WO2012086569A1 - 医療用生分解性粒子及び血管塞栓材料 - Google Patents
医療用生分解性粒子及び血管塞栓材料 Download PDFInfo
- Publication number
- WO2012086569A1 WO2012086569A1 PCT/JP2011/079299 JP2011079299W WO2012086569A1 WO 2012086569 A1 WO2012086569 A1 WO 2012086569A1 JP 2011079299 W JP2011079299 W JP 2011079299W WO 2012086569 A1 WO2012086569 A1 WO 2012086569A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- biodegradable
- particles
- medical
- acid
- copolymer
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/04—Macromolecular materials
- A61L31/06—Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L24/00—Surgical adhesives or cements; Adhesives for colostomy devices
- A61L24/001—Use of materials characterised by their function or physical properties
- A61L24/0042—Materials resorbable by the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L24/00—Surgical adhesives or cements; Adhesives for colostomy devices
- A61L24/04—Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials
- A61L24/046—Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/66—Polyesters containing oxygen in the form of ether groups
- C08G63/664—Polyesters containing oxygen in the form of ether groups derived from hydroxy carboxylic acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2430/00—Materials or treatment for tissue regeneration
- A61L2430/36—Materials or treatment for tissue regeneration for embolization or occlusion, e.g. vaso-occlusive compositions or devices
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2982—Particulate matter [e.g., sphere, flake, etc.]
Definitions
- the present invention relates to medical biodegradable particles and vascular embolization materials.
- Polymer particles such as copolymers (patent document 1) or block copolymers of polyethylene glycol and polylactic acid (patent documents 2 to 5) are widely used.
- the polymer particles pass through a microcatheter or the like and reach the target site of the vascular embolism.
- the polymer particles become clogged due to insufficient flexibility or aggregation of the polymer particles, or the polymer particles reach the target site.
- the particles themselves were deformed and had a problem that their shapes could not be restored.
- Patent Document 6 the elasticity of polymer particles is controlled by blending multiple types of polymers (Patent Document 6), or the surface of the polymer particles is coated with polyethylene glycol to improve catheter passage (Patent Document). 7) The use of chemically cross-linked polymer particles (Patent Document 8) has been reported, and an improved technique has been developed.
- JP-A-5-969 Japanese Patent Publication No. 5-17245 JP 2004-167229 A JP 2005-31623 A JP 2007-291323 A JP 2007-145826 A JP 2007-146146 A JP 2005-314535 A
- the present invention provides a biodegradable particle for medical use and a vascular embolization material in which the lack of flexibility is improved, the particles are less likely to aggregate, and the restoring force of the particle shape after passing through a catheter or the like is improved. For the purpose.
- the present invention provides medical biodegradable particles and vascular embolization materials described in the following (1) to (11).
- A1-B-A2 type triblock copolymer wherein A1 and A2 are biodegradable copolymer blocks composed of monomers containing glycolic acid, lactic acid and 6-hydroxycaproic acid, B is a biodegradable particle for medical use, which is a block of a water-soluble polymer.
- B is a biodegradable particle for medical use, which is a block of a water-soluble polymer.
- the medical biodegradable particles of the present invention are improved in lack of flexibility, are less likely to aggregate, and can be easily transported to a target site in a blood vessel or the like without clogging in the catheter. Can be used as material.
- the medical biodegradable particles of the present invention have improved resilience of the particle shape after passing through a catheter or the like, so that the target site can be effectively embolized and the medical biodegradable used The embolization effect commensurate with the amount of sex particles can be expected.
- the biodegradable particle for medical use of the present invention comprises an A1-B-A2 type triblock copolymer, and A1 and A2 are biodegradable composed of monomers including glycolic acid, lactic acid and 6-hydroxycaproic acid.
- the above-mentioned B is a block of a water-soluble polymer.
- Copopolymer refers to a copolymer or copolymer composed of two or more types of monomers.
- Block copolymer refers to a copolymer having a molecular structure in which two or more types of polymers having different properties are connected by covalent bonds to form a long chain, and “block” refers to “different properties” constituting the block copolymer. Each of "two or more types of polymers” is said.
- the “triblock copolymer” refers to a block copolymer composed of blocks of A1, A2 and B, which are three types of polymers having different properties, but A1 and A2 are not necessarily different and are identical. It may be a polymer.
- A1-B-A2 type triblock copolymer refers to a type of block copolymer in which an A1 block and an A2 block are covalently bonded to each end of a B block.
- a biodegradable copolymer composed of monomers containing glycolic acid, lactic acid and 6-hydroxycaproic acid means a copolymer obtained by copolymerizing three types of monomers, glycolic acid, lactic acid and 6-hydroxycaproic acid, and Among the copolymers obtained by copolymerizing these three types of monomers and other components, those which are biodegradable.
- biodegradable refers to the property that a copolymer is degraded or dissolved, absorbed, or metabolized in a living body or discharged from the living body to the outside of a living body.
- glycolic acid examples include compounds that will yield a copolymer equivalent to that obtained when these monomers are used.
