are concerns that they may have a negative impact on the ecosystem. There are also beginning to be moves towards regulation.
  • the present invention was made in view of the above circumstances, and consists of a copolymer that is highly degradable under external stimuli such as light, heat, acids and bases in natural environments including soil, land water, oceans and seawater.
  • An object of the present invention is to provide elastomer (rubber) spherical particles, a dispersion of elastomer spherical particles, and a method for producing the same.
  • Another object of the present invention is to provide a copolymer that is suitable for producing the above-mentioned elastomer (rubber) spherical particles and has high degradability when subjected to external stimuli.
  • the present inventors have discovered a copolymer having a specific polyester structure and a polyether structure, elastomer spherical particles made of a polymer containing structural units derived from the copolymer, and It has been discovered that the dispersion liquid solves the above-mentioned problems, and the present invention has been completed.
  • the present invention provides the following copolymers, elastomer spherical particles, dispersions of elastomer spherical particles, and methods for producing them.
  • a polyester-polyether copolymer having at least two radically polymerizable unsaturated groups in one molecule represented by the following general formula (1) or (2).
  • R 1 each independently represents a divalent hydrocarbon group having 1 to 10 carbon atoms
  • R 2 each independently represents the following general formula (3a), (3b) or (3c).
  • R 3 each independently represents a divalent hydrocarbon group having 1 to 10 carbon atoms
  • R 4 each independently represents a radically polymerizable functional group represented by the following general formula (4a) or (4b).
  • R 5 each independently represents a divalent hydrocarbon group having 1 to 8 carbon atoms
  • R 6 each represents a hydrogen atom. or a hydrocarbon group having 1 to 3 carbon atoms.
  • R 1 each independently represents a divalent hydrocarbon group having 1 to 10 carbon atoms
  • R 2 each independently represents the following general formula (3a), (3b) or (3c).
  • 1 is a number of 1 ⁇ l ⁇ 1,000
  • m is a number of 1 ⁇ m ⁇ 1,000
  • r is each independently 1 ⁇ r ⁇ 100.
  • R 5 each independently represents a divalent hydrocarbon group having 1 to 8 carbon atoms
  • R 6 each represents a hydrogen atom or a carbonization group having 1 to 3 carbon atoms. (Indicates a hydrogen group.) [3].
  • Elastomer spherical particles made of a polymer having a volume average particle diameter of 0.5 to 200 ⁇ m and containing structural units derived from a copolymer having a polyester structure and a polyether structure. [4].
  • R 1 each independently represents a divalent hydrocarbon group having 1 to 10 carbon atoms
  • R 2 each independently represents the following general formula (3a), (3b) or (3c).
  • n is each independently a number of 1 ⁇ n ⁇ 100.
  • R 3 each independently represents a divalent hydrocarbon group having 1 to 10 carbon atoms
  • R 4 each independently represents a radically polymerizable functional group represented by the following general formula (4a) or (4b).
  • R 5 each independently represents a divalent hydrocarbon group having 1 to 8 carbon atoms
  • R 6 each represents a hydrogen atom. or a hydrocarbon group having 1 to 3 carbon atoms.
  • R 1 each independently represents a divalent hydrocarbon group having 1 to 10 carbon atoms
  • R 2 each independently represents the following general formula (3a), (3b) or (3c).
  • 1 is a number of 1 ⁇ l ⁇ 1,000
  • m is a number of 1 ⁇ m ⁇ 1,000
  • r is each independently 1 ⁇ r ⁇ 100.
  • R 5 each independently represents a divalent hydrocarbon group having 1 to 8 carbon atoms
  • R 6 each represents a hydrogen atom or a carbonization group having 1 to 3 carbon atoms. (Indicates a hydrogen group.) [7].
  • the elastomer spherical particles according to any one of [3] to [6] are dispersed in at least one dispersion medium selected from silicone oil, hydrocarbon oil, higher fatty acid, ester oil, liquid oil, and water.
  • (i) (A) a copolymer having a polymerizable group and having a polyester structure and a polyether structure, (B) an oil phase component or an aqueous phase component that does not dissolve in the component (A); A step of preparing an O/O type or O/W type emulsion by stirring and emulsifying (C) a surfactant and (D) a polymerization initiator. (ii) A step of obtaining a dispersion of elastomer spherical particles by polymerizing the component (A) in the O/O type or O/W type emulsion obtained in the step (i).
  • Step (iii) A step of obtaining elastomer spherical particles by washing and drying component (B), which is a continuous phase, from the dispersion of elastomer spherical particles obtained in step (ii). [9].
  • Step (i) is (A) a copolymer having a polymerizable group and having a polyester structure and a polyether structure, (B) an oil phase component that does not dissolve in the component (A);
  • the copolymer of the present invention has a polyester structure that is a degradable functional group (unit), and the crosslinked structure is cut in the presence of water, so that it is degradable.
  • copolymers having a poly- ⁇ -caprolactone structure which is a microbial recognition skeleton, can be used in various industrial fields because they are expected to be environmentally degradable.
  • it can be expected to be used as a substitute for various organic resins/plastics or as a new resin/plastic material.
  • the elastomer spherical particles of the present invention have a polyester structure which is a degradable functional group (unit) in the particles, and the crosslinked structure is cut in the presence of moisture, so that they are degradable.
  • particles having a poly- ⁇ -caprolactone structure, which is a microbial recognition skeleton, as a polyester structure in the particles can be expected to have the environmental degradability of elastomer spherical particles. Therefore, the elastomer spherical particles of the present invention are degradable particles and can be expected as a material for reducing environmental load.
  • Example 1 is an electron micrograph of elastomer spherical particles obtained in Example 1. These are electron micrographs of the elastomer spherical particles obtained in Example 5, in which FIG. 2A is a photograph at a magnification of 200 times, and FIG. 2B is a photograph at a magnification of 1,000 times.
  • the copolymer of the present invention is represented by the following general formula (1) or (2), and is a polyester-polyether copolymer having at least two radically polymerizable unsaturated groups in one molecule. It is.
  • R 1 each independently represents a divalent hydrocarbon group having 1 to 10 carbon atoms
  • R 2 each independently represents the following general formula (3a), (3b) or (3c).
  • k is a number of 1 ⁇ k ⁇ 10
  • l is a number of 1 ⁇ l ⁇ 1,000
  • m is a number of 1 ⁇ m ⁇ 1,000.
  • n is a number of 1 ⁇ n ⁇ 100, each independently.
  • R 3 each independently represents a divalent hydrocarbon group having 1 to 10 carbon atoms
  • R 4 each independently represents a radically polymerizable functional group represented by the following general formula (4a) or (4b).
  • p is each independently a number of 1 ⁇ p ⁇ 10
  • l is a number of 1 ⁇ l ⁇ 1,000
  • m is a number of 1 ⁇ m ⁇ 1,000
  • q is each independently a number of 1 ⁇ q ⁇ 100.
  • R 5 each independently represents a divalent hydrocarbon group having 1 to 8 carbon atoms
  • R 6 each represents a hydrogen atom or Indicates a hydrocarbon group having 1 to 3 carbon atoms.
  • R 1 examples include alkylene groups such as methylene group, ethylene group, propylene group, trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group, heptamethylene group, and octamethylene group, and preferably methylene group. group, ethylene group, trimethylene group, and tetramethylene group.
  • R 3 examples include alkylene groups such as methylene group, ethylene group, propylene group, trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group, heptamethylene group, and octamethylene group, and preferably methylene group. group, ethylene group, trimethylene group, and tetramethylene group.
  • R 2 represents a radically polymerizable functional group-containing organic group represented by the general formula (3a), (3b), or (3c)
  • R 4 represents a radically polymerizable functional group represented by the general formula (4a) or (4b). Indicates a group-containing organic group.
  • R 5 is, for example, a methylene group, an ethylene group, a propylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, a hexamethylene group, Examples include alkylene groups such as heptamethylene group and octamethylene group, and preferably methylene group, ethylene group, trimethylene group, and tetramethylene group.
  • the hydrocarbon group having 1 to 3 carbon atoms represented by R 6 includes methyl group, ethyl group, propyl group, etc.
  • Examples include alkyl groups having 1 to 3 carbon atoms.
  • R 6 is preferably a hydrogen atom or a methyl group.
  • These radically polymerizable functional group-containing organic groups represented by general formulas (3a), (3b), (3c), (4a), and (4b) are residues derived from polymerizable monomers, and are used as polymerizable monomers. Specific examples include hydroxyl group-containing (meth)acrylic esters and isocyanate group-containing (meth)acrylic esters.
  • hydroxyl group-containing (meth)acrylic esters examples include hydroxyalkyl esters of (meth)acrylic acid having 2 to 8 carbon atoms such as hydroxyethyl (meth)acrylic ester and hydroxypropyl (meth)acrylic ester; carboxyethyl Examples include carboxy(meth)acrylates such as acrylate, (meth)acryloyloxyethylsuccinic acid, and (meth)acryloyloxyethyl phthalic acid.
  • isocyanate group-containing acrylic ester examples include isocyanate ethyl (meth)acrylate, isocyanate propyl (meth)acrylate, isocyanate butyl (meth)acrylate, isocyanate hexyl (meth)acrylate, and the like. It will be done.
  • Each k in the general formula (1) is independently a number satisfying 1 ⁇ k ⁇ 10, preferably a number satisfying 1 ⁇ k ⁇ 6.
  • p in general formula (2) is each independently a number of 1 ⁇ p ⁇ 10, preferably a number of 1 ⁇ p ⁇ 6.
  • n in the general formula (1) is each independently a number of 1 ⁇ n ⁇ 100, preferably a number of 1 ⁇ n ⁇ 30, and more preferably a number of 2 ⁇ n ⁇ 10.
  • the q's in general formula (2) each independently represent a number satisfying 1 ⁇ q ⁇ 100, preferably a number satisfying 1 ⁇ q ⁇ 30, and more preferably a number satisfying 2 ⁇ q ⁇ 10.
  • l is a number of 1 ⁇ l ⁇ 1,000, preferably a number of 2 ⁇ l ⁇ 100.
  • m is a number of 1 ⁇ m ⁇ 1,000, preferably 10 ⁇ m ⁇ 500.
  • l is a number of 1 ⁇ l ⁇ 1,000, preferably a number of 2 ⁇ l ⁇ 100.
  • m is a number of 1 ⁇ m ⁇ 1,000, preferably a number of 10 ⁇ m ⁇ 500.
  • the copolymer of the present invention is preferably a copolymer represented by the following general formula (5) from the viewpoint of ease of handling raw materials and ease of production.
  • R 1 each independently represents a divalent hydrocarbon group having 1 to 10 carbon atoms
  • R 2 each independently represents the following general formula (3a), (3b) or (3c).
  • l is a number of 1 ⁇ l ⁇ 1,000
  • m is a number of 1 ⁇ m ⁇ 1,000
  • r each independently represents a number of 1 ⁇ r ⁇ 100. It is a number.
  • R 5 each independently represents a divalent hydrocarbon group having 1 to 8 carbon atoms
  • R 6 each represents a hydrogen atom or a hydrocarbon group having 1 to 3 carbon atoms. Indicates the group.
  • the copolymer of the present invention can be produced, for example, by the method described below.
  • the elastomer spherical particles of the present invention are made of a polymer containing structural units derived from a copolymer having a polyester structure and a polyether structure.
  • the shape of the elastomer spherical particles of the present invention is preferably spherical.
  • spherical does not mean that the particle shape is only a perfect sphere, but the aspect ratio (length of the longest axis/length of the shortest axis) is usually 1 to 4, preferably 1 to 4 on average. It also includes deformed ellipsoids in the range of 1 to 2, more preferably 1 to 1.6, even more preferably 1 to 1.4.
  • the shape of the resulting particles is spherical.
  • the shape of elastomer spherical particles can be confirmed by observing them using an optical microscope or an electron microscope, for example, and the aspect ratio can be determined by measuring the lengths of the longest and shortest axes of 50 particles arbitrarily from a photomicrograph, and calculating the average length. This is the value calculated as the value.
  • the volume average particle diameter of the elastomer spherical particles is in the range of 0.5 to 200 ⁇ m, more preferably 1 to 100 ⁇ m. If the volume average particle diameter is larger than the above upper limit, the smoothness of the particles may be reduced, a rough feeling may appear, and the light diffusion properties may also be reduced. Furthermore, if the volume average particle diameter is smaller than the above lower limit, the fluidity of the particles decreases and the cohesiveness increases, making it impossible to impart sufficient smoothness and light diffusion properties, which is not preferable.
  • the volume average particle diameter of the elastomer spherical particles of the present invention is a value measured as follows.
  • the particle diameters of 50 particles are arbitrarily measured from a microscopic photograph of elastomer spherical particles, and a determination is made based on whether the average value is 1 ⁇ m or more or less. If a dispersion in which elastomer spherical particles are redispersed in water using various surfactants is used, and the judgment result is 1 ⁇ m or more, the volume average particle diameter is the value measured by the electrical resistance method, and the judgment result is In the case of less than 1 ⁇ m, the volume average particle size is the value measured by laser diffraction/scattering method.
  • the rubber (elastomer) that is a component of the elastomer spherical particles is preferably free from tack and stickiness.
  • the rubber hardness is preferably in the range of 5 to 90, more preferably in the range of 10 to 80, as measured by a type A durometer specified in JIS K6253. Further, it is preferable that the rubber hardness measured by the Asker rubber hardness tester C type specified in the Japan Rubber Institute Standards (SRIS) is in the range of 5 to 90, more preferably 20 to 85, and still more preferably 40. -85 range.
  • SRIS Japan Rubber Institute Standards
  • the elastomer spherical particles of the present invention are preferably made by polymerizing a polyester-polyether copolymer having at least two radically polymerizable unsaturated groups in one molecule.
  • the polyester-polyether copolymer having at least two radically polymerizable unsaturated groups in one molecule is preferably a copolymer represented by the following general formula (1) or (2).
  • R 1 each independently represents a divalent hydrocarbon group having 1 to 10 carbon atoms
  • R 2 each independently represents the following general formula (3a), (3b) or (3c).
  • n is each independently a number of 1 ⁇ n ⁇ 100.
  • R 3 each independently represents a divalent hydrocarbon group having 1 to 10 carbon atoms
  • R 4 each independently represents a radically polymerizable functional group represented by the following general formula (4a) or (4b).
  • p is each independently a number of 1 ⁇ p ⁇ 10
  • l is a number of 1 ⁇ l ⁇ 1,000
  • m is a number of 1 ⁇ m ⁇ 1,000
  • q is each independently a number of 1 ⁇ q ⁇ 100.
  • R 5 each independently represents a divalent hydrocarbon group having 1 to 8 carbon atoms
  • R 6 each represents a hydrogen atom. or a hydrocarbon group having 1 to 3 carbon atoms.
  • R 1 examples include alkylene groups such as methylene group, ethylene group, propylene group, trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group, heptamethylene group, and octamethylene group, and preferably methylene group. group, ethylene group, trimethylene group, and tetramethylene group.
  • R 3 examples include alkylene groups such as methylene group, ethylene group, propylene group, trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group, heptamethylene group, and octamethylene group, and preferably methylene group. group, ethylene group, trimethylene group, and tetramethylene group.
  • R 2 represents a radically polymerizable functional group-containing organic group represented by the general formula (3a), (3b), or (3c)
  • R 4 represents a radically polymerizable functional group represented by the general formula (4a) or (4b). Indicates a group-containing organic group.
  • R 5 is, for example, a methylene group, an ethylene group, a propylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, a hexamethylene group, Examples include alkylene groups such as heptamethylene group and octamethylene group, and preferably methylene group, ethylene group, trimethylene group, and tetramethylene group.
  • the hydrocarbon group having 1 to 3 carbon atoms represented by R 6 includes methyl group, ethyl group, propyl group, etc.
  • Examples include alkyl groups having 1 to 3 carbon atoms.
  • R 6 is preferably a hydrogen atom or a methyl group.
  • These radically polymerizable functional group-containing organic groups represented by general formulas (3a), (3b), (3c), (4a), and (4b) are residues derived from polymerizable monomers, and are used as polymerizable monomers. Specific examples include hydroxyl group-containing (meth)acrylic esters and isocyanate group-containing (meth)acrylic esters.
