WO2023231524A1 - 一种聚酯解聚或环酯合成催化剂及制备方法和应用 - Google Patents

一种聚酯解聚或环酯合成催化剂及制备方法和应用 Download PDF

Info

Publication number
WO2023231524A1
WO2023231524A1 PCT/CN2023/082814 CN2023082814W WO2023231524A1 WO 2023231524 A1 WO2023231524 A1 WO 2023231524A1 CN 2023082814 W CN2023082814 W CN 2023082814W WO 2023231524 A1 WO2023231524 A1 WO 2023231524A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
chain
depolymerization
ester
acid
Prior art date
Application number
PCT/CN2023/082814
Other languages
English (en)
French (fr)
Inventor
王玉忠
田国强
陈思翀
罗紫璇
李茂琴
雷进
Original Assignee
四川大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川大学 filed Critical 四川大学
Publication of WO2023231524A1 publication Critical patent/WO2023231524A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/68Polyesters containing atoms other than carbon, hydrogen and oxygen
    • C08G63/685Polyesters containing atoms other than carbon, hydrogen and oxygen containing nitrogen
    • C08G63/6852Polyesters containing atoms other than carbon, hydrogen and oxygen containing nitrogen derived from hydroxy carboxylic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0277Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
    • B01J31/0278Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre
    • B01J31/0281Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre the nitrogen being a ring member
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0277Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
    • B01J31/0278Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre
    • B01J31/0285Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre also containing elements or functional groups covered by B01J31/0201 - B01J31/0274
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/08Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/56Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • C07D233/60Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms with hydrocarbon radicals, substituted by oxygen or sulfur atoms, attached to ring nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/02Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings
    • C07D277/20Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D277/22Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/68Polyesters containing atoms other than carbon, hydrogen and oxygen
    • C08G63/681Polyesters containing atoms other than carbon, hydrogen and oxygen containing elements not provided for by groups C08G63/682 - C08G63/698
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/68Polyesters containing atoms other than carbon, hydrogen and oxygen
    • C08G63/685Polyesters containing atoms other than carbon, hydrogen and oxygen containing nitrogen
    • C08G63/6854Polyesters containing atoms other than carbon, hydrogen and oxygen containing nitrogen derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/6856Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/68Polyesters containing atoms other than carbon, hydrogen and oxygen
    • C08G63/688Polyesters containing atoms other than carbon, hydrogen and oxygen containing sulfur
    • C08G63/6882Polyesters containing atoms other than carbon, hydrogen and oxygen containing sulfur derived from hydroxy carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/83Alkali metals, alkaline earth metals, beryllium, magnesium, copper, silver, gold, zinc, cadmium, mercury, manganese, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/84Boron, aluminium, gallium, indium, thallium, rare-earth metals, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/91Polymers modified by chemical after-treatment
    • C08G63/912Polymers modified by chemical after-treatment derived from hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/91Polymers modified by chemical after-treatment
    • C08G63/914Polymers modified by chemical after-treatment derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/916Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/321Polymers modified by chemical after-treatment with inorganic compounds
    • C08G65/328Polymers modified by chemical after-treatment with inorganic compounds containing other elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/10Polymerisation reactions involving at least dual use catalysts, e.g. for both oligomerisation and polymerisation
    • B01J2231/14Other (co) polymerisation, e.g. of lactides, epoxides

Definitions

  • the invention belongs to the technical field of polyester catalysts and their preparation and application, and specifically relates to a polyester depolymerization or cyclic ester synthesis catalyst and its preparation method and application.
  • Synthetic polymer materials are widely used in production and life due to their advantages such as light weight, low price, and good processability. With the large-scale production and use of polymer materials, the amount of waste is also increasing, which not only consumes a lot of resources, but also causes serious environmental pollution. Therefore, the development of recycling technology for polymer materials has become increasingly important and urgent.
  • One aspect of the present disclosure is to provide a polyester depolymerization or cyclic ester synthesis catalyst for problems existing in existing depolymerization recovery and cyclic ester synthesis.
  • Another aspect of the present disclosure is to provide a method for preparing the above-mentioned polyester depolymerization or cyclic ester synthesis catalyst.
  • Another aspect of the present disclosure is to provide an application of the above-mentioned polyester depolymerization or cyclic ester synthesis catalyst.
  • the present disclosure provides a polyester depolymerization or cyclic ester synthesis catalyst.
  • the catalyst is a long-chain catalyst containing both terminal ionic groups and terminal hydroxyl structures. Its terminal ionic groups are either cations connected to the long-chain structure, or They are anions connected to a long chain structure, and their general structural formulas are as follows:
  • the number of carbon atoms in the main chain of the long chain structure is ⁇ 8;
  • the long chain structure of the general structural formula I is any one of long alkyl chain, aliphatic polyester chain or polyether-ester chain;
  • the long chain structure of the general structural formula II The structure is any one of long alkyl chain, aliphatic polyester chain, polyether-ester chain or polyether chain.
  • the long alkyl chain of the long chain structure in the catalyst is n-octane chain, n-pentadecane chain or ⁇ -hexyldodecane chain;
  • the aliphatic polyester chain is polyethylene succinate, Polybutylene succinate, polyhexylene adipate, polyethylene adipate, polybutylene adipate, polyhexylene adipate, polylactic acid, polyethylene Lactide, polycaprolactone or polyvalerolactone;
  • the polyether-ester chain is polydioxanone, poly3,4-dihydro-2H-benzo[1,4]dioxipine-2- Ketone or poly4-phenyl-3,4-dihydro-2H-benzo[1,4]dioxipine-2-one;
  • the polyether chain is polyethylene glycol or polytetrahydrofuran.
  • the cation described in the general formula I of the above catalyst structure is an imidazolium ion or a thiazolium ion, and the anion is a halide ion or a halide ionized metal chloride;
  • the anion described in the general structure II is an organic carboxylate ion or Organic sulfonate ion, the cation is a metal ion or a quaternary ammonium ion.
  • the imidazolium ion described in the general formula I of the above catalyst structure is 1-long-chain substituted-3-methylimidazolium ion or 1-long-chain substituted-3-butylimidazolium ion
  • the thiazolium ion is 3-long chain substituted-4-methylthiazolium ion, 3-long chain substituted benzothiazolium ion or 3-long chain substituted thiazolium ion
  • the halide ion in the general structural formula I is chloride ion or bromide ion
  • the halogen ionized metal chloride in the general structural formula I is chloride ionized stannous chloride, chloride ionized aluminum chloride, chloride ionized zinc chloride, bromide ionized ferric chloride or chloride ionized ferric chloride
  • the organic carboxylate ions in the structural formula II are aliphatic carboxylate ions; the organic sulfonate ions
  • the quaternary ammonium ion in the general formula II is tetramethylammonium ion or tetraethylammonium ion.
  • the present disclosure also provides a method for preparing a polyester depolymerization or cyclic ester synthesis catalyst, wherein the process steps and conditions of the preparation method 1 are as follows:
  • step (2) Combine the hydroxyl-containing imidazolium halide salt, the hydroxyl-containing thiazolium halide salt, the long alkyl chain hydroxyl-containing imidazolium halide salt catalyst in the general structural formula I or the general structural formula I obtained in step (1).
  • the hydroxyl-containing thiazolium halide catalyst with a medium-long alkyl chain is then subjected to a Lewis acid-base neutralization reaction with 1-3 times the molar amount of Lewis acidic metal ion chloride, so that the anion of the above salt is converted from halide ion to halide ionization.
  • the molar ratio of ester and hydroxide is 0.8-1.2, and the cation is an alkali metal ion, an alkaline earth metal ion or a quaternary ammonium ion, and a hydroxyl-containing organic carboxylate or a hydroxyl-containing organic carboxylate with a structure of the general formula II is prepared through an alkaline hydrolysis reaction of the ester bond.
  • step (2) Use the organic carboxylate, organic sulfonate, long alkyl chain-containing hydroxyl-containing organic carboxylate catalyst of the general structural formula II, or the organic carboxylic acid salt of the structural formula II obtained in step (1) whose cation is an alkali metal ion.
  • the medium-long alkyl chain hydroxyl-containing organic sulfonate catalyst is then mixed with Lewis acidic metal ion chloride according to a carboxylate or sulfonate/chloride ion molar ratio of 0.8-2.2.
  • Hydroxyl-containing organic carboxylates of Lewis acidic metal ions Organic sulfonates, hydroxyl-containing organic carboxylate catalysts with long alkyl chains in the general structural formula II or hydroxyl-containing organic sulfonate catalysts with long alkyl chains in the general structural formula II;
  • the cation obtained in step (2) is an alkali metal ion, an alkaline earth metal ion, a quaternary ammonium ion or a Lewis acidic metal ion, a hydroxyl-containing organic carboxylate, an organic sulfonate, and a long alkyl group in the general structural formula II
  • a chain hydroxyl-containing organic carboxylate catalyst or a long alkyl chain hydroxyl-containing organic sulfonate catalyst in the general structural formula II is then mixed with 1-100 times the molar amount of cyclic ester or cyclic ether-ester, and the ring is opened through
  • the polymerization reaction prepares a catalyst with a long-chain structure of polyester or polyether-ester in the general formula II, or it is mixed with 1-100 times molar amount of hydroxy acid or with 1-100 times molar amount of dibasic acid and 1 -100 times the molar amount of glycol is mixed, and a catalyst with a long chain structure of polyester
  • Catalyst for ester or mix polyether containing terminal carboxylic acid and terminal hydroxyl group with alkali metal hydroxide, alkaline earth metal hydroxide or quaternary ammonium base at a molar ratio of terminal carboxylate to hydroxide of 0.8-1.2, and then The Br ⁇ nsted acid-base neutralization reaction is carried out at a temperature higher than the melting point of the corresponding polymer to prepare terminal carboxylates and terminal hydroxyl groups in which the cation in the general formula II is an alkali metal ion, an alkaline earth metal ion or a quaternary ammonium ion.
  • the hydroxyl-containing alkyl halide used in the quaternization reaction described in Method 1 is 8-chloro-n-octanol, 3-chloro-1-propanol or 2-bromo-1-ethanol, and the hydroxyl-containing alkyl halide used is imidazole or thiazole.
  • the compound of the structure is 1-methylimidazole, 1-butylimidazole, 4-methylthiazole, thiazole or benzothiazole, the reaction temperature is 60-120°C, and the reaction time is 12-48h;
  • the MCl n used in the Lewis acid-base neutralization reaction described in this method is zinc chloride, stannous chloride, aluminum chloride or ferric chloride.
  • the reaction temperature is 25-120°C and the reaction time is 0.5-12h. ;
  • the cyclic ester or cyclic ether-ester used in the ring-opening polymerization reaction described in the method one or two is lactide, glycolide, ⁇ -caprolactone, ⁇ -valerolactone, p-dioxanone , 3,4-dihydro-2H-benzo[1,4]dioxipine-2-one or 4-phenyl-3,4-dihydro-2H-benzo[1,4]dioxipine- 2-ketone, its reaction temperature is 60-220°C, and the reaction time is 1-48h;
  • the dibasic acid used in the esterification polycondensation reaction described in method one or method two is 1,4-succinic acid or 1,6-adipic acid
  • the glycols used are 1,2-ethylene glycol, 1,4-butanediol or 1,6-hexanediol.
  • the reaction temperature is 80-220°C
  • the reaction time is 8-24h
  • the reaction pressure is 1 –1*10 5 Pa;
  • the hydroxyl-containing organic carboxylic acid used in the Bronsted acid-base neutralization reaction described in method two is 12-hydroxyoctadecanoic acid, 6-hydroxycaproic acid, 18-hydroxyoctadecanoic acid or 8-hydroxyoctanoic acid, using
  • the hydroxyl-containing organic sulfonic acid is 4-hydroxybutanesulfonic acid, 3-hydroxypropanesulfonic acid or 2-hydroxyethanesulfonic acid, the alkali metal hydroxide used is sodium hydroxide or potassium hydroxide, and the alkaline earth metal hydroxide is used It is magnesium hydroxide or calcium hydroxide, and the quaternary ammonium base used is tetramethylammonium hydroxide or tetraethylammonium hydroxide.
  • the reaction temperature is 25-180°C and the reaction time is 0.5-12h;
  • the cyclic ester used in the alkaline hydrolysis reaction of the ester bond described in method two is cyclopentadecanolactone or ⁇ -CL
  • the alkali metal hydroxide used is sodium hydroxide or potassium hydroxide
  • the alkaline earth metal hydroxide used It is magnesium hydroxide or calcium hydroxide
  • the quaternary ammonium base used is tetramethylammonium hydroxide or tetraethylammonium hydroxide.
  • the reaction temperature is 25-180°C and the reaction time is 0.5-12h;
  • the MCl n used in the metathesis reaction described in Method 2 or Method 3 is ZnCl 2 , SnCl 2 , AlCl 3 or FeCl 3 , the reaction temperature is 25–220°C, and the reaction time is 0.5–12h;
  • the aliphatic polyester used in the ester bond alkaline hydrolysis reaction described in method three is PES, PBS, PHS, PEA, PBA, PHA, PLA, PGA, PCL or PVL, and the polyether-ester used is PPDO, PBDXO or PDBXOP, its reaction temperature is 60-220°C, and the reaction time is 1-48h;
  • the polyether used in the Bronsted acid-base neutralization reaction described in Method 3 is PEG or PTHF, the reaction temperature is 25-120°C, and the reaction time is 0.5-12h.
  • the present invention also provides the application of polyester depolymerization or cyclic ester synthesis catalyst, wherein the application is used to catalyze the hydrolysis, alcoholysis or cyclization depolymerization of polyester homopolymers, copolymers, blends or composites to recover corresponding Monomers or monomers and oligomers, or are used to catalyze the synthesis of cyclic ester monomers or cyclic ester monomers and cyclic oligomers through condensation polymerization and cyclization reactions of hydroxy acids or hydroxy acid esters.
  • the specific method applied to the hydrolysis, alcoholysis or cyclization depolymerization of the catalyzed polyester homopolymerization, copolymerization, blending or composite to recover the corresponding monomers or monomers and oligomers is as follows: polyester Mix with water or alcohol and catalyst in proportion, heat to 40-200°C under 0.1-2MPa pressure to perform hydrolysis or alcoholysis reaction for 1-12 hours, and then recover the water or alcohol to obtain the corresponding monomer or monomer and oligomer.
  • the polymer is separated from the reaction system; the ratio of polyester to water or alcohol is 100:50-2000wt%, and the molar ratio of the catalyst to the ester bond in the polyester based on the terminal hydroxyl group is 0.01-10mol%.
  • the hydroxy acid is glycolic acid, lactic acid, 6-hydroxycaproic acid, 5-hydroxyvaleric acid or 12- Hydroxyoctadecanoic acid
  • the hydroxy acid ester is methyl glycolate, ethyl glycolate, methyl lactate, ethyl lactate, methyl 6-hydroxycaproate, ethyl 6-hydroxycaproate, 5-hydroxyvalerate Any of methyl ester, ethyl 5-hydroxyvalerate, methyl 12-hydroxyoctadecanoate or ethyl 12-hydroxyoctadecanoate.
  • Figure 1 is the laser Raman spectrum of the product of step (3) of Example 1 of the present invention.
  • the absorption peak at 330cm -1 in the figure is attributed to FeCl 3 -Cl – .
  • the appearance of this absorption peak indicates that the anion of the prepared catalyst is converted from Cl – to FeCl 3 -Cl – .
  • Figure 2 is the laser Raman spectrum of the product in step (3) of Example 11 of the present invention.
  • the absorption peak at 330cm -1 in the figure is attributed to FeCl 3 -Cl -
  • the absorption peaks at 370 and 420cm -1 are attributed to 2FeCl 3 -Cl - .
  • the appearance of these two types of absorption peaks indicates that the anion of the prepared catalyst is converted from Cl – into a mixture of FeCl 3 -Cl – and 2FeCl 3 -Cl – .
  • the mixture of FeCl 3 -Cl - and 2FeCl 3 -Cl - is recorded as 1.7FeCl 3 -Cl - .
  • Figure 3 is a hydrogen nuclear magnetic spectrum of the product of step (2) in Example 69 of the present invention.
  • the main composition of the product is PCL.
  • it can be calculated based on the integral area ratio in the figure that the average degree of polymerization of the product is 14.5.
  • Figure 4 is the Fourier transform infrared spectrum of the product of step (2) in Example 69 of the present invention. According to the analysis of the ester bond carbonyl absorption peak and carbon-hydrogen bond absorption peak in the figure, it can be helpful to explain that the main component of the product is aliphatic polyester.
  • Figure 5 is a hydrogen nuclear magnetic spectrum of the product of step (2) in Example 70 of the present invention.
  • the main composition of the product is PVL.
  • the average degree of polymerization can be calculated to be 10 based on the integral area ratio.
  • Figure 6 is the Fourier transform infrared spectrum of the product in step (2) of Example 70 of the present invention. According to the analysis of the ester bond carbonyl absorption peak and carbon-hydrogen bond absorption peak in the figure, it can be helpful to explain that the main component of the product is aliphatic polyester.
  • Figure 7 is a hydrogen nuclear magnetic spectrum of the cyclization depolymerization product in Application Example 22 of the present invention. According to the analysis of the spectrum, it can be seen that the product The product is mainly L-lactide (L-LA), and also contains a small amount of meso-lactide (meso-LA).
  • L-LA L-lactide
  • meso-LA meso-lactide
  • Figure 8 is a gas chromatogram of the cyclization and depolymerization product in Application Example 22 of the present invention. According to gas chromatography analysis, the proportions of L-LA and meso-LA in the recovered product were 98.74% and 1.01% respectively.
  • Figure 9 is a hydrogen nuclear magnetic spectrum of the cyclization depolymerization product in Application Example 24 of the present invention. According to the analysis of this spectrum, it can be seen that the product is a mixture of ⁇ -CL monomer, cyclic dimer and cyclic trimer.
  • Figure 10 is a gas chromatogram of the cyclization and depolymerization product in Application Example 24 of the present invention. According to gas chromatography analysis, the proportions of ⁇ -CL monomer, cyclic dimer and cyclic trimer in the recovered product were 82.90%, 15.23% and 1.76% respectively.
  • Figure 11 is the hydrogen nuclear magnetic spectrum of the cyclization depolymerization product in Application Example 25 of the present invention. According to the spectrum analysis, it can be seen that the product is a high-purity PDO monomer.
  • Figure 12 is a gas chromatogram of the cyclization and depolymerization product in Application Example 25 of the present invention. According to the gas chromatography analysis, the purity of the recovered PDO monomer was 99.61%, and it also contained 0.28% cyclic dimer.
  • any numerical range recited herein is intended to include all subranges within that range and any combination of the individual endpoints of such ranges or subranges,
  • the integers 1-10 include 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10, and also include the subranges 1-3, 1-4, 1-9, 2-4, 2-10 wait.
  • the polyester depolymerization or cyclic ester synthesis catalyst provided by the invention is a long-chain catalyst containing both terminal ionic groups and terminal hydroxyl structures. Its terminal ionic groups are either cations connected to the long chain structure, or cations connected to the long chain structure. Structurally connected anions, the general structural formulas are as follows:
  • the number of carbon atoms in the main chain of the long chain structure is ⁇ 8;
  • the long chain structure of the general structural formula I is any one of a long alkyl chain, an aliphatic polyester chain or a polyether-ester chain;
  • the long chain structure of the general structural formula II The chain structure is any one of long alkyl chain, aliphatic polyester chain, polyether-ester chain or polyether chain.
  • the long alkyl chain of the long chain structure described in the above catalyst is such as n-octane chain, n-pentadecane chain or ⁇ -hexyldodecane chain; aliphatic polyester chain such as polyethylene succinate (PES) , polybutylene succinate (PBS), polyhexylene succinate (PHS), polyethylene adipate (PEA), polybutylene adipate (PBA), poly Hexylene adipate (PHA), polylactic acid (PLA), polyglycolide (PGA), polycaprolactone (PCL) or polyvalerolactone (PVL); polyether-ester chains such as poly(p-diethylene glycol) Oxycyclohexanone (PPDO), poly3,4-dihydro-2H-benzo[1,4]dioxipine-2-one (PBDXO) or poly4-phenyl-3,4-dihydro-2H - benzo[1,4]dioxipin
  • the cations described in the general formula I of the above catalyst structure are such as imidazolium ions or thiazolium ions, and the anions are such as halide ions (X – ) or halide ionized metal chlorides (m ⁇ MCl n -X – , where M represents a Lewis acidic metal Ion; n represents the number of chloride ions, which is equal to the valence state of the metal ion M; m represents the molar ratio of metal chloride and halide ions, which is any value between 1 and 3); the anions described in the general structural formula II such as organic carboxylate ions or organic sulfonate ions, cations such as metal ions or quaternary ammonium ions.
  • the anions described in the general structural formula II such as organic carboxylate ions or organic sulfonate ions, cations such as metal ions or quaternary ammonium ions.
  • the imidazolium ion in the general formula I of the above catalyst structure is such as 1-long chain substituted-3-methylimidazolium ion or 1-long chain substituted-3-butylimidazolium ion
  • the thiazolium ion is such as 3-long chain substituted -4-methylthiazolium ion, 3-long chain substituted benzothiazolium ion or 3-long chain substituted thiazolium ion ; (Br - ); m ⁇ MCl n -X - in the general structural formula I, for example, chloride ionized stannous chloride (m ⁇ SnCl 2 -Cl - ), chloride ionized aluminum chloride (m ⁇ AlCl 3 - Cl – ), chloride ionized zinc chloride (m ⁇ ZnCl 2 -Cl – ), bromide ionized ferric chloride (m ⁇ FeCl 3 -Br – ) or chloride
  • the number of carbon atoms in the main chain of the long chain structure described in the above catalyst is preferably 8-1200.