- examples of such compounds include glycolide, which is a cyclic dimer of glycolic acid, lactide, which is a cyclic dimer of lactic acid, and ⁇ -caprolactam, which is a cyclic compound corresponding to 6-hydroxycaproic acid. That is, for example, among “three types of monomers of glycolic acid, lactic acid and 6-hydroxycaproic acid”, only glycolic acid may be replaced by glycolide, or all three types of monomers may be glycolide, lactide and ⁇ , respectively. -It may be replaced with caprolactam.
- Examples of the other components include hydroxycarboxylic acids or derivatives thereof, or copolymers of diol and dicarboxylic acid.
- Examples of the “hydroxycarboxylic acid” include glyceric acid, hydroxybutyric acid, malic acid, tartaric acid, hydroxyvaleric acid, and 3-hydroxyhexanoic acid.
- Examples of the diol include alkylene such as ethylene glycol or propylene glycol.
- Examples of the dicarboxylic acid include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, and phthalic acid. Of these, those having optical activity in the molecule, such as malic acid, may use either the D-form, the L-form or a mixture thereof.
- a ratio of the structure derived from glycolic acid refers to the respective proportions of glycolic acid, lactic acid and 6-hydroxycaproic acid in all monomers constituting the block of the biodegradable copolymer.
- the proportion of the structure derived from glycolic acid in the block of the biodegradable copolymer is preferably 10 to 30%, more preferably 12 to 28%.
- the ratio of the lactic acid-derived structure to the glycolic acid-derived structure in the “biodegradable copolymer block” is preferably 50% or more.
- the ratio of the structure derived from lactic acid in the “block of biodegradable copolymer” is preferably 65% or less, more preferably 63% or less, and further preferably 60% or less.
- the ratio of the structure derived from 6-hydroxycaproic acid in the above-described biodegradable copolymer block is too low, it is impossible to impart a restoring force of a suitable particle shape to the obtained medical biodegradable particles.
- the ratio of the structure derived from 6-hydroxycaproic acid having a glass transition point as low as about ⁇ 61 ° C. is too high, the glass transition point of the obtained biodegradable particles for medical use is lowered. Aggregation of particles occurs in the range of ° C.
- the ratio of the structure derived from 6-hydroxycaproic acid in the block of the biodegradable copolymer is preferably 25 to 85%, more preferably 27 to 80%.
- the ratio of the structure derived from glycolic acid “the ratio of the structure derived from lactic acid to the structure derived from glycolic acid”, “the ratio of the structure derived from lactic acid” and “from 6-hydroxycaproic acid”
- the “structure ratio” can be easily calculated from the measurement results of proton nuclear magnetic resonance spectroscopy (hereinafter “ 1 H-NMR”).
- the biodegradable copolymer block is composed of three types of monomers, glycolic acid, lactic acid, and 6-hydroxycaproic acid
- the structure derived from glycolic acid ascertained from the 1 H-NMR measurement results
- the number of methylene groups (chemical shift value: about 4.8 ppm), the number of methylene groups at the ⁇ -position in the structure derived from lactic acid (chemical shift value: about 5.2 ppm), and the number of methylene groups derived from the ⁇ -position of 6-hydroxycaproic acid (chemical shift) Based on the value: about 2.3 ppm), the respective ratios can be calculated.
- Solvent deuterated chloroform (containing 0.05% by volume of internal standard TMS) Measurement temperature: 20 ° C
- water-soluble polymer examples include polyethylene glycol (hereinafter “PEG”), a PEG derivative, a block copolymer containing a block of PEG, and other water-soluble polymers, but because of their high biocompatibility, PEG, polypropylene glycol, polyvinyl alcohol, polyacrylic acid, polyhydroxyethyl acrylate, polyhydroxyethyl methacrylate or polyvinylpyrrolidone are preferred, and PEG is more preferred.
- PEG polyethylene glycol
- the weight average molecular weight of the biodegradable copolymer is preferably 200 to 100,000, and more preferably 1000 to 80,000.
- the weight average molecular weights of the biodegradable copolymer and the water-soluble polymer are measured by a gel permeation chromatography method (hereinafter, “GPC method”) under the following measurement conditions.
- the weight average molecular weight of the triblock copolymer itself is 3000 to 100,000 in order to avoid the gelation of the triblock copolymer and increase the tackiness, and to impart appropriate degradability to the medical biodegradable particles. It is preferable.
- these weight average molecular weights are measured by GPC method similarly to the weight average molecular weight of said water-soluble polymer.
- Examples of the method for producing the above triblock copolymer include a melt polymerization method and a ring-opening polymerization method.
- Examples of the catalyst used for the polymerization include tin halides such as tin chloride, organic acid tins such as tin 2-ethylhexanoate, diethyl zinc, zinc lactate, iron lactate, dimethylaluminum, calcium hydride, and butyl lithium.
- organic alkali metal compounds such as t-butoxy potassium, metal porphyrin complexes, metal alkoxides such as diethylaluminum methoxide, and the like can be given.
- the obtained triblock copolymer can be subjected to a granulation step without being purified, but may be purified to remove unreacted substances, solvent and catalyst.