  • hydroxyl group-containing (meth)acrylic esters examples include hydroxyalkyl esters of (meth)acrylic acid having 2 to 8 carbon atoms such as hydroxyethyl (meth)acrylic ester and hydroxypropyl (meth)acrylic ester; carboxyethyl Examples include carboxy(meth)acrylates such as acrylate, (meth)acryloyloxyethylsuccinic acid, and (meth)acryloyloxyethyl phthalic acid.
  • isocyanate group-containing acrylic ester examples include isocyanate ethyl (meth)acrylate, isocyanate propyl (meth)acrylate, isocyanate butyl (meth)acrylate, isocyanate hexyl (meth)acrylate, and the like. It will be done.
  • the polyester structure of the polyester-polyether copolymer having at least two radically polymerizable unsaturated groups in one molecule is preferably an aliphatic polyester, which is considered to be highly degradable.
  • aliphatic polyesters include poly- ⁇ -caprolactone, poly- ⁇ -propiolactone, ⁇ -butyrolactone, polylactic acid, polyhydroxybutyrate, polyglycolic acid, polyethylene adipate, polyhydroxybutyric acid, polyethylene succinate, and polyester.
  • Examples include butylene succinate, and from the viewpoint of degradability and ease of handling, those having a poly- ⁇ -caprolactone structure are preferred.
  • Each k in the general formula (1) is independently a number satisfying 1 ⁇ k ⁇ 10, preferably a number satisfying 1 ⁇ k ⁇ 6.
  • p in general formula (2) is each independently a number of 1 ⁇ p ⁇ 10, preferably a number of 1 ⁇ p ⁇ 6.
  • n in the general formula (1) is each independently a number of 1 ⁇ n ⁇ 100, preferably a number of 1 ⁇ n ⁇ 30, and more preferably a number of 2 ⁇ n ⁇ 10.
  • the q's in general formula (2) each independently represent a number satisfying 1 ⁇ q ⁇ 100, preferably a number satisfying 1 ⁇ q ⁇ 30, and more preferably a number satisfying 2 ⁇ q ⁇ 10.
  • l is a number of 1 ⁇ l ⁇ 1,000, preferably a number of 2 ⁇ l ⁇ 100.
  • m is a number of 1 ⁇ m ⁇ 1,000, preferably 10 ⁇ m ⁇ 500.
  • l is a number of 1 ⁇ l ⁇ 1,000, preferably a number of 2 ⁇ l ⁇ 100.
  • m is a number of 1 ⁇ m ⁇ 1,000, preferably a number of 10 ⁇ m ⁇ 500.
  • a polyester-polyether copolymer having at least two radically polymerizable unsaturated groups in one molecule is based on the following general formula (5) or (6) from the viewpoint of handling of raw materials and ease of production.
  • Copolymers represented by are preferred.
  • R 1 each independently represents a divalent hydrocarbon group having 1 to 10 carbon atoms
  • R 2 each independently represents general formula (3a), (3b), or (3c).
  • l is a number of 1 ⁇ l ⁇ 1,000
  • m is a number of 1 ⁇ m ⁇ 1,000
  • r each independently represents a number of 1 ⁇ r ⁇ 100.
  • R 3 each independently represents a divalent hydrocarbon group having 1 to 10 carbon atoms
  • R 4 each independently represents a radically polymerizable functional group represented by general formula (4a) or (4b).
  • l is a number of 1 ⁇ l ⁇ 1,000
  • m is a number of 1 ⁇ m ⁇ 1,000
  • s are each independently a number of 1 ⁇ s ⁇ 100.
  • polyester-polyether copolymer As a method for producing a polyester-polyether copolymer, for example, various polyethers containing active hydrogen such as polyether, carboxy-modified polyether, and amino-modified polyether are used as starting materials, and cyclic- ⁇ -caprolactone is ring-opened. Examples include a production method in which a polymerizable monomer having a radically polymerizable unsaturated group is introduced into poly- ⁇ -caprolactone-modified polyether obtained by polymerization via an ester bond, ether bond, urethane bond, amide bond, etc. It will be done.
  • the terminal structure of various polyethers is preferably a structure in which a reactive functional group is bonded to a primary carbon atom.
  • reaction conditions in the above production method include the following, but are not limited to these reaction conditions.
  • 3 to 4 equivalents (functional group equivalent) of ⁇ -caprolactone are added to 1.0 equivalent of active hydrogen-containing polyether such as polyether or carboxy-modified polyether, and 120 By reacting at °C for 6 hours, poly- ⁇ -caprolactone modified polyether is obtained.
  • acrylic acid chloride was added in an amount of 1.0 to 1.25 equivalents (1.0 to 1.25 mol) per functional group to 1.0 mol of the hydroxyl group of the obtained poly- ⁇ -caprolactone modified polyether.
  • a reaction catalyst is added as required, and the reaction is carried out at 40 to 100°C for 4 hours or more.
  • polyester-polyether copolymer examples include those shown in formulas (7a) and (7b) (one end is shown due to the symmetrical structure).
  • R 5 is a divalent hydrocarbon group having 1 to 8 carbon atoms
  • R 6 is a hydrogen atom or a hydrocarbon group having 1 to 3 carbon atoms.
  • l, m and r are 1 ⁇ l ⁇ 1,000, 1 ⁇ m ⁇ 1,000, 1 ⁇ r ⁇ 30, preferably 2 ⁇ l ⁇ 100, 10 ⁇ m ⁇ 500, 2 ⁇ r ⁇ 10. be.
  • polyester-polyether copolymer examples include those shown in formulas (8a) and (8b) (one end is shown due to the symmetrical structure).
  • R 5 is a divalent hydrocarbon group having 1 to 8 carbon atoms
  • R 6 is a hydrogen atom or a hydrocarbon group having 1 to 3 carbon atoms.
  • l, m, s and t are 1 ⁇ l ⁇ 1,000, 1 ⁇ m ⁇ 1,000, 1 ⁇ s ⁇ 30, 0 ⁇ t ⁇ 10, preferably 2 ⁇ l ⁇ 100, 10 ⁇ m ⁇ 500, 2 ⁇ s ⁇ 10, and 1 ⁇ t ⁇ 10.
  • polyester-polyether copolymer examples include those shown in formulas (9a) and (9b) (one end is shown due to the symmetrical structure).
  • R 5 is a divalent hydrocarbon group having 1 to 8 carbon atoms
  • R 6 is a hydrogen atom or a hydrocarbon group having 1 to 3 carbon atoms.
  • l, m, s and u are 1 ⁇ l ⁇ 1,000, 1 ⁇ m ⁇ 1,000, 1 ⁇ s ⁇ 30, 0 ⁇ u ⁇ 10, preferably 2 ⁇ l ⁇ 100, 10 ⁇ m ⁇ 500, 2 ⁇ s ⁇ 10, and 1 ⁇ u ⁇ 10.
  • catalysts As the catalyst used for ring-opening polymerization of cyclic- ⁇ -caprolactone, conventionally known catalysts may be used, and the catalyst is not limited thereto. Specifically, for example, organic titanium compounds such as tetramethoxytitanium, tetraethoxytitanium, tetra-n-propoxytitanium, and tetrabutoxytitanium; organic tins such as di-n-butyltin laurate, diisobutyltin oxide, and dibutyltin diacetate; Compounds; acetates of magnesium, calcium, zinc, etc.; antimony oxide; stannous halides; perchloric acid and the like.
  • organic titanium compounds such as tetramethoxytitanium, tetraethoxytitanium, tetra-n-propoxytitanium, and tetrabutoxytitanium
  • organic tins such as di-n-
  • the amount of the ring-opening polymerization catalyst added may be in the range of 10 to 10,000 ppm, preferably 10 to 1,000 ppm, based on the ⁇ -caprolactone monomer (cyclic ⁇ -caprolactone).
  • a method for introducing a polymerizable monomer having a radically polymerizable unsaturated group into poly- ⁇ -caprolactone-modified polyether is to use a reaction substrate (reactive functional group) of the polymerizable monomer and various catalysts depending on the forming skeleton. Any conventionally known catalyst may be used.
  • Examples of (esterification) catalysts used in the esterification reaction include alcoholates, carboxylates, or chelate compounds of titanium, zirconium, tin, aluminum, and zinc; Lewis acid catalysts such as boron trifluoride and boron trifluoride etherate; hydrochloric acid; Acid catalysts such as , sulfuric acid, hydrogen bromide, acetic acid, trifluoroacetic acid, methanesulfonic acid, p-toluenesulfonic acid; pentamethyldiethylenetriamine (PMDETA), trimethyltriazacyclononane (TACN), triethylamine (TEA), 4- Examples include amine catalysts such as (N,N-dimethylamino)pyridine (DMAP), 1,4-diazabicyclo(2,2,2)octane (DABCO), and tetramethylethylenediamine (TMEDA), among which esters Amine-based catalysts are preferred from the viewpoint of stability of the product obtained by
  • a dehydration condensation agent when using an amine catalyst, a dehydration condensation agent may be added in order to improve reaction efficiency.
  • dehydration condensation agents can be used, such as 1,1'-carbonyldiimidazole (CDI), N,N'-dicyclohexylcarbodiimide (DCC), N,N'-diisopropylcarbodiimide (DIC), -Ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC), 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (EDC HCl), and 1-[bis(dimethylamino) methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxide hexafluorophosphate (HATU) and the like, but are not limited thereto.
  • CDI 1,1'-carbonyldiimidazole
  • DCC
  • the catalyst used for the urethanization reaction conventionally known ones may be used, and the catalyst is not limited thereto.
  • the amount of catalyst added when introducing these polymerizable monomers having radically polymerizable unsaturated groups may be in the range of 10 to 10,000 ppm, preferably 10 to 1,000 ppm, based on the polymerizable monomer. good.
  • a polymerization inhibitor or antioxidant can be used to suppress the polymerization reaction of the (meth)acrylate group during the reaction.
  • polymerization inhibitors or antioxidants include hydroquinone, p-methoxyphenol, 2,6-di-tert-butyl-p-cresol, 2,4-dimethyl-6-t-butylphenol, and p-benzoquinone. , 2,5-dihydroxy-p-benzoquinone and the like, but are not limited thereto.
  • a poly- ⁇ -caprolactone-modified (meth)acrylate represented by the following formula (10) is subjected to an esterification reaction with the above-mentioned carboxy-modified polyether.
  • Commercially available poly- ⁇ -caprolactone-modified (meth)acrylates include, for example, Plaxel FA2D, Plaxel FA10L, Plaxel FN2D, and Plaxel FM4 (manufactured by Daicel Corporation).
  • R 7 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 3 carbon atoms, preferably a hydrogen atom or a methyl group.
  • v is 1 ⁇ v ⁇ 30, preferably 1 ⁇ v ⁇ 10.
  • Examples of the above manufacturing method include, but are not limited to, the methods shown below.
  • the hydroxyl equivalent of poly- ⁇ -caprolactone-modified (meth)acrylate (formula (10)) is 1.0 to 1.25 mol
  • the esterification catalyst is 0.0 mol.
  • 1.0 to 1.25 mol of a dehydration condensation agent is added thereto, and the mixture is reacted at 15 to 150°C for 4 to 20 hours.
  • a polyester-polyether copolymer can be obtained by filtering the reaction product, washing it with water, removing by-products through an adsorption treatment step, and distilling off the solvent.
  • the polyester-polyether copolymer is preferably liquid, and preferably has a weight average molecular weight (Mw.) value of 100 to 100,000 as measured by gel permeation chromatography (GPC). More preferably, it is 300 to 10,000. If the weight average molecular weight is less than 100, the degradability of the obtained elastomer spherical particles may be poor, and if it is greater than 100,000, it may be difficult to prepare the elastomer spherical particles.
  • Mw. weight average molecular weight
  • a dilution operation using a hydrophobic organic solvent may be performed for the purpose of adjusting the viscosity of the reaction product.
  • the hydrophobic organic solvent used is not particularly limited, but from the viewpoint of solubility/affinity, toluene, hexane, ethyl acetate, etc. are preferable.
  • the purpose of the adsorption treatment step is to remove hydrochloride that cannot be completely removed by washing with water, as well as to dehydrate, deodorize, and decolorize.
  • the adsorbent used in the adsorption treatment step may be any conventionally known adsorbent, and multiple types may be used in combination.
  • Preferred adsorbents include desiccants such as magnesium sulfate and sodium sulfate, activated carbon, and the Kyoward series (manufactured by Kyowa Chemical Industry Co., Ltd.).
  • the dispersion liquid of elastomer spherical particles of the present invention is obtained by dispersing the elastomer spherical particles in at least one dispersion medium selected from silicone oil, hydrocarbon oil, higher fatty acid, ester oil, liquid oil, and water.
  • the dispersion medium include silicone oil, hydrocarbon oil, higher fatty acid, ester oil, liquid oil, and water, with silicone oil, hydrocarbon oil, ester oil, and water being preferred.
  • the amount of elastomer spherical particles in the dispersion is preferably in the range of 5 to 80% by weight, more preferably 20 to 70% by weight, based on the total weight of the dispersion. If the amount of elastomer spherical particles is less than the above lower limit, the productivity per elastomer particle will be low, resulting in inefficiency, which is not preferable. Moreover, if the amount of elastomer spherical particles is greater than the above upper limit, the viscosity of the dispersion becomes high and handling becomes difficult, which is not preferable.
  • the elastomer spherical particles of the present invention can be produced, for example, by a method including the following steps (i) to (iii).
  • the dispersion of elastomer spherical particles of the present invention can be produced by a method including the following steps (i) to (ii).
  • (i) (A) a copolymer having a polymerizable group and having a polyester structure and a polyether structure, (B) an oil phase component or an aqueous phase component that does not dissolve the component (A); A step of preparing an O/O type or O/W type emulsion by stirring and emulsifying (C) a surfactant and (D) a polymerization initiator. (ii) A step of obtaining a dispersion of elastomer spherical particles by polymerizing the component (A) in the O/O type or O/W type emulsion obtained in the step (i). (iii) A step of obtaining elastomer spherical particles by washing and drying component (B), which is a continuous phase, from the dispersion of elastomer spherical particles obtained in step (ii).
  • step (i) Each component used in step (i) is as follows.
  • the copolymer containing a polyester structure and a polyether structure having a polymerizable group as component (A) is a copolymer containing a polyester structure and a polyether structure having a polymerizable group, which the elastomer spherical particles of the present invention have as a constitutional unit.
  • a polymer can be used, preferably a polyester-polyether copolymer having at least two radically polymerizable unsaturated groups in one molecule.
  • specific examples of component (A) include polyester-polyether copolymers represented by general formula (1) or (2), and more preferred specific examples include general formula (5) or Examples include polyester-polyether copolymers represented by (6).
  • Component (B) is a component that becomes the continuous phase of the emulsion, and is either an oil phase component that does not dissolve component (A) (insoluble/incompatible) or has low affinity, or an aqueous phase component.
  • oil phase component of component (B) examples include silicone oil, hydrocarbon oil, higher fatty acid, ester oil, liquid oil and fat, and these may be used alone or in an appropriate combination of two or more. It is not limited to these.
  • silicone oil examples include dimethylpolysiloxane, methylhydrogenpolysiloxane, methylphenylpolysiloxane, octamethylsiloxane, decamethyltetrasiloxane, decamethylcyclopentasiloxane, hexamethylcyclotrisiloxane, and octamethylcyclotetrasiloxane. Can be mentioned.
  • hydrocarbon oils examples include liquid paraffin, ⁇ -olefin oligomer, isododecane, isohexadecane, squalane, ozokerite, squalene, ceresin, paraffin, paraffin wax, polyethylene wax, polyethylene/polypropylene wax, pristane, polyisobutylene, vaseline, micro Examples include crystalline wax.
  • higher fatty acids examples include lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, undecylenic acid, oleic acid, linoleic acid, linolenic acid, arachidonic acid, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), Examples include isostearic acid, 12-hydroxystearic acid, and the like.
  • ester oils include isopropyl myristate, cetyl octoate, octyldodecyl myristate, isopropyl palmitate, butyl stearate, hexyl laurate, myristyl myristate, decyl oleate, hexyldecyl dimethyloctanoate, cetyl lactate, and lactic acid.
  • liquid oils examples include avocado oil, camellia oil, turtle oil, macadamia nut oil, corn oil, mink oil, olive oil, rapeseed oil, egg yolk oil, sesame oil, persic oil, wheat germ oil, sasanqua oil, castor oil, and linseed oil. , safflower oil, cottonseed oil, eno oil, soybean oil, peanut oil, tea seed oil, kaya oil, rice bran oil, Japanese tung oil, Japanese tung oil, jojoba oil, germ oil, triglycerin, and the like.
  • the kinematic viscosity of component (B) at 25° C. is preferably 100,000 mm 2 /s or less, more preferably 10,000 mm 2 /s or less. If the kinematic viscosity is higher than the above upper limit, it may be difficult to emulsify in step (i) or it may be difficult to obtain fine spherical particles with a narrow particle size distribution.
  • aqueous phase component examples include distilled water, ion exchange water, pure water, ultrapure water, and the like.
  • the surfactant of component (C) is not particularly limited, and includes nonionic surfactants, anionic surfactants, cationic surfactants, and amphoteric surfactants. These may be used alone or in an appropriate combination of two or more.
  • nonionic surfactants include polyoxyethylene alkyl ether, polyoxyethylene polyoxypropylene alkyl ether, polyoxyethylene alkylphenyl ether, polyethylene glycol fatty acid ester, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, and polyoxyethylene sorbitan fatty acid ester.
  • Polyoxyethylene-modified organopolysiloxanes include linear polyether-modified silicones (product names: KF-6015, KF-6017, KF-6017P, manufactured by Shin-Etsu Chemical Co., Ltd.), linear alkyl-comodified polyether-modified Silicone (product name: KF-6048, manufactured by Shin-Etsu Chemical Co., Ltd.), branched polyether-modified silicone (product name: KF-6028, KF-6028P, manufactured by Shin-Etsu Chemical Co., Ltd.), branched alkyl co-modified polyether Examples include modified silicone (trade name: KF-6038, manufactured by Shin-Etsu Chemical Co., Ltd.).
  • anionic surfactants include alkyl sulfate salts such as sodium lauryl sulfate, polyoxyethylene alkyl ether sulfate salts, polyoxyethylene alkyl phenyl ether sulfate salts, alkylbenzene sulfonates, and polyoxyethylene alkyl phenyl ethers.