  • the preparation method of the above-mentioned polyester depolymerization or cyclic ester synthesis catalyst provided by the present invention is characterized in that the process steps and conditions of the preparation method 1 are as follows:
  • the hydroxyl-containing thiazolium halide catalyst with a medium-long alkyl chain is then subjected to a Lewis acid-base neutralization reaction with 1-3 times the molar amount of Lewis acidic metal ion chloride (MCl n ), so that the anion of the above salt is converted from X – is m ⁇ MCl n -X - , and another type of hydroxyl-containing imidazolium salt is obtained (m ⁇ MCl n -X - + R'Im-R-OH, in which the number of carbon atoms in the main chain of the R-OH group is ⁇ 8) , another type of thiazolium salt containing hydroxyl groups (m ⁇ MCl n -X – + Thi-R-OH, in which the number of carbon atoms in the main chain of the R-OH group is ⁇ 8), and another type of long alkane in the general structural formula I
  • a hydroxyl-containing imidazolium salt catalyst with a base chain
  • step (3) Combine another type of hydroxyl-containing imidazolium salt, another type of hydroxyl-containing thiazolium salt, and another type of long alkyl chain hydroxyl-containing imidazolium salt in the general structural formula I obtained in step (2)
  • the catalyst or another type of long alkyl chain hydroxyl-containing thiazolium salt catalyst in the general structural formula I is then subjected to a ring-opening polymerization reaction with 1-100 times the molar amount of cyclic ester or cyclic ether-ester to prepare the general structural formula I Imidazolium salt catalyst with medium and long chain structure of polyester or polyether-ester [m ⁇ MCl n -X – + R'Im-R-poly(ester unit) n -OH(ester unit represents a polymer containing an ester group Structural unit, the subscript n represents the degree of polymerization)] or in the general structural formula I
  • the reaction produces an imidazolium salt or thiazolium salt catalyst with a long chain structure of aliphatic polyester in the general formula I [m ⁇ MCl n -X – + R'Im-R-poly(ester unit) n -OH or m ⁇ MCl n -X – + Thi-R-poly(ester unit) n -OH],
  • the number of carbon atoms in the main chain is ⁇ 8), the hydroxyl-containing organic carboxylate catalyst with a long alkyl chain in the general structural formula II (the number of carbon atoms in the main chain is ⁇ 8), or the hydroxyl-containing organic carboxylate catalyst with a long alkyl chain in the general structural formula II.
  • Organic sulfonate catalyst (main chain carbon atoms ⁇ 8); or cyclic ester and alkali metal hydroxide, alkaline earth metal hydroxide or quaternary ammonium base according to the molar ratio of cyclic ester to hydroxide 0.8-1.2 Mix and prepare hydroxyl-containing organic carboxylates (main chain carbon atoms ⁇ 8) whose cations are alkali metal ions, alkaline earth metal ions or quaternary ammonium ions (main chain carbon atoms ⁇ 8) or long alkyl chains in the general structural formula II through alkaline decomposition of ester bonds. Hydroxyl-containing organic sulfonate catalyst (main chain carbon atoms ⁇ 8);
  • step (1) Use the organic carboxylate, organic sulfonate, long alkyl chain-containing hydroxyl-containing organic carboxylate catalyst of the general structural formula II, or the organic carboxylic acid salt of the structural formula II obtained in step (1) whose cation is an alkali metal ion.
  • the medium-long alkyl chain hydroxyl-containing organic sulfonate catalyst is then mixed with Lewis acidic metal ion chloride (MCl n ) according to a carboxylate or sulfonate/chloride ion molar ratio of 1-2, and through metathesis reaction, another catalyst is produced.
  • MCl n Lewis acidic metal ion chloride
  • One type of cation is hydroxyl-containing organic carboxylates of Lewis acidic metal ions (where the number of carbon atoms in the main chain is ⁇ 8), organic sulfonates (where the number of carbon atoms in the main chain is ⁇ 8), and long alkyl groups in the general structural formula II
  • the cation obtained in step (2) is an alkali metal ion, an alkaline earth metal ion, a quaternary ammonium ion or a Lewis acidic metal ion, a hydroxyl-containing organic carboxylate, an organic sulfonate, and a long alkyl group in the general structural formula II
  • a chain hydroxyl-containing organic carboxylate catalyst or a long alkyl chain hydroxyl-containing organic sulfonate catalyst in the general structural formula II is then mixed with 1-100 times the molar amount of cyclic ester or cyclic ether-ester, and the ring is opened through
  • the polymerization reaction prepares a catalyst with a long-chain structure of polyester or polyether-ester in the general formula II, or it is mixed with 1-100 times molar amount of hydroxy acid or with 1-100 times molar amount of dibasic acid and 1 -100 times the molar amount of glycol is mixed, and a catalyst with a long chain structure of polyester
  • Catalyst for ester or mix polyether containing terminal carboxylic acid and terminal hydroxyl group with alkali metal hydroxide, alkaline earth metal hydroxide or quaternary ammonium base at a molar ratio of terminal carboxylate to hydroxide of 0.8-1.2, and then The Br ⁇ nsted acid-base neutralization reaction is carried out at a temperature higher than the melting point of the corresponding polymer to prepare terminal carboxylates and terminal hydroxyl groups in which the cation in the general formula II is an alkali metal ion, an alkaline earth metal ion or a quaternary ammonium ion.
  • the hydroxyl-containing alkyl halide used in the quaternization reaction described in the above method one is preferably 8-chloron-octanol, 3-chloro-1-propanol or 2-bromo-1-ethanol, and the hydroxyl-containing alkyl halide used contains imidazole or thiazole structure
  • the compound is preferably 1-methylimidazole, 1-butylimidazole, 4-methylthiazole, thiazole or benzothiazole
  • the reaction temperature is preferably 60-120°C, more preferably 100-120°C
  • the reaction time is preferably 12-48h, More preferably 12-24h.
  • the MCl n used in the Lewis acid-base neutralization reaction described in the above method one is preferably zinc chloride (ZnCl 2 ), stannous chloride (SnCl 2 ), aluminum chloride (AlCl 3 ) or ferric chloride (FeCl 3 ), the reaction temperature is preferably 25-120°C, more preferably 25-80°C, and the reaction time is preferably 0.5-12h, more preferably 0.5-4h.
  • the cyclic ester or cyclic ether-ester used in the ring-opening polymerization reaction described in the above method one or two is preferably lactide (LA), glycolide (GA), ⁇ -caprolactone ( ⁇ -CL), ⁇ - Valerolactone ( ⁇ -VL), p-dioxanone (PDO), 3,4-dihydro-2H-benzo[1,4]dioxepin-2-one (BDXO) or 4-benzene Based on -3,4-dihydro-2H-benzo[1,4]dioxipine-2-one (BDXOP), the reaction temperature is preferably 60-220°C, more preferably 120-180°C, and the reaction time is preferably 1- 48h, more preferably 2-12h.
  • the dibasic acid used in the esterification polycondensation reaction described in the above method one or two is preferably 1,4-succinic acid or 1,6-adipic acid, and the dihydric alcohol used is preferably 1,2-ethylene glycol,
  • the reaction temperature is preferably 80-220°C, more preferably 80-160°C
  • the reaction time is preferably 8-48h, more preferably 8-16h
  • the reaction pressure is preferably 1- 1*10 4 Pa, more preferably 100-3000Pa.
  • the hydroxyl-containing organic carboxylic acid used in the Bronsted acid-base neutralization reaction described in the above method two is preferably 12-hydroxyoctadecanoic acid or 6-hydroxycaproic acid, 18-hydroxyoctadecanoic acid or 8-hydroxyoctanoic acid, using
  • the hydroxyl-containing organic sulfonic acid is 4-hydroxybutanesulfonate Acid, 3-hydroxypropanesulfonic acid or 2-hydroxyethanesulfonic acid
  • the alkali metal hydroxide used is preferably sodium hydroxide or potassium hydroxide
  • the alkaline earth metal hydroxide used is preferably magnesium hydroxide or calcium hydroxide
  • the quaternary hydroxide used is
  • the ammonium base is preferably tetramethylammonium hydroxide or tetraethylammonium hydroxide
  • the reaction temperature is preferably 25-180°C, more preferably 60-120°C
  • the reaction time is preferably 0.5-12h, more
  • the cyclic ester used in the alkaline hydrolysis reaction of the ester bond described in the above method 2 is preferably cyclopentadecanolactone or ⁇ -CL
  • the alkali metal hydroxide used is preferably sodium hydroxide or potassium hydroxide
  • the alkaline earth metal hydroxide used is Magnesium hydroxide or calcium hydroxide is preferred
  • the quaternary ammonium base used is preferably tetramethylammonium hydroxide or tetraethylammonium hydroxide
  • the reaction temperature is preferably 25-180°C, more preferably 60-120°C
  • the reaction time is preferably 0.5- 12h, more preferably 0.5-8h.
  • the MCl n used in the metathesis reaction described in the above method two or three is preferably ZnCl 2 , SnCl 2 , AlCl 3 or FeCl 3 , the reaction temperature is preferably 25–220°C, more preferably 120–220°C, and the reaction time is preferably 0.5– 12h, more preferably 0.5-4h.
  • the aliphatic polyester used in the alkaline hydrolysis reaction of the ester bond described in the above method three is preferably PES, PBS, PHS, PEA, PBA, PHA, PLA, PGA, PCL or PVL, and the polyether-ester used is preferably PPDO, PBDXO or For PDBXOP, the reaction temperature is preferably 60-220°C, more preferably 120-220°C, and the reaction time is preferably 1-48h, more preferably 2-12h.
  • the polyether used in the Br ⁇ nsted acid-base neutralization reaction described in the above method three is preferably PEG or PTHF, the reaction temperature is preferably 25-120°C, more preferably 25-80°C, and the reaction time is preferably 0.5-12h, more preferably 0.5 –4h.
  • the application of the above-mentioned polyester depolymerization or cyclic ester synthesis catalyst provided by the present invention is characterized in that the application is used to catalyze the hydrolysis, alcoholysis or cyclization depolymerization of polyester homopolymerization, copolymerization, blending or composites to recover corresponding Monomers or monomers and oligomers, or are used to catalyze the synthesis of cyclic ester monomers or cyclic ester monomers and cyclic oligomers through condensation polymerization and cyclization reactions of hydroxy acids or hydroxy acid esters.
  • the specific method of catalyzing the hydrolysis, alcoholysis or cyclization depolymerization of polyester homopolymerization, copolymerization, blending or composites to recover the corresponding monomers or monomers and oligomers is as follows: The ester is mixed with water or alcohol and catalyst according to the proportion, heated to 40-200°C under a pressure of 0.1-2MPa to perform a hydrolysis or alcoholysis reaction for 1-12 hours, and then the corresponding monomer or monomer and oligomer water or water is recovered.
  • Alcohol solution or heat to 80-400°C under a pressure of 1-1*10 5 Pa for cyclization and depolymerization for 0.5-12h, and simultaneously perform distillation or extraction to remove the generated cyclic ester monomer or cyclic ester monomer and cyclic
  • the oligomer is separated from the reaction system; the ratio of polyester to water or alcohol is 100:50-2000wt%, and the molar ratio of the catalyst to the ester bond in the polyester based on the terminal hydroxyl group is 0.01-10mol%.
  • the water added in the hydrolysis or alcoholysis reaction or The ratio of alcohol to polyester is preferably 100-500wt%; the ratio of added catalyst is preferably 0.1-2mol%; the pressure of the hydrolysis or alcoholysis reaction is preferably 0.1-0.8MPa, the temperature is preferably 80-160°C, and the time is preferably 2-6h; The pressure of the cyclization depolymerization reaction is preferably 1-1000 Pa, the temperature is preferably 120-220°C, and the time is preferably 0.5-2 h.
  • the polyester homopolymerization, copolymerization, blending or composite contains the polyaliphatic dibasic acid glycol ester structural unit of the following structural formula I, containing
  • the polycyclic ester structural unit of the following general formula ii may contain polyether-ester structural units:
  • R 1 and R 2 are aliphatic groups, which may be the same or different, and R 3 is an aliphatic or aromatic group.
  • the corresponding monomers or monomers and oligomers obtained by hydrolyzing the polyaliphatic dibasic acid diol ester are monomers of the following general formula III.
  • the corresponding monomer or monomer and oligomer product obtained by alcoholysis recovery has the following structure
  • R 1 and R 2 are aliphatic groups
  • R 4 is methyl, ethyl, hydroxyethyl, hydroxybutyl or hydroxyhexyl
  • the n value of the degree of polymerization is 2 or 3.
  • the corresponding monomers or monomers and oligomers obtained by hydrolyzing polycyclic esters or polyether-esters are monomer hydroxy acids of the following structural formula VIII,
  • the corresponding monomers or monomers and oligomers recovered by cyclization and depolymerization are monomer cyclic esters or cyclic ether esters with the following structural formula xii
  • R 3 is an aliphatic or aromatic group.
  • the n value of the degree of polymerization is 2 or 3
  • the n value of the degree of polymerization is 1 or 2.
  • the polyester of the polyaliphatic polydibasic acid diol structural unit is PES, PBS, PHS, At least one of PEA, PBA and PHA
  • the polyester of the polycyclic ester structural unit is at least one of PLA, PGA, PCL and PVL
  • the polyester of the polyetherester structural unit is PPDO, PBDXO or At least one of PDBXOP.
  • the hydroxy acid is preferably glycolic acid, lactic acid, 6-hydroxycaproic acid, 5-hydroxyvaleric acid or 12-hydroxyoctadecanoic acid.
  • the hydroxy acid ester is methyl glycolate, ethyl glycolate, methyl lactate, ethyl lactate, methyl 6-hydroxycaproate, ethyl 6-hydroxycaproate, methyl 5-hydroxyvalerate, 5 -Any one of ethyl hydroxyvalerate, methyl 12-hydroxyoctadecanoate or ethyl 12-hydroxyoctadecanoate.
  • the cyclic ester monomers and cyclic oligomers are glycolide, lactide, and ⁇ -caprolactone monomers. Or ⁇ -caprolactone cyclic oligomer.
  • the present invention has one or more of the following positive effects:
  • the catalyst provided by the invention is designed with a terminal hydroxyl structure and a long-chain structure, these structures can reduce the molecular weight of the reactants through transesterification with polyester, thereby achieving the effect of reducing the viscosity of the reaction system, thereby avoiding problems due to mass transfer. Equipment and process design challenges brought about by this problem.
  • the catalytic active center can be fully contacted with the reactant polyester, thus greatly improving the utilization rate of the catalytic active center. , reduce catalyst consumption and improve overall catalytic efficiency.
  • the long-chain structural composition of the catalyst provided by the present invention is designable and selectable, it can be selectively compatible with a certain phase in the polyester blend or composite by adjusting the composition of the long-chain structure. , thus enabling selective depolymerization of polyester blends or composites.
  • the catalyst provided by the present invention is a long-chain catalyst, the molecular weight difference between it and the monomers and oligomers produced by depolymerization is also very different, and the physical properties such as boiling point and solubility of the catalyst and the product are also very different. Therefore, it is easy to achieve product separation and purification and catalyst recycling, making the catalytic depolymerization method greener.
  • the number of carbon atoms in the long chain structure the number of carbon atoms in the R-OH group.
  • the long chain structure is a polyester chain, a polyether-ester chain or a polyether chain
  • the number of carbon atoms in the long chain structure the average degree of polymerization of the polymer segment * the number of main chain carbon atoms in the structural unit + R-OH Number of carbon atoms in the group.
  • the calculation of the average polymerization degree of the polymer segment is shown in Figures 3 and 5.
  • step (3) Add 10mmol FeCl 3 -Cl – + MIm-C 3 -OH and 50mmol ⁇ -VL into a round-bottomed flask, stir and react for 8 hours under oil bath heating at 120°C in a nitrogen atmosphere, and prepare FeCl 3 through ring-opening polymerization.
  • step (3) Add 10mmol FeCl 3 -Br – + MIm-C 2 -OH and 300mmol ⁇ -VL into a round-bottomed flask, stir and react for 2 hours under heating in an oil bath at 160°C in a nitrogen atmosphere, and prepare FeCl 3 through ring-opening polymerization.
  • step (3) Add 10mmol FeCl 3 -Cl – + MThi-C 3 -OH and 700mmol ⁇ -VL into a round-bottomed flask, stir and react for 4 hours under heating in an oil bath at 180°C in a nitrogen atmosphere, and obtain FeCl 3 through ring-opening polymerization.
  • step (3) Add 10mmol FeCl 3 -Cl – + Thi-C 3 -OH and 900mmol ⁇ -VL into a round-bottomed flask, stir and react for 24 hours under heating in an oil bath at 140°C in a nitrogen atmosphere, and prepare FeCl 3 through ring-opening polymerization.
  • step (3) Add 10mmol SnCl 2 -Cl – + MIm-C 3 -OH and 100mmol ⁇ -VL into a round-bottomed flask, stir and react for 3 hours under heating in an oil bath at 140°C in a nitrogen atmosphere, and polymerize SnCl 2 -Cl through ring-opening – + MIm-C 3 -poly( ⁇ -VL) 10 -OH.
  • Step (1) is the same as Embodiment 8 (1).
  • (2) Add 20mmol Cl – + MIm-C 3 -OH and 20mmol ZnCl 2 into a round-bottomed flask, stir and react for 4 hours under heating in an oil bath at 25°C in a nitrogen atmosphere to obtain ZnCl 2 -Cl – + MIm-C 3 -OH .
  • (3) Add 10mmol ZnCl 2 -Cl – + MIm-C 3 -OH and 100mmol ⁇ -VL into a round-bottomed flask, stir and react for 4 hours under oil bath heating at 140°C in a nitrogen atmosphere, and prepare ZnCl 2 through ring-opening polymerization.
  • Step (1) is the same as Embodiment 8 (1).
  • (2) Add 20mmol Cl – + MIm-C 3 -OH and 20mmol AlCl 3 into a round-bottomed flask, stir and react for 4 hours under heating in an oil bath at 25°C in a nitrogen atmosphere to obtain AlCl 3 -Cl – + MIm-C 3 -OH. .
  • (3) Add 10mmol AlCl 3 -Cl – + MIm-C 3 -OH and 100mmol ⁇ -VL into a round-bottomed flask, stir and react for 16 hours under heating in an oil bath at 140°C in a nitrogen atmosphere, and prepare AlCl 3 through ring-opening polymerization.
  • Step (1) is the same as in Example 8 (1)).
  • (2) Add 20mmol Cl – + MIm-C 3 -OH and 34mmol FeCl 3 into a round-bottomed flask, stir and react for 2 hours under 120°C oil bath heating in a nitrogen atmosphere to obtain 1.7 ⁇ FeCl 3 -Cl – + MIm-C 3 -OH.
  • (3) Add 10mmol 1.7 ⁇ FeCl 3 -Cl – + MIm-C 3 -OH and 100mmol ⁇ -VL into a round-bottomed flask, stir and react for 4 hours under oil bath heating at 140°C in a nitrogen atmosphere, and obtain it through ring-opening polymerization.
  • Step (1) is the same as Embodiment 8 (1).
  • (2) Add 20mmol Cl – + MIm-C 3 -OH and 60mmol FeCl 3 to a round-bottomed flask, stir and react for 1 hour in a nitrogen atmosphere under 120°C oil bath heating to obtain 3 ⁇ FeCl 3 -Cl – + MIm-C 3 -OH.
  • (3) Add 10mmol 3 ⁇ FeCl 3 -Cl – + MIm-C 3 -OH and 100mmol ⁇ -VL into a round-bottomed flask, stir and react for 4 hours under oil bath heating at 140°C in a nitrogen atmosphere, and obtain it through ring-opening polymerization.
  • Step (1) is the same as Embodiment 8 (1).
  • (2) Add 20mmol Cl – + MIm-C 3 -OH and 26mmol FeCl 3 to a round-bottomed flask, stir and react for 4 hours under heating in an oil bath at 25°C in a nitrogen atmosphere to obtain 1.3 ⁇ FeCl 3 -Cl – + MIm-C 3 -OH.
  • (3) Add 10mmol 1.3 ⁇ FeCl 3 -Cl – + MIm-C 3 -OH and 100mmol ⁇ -VL into a round-bottomed flask, stir and react for 4 hours under oil bath heating at 140°C in a nitrogen atmosphere, and obtain it through ring-opening polymerization.
  • Step (1) is the same as Embodiment 8 (1).
  • (2) Add 20mmol Cl – + MIm-C 3 -OH and 20mmol FeCl 3 into a round-bottomed flask, stir and react for 4 hours under heating in an oil bath at 25°C in a nitrogen atmosphere to obtain FeCl 3 -Cl – + MIm-C 3 -OH. .
  • step (3) Add 10mmol FeCl 3 -Cl – + MIm-C 3 -OH and 100mmol L-lactide (L-LA) into a round-bottomed flask, stir and react for 4 hours under oil bath heating at 140°C in a nitrogen atmosphere, and pass Ring-opening polymerization produces FeCl 3 -Cl – + MIm-C 3 -poly(L-LA) 10 -OH.