- a purification method for example, purification by a fractional precipitation method is possible.
- a purified triblock copolymer can be obtained as a precipitate by dissolving the obtained triblock copolymer in a good solvent for the triblock copolymer and dropping the solution into a poor solvent under stirring. it can.
- the purity of the triblock copolymer can be improved by heating the poor solvent to dissolve the precipitate once and then slowly cooling it to generate the precipitate again.
- good solvent refers to an organic solvent in which both the biodegradable polymer constituting blocks A1 and A2 and the water-soluble polymer constituting block B are dissolved
- poor solvent refers to block A1.
- Examples of the good solvent used in the fractional precipitation method include tetrahydrofuran, dichloromethane, chloroform, or a mixed solvent thereof.
- the amount of good solvent used varies depending on the amount of raw material charged and the composition of the triblock copolymer, but the concentration of the dissolved triblock copolymer is preferably 1 to 50% by weight, more preferably 1 to 25% by weight. preferable.
- Examples of the poor solvent include alcohol-based organic solvents such as methanol and ethanol, ether-based organic solvents such as dimethyl ether, ethyl methyl ether and diethyl ether, hydrocarbon-based organic solvents such as pentane, hexane, heptane and octane, and the like.
- the mixed solvent is mentioned.
- the compressive load in the saturated water-containing state of the medical biodegradable particles of the present invention is preferably 0.1 N or less because good catheter permeability due to appropriate flexibility can be obtained.
- the compression recovery rate of the medical biodegradable particle of the present invention in a saturated water-containing state reduces the possibility that the medical biodegradable particle flows further downstream than the target site of the blood vessel to be embolized. Therefore, it is preferably 80% or more, more preferably 85% or more, and further preferably 90% or more.
- the “compressive load” of the medical biodegradable particle of the present invention is an index indicating the flexibility of the medical biodegradable particle, and one medical biodegradable particle is half the original particle diameter (50 %) Is a load necessary for compressing to a particle size. If the compressive load is large, the resistance when the medical biodegradable particles pass through the catheter is increased.
- the compressive load of Embosphere registered trademark; Boston Scientific
- Embosphere which is an existing vascular embolic particle, 0.1N.
- the “compressive load” of the medical biodegradable particles of the present invention can be measured using a single column test system (type 3343; Instron) under the conditions of an indenter diameter of 3 mm and a load cell of 10 N.
- the “compression recovery rate” of the medical biodegradable particles of the present invention is the ability of the medical biodegradable particles released from compression to return to the original particle shape before compression, such as after passing through a catheter.
- the biodegradable particles for medical use are released after being compressed to a particle size that is half (50%) of the original particle size, the particles after being released from compression with respect to the particle size before compression The ratio of diameter.
- the “compression recovery rate” of the medical biodegradable particles of the present invention is determined by measuring the medical biodegradable particles with a microscope from the horizontal direction with respect to the compression direction in the measurement of the compression load, and before and after compression. It can be calculated by measuring the particle diameter.
- “Saturated water content” means that about 20 mg of biodegradable particles for medical use are immersed in 10 mL of 37 ° C. phosphate buffered saline (the test tube as a container is rotated at a rate of 0.5 times / second with a rotator). When the contents are rotated and the contents are shaken), the water content of the medical biodegradable particles is constant.
- “constant water content” means that the weight of medical biodegradable particles immersed in a phosphate buffered saline solution at 37 ° C. is measured every minute, and the rate of change over time is within 10%. State.
- the “ratio of change with time in the weight of the biodegradable particles for medical use” is a value calculated by the following formula 1.
- the average particle size of the medical biodegradable particles of the present invention is preferably 20 to 2000 ⁇ m, more preferably 50 to 1500 ⁇ m, considering the diameter of the blood vessel that is the target site of embolism.
- the particle size distribution width is preferably smaller, more preferably in the range of average particle size ⁇ 100 ⁇ m, and still more preferably in the range of average particle size ⁇ 50 ⁇ m.
- the “particle size distribution width” refers to a range of particle sizes in which 99% or more of the entire particles are included.
- the particle size of the medical biodegradable particles of the present invention can be measured by a light scattering method.
- the shape of the medical biodegradable particle of the present invention is preferably spherical at 37 ° C. because it hardly affects the state of embolization due to the orientation of the medical biodegradable particle.
- the medical biodegradable particles of the present invention can be used for embolizing blood vessels.
- the medical biodegradable particles may be used as they are, but those obtained by dispersing the medical biodegradable particles in an appropriate dispersion medium or contrast agent may be used.
- the dispersion medium examples include vegetable oils such as sesame oil or corn oil, or distilled water for injection.
- a dispersant such as polyoxysorbitan fatty acid ester or carboxymethylcellulose, methylparaben, propylparaben, etc.
- Preservatives, isotonic agents such as sodium chloride, mannitol or glucose, or preservatives, stabilizers, solubilizers or excipients used in injections may be added.
- the contrast agent may be either ionic or non-ionic.