  • alkyldiphenyl ether disulfonate alkanesulfonate, N-acyl taurate, dialkyl sulfosuccinate, monoalkyl sulfosuccinate, polyoxyethylene alkyl ether sulfosuccinate, fatty acid salt, polyoxyethylene alkyl ether Examples include carboxylic acid salts, N-acylamino acid salts, monoalkyl phosphate ester salts, dialkyl phosphate ester salts, polyoxyethylene alkyl ether phosphate ester salts, and the like.
  • Examples of the cationic surfactant include alkyltrimethylammonium salts, dialkyldimethylammonium salts, polyoxyethylenealkyldimethylammonium salts, dipolyoxyethylenealkylmethylammonium salts, tripolyoxyethylenealkylammonium salts, alkylbenzyldimethylammonium salts, Examples include alkylpyridinium salts, monoalkylamine salts, monoalkylamide amine salts, and the like.
  • amphoteric surfactant examples include alkyldimethylamine oxide, alkyldimethylcarboxybetaine, alkylamidopropyldimethylcarboxybetaine, alkylhydroxysulfobetaine, alkylcarboxymethylhydroxyethylimidazoliniumbetaine, and the like.
  • a nonionic surfactant or anionic surfactant is preferable because a small amount can emulsify the oil phase component and obtain fine particles.
  • surfactant (C) When an oil phase component is used as component (B), surfactant (C) preferably has an HLB of 2.0 to 18.0. When an aqueous phase component is used as the component (B), the surfactant (C) preferably has an HLB of 6.0 to 18.0, more preferably 9.0 to 18.0.
  • the amount of surfactant added is preferably 0.01 to 25 parts by weight, more preferably 0.05 to 15 parts by weight, per 100 parts by weight of the emulsion. If the amount of surfactant added is less than 0.01 part by mass, poor emulsification or fine particles may not be obtained. Furthermore, if the amount of surfactant added is more than 25 parts by mass, fine particles may not be obtained or the dispersibility of the elastomer spherical particles may not be sufficient.
  • Component (A) in the emulsion is preferably 1.0 to 80 parts by weight, more preferably 10 to 60 parts by weight, based on 100 parts by weight of the emulsion. If the amount of component (A) is less than 1.0 parts by mass, it will be disadvantageous in terms of production efficiency, and if it is more than 80 parts by mass, it may be difficult to obtain a dispersion of elastomer spherical particles.
  • a normal radical polymerization initiator may be used, and reaction and curing can be carried out in its presence using a heating method, a redox method, a light irradiation method, etc.
  • polymerization initiators peroxides, azo initiators, redox initiators that combine an oxidizing agent and a reducing agent, or photopolymerization initiators can be used.
  • peroxide examples include benzoyl peroxide, 2,4-dichlorobenzoyl peroxide, o-methylbenzoyl peroxide, p-methylbenzoyl peroxide, 2,4-dicumyl peroxide, and 2,5-dimethyl- Examples include 2,5-di(t-butylperoxy)hexane, di-t-butyl peroxide, t-butyl perbenzoate, hydrogen peroxide, and the like. Also, perchlorates such as potassium perchlorate and sodium perchlorate may be used.
  • azo initiators examples include 2,2'-azobis-isobutyronitrile, 2,2'-azobis-(2-methylbutyronitrile), 2,2'-azobis-(2,4-dimethyl valeronitrile), dimethyl 2,2'-azobis-(2-methylpropionate), dimethyl 2,2'-azobis-isobutyrate, t-butylperoxy-2-ethylhexanoate, 2,2-azobis- (2-aminodipropane) dihydrochloride, and the like.
  • redox initiator examples include a combination of ferrous sulfate, sodium pyrophosphate, glucose, and hydroperoxide, or a combination of ferrous sulfate, ethylenediaminetetraacetic acid disodium salt, Rongalite, and hydroperoxide. Examples include things such as Moreover, a thermal polymerization initiator and a photopolymerization initiator can also be used together.
  • photopolymerization initiator examples include 2,2-diethoxyacetophenone, 2,2-dimethoxy-1,2-diphenylethan-1-one, 1-hydroxy-cyclohexylphenylketone, 2-hydroxy-2-methyl- 1-phenylpropan-1-one, 2-hydroxy-1- ⁇ 4-[4-(2-hydroxy-2-methylpropionyl)benzyl]phenyl ⁇ -2-methylpropan-1-one, phenylglyoxylic acid Methyl ester, 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-1-butanone , bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide, (2,4,6-trimethylbenzoyl)-diphenylphosphine oxide, and the like.
  • benzoin alkyl ethers such as benzoin methyl ether
  • peroxides peroxides
  • azo initiators used in the heating method or light irradiation method are preferred from the viewpoint of stability during the polymerization reaction of the emulsion.
  • the amount of the polymerization initiator added is preferably in the range of 0.01 to 5.0 parts by weight per 100 parts by weight of component (A). If the amount of polymerization initiator added is less than 0.01 part by mass, there is a risk of poor curing, and if it is more than 5.0 parts by mass, odor or bleeding may occur due to contamination with reaction residues, etc. There is a risk that this may occur.
  • additives In the method for producing elastomer spherical particles of the present invention, in addition to the above-mentioned components (A), (B), (C) and (D), various additives may be added as necessary in step (i). Can be blended.
  • additives include thickeners, preservatives, pH adjusters, antioxidants, polymerization inhibitors, etc. Each of these may be used alone or in combination of two or more as appropriate, impairing the effects of the present invention. It can be used in an appropriate amount within a certain range.
  • step (i) The order in which the components are added and mixed in step (i) is not particularly limited, but for example, after mixing the components (A) and (D), adding ( An emulsion may be prepared by adding component B) and component (C), or a component (D) may be added after an emulsion is prepared from component (A), component (B), and component (C). Alternatively, after preparing an emulsion from component (A), component (B), component (C), and component (D), component (B) may be further added to the desired concentration before subjecting to step (ii). It's okay.
  • a conventionally known emulsifying and dispersing machine may be used.
  • Common emulsifying and dispersing machines include high-speed rotating shear type stirrers such as Homomixer, high-speed centrifugal radiation type stirrers such as Homodisper, high-pressure injection emulsifying and dispersing machines such as homogenizers, colloid mills, ultrasonic emulsifiers, and propellers. Examples include a stirrer, etc.
  • Step (ii) is a step of obtaining a dispersion of elastomer spherical particles by polymerizing (curing and crosslinking) component (A) in the emulsion prepared in step (i) using the polymerization method described above.
  • the conditions for the polymerization reaction can be appropriately determined depending on the type of polymerization initiator (D).
  • the conditions are at a temperature of 30 to 80°C. Examples include a heating method in which a polymerization reaction is carried out for 10 to 24 hours, and when a redox initiator is used as the polymerization initiator (D), a redox polymerization method in which a polymerization reaction is carried out for 2 to 24 hours at a temperature of 30 to 70 ° C.
  • step (iii) elastomer spherical particles are obtained by washing and drying component (B), which is a continuous phase, from the obtained dispersion of elastomer spherical particles.
  • step (iii) is, for example, after concentrating the dispersion liquid by a method such as heating dehydration, filtration, centrifugation, decantation, etc.
  • the dispersion is washed with water and finally dried by heating under normal pressure or reduced pressure, the dispersion is sprayed into a heated air stream and dried by heating (spray drying), or the dispersion is dried by heating using a fluid heat transfer medium. methods, etc.
  • a freeze-drying method can also be mentioned as a method of coagulating the dispersion liquid and then reducing the pressure to remove the dispersion medium. If the elastomer spherical particles obtained by removing the dispersion medium are aggregated, they may be crushed using a mortar, jet mill, or the like.
  • step (iii) is to add a hydrophobic organic solvent to the dispersion of elastomer spherical particles, stir it for a certain period of time, and then add it.
  • a hydrophobic organic solvent used in this case include toluene, hexane, and ethyl acetate.
  • spherical elastomer particles can be obtained by applying a method of heating and drying under normal pressure to reduced pressure, a method of heating and drying using a fluid heat medium, a freeze-drying method, and the like.
  • the present invention will be explained in more detail by showing examples and comparative examples, but the present invention is not limited to the following examples.
  • the kinematic viscosity is a value measured at 25°C
  • "%" indicating concentration and content rate refers to "mass%”.
  • the hardness (penetration) of the cured rubber product is a value measured according to the standards of the Japan Rubber Institute Standards (SRIS).
  • the molecular weight of the polyester-polyether copolymer is the weight average molecular weight measured by GPC using polystyrene as a reference material under the following conditions.
  • Developing solvent Tetrahydrofuran (THF)
  • Flow rate 0.60mL/min
  • Detector Differential refractive index detector (RI)
  • Biodegradability is measured using activated sludge as a microbial (degradation) source in accordance with the OECD Guidelines for the Testing of Chemicals, No. 301F, July 17, 1992, "Ready Biodegradability: MANOMETRIC RESPIROMETRY TEST”. Evaluation was made based on biodegradability. Activated sludge from a municipal sewage treatment plant was used, and the suspended solids concentration was 2,400 mg/L. Sodium benzoate was used as a reference (control) substance.
  • Biodegradability BOD-B/TOD ⁇ 100 - (11)
  • BOD Biochemical oxygen consumption of test suspension or operational control (measured value: mg)
  • B Average biochemical oxygen consumption of plant source blank (measured value: mg)
  • TOD Theoretical oxygen consumption required when the test substance or sodium benzoate is completely oxidized (calculated value: mg)
  • Example 1 500 ml of 60 g of poly- ⁇ -caprolactone acrylate modified polyether 1 and 0.48 g of 2,2'-azobis-(2,4-dimethylvaleronitrile) (hereinafter abbreviated as V-65), which is a polymerization initiator.
  • V-65 2,2'-azobis-(2,4-dimethylvaleronitrile)
  • the mixture was poured into a container and stirred and dissolved at 1,000 rpm using a disper.
  • 10 g of branched polyether-modified silicone (trade name: KF-6028, manufactured by Shin-Etsu Chemical Co., Ltd., HLB: 4.0) and decamethylcyclopentasiloxane (trade name: KF-995, manufactured by Shin-Etsu Chemical Co., Ltd.) were added.
  • This emulsion was transferred to a separable flask with a capacity of 500 ml equipped with a stirring device using an anchor-shaped stirring blade, the temperature was adjusted to 52 to 55°C using an oil bath, and the emulsion was stirred and aged for 20 hours to form elastomer spherical particles. A dispersion was obtained.
  • the hardness of the rubber constituting the rubber particles was measured as follows. 30.0 g of poly- ⁇ -caprolactone acrylate modified polyether 1 and 2,2'-azobis-(2,4-dimethylvaleronitrile) (trade name: V-65, manufactured by Fuji Film Wako Pure Chemical Industries, Ltd., molecular weight 248.4) 0.24g was stirred and mixed and poured into an aluminum Petri dish to a thickness of 10mm. After standing for 1 hour in a 70° C. air constant temperature bath, a flat rubber without stickiness (tack) was obtained. As a result of measuring the hardness of the obtained flat rubber, it showed 73 on the Asker C hardness meter and 55 on the Asker A hardness meter.
  • the biodegradability of poly- ⁇ -caprolactone acrylate-modified polyether 1 was measured at a culture temperature of 22 ⁇ 1°C for 60 days.
  • the average of 62% after 28 days and 73% after 60 days met the criterion of 60% biodegradability after 28 days, so it was judged to be an "readily biodegradable substance.” Therefore, if elastomer spherical particles made of poly- ⁇ -caprolactone acrylate-modified polyether 1 or poly- ⁇ -caprolactone acrylate-modified polyether 1 are used and then flowed directly into the ocean via land water, the copolymer or particles It is assumed that it will eventually decompose without remaining in the environment.
  • Example 2 Instead of branched polyether-modified silicone (product name: KF-6028), linear polyether-modified silicone (product name: KF-6017, manufactured by Shin-Etsu Chemical Co., Ltd., HLB: 4.5) was used as an emulsifier.
  • Elastomer spherical particles were obtained in the same manner as in Example 1 except for using the following method. When the obtained elastomer spherical particles were observed with an electron microscope in the same manner as in Example 1, it was confirmed that they were elastomer spherical particles with a particle size of approximately 100 ⁇ m. Further, as a result of measuring an aqueous solution in which the obtained elastomer spherical particles were redispersed using a surfactant using an electrical resistance method, it was confirmed that the volume average particle diameter was 72 ⁇ m.
  • Example 3 Instead of branched polyether-modified silicone (product name: KF-6028), linear polyether-modified silicone (product name: KF-6017, manufactured by Shin-Etsu Chemical Co., Ltd., HLB: 4.5) was used as an emulsifier.
  • a polyether-modified silicone gel activator trade name: KSG-210, manufactured by Shin-Etsu Chemical Co., Ltd.
  • decamethylcyclopenta was added during emulsification.
  • Elastomer spherical particles were obtained in the same manner as in Example 1 except that the amount of siloxane was changed from 50 g to 40 g.
  • Example 4 Component (B), which becomes the continuous phase during emulsification, was changed from cyclopentasiloxane to polydimethylsiloxane (trade name: KF-96-100cs, manufactured by Shin-Etsu Chemical Co., Ltd., kinematic viscosity 100 mm 2 /s at 25°C).
  • Elastomer spherical particles were obtained in the same manner as in Example 3 except for the following steps. When the obtained elastomer spherical particles were observed using an electron microscope in the same manner as in Example 1, elastomer spherical particles with a particle size of about 50 to 70 ⁇ m and a uniform particle size distribution were obtained. Further, as a result of measuring an aqueous solution in which the obtained elastomer spherical particles were redispersed using a surfactant using an electrical resistance method, it was confirmed that the volume average particle diameter was 57 ⁇ m.
  • Example 5 60 g of poly- ⁇ -caprolactone acrylate modified polyether 2 and 0.48 g of radical polymerization initiator V-65 were placed in a 500 ml container, and stirred and dissolved at 1,000 rpm using a disper.
  • the steps after preparing the emulsion were performed in the same manner as in Example 1 to obtain elastomer spherical particles.
  • elastomer spherical particles were observed using an electron microscope in the same manner as in Example 1, elastomer spherical particles with a particle size of about 20 to 50 ⁇ m and a uniform particle size distribution were obtained. Further, as a result of measuring an aqueous solution in which the obtained elastomer spherical particles were redispersed using a surfactant using an electrical resistance method, it was confirmed that the volume average particle diameter was 30 ⁇ m.
  • FIG. 2 An electron micrograph of the elastomer spherical particles made of poly- ⁇ -caprolactone acrylate modified polyether 2 of Example 5 is shown in FIG. From the electron micrograph shown in FIG. 2, the aspect ratio of the elastomer spherical particles made of poly- ⁇ -caprolactone acrylate modified polyether 2 of Example 5 was approximately 1.
  • the biodegradability of poly- ⁇ -caprolactone acrylate-modified polyether 2 was measured at a culture temperature of 22 ⁇ 1°C for 60 days. was judged to be an "essentially biodegradable substance" because it reached an average of 40% after 28 days and 65% after 60 days, meeting the criterion of 60% biodegradability after 60 days. Therefore, if elastomer spherical particles made of poly- ⁇ -caprolactone acrylate-modified polyether 2 or poly- ⁇ -caprolactone acrylate-modified polyether 2 are used and then flowed directly into the ocean via land water, the copolymer or particles It is assumed that it will eventually decompose without remaining in the environment.
  • Example 6 Elastomer spherical particles were obtained in the same manner as in Example 5, except that the amount of polydimethylsiloxane (trade name: KF-96-100cs), component (B), which becomes the continuous phase during emulsification, was changed from 40 g to 20 g. Ta.
  • the obtained elastomer spherical particles were observed with an electron microscope in the same manner as in Example 1, it was confirmed that they were elastomer spherical particles with a particle size of about 50 to 70 ⁇ m and a uniform particle size distribution. Further, as a result of measuring an aqueous solution in which the obtained elastomer spherical particles were redispersed using a surfactant using an electrical resistance method, it was confirmed that the volume average particle diameter was 26 ⁇ m.
  • the biodegradability of poly- ⁇ -caprolactone acrylate-modified silicone was measured at a culture temperature of 22 ⁇ 1°C for 28 days.
  • the biodegradability of poly- ⁇ -caprolactone acrylate-modified silicone was 26. % and did not meet the criteria for biodegradability of 60% after 28 days, it was determined that it was "not an easily biodegradable substance.”
  • the copolymer, the dispersion of elastomer spherical particles, and the elastomer spherical particles in the present invention are expected to be particularly useful in cosmetics and the like due to their characteristic structural composition.
  • it has a polyester (especially poly- ⁇ -caprolactone) structure and a polyether structure, which are said to be degradable skeletons, in the copolymer and powder/particle skeleton, so it is highly biodegradable. It is expected that it will be expressed and provided.