  • Step (1) and step (2) are the same as those in Example 14 (1) and (2).
  • (3) Add 10mmol FeCl 3 -Cl – + MIm-C 3 -OH and 100mmol GA into a round-bottomed flask, stir evenly in a nitrogen atmosphere under 220°C oil bath heating, and then perform a ring-opening polymerization reaction for 1 hour to prepare FeCl 3 -Cl – + MIm-C 3 -poly(GA) 10 -OH.
  • Step (1) and step (2) are the same as those in Example 14 (1) and (2).
  • (3) Add 10mmol FeCl 3 -Cl – + MIm-C 3 -OH Add 100 mmol ⁇ -CL into a round-bottomed flask, stir and react for 12 hours under oil bath heating at 140°C in a nitrogen atmosphere, and obtain FeCl 3 -Cl – + MIm-C 3 -poly( ⁇ -CL) 10 - through ring-opening polymerization.
  • Step (1) and step (2) are the same as those in Example 14 (1) and (2).
  • (3) Add 10mmol FeCl 3 -Cl – + MIm-C 3 -OH and 100mmol PDO into a round-bottomed flask, heat and stir in a 120°C oil bath in a nitrogen atmosphere for 4 hours, then cool to 60°C and react for 16 hours. Through ring opening FeCl 3 -Cl – + MIm-C 3 -poly(PDO) 10 -OH is obtained by polymerization.
  • Step (1) and step (2) are the same as those in Example 14 (1) and (2).
  • (3) Add 10mmol FeCl 3 -Cl – + MIm-C 3 -OH and 100mmol PDO into a round-bottomed flask, heat and stir in an oil bath at 80°C in a nitrogen atmosphere for 24 hours, and prepare FeCl 3 -Cl – through ring-opening polymerization. + MIm-C 3 -poly(PDO) 10 -OH.
  • Step (1) and step (2) are the same as Example 14 (1) and (2).
  • (3) Add 10mmol FeCl 3 -Cl – + MIm-C 3 -OH and 100mmol BDXO into a round-bottomed flask, and in a nitrogen atmosphere Stir and react for 2 hours under heating in an oil bath at 140°C, then lower the temperature to 80°C and react for 14 hours to obtain FeCl 3 -Cl – + MIm-C 3 -poly(BDXO) 10 -OH through ring-opening polymerization.
  • Step (1) and step (2) are the same as those in Example 14 (1) and (2).
  • (3) Add 10mmol FeCl 3 -Cl – + MIm-C 3 -OH and 100mmol BDXOP into a round-bottomed flask, stir and react for 2 hours under heating in an oil bath at 140°C in a nitrogen atmosphere, then lower the temperature to 80°C and react for 14 hours.
  • FeCl 3 -Cl – + MIm-C 3 -poly(BDXOP) 10 -OH prepared by cyclopolymerization.
  • Step (1) and step (2) are the same as those in Example 14 (1) and (2).
  • (3) Add 10mmol FeCl 3 -Cl – + MIm-C 3 -OH Add 10 mmol ⁇ -VL into a round-bottomed flask, stir and react for 1 hour under oil bath heating at 140°C in a nitrogen atmosphere, and obtain FeCl 3 -Cl – + MIm-C 3 -poly( ⁇ -VL) 1 - through ring-opening polymerization.
  • Step (1) and step (2) are the same as those in Example 14 (1) and (2).
  • (3) Add 10mmol FeCl 3 -Cl – + MIm-C 3 -OH and 1000mmol ⁇ -VL into a round-bottomed flask, stir and react for 48 hours under oil bath heating at 140°C in a nitrogen atmosphere, and obtain FeCl 3 through ring-opening polymerization.
  • -Cl – + MIm-C 3 -poly( ⁇ -VL) 100 -OH.
  • Step (1) and step (2) are the same as those in Example 14 (1) and (2).
  • (3) Add 10mmol FeCl 3 -Cl – + MIm-C 3 -OH and 200mmol L-lactic acid into the round-bottomed flask, reduce the pressure of the water pump to 3000Pa and control the temperature of the oil bath at 80, 100, 120 and 140°C. React for 2 hours, then use an oil pump to reduce the pressure to 100 Pa and react for 8 hours at 140°C.
  • FeCl 3 -Cl – + MIm-C 3 -poly(L-LA) 10 -OH is obtained through polycondensation.
  • Step (1) and step (2) are the same as those in Example 14 (1) and (2).
  • (3) Add 10mmol FeCl 3 -Cl – + MIm-C 3 -OH and 500mmol glycolic acid into a round-bottomed flask, and react in sequence with the water pump reducing the pressure to 3000Pa and the oil bath temperature controlling 80, 100, 120, and 140°C. 2h, then use an oil pump to reduce the pressure to 100Pa at 160°C and react for 6h to obtain FeCl 3 -Cl – + MIm-C 3 -poly(GA) 25 -OH through polycondensation.
  • Step (1) and step (2) are the same as those in Example 14 (1) and (2).
  • (3) Add 10mmol FeCl 3 -Cl – + MIm-C 3 -OH, 10mmol succinic acid and 10mmol ethylene glycol into the round bottom flask, reduce the pressure to 3000Pa with the water pump and control the oil bath temperature to 80, 100, 120, 140 The reactions were carried out in sequence for 2 hours at °C, and FeCl 3 -Cl – + MIm-C 3 -poly(ES) 1 -OH was obtained through polycondensation.
  • Step (1) and step (2) are the same as those in Example 14 (1) and (2).
  • (3) Add 10mmol FeCl 3 -Cl – + MIm-C 3 -OH, 100mmol succinic acid and 100mmol butanediol into the round bottom flask, reduce the pressure to 3000Pa with the water pump and control the oil bath temperature to 80, 100, 120, 140 The reactions were carried out in sequence for 2 hours at °C, and then the pressure was reduced to 100 Pa using an oil pump at 160°C for 8 hours to obtain FeCl 3 -Cl – + MIm-C 3 -poly(BS) 10 -OH through polycondensation.
  • Step (1) and step (2) are the same as those in Example 14 (1) and (2).
  • (3) Add 10mmol FeCl 3 -Cl – + MIm-C 3 -OH, 700mmol succinic acid and 700mmol hexanediol into the round bottom flask, reduce the pressure to 3000Pa with the water pump and control the oil bath temperature to 80, 100, 120, 140 The reactions were carried out in sequence for 2 hours at °C, and then the pressure was reduced to 100 Pa using an oil pump at 160 °C for 40 hours to obtain FeCl 3 -Cl – + MIm-C 3 -poly(HS) 70 -OH through polycondensation.
  • Step (1) and step (2) are the same as those in Example 14 (1) and (2).
  • (3) Add 10mmol FeCl 3 -Cl – + MIm-C 3 -OH, 100mmol adipic acid and 100mmol ethylene glycol into the round bottom flask, reduce the pressure to 3000Pa with the water pump and control the oil bath temperature to 120, 140, 160, 180 The reaction was carried out in sequence for 2 hours at °C, and then the pressure was reduced to 100 Pa by an oil pump at 220°C for 2 hours.
  • FeCl 3 -Cl – + MIm-C 3 -poly(EA) 10 -OH was obtained through polycondensation.
  • Step (1) and step (2) are the same as those in Example 14 (1) and (2).
  • (3) Add 10mmol FeCl 3 -Cl – + MIm-C 3 -OH, 100mmol adipic acid and 100mmol butanediol into the round bottom flask, reduce the pressure to 1*10 4 Pa with the water pump and control the temperature of the oil bath at 80 and 100 , 120, and 140°C for 2 hours each, and then use an oil pump to reduce the pressure to 100 Pa at 160°C for 12 hours to obtain FeCl 3 -Cl – + MIm-C 3 -poly(BA) 10 -OH through polycondensation.
  • Step (1) and step (2) are the same as those in Example 14 (1) and (2).
  • (3) Add 10mmol FeCl 3 -Cl – + MIm-C 3 -OH Add 1000mmol adipic acid and 1000mmol hexanediol into a round-bottomed flask, and react with the water pump to reduce the pressure to 3000Pa and the oil bath temperature control at 80, 100, 120, and 140°C for 2 hours, and then use the oil pump unit to reduce the temperature at 160°C. Press to 1 Pa and react for 40 hours to obtain FeCl 3 -Cl – + MIm-C 3 -poly(HA) 100 -OH through polycondensation.
  • step (3) Mix 10mmol Al 3+ ( – OOC-C 5 -OH) 3 and 150mmol ⁇ -VL in a round-bottomed flask, stir and react for 8 hours under oil bath heating at 120°C in a nitrogen atmosphere, and obtain it through ring-opening polymerization.
  • step (2) Add 900mmol ⁇ -VL, stir and react for 2 hours under oil bath heating at 160°C in a nitrogen atmosphere, and prepare Me 4 N + – SO 3 -C 4 -poly( ⁇ -VL) 30 - through ring-opening polymerization.
  • step (2) Add 1500mmol ⁇ -VL, stir and react for 24 hours under oil bath heating at 100°C in a nitrogen atmosphere, and obtain Et 4 N + – SO 3 -C 3 -poly( ⁇ -VL) 50 - through ring-opening polymerization.
  • Step (1) is the same as Embodiment 39(1).
  • (2) Add 15 mmol ZnCl 2 to it, stir for another 4 hours at 160°C, and then cool to room temperature to obtain Zn 2+ ( – OOC-C 14 -OH) 2 .
  • (3) Mix 10mmol Zn 2+ ( – OOC-C 14 -OH) 2 and 200mmol ⁇ -VL in a round-bottomed flask, stir and react for 4 hours under oil bath heating at 140°C in a nitrogen atmosphere, and prepare Zn through ring-opening polymerization. 2+ [ – OOC-C 14 -poly( ⁇ -VL) 10 -OH] 2 .
  • Step (1) is the same as Embodiment 39(1).
  • (2) Add 15 mmol SnCl 2 to it, stir for another 1 hour at 120°C and then cool to room temperature to obtain Sn 2+ ( – OOC-C 14 -OH) 2 .
  • (3) Mix 10mmol Sn 2+ ( – OOC-C 14 -OH) 2 and 200mmol ⁇ -VL in a round-bottomed flask, stir and react for 4 hours under oil bath heating at 140°C in a nitrogen atmosphere, and prepare Sn through ring-opening polymerization. 2+ [ – OOC-C 14 -poly( ⁇ -VL) 10 -OH] 2 .
  • Step (1) is the same as Embodiment 39(1).
  • (2) Add 20 mmol AlCl 3 to it, stir for another 0.5 h at 220°C, and then cool to room temperature to obtain Al 3+ ( – OOC-C 14 -OH) 3 .
  • (3) Mix 10mmol Al 3+ ( – OOC-C 14 -OH) 3 and 300mmol ⁇ -VL in a round-bottomed flask, stir and react for 4 hours under oil bath heating at 140°C in a nitrogen atmosphere, and obtain it through ring-opening polymerization.
  • Step (1) is the same as Embodiment 39(1).
  • (2) Add 16 mmol AlCl 3 to it, stir for another 0.5 h at 180°C, then cool to room temperature, separate and collect the solid components, and obtain Al 3+ ( – OOC-C 14 -OH) 3 .
  • (3) Mix 10mmol Al 3+ ( – OOC-C 14 -OH) 3 and 300mmol ⁇ -VL in a round-bottomed flask, stir and react for 4 hours under oil bath heating at 140°C in a nitrogen atmosphere, and obtain it through ring-opening polymerization.
  • Step (1) and step (2) are the same as (1) and (2) in Embodiment 31.
  • (3) Mix 10mmol Al 3+ [ -OOC -C 11 (C 6 )-OH] 3 and 300mmol L-LA in a round-bottomed flask, and react for 4 hours in a nitrogen atmosphere under 140°C oil bath heating.
  • Al 3+ [ -OOC -C 11 (C 6 )-poly(L-LA) 10 -OH] 3 is obtained by polymerization.
  • Step (1) and step (2) are the same as (1) and (2) in Embodiment 31.
  • (3) Mix 10mmol Al 3+ [ -OOC -C 11 (C 6 )-OH] 3 and 300mmol GA in a round-bottomed flask, react for 1 hour in a nitrogen atmosphere under 220°C oil bath heating, and prepare by ring-opening polymerization Obtain Al 3+ [ -OOC -C 11 (C 6 )-poly(GA) 10 -OH] 3 .
  • Step (1) and step (2) are the same as (1) and (2) in Embodiment 31.
  • (3) Mix 10mmol Al 3+ [ -OOC -C 11 (C 6 )-OH] 3 and 300mmol ⁇ -CL in a round-bottomed flask, and react for 12 hours in a nitrogen atmosphere under 140°C oil bath heating.
  • Al 3+ [ -OOC -C 11 (C 6 )-poly( ⁇ -CL) 10 -OH] 3 is obtained by polymerization.
  • step (3) Mix 10mmol Al 3+ ( – OOC-C 17 -OH) 3 and 300mmol PDO in a round-bottomed flask, react in a nitrogen atmosphere under 120°C oil bath heating for 4 hours, then lower the temperature to 60°C and react for 16 hours. Ring-opening polymerization produces Al 3+ [ –OOC -C 17 -poly(PDO) 10 -OH] 3 .
  • step (3) Mix 10mmol Al 3+ ( – OOC-C 7 -OH) 3 and 300mmol PDO in a round-bottomed flask, react in a nitrogen atmosphere under 120°C oil bath heating for 4 hours, then lower the temperature to 60°C and react for 16 hours. Ring-opening polymerization produces Al 3+ [ –OOC -C 7 -poly(PDO) 10 -OH] 3 .
  • Step (1) and step (2) are the same as (1) and (2) in Embodiment 31.
  • (3) Add 10mmol Al 3+ [ – OOC-C 11 (C 6 )-OH] 3 Mix with 300 mmol BDXOP in a round-bottomed flask, heat and react in an oil bath at 140°C for 4 hours in a nitrogen atmosphere, then lower the temperature to 80°C and react for 12 hours to prepare Al 3+ [ – OOC-C 11 (C 6 )- through ring-opening polymerization.
  • Step (1) and step (2) are the same as (1) and (2) in Embodiment 31.
  • (3) Mix 10mmol Al 3+ [ – OOC-C 11 (C 6 )-OH] 3 and 30mmol ⁇ -VL in a round-bottomed flask, react for 1 hour in a nitrogen atmosphere under 140°C oil bath heating, and ring-open Al 3+ [ -OOC -C 11 (C 6 )-poly( ⁇ -VL) 1 -OH] 3 is obtained by polymerization.
  • Step (1) and step (2) are the same as (1) and (2) in Embodiment 31.
  • (3) Mix 10mmol Al 3+ [ -OOC -C 11 (C 6 )-OH] 3 and 3000mmol ⁇ -VL in a round-bottomed flask, react in a nitrogen atmosphere under 140°C oil bath heating for 48h, and ring-open Al 3+ [ -OOC -C 11 (C 6 )-poly( ⁇ -VL) 100 -OH] 3 is obtained by polymerization.
  • Step (1) and step (2) are the same as (1) and (2) in Embodiment 31.
  • (3) Add 10mmol Al 3+ [ -OOC -C 11 (C 6 )-OH] 3 and 600mmol L-lactic acid into the round-bottomed flask, reduce the pressure to 3000Pa with the water pump and control the oil bath temperature to 80, 100, 120, 140 °C temperature for 2 hours each, and then use an oil pump to reduce the pressure to 100 Pa for 8 hours at 140 °C, to obtain Al 3+ [ -OOC -C 11 (C 6 )-poly(L-LA) 10 -OH] through polycondensation.
  • Step (1) and step (2) are the same as (1) and (2) in Embodiment 31.
  • (3) Add 10mmol Al 3+ [ -OOC -C 11 (C 6 )-OH] 3 and 1500mmol glycolic acid to the round-bottomed flask, reduce the pressure to 3000Pa with the water pump and control the oil bath temperature to 80, 100, 120, 140°C The reaction was carried out in sequence for 2 hours each at 160°C, and then the pressure was reduced to 100Pa with an oil pump at 160°C for 6 hours.
  • Al 3+ [ -OOC -C 11 (C 6 )-poly(GA) 25 -OH] 3 was obtained through polycondensation.
  • Step (1) and step (2) are the same as (1) and (2) in Embodiment 31.
  • (3) Add 10mmol Al 3+ [ -OOC -C 11 (C 6 )-OH] 3 , 30mmol succinic acid and 30mmol ethylene glycol into the round-bottom flask, reduce the pressure to 3000Pa with the water pump and control the oil bath temperature to 80, The reactions were carried out sequentially for 2 hours at temperatures of 100, 120, and 140°C, and Al 3+ [ -OOC -C 11 (C 6 )-poly(ES) 1 -OH] 3 was obtained through polycondensation.
  • Step (1) and step (2) are the same as (1) and (2) in Embodiment 31.
  • (3) Add 10mmol Al 3+ [ -OOC -C 11 (C 6 )-OH] 3 , 300mmol succinic acid and 300mmol butanediol into the round-bottomed flask, reduce the pressure to 3000Pa with the water pump and control the oil bath temperature to 80, React at 100, 120, and 140°C for 2 hours each, and then use an oil pump to reduce the pressure to 100Pa at 160°C for 8 hours.
  • Al 3+ is obtained through polycondensation [ – OOC-C 11 (C 6 )-poly(BS) 10 -OH] 3 .
  • Step (1) and step (2) are the same as (1) and (2) in Embodiment 31.
  • (3) Add 10mmol Al 3+ [ -OOC -C 11 (C 6 )-OH] 3 , 2100mmol succinic acid and 2100mmol hexanediol into the round bottom flask, reduce the pressure to 3000Pa with the water pump and control the oil bath temperature to 80, React at 100, 120, and 140°C for 2 hours each, and then use an oil pump to reduce the pressure to 100Pa at 160°C for 40 hours.
  • Al 3+ is obtained through polycondensation [ – OOC-C 11 (C 6 )-poly(HS) 70 -OH] 3 .
  • Step (1) and step (2) are the same as (1) and (2) in Embodiment 31.
  • (3) Add 10mmol Al 3+ [ -OOC -C 11 (C 6 )-OH] 3 , 300mmol adipic acid and 300mmol ethylene glycol into the round-bottom flask, reduce the pressure to 3000Pa with the water pump and control the oil bath temperature to 120, React at 140, 160, and 180°C for 2 hours each, and then use an oil pump to reduce the pressure to 100Pa at 220°C for 2 hours.
  • Al 3+ [ -OOC -C 11 (C 6 )-poly(EA) 10 is obtained through polycondensation.
  • Step (1) and step (2) are the same as (1) and (2) in Embodiment 31.
  • (3) Add 10mmol Al 3+ [ – OOC-C 11 (C 6 )-OH] 3
  • Step (1) and step (2) are the same as (1) and (2) in Embodiment 31.
  • (3) Add 10mmol Al 3+ [ -OOC -C 11 (C 6 )-OH] 3 , 3000mmol adipic acid and 3000mmol hexanediol into the round bottom flask, reduce the pressure to 3000Pa with the water pump and control the oil bath temperature to 80, React at temperatures of 100, 120, and 140°C for 2 hours each, and then use an oil pump unit to reduce the pressure to 1 Pa at 160°C for 40 hours.
  • Al 3+ [ -OOC -C 11 (C 6 )-poly(HA) is obtained through polycondensation. 100 -OH] 3 .
  • step (2) Mix 6mmol Na + – OOC-poly(BDXOP) 10 -OH and 3mmol ZnCl 2 and stir at 140°C for 2h Zn 2+ [ – OOC-poly(BDXOP) 10 -OH] 2 is obtained.
  • step (2) Mix 6mmol Na + – OOC-poly(EG) 100 -OH and 3mmol ZnCl 2 and stir at 25°C for 4 hours to obtain Zn 2+ [ – OOC-poly(EG) 100 -OH] 2 .
  • FeCl 3 -Cl – + MIm-C 8 -OH prepared in step (2) of Example 1 was used to catalyze the hydrolysis of PVL.
  • the molar ratio of the catalyst terminal hydroxyl group to the PVL ester bond is 1/100, and the mass ratio of the added water to PVL is 1.5/1.
  • Hydrolysis was carried out in a hydrothermal reactor at 140°C for 3 hours and then cooled to room temperature. The depolymerization conversion rate is 99%.
  • the FeCl 3 -Cl – + MIm-C 8 -OH prepared in step (2) of Example 1 was used to catalyze the alcoholysis of PVL.
  • the molar ratio of the catalyst terminal hydroxyl group to the PVL ester bond is 1/100, and the mass ratio of the added methanol to PVL is 2/1.
  • FeCl 3 -Cl – + MIm-C 8 -OH prepared as in step (2) of Example 1 was used to catalyze the cyclization and depolymerization of PVL.
  • the molar ratio of catalyst terminal hydroxyl group to PVL ester bond is 1/100.
  • the oil pump was reduced to 100 Pa and stirred at 160°C, and the cyclization depolymerization product was continuously distilled.
  • the depolymerization yield after 2 hours was 85%.
  • FeCl 3 -Cl – + MIm-C 8 -poly( ⁇ -VL) 10 -OH prepared as in step (3) of Example 1 was used to catalyze the hydrolysis of PVL.
  • the molar ratio of the catalyst terminal hydroxyl group to the PVL ester bond is 1/100, and the mass ratio of the added water to PVL is 1.2/1.