- Iopamylon IOPAMIRON (registered trademark); Schering
- Hexabrix HEXABRIX (registered trademark); Eiken Chemical
- Omnipark registered trademark
- urografin Urografin (registered trademark); Schering
- Iomeron IOMERON (registered trademark); Eisai Co., Ltd.).
- Example 1 In a flask, 6 g of PEG (SUNBRIGHT (registered trademark); average molecular weight 20000; NOF Corporation), 3.6 g of glycolide (hereinafter “GA”), 7.2 g of L-lactide (purac; hereinafter referred to as “LA”) ) And 3.6 mL of ⁇ -caprolactone (hereinafter referred to as “CL”), melt-mixed at 120 ° C., and then added 12.0 ⁇ 10 ⁇ 5 mol of tin dioctanoate (Wako Pure Chemical Industries, Ltd.) A polymerization reaction was performed for 4 hours to obtain a crude triblock copolymer.
- PEG SUNBRIGHT (registered trademark); average molecular weight 20000; NOF Corporation
- GA glycolide
- LA L-lactide
- CL ⁇ -caprolactone
- the obtained crude triblock copolymer was dissolved in dichloromethane and then dropped into a large excess of diethyl ether, and the resulting white precipitate was washed with methanol and dried under reduced pressure to obtain a purified triblock copolymer. .
- Example 2 A triblock copolymer was obtained in the same manner as in Example 1 except that the amount of LA was changed to 3.6 g and the amount of CL was changed to 10.1 mL.
- Example 3 A triblock copolymer was obtained in the same manner as in Example 1, except that the amount of LA was changed to 1.0 g, the amount of CL was changed to 7.4 mL, and the amount of GA was changed to 1.0 g.
- Example 4 A triblock copolymer was obtained in the same manner as in Example 1, except that the amount of LA was changed to 1.0 g, the amount of CL was changed to 6.5 mL, and the amount of GA was changed to 2.0 g.
- Example 5 A triblock copolymer was obtained in the same manner as in Example 1, except that the amount of LA was changed to 6.0 g, the amount of CL was changed to 6.0 mL, and the amount of GA was changed to 1.0 g.
- Example 6 A triblock copolymer was obtained in the same manner as in Example 1, except that the amount of LA was changed to 1.0 g, the amount of CL was changed to 19.0 mL, and the amount of GA was changed to 0.8 g.
- Example 1 A triblock copolymer was obtained in the same manner as in Example 1 except that LA and GA were not collected at all and the amount of CL was changed to 16.7 mL.
- Example 3 A triblock copolymer was obtained in the same manner as in Example 1 except that the amount of LA was changed to 6.0 g and the amount of CL was changed to 11.1 mL.
- Example 5 A triblock copolymer was obtained in the same manner as in Example 1 except that no LA was collected and the amount of CL was changed to 20.9 mL and the amount of GA was changed to 7.5 g.
- Example 6 A triblock copolymer was obtained in the same manner as in Example 1 except that LA was not collected at all, and the amount of CL was changed to 22.2 mL and the amount of GA was changed to 6.0 g.
- Example 7 A triblock copolymer was obtained in the same manner as in Example 1 except that the amount of LA was changed to 7.0 g, the amount of CL was changed to 4.0 mL, and the amount of GA was changed to 2.0 g.
- Example 8 A triblock copolymer was obtained in the same manner as in Example 1, except that the amount of LA was changed to 3.0 g, the amount of CL was changed to 8.0 mL, and the amount of GA was changed to 6.0 g.
- each triblock copolymer (abbreviated as “average molecular weight” in the table), the ratio of the structure derived from GA in each triblock copolymer (abbreviated as “GA ratio” in the table), derived from LA
- the ratio of the structure (abbreviated as “LA ratio” in the table) and the ratio of the structure derived from CL (abbreviated as “CL ratio” in the table) are also summarized in Table 1.
- the triblock copolymers obtained in Comparative Examples 5 and 6 are insoluble in organic solvents and cannot be measured by GPC method or 1 H-NMR, so the weight average molecular weight in Table 1 is not described.
- the ratio of the structure derived from GA the polymerization charge ratio is described.
- the triblock copolymer obtained in Example 1 was dissolved in dichloromethane to a concentration of 7% by weight. 400 mL of an aqueous solution mixed with 1% by weight of polyvinyl alcohol and 40% by weight of methanol was stirred at 90 rpm while being cooled to 5 ° C., and the above triblock copolymer / dichloromethane solution was added thereto using a syringe with a 21 G needle. 15 mL was dropped at a flow rate of 1.0 mL / min.
- the spherical particle was obtained by the drying method in O / W liquid.
- the obtained spherical particles only spherical particles that passed through a sieve having an aperture of 600 ⁇ m but could not pass through a sieve having an aperture of 500 ⁇ m were collected, and spherical particles having an average particle diameter of 550 ⁇ m were obtained.