Abstract

光などの外部刺激により高い分解特性を有する、ポリエステル構造及びポリエーテル構造を有する共重合体、好ましくは一分子中に少なくとも2個のラジカル重合可能な不飽和基を有する、ポリエステル-ポリエーテル共重合体、該共重合体に由来する構成単位を有するエラストマー球状粒子及びその製造方法の提供。 ポリエステル構造及びポリエーテル構造を有する共重合体;体積平均粒径が0.5~200μmであり、ポリエステル構造及びポリエーテル構造を有する共重合体に由来する構成単位を含有する重合体からなるエラストマー球状粒子。

Description

共重合体、エラストマー球状粒子、エラストマー球状粒子の分散液及びそれらの製造方法
 本発明は、エラストマー球状粒子、エラストマー球状粒子の分散液及びそれらの製造方法に関するものである。
 従来、ゴム製品に使用される原料ゴムとして、
[1]ブタジエンゴム、イソプレンゴム、クロロプレンゴム、天然ゴムに代表される、繰り返し単位が共役ジエン単位のみからなる重合体、
[2]スチレン-ブタジエン共重合ゴム、スチレン-イソプレン共重合ゴム、スチレン-イソプレン-ブタジエン共重合ゴムに代表される、繰り返し単位が共役ジエン単位と芳香族ビニル単位とを必須とする重合体、
[3]アクリロニトリル-ブタジエン共重合ゴムに代表される、繰り返し単位が共役ジエン単位とα,β-不飽和ニトリル単位とを必須とする重合体、
[4]アクリルゴムに代表される、繰り返し単位がアクリレート単位を必須とする重合体、
[5]エチレン-プロピレンゴムに代表される、繰り返し単位がエチレン、炭素数3~12のα-オレフィン、及び必要に応じて非共役ポリエンからなる重合体、
[6]シリコーンゴムに代表される、繰り返し単位がジメチルシロキサン単位からなる重合体、
等が挙げられ、多用されている。
 エラストマー(ゴム)球状粒子、特に有機骨格からなるものは、電子機器を含む電子材料用途を中心に、耐衝撃性や熱衝撃性、密着性等の各種特性を改良するために用いられている。
 一方、シリコーンゴム球状粒子・粉末については、従来、広範囲の産業分野においてその用途の提案がなされている。
 例えば、合成樹脂材料(特許文献1、2)、合成ゴム材料(特許文献3)、化粧料(特許文献4~7)などへの添加配合が示されている。
 シリコーンゴム球状粒子は、例えば、エポキシ樹脂等の有機樹脂への低応力化剤として、その“柔軟性”を利用した配合・使用がなされている。即ち、電子部品とエポキシ樹脂等の有機樹脂の熱膨張率の差異により、樹脂に対して応力が掛かることでクラック・割れが発生する場合がある為、シリコーンゴム球状粒子の添加によりその防止が可能となる。
 具体的には、線状オルガノポリシロキサンブロックを含むポリマー硬化物の球状粒子を含有したエポキシ樹脂(特許文献8)や、シリコーンゴム球状粒子の表面をポリオルガノシルセスキオキサンで被覆した球状粒子を含有したエポキシ樹脂(特許文献9)等が提案されている。
 また、(メタ)アクリル酸エステルと片末端にラジカル重合性官能基含有有機基を有するジオルガノポリシロキサンを、乳化系中において共重合することでシリコーン含有ゴム球状粒子を調製する方法(特許文献10)も示されている。
 尚、この球状粒子は、熱可塑性樹脂に滑り性を付与する目的で使用されている。
 更に、脂肪族飽和結合を有する有機化合物とケイ素原子結合水素原子を有する含ケイ素有機化合物からなる液状組成物を、ヒドロシリル化反応により架橋してなる有機架橋ゴム球状粒子(特許文献11)が記載されており、各種樹脂、塗料、ゴム等の成分に対する分散性、取扱い作業性に優れるものとして提案されている。
 また、シリコーンゴム球状粒子は、化粧料に柔らかい感触やなめらかさ等の使用感を付与する目的や、光を散乱させた自然な仕上がりの演出、毛穴やシワ等を見えにくくする目的等において、ファンデーション及び化粧下地等のメークアップ化粧料、クリーム及び乳液等の基礎化粧料、サンスクリーン化粧料等、幅広い化粧料・化粧品材料に用いられている。
 例えば、ポリメチルシルセスキオキサン粒子・粉末を含有する化粧料(特許文献12)、球状シリコーンゴム粒子・粉末を有するメーキャップ化粧料(特許文献13)、シリコーンゴム球状微粒子にポリオルガノシルセスキオキサン樹脂を被覆した複合シリコーン粉体を含有する化粧料(特許文献14)が提案されている。これらのシリコーンゴム球状粒子や、シリコーンゴム球状粒子にポリオルガノシルセスキオキサン樹脂を被覆した複合粒子は、上述の使用感に加え、化粧料に柔らかな感触を付与することが出来る。
特公昭63-12489号公報 特公平6-55805号公報 特開平2-102263号公報 特開平8-12546号公報 特開平8-12545号公報 特公平4-17162号公報 特公平4-66446号公報 特開昭58-219218号公報 特開平8-85753号公報 特開平10-182987号公報 特開2001-40214号公報 特開昭63-297313号公報 特開平8-12524号公報 特開平9-20631号公報
 しかしながら、樹脂や化粧料等に配合される上記これらのシリコーンゴム球状粒子は、土壌、陸水や海水・海洋などの自然環境下に放出・流出された際、粒子構造内に分解性骨格・単位を有していないことから分解されず、環境中に残存し続けることが予測される。また、これら粒子は粒子径が非常に小さいことから、回収等は大変困難であり、海洋等に流出することは現状避けられない。
 これに加え、海洋中に流出したプラスチック/微細なサイズとなったマイクロプラスチックは、環境中の有害物質や病原菌を吸着する特性があり、生態系に悪影響を及ぼすことが懸念されるため、マイクロプラスチックに対する規制の動きも出始めている。
 このような背景から、使用後において環境中で分解し、粒子(固形物)として残存することのないシリコーンゴム球状粒子、ないしエラストマー(ゴム)球状粒子が求められつつある。エラストマー(ゴム)球状粒子が環境分解するためには、粒子の架橋構造が環境中において分解・切断される必要があるが、シリコーンゴム球状粒子の場合はその構造上、分解性を有していない。
 本発明は上記事情に鑑みなされたもので、土壌、陸水、海洋・海水を含む自然環境下において、光、熱、酸・塩基などの外部刺激により高い分解性を有する共重合体を構成単位としたエラストマー(ゴム)球状粒子、エラストマー球状粒子の分散液、及びそれらの製造方法を提供することを目的とする。
 また、本発明は、上記エラストマー(ゴム)球状粒子の製造に好適であり、外部刺激により高い分解性を有する共重合体を提供することを目的とする。
 本発明者は、上記目的を達成するため鋭意研究した結果、特定のポリエステル構造及びポリエーテル構造を有する共重合体、該共重合体に由来する構成単位を含有する重合体からなるエラストマー球状粒子及びその分散液が、上述の課題を解決することを見出し、本発明をなすに至った。
 従って本発明は、下記共重合体、エラストマー球状粒子、エラストマー球状粒子の分散液、及びそれらの製造方法を提供するものである。
[1].
 下記一般式(1)又は(2)で示される、一分子中に少なくとも2個のラジカル重合可能な不飽和基を有する、ポリエステル-ポリエーテル共重合体。
Figure JPOXMLDOC01-appb-C000009
(一般式(1)中、R1はそれぞれ独立に炭素数1~10の2価炭化水素基を示し、R2はそれぞれ独立に下記一般式(3a)、(3b)又は(3c)で示されるラジカル重合性官能基含有有機基を示し、kはそれぞれ独立に1≦k≦10の数であり、lは1≦l≦1,000の数であり、mは1≦m≦1,000の数であり、nはそれぞれ独立に1≦n≦100の数である。
 一般式(2)中、R3はそれぞれ独立に炭素数1~10の2価炭化水素基を示し、R4はそれぞれ独立に下記一般式(4a)又は(4b)で示されるラジカル重合性官能基含有有機基を示し、pはそれぞれ独立に1≦p≦10の数であり、lは1≦l≦1,000の数であり、mは1≦m≦1,000の数であり、qはそれぞれ独立に1≦q≦100の数である。)
Figure JPOXMLDOC01-appb-C000010
(一般式(3a)、(3b)、(3c)、(4a)及び(4b)中、R5はそれぞれ独立に炭素数1~8の2価炭化水素基を示し、R6はそれぞれ水素原子又は炭素数1~3の炭化水素基を示す。)
[2].
 下記一般式(5)で示される、請求項1に記載のポリエステル-ポリエーテル共重合体。
Figure JPOXMLDOC01-appb-C000011
(一般式(5)中、R1はそれぞれ独立に炭素数1~10の2価炭化水素基を示し、R2はそれぞれ独立に下記一般式(3a)、(3b)又は(3c)で示されるラジカル重合性官能基含有有機基を示し、lは1≦l≦1,000の数であり、mは1≦m≦1,000の数であり、rはそれぞれ独立に1≦r≦100の数である。
Figure JPOXMLDOC01-appb-C000012
(一般式(3a)、(3b)及び(3c)中、R5はそれぞれ独立に炭素数1~8の2価炭化水素基を示し、R6はそれぞれ水素原子又は炭素数1~3の炭化水素基を示す。)
[3].
 体積平均粒径が0.5~200μmであり、ポリエステル構造及びポリエーテル構造を有する共重合体に由来する構成単位を含有する重合体からなるエラストマー球状粒子。
[4].
 共重合体が一分子中に少なくとも2個のラジカル重合可能な不飽和基を有する、ポリエステル-ポリエーテル共重合体である、[3]に記載のエラストマー球状粒子。
[5].
 共重合体が、下記一般式(1)又は(2)で示されるポリエステル-ポリエーテル共重合体である、[4]に記載のエラストマー球状粒子。
Figure JPOXMLDOC01-appb-C000013
(一般式(1)中、R1はそれぞれ独立に炭素数1~10の2価炭化水素基を示し、R2はそれぞれ独立に下記一般式(3a)、(3b)又は(3c)で示されるラジカル重合性官能基含有有機基を示し、kはそれぞれ独立に1≦k≦10の数であり、lは1≦l≦1,000の数であり、mは1≦m≦1,000の数であり、nはそれぞれ独立に1≦n≦100の数である。
 一般式(2)中、R3はそれぞれ独立に炭素数1~10の2価炭化水素基を示し、R4はそれぞれ独立に下記一般式(4a)又は(4b)で示されるラジカル重合性官能基含有有機基を示し、pはそれぞれ独立に1≦p≦10の数であり、lは1≦l≦1,000の数であり、mは1≦m≦1,000の数であり、qはそれぞれ独立に1≦q≦100の数である。)
Figure JPOXMLDOC01-appb-C000014
(一般式(3a)、(3b)、(3c)、(4a)及び(4b)中、R5はそれぞれ独立に炭素数1~8の2価炭化水素基を示し、R6はそれぞれ水素原子又は炭素数1~3の炭化水素基を示す。)
[6].
 共重合体が、下記一般式(5)で示されるポリエステル-ポリエーテル共重合体である、[5]に記載のエラストマー球状粒子。
Figure JPOXMLDOC01-appb-C000015
(一般式(5)中、R1はそれぞれ独立に炭素数1~10の2価炭化水素基を示し、R2はそれぞれ独立に下記一般式(3a)、(3b)又は(3c)で示されるラジカル重合性官能基含有有機基を示し、lは1≦l≦1,000の数であり、mは1≦m≦1,000の数であり、rはそれぞれ独立に1≦r≦100の数である。)
Figure JPOXMLDOC01-appb-C000016
(一般式(3a)、(3b)及び(3c)中、R5はそれぞれ独立に炭素数1~8の2価炭化水素基を示し、R6はそれぞれ水素原子又は炭素数1~3の炭化水素基を示す。)
[7].
 [3]~[6]のいずれか1項に記載のエラストマー球状粒子が、シリコーン油、炭化水素油、高級脂肪酸、エステル油、液体油脂、及び水から選ばれる少なくとも1種の分散媒に分散してなるエラストマー球状粒子の分散液。
[8].
 下記(i)~(iii)の工程を含む、[3]~[6]のいずれか1項に記載のエラストマー球状粒子の製造方法。

(i)
(A)重合性基を有し、ポリエステル構造及びポリエーテル構造を有する共重合体、
(B)前記(A)成分に溶解しない油相成分又は水相成分、
(C)界面活性剤、及び
(D)重合開始剤を、撹拌・乳化することでO/O型又はO/W型エマルションを調製する工程