  • Hydrolysis was carried out in a hydrothermal reactor at 140°C for 2 hours and then cooled to room temperature. The depolymerization conversion rate is 100%.
  • the FeCl 3 -Cl – + MIm-C 8 -poly( ⁇ -VL) 10 -OH prepared in step (3) of Example 1 was used to catalyze the alcoholysis of PVL.
  • the molar ratio of the catalyst terminal hydroxyl group to the PVL ester bond is 1/100, and the mass ratio of the added methanol to PVL is 5/1.
  • FeCl 3 -Cl – + MIm-C 8 -poly( ⁇ -VL) 10 -OH prepared as in step (3) of Example 1 was used to catalyze the cyclization and depolymerization of PVL.
  • the molar ratio of catalyst terminal hydroxyl group to PVL ester bond is 1/100.
  • the oil pump was reduced to 100 Pa and stirred at 160°C, and the cyclization depolymerization product was continuously distilled.
  • the depolymerization yield was 98% after 1.5h and 107% after 2h. (Since the catalyst contains a -poly( ⁇ -VL)-segment, the catalyst will depolymerize when over-reacted, resulting in product mass > mass of reactant PVL).
  • FeCl 3 -Cl – + MIm-C 3 -poly( ⁇ -VL) 5 -OH prepared as in step (3) of Example 2 was used to catalyze the cyclization and depolymerization of PVL.
  • the molar ratio of catalyst terminal hydroxyl group to PVL ester bond is 1/100.
  • the oil pump was reduced to 100 Pa and stirred at 160°C, and the cyclization depolymerization product was continuously distilled.
  • the depolymerization yield after 1.5h was 97%.
  • the FeCl 3 -Br – + MIm-C 2 -poly( ⁇ -VL) 30 -OH prepared in step (3) of Example 3 was used to catalyze the cyclization and depolymerization of PVL.
  • the molar ratio of catalyst terminal hydroxyl group to PVL ester bond is 1/100.
  • the oil pump was reduced to 100 Pa and stirred at 160°C, and the cyclization depolymerization product was continuously distilled.
  • the depolymerization yield after 1.5h was 94%.
  • FeCl 3 -Cl – + BIm-C 3 -poly( ⁇ -VL) 50 -OH prepared as in step (3) of Example 4 was used to catalyze the cyclization and depolymerization of PVL.
  • the molar ratio of catalyst terminal hydroxyl group to PVL ester bond is 1/100.
  • the oil pump was reduced to 100 Pa and stirred at 160°C, and the cyclization depolymerization product was continuously distilled.
  • the depolymerization yield after 1.5h was 107%.
  • FeCl 3 -Cl – + MThi-C 3 -poly( ⁇ -VL) 70 -OH prepared as in step (3) of Example 5 was used to catalyze the cyclization and depolymerization of PVL.
  • the molar ratio of catalyst terminal hydroxyl group to PVL ester bond is 1/100.
  • the oil pump was reduced to 100 Pa and stirred at 160°C, and the cyclization depolymerization product was continuously distilled.
  • the depolymerization yield after 1.5h was 109%.
  • FeCl 3 -Cl – + Thi-C 3 -poly( ⁇ -VL) 90 -OH prepared as in step (3) of Example 6 was used to catalyze the cyclization and depolymerization of PVL.
  • the molar ratio of catalyst terminal hydroxyl group to PVL ester bond is 1/100.
  • the oil pump was reduced to 100 Pa and stirred at 160°C, and the cyclization depolymerization product was continuously distilled.
  • the depolymerization yield after 1.5h was 118%.
  • the FeCl 3 -Cl – + BzThi-C 3 -poly( ⁇ -VL) 10 -OH prepared in step (3) of Example 7 was used to catalyze the cyclization and depolymerization of PVL.
  • the molar ratio of catalyst terminal hydroxyl group to PVL ester bond is 1/100.
  • Reduce the pressure of the oil pump to 100Pa and 160°C conditions Stir while continuing to distill out the cyclization and depolymerization products.
  • the depolymerization yield after 1.5h was 96%.
  • SnCl 2 -Cl – + MIm-C 3 -poly( ⁇ -VL) 10 -OH prepared as in step (3) of Example 8 was used to catalyze the cyclization and depolymerization of PVL.
  • the molar ratio of catalyst terminal hydroxyl group to PVL ester bond is 1/100.
  • the oil pump was reduced to 100 Pa and stirred at 160°C, and the cyclization depolymerization product was continuously distilled. The depolymerization yield after 1 hour was 98%.
  • the ZnCl 2 -Cl – + MIm-C 3 -poly( ⁇ -VL) 10 -OH prepared in step (3) of Example 9 was used to catalyze the cyclization and depolymerization of PVL.
  • the molar ratio of catalyst terminal hydroxyl group to PVL ester bond is 1/100.
  • the oil pump was reduced to 100 Pa and stirred at 160°C, and the cyclization depolymerization product was continuously distilled.
  • the depolymerization yield after 1 hour was 94%.
  • the AlCl 3 -Cl – + MIm-C 3 -poly( ⁇ -VL) 10 -OH prepared in step (3) of Example 10 was used to catalyze the cyclization and depolymerization of PVL.
  • the molar ratio of catalyst terminal hydroxyl group to PVL ester bond is 1/100.
  • the oil pump was reduced to 100 Pa and stirred at 160°C, and the cyclization depolymerization product was continuously distilled.
  • the depolymerization yield after 2 hours was 79%.
  • the 1.7 ⁇ FeCl 3 -Cl – + MIm-C 3 -poly( ⁇ -VL) 10 -OH prepared as in step (3) of Example 11 was used to catalyze the cyclization and depolymerization of PVL.
  • the molar ratio of catalyst terminal hydroxyl group to PVL ester bond is 1/100.
  • the oil pump was reduced to 100 Pa and stirred at 160°C, and the cyclization depolymerization product was continuously distilled.
  • the depolymerization yield after 1 hour was 92%.
  • the 3 ⁇ FeCl 3 -Cl – + MIm-C 3 -poly( ⁇ -VL) 10 -OH prepared in step (3) of Example 12 was used to catalyze the cyclization and depolymerization of PVL.
  • the molar ratio of catalyst terminal hydroxyl group to PVL ester bond is 1/100.
  • the oil pump was reduced to 100 Pa and stirred at 160°C, and the cyclization depolymerization product was continuously distilled. After 1 hour, the depolymerization yield was 43%, and the reaction system was obviously carbonized.
  • the 1.3 ⁇ FeCl 3 -Cl – + MIm-C 3 -poly( ⁇ -VL) 10 -OH prepared in step (3) of Example 13 was used to catalyze the cyclization and depolymerization of PVL.
  • the molar ratio of catalyst terminal hydroxyl group to PVL ester bond is 1/100.
  • the depolymerization yield after 1 hour was 90%.
  • FeCl 3 -Cl – + MIm-C 3 -poly(L-LA) 10 -OH prepared as in step (3) of Example 14 was used to catalyze the cyclization and depolymerization of PLLA.
  • the molar ratio of catalyst terminal hydroxyl group to PLLA ester bond is 1/50.
  • the oil pump was reduced to 100 Pa and stirred at 200°C, and the cyclization depolymerization product was continuously distilled.
  • the depolymerization yield after 0.75h was 96%, and the depolymerization yield after 1h was 104%.
  • the recovered product is high-purity L-LA.
  • the content of L-LA in the recovered product is >98%.
  • the lactide content is about 1%.
  • FeCl 3 -Cl – + MIm-C 3 -poly(GA) 10 -OH prepared as in step (3) of Example 15 was used to catalyze the cyclization and depolymerization of PGA.
  • the molar ratio of catalyst terminal hydroxyl group to PGA ester bond is 1/100.
  • the oil pump was reduced to 100 Pa and stirred at 220°C, and the cyclization depolymerization product was continuously distilled. The depolymerization yield after 1 hour was 98%.
  • FeCl 3 -Cl – + MIm-C 3 -poly( ⁇ -CL) 10 -OH prepared as in step (3) of Example 16 was used to catalyze the cyclization and depolymerization of PCL.
  • the molar ratio of catalyst terminal hydroxyl group to PCL ester bond is 1/100.
  • the oil pump was reduced to 100 Pa and stirred at 200°C, and the cyclization depolymerization product was continuously distilled.
  • the depolymerization yield after 4 hours was 98%, and the depolymerization yield after 6 hours was 107%.
  • the recovered product is a mixture of -CL monomer, cyclic dimer and cyclic trimer.
  • the recovery product The proportions of ⁇ -CL monomer, cyclic dimer and cyclic trimer in the product are 82.90%, 15.23% and 1.76% respectively.
  • FeCl 3 -Cl – + MIm-C 3 -poly(PDO) 10 -OH prepared as in step (3) of Example 17 was used to catalyze the cyclization and depolymerization of PPDO.
  • the molar ratio of catalyst terminal hydroxyl group to PPDO ester bond is 1/100.
  • the oil pump was reduced to 100 Pa and stirred at 160°C, and the cyclization depolymerization product was continuously distilled. The depolymerization yield after 1 hour was 99%.
  • FeCl 3 -Cl – + MIm-C 3 -poly(PDO) 10 -OH prepared as in step (3) of Example 18 was used to catalyze the cyclization and depolymerization of PPDO.
  • the molar ratio of catalyst terminal hydroxyl group to PPDO ester bond is 1/100.
  • the oil pump was reduced to 100 Pa and stirred at 140°C, and the cyclization depolymerization product was continuously distilled. The depolymerization yield after 1 hour was 97%.
  • FeCl 3 -Cl – + MIm-C 3 -poly(BDXO) 10 -OH prepared as in step (3) of Example 19 was used to catalyze the cyclization and depolymerization of PBDXO.
  • the molar ratio of catalyst terminal hydroxyl group to PBDXO ester bond is 1/100.
  • the oil pump was reduced to 100 Pa and stirred at 160°C, and the cyclization depolymerization product was continuously distilled. The depolymerization yield after 2 hours was 94%.
  • FeCl 3 -Cl – + MIm-C 3 -poly(BDXOP) 10 -OH prepared as in step (3) of Example 20 was used to catalyze the cyclization and depolymerization of PBDXOP.
  • the molar ratio of catalyst terminal hydroxyl group to PBDXOP ester bond is 1/100.
  • the oil pump was reduced to 100 Pa and stirred at 160°C, and the cyclization depolymerization product was continuously distilled. The depolymerization yield after 2 hours was 90%.
  • FeCl 3 -Cl – + MIm-C 3 -poly( ⁇ -VL) 1 -OH prepared as in step (3) of Example 21 was used to catalyze the cyclization and depolymerization of PVL.
  • the molar ratio of catalyst terminal hydroxyl group to PVL ester bond is 1/100.
  • the oil pump was reduced to 100 Pa and stirred at 160°C, and the cyclization depolymerization product was continuously distilled.
  • the depolymerization yield after 1.5h was 56%.
  • FeCl 3 -Cl – + MIm-C 3 -poly( ⁇ -VL) 100 -OH prepared as in step (3) of Example 22 was used to catalyze the cyclization and depolymerization of PVL.
  • the molar ratio of catalyst terminal hydroxyl group to PVL ester bond is 1/100.
  • the oil pump was reduced to 100 Pa and stirred at 160°C, and the cyclization depolymerization product was continuously distilled.
  • the depolymerization yield was 80% after 1.5h.
  • FeCl 3 -Cl – + MIm-C 3 -poly(L-LA) 10 -OH prepared as in step (3) of Example 23 was used to catalyze the cyclization and depolymerization of PLLA.
  • the molar ratio of catalyst terminal hydroxyl group to PLLA ester bond is 1/100.
  • the oil pump was reduced to 100 Pa and stirred at 200°C, and the cyclization depolymerization product was continuously distilled.
  • the depolymerization yield after 0.75h was 98%.
  • the molar ratio of catalyst terminal hydroxyl group to PGA ester bond is 1/100.
  • the oil pump was reduced to 100 Pa and stirred at 220°C, and the cyclization depolymerization product was continuously distilled. The depolymerization yield after 1 hour was 108%.
  • FeCl 3 -Cl – + MIm-C 3 -poly(ES) 1 -OH prepared as in step (3) of Example 25 was used to catalyze the hydrolysis of PES.
  • the molar ratio of the catalyst terminal hydroxyl group to the PES ester bond is 1/100, and the mass ratio of the added water to PES is 4/1.
  • Hydrolysis was carried out in a hydrothermal reactor at 140°C for 4 hours and then cooled to room temperature. The depolymerization conversion rate is 99%.
  • FeCl 3 -Cl – + MIm-C 3 -poly(BS) 10 -OH prepared as in step (3) of Example 26 was used to catalyze the hydrolysis of PBS.
  • the molar ratio of the catalyst terminal hydroxyl group to the PBS ester bond is 1/100, and the mass ratio of the added water to PBS is 8/1.
  • Hydrolysis was carried out in a hydrothermal reactor at 140°C for 4 hours and then cooled to room temperature. The depolymerization conversion rate is 100%.
  • FeCl 3 -Cl – + MIm-C 3 -poly(HS) 70 -OH prepared as in step (3) of Example 27 was used to catalyze the hydrolysis of PHS.
  • the molar ratio of the catalyst terminal hydroxyl group to the PHS ester bond is 1/100, and the mass ratio of the added water to PHS is 2/1.
  • Hydrolysis was carried out in a hydrothermal reactor at 140°C for 4 hours and then cooled to room temperature. The depolymerization conversion rate was 97%.
  • FeCl 3 -Cl – + MIm-C 3 -poly(EA) 10 -OH prepared as in step (3) of Example 28 was used to catalyze the hydrolysis of PEA.
  • the molar ratio of the catalyst terminal hydroxyl group to the PEA ester bond is 1/100, and the mass ratio of the added water to PEA is 15/1.
  • Hydrolysis was carried out in a hydrothermal reactor at 140°C for 4 hours and then cooled to room temperature. The depolymerization conversion rate is 100%.
  • FeCl 3 -Cl – + MIm-C 3 -poly(BA) 10 -OH prepared as in step (3) of Example 29 was used to catalyze the hydrolysis of PBA.
  • the molar ratio of the catalyst terminal hydroxyl group to the PBA ester bond is 1/100, and the mass ratio of the added water to PBA is 20/1.
  • Hydrolysis was carried out in a hydrothermal reactor at 140°C for 4 hours and then cooled to room temperature. The depolymerization conversion rate is 100%.
  • FeCl 3 -Cl – + MIm-C 3 -poly(HA) 100 -OH prepared as in step (3) of Example 30 was used to catalyze the hydrolysis of PHA.
  • the molar ratio of the catalyst terminal hydroxyl group to the PHA ester bond is 1/100, and the mass ratio of the added water to PHA is 12/1.
  • water heat Hydrolysis was carried out in the reaction kettle at 140°C for 4 hours and then cooled to room temperature. The depolymerization conversion rate is 99%.
  • Al 3+ [ –OOC -C 11 (C 6 )-OH] 3 prepared as in step (2) of Example 31 was used to catalyze the cyclization and depolymerization of PVL.
  • the molar ratio of catalyst terminal hydroxyl group to PVL ester bond is 1/100.
  • the oil pump was reduced to 100 Pa and stirred at 160°C, and the cyclization depolymerization product was continuously distilled.
  • the depolymerization yield after 2 hours was 85%.
  • the Al 3+ [ -OOC -C 11 (C 6 )-poly( ⁇ -VL) 10 -OH] 3 prepared in step (3) of Example 31 was used to catalyze the cyclization and depolymerization of PVL.
  • the molar ratio of catalyst terminal hydroxyl group to PVL ester bond is 1/100.
  • the oil pump was reduced to 100 Pa and stirred at 160°C, and the cyclization depolymerization product was continuously distilled.
  • the depolymerization yield after 2 hours was 94%.
  • the Al 3+ [ -OOC -C 5 -poly( ⁇ -VL) 5 -OH] 3 prepared in step (3) of Example 32 was used to catalyze the cyclization and depolymerization of PVL.
  • the molar ratio of catalyst terminal hydroxyl group to PVL ester bond is 1/100.
  • the oil pump was reduced to 100 Pa and stirred at 160°C, and the cyclization depolymerization product was continuously distilled.
  • the depolymerization yield after 2 hours was 95%.
  • Me 4 N + -SO 3 -C 4 -poly( ⁇ -VL) 30 -OH prepared as in step (2) of Example 33 was used to catalyze the cyclization and depolymerization of PVL.
  • the molar ratio of catalyst terminal hydroxyl group to PVL ester bond is 1/100.
  • the oil pump was reduced to 100 Pa and stirred at 160°C, and the cyclization depolymerization product was continuously distilled. The depolymerization yield after 2 hours was 59%.
  • Et 4 N + -SO 3 -C 3 -poly( ⁇ -VL) 50 -OH prepared as in step (2) of Example 34 was used to catalyze the cyclization and depolymerization of PVL.
  • the molar ratio of catalyst terminal hydroxyl group to PVL ester bond is 1/100.
  • the oil pump was reduced to 100 Pa and stirred at 160°C, and the cyclization depolymerization product was continuously distilled. The depolymerization yield after 2 hours was 47%.
  • the Al 3+ [ -OOC -C 14 -poly( ⁇ -VL) 70 -OH] 3 prepared in step (3) of Example 35 was used to catalyze the cyclization and depolymerization of PVL.
  • the molar ratio of catalyst terminal hydroxyl group to PVL ester bond is 1/100.
  • the oil pump was reduced to 100 Pa and stirred at 160°C, and the cyclization depolymerization product was continuously distilled.
  • the depolymerization yield after 2 hours was 133%.
  • the Al 3+ [ -OOC -C 5 -poly( ⁇ -VL) 90 -OH] 3 prepared in step (3) of Example 36 was used to catalyze the cyclization and depolymerization of PVL.
  • the molar ratio of catalyst terminal hydroxyl group to PVL ester bond is 1/100.
  • the oil pump was reduced to 100 Pa and stirred at 160°C, and the cyclization depolymerization product was continuously distilled.
  • the depolymerization yield after 2 hours was 142%.
  • the Mg 2+ [ -OOC -C 14 -poly( ⁇ -VL) 10 -OH] 2 prepared in step (2) of Example 37 was used to catalyze the cyclization and depolymerization of PVL.
  • the molar ratio of catalyst terminal hydroxyl group to PVL ester bond is 1/100.
  • the oil pump was reduced to 100 Pa and stirred at 160°C, and the cyclization depolymerization product was continuously distilled.
  • the depolymerization yield after 2 hours was 105%.
  • the Fe 3+ [ -OOC -C 14 -poly( ⁇ -VL) 10 -OH] 3 prepared in step (3) of Example 39 was used to catalyze the cyclization and depolymerization of PVL.
  • the molar ratio of catalyst terminal hydroxyl group to PVL ester bond is 1/100.
  • the oil pump was reduced to 100 Pa and stirred at 160°C, and the cyclization depolymerization product was continuously distilled.
  • the depolymerization yield after 1 hour was 96%.
  • Zn 2+ [ –OOC -C 14 -poly( ⁇ -VL) 10 -OH] 2 prepared as in step (3) of Example 40 was used to catalyze the cyclization and depolymerization of PVL.
  • the molar ratio of catalyst terminal hydroxyl group to PVL ester bond is 1/100.
  • the oil pump was reduced to 100 Pa and stirred at 160°C, and the cyclization depolymerization product was continuously distilled. The depolymerization yield after 1 hour was 100%.
  • the Al 3+ [ -OOC -C 14 -poly( ⁇ -VL) 10 -OH] 3 prepared in step (3) of Example 42 was used to catalyze the cyclization and depolymerization of PVL.
  • the molar ratio of catalyst terminal hydroxyl group to PVL ester bond is 1/100.
  • the oil pump was reduced to 100 Pa and stirred at 160°C, and the cyclization depolymerization product was continuously distilled.
  • the depolymerization yield after 2 hours was 94%.
  • the Al 3+ [ -OOC -C 14 -poly( ⁇ -VL) 10 -OH] 3 prepared in step (3) of Example 43 was used to catalyze the cyclization and depolymerization of PVL.
  • the molar ratio of catalyst terminal hydroxyl group to PVL ester bond is 1/100.
  • the oil pump was reduced to 100 Pa and stirred at 160°C, and the cyclization depolymerization product was continuously distilled.
  • the depolymerization yield after 2 hours was 94%.
  • Al 3+ [ –OOC -C 11 (C 6 )-poly(L-LA) 10 -OH] 3 prepared as in step (3) of Example 44 was used to catalyze the cyclization and depolymerization of PLLA.
  • the molar ratio of catalyst terminal hydroxyl group to PLLA ester bond is 1/100.
  • the oil pump was reduced to 100 Pa and stirred at 200°C, and the cyclization depolymerization product was continuously distilled. The depolymerization yield after 2 hours was 98%.
  • the Al 3+ [ -OOC -C 11 (C 6 )-poly(GA) 10 -OH] 3 prepared in step (3) of Example 45 was used to catalyze the cyclization and depolymerization of PGA.
  • the molar ratio of catalyst terminal hydroxyl group to PGA ester bond is 1/100.
  • the oil pump was reduced to 100 Pa and stirred at 220°C, and the cyclization depolymerization product was continuously distilled.
  • the depolymerization yield after 1 hour was 88%.