- the biodegradable particles for medical use of the present invention can be used for embolizing blood vessels in the medical field.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Epidemiology (AREA)
- Surgery (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Heart & Thoracic Surgery (AREA)
- Polymers & Plastics (AREA)
- Materials Engineering (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Vascular Medicine (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Cardiology (AREA)
- Materials For Medical Uses (AREA)
- Medicinal Preparation (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
Abstract
Description
(1) A1-B-A2型のトリブロックコポリマーからなり、上記A1及び上記A2は、グリコール酸、乳酸及び6-ヒドロキシカプロン酸を含むモノマーから構成される生分解性コポリマーのブロックであり、上記Bは、水溶性ポリマーのブロックである、医療用生分解性粒子。
(2) 飽和含水状態での圧縮荷重が0.1N以下であり、圧縮復元率が80%以上である、上記(1)に記載の医療用生分解性粒子。
(3) 上記生分解性コポリマーのブロックは、グリコール酸由来の構造の比率が10~30%である、上記(1)又は(2)に記載の医療用生分解性粒子。
(4) 上記生分解性コポリマーのブロックは、グリコール酸由来の構造に対する乳酸由来の構造の比率が50%以上である、上記(1)~(3)のいずれかに記載の医療用生分解性粒子。
(5) 上記生分解性コポリマーのブロックは、乳酸由来の構造の比率が65%以下である、上記(1)~(4)のいずれかに記載の医療用生分解性粒子。
(6) 上記生分解性コポリマーのブロックは、6-ヒドロキシカプロン酸由来の構造の比率が25~85%である、上記(1)~(5)のいずれかに記載の医療用生分解性粒子。
(7) 上記トリブロックコポリマーの重量平均分子量は、3000~100000である、上記(1)~(6)のいずれかに記載の医療用生分解性粒子。
(8) 上記水溶性ポリマーのブロックの重量平均分子量は、200~50000である、上記(1)~(7)のいずれかに記載の医療用生分解性粒子。
(9) 上記水溶性ポリマーは、ポリエチレングリコールである、上記(1)~(8)のいずれかに記載の医療用生分解性粒子。
(10) 平均粒子径が20~2000μmである、上記(1)~(9)のいずれかに記載の医療用生分解性粒子。
(11) 粒子径分布が平均粒子径±100μmである、上記(1)~(10)のいずれかに記載の医療用生分解性粒子。
(12) 上記(1)~(11)のいずれかに記載の医療用生分解性粒子からなる、血管塞栓材料。
[測定条件]
装置 :JNM-EX270(JEOL社製、270MHz)
溶媒 :重クロロホルム(内部標準TMS0.05体積%含有)
測定温度 :20℃
[測定条件]
カラム : TSKgel GMHHR-M
(内径7.8mm×長さ30cmを2本直列;東ソー株式会社)
溶離液 : クロロホルム
カラム温度 : 35℃
流速 : 1.0mL/分
検出方法 : 屈折率
検量線 : ポリスチレン標準サンプルを使用して作成
医療用生分解性粒子の重量の経時変化の割合(%)
= {W(t)-W(t-1)}/W(t)×100 ・・・・・・式1
W(t) : 水に浸漬した医療用生分解性粒子のt分後の重量
W(t-1) : 水に浸漬した医療用生分解性粒子の(t-1)分後の重量
フラスコに6gのPEG(SUNBRIGHT(登録商標);平均分子量20000;日油株式会社)、3.6gのグリコリド(以下、「GA」)、7.2gのL-ラクチド(ピュラック;以下、「LA」)及び3.6mLのε-カプロラクトン(以下、「CL」)を採り、120℃で溶融混合してから、12.0×10-5molのジオクタン酸スズ(和光純薬株式会社)を添加し、4時間重合反応させて粗トリブロックコポリマーを得た。得られた粗トリブロックコポリマーはジクロロメタンに溶解してから大過剰のジエチルエーテル中へ滴下して、得られた白色沈殿物をメタノールで洗浄した後に減圧乾燥することで、精製トリブロックコポリマーを得た。
LAの量を3.6gに、CLの量を10.1mLにそれぞれ変更した以外は、実施例1と同様の方法でトリブロックコポリマーを得た。
LAの量を1.0gに、CLの量を7.4mLに、GAの量を1.0gにそれぞれ変更した以外は、実施例1と同様の方法でトリブロックコポリマーを得た。
LAの量を1.0gに、CLの量を6.5mLに、GAの量を2.0gにそれぞれ変更した以外は、実施例1と同様の方法でトリブロックコポリマーを得た。
LAの量を6.0gに、CLの量を6.0mLに、GAの量を1.0gにそれぞれ変更した以外は、実施例1と同様の方法でトリブロックコポリマーを得た。
LAの量を1.0gに、CLの量を19.0mLに、GAの量を0.8gにそれぞれ変更した以外は、実施例1と同様の方法でトリブロックコポリマーを得た。
LA及びGAを一切採取せず、CLの量を16.7mLに変更した以外は、実施例1と同様の方法でトリブロックコポリマーを得た。
CL及びGAを一切採取せず、LAの量を18.0gに変更した以外は、実施例1と同様の方法でトリブロックコポリマーを得た。
LAの量を6.0gに、CLの量を11.1mLにそれぞれ変更した以外は、実施例1と同様の方法でトリブロックコポリマーを得た。
CLを一切採取せず、LAの量を14.4gに変更した以外は、実施例1と同様の方法でトリブロックコポリマーを得た。
LAを一切採取せず、CLの量を20.9mLに、GAの量を7.5gにそれぞれ変更した以外は、実施例1と同様の方法でトリブロックコポリマーを得た。
LAを一切採取せず、CLの量を22.2mLに、GAの量を6.0gにそれぞれ変更した以外は、実施例1と同様の方法でトリブロックコポリマーを得た。
LAの量を7.0gに、CLの量を4.0mLに、GAの量を2.0gにそれぞれ変更した以外は、実施例1と同様の方法でトリブロックコポリマーを得た。