(ii)
 前記工程(i)により得られたO/O型又はO/W型エマルション中の(A)成分を、重合させることで、エラストマー球状粒子の分散液を得る工程

(iii)
 前記工程(ii)より得られたエラストマー球状粒子の分散液から、連続相である(B)成分を洗浄・乾燥除去することで、エラストマー球状粒子を得る工程

[9].
 工程(i)が、
(A)重合性基を有し、ポリエステル構造及びポリエーテル構造を有する共重合体、
(B)前記(A)成分に溶解しない油相成分、
(C)界面活性剤、及び
(D)重合開始剤を、攪拌・乳化することでO/O型エマルションを得る工程である[8]に記載の製造方法。
 本発明の共重合体は、分解性官能基(単位)であるポリエステル構造を有しており、水分存在下において架橋構造が切断されるため、分解性を有する。特に、ポリエステル構造のうち、微生物認識骨格であるポリ-ε-カプロラクトン構造を有する共重合体は、環境分解性も期待できるため、各種産業分野において使用でき、特に本発明のエラストマー球状粒子の製造のほか、各種有機樹脂/プラスチックの代替、あるいは新規樹脂/プラスチック材料として使用することが期待できる。
 また、本発明のエラストマー球状粒子は、粒子中に分解性官能基(単位)であるポリエステル構造を有しており、水分存在下において架橋構造が切断されるため、分解性を有する。特に、粒子中のポリエステル構造として、微生物認識骨格であるポリ-ε-カプロラクトン構造を有する粒子は、エラストマー球状粒子の環境分解性も期待できる。
 従って、本発明のエラストマー球状粒子は、分解性を有する粒子であり、環境負荷低減材料として期待できる。
実施例1で得られたエラストマー球状粒子の電子顕微鏡写真である。 実施例5で得られたエラストマー球状粒子の電子顕微鏡写真であり、図2Aは倍率200倍の写真であり、図2Bは倍率1,000倍の写真である。
 以下、本発明について詳細に説明する。
[共重合体]
 本発明の共重合体は、下記一般式(1)又は(2)で示されるものであり、一分子中に少なくとも2個のラジカル重合可能な不飽和基を有する、ポリエステル-ポリエーテル共重合体である。
Figure JPOXMLDOC01-appb-C000017
 一般式(1)中、R1はそれぞれ独立に炭素数1~10の2価炭化水素基を示し、R2はそれぞれ独立に下記一般式(3a)、(3b)又は(3c)で示されるラジカル重合性官能基含有有機基を示し、kはそれぞれ独立に1≦k≦10の数であり、lは1≦l≦1,000の数であり、mは1≦m≦1,000の数であり、nはそれぞれ独立に1≦n≦100の数である。
 一般式(2)中、R3はそれぞれ独立に炭素数1~10の2価炭化水素基を示し、R4はそれぞれ独立に下記一般式(4a)又は(4b)で示されるラジカル重合性官能基含有有機基を示し、pはそれぞれ独立に1≦p≦10の数であり、lは1≦l≦1,000の数であり、mは1≦m≦1,000の数であり、qはそれぞれ独立に1≦q≦100の数である。
Figure JPOXMLDOC01-appb-C000018
 一般式(3a)、(3b)、(3c)、(4a)及び(4b)中、R5はそれぞれ独立に炭素数1~8の2価炭化水素基を示し、R6はそれぞれ水素原子又は炭素数1~3の炭化水素基を示す。
 R1としては、例えば、メチレン基、エチレン基、プロピレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基等のアルキレン基が挙げられ、好ましくは、メチレン基、エチレン基、トリメチレン基、テトラメチレン基である。
 R3としては、例えば、メチレン基、エチレン基、プロピレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基等のアルキレン基が挙げられ、好ましくは、メチレン基、エチレン基、トリメチレン基、テトラメチレン基である。
 R2は、一般式(3a)、(3b)又は(3c)で示されるラジカル重合性官能基含有有機基を示し、R4は一般式(4a)又は(4b)で示されるラジカル重合性官能基含有有機基を示す。
 一般式(3b)、(3c)、(4a)及び(4b)中、R5としては、例えば、メチレン基、エチレン基、プロピレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基等のアルキレン基が挙げられ、好ましくは、メチレン基、エチレン基、トリメチレン基、テトラメチレン基である。
 一般式(3a)、(3b)、(3c)、(4a)及び(4b)中、R6で示される炭素数1~3の炭化水素基としては、メチル基、エチル基、プロピル基等の炭素数1~3のアルキル基が挙げられる。R6としては、水素原子又はメチル基が好ましい。
 これら一般式(3a)、(3b)、(3c)、(4a)及び(4b)で示されるラジカル重合性官能基含有有機基は重合性モノマーから誘導される残基であり、重合性モノマーとして具体的には、水酸基含有(メタ)アクリル酸エステル、イソシアネート基含有(メタ)アクリル酸エステル等が挙げられる。
 水酸基含有(メタ)アクリル酸エステルとしては、例えば、ヒドロキシエチル(メタ)アクリル酸エステル、ヒドロキシプロピル(メタ)アクリル酸エステル等の(メタ)アクリル酸の炭素数2~8のヒドロキシアルキルエステル;カルボキシエチルアクリレート、(メタ)アクリロイルオキシエチルコハク酸、(メタ)アクリロイルオキシエチルフタル酸等のカルボキシ(メタ)アクリレート等が挙げられる。
 イソシアネート基含有アクリル酸エステルとしては、例えば、イソシアネートエチル(メタ)アクリル酸エステル、イソシアネートプロピル(メタ)アクリル酸エステル、イソシアネートブチル(メタ)アクリル酸エステル、イソシアネートヘキシル(メタ)アクリル酸エステル、等が挙げられる。
 一般式(1)中のkはそれぞれ独立に、1≦k≦10の数であり、好ましくは1≦k≦6の数である。
 一般式(2)中のpはそれぞれ独立に、1≦p≦10の数であり、好ましくは1≦p≦6の数である。
 また、一般式(1)中のnはそれぞれ独立に、1≦n≦100の数であり、好ましくは1≦n≦30の数であり、さらに好ましくは2≦n≦10の数である。
 一般式(2)中のqはそれぞれ独立に、1≦q≦100の数であり、好ましくは1≦q≦30の数であり、さらに好ましくは2≦q≦10の数である。
 nおよびqの値が大き過ぎる場合、エステル結合部位による、重合体の分子内/分子間相互作用により結晶性が高くなり、後記する乳化工程等での取扱い性に影響する場合がある。
 一般式(1)中、lは1≦l≦1,000の数であり、好ましくは2≦l≦100の数である。
 一般式(1)中、mは1≦m≦1,000の数であり、好ましくは10≦m≦500の数である。
 一般式(2)中、lは1≦l≦1,000の数であり、好ましくは2≦l≦100の数である。
 一般式(2)中、mは1≦m≦1,000の数であり、好ましくは10≦m≦500の数である。
 本発明の共重合体は、原料の取扱い性および製造の簡便性等の観点から、下記一般式(5)で示される共重合体が好ましい。
Figure JPOXMLDOC01-appb-C000019
 一般式(5)中、R1はそれぞれ独立に炭素数1~10の2価炭化水素基を示し、R2はそれぞれ独立に下記一般式(3a)、(3b)又は(3c)で示されるラジカル重合性官能基含有有機基を示し、lは1≦l≦1,000の数であり、mは1≦m≦1,000の数であり、rはそれぞれ独立に1≦r≦100の数である。
Figure JPOXMLDOC01-appb-C000020
 一般式(3a)、(3b)及び(3c)中、R5はそれぞれ独立に炭素数1~8の2価炭化水素基を示し、R6はそれぞれ水素原子又は炭素数1~3の炭化水素基を示す。
 本発明の共重合体は、例えば後記の方法で製造することができる。
[エラストマー球状粒子]
 本発明のエラストマー球状粒子は、ポリエステル構造及びポリエーテル構造を有する共重合体に由来する構成単位を含有する重合体からなるものである。
 本発明のエラストマー球状粒子の形状は、球状であることが好ましい。本発明における「球状」とは、粒子形状が真球のみを指すものではなく、アスペクト比(最長軸の長さ/最短軸の長さ)の値が平均して、通常1~4、好ましくは1~2、より好ましくは1~1.6、さらに好ましくは1~1.4の範囲にある、変形した楕円体も含む。後記のように、ポリエステル構造及びポリエーテル構造を有する共重合体を、界面活性剤等を用いて連続相に乳化分散させた後に架橋する手法で製造する場合、得られる粒子の形状は球状となる。エラストマー球状粒子の形状は、例えば光学顕微鏡や電子顕微鏡を用いて観察することで確認でき、アスペクト比は顕微鏡写真から任意に50個の粒子の最長軸及び最短軸の長さをそれぞれ計測し、平均値として算出した値である。
 本発明においてエラストマー球状粒子の体積平均粒径は、0.5~200μmの範囲であり、より好ましくは1~100μmである。体積平均粒径が上記上限値よりも大きい場合、粒子としてのなめらかさが低下し、ざらつき感が出る場合があり、光拡散特性もまた低下する。また体積平均粒径が上記下限値よりも小さい場合、粒子の流動性が低下し凝集性が高くなるため、なめらかさや光拡散特性を十分に付与することが出来なくなり、好ましくない。
 本発明のエラストマー球状粒子の体積平均粒径とは、下記により測定した値である。まず、体積平均粒径の測定に先立ち、エラストマー球状粒子の顕微鏡写真から任意に50個の粒子の粒径を測定し、その平均値が1μm以上か未満かで判定を行う。各種界面活性剤を用いてエラストマー球状粒子を水に再分散させた分散液を使用し、判定結果が1μm以上の場合、体積平均粒径は電気抵抗法で測定された値であり、判定結果が1μm未満の場合、体積平均粒径はレーザー回折/散乱法で測定された値である。
 エラストマー球状粒子の成分であるゴム(エラストマー)は、タックやべたつきが生じていないことが好ましい。ゴム硬度が、JIS K6253に規定されているタイプAデュロメータによる測定値が、5~90の範囲にあることが好ましく、より好ましくは10~80の範囲である。また、日本ゴム協会基準規格(SRIS)に規定されているアスカーゴム硬度計C型によるゴム硬度の測定値が、5~90の範囲にあることが好ましく、より好ましくは20~85、さらに好ましくは40~85の範囲である。
 ゴム硬度が5よりも小さい場合、凝集性が高くなり、分散性が低下するおそれがある。また、ゴム硬度が90よりも大きい場合では、柔らかな感触が低下するおそれがあるため、好ましくない。
 本発明のエラストマー球状粒子は、さらには、一分子中に少なくとも2個のラジカル重合可能な不飽和基を有する、ポリエステル-ポリエーテル共重合体を重合させたものであることが好ましい。
 一分子中に少なくとも2個のラジカル重合可能な不飽和基を有するポリエステル-ポリエーテル共重合体は、下記一般式(1)または(2)で示される共重合体が好ましい。
Figure JPOXMLDOC01-appb-C000021
(一般式(1)中、R1はそれぞれ独立に炭素数1~10の2価炭化水素基を示し、R2はそれぞれ独立に下記一般式(3a)、(3b)又は(3c)で示されるラジカル重合性官能基含有有機基を示し、kはそれぞれ独立に1≦k≦10の数であり、lは1≦l≦1,000の数であり、mは1≦m≦1,000の数であり、nはそれぞれ独立に1≦n≦100の数である。
 一般式(2)中、R3はそれぞれ独立に炭素数1~10の2価炭化水素基を示し、R4はそれぞれ独立に下記一般式(4a)又は(4b)で示されるラジカル重合性官能基含有有機基を示し、pはそれぞれ独立に1≦p≦10の数であり、lは1≦l≦1,000の数であり、mは1≦m≦1,000の数であり、qはそれぞれ独立に1≦q≦100の数である。)
Figure JPOXMLDOC01-appb-C000022
(一般式(3a)、(3b)、(3c)、(4a)及び(4b)中、R5はそれぞれ独立に炭素数1~8の2価炭化水素基を示し、R6はそれぞれ水素原子又は炭素数1~3の炭化水素基を示す。)
 R1としては、例えば、メチレン基、エチレン基、プロピレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基等のアルキレン基が挙げられ、好ましくは、メチレン基、エチレン基、トリメチレン基、テトラメチレン基である。
 R3としては、例えば、メチレン基、エチレン基、プロピレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基等のアルキレン基が挙げられ、好ましくは、メチレン基、エチレン基、トリメチレン基、テトラメチレン基である。
 R2は、一般式(3a)、(3b)又は(3c)で示されるラジカル重合性官能基含有有機基を示し、R4は一般式(4a)又は(4b)で示されるラジカル重合性官能基含有有機基を示す。
 一般式(3b)、(3c)、(4a)及び(4b)中、R5としては、例えば、メチレン基、エチレン基、プロピレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基等のアルキレン基が挙げられ、好ましくは、メチレン基、エチレン基、トリメチレン基、テトラメチレン基である。
 一般式(3a)、(3b)、(3c)、(4a)及び(4b)中、R6で示される炭素数1~3の炭化水素基としては、メチル基、エチル基、プロピル基等の炭素数1~3のアルキル基が挙げられる。R6としては、水素原子又はメチル基が好ましい。
 これら一般式(3a)、(3b)、(3c)、(4a)及び(4b)で示されるラジカル重合性官能基含有有機基は重合性モノマーから誘導される残基であり、重合性モノマーとして具体的には、水酸基含有(メタ)アクリル酸エステル、イソシアネート基含有(メタ)アクリル酸エステル等が挙げられる。
 水酸基含有(メタ)アクリル酸エステルとしては、例えば、ヒドロキシエチル(メタ)アクリル酸エステル、ヒドロキシプロピル(メタ)アクリル酸エステル等の(メタ)アクリル酸の炭素数2~8のヒドロキシアルキルエステル;カルボキシエチルアクリレート、(メタ)アクリロイルオキシエチルコハク酸、(メタ)アクリロイルオキシエチルフタル酸等のカルボキシ(メタ)アクリレート等が挙げられる。
 イソシアネート基含有アクリル酸エステルとしては、例えば、イソシアネートエチル(メタ)アクリル酸エステル、イソシアネートプロピル(メタ)アクリル酸エステル、イソシアネートブチル(メタ)アクリル酸エステル、イソシアネートヘキシル(メタ)アクリル酸エステル、等が挙げられる。
 一分子中に少なくとも2個のラジカル重合可能な不飽和基を有するポリエステル-ポリエーテル共重合体のポリエステル構造は、分解性が高いと考えられる脂肪族ポリエステルが好ましい。
 脂肪族ポリエステルとしては、例えば、ポリ-ε-カプロラクトン、ポリ-β-プロピオラクトン、γ-ブチロラクトン、ポリ乳酸、ポリヒドロキシブチレート、ポリグリコール酸、ポリエチレンアジペート、ポリヒドロキシ酪酸、ポリエチレンサクシネート、ポリブチレンサクシネート等が挙げられ、特に分解性および取扱いの簡便性の観点から、ポリ-ε-カプロラクトン構造であるものが好ましい。
 一般式(1)中のkはそれぞれ独立に、1≦k≦10の数であり、好ましくは1≦k≦6の数である。
 一般式(2)中のpはそれぞれ独立に、1≦p≦10の数であり、好ましくは1≦p≦6の数である。
 また、一般式(1)中のnはそれぞれ独立に、1≦n≦100の数であり、好ましくは1≦n≦30の数であり、さらに好ましくは2≦n≦10の数である。
 一般式(2)中のqはそれぞれ独立に、1≦q≦100の数であり、好ましくは1≦q≦30の数であり、さらに好ましくは2≦q≦10の数である。
 nおよびqの値が大き過ぎる場合、エステル結合部位による、重合体の分子内/分子間相互作用により結晶性が高くなり、後記する乳化工程等での取扱い性に影響する場合がある。
 一般式(1)中、lは1≦l≦1,000の数であり、好ましくは2≦l≦100の数である。
 一般式(1)中、mは1≦m≦1,000の数であり、好ましくは10≦m≦500の数である。
 一般式(2)中、lは1≦l≦1,000の数であり、好ましくは2≦l≦100の数である。
 一般式(2)中、mは1≦m≦1,000の数であり、好ましくは10≦m≦500の数である。
 一分子中に少なくとも2個のラジカル重合可能な不飽和基を有するポリエステル-ポリエーテル共重合体は、原料の取扱い性および製造の簡便性等の観点から、下記一般式(5)又は(6)で示される共重合体が好ましい。
Figure JPOXMLDOC01-appb-C000023
(一般式(5)中、R1はそれぞれ独立に炭素数1~10の2価炭化水素基を示し、R2はそれぞれ独立に一般式(3a)、(3b)又は(3c)で示されるラジカル重合性官能基含有有機基を示し、lは1≦l≦1,000の数であり、mは1≦m≦1,000の数であり、rはそれぞれ独立に1≦r≦100の数である。)
(一般式(6)中、R3はそれぞれ独立に炭素数1~10の2価炭化水素基を示し、R4はそれぞれ独立に一般式(4a)又は(4b)で示されるラジカル重合性官能基含有有機基を示し、lは1≦l≦1,000の数であり、mは1≦m≦1,000の数であり、sはそれぞれ独立に1≦s≦100の数である。)
[ポリエステル-ポリエーテル共重合体の製造方法]
 ポリエステル-ポリエーテル共重合体の製造方法としては、例えば、ポリエーテル、カルボキシ変性ポリエーテル及びアミノ変性ポリエーテル等の活性水素を含有する各種ポリエーテルを出発物質とし、環状-ε-カプロラクトンを開環重合させることで得られるポリ-ε-カプロラクトン変性ポリエーテルに、ラジカル重合可能な不飽和基を有する重合性モノマーをエステル結合、エーテル結合、ウレタン結合、アミド結合等を介して導入する製造方法が挙げられる。
 尚、反応性の観点から各種ポリエーテルの末端構造は、反応性官能基が第一級炭素原子に結合した構造であることが好ましい。
 上記製造方法における反応条件としては、例えば下記が挙げられるが、この反応条件に限定されるものではない。
 ポリエーテル又はカルボキシ変性ポリエーテル等の活性水素を含有するポリエーテル1.0当量に、ε-カプロラクトンを例えば3~4当量(官能基当量)加え、従来公知の開環重合触媒の存在下で120℃、6時間反応させることで、ポリ-ε-カプロラクトン変性ポリエーテルを得る。
 次に、得られたポリ-ε-カプロラクトン変性ポリエーテルの水酸基1.0モルに、アクリル酸クロライドを官能基あたり1.0~1.25当量(1.0~1.25モル)、状況に応じて反応触媒を添加し、40~100℃、4時間以上反応させる。反応後、生成物(粗生成物)をろ過、水洗、及び/又は吸着工程にて副生成物を除去し、最後に溶媒留去することで、ポリ-ε-カプロラクトンアクリル変性ポリエーテル(ポリエステル-ポリエーテル共重合体)を得ることができる。
 ポリエーテルを出発物質とした場合、ポリエステル-ポリエーテル共重合体としては、例えば、式(7a)及び(7b)(対称構造のため、片末端を記載)に示したものが挙げられる。
Figure JPOXMLDOC01-appb-C000024
 式(7a)および(7b)中、R5は炭素数1~8の2価炭化水素基であり、R6は水素原子又は炭素数1~3の炭化水素基である。
 l、mおよびrは、1≦l≦1,000、1≦m≦1,000、1≦r≦30、好ましくは、2≦l≦100、10≦m≦500、2≦r≦10である。
 カルボキシ変性ポリエーテルを出発物質とした場合、ポリエステル-ポリエーテル共重合体としては、例えば、式(8a)及び(8b)(対称構造のため、片末端を記載)に示したものが挙げられる。
Figure JPOXMLDOC01-appb-C000025
 式(8a)および(8b)中、R5は炭素数1~8の2価炭化水素基であり、R6は水素原子又は炭素数1~3の炭化水素基である。
 また、l、m、sおよびtは、1≦l≦1,000、1≦m≦1,000、1≦s≦30、0≦t≦10、好ましくは、2≦l≦100、10≦m≦500、2≦s≦10、1≦t≦10である。
 アミノ変性ポリエーテルを出発物質とした場合、ポリエステル-ポリエーテル共重合体としては、例えば、式(9a)及び(9b)(対称構造のため、片末端を記載)に示したものが挙げられる。
Figure JPOXMLDOC01-appb-C000026
 式(9a)および(9b)中、R5は炭素数1~8の2価炭化水素基であり、R6は水素原子又は炭素数1~3の炭化水素基である。
 また、l、m、sおよびuは、1≦l≦1,000、1≦m≦1,000、1≦s≦30、0≦u≦10、好ましくは、2≦l≦100、10≦m≦500、2≦s≦10、1≦u≦10である。
 環状-ε-カプロラクトンを開環重合させる際に用いる触媒としては、従来公知のものを使用すればよく、これに限定されるものではない。
 具体的には、例えば、テトラメトキシチタン、テトラエトキシチタン、テトラn-プロポキシチタン、テトラブトキシチタン等の有機チタン系化合物;ジ-n-ブチルスズラウレート、ジイソブチルスズオキサイド、ジブチルスズジアセテート等の有機錫化合物;マグネシウム、カルシウム、亜鉛などの酢酸塩;酸化アンチモン;ハロゲン化第一スズ;過塩素酸等が挙げられる。
 上記開環重合触媒の添加量としては、ε-カプロラクトンモノマー(環状-ε-カプロラクトン)に対し、10~10,000ppmの範囲であればよく、好ましくは10~1,000ppmである。
 ポリ-ε-カプロラクトン変性ポリエーテルにラジカル重合可能な不飽和基を有する重合性モノマーを導入する方法としては、重合性モノマーの反応基質(反応性官能基)、及び形成骨格に応じた各種触媒を用いてもよく、触媒としては従来公知のものを使用すればよい。
 エステル化反応に用いる(エステル化)触媒としては、チタン、ジルコニウム、スズ、アルミニウム、及び亜鉛のアルコラート、カルボキシラート、又はキレート化合物並びに三フッ化ホウ素及び三フッ化ホウ素エーテラート等のルイス酸触媒;塩酸、硫酸、臭化水素、酢酸、トリフルオロ酢酸、メタンスルホン酸、p-トルエンスルホン酸等の酸触媒;ペンタメチルジエチレントリアミン(PMDETA)、トリメチルトリアザシクロノナン(TACN)、トリエチルアミン(TEA)、4-(N,N-ジメチルアミノ)ピリジン(DMAP)、1,4-ジアザビシクロ(2,2,2)オクタン(DABCO)、テトラメチルエチレンジアミン(TMEDA)等のアミン系触媒等が挙げられるが、なかでもエステル化反応により得られる生成物の安定性や、経済的な観点から、アミン系触媒が好ましい。
 尚、アミン系触媒を用いる場合、反応効率を向上させるため、脱水縮合剤を添加してもよい。脱水縮合剤としては従来公知のものが使用でき、例えば、1,1’-カルボニルジイミダゾール(CDI)、N,N’-ジシクロヘキシルカルボジイミド(DCC)、N,N’-ジイソプロピルカルボジイミド(DIC)、1-エチル-3-(3-ジメチルアミノプロピル)-カルボジイミド(EDC)、1-エチル-3-(3-ジメチルアミノプロピル)-カルボジイミド塩酸塩(EDC・HCl)、及び1-[ビス(ジメチルアミノ)メチレン]-1H-1,2,3-トリアゾロ[4,5-b]ピリジニウム3-オキシドヘキサフルオロホスフェート(HATU)等が挙げられるが、これに限定されない。
 ウレタン化反応に用いる(ウレタン化)触媒としては、従来公知のものを使用すればよく、これに限定されるものではない。
 具体的には、例えば、トリエチルアミン、トリエチレンジアミン、ペンタメチレンジエチレントリアミン、N,N-ジメチルエタノールアミン、1,4-ジアザビシクロ(2,2,2)オクタン(DABCO)、ピリジン、N,N,N’,N’-テトラメチル-1,3-プロパンジアミン(TMPDA)などのアミン類、ジ-n-ブチルスズラウレート、ジイソブチルスズオキサイド、ジブチルスズジアセテート、ジブチルスズジラウリン酸エステル(DBTL)などの有機スズ化合物、テトラメトキシチタン、テトラエトキシチタン、テトラn-プロポキシチタン、テトラブトキシチタン、チタンテトラアセチルアセトネート、チタンジイソプロポキシビス(エチルアセトアセテート)などの有機チタン化合物、n-プロピルジルコネート、n-ブチルジルコネート、ジルコニウムテトラアセチルアセトネート、ジルコニウムジブトキシビス(エチルアセトアセテート)などの有機ジルコニウム化合物などが挙げられる。
 これらラジカル重合可能な不飽和基を有する重合性モノマーを導入する際の触媒添加量としては、重合性モノマーに対し、10~10,000ppmの範囲であればよく、好ましくは10~1,000ppmがよい。
 上記反応時において、反応中の(メタ)アクリレート基の重合反応を抑制するため、重合禁止剤や酸化防止剤を使用できる。重合禁止剤又は酸化防止剤として、具体的には、ハイドロキノン、p-メトキシフェノール、2,6-ジ-tert-ブチル-p-クレゾール、2,4-ジメチル-6-t-ブチルフェノール、p-ベンゾキノン、2,5-ジヒドロキシ-p-ベンゾキノンなどが挙げられるが、これに限定されるものではない。
 また、ポリエステル-ポリエーテル共重合体の製造方法として、下記式(10)に示されるポリ-ε-カプロラクトン変性(メタ)アクリレートと上記カルボキシ変性ポリエーテルをエステル化反応する方法も挙げられる。
 ポリ-ε-カプロラクトン変性(メタ)アクリレートの市販品としては、例えば、プラクセルFA2D、プラクセルFA10L、プラクセルFN2D、プラクセルFM4((株)ダイセル製)等が挙げられる。
Figure JPOXMLDOC01-appb-C000027
 一般式(10)中、R7は、水素原子又は炭素数1~3の1価炭化水素基であり、好ましくは、水素原子又はメチル基である。vは、1≦v≦30であり、好ましくは、1≦v≦10である。
 上記製造方法としては、例えば、下記に示す方法が挙げられるが、これに限定されるものではない。
 カルボキシ変性ポリエーテルのカルボキシ基1.0モルに対し、ポリ-ε-カプロラクトン変性(メタ)アクリレート(式(10))を水酸基当量にして1.0~1.25モル、エステル化触媒を0.1~5.0モル混合し、15~150℃下で10~30分程度撹拌する。そこに、任意で脱水縮合剤を1.0~1.25モル添加し、15~150℃で4~20時間反応させる。
 反応後、反応生成物をろ過、水洗し、吸着処理工程を経て副生成物を除去し、溶媒留去することで、ポリエステル-ポリエーテル共重合体を得ることができる。
 ポリエステル-ポリエーテル共重合体は、液状であることが好ましく、ゲルパーミエーションクロマトグラフィー(GPC)で測定した重量平均分子量(Mw.)の値が、100~100,000であることが好ましい。より好ましくは、300~10,000である。
 重量平均分子量が100より小さい場合、得られたエラストマー球状粒子の分解性が悪くなるおそれがあり、100,000より大きい場合では、エラストマー球状粒子の調製が困難になる場合がある。
 ろ過工程においては、反応生成物の粘度調整を目的として、疎水性有機溶媒を用いた希釈操作を行ってもよい。
 使用する疎水性有機溶媒としては特に限定されないが、溶解性/親和性の観点から、トルエン、ヘキサン、酢酸エチル、等が好ましい。
 吸着処理工程は、水洗にて除去しきれない塩酸塩の除去や、脱水、脱臭、脱色を目的とするものである。
 吸着処理工程使用する吸着材は従来公知のものであればよく、複数種を組み合わせて使用してもよい。吸着材として好ましくは、硫酸マグネシウム、硫酸ナトリウム等の乾燥剤、活性炭、キョーワードシリーズ(協和化学工業(株)製)などが挙げられる。
[エラストマー球状粒子の分散液]
 本発明のエラストマー球状粒子の分散液は、上記エラストマー球状粒子がシリコーン油、炭化水素油、高級脂肪酸、エステル油、液体油脂、及び水から選ばれる少なくとも1種の分散媒に分散してなるものである。
 分散媒としては、シリコーン油、炭化水素油、高級脂肪酸、エステル油、液体油脂、水が挙げられ、シリコーン油、炭化水素油、エステル油、水が好ましい。特には、ジメチルポリシロキサン、デカメチルシクロペンタシロキサン、流動パラフィン、イソドデカン、スクワラン、ステアリン酸、オレイン酸、ステアリン酸ブチル、オレイン酸デシル、蒸留水、イオン交換水、純水が好ましい。
 分散液中におけるエラストマー球状粒子の量は、分散液の全質量に対して5~80質量%の範囲が好ましく、より好ましくは20~70質量%である。エラストマー球状粒子の量が上記下限値より少ないと、エラストマー粒子あたりの生産性が低くなり、非効率であるため好ましくない。また、エラストマー球状粒子の量が上記上限値より多いと、分散液の粘度が高くなり、取り扱いが困難となるため好ましくない。
[エラストマー球状粒子・エラストマー球状粒子の分散液の製造方法]
 本発明のエラストマー球状粒子は、例えば、下記(i)~(iii)の工程を含む方法により製造することができる。本発明のエラストマー球状粒子の分散液は、下記(i)~(ii)の工程を含む方法により製造することができる。