  • the Al 3+ [ – OOC-C 11 (C 6 )-poly( ⁇ -CL) 10 -OH] 3 prepared in step (3) of Example 46 was used to catalyze the cyclization and depolymerization of PCL.
  • the molar ratio of catalyst terminal hydroxyl group to PCL ester bond is 1/100.
  • the oil pump was reduced to 100 Pa and stirred at 200°C, and the cyclization depolymerization product was continuously distilled.
  • the depolymerization yield after 6 hours was 84%.
  • the Al 3+ [ -OOC -C 17 -poly(PDO) 10 -OH] 3 prepared in step (3) of Example 47 was used to catalyze the cyclization and depolymerization of PPDO.
  • the molar ratio of catalyst terminal hydroxyl group to PPDO ester bond is 1/100.
  • the oil pump was reduced to 100 Pa and stirred at 160°C, and the cyclization depolymerization product was continuously distilled.
  • the depolymerization yield after 2 hours was 101%.
  • the Al 3+ [ -OOC -C 7 -poly(PDO) 10 -OH] 3 prepared in step (3) of Example 48 was used to catalyze the cyclization and depolymerization of PPDO.
  • the molar ratio of catalyst terminal hydroxyl group to PPDO ester bond is 1/100.
  • the oil pump was reduced to 100 Pa and stirred at 160°C, and the cyclization depolymerization product was continuously distilled.
  • the depolymerization yield after 2 hours was 102%.
  • the Al 3+ [ -SO 3 -C 2 -poly(PDO) 10 -OH] 3 prepared in step (3) of Example 49 was used to catalyze the cyclization and depolymerization of PBDXO.
  • the molar ratio of catalyst terminal hydroxyl group to PBDXO ester bond is 1/100.
  • the oil pump was reduced to 100 Pa and stirred at 160°C, and the cyclization depolymerization product was continuously distilled. The depolymerization yield after 4 hours was 89%.
  • the Al 3+ [ -OOC -C 11 (C 6 )-poly( ⁇ -VL) 1 -OH] 3 prepared in step (3) of Example 51 was used to catalyze the cyclization and depolymerization of PVL.
  • the molar ratio of catalyst terminal hydroxyl group to PVL ester bond is 1/100.
  • the oil pump was reduced to 100 Pa and stirred at 160°C, and the cyclization depolymerization product was continuously distilled.
  • the depolymerization yield after 2 hours was 68%.
  • the Al 3+ [ -OOC -C 11 (C 6 )-poly(L-LA) 10 -OH] 3 prepared in step (3) of Example 53 was used to catalyze the cyclization and depolymerization of PLLA.
  • the molar ratio of catalyst terminal hydroxyl group to PLLA ester bond is 1/100.
  • the oil pump was reduced to 100 Pa and stirred at 200°C, and the cyclization depolymerization product was continuously distilled. The depolymerization yield was 100% after 2 hours.
  • Al 3+ [ – OOC-C 11 (C 6 )-poly(ES) 1 -OH] 3 prepared as in step (3) of Example 55 was used to catalyze the hydrolysis of PES.
  • the molar ratio of the catalyst terminal hydroxyl group to the PES ester bond is 1/100, and the mass ratio of the added water to PES is 2/1.
  • Hydrolysis was carried out in a hydrothermal reactor at 140°C for 4 hours and then cooled to room temperature. The depolymerization conversion rate is 99%.
  • Al 3+ [ –OOC -C 11 (C 6 )-poly(BS) 10 -OH] 3 prepared as in step (3) of Example 56 was used to catalyze the hydrolysis of PBS.
  • the molar ratio of the catalyst terminal hydroxyl group to the PBS ester bond is 1/100, and the mass ratio of the added water to PBS is 2/1.
  • Hydrolysis was carried out in a hydrothermal reactor at 140°C for 4 hours and then cooled to room temperature. The depolymerization conversion rate is 100%.
  • Al 3+ [ –OOC -C 11 (C 6 )-poly(HS) 70 -OH] 3 prepared as in step (3) of Example 57 was used to catalyze the hydrolysis of PHS.
  • the molar ratio of the catalyst terminal hydroxyl group to the PHS ester bond is 1/10000, and the mass ratio of the added water to PHS is 2/1.
  • Hydrolysis was carried out in a hydrothermal reactor at 140°C for 12 hours and then cooled to room temperature. The depolymerization conversion rate was 34%.
  • Al 3+ [ – OOC-C 11 (C 6 )-poly(EA) 10 -OH] 3 prepared as in step (3) of Example 58 was used to catalyze the hydrolysis of PEA.
  • the molar ratio of the catalyst terminal hydroxyl group to the PEA ester bond is 1/1000, and the mass ratio of the added water to PEA is 2/1.
  • Hydrolysis was carried out in a hydrothermal reactor at 140°C for 8 hours and then cooled to room temperature. The depolymerization conversion rate was 67%.
  • Al 3+ [ –OOC -C 11 (C 6 )-poly(BA) 10 -OH] 3 prepared as in step (3) of Example 59 was used to catalyze the hydrolysis of PBA.
  • the molar ratio of the catalyst terminal hydroxyl group to the PBA ester bond is 1/200, and the mass ratio of the added water to PBA is 2/1.
  • Hydrolysis was carried out in a hydrothermal reactor at 140°C for 6 hours and then cooled to room temperature. The depolymerization conversion rate is 95%.
  • Al 3+ [ –OOC -C 11 (C 6 )-poly(HA) 100 -OH] 3 prepared as in step (3) of Example 60 was used to catalyze the hydrolysis of PHA.
  • the molar ratio of the catalyst terminal hydroxyl group to the PHA ester bond is 1/100, and the mass ratio of the added water to PHA is 2/1.
  • water heat Hydrolysis was carried out in the reaction kettle at 140°C for 4 hours and then cooled to room temperature. The depolymerization conversion rate is 98%.
  • Zn 2+ [ – OOC-poly(ES) 10 -OH] 2 prepared as in step (2) of Example 61 was used to catalyze the hydrolysis of PES.
  • the molar ratio of the catalyst terminal hydroxyl group to the PES ester bond is 1/100, and the mass ratio of the added water to PES is 2/1.
  • Hydrolysis was carried out in a hydrothermal reactor at 140°C for 3 hours and then cooled to room temperature. The depolymerization conversion rate is 100%.
  • Zn 2+ [ –OOC -poly(BS) 1 -OH] 2 prepared as in step (2) of Example 62 was used to catalyze the hydrolysis of PBS.
  • the molar ratio of the catalyst terminal hydroxyl group to the PBS ester bond is 1/50, and the mass ratio of the added water to PBS is 2/1.
  • Hydrolysis was carried out in a hydrothermal reactor at 140°C for 3 hours and then cooled to room temperature. The depolymerization conversion rate is 99%.
  • Mg 2+ [ –OOC -poly(HS) 100 -OH] 2 prepared as in Example 63 was used to catalyze the hydrolysis of PHS.
  • the molar ratio of the catalyst terminal hydroxyl group to the PHS ester bond is 1/20, and the mass ratio of the added water to PHS is 2/1.
  • Hydrolysis was carried out in a hydrothermal reactor at 140°C for 3 hours and then cooled to room temperature. The depolymerization conversion rate is 100%.
  • Me4N + -OOC -poly(BA) 20 -OH prepared as in Example 65 was used to catalyze the hydrolysis of PBA.
  • the molar ratio of the catalyst terminal hydroxyl group to the PBA ester bond is 1/100, and the mass ratio of the added water to PBA is 2/1.
  • Hydrolysis was carried out in a hydrothermal reactor at 140°C for 3 hours and then cooled to room temperature. The depolymerization conversion rate was 96%.
  • Et 4 N + -OOC -poly(HA) 10 -OH prepared as in Example 66 was used to catalyze the hydrolysis of PHA.
  • the molar ratio of the catalyst terminal hydroxyl group to the PHA ester bond is 1/100, and the mass ratio of the added water to PHA is 2/1.
  • Hydrolysis was carried out in a hydrothermal reactor at 140°C for 3 hours and then cooled to room temperature. The depolymerization conversion rate was 96%.
  • Zn 2+ [ –OOC -poly(GA) 10 -OH] 2 prepared as in step (2) of Example 68 was used to catalyze the cyclization and depolymerization of PGA.
  • the molar ratio of catalyst terminal hydroxyl group to PGA ester bond is 1/100.
  • the oil pump was reduced to 100 Pa and stirred at 220°C, and the cyclization depolymerization product was continuously distilled. The depolymerization yield after 1 hour was 103%.
  • Zn 2+ [ –OOC -poly( ⁇ -VL) 10 -OH] 2 prepared as in step (2) of Example 70 was used to catalyze the cyclization and depolymerization of PVL.
  • the molar ratio of catalyst terminal hydroxyl group to PVL ester bond is 1/100.
  • the oil pump was reduced to 100 Pa and stirred at 160°C, and the cyclization depolymerization product was continuously distilled.
  • the depolymerization yield after 1 hour was 102%.
  • Zn 2+ [ – OOC-poly(EG) 100 -OH] 2 prepared as in step (2) of Example 74 was used to catalyze the cyclization depolymerization of PVL.
  • the molar ratio of catalyst terminal hydroxyl group to PVL ester bond is 1/100.
  • the oil pump was reduced to 100 Pa and stirred at 160°C, and the cyclization depolymerization product was continuously distilled. The depolymerization yield after 1 hour was 97%.
  • Zn 2+ ( – OOC-poly(THF) 50 -OH) 2 and HOOC-poly(THF) 50 -OH prepared in step (2) of Example 75 were used to catalyze the cyclization and depolymerization of PVL.
  • the molar ratio of catalyst terminal hydroxyl group to PVL ester bond is 1/100.
  • the oil pump was reduced to 100 Pa and stirred at 160°C, and the cyclization depolymerization product was continuously distilled. The depolymerization yield after 1 hour was 55%.
  • Zn 2+ [ – OOC-poly(EG) 100 -OH] 2 prepared as in step (2) of Example 76 was used to catalyze the cyclization depolymerization of PVL.
  • the molar ratio of catalyst terminal hydroxyl group to PVL ester bond is 1/100.
  • the oil pump was reduced to 100 Pa and stirred at 160°C, and the cyclization depolymerization product was continuously distilled. The depolymerization yield after 1 hour was 96%.
  • Fe 3+ [ – OOC-poly(EG) 100 -OH] 3 prepared as in step (2) of Example 78 was used to catalyze the cyclization depolymerization of PVL.
  • the molar ratio of catalyst terminal hydroxyl group to PVL ester bond is 1/100.
  • the oil pump was reduced to 100 Pa and stirred at 160°C, and the cyclization depolymerization product was continuously distilled. The depolymerization yield after 1 hour was 97%.
  • Al 3+ [ – OOC-poly(EG) 100 -OH] 3 prepared as in step (2) of Example 79 was used to catalyze the cyclization depolymerization of PVL.
  • the molar ratio of catalyst terminal hydroxyl group to PVL ester bond is 1/100.
  • the oil pump was reduced to 100 Pa and stirred at 160°C, and the cyclization depolymerization product was continuously distilled. The depolymerization yield after 2 hours was 92%.
  • Zn 2+ [ – OOC-poly(EG) 100 -OH] 2 prepared as in step (2) of Example 80 was used to catalyze the cyclization depolymerization of PVL.
  • the molar ratio of catalyst terminal hydroxyl group to PVL ester bond is 1/100.
  • the oil pump was reduced to 100 Pa and stirred at 160°C, and the cyclization depolymerization product was continuously distilled.
  • the depolymerization yield after 1 hour was 99%.
  • FeCl 3 -Cl – + MIm-C 3 -poly(BS) 10 -OH prepared as in step (3) of Example 26 was used to catalyze the hydrolysis of PBS.
  • the molar ratio of the catalyst terminal hydroxyl group to the PBS ester bond is 1/100, and the mass ratio of the added water to PBS is 1/2.
  • Hydrolysis was carried out in a hydrothermal reactor at 140°C for 1 hour and then cooled to room temperature.
  • the depolymerization conversion rate is 72%, and the product contains succinic acid, butylene glycol, succinic acid butylene glycol ester and succinic acid butylene glycol oligomers.
  • FeCl 3 -Cl – + MIm-C 3 -poly(BS) 10 -OH prepared as in step (3) of Example 26 was used to catalyze the hydrolysis of PBS.
  • the molar ratio of the catalyst terminal hydroxyl group to the PBS ester bond is 1/100, and the mass ratio of the added water to PBS is 10/1.
  • Hydrolysis was carried out in a hydrothermal reactor at 160°C for 2 hours and then cooled to room temperature. The depolymerization conversion rate is 100%.
  • FeCl 3 -Cl – + MIm-C 3 -poly(BS) 10 -OH prepared as in step (3) of Example 26 was used to catalyze the hydrolysis of PBS.
  • the molar ratio of the catalyst terminal hydroxyl group to the PBS ester bond is 1/100, and the mass ratio of the added water to PBS is 20/1.
  • Hydrolysis was carried out in a hydrothermal reactor at 80°C for 12 hours and then cooled to room temperature. The depolymerization conversion rate is 71%.
  • FeCl 3 -Cl – + MIm-C 3 -poly(BS) 10 -OH prepared as in step (3) of Example 26 was used to catalyze the hydrolysis of PBS.
  • the molar ratio of the catalyst terminal hydroxyl group to the PBS ester bond is 1/100, and the mass ratio of the added methanol to PBS is 2/1.
  • Alcoholysis was carried out at 40°C for 12 h.
  • the depolymerization conversion rate is 11%.
  • FeCl 3 -Cl – + MIm-C 3 -poly(BS) 10 -OH prepared as in step (3) of Example 26 was used to catalyze the hydrolysis of PBS.
  • the molar ratio of the catalyst terminal hydroxyl group to the PBS ester bond is 1/100, and the mass ratio of the added butanediol to PBS is 2/1.
  • Zn 2+ [ –OOC -poly(PDO) 10 -OH] 2 prepared as in step (2) of Example 71 was used to catalyze the cyclization and depolymerization of PPDO.
  • the molar ratio of catalyst terminal hydroxyl group to PPDO ester bond is 1/10000.
  • the oil pump was reduced to 100 Pa and stirred at 160°C, and the cyclization depolymerization product was continuously distilled. The depolymerization yield after 1 hour was 55%.
  • Zn 2+ [ –OOC -poly(PDO) 10 -OH] 2 prepared as in step (2) of Example 71 was used to catalyze the cyclization and depolymerization of PPDO.
  • the molar ratio of catalyst terminal hydroxyl group to PPDO ester bond is 1/10.
  • the oil pump was reduced to 100 Pa and stirred at 120°C, and the cyclization depolymerization product was continuously distilled. The depolymerization yield after 12 hours was 101%.
  • Zn 2+ [ –OOC -poly(PDO) 10 -OH] 2 prepared as in step (2) of Example 71 was used to catalyze the cyclization and depolymerization of PPDO.
  • the molar ratio of catalyst terminal hydroxyl group to PPDO ester bond is 1/100.
  • Melt and blend PPDO with the catalyst then cool to room temperature, then pulverize and pass through a 40-mesh sieve. Then, toluene was used for extraction at 80°C and normal pressure (1*10 5 Pa). Monomers were continuously generated and transferred to the extraction liquid (toluene). After 12 hours, the depolymerization conversion rate was 47%.
  • Zn 2+ [ –OOC -poly(PDO) 10 -OH] 2 prepared as in step (2) of Example 71 was used to catalyze the cyclization and depolymerization of PPDO.
  • the molar ratio of catalyst terminal hydroxyl group to PPDO ester bond is 1/100.
  • the oil pump was reduced to 100 Pa and stirred at 400°C, and the cyclization depolymerization product was continuously distilled.
  • the depolymerization yield after 0.5h was 101%.
  • the temperature was raised to 200°C and cyclization and depolymerization were performed under a pressure of 1 Pa.
  • the product was continuously generated and distilled.
  • the yield was 101% after 4 hours.
  • the content of ⁇ -CL monomer in the crude product was about 81%, and the content of ⁇ -CL cyclic dimer was about 81%.
  • the content is about 16%, and the content of ⁇ -CL cyclic trimer is about 2%.
  • the yield of the product after 4 hours was 96%.
  • the content of ⁇ -CL monomer in the crude product was about 80%, the content of ⁇ -CL cyclic dimer was about 17%, and the content of ⁇ -CL cyclic trimer was about 2%.
  • the yield was 95% after 4 hours.
  • the content of ⁇ -CL monomer in the crude product was about 78%, and the content of ⁇ -CL cyclic dimer was about 78%.
  • the content is about 18%, and the content of ⁇ -CL cyclic trimer is about 2%.
  • Zn 2+ [ – OOC-poly(GA) 10 -OH] 2 prepared as in step (2) of Example 68 was used to catalyze the polycondensation and cyclization depolymerization of glycolic acid.
  • the molar ratio of catalyst terminal hydroxyl group to glycolic acid is 1/100.
  • Acetic acid Then the temperature was raised to 220°C and cyclization and depolymerization were performed under a pressure of 1000 Pa. Products were continuously generated and distilled. The yield was 95% after 1 hour.
  • Zn 2+ [ –OOC -poly(GA) 10 -OH] 2 prepared as in step (2) of Example 68 was used to catalyze the polycondensation and cyclization depolymerization of methyl glycolate.
  • the molar ratio of catalyst terminal hydroxyl group to methyl glycolate is 1/1000. React under normal pressure at 140°C for 2 hours and continuously distill out the methanol generated, then slowly reduce the pressure to 3000 Pa and slowly raise the temperature to 180°C to react for 6 hours while continuously distilling out the generated methanol to prepare oligomerized glycolic acid. After cooling to room temperature, crush and pass through a 40-mesh sieve, and then use xylene for extraction at 80°C and normal pressure (1*10 5 Pa). Monomers are continuously generated and transferred to the extraction liquid (xylene) for 12 hours. The post-depolymerization conversion rate was 31%.
  • Zn 2+ [ – OOC-poly( ⁇ -VL) 10 -OH] 2 prepared as in step (2) of Example 70 was used to catalyze the condensation polymerization and cyclization depolymerization of 5-hydroxyvalerate.
  • the molar ratio of catalyst terminal hydroxyl group to 5-hydroxyvaleric acid is 1/50.
  • cyclization and depolymerization were performed at 160°C under a pressure of 1 Pa, and products were continuously generated and distilled. The yield was 105% after 2 hours.
  • Zn 2+ [ –OOC -poly( ⁇ -VL) 10 -OH] 2 prepared as in step (2) of Example 70 was used to catalyze the condensation polymerization and cyclization depolymerization of ethyl 5-hydroxyvalerate.
  • the molar ratio of catalyst terminal hydroxyl group to ethyl 5-hydroxyvalerate is 1/200.
  • cyclization and depolymerization were performed at 160°C under a pressure of 10 Pa, and products were continuously generated and distilled. The yield was 92% after 6 hours.
  • Al 3+ ( -OOC -C 17 -OH) 3 prepared as in step (2) of Example 47 was used to catalyze the condensation polymerization and cyclization depolymerization of 12-hydroxyoctadecanoic acid.
  • the molar ratio of catalyst terminal hydroxyl group to 12-hydroxyoctadecanoic acid is 1/100.
  • it warmed up to Cyclization and depolymerization were carried out at 220°C under a pressure of 1 Pa, and the product was continuously generated and distilled.
  • the yield was 95% after 1.5 hours.
  • Al 3+ ( -OOC -C 17 -OH) 3 prepared as in step (2) of Example 47 was used to catalyze the condensation polymerization and cyclization depolymerization of 12-hydroxyoctadecanoic acid methyl ester.
  • the molar ratio of catalyst terminal hydroxyl group to 12-hydroxyoctadecanoic acid methyl ester is 1/100.
  • the temperature was raised to 220°C and cyclization and depolymerization were performed under a pressure of 1 Pa. Products were continuously generated and distilled. The yield was 91% after 1.5 hours.
  • Al 3+ ( -OOC -C 17 -OH) 3 prepared as in step (2) of Example 47 was used to catalyze the condensation polymerization and cyclization depolymerization of 12-hydroxyoctadecanoic acid ethyl ester.
  • the molar ratio of catalyst terminal hydroxyl group to ethyl 12-hydroxyoctadecanoate is 1/100.
  • the temperature was raised to 220°C and cyclization and depolymerization were performed under a pressure of 1 Pa. Products were continuously generated and distilled. The yield was 89% after 1.5 hours.
  • the Zn 2+ [ -OOC -poly(L-LA) 10 -OH] 2 prepared in step (2) of Example 67 was used to catalyze the cyclization and depolymerization of the calcium carbonate and PLLA complex (mass ratio 38/62).
  • the molar ratio of catalyst terminal hydroxyl group to polyester ester bond is 1/100.
  • the oil pump was reduced to 100 Pa and stirred at 200°C, and the cyclization depolymerization product was continuously distilled. After 1 hour, the depolymerization yield was 105% (relative to PLLA), and the L-LA content in the depolymerization product was 99%.
  • the Zn 2+ [ -OOC -poly(L-LA) 10 -OH] 2 prepared in step (2) of Example 67 was used to catalyze the cyclization and depolymerization of the starch and PLLA complex (mass ratio 20/80).
  • the molar ratio of catalyst terminal hydroxyl group to polyester ester bond is 1/100.