LAの量を3.0gに、CLの量を8.0mLに、GAの量を6.0gにそれぞれ変更した以外は、実施例1と同様の方法でトリブロックコポリマーを得た。
実施例1~6及び比較例1~6で得られたそれぞれのトリブロックコポリマー30mgを、1mLのトルエン、ヘキサン、クロロホルム、ジクロロメタン、アセトニトリル、テトラヒドロフラン及びアセトンにそれぞれ加えて撹拌した後に、目視にて不溶成分の残存又は溶液の濁りを確認した。上記の溶媒群のうち、一つでも不溶成分の残存又は濁りがないものがあれば、そのトリブロックコポリマーは有機溶媒に可溶であると判断した。有機溶媒への溶解性の有無についての結果を表1にまとめる。また、それぞれのトリブロックコポリマーの重量平均分子量(表中では「平均分子量」と略)、それぞれのトリブロックコポリマーにおけるGA由来の構造の比率(表中では「GA比率」と略)、LA由来の構造の比率(表中では「LA比率」と略)及びCL由来の構造の比率(表中では「CL比率」と略)についても、併せて表1にまとめる。なお、比較例5及び6で得られたトリブロックコポリマーについては、有機溶媒に不溶であり、GPC法及び1H-NMRの測定ができなかったことから、表1における重量平均分子量は記載せず、GA由来の構造の比率等については、重合仕込み比を記載してある。
実施例1~6及び比較例1~4で得られたそれぞれのトリブロックコポリマーを、濃度が6重量%となるようにジクロロメタンに溶解し、それぞれの溶液を縦幅2cm、横幅2cm、深さ5mmのガラス製の型に流し込んでから、45℃のホットプレート上で溶媒を蒸発させ、トリブロックコポリマーのフィルムを得た。得られたそれぞれのトリブロックコポリマーのフィルムを、それぞれ10mLのリン酸緩衝生理食塩水に浸漬し、37℃の恒温槽中で旋回撹拌した。旋回撹拌開始から7日間経過した時点で、フィルムの形状を保持していないものがあれば、そのトリブロックコポリマーは生分解性であると判断した。生分解性の有無についての結果を表1にまとめる。
実施例1で得られたトリブロックコポリマーを、濃度が7重量%となるようにジクロロメタンに溶解した。1重量%のポリビニルアルコール及び40重量%のメタノールを混合した水溶液400mLを5℃に冷却しながら90rpmで撹拌し、そこへ上記のトリブロックコポリマー/ジクロロメタン溶液を、21Gの注射針付きシリンジを用いて流速1.0mL/分で15mL滴下した。その後、5℃、100rpmで3時間撹拌し、さらに室温、250rpmで21時間撹拌してから、O/W液中乾燥法により球状粒子を得た。得られた球状粒子のうち、目開き600μmのふるいを通過し、目開き500μmのふるいを通過できない球状粒子のみを回収し、平均粒子径が550μmの球状粒子を得た。
実施例1~6及び比較例1~4で得られたそれぞれのトリブロックコポリマーから作製した医療用生分解性粒子の、飽和含水状態での圧縮荷重及び圧縮復元率をそれぞれ算出した。結果を表3にまとめる。
実施例1で得られた医療用生分解性粒子を、200mgずつ、2mLの注射用蒸留水にそれぞれ分散させた。これらの分散液をシリンジから、全長約1500mm、先端部内径530μmのマイクロカテーテル(RENEGADE;ボストンサイエンティフィック)にそれぞれ注入した。その結果、医療用生分解性粒子がシリンジ壁への付着することはなく、マイクロカテーテル内へ抵抗なく注入できることが確認できた。また、分散液の注入後にマイクロカテーテルを長手方向に切開して内面を目視観察したが、球状の医療用生分解性粒子は全く残存していなかった。カテーテル通過前後の医療用生分解性粒子を目視観察して比較した結果、変形や崩壊は認められなかった。
Claims (12)
- A1-B-A2型のトリブロックコポリマーからなり、
前記A1及び前記A2は、グリコール酸、乳酸及び6-ヒドロキシカプロン酸を含むモノマーから構成される生分解性コポリマーのブロックであり、
前記Bは、水溶性ポリマーのブロックである、医療用生分解性粒子。 - 飽和含水状態での圧縮荷重が0.1N以下であり、圧縮復元率が80%以上である、請求項1記載の医療用生分解性粒子。
- 前記生分解性コポリマーのブロックは、グリコール酸由来の構造の比率が10~30%である、請求項1又は2記載の医療用生分解性粒子。
- 前記生分解性コポリマーのブロックは、グリコール酸由来の構造に対する乳酸由来の構造の比率が50%以上である、請求項1~3のいずれか一項記載の医療用生分解性粒子。
- 前記生分解性コポリマーのブロックは、乳酸由来の構造の比率が65%以下である、請求項1~4のいずれか一項記載の医療用生分解性粒子。
- 前記生分解性コポリマーのブロックは、6-ヒドロキシカプロン酸由来の構造の比率が25~85%である、請求項1~5のいずれか一項記載の医療用生分解性粒子。
- 前記トリブロックコポリマーの重量平均分子量は、3000~100000である、請求項1~6のいずれか一項記載の医療用生分解性粒子。
- 前記水溶性ポリマーのブロックの重量平均分子量は、200~50000である、請求項1~7のいずれか一項記載の医療用生分解性粒子。
- 前記水溶性ポリマーは、ポリエチレングリコールである、請求項1~8のいずれか一項記載の医療用生分解性粒子。
- 平均粒子径が20~2000μmである、請求項1~9のいずれか一項記載の医療用生分解性粒子。
- 粒子径分布が平均粒子径±100μmである、請求項1~10のいずれか一項記載の医療用生分解性粒子。
- 請求項1~11のいずれか一項記載の医療用生分解性粒子からなる、血管塞栓材料。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201180061428.1A CN103260663B (zh) | 2010-12-20 | 2011-12-19 | 医疗用生物降解性颗粒和血管栓塞材料 |
RU2013133353/15A RU2578467C2 (ru) | 2010-12-20 | 2011-12-19 | Биоразлагаемые частицы для медицинского лечения и материал для эмболизации сосудов |
US13/995,294 US9408948B2 (en) | 2010-12-20 | 2011-12-19 | Biodegradable particles for medical treatment and vascular embolization material |
JP2011553629A JPWO2012086569A1 (ja) | 2010-12-20 | 2011-12-19 | 医療用生分解性粒子及び血管塞栓材料 |