(i)
(A)重合性基を有し、ポリエステル構造及びポリエーテル構造を有する共重合体、
(B)前記(A)成分を溶解しない油相成分又は水相成分、
(C)界面活性剤
及び
(D)重合開始剤
を、撹拌・乳化することで、O/O型又はO/W型エマルションを調製する工程

(ii)
 前記工程(i)により得られたO/O型又はO/W型エマルション中の(A)成分を、重合させることで、エラストマー球状粒子の分散液を得る工程

(iii)
 前記工程(ii)より得られたエラストマー球状粒子の分散液から、連続相である(B)成分を洗浄・乾燥除去することで、エラストマー球状粒子を得る工程
工程(i)
 工程(i)で使用する各成分は次の通りである。
 (A)成分の重合性基を有するポリエステル構造及びポリエーテル構造を含む共重合体として、本発明のエラストマー球状粒子が構成単位として有する、前記重合性基を有するポリエステル構造及びポリエーテル構造を含む共重合体を用いることができ、好ましくは前記の一分子中に少なくとも2個のラジカル重合可能な不飽和基を有する、ポリエステル-ポリエーテル共重合体を用いることができる。(A)成分の具体例としては、前記の通り、一般式(1)または(2)で示されるポリエステル-ポリエーテル共重合体が挙げられ、より好ましい具体例としては、一般式(5)または(6)で示されるポリエステル-ポリエーテル共重合体が挙げられる。
 (B)成分は、エマルションの連続相となる成分であり、(A)成分を溶解しない(不溶・非相溶)あるいは親和性が低い油相成分であるか、水相成分である。
 (B)成分の油相成分としては、シリコーン油、炭化水素油、高級脂肪酸、エステル油、液体油脂などが挙げられ、これらは1種単独、又は2種以上を適宜組み合わせて用いてもよいがこれらに限定されるものではない。
 シリコーン油としては、例えば、ジメチルポリシロキサン、メチルハイドロジェンポリシロキサン、メチルフェニルポリシロキサン、オクタメチルシロキサン、デカメチルテトラシロキサン、デカメチルシクロペンタシロキサン、ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン等が挙げられる。
 炭化水素油としては、例えば、流動パラフィン、α-オレフィンオリゴマー、イソドデカン、イソヘキサデカン、スクワラン、オゾケライト、スクワレン、セレシン、パラフィン、パラフィンワックス、ポリエチレンワックス、ポリエチレン・ポリプロピレンワックス、プリスタン、ポリイソブチレン、ワセリン、マイクロクリスタリンワックス、等が挙げられる。
 高級脂肪酸としては、例えば、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ベヘン酸、ウンデシレン酸、オレイン酸、リノール酸、リノレン酸、アラキドン酸、エイコサペンタエン酸(EPA)、ドコサヘキサエン酸(DHA)、イソステアリン酸、12-ヒドロキシステアリン酸、等が挙げられる。
 エステル油としては、例えば、ミリスチン酸イソプロピル、オクタン酸セチル、ミリスチン酸オクチルドデシル、パルミチン酸イソプロピル、ステアリン酸ブチル、ラウリン酸ヘキシル、ミリスチン酸ミリスチル、オレイン酸デシル、ジメチルオクタン酸ヘキシルデシル、乳酸セチル、乳酸ミリスチル、酢酸ラノリン、ステアリン酸イソセチル、イソステアリン酸イソセチル、イソノナン酸イソノニル、12-ヒドロキシステアリン酸コレステリル、ジ-2-エチルヘキサン酸エチレングリコール、ジペンタエリスリトール脂肪酸エステル、モノイソステアリン酸N-アルキルグリコール、ジカプリン酸ネオペンチルグリコール、リンゴ酸ジイソステアリル、ジ-2-ヘプチルウンデカン酸グリセリン、トリ-2-エチルヘキサン酸トリメチロールプロパン、トリイソステアリン酸トリメチロールプロパン、テトラ-2-エチルヘキサン酸ペンタエリスリトール、トリ-2-エチルヘキサン酸グリセリン、トリオクタン酸グリセリン、トリイソパルミチン酸グリセリン、トリイソステアリン酸トリメチロールプロパン、セチル2-エチルヘキサノエート、2-エチルヘキシルパルミテート、トリミリスチン酸グリセリン、トリ-2-ヘプチルウンデカン酸グリセライド、ヒマシ油脂肪酸メチルエステル、オレイン酸オレイル、アセトグリセライド、パルミチン酸2-ヘプチルウンデシル、アジピン酸ジイソブチル、N-ラウロイル-L-グルタミン酸-2-オクチルドデシルエステル、アジピン酸ジ-2-ヘプチルウンデシル、エチルラウレート、セバシン酸ジ-2-エチルヘキシル、ミリスチン酸2-ヘキシルデシル、パルミチン酸2-ヘキシルデシル、アジピン酸2-ヘキシルデシル、セバシン酸ジイソプロピル、コハク酸2-エチルヘキシル、クエン酸トリエチル、等が挙げられる。
 液状油脂としては、例えば、アボカド油、ツバキ油、タートル油、マカデミアナッツ油、トウモロコシ油、ミンク油、オリーブ油、ナタネ油、卵黄油、ゴマ油、パーシック油、小麦胚芽油、サザンカ油、ヒマシ油、アマニ油、サフラワー油、綿実油、エノ油、大豆油、落花生油、茶実油、カヤ油、コメヌカ油、シナギリ油、日本キリ油、ホホバ油、胚芽油、トリグリセリン、等が挙げられる。
 (B)成分は、25℃における動粘度が100,000mm2/s以下であることが好ましく、10,000mm2/s以下であることがより好ましい。動粘度が上記上限値よりも大きい場合、工程(i)において乳化が困難となったり、また粒度分布の狭い微細な球状粒子を得ることが難しくなったりする場合がある。
 (B)成分に水相成分を用いる場合、(B)成分の水相成分としては、蒸留水、イオン交換水、純水、超純水などが挙げられる。
 (C)成分の界面活性剤としては、特に限定されず、非イオン性界面活性剤、アニオン性界面活性剤、カチオン性界面活性剤、又は両性界面活性剤が挙げられる。これらは1種単独、又は2種以上を適宜組み合わせて用いてもよい。
 非イオン性界面活性剤としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンポリオキシプロピレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリエチレングリコール脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンソルビット脂肪酸エステル、グリセリン脂肪酸エステル、ポリオキシエチレングリセリン脂肪酸エステル、ポリグリセリン脂肪酸エステル、プロピレングリコール脂肪酸エステル、ポリオキシエチレンヒマシ油、ポリオキシエチレン硬化ヒマシ油、ポリオキシエチレン硬化ヒマシ油脂肪酸エステル、ポリオキシエチレンアルキルアミン、ポリオキシエチレン脂肪酸アミド、ポリオキシエチレン変性オルガノポリシロキサン、ポリオキシエチレンポリオキシプロピレン変性オルガノポリシロキサン、等が挙げられる。
 ポリオキシエチレン変性オルガノポリシロキサンとしては、直鎖型ポリエーテル変性シリコーン(商品名:KF-6015、KF-6017、KF-6017P、信越化学工業株式会社製)、直鎖型アルキル共変性ポリエーテル変性シリコーン(商品名:KF-6048、信越化学工業株式会社製)、分岐型ポリエーテル変性シリコーン(商品名:KF-6028、KF-6028P、信越化学工業株式会社製)、分岐型アルキル共変性ポリエーテル変性シリコーン(商品名:KF-6038、信越化学工業株式会社製)等を挙げることができる。
 アニオン性界面活性剤としては、例えば、ラウリル硫酸ナトリウム等のアルキル硫酸エステル塩、ポリオキシエチレンアルキルエーテル硫酸エステル塩、ポリオキシエチレンアルキルフェニルエーテル硫酸エステル塩、アルキルベンゼンスルホン酸塩、ポリオキシエチレンアルキルフェニルエーテルスルホン酸塩、アルキルジフェニルエーテルジスルホン酸塩、アルカンスルホン酸塩、N-アシルタウリン酸塩、ジアルキルスルホコハク酸塩、モノアルキルスルホコハク酸塩、ポリオキシエチレンアルキルエーテルスルホコハク酸塩、脂肪酸塩、ポリオキシエチレンアルキルエーテルカルボン酸塩、N-アシルアミノ酸塩、モノアルキルリン酸エステル塩、ジアルキルリン酸エステル塩、ポリオキシエチレンアルキルエーテルリン酸エステル塩、等が挙げられる。
 カチオン性界面活性剤としては、例えば、アルキルトリメチルアンモニウム塩、ジアルキルジメチルアンモニウム塩、ポリオキシエチレンアルキルジメチルアンモニウム塩、ジポリオキシエチレンアルキルメチルアンモニウム塩、トリポリオキシエチレンアルキルアンモニウム塩、アルキルベンジルジメチルアンモニウム塩、アルキルピリジニウム塩、モノアルキルアミン塩、モノアルキルアミドアミン塩、等が挙げられる。
 両性界面活性剤としては、例えば、アルキルジメチルアミンオキシド、アルキルジメチルカルボキシベタイン、アルキルアミドプロピルジメチルカルボキシベタイン、アルキルヒドロキシスルホベタイン、アルキルカルボキシメチルヒドロキシエチルイミダゾリニウムベタイン、等が挙げられる。
 界面活性剤としては、少量で上記油相成分を乳化することができ、微細な粒子を得ることができる点から、非イオン性界面活性剤又はアニオン性界面活性剤が好ましい。
 (B)成分として油相成分を使用する場合、(C)界面活性剤は、HLBが2.0~18.0であるものが好ましい。
 (B)成分として水相成分を使用する場合、(C)界面活性剤は、HLBが6.0~18.0であるものが好ましく、9.0~18.0であるものがより好ましい。
 界面活性剤の添加量は、エマルション100質量部に対して0.01~25質量部が好ましく、0.05~15質量部がより好ましい。界面活性剤の添加量が0.01質量部より少ない場合、乳化不良や微細な粒子が得られない場合がある。また、界面活性剤の添加量が25質量部より多い場合、微細な粒子が得られなかったり、エラストマー球状粒子の分散性が十分でない等の場合がある。
 また、エマルション中の(A)成分は、エマルション100質量部に対して1.0~80質量部が好ましく、10~60質量部がより好ましい。(A)成分の量が1.0質量部より少ない場合、生産効率的に不利となり、80質量部よりも多い場合、エラストマー球状粒子の分散液として得ることが困難となる場合がある。
 (D)成分の重合開始剤としては、通常のラジカル重合開始剤を用いればよく、その存在下で、加熱法、レドックス法、光照射法等を用いて反応・硬化させることができる。
 これらの重合開始剤としては、過酸化物、アゾ系開始剤、酸化剤と還元剤を組み合わせたレドックス系開始剤、又は光重合開始剤、などを使用することができる。
 過酸化物としては、例えば、ベンゾイルパーオキサイド、2,4-ジクロロベンゾイルパーオキサイド、o-メチルベンゾイルパーオキサイド、p-メチルベンゾイルパーオキサイド、2,4-ジクミルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、ジ-t-ブチルパーオキサイド、t-ブチルパーベンゾエート、過酸化水素、等が挙げられる。
 また、過塩素酸カリウム、過塩素酸ナトリウム、等の過塩素酸塩でもよい。
 アゾ系開始剤としては、例えば、2,2’-アゾビス-イソブチロニトリル、2,2’-アゾビス-(2-メチルブチロニトリル)、2,2’-アゾビス-(2,4-ジメチルバレロニトリル)、ジメチル2,2’-アゾビス-(2-メチルプロピオネート)、ジメチル2,2’-アゾビス-イソブチレート、t-ブチルパーオキシ-2-エチルヘキサノエート、2,2-アゾビス-(2-アミノジプロパン)二塩酸塩、等が挙げられる。
 レドックス系開始剤としては、例えば、硫酸第一鉄とピロリン酸ナトリウムとブドウ糖とハイドロパーオキサイドとを組み合わせたものや、硫酸第一鉄とエチレンジアミン四酢酸二ナトリウム塩とロンガリットとハイドロパーオキサイドとを組み合わせたもの、等が挙げられる。また、熱重合開始剤と光重合開始剤を併用することもできる。
 光重合開始剤としては、例えば、2,2-ジエトキシアセトフェノン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-ヒドロキシ-シクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチルプロピオニル)ベンジル]フェニル}-2-メチルプロパン-1-オン、フェニルグリオキシリックアシッドメチルエステル、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-1-ブタノン、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド、(2,4,6-トリメチルベンゾイル)-ジフェニルホスフィンオキサイド、等が挙げられる。
 また、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテルなどのベンゾインアルキルエーテル類も使用できる。
 上記重合開始剤のうち、エマルションの重合反応時における安定性等の観点から、加熱法又は光照射法にて用いる、過酸化物、アゾ系開始剤、及び光重合開始剤が好ましい。
 重合開始剤の添加量としては、(A)成分100質量部に対して0.01~5.0質量部の範囲で配合されるのが好ましい。重合開始剤の添加量が0.01質量部より少ない場合、硬化不良となるおそれがあり、5.0質量部より多い場合は、反応残渣等の混入(コンタミネーション)により、匂いやブリード等が生じるおそれがある。
[その他の添加剤]
 本発明のエラストマー球状粒子の製造方法には、上記(A)成分、(B)成分、(C)成分及び(D)成分以外にも、工程(i)において必要に応じて種々の添加剤を配合することができる。例えば、添加剤としては増粘剤、防腐剤、pH調整剤、酸化防止剤、重合禁止剤、等が挙げられ、各々1種単独で、又は2種以上を適宜組み合わせ、本発明の効果を損なわない範囲内で適量用いることができる。
 工程(i)における各成分を添加、混合する順番は特に限定されないが、例えば、(A)成分及び(D)成分を混合してから、(A)成分及び(D)成分の混合物に、(B)成分及び(C)成分を加えエマルションを調製してもよいし、(A)成分、(B)成分及び(C)成分からエマルションを調製した後、(D)成分を加えてもよい。
 また、(A)成分、(B)成分、(C)成分及び(D)成分からエマルションを調製した後に、工程(ii)に付す前に所望の濃度となるよう(B)成分を更に添加してもよい。
 エマルションを調製する乳化時においては、従来公知の乳化分散機を用いればよい。一般的な乳化分散機としては、ホモミキサー等の高速回転せん断型撹拌機、ホモディスパー等の高速遠心放射型撹拌機、ホモジナイザー等の高圧噴射式乳化分散機、コロイドミル、超音波乳化機、プロペラ撹拌機、等が挙げられる。
工程(ii)
 工程(ii)は、工程(i)にて調製したエマルション中の(A)成分を、前記重合法により重合(硬化・架橋)させることで、エラストマー球状粒子の分散液を得る工程である。
 重合反応の条件は、(D)重合開始剤の種類により適宜決定でき、例えば、(D)重合開始剤として、過酸化物又はアゾ系開始剤を使用する場合、30~80℃の温度下で10~24時間重合反応させる加熱法が挙げられ、(D)重合開始剤として、レドックス系開始剤を使用する場合、30~70℃の温度下で2~24時間重合反応させるレドックス重合法が挙げられ、(D)重合開始剤として、光重合開始剤を使用する場合、光照射下で重合反応させる光照射法が挙げられる。
 光照射法の場合、光(UV)照射時に使用する光源及び波長範囲については、従来公知のものを使用することができる。
工程(iii)
 工程(iii)では、得られたエラストマー球状粒子の分散液から、連続相である(B)成分を洗浄・乾燥除去することによりエラストマー球状粒子が得られる。