  • the oil pump was reduced to 100 Pa and stirred at 200°C, and the cyclization depolymerization product was continuously distilled. After 1 hour, the depolymerization yield was 98% (relative to PLLA), and the L-LA content in the depolymerization product was 99%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本公开披露了聚酯解聚或环酯合成催化剂及制备方法和应用,该催化剂为主链碳原子数≥8,且同时含有端离子基团和端羟基结构的长链型催化剂,可用于催化聚酯水解、醇解或环化解聚以回收相应单体或单体和寡聚体或用于催化羟基酸或羟基酸酯通过缩聚和环化反应合成环酯单体或环酯单体和环状寡聚体。该催化剂既能降低反应体系黏度,又能大大提高催化活性中心的利用率,降低催化剂的消耗并提高总体的催化效率,可实现聚酯均聚物、共聚物、共混物或复合物的高效、高收率和选择性解聚,且操作简单,便于工业化生产。

Description

一种聚酯解聚或环酯合成催化剂及制备方法和应用
本申请要求于2022年6月2日递交的中国专利申请第202210623079.8号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本发明属于聚酯催化剂及其制备和应用技术领域,具体涉及一种聚酯解聚或环酯合成催化剂及制备方法和应用。
背景技术
合成高分子材料由于其质轻、价廉、可加工性好等优点在生产生活中广泛使用。随着高分子材料大量的生产、使用,其废弃量也在不断的持续增长,这不仅消耗了大量资源,也造成了严重环境污染。因此,高分子材料的循环回收技术的开发变得越发重要和迫切。
现有循环回收方式包括物理回收作降级再利用(CN201710740467.3)、化学回收为高附加值产品(CN201410233916.1)、解聚回收为单体(CN201510511713.9)等。其中,解聚回收为单体的方法是可将回收产物——单体和寡聚体再次用于合成为与最初产品具有同等性能的聚合物,从而构成闭环的循环过程,因而对降低资源消耗和环境污染具有独特的优势(Nature Chemistry,2016,8:42–49)(Science,2018,360:398–403)(Nature,2021,590:423–427)(Science,2021,373:783–789)。
然而,目前聚酯的解聚回收方法以及环酯合成的环化反应在进入反应中后期时还存在以下问题:(1)聚酯的高黏度特点会导致反应过程中存在严重的传质问题,对反应设备与工艺的设计带来较大挑战,而现有催化剂及其催化方法不能在催化反应的同时兼顾降黏效果,使得不仅反应速率慢且产物中杂质含量高;(2)现有中使用的催化剂往往与聚酯相容性较差,难以充分发挥其催化作用,导致催化剂消耗量大,解聚效率低,解聚成本高;(3)当反应物中存在手性位点时,现有催化方法常常由于要采用强酸、强碱、高温等极端条件,因而在反应过程中会发生立体异构化反应,导致产物消旋化,利用价值较低。
发明内容
本公开的一个方面是针对现有解聚回收和环酯合成中存在的问题提供一种聚酯解聚或环酯合成催化剂。
本公开的又一方面是提供一种上述聚酯解聚或环酯合成催化剂的制备方法。
本公开的再一方面是提供一种将上述聚酯解聚或环酯合成催化剂的应用。
本公开提供一种聚酯解聚或环酯合成催化剂,该催化剂为同时含有端离子基团和端羟基结构的长链型催化剂,其端离子基团或为与长链结构相连的阳离子,或为与长链结构相连的阴离子,结构通式分别如下:
长链结构的主链碳原子数≥8;结构通式Ⅰ的长链结构为长烷基链、脂肪族聚酯链或聚醚-酯链中的任一种;结构通式Ⅱ的长链结构为长烷基链、脂肪族聚酯链、聚醚-酯链或聚醚链中的任一种。
例如,该催化剂中所述长链结构的长烷基链为正辛烷链、正十五烷链或α-己基十二烷链;脂肪族聚酯链为聚丁二酸乙二醇酯、聚丁二酸丁二醇酯、聚丁二酸己二醇酯、聚己二酸乙二醇酯、聚己二酸丁二醇酯、聚己二酸己二醇酯、聚乳酸、聚乙交酯、聚己内酯或聚戊内酯;聚醚-酯链为聚对二氧环己酮、聚3,4-二氢-2H-苯并[1,4]二氧西平-2-酮或聚4-苯基-3,4-二氢-2H-苯并[1,4]二氧西平-2-酮;聚醚链为聚乙二醇或聚四氢呋喃。
例如,该催化剂中以上催化剂结构通式Ⅰ中所述阳离子为咪唑鎓离子或噻唑鎓离子,阴离子为卤离子或卤离子化金属氯化物;结构通式Ⅱ中所述阴离子为有机羧酸根离子或有机磺酸根离子,阳离子为金属离子或季铵离子。
例如,该催化剂中以上催化剂结构通式Ⅰ中所述咪唑鎓离子为1-长链取代-3-甲基咪唑鎓离子或1-长链取代-3-丁基咪唑鎓离子,噻唑鎓离子为3-长链取代-4-甲基噻唑鎓离子、3-长链取代苯并噻唑鎓离子或3-长链取代噻唑鎓离子;所述结构通式Ⅰ中卤离子为氯离子或溴离子;所述结构通式Ⅰ中卤离子化金属氯化物为氯离子化氯化亚锡、氯离子化氯化铝、氯离子化氯化锌、溴离子化氯化铁或氯离子化氯化铁;所述结构通式Ⅱ中有机羧酸根离子为脂肪族羧酸根离子;所述结构通式Ⅱ中有机磺酸根离子为脂肪族磺酸根离子;所述结构通式Ⅱ中金属离子为钠离子、钾离子、镁离子、钙离子、锌离子、锡离子、铁离子或铝离子;所述构通式Ⅱ中季铵离子为四甲基铵离子或四乙基铵离子。
本公开还提供聚酯解聚或环酯合成催化剂的制备方法,其中该制备方法一的工艺步骤和条件如下:
(1)将含羟基的卤代烷与0.8–1.2倍摩尔量的含咪唑或噻唑结构的化合物进行季铵化 反应,得到含羟基的卤化咪唑鎓盐、含羟基的卤化噻唑鎓盐、结构通式Ⅰ中长烷基链的含羟基的卤化咪唑鎓盐催化剂或结构通式Ⅰ中长烷基链的含羟基的卤化噻唑鎓盐催化剂;
(2)将第(1)步骤所得的含羟基的卤化咪唑鎓盐、含羟基的卤化噻唑鎓盐、结构通式Ⅰ中长烷基链的含羟基的卤化咪唑鎓盐催化剂或结构通式Ⅰ中长烷基链的含羟基的卤化噻唑鎓盐催化剂再与1–3倍摩尔量的路易斯酸性金属离子氯化物进行路易斯酸碱中和反应,使上述盐的阴离子由卤离子转化为卤离子化金属氯化物,得到另一类含羟基的咪唑鎓盐、另一类含羟基的噻唑鎓盐、结构通式Ⅰ中另一类长烷基链的含羟基的咪唑鎓盐催化剂或结构通式Ⅰ中另一类长烷基链的含羟基的噻唑鎓盐催化剂;
(3)将第(2)步骤所得的另一类含羟基的咪唑鎓盐、另一类含羟基的噻唑鎓盐、结构通式Ⅰ中另一类长烷基链的含羟基的咪唑鎓盐催化剂或结构通式Ⅰ中另一类长烷基链的含羟基的噻唑鎓盐催化剂再与1–100倍摩尔量的环酯或环醚-酯进行开环聚合反应,制得结构通式Ⅰ中长链结构为聚酯或聚醚-酯的咪唑鎓盐催化剂或结构通式Ⅰ中长链结构为聚酯或聚醚-酯的噻唑鎓盐催化剂;或者将第(2)步骤所得的另一类含羟基的咪唑鎓盐、另一类含羟基的噻唑鎓盐、结构通式Ⅰ中另一类长烷基链的含羟基的咪唑鎓盐催化剂或结构通式Ⅰ中另一类长烷基链的含羟基的噻唑鎓盐催化剂再与1–100倍摩尔量的羟基酸混合或与1–100倍摩尔量的二元酸和1–100倍摩尔量的二元醇混合,通过酯化缩聚反应制得结构通式Ⅰ中长链结构为脂肪族聚酯的咪唑鎓盐或噻唑鎓盐催化剂,
该制备方法二的工艺步骤和条件如下:
(1)将含羟基的有机羧酸或含羟基的有机磺酸与碱金属氢氧化物、碱土金属氢氧化物或季铵碱按羧酸根或磺酸根与氢氧根的摩尔比为0.8–1.2混合,通过布朗斯特酸碱中和反应制得阳离子为碱金属离子、碱土金属离子或季铵离子的含羟基的有机羧酸盐、有机磺酸盐、结构通式Ⅱ中长烷基链的含羟基的有机羧酸盐催化剂或结构通式Ⅱ中长烷基链的含羟基的有机磺酸盐催化剂;或将环酯与碱金属氢氧化物、碱土金属氢氧化物或季铵碱按环酯与氢氧根的摩尔比为0.8–1.2混合,通过酯键碱解反应制得阳离子为碱金属离子、碱土金属离子或季铵离子的含羟基的有机羧酸盐或结构通式Ⅱ中长烷基链的含羟基的有机磺酸盐催化剂;
(2)将第(1)步骤所得的阳离子为碱金属离子的有机羧酸盐、有机磺酸盐、结构通式Ⅱ中长烷基链的含羟基的有机羧酸盐催化剂或结构通式Ⅱ中长烷基链的含羟基的有机磺酸盐催化剂再与路易斯酸性金属离子氯化物按羧酸根或磺酸根/氯离子摩尔比为0.8–2.2混合,通过复分解反应,制得另一类阳离子为路易斯酸性金属离子的含羟基的有机羧酸盐、 有机磺酸盐、结构通式Ⅱ中长烷基链的含羟基的有机羧酸盐催化剂或结构通式Ⅱ中长烷基链的含羟基的有机磺酸盐催化剂;
(3)将第(2)步骤所得阳离子为碱金属离子、碱土金属离子、季铵离子或路易斯酸性金属离子的含羟基的有机羧酸盐、有机磺酸盐、结构通式Ⅱ中长烷基链的含羟基的有机羧酸盐催化剂或结构通式Ⅱ中长烷基链的含羟基的有机磺酸盐催化剂再与1–100倍摩尔量的环酯或环醚-酯混合,通过开环聚合反应制得结构通式Ⅱ中长链结构为聚酯或聚醚-酯的催化剂,或者再与1–100倍摩尔量的羟基酸混合或与1–100倍摩尔量的二元酸和1–100倍摩尔量的二元醇混合,通过酯化缩聚反应制得结构通式Ⅱ中长链结构为聚酯的催化剂,
该制备方法三的工艺步骤和条件如下:
(1)将脂肪族聚酯或聚醚-酯与碱金属氢氧化物、碱土金属氢氧化物或季铵碱按酯键与氢氧根的摩尔比为1–100混合,然后在高于相应聚合物熔点的温度下进行酯键碱解反应制得结构通式Ⅱ中阳离子为碱金属离子、碱土金属离子或季铵离子的含端羧酸盐与端羟基的脂肪族聚酯或聚醚-酯的催化剂;或者将含端羧酸与端羟基的聚醚与碱金属氢氧化物、碱土金属氢氧化物或季铵碱按端羧酸根与氢氧根的摩尔比为0.8–1.2混合,然后在高于相应聚合物熔点的温度下进行布朗斯特酸碱中和反应,制得结构通式Ⅱ中阳离子为碱金属离子、碱土金属离子或季铵离子的含端羧酸盐与端羟基的脂肪族聚酯、聚醚-酯或聚醚的催化剂;
(2)将第(1)步骤所得的结构通式Ⅱ中阳离子为碱金属离子的含端羧酸盐与端羟基的脂肪族聚酯、聚醚-酯或聚醚的催化剂再与路易斯酸性金属离子氯化物按羧酸根/氯离子摩尔比为1–2混合,然后在高于相应聚合物熔点的温度下进行复分解反应,制得结构通式Ⅱ中阳离子为路易斯酸性金属离子的含端羧酸盐与端羟基的脂肪族聚酯、聚醚-酯或聚醚的催化剂。
例如,该方法一中所述的季铵化反应使用的含羟基的卤代烷为8-氯正辛醇、3-氯-1-丙醇或2-溴-1-乙醇,使用的含咪唑或噻唑结构的化合物为1-甲基咪唑、1-丁基咪唑、4-甲基噻唑、噻唑或苯并噻唑,其反应温度为60–120℃,反应时间为12–48h;
该方法一中所述的路易斯酸碱中和反应使用的MCln为氯化锌、氯化亚锡、氯化铝或氯化铁,其反应温度为25–120℃,反应时间为0.5–12h;
该方法一或方法二中所述的开环聚合反应使用的环酯或环醚-酯为丙交酯、乙交酯、ε-己内酯、δ-戊内酯、对二氧环己酮、3,4-二氢-2H-苯并[1,4]二氧西平-2-酮或4-苯基-3,4-二氢-2H-苯并[1,4]二氧西平-2-酮,其反应温度为60–220℃,反应时间为1–48h;
该方法一或方法二中所述的酯化缩聚反应使用的二元酸为1,4-丁二酸或1,6-己二酸, 使用的二元醇为1,2-乙二醇、1,4-丁二醇或1,6-己二醇,其反应温度为80–220℃,反应时间为8–24h,反应压力为1–1*105Pa;
该方法二中所述的布朗斯特酸碱中和反应使用的含羟基的有机羧酸为12-羟基十八酸、6-羟基己酸、18-羟基十八酸或8-羟基辛酸,使用的含羟基有机磺酸为4-羟基丁磺酸、3-羟基丙磺酸或2-羟基乙磺酸,使用的碱金属氢氧化物为氢氧化钠或氢氧化钾,使用碱土金属氢氧化物为氢氧化镁或氢氧化钙,使用的季铵碱为四甲基氢氧化铵或四乙基氢氧化铵,其反应温度为25–180℃,反应时间为0.5–12h;
该方法二中所述的酯键碱解反应使用的环酯为环十五内酯或ε-CL,使用的碱金属氢氧化物为氢氧化钠或氢氧化钾,使用的碱土金属氢氧化物为氢氧化镁或氢氧化钙,使用的季铵碱为四甲基氢氧化铵或四乙基氢氧化铵,其反应温度为25–180℃,反应时间为0.5–12h;
该方法二或方法三中所述的复分解反应使用的MCln为ZnCl2、SnCl2、AlCl3或FeCl3,其反应温度为25–220℃,反应时间为0.5–12h;
该方法三中所述的酯键碱解反应使用的脂肪族聚酯为PES、PBS、PHS、PEA、PBA、PHA、PLA、PGA、PCL或PVL,使用的聚醚-酯为PPDO、PBDXO或PDBXOP,其反应温度为60–220℃,反应时间为1–48h;
该方法三中所述的布朗斯特酸碱中和反应使用的聚醚为PEG或PTHF,其反应温度为25–120℃,反应时间为0.5–12h。
本发明还提供聚酯解聚或环酯合成催化剂的应用,其中该应用是用于催化聚酯均聚物、共聚物、共混物或复合物的水解、醇解或环化解聚以回收相应单体或单体和寡聚体,或者是用于催化羟基酸或羟基酸酯通过缩聚和环化反应合成环酯单体或环酯单体和环状寡聚体。
例如,该应用于所述的催化聚酯均聚、共聚、共混或复合物的水解、醇解或环化解聚以回收相应单体或单体和寡聚体的具体方法如下:将聚酯和水或者醇、催化剂按配比混合,在0.1–2MPa压力条件下加热至40–200℃进行水解或醇解反应1–12h,然后回收得到相应单体或单体和寡聚体的水或者醇溶液;或者在1–1*104Pa压力条件下加热至80–400℃进行环化解聚0.5–12h,并同步进行蒸馏或萃取将生成的环酯单体或环酯单体和环状寡聚体从反应体系中分离出来;其中聚酯与水或者醇的比例为100﹕50–2000wt%,催化剂以端羟基计与聚酯中酯键的摩尔比为0.01–10mol%。
例如,该应用于所述的用于催化羟基酸或羟基酸酯通过缩聚和环化反应合成环酯单体或环酯单体和环状寡聚体的具体方法如下:
(1)先将催化剂以端羟基计与羟基酸或羟基酸酯的摩尔比0.01–10mol%混合,然后在100–1*105Pa下升温至80–220℃进行缩聚反应4–12h,同时通过蒸馏去除反应体系中生成的水或醇,得到齐聚羟基酸;
(2)将得到的齐聚羟基酸在1–1*105Pa下进行升温至80–400℃环化解聚反应0.5–4h,并同步进行蒸馏或萃取将生成的环酯单体或环酯单体和环状寡聚体从反应体系中分离出来。
例如,该应用于催化合成环酯单体或环酯单体和环状寡聚体的方法中,所述羟基酸为羟基乙酸、乳酸、6-羟基己酸、5-羟基戊酸或12-羟基十八酸,所述羟基酸酯为羟基乙酸甲酯、羟基乙酸乙酯、乳酸甲酯、乳酸乙酯、6-羟基己酸甲酯、6-羟基己酸乙酯、5-羟基戊酸甲酯、5-羟基戊酸乙酯、12-羟基十八酸甲酯或12-羟基十八酸乙酯中的任一种。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本发明的限制。
图1为本发明实施例1步骤(3)产物的激光拉曼谱图。图中330cm-1处的吸收峰归属于FeCl3-Cl。该吸收峰的出现说明所制备催化剂的阴离子由Cl转化为了FeCl3-Cl
图2为本发明实施例11步骤(3)产物的激光拉曼谱图。图中330cm-1处的吸收峰归属于FeCl3-Cl,370和420cm-1处的吸收峰归属于2FeCl3-Cl。这两类吸收峰的出现,说明所制备催化剂的阴离子由Cl转化为了FeCl3-Cl与2FeCl3-Cl的混合物。根据所使用FeCl3的配比,将FeCl3-Cl与2FeCl3-Cl的混合物记作1.7FeCl3-Cl
图3为本发明实施例69步骤(2)产物的核磁氢谱图。一方面可根据该谱图解析得知该产物的主要组成为PCL,另一方面可根据图中积分面积比例计算得出该产物的平均聚合度为14.5。
图4为本发明实施例69步骤(2)产物的傅里叶红外谱图。根据图中酯键羰基吸收峰和碳氢键吸收峰等分析,可辅助说明该产物的主要组成为脂肪族聚酯。
图5为本发明实施例70步骤(2)产物的核磁氢谱图。一方面根据该谱图解析可知该产物的主要组成为PVL,另一方面根据积分面积比例可计算得平均聚合度为10。
图6为本发明实施例70步骤(2)产物的傅里叶红外谱图。根据图中酯键羰基吸收峰和碳氢键吸收峰等分析,可辅助说明该产物的主要组成为脂肪族聚酯。
图7为本发明应用实施例22中环化解聚产物的核磁氢谱图。根据该谱图解析可知该产 物是以左旋丙交酯(L-LA)为主,此外还含有少量内消旋化丙交酯(meso-LA)。
图8为本发明应用实施例22中环化解聚产物的气相色谱图。根据气相色谱分析,回收产物中L-LA和meso-LA的占比分别为98.74%和1.01%。
图9为本发明应用实施例24中环化解聚产物的核磁氢谱图。根据该谱图解析可知产物为ε-CL单体、环状二聚体和环状三聚体的混合物。
图10为本发明应用实施例24中环化解聚产物的气相色谱图。根据气相色谱分析,回收产物中ε-CL单体、环状二聚体和环状三聚体的占比分别为82.90%、15.23%和1.76%。
图11为本发明应用实施例25中环化解聚产物的核磁氢谱。根据该谱图解析可知该产物为高纯度的PDO单体。
图12为本发明应用实施例25中环化解聚产物的气相色谱图。根据该气相色谱分析,回收PDO单体的纯度为99.61%,此外含有0.28%的环状二聚体。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明可在不偏离本发明基本属性的情况下以其它具体形式来实施。应该理解的是,在不冲突的前提下,本发明的任一和所有实施方案都可与任一其它实施方案或多个其它实施方案中的技术特征进行组合以得到另外的实施方案。本发明包括这样的组合得到的另外的实施方案。
本公开中提及的所有出版物和专利在此通过引用以它们的全部内容纳入本公开。如果通过引用纳入的任何出版物和专利中使用的用途或术语与本公开中使用的用途或术语冲突,那么以本公开的用途和术语为准。
本文所用的章节标题仅用于组织文章的目的,而不应被解释为对所述主题的限制。
除非另有规定,本文使用的所有技术术语和科学术语具有要求保护主题所属领域的通常含义。倘若对于某术语存在多个定义,则以本文定义为准。
除了在工作实施例中或另外指出之外,在说明书和权利要求中陈述的定量性质例如剂量的所有数字应理解为在所有情况中被术语“约”修饰。还应理解的是,本申请列举的任何数字范围意在包括该范围内的所有的子范围和该范围或子范围的各个端点的任何组合, 例如1-10的整数包括1、2、3、4、5、6、7、8、9和10,也包括子范围1-3、1-4、1-9、2-4、2-10等。
本公开中使用的“包括”、“含有”或者“包含”等类似的词语意指出现该词前面的要素涵盖出现在该词后面列举的要素及其等同,而不排除未记载的要素。本文所用的术语“含有”或“包括(包含)”可以是开放式、半封闭式和封闭式的。换言之,所述术语也包括“基本上由…组成”、或“由…组成”。