EP11851593.1A EP2656864B1 (en) | 2010-12-20 | 2011-12-19 | Biodegradable particles for medical treatment and vascular embolization material |
CA2821486A CA2821486C (en) | 2010-12-20 | 2011-12-19 | Biodegradable particles for medical treatment and vascular embolization material |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010282837 | 2010-12-20 | ||
JP2010-282837 | 2010-12-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012086569A1 true WO2012086569A1 (ja) | 2012-06-28 |
Family
ID=46313839
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/079299 WO2012086569A1 (ja) | 2010-12-20 | 2011-12-19 | 医療用生分解性粒子及び血管塞栓材料 |
Country Status (7)
Country | Link |
---|---|
US (1) | US9408948B2 (ja) |
EP (1) | EP2656864B1 (ja) |
JP (1) | JPWO2012086569A1 (ja) |
CN (1) | CN103260663B (ja) |
CA (1) | CA2821486C (ja) |
RU (1) | RU2578467C2 (ja) |
WO (1) | WO2012086569A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014171448A1 (ja) * | 2013-04-18 | 2014-10-23 | 国立大学法人 山形大学 | 胆管留置用ステント及びその製造方法 |
JPWO2017013853A1 (ja) * | 2015-07-17 | 2018-03-29 | 日本曹達株式会社 | 乳酸単位を含むaba型ブロック共重合体 |
WO2023238840A1 (ja) * | 2022-06-09 | 2023-12-14 | 信越化学工業株式会社 | 共重合体、エラストマー球状粒子、エラストマー球状粒子の分散液及びそれらの製造方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2692368B1 (en) * | 2011-03-30 | 2018-02-21 | Toray Industries, Inc. | Biodegradable particle, vascular embolization material and method for producing biodegradable particles |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005314535A (ja) * | 2004-04-28 | 2005-11-10 | Toray Ind Inc | 架橋生分解性粒子およびその製造方法 |
JP2005312623A (ja) * | 2004-04-28 | 2005-11-10 | Toray Ind Inc | 生分解性粒子 |
JP2007325910A (ja) * | 2006-05-09 | 2007-12-20 | Toray Ind Inc | 球状粒子の製造方法 |
JP2009525775A (ja) * | 2006-01-31 | 2009-07-16 | ボストン サイエンティフィック リミティッド | 生分解性ポリマーと酸を中和するカチオン種を含有する医療用品 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE37983T1 (de) | 1982-04-22 | 1988-11-15 | Ici Plc | Mittel mit verzoegerter freigabe. |
JP3120187B2 (ja) | 1990-08-08 | 2000-12-25 | 武田薬品工業株式会社 | 血管新生阻害物質を含む血管内塞栓剤 |
JPH0517245A (ja) | 1991-07-11 | 1993-01-26 | Nippon Steel Corp | 炭素質材料用接合剤とその製造方法 |
US5702717A (en) | 1995-10-25 | 1997-12-30 | Macromed, Inc. | Thermosensitive biodegradable polymers based on poly(ether-ester)block copolymers |
DE60137933D1 (de) * | 2000-07-17 | 2009-04-23 | Mitsui Chemicals Inc | Auf milchsäure basierende harzzusammensetzungen und daraus hergestellte formteile |
EP1559440B1 (en) * | 2002-10-29 | 2015-09-23 | Toray Industries, Inc. | Vascular embolization meterial |
JP4686970B2 (ja) | 2002-10-29 | 2011-05-25 | 東レ株式会社 | 血管塞栓材料 |
JP5398112B2 (ja) | 2005-10-27 | 2014-01-29 | 東レ株式会社 | 生分解性粒子およびその製造方法 |
CN102432986B (zh) * | 2005-10-27 | 2014-12-10 | 东丽株式会社 | 生物降解性粒子 |
JP5223182B2 (ja) | 2005-10-27 | 2013-06-26 | 東レ株式会社 | 生分解性粒子およびその製造方法 |
JP5217149B2 (ja) | 2006-03-31 | 2013-06-19 | 東レ株式会社 | 生分解性球状粒子 |
US8916188B2 (en) | 2008-04-18 | 2014-12-23 | Abbott Cardiovascular Systems Inc. | Block copolymer comprising at least one polyester block and a poly (ethylene glycol) block |