 連続相(分散媒)が水相成分である場合、工程(iii)の具体的な方法としては、例えば、加熱脱水、ろ過、遠心分離、デカンテーション等の方法により分散液を濃縮した後、必要に応じて水洗を行い、最後に常圧ないし減圧下で加熱乾燥する方法、加熱気流中に分散液を噴霧し、加熱乾燥する方法(スプレードライ)、あるいは流動熱媒体を使用して加熱乾燥する方法、等が挙げられる。また、分散液を凝固させてから減圧し、分散媒を除去する方法として、凍結乾燥法も挙げられる。分散媒を除去して得られたエラストマー球状粒子が凝集している場合、それらを乳鉢やジェットミル等で解砕してもよい。
 連続相(分散媒)が油相成分である場合、工程(iii)の具体的な方法としては、エラストマー球状粒子の分散液に疎水性有機溶剤を添加し、一定時間撹拌を行ったのちに加圧ろ過を行うことで、(B)成分の洗浄・除去、及び溶剤置換をする。前記洗浄操作を複数回繰り返すことで、(B)成分の十分な除去、ならびに溶剤置換を行うことができる。この際に使用する疎水性有機溶剤としては、トルエン、ヘキサン及び酢酸エチル等が挙げられる。
 その後、常圧ないし減圧下で加熱乾燥する方法、流動熱媒体を使用して加熱乾燥する方法、凍結乾燥法、等を施すことで、エラストマー球状粒子を得ることができる。
 以下、実施例及び比較例を示し、本発明をより詳細に説明するが、本発明は下記実施例に制限されるものではない。また、例中、動粘度は25℃において測定した値であり、濃度及び含有率を示す「%」は「質量%」を指す。ゴム硬化物の硬度(針入度)は、日本ゴム協会基準規格(SRIS)の規格に準じて測定した値である。
 ポリエステル-ポリエーテル共重合体(ポリ-ε-カプロラクトンアクリレート変性ポリエーテル)の分子量は、下記条件で測定したGPCによるポリスチレンを標準物質とした重量平均分子量である。
[測定条件]
展開溶媒:テトラヒドロフラン(THF)
流量:0.60mL/min
検出器:示差屈折率検出器(RI)
カラム:TSK Guardcolumn SuperH-H
    TSKgel SuperHM-N
    TSKgel SuperH2500
    (いずれも東ソー社製)
カラム温度:40℃
試料注入量:50μL(濃度0.5質量%のTHF溶液)
[生分解性の評価]
 生分解性は、OECD Guidelines for the Testing of Chemicals, No.301F, July 17, 1992, "Ready Biodegradability: MANOMETRIC RESPIROMETRY TEST"に準じた、微生物(分解)源に活性汚泥を使用する方法により測定し、生分解度により評価した。活性汚泥は、都市下水処理場の活性汚泥を使用し、懸濁物質濃度は2,400mg/Lであった。基準(コントロール)物質には安息香酸ナトリウムを用いた。
 生分解度の測定方法としては、インキュベーター内閉鎖系での酸素消費量(生物化学的酸素消費量(BOD))を、BOD測定器を用いて測定し、下記式に基づいて生分解度を算出した。
 生分解度(%)=BOD-B/TOD×100       ―(11)
BOD:試験懸濁液又は操作コントロールの生物化学的酸素消費量(測定値:mg)
B:植物源ブランクの平均生物化学的酸素消費量(測定値:mg)
TOD:被験物質又は安息香酸ナトリウムが完全に酸化された場合に必要とされる理論的酸素消費量(計算値:mg)
[ポリ-ε-カプロラクトンアクリレート変性ポリエーテル1の合成]
 撹拌装置、温度計、冷却管及び滴下ロートを備えた2Lのセパラブルフラスコに、末端一級化EO/POポリエーテル(三洋化成工業(株)製、分子量2,000、OH基当量:0.0975mol/100g)500g、ε-カプロラクトン(商品名:PLACCEL M、(株)ダイセル製、分子量114.1)183.6g及び脱水トルエン350gを仕込み、窒素フロー下で90℃に加熱した。目的温度に到達後、触媒としてテトラ-n-ブトキシチタン(分子量340.0)0.68gを添加し、120℃下で4~6時間熟成した。
 次に、上記操作により得られたポリ-ε-カプロラクトン変性ポリエーテルを室温付近まで冷却した後、トリエチルアミン(分子量101.2)60.7g、脱水トルエン100g及び重合禁止剤としてジブチルヒドロキシトルエン(BHT)(分子量220.4)0.22gを加え、一定時間撹拌を行い、均一溶解させた後、滴下ロートを用いてアクリル酸クロライド(分子量90.5)49.7gを滴下し、発熱を確認してから、60℃下で4時間熟成した。
 得られた粗生成物を、加圧ろ過し、分液ロートを用い塩化ナトリウム水溶液での水洗・洗浄操作、遠心分離を行った後、硫酸マグネシウム、シリカゲル、活性炭等を添加し、振とうによる粉体処理を行うことで、不純物を吸着・除去した。加圧ろ過により各種粉体を除いた後、ジブチルヒドロキシトルエン(BHT)0.22gを再添加し、60-70℃、50mmHg以下の条件で溶媒留去することで、ポリ-ε-カプロラクトンアクリレート変性ポリエーテル1(下記式(12)、重量平均分子量2,880)を得た。
Figure JPOXMLDOC01-appb-C000028
[ポリ-ε-カプロラクトンアクリレート変性ポリエーテル2の合成]
 撹拌装置、温度計、冷却管及び滴下ロートを備えた1Lのセパラブルフラスコに、末端一級化EO/POポリエーテル(三洋化成工業(株)製、分子量2,000、OH基当量:0.0975mol/100g)300g、ε-カプロラクトン(商品名:PLACCEL M、(株)ダイセル製、分子量114.1)110.2g及び脱水トルエン200gを仕込み、窒素フロー下で90℃に加熱した。目的温度に到達後、触媒としてテトラ-n-ブトキシチタン(分子量340.0)0.41gを添加し、120℃下で4~6時間熟成した。
 次に、上記操作により得られたポリ-ε-カプロラクトン変性ポリエーテルを室温付近まで冷却した後、脱水トルエン100g、触媒としてジオクチルスズジネオデカノエート(商品名:ネオスタンU-830、日東化成(株)製、分子量687.7)0.96g及び重合禁止剤としてジブチルヒドロキシトルエン(BHT)(分子量220.4)0.12gを加え、一定時間撹拌を行い、均一溶解させた後、滴下ロートを用いて2-イソシアナトエチルアクリラート(商品名:カレンズAOI、昭和電工(株)製、分子量141.1)44.4gを滴下し、発熱を確認してから、60℃下で4時間熟成した。
 得られた粗生成物を40℃以下まで冷却した後、エタノール0.8gを添加し、未反応(残存)イソシアネート基と反応させ、クエンチ処理を施した。その後、硫酸マグネシウム、シリカゲル、活性炭等を添加し、振とうによる粉体処理を行うことで不純物を吸着・除去し、加圧ろ過により各種粉体を除いたのち、ジブチルヒドロキシトルエン(BHT)0.12gを再添加して60-70℃、50mmHg以下の条件で溶媒留去することで、ポリ-ε-カプロラクトンアクリレート変性ポリエーテル2(下記式(13)、重量平均分子量3,120)を得た。
Figure JPOXMLDOC01-appb-C000029
[ポリ-ε-カプロラクトンアクリレート変性シリコーンの合成]
 撹拌装置、温度計、冷却管及び滴下ロートを備えた1Lのセパラブルフラスコに、カルボキシ変性シリコーン(分子量1,200、COOH基当量:0.187mol/100g)300g、ポリ-ε-カプロラクトンモノアクリレート(商品名:プラクセルFA2D、(株)ダイセル製、分子量344.0、OH基当量:0.291mol/100g)202.8g、脱水トルエン200g、及び4-ジメチルアミノピリジン(DMAP)(東京化成工業(株)製、分子量122.2)6.85gを仕込み、氷浴下で撹拌・混合した。十分に冷却されたところで、N,N’-ジシクロヘキシルカルボジイミド(DCC)(東京化成工業(株)製、分子量206.3)168.9gを脱水トルエン173.6gで溶解させた溶液を、滴下ロートを用いて滴下し、室温下で20時間熟成した。熟成後、トルエン200g、0.5mol/L塩酸300gを加えて洗浄(DMAPを除去)し、次いで、飽和炭酸水素ナトリウム水溶液、10%塩化ナトリウム水溶液の順で水洗処理を施した。上記操作を行った後、硫酸マグネシウム、シリカゲル、活性炭、キョーワード700(協和化学工業(株)製)を各10g添加、振とうを行うことで、不純物を吸着・除去した。加圧ろ過により各種粉体を除いた後、重合禁止剤としてジブチルヒドロキシトルエン(BHT)0.09gを添加し、60-70℃、10mmHg以下の条件で溶媒留去することで、ポリ-ε-カプロラクトンアクリレート変性シリコーン(下記式(14)、重量平均分子量2,130)を得た。
Figure JPOXMLDOC01-appb-C000030
[実施例1]
 ポリ-ε-カプロラクトンアクリレート変性ポリエーテル1を60gと、重合開始剤である2,2’-アゾビス-(2,4-ジメチルバレロニトリル)(以下、V-65と省略)0.48gとを500mlの容器に仕込み、ディスパーを用いて1,000rpmで撹拌・溶解した。次いで、分岐型ポリエーテル変性シリコーン(商品名:KF-6028、信越化学工業(株)製、HLB:4.0)10gとデカメチルシクロペンタシロキサン(商品名:KF-995、信越化学工業(株)製、25℃における動粘度4.0mm2/s)50gとを該容器に添加し、ホモミキサーを用いて4,000~5,000rpmで撹拌したところ増粘が認められ、更に10分間撹拌を続けたところ、O/O型エマルションを得た。その後、1,500~2,000rpm下で撹拌しながらデカメチルシクロペンタシロキサン80gを加えて希釈することで、白色のエマルションを得た。
 このエマルションを、錨型撹拌翼による撹拌装置の付いた容量500mlのセパラブルフラスコに移し、オイルバスを用いて52~55℃に温調し、20時間撹拌・熟成させることで、エラストマー球状粒子の分散液を得た。
 得られたエラストマー球状粒子の分散液に、トルエンを100g程度添加し、錨型撹拌翼による撹拌装置の付いたセパラブルフラスコ内で一定時間撹拌を行った後、加圧ろ過による固液分離により、連続相であるデカメチルシクロペンタシロキサンを除去した。上記洗浄・分離操作をトルエン溶媒下で2回、エタノール溶媒下で1回行い、連続相の除去と揮発性溶剤(<100℃)への置換を行った。
 最後に、70℃空気恒温槽下で24時間以上静置・乾燥することで、目的物である白色~淡黄色の粉末状エラストマー球状粒子を得た。
 得られたエラストマー球状粒子を、電子顕微鏡(走査型顕微鏡S-4700、日立ハイテクノロジーズ(株)製)を用いて観察した結果、粒径100μm前後の球状のエラストマー粒子であることが確認された。
 また、得られたエラストマー球状粒子に界面活性剤を用いて再分散させた水溶液を、電気抵抗法により測定した結果、体積平均粒径98μmであることを確認した。
 実施例1のポリ-ε-カプロラクトンアクリレート変性ポリエーテル1からなるエラストマー球状粒子の電子顕微鏡写真を図1に示す。
 図1に示す電子顕微鏡写真より、実施例1のポリ-ε-カプロラクトンアクリレート変性ポリエーテル1からなるエラストマー球状粒子のアスペクト比はほぼ1であった。
 また、ゴム粒子を構成するゴムの硬度を以下のように測定した。ポリ-ε-カプロラクトンアクリレート変性ポリエーテル1を30.0g及び2,2’-アゾビス-(2,4-ジメチルバレロニトリル)(商品名:V-65、富士フィルム和光純薬(株)製、分子量248.4)0.24gを撹拌・混合し、厚み10mmとなるようアルミニウム製シャーレに流し込んだ。70℃空気恒温槽下で1時間静置後、べたつき(タック)の無い平状ゴムを得た。得られた平状ゴムの硬度を測定した結果、AskerC硬度計で73、AskerA硬度計で55を示した。
 前記方法に則し、ポリ-ε-カプロラクトンアクリレート変性ポリエーテル1の生分解性評価を、培養温度22±1℃で60日間測定した結果、ポリ-ε-カプロラクトンアクリレート変性ポリエーテル1の生分解度は、28日後で平均62%、60日後で平均73%となり、判定基準の28日後の生分解度60%を満たしたことから、“易生分解性物質”と判断された。
 従って、ポリ-ε-カプロラクトンアクリレート変性ポリエーテル1又はポリ-ε-カプロラクトンアクリレート変性ポリエーテル1からなるエラストマー球状粒子を使用後、陸水を経てそのまま海洋へと流出した場合、共重合体又は粒子として環境中に残存し続けることなく、最終的に分解すると推察される。
[実施例2]
 乳化剤に分岐型ポリエーテル変性シリコーン(商品名:KF-6028)の代わりに、直鎖型ポリエーテル変性シリコーン(商品名:KF-6017、信越化学工業(株)製、HLB:4.5)を用いた以外は実施例1と同様の方法によりエラストマー球状粒子を得た。
 得られたエラストマー球状粒子を、実施例1と同様に電子顕微鏡で観察したところ、粒径100μm前後のエラストマー球状粒子であることが確認された。
 また、得られたエラストマー球状粒子に界面活性剤を用いて再分散させた水溶液を、電気抵抗法により測定した結果、体積平均粒径72μmであることを確認した。
[実施例3]
 乳化剤に分岐型ポリエーテル変性シリコーン(商品名:KF-6028)の代わりに、直鎖型ポリエーテル変性シリコーン(商品名:KF-6017、信越化学工業(株)製、HLB:4.5)を用い、この直鎖型ポリエーテル変性シリコーン添加時に更にポリエーテル変性シリコーンゲル活性剤(商品名:KSG-210、信越化学工業(株)製)20gを添加し、さらに、乳化時のデカメチルシクロペンタシロキサンの配合量を50gから40gへ変更した以外は実施例1と同様の方法によりエラストマー球状粒子を得た。
 得られたエラストマー球状粒子を、実施例1と同様に電子顕微鏡で観察したところ、粒径100μm弱のエラストマー球状粒子であることが確認された。
 また、得られたエラストマー球状粒子に界面活性剤を用いて再分散させた水溶液を、電気抵抗法により測定した結果、体積平均粒径63μmであることを確認した。
[実施例4]
 乳化時の連続相となる(B)成分を、シクロペンタシロキサンからポリジメチルシロキサン(商品名:KF-96-100cs、信越化学工業(株)製、25℃における動粘度100mm2/s)に変更した以外は実施例3と同様の方法によりエラストマー球状粒子を得た。
 得られたエラストマー球状粒子を、実施例1と同様に電子顕微鏡で観察したところ、粒径50~70μm程度の粒度分布の整ったエラストマー球状粒子を得た。
 また、得られたエラストマー球状粒子に界面活性剤を用いて再分散させた水溶液を、電気抵抗法により測定した結果、体積平均粒径57μmであることを確認した。
[実施例5]
 ポリ-ε-カプロラクトンアクリレート変性ポリエーテル2を60gと、ラジカル重合開始剤V-65を0.48gとを500mlの容器に仕込み、ディスパーを用いて1,000rpmで撹拌・溶解した。次いで、直鎖型ポリエーテル変性シリコーン(商品名:KF-6017、HLB:4.5)10g、ポリエーテル変性シリコーンゲル活性剤(商品名:KSG-210)20g及びポリジメチルシロキサン(商品名:KF-96-100cs、25℃における動粘度100mm2/s)40gを添加し、ホモミキサーを用いて4,000~5,000rpmで撹拌したところ増粘が認められ、更に10分間撹拌を続けたところ、O/O型エマルションを得た。その後、1,500~2,000rpm下で撹拌しながらシクロペンタシロキサン70gを加えて希釈することで、白色のエマルションを得た。
 エマルション調製後の工程については、実施例1と同様の方法により行い、エラストマー球状粒子を得た。
 得られたエラストマー球状粒子を、実施例1と同様に電子顕微鏡で観察したところ、粒径20~50μm程度の粒度分布の揃ったエラストマー球状粒子を得た。
 また、得られたエラストマー球状粒子に界面活性剤を用いて再分散させた水溶液を、電気抵抗法により測定した結果、体積平均粒径30μmであることを確認した。