本发明提供的聚酯解聚或环酯合成催化剂为同时含有端离子基团和端羟基结构的长链型催化剂,其端离子基团或为与长链结构相连的阳离子,或为与长链结构相连的阴离子,结构通式分别如下:
其中长链结构的主链碳原子数≥8;结构通式Ⅰ的长链结构为长烷基链、脂肪族聚酯链或聚醚-酯链中的任一种;结构通式Ⅱ的长链结构为长烷基链、脂肪族聚酯链、聚醚-酯链或聚醚链中的任一种。
以上催化剂中所述长链结构的长烷基链例如正辛烷链、正十五烷链或α-己基十二烷链;脂肪族聚酯链例如聚丁二酸乙二醇酯(PES)、聚丁二酸丁二醇酯(PBS)、聚丁二酸己二醇酯(PHS)、聚己二酸乙二醇酯(PEA)、聚己二酸丁二醇酯(PBA)、聚己二酸己二醇酯(PHA)、聚乳酸(PLA)、聚乙交酯(PGA)、聚己内酯(PCL)或聚戊内酯(PVL);聚醚-酯链例如聚对二氧环己酮(PPDO)、聚3,4-二氢-2H-苯并[1,4]二氧西平-2-酮(PBDXO)或聚4-苯基-3,4-二氢-2H-苯并[1,4]二氧西平-2-酮(PDBXOP);聚醚链例如聚乙二醇(PEG)或聚四氢呋喃(PTHF)。
以上催化剂结构通式Ⅰ中所述阳离子例如咪唑鎓离子或噻唑鎓离子,阴离子例如卤离子(X)或卤离子化金属氯化物(m·MCln-X,其中M表示路易斯酸性的金属离子;n表示氯离子数,与金属离子M价态相等;m表示金属氯化物与卤离子的摩尔比,为1–3之间任意数值);结构通式Ⅱ中所述阴离子例如有机羧酸根离子或有机磺酸根离子,阳离子例如金属离子或季铵离子。
以上催化剂结构通式Ⅰ中所述咪唑鎓离子例如1-长链取代-3-甲基咪唑鎓离子或1-长链取代-3-丁基咪唑鎓离子,噻唑鎓离子例如3-长链取代-4-甲基噻唑鎓离子、3-长链取代苯并噻唑鎓离子或3-长链取代噻唑鎓离子;所述结构通式Ⅰ中X例如氯离子(Cl)或溴离 子(Br);所述结构通式Ⅰ中m·MCln-X例如氯离子化氯化亚锡(m·SnCl2-Cl)、氯离子化氯化铝(m·AlCl3-Cl)、氯离子化氯化锌(m·ZnCl2-Cl)、溴离子化氯化铁(m·FeCl3-Br)或氯离子化氯化铁(m·FeCl3-Cl);所述结构通式Ⅱ中有机羧酸根离子例如脂肪族羧酸根离子;所述结构通式Ⅱ中有机磺酸根离子例如脂肪族磺酸根离子;所述结构通式Ⅱ中金属离子例如钠离子、钾离子、镁离子、钙离子、锌离子、锡离子、铁离子或铝离子;所述构通式Ⅱ中季铵离子例如四甲基铵离子或四乙基铵离子。
以上催化剂中所述的长链结构的主链碳原子数优选8–1200。
本发明提供的上述聚酯解聚或环酯合成催化剂的制备方法,其特征在于该制备方法一的工艺步骤和条件如下:
(1)将含羟基的卤代烷与0.8–1.2倍摩尔量的含咪唑或噻唑结构的化合物进行季铵化反应,得到含羟基的卤化咪唑鎓盐(X +R’Im-R-OH,R’与R-OH分别为咪唑环两个氮上的取代基团,其中R-OH基团主链碳原子数<8)、含羟基的卤化噻唑鎓盐(X +Thi-R-OH,R-OH为噻唑环氮上取代基团,且R-OH基团主链碳原子数<8)、结构通式Ⅰ中长烷基链的含羟基的卤化咪唑鎓盐催化剂(X +R’Im-R-OH,其中R-OH基团主链碳原子数≥8)或结构通式Ⅰ中长烷基链的含羟基的卤化噻唑鎓盐催化剂(X +Thi-R-OH,其中R-OH基团主链碳原子数≥8);
(2)将第(1)步骤所得的含羟基的卤化咪唑鎓盐、含羟基的卤化噻唑鎓盐、结构通式Ⅰ中长烷基链的含羟基的卤化咪唑鎓盐催化剂或结构通式Ⅰ中长烷基链的含羟基的卤化噻唑鎓盐催化剂再与1–3倍摩尔量的路易斯酸性金属离子氯化物(MCln)进行路易斯酸碱中和反应,使上述盐的阴离子由X转化为m·MCln-X,得到另一类含羟基的咪唑鎓盐(m·MCln-X +R’Im-R-OH,其中R-OH基团主链碳原子数<8)、另一类含羟基的噻唑鎓盐(m·MCln-X +Thi-R-OH,其中R-OH基团主链碳原子数<8)、结构通式Ⅰ中另一类长烷基链的含羟基的咪唑鎓盐催化剂(m·MCln-X +R’Im-R-OH,其中R-OH基团主链碳原子数≥8)或结构通式Ⅰ中另一类长烷基链的含羟基的噻唑鎓盐催化剂(m·MCln-X +Thi-R-OH,其中R-OH基团主链碳原子数≥8);
(3)将第(2)步骤所得的另一类含羟基的咪唑鎓盐、另一类含羟基的噻唑鎓盐、结构通式Ⅰ中另一类长烷基链的含羟基的咪唑鎓盐催化剂或结构通式Ⅰ中另一类长烷基链的含羟基的噻唑鎓盐催化剂再与1–100倍摩尔量的环酯或环醚-酯进行开环聚合反应,制得结构通式Ⅰ中长链结构为聚酯或聚醚-酯的咪唑鎓盐催化剂【m·MCln-X +R’Im-R-poly(ester unit)n-OH(ester unit表示含酯基的聚合物结构单元,下标n表示聚合度)】或结构通式Ⅰ中 长链结构为聚酯或聚醚-酯的噻唑鎓盐催化剂【m·MCln-X +Thi-R-poly(ester unit)n-OH】;或者将第(2)步骤所得的另一类含羟基的咪唑鎓盐、另一类含羟基的噻唑鎓盐、结构通式Ⅰ中另一类长烷基链的含羟基的咪唑鎓盐催化剂或结构通式Ⅰ中另一类长烷基链的含羟基的噻唑鎓盐催化剂再与1–100倍摩尔量的羟基酸混合或与1–100倍摩尔量的二元酸和1–100倍摩尔量的二元醇混合,通过酯化缩聚反应制得结构通式Ⅰ中长链结构为脂肪族聚酯的咪唑鎓盐或噻唑鎓盐催化剂【m·MCln-X +R’Im-R-poly(ester unit)n-OH或m·MCln-X +Thi-R-poly(ester unit)n-OH】,
该制备方法二的工艺步骤和条件如下:
(1)将含羟基的有机羧酸或含羟基的有机磺酸与碱金属氢氧化物、碱土金属氢氧化物或季铵碱按羧酸根或磺酸根与氢氧根的摩尔比为0.8–1.2混合,通过布朗斯特酸碱中和反应制得阳离子为碱金属离子、碱土金属离子或季铵离子的含羟基的有机羧酸盐(其中主链碳原子数<8)、有机磺酸盐(其中主链碳原子数<8)、结构通式Ⅱ中长烷基链的含羟基的有机羧酸盐催化剂(主链碳原子数≥8)或结构通式Ⅱ中长烷基链的含羟基的有机磺酸盐催化剂(主链碳原子数≥8);或将环酯与碱金属氢氧化物、碱土金属氢氧化物或季铵碱按环酯与氢氧根的摩尔比为0.8–1.2混合,通过酯键碱解反应制得阳离子为碱金属离子、碱土金属离子或季铵离子的含羟基的有机羧酸盐(主链碳原子数<8)或结构通式Ⅱ中长烷基链的含羟基的有机磺酸盐催化剂(主链碳原子数≥8);
(2)将第(1)步骤所得的阳离子为碱金属离子的有机羧酸盐、有机磺酸盐、结构通式Ⅱ中长烷基链的含羟基的有机羧酸盐催化剂或结构通式Ⅱ中长烷基链的含羟基的有机磺酸盐催化剂再与路易斯酸性金属离子氯化物(MCln)按羧酸根或磺酸根/氯离子摩尔比为1–2混合,通过复分解反应,制得另一类阳离子为路易斯酸性金属离子的含羟基的有机羧酸盐(其中主链碳原子数<8)、有机磺酸盐(其中主链碳原子数<8)、结构通式Ⅱ中长烷基链的含羟基的有机羧酸盐催化剂(其中主链碳原子数≥8)或结构通式Ⅱ中长烷基链的含羟基的有机磺酸盐催化剂(其中主链碳原子数≥8);
(3)将第(2)步骤所得阳离子为碱金属离子、碱土金属离子、季铵离子或路易斯酸性金属离子的含羟基的有机羧酸盐、有机磺酸盐、结构通式Ⅱ中长烷基链的含羟基的有机羧酸盐催化剂或结构通式Ⅱ中长烷基链的含羟基的有机磺酸盐催化剂再与1–100倍摩尔量的环酯或环醚-酯混合,通过开环聚合反应制得结构通式Ⅱ中长链结构为聚酯或聚醚-酯的催化剂,或者再与1–100倍摩尔量的羟基酸混合或与1–100倍摩尔量的二元酸和1–100倍摩尔量的二元醇混合,通过酯化缩聚反应制得结构通式Ⅱ中长链结构为聚酯的催化剂,
该制备方法三的工艺步骤和条件如下:
(1)将脂肪族聚酯或聚醚-酯与碱金属氢氧化物、碱土金属氢氧化物或季铵碱按酯键与氢氧根的摩尔比为1–100混合,然后在高于相应聚合物熔点的温度下进行酯键碱解反应制得结构通式Ⅱ中阳离子为碱金属离子、碱土金属离子或季铵离子的含端羧酸盐与端羟基的脂肪族聚酯或聚醚-酯的催化剂;或者将含端羧酸与端羟基的聚醚与碱金属氢氧化物、碱土金属氢氧化物或季铵碱按端羧酸根与氢氧根的摩尔比为0.8–1.2混合,然后在高于相应聚合物熔点的温度下进行布朗斯特酸碱中和反应,制得结构通式Ⅱ中阳离子为碱金属离子、碱土金属离子或季铵离子的含端羧酸盐与端羟基的脂肪族聚酯、聚醚-酯或聚醚的催化剂;
(2)将第(1)步骤所得的结构通式Ⅱ中阳离子为碱金属离子的含端羧酸盐与端羟基的脂肪族聚酯、聚醚-酯或聚醚的催化剂再与路易斯酸性金属离子氯化物(MCln)按羧酸根/氯离子摩尔比为0.8–2.2混合,然后在高于相应聚合物熔点的温度下进行复分解反应,制得结构通式Ⅱ中阳离子为路易斯酸性金属离子的含端羧酸盐与端羟基的脂肪族聚酯、聚醚-酯或聚醚的催化剂。
上述方法一中所述的季铵化反应使用的含羟基的卤代烷优选8-氯正辛醇、3-氯-1-丙醇或2-溴-1-乙醇,所使用的含咪唑或噻唑结构的化合物优选1-甲基咪唑、1-丁基咪唑、4-甲基噻唑、噻唑或苯并噻唑,其反应温度优选60–120℃,更优选100–120℃,反应时间优选12–48h,更优选12–24h。
上述方法一中所述的路易斯酸碱中和反应所使用的MCln优选氯化锌(ZnCl2)、氯化亚锡(SnCl2)、氯化铝(AlCl3)或氯化铁(FeCl3),其反应温度优选25–120℃,更优选25–80℃,反应时间优选0.5–12h,更优选0.5–4h。
上述方法一或方法二中所述的开环聚合反应使用的环酯或环醚-酯优选丙交酯(LA)、乙交酯(GA)、ε-己内酯(ε-CL)、δ-戊内酯(δ-VL)、对二氧环己酮(PDO)、3,4-二氢-2H-苯并[1,4]二氧西平-2-酮(BDXO)或4-苯基-3,4-二氢-2H-苯并[1,4]二氧西平-2-酮(BDXOP),其反应温度优选60–220℃,更优选120–180℃,反应时间优选1–48h,更优选2–12h。
上述方法一或方法二中所述的酯化缩聚反应使用的二元酸优选1,4-丁二酸或1,6-己二酸,使用的二元醇优选1,2-乙二醇、1,4-丁二醇或1,6-己二醇,其反应温度优选80–220℃,更优选80–160℃,反应时间优选8–48h,更优选8–16h,反应压力优选1–1*104Pa,更优选100–3000Pa。
上述方法二中所述的布朗斯特酸碱中和反应使用的含羟基的有机羧酸优选12-羟基十八酸或6-羟基己酸、18-羟基十八酸或8-羟基辛酸,使用的含羟基有机磺酸为4-羟基丁磺 酸、3-羟基丙磺酸或2-羟基乙磺酸,使用的碱金属氢氧化物优选氢氧化钠或氢氧化钾,使用碱土金属氢氧化物优选氢氧化镁或氢氧化钙,使用的季铵碱优选四甲基氢氧化铵或四乙基氢氧化铵,其反应温度优选25–180℃,更优选60–120℃,反应时间优选0.5–12h,更优选0.5–8h。
上述方法二中所述的酯键碱解反应使用的环酯优选环十五内酯或ε-CL,使用的碱金属氢氧化物优选氢氧化钠或氢氧化钾,使用的碱土金属氢氧化物优选氢氧化镁或氢氧化钙,使用的季铵碱优选四甲基氢氧化铵或四乙基氢氧化铵,其反应温度优选25–180℃,更优选60–120℃,反应时间优选0.5–12h,更优选0.5–8h。
上述方法二或方法三中所述的复分解反应使用的MCln优选ZnCl2、SnCl2、AlCl3或FeCl3,其反应温度优选25–220℃,更优选120–220℃,反应时间优选0.5–12h,更优选0.5–4h。
上述方法三中所述的酯键碱解反应使用的脂肪族聚酯优选PES、PBS、PHS、PEA、PBA、PHA、PLA、PGA、PCL或PVL,使用的聚醚-酯优选PPDO、PBDXO或PDBXOP,其反应温度优选60–220℃,更优选120–220℃,反应时间优选1–48h,更优选2–12h。
上述方法三中所述的布朗斯特酸碱中和反应使用的聚醚优选PEG或PTHF,其反应温度优选25–120℃,更优选25–80℃,反应时间优选0.5–12h,更优选0.5–4h。
上述方法中所述的季铵化反应、开环聚合反应、酯化缩聚反应、布朗斯特酸碱中和反应、酯键碱解反应和复分解反应均为本领域公知的常规经典反应。
本发明提供的上述聚酯解聚或环酯合成催化剂的应用,其特征在于该应用是用于催化聚酯均聚、共聚、共混或复合物的水解、醇解或环化解聚以回收相应单体或单体和寡聚体,或者是用于催化羟基酸或羟基酸酯通过缩聚和环化反应合成环酯单体或环酯单体和环状寡聚体。
以上催化剂的应用中,所述的催化聚酯均聚、共聚、共混或复合物的水解、醇解或环化解聚以回收相应单体或单体和寡聚体的具体方法如下:将聚酯和水或者醇、催化剂按配比混合,在0.1–2MPa压力条件下加热至40–200℃进行水解或醇解反应1–12h,然后回收得到相应单体或单体和寡聚体的水或者醇溶液;或者在1–1*105Pa压力条件下加热至80–400℃进行环化解聚0.5–12h,并同步进行蒸馏或萃取将生成的环酯单体或环酯单体和环状寡聚体从反应体系中分离出来;其中聚酯与水或者醇的比例为100﹕50–2000wt%,催化剂以端羟基计与聚酯中酯键的摩尔比为0.01–10mol%。
以上催化回收相应单体、寡聚体的具体方法中,所述水解或者醇解反应添加的水或者 醇与聚酯的比例优选100–500wt%;添加的催化剂比例优选0.1–2mol%;所述水解或醇解反应的压力优选0.1–0.8MPa,温度优选80–160℃,时间优选2–6h;所述环化解聚反应的压力优选1–1000Pa,温度优选120–220℃,时间优选0.5–2h。
以上催化回收相应单体、寡聚体的具体方法中,所述聚酯均聚、共聚、共混或复合物含有如下结构通式ⅰ的聚脂肪族二元酸二元醇酯结构单元、含有如下结构通式ⅱ的聚环酯结构单元或含有聚醚-酯结构单元:
式中R1与R2为脂肪族基团,可以相同或不同,R3为脂肪族或芳香族基团。
以上催化回收相应单体、寡聚体的具体方法中,将聚脂肪族二元酸二元醇酯水解回收得到的相应单体或单体和寡聚体为如下结构通式ⅲ的单体二元酸、如下结构通式ⅳ的单体二元醇、如下结构通式ⅴ的寡聚体二元酸二元醇;醇解回收得到的相应单体或单体和寡聚体产物为如下结构通式ⅵ的单体二元酸二酯、如下结构通式ⅳ的单体二元醇、如下结构通式ⅶ的寡聚体二元酸二元醇酯:
式中R1与R2为脂肪族基团,R4为甲基、乙基、羟乙基、羟丁基或羟己基,聚合度n值为2或3。
以上催化回收相应单体、寡聚体的具体方法中,将聚环酯或聚醚-酯水解回收得到的相应单体或单体和寡聚体为如下结构通式ⅷ的单体羟基酸、如下结构通式ⅸ的寡聚体羟基酸;醇解回收得到的相应单体或单体和寡聚体为如下结构通式ⅹ的单体羟基酸酯、如下结构通式ⅹⅰ的寡聚体羟基酸酯;环化解聚回收得到的相应单体或单体和寡聚体为如下结构通式ⅹⅱ的单体环酯或环醚酯、如下结构通式ⅹⅲ的环状寡聚体环酯或环醚酯:
式中R3为脂肪族或芳香族基团,式ⅸ和式ⅹⅰ中聚合度n值为2或3,式ⅹⅲ中聚合度n值为1或2。
以上催化聚酯水解、醇解或环化解聚以回收相应单体、寡聚体的具体方法中,所述聚脂肪族聚二元酸二元醇结构单元的聚酯为PES、PBS、PHS、PEA、PBA和PHA中的至少一种,所述聚环酯结构单元的聚酯为PLA、PGA、PCL和PVL中的至少一种,所述聚醚酯结构单元的聚酯为PPDO、PBDXO或PDBXOP中的至少一种。
以上催化剂的应用中,所述的用于催化羟基酸或羟基酸酯通过缩聚和环化反应合成环酯单体或环酯单体和环状寡聚体的具体方法如下:
(1)先将催化剂以端羟基计与羟基酸或羟基酸酯的摩尔比0.01–10mol%混合,然后在100–1*105Pa下升温至80–220℃进行缩聚反应4–12h,同时通过蒸馏去除反应体系中生成的水或醇,得到齐聚羟基酸;
(2)将得到的齐聚羟基酸在1–1*105Pa下进行升温至80–400℃环化解聚反应0.5–4h,并同步进行蒸馏或萃取将生成的环酯单体或环酯单体和环状寡聚体从反应体系中分离出来。
以上催化合成环酯单体或环酯单体和环状寡聚体的方法中,所述羟基酸优选羟基乙酸、乳酸、6-羟基己酸、5-羟基戊酸或12-羟基十八酸,所述羟基酸酯为羟基乙酸甲酯、羟基乙酸乙酯、乳酸甲酯、乳酸乙酯、6-羟基己酸甲酯、6-羟基己酸乙酯、5-羟基戊酸甲酯、5-羟基戊酸乙酯、12-羟基十八酸甲酯或12-羟基十八酸乙酯中的任一种。
以上催化合成环酯单体或环酯单体和环状寡聚体的方法中,所述环酯单体、环状寡聚体为乙交酯、丙交酯、ε-己内酯单体或ε-己内酯环状寡聚体。
本发明与现有技术相比,具有以下积极效果中的一个或多个:
1、由于本发明提供的催化剂设计有端羟基结构和长链结构,这些结构可通过与聚酯进行酯交换来降低反应物分子量,因而能实现降低反应体系黏度的效果,从而避免因传质问 题带来的设备与工艺设计挑战。
2、由于本发明提供的催化剂具有的长链结构可与长链的反应物聚酯完全相容,可使催化活性中心能与反应物聚酯充分接触,因而能大大提高催化活性中心的利用率,降低催化剂的消耗并提高总体的催化效率。
3、由于本发明提供的催化剂的长链结构组成具有可设计性且可选择性,因而通过调整长链结构的组成可使其与聚酯共混或复合物中的某一相选择性相容,从而可实现聚酯共混或复合物的选择性解聚。
4、由于本发明提供的催化剂为长链型催化剂,其与解聚产出的单体、寡聚体在分子量上的差异,催化剂与产物的物理性质如沸点和溶解性的差别也很大,因而很容易实现产物的分离纯化和催化剂的循环再利用,从而使催化解聚方法更为绿色。
5、由于本发明提供的不管是催化剂的制备方法,还是用该催化剂应用于聚酯回收和合成环酯单体和环状寡聚体的方法都为常规的经典反应,因而操作简单,便于工业化生产。
以下给出实施例以对本发明作进一步的详细说明,但以下实施例不能理解为对本发明保护范围的限制,如果本领域专业人员根据本公开内容对技术方案做出一些非本质的改进和调整,仍属于本发明的保护范围。
值得说明的是,1)实施例1~80所得催化剂中,当长链结构为长烷基链时,长链结构碳原子数=R-OH基团碳原子数。2)当长链结构为聚酯链、聚醚-酯链或聚醚链时,长链结构的碳原子数=聚合物链段平均聚合度*结构单元中主链碳原子数+R-OH基团碳原子数。其中,聚合物链段平均聚合度计算如附图3、5所示。此外,卤离子化金属氯化物m·MCln-X的组成由激光拉曼谱图进行验证(如附图1、2所示)。3)应用实施例1~117所得水解或醇解转化率=1-(残余反应物质量/反应物质量)*100%。4)所得环化解聚回收率=(回收产物质量/反应物质量)*100%,所得环化解聚产物的化学结构由核磁氢谱进行验证(如附图7、9、11所示),产物组成和纯度由气相色谱测得(如附图8、10、12所示)。5)环化解聚反应体系的熔体黏度由在线黏度计(使用BROOKFIELD DV-II+Pro在线黏度计,配置LV-1型号转子,在2.5–100RPM的转速下进行测试)原位测得。
实施例1