-
2011
- 2011-12-19 CN CN201180061428.1A patent/CN103260663B/zh not_active Expired - Fee Related
- 2011-12-19 JP JP2011553629A patent/JPWO2012086569A1/ja active Pending
- 2011-12-19 WO PCT/JP2011/079299 patent/WO2012086569A1/ja active Application Filing
- 2011-12-19 US US13/995,294 patent/US9408948B2/en not_active Expired - Fee Related
- 2011-12-19 EP EP11851593.1A patent/EP2656864B1/en not_active Not-in-force
- 2011-12-19 CA CA2821486A patent/CA2821486C/en not_active Expired - Fee Related
- 2011-12-19 RU RU2013133353/15A patent/RU2578467C2/ru not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005314535A (ja) * | 2004-04-28 | 2005-11-10 | Toray Ind Inc | 架橋生分解性粒子およびその製造方法 |
JP2005312623A (ja) * | 2004-04-28 | 2005-11-10 | Toray Ind Inc | 生分解性粒子 |
JP2009525775A (ja) * | 2006-01-31 | 2009-07-16 | ボストン サイエンティフィック リミティッド | 生分解性ポリマーと酸を中和するカチオン種を含有する医療用品 |
JP2007325910A (ja) * | 2006-05-09 | 2007-12-20 | Toray Ind Inc | 球状粒子の製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2656864A4 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014171448A1 (ja) * | 2013-04-18 | 2014-10-23 | 国立大学法人 山形大学 | 胆管留置用ステント及びその製造方法 |
JPWO2014171448A1 (ja) * | 2013-04-18 | 2017-02-23 | 国立大学法人山形大学 | 胆管留置用ステント及びその製造方法 |
US10080640B2 (en) | 2013-04-18 | 2018-09-25 | National University Corporation Yamagata University | Stent to be placed in bile duct |
JPWO2017013853A1 (ja) * | 2015-07-17 | 2018-03-29 | 日本曹達株式会社 | 乳酸単位を含むaba型ブロック共重合体 |
WO2023238840A1 (ja) * | 2022-06-09 | 2023-12-14 | 信越化学工業株式会社 | 共重合体、エラストマー球状粒子、エラストマー球状粒子の分散液及びそれらの製造方法 |
Also Published As
Publication number | Publication date |
---|---|
RU2578467C2 (ru) | 2016-03-27 |
RU2013133353A (ru) | 2015-01-27 |
JPWO2012086569A1 (ja) | 2014-05-22 |
US9408948B2 (en) | 2016-08-09 |
US20130273372A1 (en) | 2013-10-17 |
CA2821486C (en) | 2018-07-24 |
EP2656864A1 (en) | 2013-10-30 |
CA2821486A1 (en) | 2012-06-28 |
EP2656864A4 (en) | 2014-10-01 |
CN103260663A (zh) | 2013-08-21 |
EP2656864B1 (en) | 2016-09-21 |
CN103260663B (zh) | 2017-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9504768B2 (en) | Biodegradable material and method of producing biodegradable material | |
US8871873B2 (en) | Biodegradable particle, vascular embolization material and method for producing biodegradable particles | |
WO2012086569A1 (ja) | 医療用生分解性粒子及び血管塞栓材料 | |
JP5915177B2 (ja) | 生分解性粒子、血管塞栓材料及び生分解性粒子の製造方法 | |
CA2866281C (en) | Biodegradable material and method for producing biodegradable material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2011553629 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11851593 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2011851593 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2821486 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13995294 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2013133353 Country of ref document: RU Kind code of ref document: A |