 実施例5のポリ-ε-カプロラクトンアクリレート変性ポリエーテル2からなるエラストマー球状粒子の電子顕微鏡写真を図2に示す。図2に示す電子顕微鏡写真より、実施例5のポリ-ε-カプロラクトンアクリレート変性ポリエーテル2からなるエラストマー球状粒子のアスペクト比はほぼ1であった。
 また、ゴム粒子を構成するゴムの硬度の測定を実施例1と同様に行ったところ、べたつき(タック)の無い平状ゴムが得られ、そのゴム硬度の数値は、AskerC硬度計で76、AskerA硬度計で62を示した。
 前記方法に則し、ポリ-ε-カプロラクトンアクリレート変性ポリエーテル2の生分解性評価を、培養温度22±1℃で60日間測定した結果、ポリ-ε-カプロラクトンアクリレート変性ポリエーテル2の生分解度は、28日後で平均40%、60日後で平均65%となり、判定基準の60日後の生分解度60%を満たしたことから、“本質的生分解性物質”と判断された。
 従って、ポリ-ε-カプロラクトンアクリレート変性ポリエーテル2又はポリ-ε-カプロラクトンアクリレート変性ポリエーテル2からなるエラストマー球状粒子を使用後、陸水を経てそのまま海洋へと流出した場合、共重合体又は粒子として環境中に残存し続けることなく、最終的に分解すると推察される。
[実施例6]
 乳化時の連続相となる(B)成分のポリジメチルシロキサン(商品名:KF-96-100cs)の配合量を40gから20gに変更した以外は実施例5と同様の方法によりエラストマー球状粒子を得た。
 得られたエラストマー球状粒子を、実施例1と同様に電子顕微鏡で観察したところ、粒径50~70μm程度の粒度分布の整ったエラストマー球状粒子であることが確認された。
 また、得られたエラストマー球状粒子に界面活性剤を用いて再分散させた水溶液を、電気抵抗法により測定した結果、体積平均粒径26μmであることを確認した。
[比較例]
 ポリ-ε-カプロラクトンアクリレート変性シリコーンのゴム硬度の測定を実施例1と同様に行ったところ、べたつき(タック)の無い平状ゴムが得られ、そのゴム硬度の数値は、AskerC硬度計で71を示した。
 前記方法に則し、ポリ-ε-カプロラクトンアクリレート変性シリコーンの生分解性評価を、培養温度22±1℃で28日間測定した結果、ポリ-ε-カプロラクトンアクリレート変性シリコーンの生分解度は、平均26%に留まり、判定基準の28日後の生分解度60%を満たしていないことから、“易生分解性物質ではない”と判断された。
 本発明における共重合体並びにエラストマー球状粒子の分散液、およびエラストマー球状粒子は、その特徴的な構造組成により、特に化粧料等に有用であることが期待される。また、共重合体及び粉体・粒子骨格内に分解性を有する骨格とされる、ポリエステル(特にはポリ-ε-カプロラクトン)構造及びポリエーテル構造を有していることから、高い生分解性の発現・付与が期待できる。

Claims (9)

  1.  下記一般式(1)又は(2)で示される、一分子中に少なくとも2個のラジカル重合可能な不飽和基を有する、ポリエステル-ポリエーテル共重合体。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1)中、R1はそれぞれ独立に炭素数1~10の2価炭化水素基を示し、R2はそれぞれ独立に下記一般式(3a)、(3b)又は(3c)で示されるラジカル重合性官能基含有有機基を示し、kはそれぞれ独立に1≦k≦10の数であり、lは1≦l≦1,000の数であり、mは1≦m≦1,000の数であり、nはそれぞれ独立に1≦n≦100の数である。
     一般式(2)中、R3はそれぞれ独立に炭素数1~10の2価炭化水素基を示し、R4はそれぞれ独立に下記一般式(4a)又は(4b)で示されるラジカル重合性官能基含有有機基を示し、pはそれぞれ独立に1≦p≦10の数であり、lは1≦l≦1,000の数であり、mは1≦m≦1,000の数であり、qはそれぞれ独立に1≦q≦100の数である。)
    Figure JPOXMLDOC01-appb-C000002
    (一般式(3a)、(3b)、(3c)、(4a)及び(4b)中、R5はそれぞれ独立に炭素数1~8の2価炭化水素基を示し、R6はそれぞれ水素原子又は炭素数1~3の炭化水素基を示す。)
  2.  下記一般式(5)で示される、請求項1に記載のポリエステル-ポリエーテル共重合体。
    Figure JPOXMLDOC01-appb-C000003
    (一般式(5)中、R1はそれぞれ独立に炭素数1~10の2価炭化水素基を示し、R2はそれぞれ独立に下記一般式(3a)、(3b)又は(3c)で示されるラジカル重合性官能基含有有機基を示し、lは1≦l≦1,000の数であり、mは1≦m≦1,000の数であり、rはそれぞれ独立に1≦r≦100の数である。
    Figure JPOXMLDOC01-appb-C000004
    (一般式(3a)、(3b)及び(3c)中、R5はそれぞれ独立に炭素数1~8の2価炭化水素基を示し、R6はそれぞれ水素原子又は炭素数1~3の炭化水素基を示す。)
  3.  体積平均粒径が0.5~200μmであり、ポリエステル構造及びポリエーテル構造を有する共重合体に由来する構成単位を含有する重合体からなるエラストマー球状粒子。
  4.  共重合体が一分子中に少なくとも2個のラジカル重合可能な不飽和基を有する、ポリエステル-ポリエーテル共重合体である、請求項3に記載のエラストマー球状粒子。
  5.  共重合体が、下記一般式(1)又は(2)で示されるポリエステル-ポリエーテル共重合体である、請求項4に記載のエラストマー球状粒子。
    Figure JPOXMLDOC01-appb-C000005
    (一般式(1)中、R1はそれぞれ独立に炭素数1~10の2価炭化水素基を示し、R2はそれぞれ独立に下記一般式(3a)、(3b)又は(3c)で示されるラジカル重合性官能基含有有機基を示し、kはそれぞれ独立に1≦k≦10の数であり、lは1≦l≦1,000の数であり、mは1≦m≦1,000の数であり、nはそれぞれ独立に1≦n≦100の数である。
     一般式(2)中、R3はそれぞれ独立に炭素数1~10の2価炭化水素基を示し、R4はそれぞれ独立に下記一般式(4a)又は(4b)で示されるラジカル重合性官能基含有有機基を示し、pはそれぞれ独立に1≦p≦10の数であり、lは1≦l≦1,000の数であり、mは1≦m≦1,000の数であり、qはそれぞれ独立に1≦q≦100の数である。)
    Figure JPOXMLDOC01-appb-C000006
    (一般式(3a)、(3b)、(3c)、(4a)及び(4b)中、R5はそれぞれ独立に炭素数1~8の2価炭化水素基を示し、R6はそれぞれ水素原子又は炭素数1~3の炭化水素基を示す。)
  6.  共重合体が、下記一般式(5)で示されるポリエステル-ポリエーテル共重合体である、請求項5に記載のエラストマー球状粒子。
    Figure JPOXMLDOC01-appb-C000007
    (一般式(5)中、R1はそれぞれ独立に炭素数1~10の2価炭化水素基を示し、R2はそれぞれ独立に下記一般式(3a)、(3b)又は(3c)で示されるラジカル重合性官能基含有有機基を示し、lは1≦l≦1,000の数であり、mは1≦m≦1,000の数であり、rはそれぞれ独立に1≦r≦100の数である。
    Figure JPOXMLDOC01-appb-C000008
    (一般式(3a)、(3b)及び(3c)中、R5はそれぞれ独立に炭素数1~8の2価炭化水素基を示し、R6はそれぞれ水素原子又は炭素数1~3の炭化水素基を示す。)
  7.  請求項3~6のいずれか1項に記載のエラストマー球状粒子が、シリコーン油、炭化水素油、高級脂肪酸、エステル油、液体油脂、及び水から選ばれる少なくとも1種の分散媒に分散してなるエラストマー球状粒子の分散液。
  8.  下記(i)~(iii)の工程を含む、請求項3~6のいずれか1項に記載のエラストマー球状粒子の製造方法。

    (i)
    (A)重合性基を有し、ポリエステル構造及びポリエーテル構造を有する共重合体、
    (B)前記(A)成分に溶解しない油相成分又は水相成分、
    (C)界面活性剤、及び
    (D)重合開始剤を、撹拌・乳化することでO/O型又はO/W型エマルションを調製する工程

    (ii)
     前記工程(i)により得られたO/O型又はO/W型エマルション中の(A)成分を、重合させることで、エラストマー球状粒子の分散液を得る工程

    (iii)
     前記工程(ii)より得られたエラストマー球状粒子の分散液から、連続相である(B)成分を洗浄・乾燥除去することで、エラストマー球状粒子を得る工程
  9.  工程(i)が、
    (A)重合性基を有し、ポリエステル構造及びポリエーテル構造を有する共重合体、
    (B)前記(A)成分に溶解しない油相成分、
    (C)界面活性剤、及び
    (D)重合開始剤を、攪拌・乳化することでO/O型エマルションを得る工程である請求項8に記載の製造方法。
PCT/JP2023/020919 2022-06-09 2023-06-06 共重合体、エラストマー球状粒子、エラストマー球状粒子の分散液及びそれらの製造方法 WO2023238840A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022093463 2022-06-09
JP2022-093463 2022-06-09

Publications (1)

Publication Number Publication Date
WO2023238840A1 true WO2023238840A1 (ja) 2023-12-14

Family

ID=89118452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/020919 WO2023238840A1 (ja) 2022-06-09 2023-06-06 共重合体、エラストマー球状粒子、エラストマー球状粒子の分散液及びそれらの製造方法

Country Status (2)

Country Link
TW (1) TW202402877A (ja)
WO (1) WO2023238840A1 (ja)

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06199962A (ja) * 1992-11-13 1994-07-19 Takemoto Oil & Fat Co Ltd 光学的立体造形用組成物及びこれを光重合させて得られる立体造形物
JP2000327793A (ja) * 1999-05-24 2000-11-28 Teijin Ltd 球状微粒子の製造方法
JP2002220473A (ja) * 2001-01-25 2002-08-09 Japan U-Pica Co Ltd 硬化樹脂微粉末の製造方法
JP2003261658A (ja) * 2002-03-08 2003-09-19 Yasuhara Chemical Co Ltd 新規生分解性樹脂
JP2004091767A (ja) * 2002-07-10 2004-03-25 Dainichiseika Color & Chem Mfg Co Ltd 微粒子状光硬化性樹脂の製造方法、微粒子状光硬化性樹脂および物品の表面処理方法
JP2007262119A (ja) * 2006-03-27 2007-10-11 Toyobo Co Ltd 光散乱シート用生分解性ポリエステル樹脂組成物およびその製造方法
JP2007325910A (ja) * 2006-05-09 2007-12-20 Toray Ind Inc 球状粒子の製造方法
JP2008506021A (ja) * 2004-07-09 2008-02-28 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ヒドロキシアルカン酸からのスルホン化コポリエーテルエステル組成物及びそれから製造される成形物品
WO2012086569A1 (ja) * 2010-12-20 2012-06-28 東レ株式会社 医療用生分解性粒子及び血管塞栓材料
JP2015083668A (ja) * 2013-09-17 2015-04-30 三洋化成工業株式会社 樹脂粒子、樹脂粒子の製造方法及びトナー
JP2018514638A (ja) * 2015-02-26 2018-06-07 ポリント コンポジッツ ユーエスエイ インコーポレイテッド 充填剤
WO2018134921A1 (ja) * 2017-01-18 2018-07-26 花王株式会社 道路舗装用アスファルト組成物
WO2018151161A1 (ja) * 2017-02-17 2018-08-23 富士フイルム株式会社 固体電解質組成物、固体電解質含有シート及びその製造方法、全固体二次電池及びその製造方法、並びに、ポリマーとその非水溶媒分散物
CN109232838A (zh) * 2018-08-06 2019-01-18 浙江工业大学 一种新型可生物降解的快速光固化成型材料的制备方法
JP2019199596A (ja) * 2018-05-17 2019-11-21 ゼロックス コーポレイションXerox Corporation 硬化性不飽和結晶性ポリエステル粉末およびその作製方法
US20210178027A1 (en) * 2016-02-05 2021-06-17 The General Hospital Corporation Drug eluting polymer composed of biodegradable polymers applied to surface of medical device
WO2022087464A1 (en) * 2020-10-23 2022-04-28 Hybrid Ceramic Polymerizable composition for dental tooth and material 3d printing

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06199962A (ja) * 1992-11-13 1994-07-19 Takemoto Oil & Fat Co Ltd 光学的立体造形用組成物及びこれを光重合させて得られる立体造形物
JP2000327793A (ja) * 1999-05-24 2000-11-28 Teijin Ltd 球状微粒子の製造方法
JP2002220473A (ja) * 2001-01-25 2002-08-09 Japan U-Pica Co Ltd 硬化樹脂微粉末の製造方法
JP2003261658A (ja) * 2002-03-08 2003-09-19 Yasuhara Chemical Co Ltd 新規生分解性樹脂
JP2004091767A (ja) * 2002-07-10 2004-03-25 Dainichiseika Color & Chem Mfg Co Ltd 微粒子状光硬化性樹脂の製造方法、微粒子状光硬化性樹脂および物品の表面処理方法
JP2008506021A (ja) * 2004-07-09 2008-02-28 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ヒドロキシアルカン酸からのスルホン化コポリエーテルエステル組成物及びそれから製造される成形物品
JP2007262119A (ja) * 2006-03-27 2007-10-11 Toyobo Co Ltd 光散乱シート用生分解性ポリエステル樹脂組成物およびその製造方法
JP2007325910A (ja) * 2006-05-09 2007-12-20 Toray Ind Inc 球状粒子の製造方法
WO2012086569A1 (ja) * 2010-12-20 2012-06-28 東レ株式会社 医療用生分解性粒子及び血管塞栓材料
JP2015083668A (ja) * 2013-09-17 2015-04-30 三洋化成工業株式会社 樹脂粒子、樹脂粒子の製造方法及びトナー
JP2018514638A (ja) * 2015-02-26 2018-06-07 ポリント コンポジッツ ユーエスエイ インコーポレイテッド 充填剤
US20210178027A1 (en) * 2016-02-05 2021-06-17 The General Hospital Corporation Drug eluting polymer composed of biodegradable polymers applied to surface of medical device
WO2018134921A1 (ja) * 2017-01-18 2018-07-26 花王株式会社 道路舗装用アスファルト組成物
WO2018151161A1 (ja) * 2017-02-17 2018-08-23 富士フイルム株式会社 固体電解質組成物、固体電解質含有シート及びその製造方法、全固体二次電池及びその製造方法、並びに、ポリマーとその非水溶媒分散物
JP2019199596A (ja) * 2018-05-17 2019-11-21 ゼロックス コーポレイションXerox Corporation 硬化性不飽和結晶性ポリエステル粉末およびその作製方法
CN109232838A (zh) * 2018-08-06 2019-01-18 浙江工业大学 一种新型可生物降解的快速光固化成型材料的制备方法
WO2022087464A1 (en) * 2020-10-23 2022-04-28 Hybrid Ceramic Polymerizable composition for dental tooth and material 3d printing

Also Published As

Publication number Publication date
TW202402877A (zh) 2024-01-16

Similar Documents

Publication Publication Date Title
CN102712757B (zh) 作为乳化剂的亲水性/亲脂性改性聚硅氧烷
JP4782025B2 (ja) シリコーン共重合体およびそれを含有する化粧料
JP2002179548A (ja) 化粧料
WO2008018541A1 (fr) Composition d'émulsion de type huile dans eau
JP5057413B2 (ja) 有機架橋粒子、そのサスペンジョン、およびそれらの製造方法
JP2009263643A (ja) カルボキシル基を有するオルガノポリシロキサン
EP1352926B1 (en) Alkyl group-substituted organopolysiloxane gels
EP1578844A4 (en) CONNECTING SILICONE GELS; THESE CONTAINING PRODUCTS AND MANUFACTURING METHOD THEREFOR
Ioan et al. Effect of segmented poly (ester-siloxane) urethanes compositional parameters on differential scanning calorimetry and dynamic-mechanical measurements
Mirmohammadi et al. In-situ photocrosslinkable nanohybrid elastomer based on polybutadiene/polyhedral oligomeric silsesquioxane
EP3766908B1 (en) Polymer crosslinking agent, and high molecular weight polymer and composition using same
US20120035275A1 (en) Emulsion, Method For Producing The Same, And Cosmetic Raw Material Formed From The Same
EP2898924B1 (en) Cosmetic composition containing two crosslinking organopolysiloxane polymers
JP4723083B2 (ja) シリコーン分岐型ポリエーテル変性シリコーン化合物の製造方法及びこの方法によって得られた化合物を含有する化粧料
CA2019716A1 (en) Dispersion of polysiloxane, a method for its production and its use
WO2023238840A1 (ja) 共重合体、エラストマー球状粒子、エラストマー球状粒子の分散液及びそれらの製造方法
KR101289301B1 (ko) 유액의 제조방법
CN114533593A (zh) 常温下液糊状的化妆品及可生物降解共聚物的组合物
WO2015048228A2 (en) Improved silicone elastomer gels and related hydrosilylation processes
WO2019003897A1 (ja) カルボシロキサンデンドリマー構造と酸性基を有する共重合体、並びにこれを含有する組成物及び化粧料
WO2021220625A1 (ja) ポリエーテル/ポリシロキサン架橋ゴム球状粒子及びこれを製造する方法、並びにポリエーテル/ポリシロキサン架橋複合粒子及びこれを製造する方法
JP6878282B2 (ja) 水中油型化粧料及び日焼け止め化粧料
WO2023058383A1 (ja) ゴム粒子、複合粒子、及びそれらの製造方法
JP2005145860A (ja) 皮膚着色用外用剤組成物
WO2023120690A1 (ja) 反応性基含有ポリカプロラクトン化合物、それを用いる新規シリコーンエラストマー粒子および化粧料組成物その他の用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23819820

Country of ref document: EP

Kind code of ref document: A1