(1)将40mmol 1-甲基咪唑和40mmol 8-氯正辛醇加入圆底烧瓶,在氮气氛中于100℃油浴加热下搅拌反应48h,再经乙酸乙酯洗涤和烘干后得1-羟辛基-3-甲基咪唑鎓氯盐(Cl  +MIm-C8-OH)。(2)将20mmol Cl +MIm-C8-OH与20mmol FeCl3加入圆底烧瓶,在氮气氛中于80℃油浴加热下搅拌反应0.5h得FeCl3-Cl +MIm-C8-OH。(3)将10mmol FeCl3-Cl +MIm-C8-OH与100mmol δ-VL加入圆底烧瓶,在氮气氛中于140℃油浴加热下搅拌反应4h,通过开环聚合制得FeCl3-Cl +MIm-C8-poly(δ-VL)10-OH。步骤(1)与步骤(2)产物的长链结构为长烷基链,主链碳原子数=8;步骤(3)产物的长链结构为脂肪族聚酯链,主链碳原子数=5*10+8=58。
实施例2
(1)将40mmol 1-甲基咪唑和48mmol 3-氯-1-丙醇加入圆底烧瓶,在氮气氛中于80℃油浴加热下搅拌反应48h,再经乙酸乙酯洗涤和烘干后得1-羟丙基-3-甲基咪唑鎓氯盐(Cl +MIm-C3-OH)。(2)将20mmol Cl +MIm-C3-OH与20mmol FeCl3加入圆底烧瓶,在氮气氛中于25℃油浴加热下搅拌反应4h得FeCl3-Cl +MIm-C3-OH。(3)将10mmol FeCl3-Cl +MIm-C3-OH与50mmol δ-VL加入圆底烧瓶,在氮气氛中于120℃油浴加热下搅拌反应8h,通过开环聚合制得FeCl3-Cl +MIm-C3-poly(δ-VL)5-OH。步骤(3)产物的长链结构为脂肪族聚酯链,主链碳原子数=5*5+3=28。
实施例3
(1)将40mmol 1-甲基咪唑和32mmol 2-溴-1-乙醇加入圆底烧瓶,在氮气氛中于60℃油浴加热下搅拌反应24h,再经乙酸乙酯洗涤和烘干后得1-羟乙基-3-甲基咪唑鎓溴盐(Br +MIm-C2-OH)。(2)将20mmol Br +MIm-C2-OH与20mmol FeCl3加入圆底烧瓶,在氮气氛中于25℃油浴加热下搅拌反应12h得FeCl3-Br +MIm-C2-OH。(3)将10mmol FeCl3-Br +MIm-C2-OH与300mmol δ-VL加入圆底烧瓶,在氮气氛中于160℃油浴加热下搅拌反应2h,通过开环聚合制得FeCl3-Br +MIm-C2-poly(δ-VL)30-OH。步骤(3)产物的长链结构为脂肪族聚酯链,主链碳原子数=5*30+2=152。
实施例4
(1)将40mmol 1-丁基咪唑和36mmol 3-氯-1-丙醇加入圆底烧瓶,在氮气氛中于110℃油浴加热下搅拌反应22h,再经乙酸乙酯洗涤和烘干后得1-羟丙基-3-丁基咪唑鎓氯盐(Cl +BIm-C3-OH)。(2)将20mmol Cl +BIm-C3-OH与20mmol FeCl3加入圆底烧瓶,在氮气氛中于40℃油浴加热下搅拌反应6h得FeCl3-Cl +BIm-C3-OH。(3)将10mmol FeCl3-Cl  +BIm-C3-OH与500mmol δ-VL加入圆底烧瓶,在氮气氛中于100℃油浴加热下搅拌反应24h,通过开环聚合制得FeCl3-Cl +BIm-C3-poly(δ-VL)50-OH。步骤(3)产物的长链结构为脂肪族聚酯链,主链碳原子数=5*50+3=253。
实施例5
(1)将40mmol 4-甲基噻唑和44mmol 3-氯-1-丙醇加入圆底烧瓶,在氮气氛中于100℃油浴加热下搅拌反应48h,再经乙酸乙酯洗涤和烘干后得N-羟丙基-4-甲基噻唑鎓氯盐(Cl +MThi-C3-OH)。(2)将20mmol Cl +MThi-C3-OH与20mmol FeCl3加入圆底烧瓶,在氮气氛中于60℃油浴加热下搅拌反应3h得FeCl3-Cl +MThi-C3-OH。(3)将10mmol FeCl3-Cl +MThi-C3-OH与700mmol δ-VL加入圆底烧瓶,在氮气氛中于180℃油浴加热下搅拌反应4h,通过开环聚合制得FeCl3-Cl +MThi-C3-poly(δ-VL)70-OH。步骤(3)产物的长链结构为脂肪族聚酯链,主链碳原子数=5*70+3=353。
实施例6
(1)将40mmol噻唑和40mmol 3-氯-1-丙醇加入圆底烧瓶,在氮气氛中于90℃油浴加热下搅拌反应36h,再经乙酸乙酯洗涤和烘干后得N-羟丙基噻唑鎓氯盐(Cl +Thi-C3-OH)。(2)将20mmol Cl +Thi-C3-OH与20mmol FeCl3加入圆底烧瓶,在氮气氛中于100℃油浴加热下搅拌反应0.5h得FeCl3-Cl +Thi-C3-OH。(3)将10mmol FeCl3-Cl +Thi-C3-OH与900mmol δ-VL加入圆底烧瓶,在氮气氛中于140℃油浴加热下搅拌反应24h,通过开环聚合制得FeCl3-Cl +Thi-C3-poly(δ-VL)90-OH。步骤(3)产物的长链结构为脂肪族聚酯链,主链碳原子数=5*90+3=453。
实施例7
(1)将40mmol苯并噻唑和40mmol 3-氯-1-丙醇加入圆底烧瓶,在氮气氛中于120℃油浴加热下搅拌反应12h,再经乙酸乙酯洗涤和烘干后得N-羟丙基苯并噻唑鎓氯盐(Cl +BzThi-C3-OH)。(2)将20mmol Cl +BzThi-C3-OH与20mmol FeCl3加入圆底烧瓶,在氮气氛中于80℃油浴加热下搅拌反应8h得FeCl3-Cl +BzThi-C3-OH。(3)将10mmol FeCl3-Cl +BzThi-C3-OH与100mmol δ-VL加入圆底烧瓶,在氮气氛中于140℃油浴加热下搅拌反应4h,通过开环聚合制得FeCl3-Cl +BzThi-C3-poly(δ-VL)10-OH。步骤(3)产物的长链结构为脂肪族聚酯链,主链碳原子数=5*10+3=53。
实施例8
(1)将40mmol 1-甲基咪唑和40mmol 3-氯-1-丙醇加入圆底烧瓶,在氮气氛中于100℃油浴加热下搅拌反应48h,再经乙酸乙酯洗涤和烘干后得1-羟丙基-3-甲基咪唑鎓氯盐(Cl +MIm-C3-OH)。(2)将20mmol Cl +MIm-C3-OH与20mmol SnCl2加入圆底烧瓶,在氮气氛中于25℃油浴加热下搅拌反应4h得SnCl2-Cl +MIm-C3-OH。(3)将10mmol SnCl2-Cl +MIm-C3-OH与100mmol δ-VL加入圆底烧瓶,在氮气氛中于140℃油浴加热下搅拌反应3h,通过开环聚合SnCl2-Cl +MIm-C3-poly(δ-VL)10-OH。步骤(3)产物的长链结构为脂肪族聚酯链,主链碳原子数=5*10+3=53。
实施例9
步骤(1)同实施例8(1)。(2)将20mmol Cl +MIm-C3-OH与20mmol ZnCl2加入圆底烧瓶,在氮气氛中于25℃油浴加热下搅拌反应4h得ZnCl2-Cl +MIm-C3-OH。(3)将10mmol ZnCl2-Cl +MIm-C3-OH与100mmol δ-VL加入圆底烧瓶,在氮气氛中于140℃油浴加热下搅拌反应4h,通过开环聚合制得ZnCl2-Cl +MIm-C3-poly(δ-VL)10-OH。步骤(3)产物的长链结构为脂肪族聚酯链,主链碳原子数=5*10+3=53。
实施例10
步骤(1)同实施例8(1)。(2)将20mmol Cl +MIm-C3-OH与20mmol AlCl3加入圆底烧瓶,在氮气氛中于25℃油浴加热下搅拌反应4h得AlCl3-Cl +MIm-C3-OH。(3)将10mmol AlCl3-Cl +MIm-C3-OH与100mmol δ-VL加入圆底烧瓶,在氮气氛中于140℃油浴加热下搅拌反应16h,通过开环聚合制得AlCl3-Cl +MIm-C3-poly(δ-VL)10-OH。步骤(3)产物的长链结构为脂肪族聚酯链,主链碳原子数=5*10+3=53。
实施例11
步骤(1)同实施例8(1))。(2)将20mmol Cl +MIm-C3-OH与34mmol FeCl3加入圆底烧瓶,在氮气氛中于120℃油浴加热下搅拌反应2h得1.7·FeCl3-Cl +MIm-C3-OH。(3)将10mmol 1.7·FeCl3-Cl +MIm-C3-OH与100mmol δ-VL加入圆底烧瓶,在氮气氛中于140℃油浴加热下搅拌反应4h,通过开环聚合制得1.7·FeCl3-Cl +MIm-C3-poly(δ-VL)10-OH。步骤(3)产物的长链结构为脂肪族聚酯链,主链碳原子数=5*10+3=53。
实施例12
步骤(1)同实施例8(1)。(2)将20mmol Cl +MIm-C3-OH与60mmol FeCl3加入圆底烧瓶,在氮气氛中于120℃油浴加热下搅拌反应1h得3·FeCl3-Cl +MIm-C3-OH。(3)将10mmol 3·FeCl3-Cl +MIm-C3-OH与100mmol δ-VL加入圆底烧瓶,在氮气氛中于140℃油浴加热下搅拌反应4h,通过开环聚合制得3·FeCl3-Cl +MIm-C3-poly(δ-VL)10-OH。步骤(3)产物的长链结构为脂肪族聚酯链,主链碳原子数=5*10+3=53。
实施例13
步骤(1)同实施例8(1)。(2)将20mmol Cl +MIm-C3-OH与26mmol FeCl3加入圆底烧瓶,在氮气氛中于25℃油浴加热下搅拌反应4h得1.3·FeCl3-Cl +MIm-C3-OH。(3)将10mmol 1.3·FeCl3-Cl +MIm-C3-OH与100mmol δ-VL加入圆底烧瓶,在氮气氛中于140℃油浴加热下搅拌反应4h,通过开环聚合制得1.3·FeCl3-Cl +MIm-C3-poly(δ-VL)10-OH。步骤(3)产物的长链结构为脂肪族聚酯链,主链碳原子数=5*10+3=53。
实施例14
步骤(1)同实施例8(1)。(2)将20mmol Cl +MIm-C3-OH与20mmol FeCl3加入圆底烧瓶,在氮气氛中于25℃油浴加热下搅拌反应4h得FeCl3-Cl +MIm-C3-OH。(3)将10mmol FeCl3-Cl +MIm-C3-OH与100mmol L-丙交酯(L-LA)加入圆底烧瓶,在氮气氛中于140℃油浴加热下搅拌反应4h,通过开环聚合制得FeCl3-Cl +MIm-C3-poly(L-LA)10-OH。步骤(3)产物的长链结构为脂肪族聚酯链,主链碳原子数=4*10+3=43。
实施例15
步骤(1)和步骤(2)同实施例14(1)与(2)。(3)将10mmol FeCl3-Cl +MIm-C3-OH与100mmol GA加入圆底烧瓶,在氮气氛中于220℃油浴加热下搅拌均匀后进行1h开环聚合反应,制得FeCl3-Cl +MIm-C3-poly(GA)10-OH。步骤(3)产物的长链结构为脂肪族聚酯链,主链碳原子数=4*10+3=43。
实施例16
步骤(1)和步骤(2)同实施例14(1)与(2)。(3)将10mmol FeCl3-Cl +MIm-C3-OH 与100mmol ε-CL加入圆底烧瓶,在氮气氛中于140℃油浴加热下搅拌反应12h,通过开环聚合制得FeCl3-Cl +MIm-C3-poly(ε-CL)10-OH。步骤(3)产物的长链结构为脂肪族聚酯链,主链碳原子数=6*10+3=63。
实施例17
步骤(1)和步骤(2)同实施例14(1)与(2)。(3)将10mmol FeCl3-Cl +MIm-C3-OH与100mmol PDO加入圆底烧瓶,在氮气氛中于120℃油浴加热搅拌反应4h,再降温至60℃反应16h,通过开环聚合制得FeCl3-Cl +MIm-C3-poly(PDO)10-OH。步骤(3)产物的长链结构为聚醚-酯链,主链碳原子数=4*10+3=43。
实施例18
步骤(1)和步骤(2)同实施例14(1)与(2)。(3)将10mmol FeCl3-Cl +MIm-C3-OH与100mmol PDO加入圆底烧瓶,在氮气氛中于80℃油浴加热搅拌反应24h,通过开环聚合制得FeCl3-Cl +MIm-C3-poly(PDO)10-OH。步骤(3)产物的长链结构为聚醚-酯链,主链碳原子数=4*10+3=43。
实施例19
(步骤(1)和步骤(2)同实施例14(1)与(2)。(3)将10mmol FeCl3-Cl +MIm-C3-OH与100mmol BDXO加入圆底烧瓶,在氮气氛中于140℃油浴加热下搅拌反应2h,再降温至80℃反应14h,通过开环聚合制得FeCl3-Cl +MIm-C3-poly(BDXO)10-OH。步骤(3)产物的长链结构为聚醚-酯链,主链碳原子数=5*10+3=53。
实施例20
步骤(1)和步骤(2)同实施例14(1)与(2)。(3)将10mmol FeCl3-Cl +MIm-C3-OH与100mmol BDXOP加入圆底烧瓶,在氮气氛中于140℃油浴加热下搅拌反应2h,再降温至80℃反应14h,通过开环聚合制得的FeCl3-Cl +MIm-C3-poly(BDXOP)10-OH。步骤(3)产物的长链结构为聚醚-酯链,主链碳原子数=5*10+3=53。
实施例21
步骤(1)和步骤(2)同实施例14(1)与(2)。(3)将10mmol FeCl3-Cl +MIm-C3-OH 与10mmol δ-VL加入圆底烧瓶,在氮气氛中于140℃油浴加热下搅拌反应1h,通过开环聚合制得FeCl3-Cl +MIm-C3-poly(δ-VL)1-OH。步骤(3)产物的长链结构为脂肪族聚酯链,主链碳原子数=5*1+3=8。
实施例22
步骤(1)和步骤(2)同实施例14(1)与(2)。(3)将10mmol FeCl3-Cl +MIm-C3-OH与1000mmol δ-VL加入圆底烧瓶,在氮气氛中于140℃油浴加热下搅拌反应48h,通过开环聚合制得FeCl3-Cl +MIm-C3-poly(δ-VL)100-OH。步骤(3)产物的长链结构为脂肪族聚酯链,主链碳原子数=5*100+3=503。
实施例23
步骤(1)和步骤(2)同实施例14(1)与(2)。(3)将10mmol FeCl3-Cl +MIm-C3-OH与200mmol L-乳酸加入圆底烧瓶,在水泵减压至3000Pa以及油浴控温80、100、120、140℃温度下依次各反应2h,再在140℃下采用油泵减压至100Pa反应8h,通过缩聚制得FeCl3-Cl +MIm-C3-poly(L-LA)10-OH。步骤(3)产物的长链结构为脂肪族聚酯链,主链碳原子数=4*10+3=43。
实施例24
步骤(1)和步骤(2)同实施例14(1)与(2)。(3)将10mmol FeCl3-Cl +MIm-C3-OH与500mmol羟基乙酸加入圆底烧瓶,在水泵减压至3000Pa以及油浴控温80、100、120、140℃温度下依次各反应2h,再在160℃下采用油泵减压至100Pa反应6h,通过缩聚制得FeCl3-Cl +MIm-C3-poly(GA)25-OH。步骤(3)产物的长链结构为脂肪族聚酯链,主链碳原子数=4*25+3=103。
实施例25
步骤(1)和步骤(2)同实施例14(1)与(2)。(3)将10mmol FeCl3-Cl +MIm-C3-OH与10mmol丁二酸和10mmol乙二醇加入圆底烧瓶,在水泵减压至3000Pa以及油浴控温80、100、120、140℃温度下依次各反应2h,通过缩聚制得FeCl3-Cl +MIm-C3-poly(ES)1-OH。步骤(3)产物的长链结构为脂肪族聚酯链,主链碳原子数=6*1+3=9。
实施例26
步骤(1)和步骤(2)同实施例14(1)与(2)。(3)将10mmol FeCl3-Cl +MIm-C3-OH与100mmol丁二酸和100mmol丁二醇加入圆底烧瓶,在水泵减压至3000Pa以及油浴控温80、100、120、140℃温度下依次各反应2h,再在160℃下采用油泵减压至100Pa反应8h,通过缩聚制得FeCl3-Cl +MIm-C3-poly(BS)10-OH。步骤(3)产物的长链结构为脂肪族聚酯链,主链碳原子数=8*10+3=83。
实施例27
步骤(1)和步骤(2)同实施例14(1)与(2)。(3)将10mmol FeCl3-Cl +MIm-C3-OH与700mmol丁二酸和700mmol己二醇加入圆底烧瓶,在水泵减压至3000Pa以及油浴控温80、100、120、140℃温度下依次各反应2h,再在160℃下采用油泵减压至100Pa反应40h,通过缩聚制得FeCl3-Cl +MIm-C3-poly(HS)70-OH。步骤(3)产物的长链结构为脂肪族聚酯链,主链碳原子数=10*100+3=703。
实施例28
步骤(1)和步骤(2)同实施例14(1)与(2)。(3)将10mmol FeCl3-Cl +MIm-C3-OH与100mmol己二酸和100mmol乙二醇加入圆底烧瓶,在水泵减压至3000Pa以及油浴控温120、140、160、180℃温度下依次各反应2h,再在220℃下采用油泵减压至100Pa反应2h,通过缩聚制得FeCl3-Cl +MIm-C3-poly(EA)10-OH。步骤(3)产物的长链结构为脂肪族聚酯链,主链碳原子数=8*10+3=83。
实施例29
步骤(1)和步骤(2)同实施例14(1)与(2)。(3)将10mmol FeCl3-Cl +MIm-C3-OH与100mmol己二酸和100mmol丁二醇加入圆底烧瓶,在水泵减压至1*104Pa以及油浴控温80、100、120、140℃温度下依次各反应2h,再在160℃下采用油泵减压至100Pa反应12h,通过缩聚制得FeCl3-Cl +MIm-C3-poly(BA)10-OH。步骤(3)产物的长链结构为脂肪族聚酯链,主链碳原子数=10*10+3=103。
实施例30
步骤(1)和步骤(2)同实施例14(1)与(2)。(3)将10mmol FeCl3-Cl +MIm-C3-OH 与1000mmol己二酸和1000mmol己二醇加入圆底烧瓶,在水泵减压至3000Pa以及油浴控温80、100、120、140℃温度下依次各反应2h,再在160℃下采用油泵机组减压至1Pa反应40h,通过缩聚制得FeCl3-Cl +MIm-C3-poly(HA)100-OH。步骤(3)产物的长链结构为脂肪族聚酯链,主链碳原子数=12*100+3=1203。
实施例31
(1)将30mmol 12-羟基十八酸与30mmol氢氧化钠混合于50mL水中,在90℃下搅拌0.5h制得12-羟基十八酸钠水溶液。(2)再向其中加入10mmol AlCl3,于90℃下再搅拌0.5h后冷却室温,分离和收集固体组分,烘干后得12-羟基十八酸铝(Al3+[OOC-C11(C6)-OH]3)。(3)将10mmol Al3+[OOC-C11(C6)-OH]3与300mmol δ-VL混合于圆底烧瓶,在氮气氛中于140℃油浴加热下搅拌反应4h,通过开环聚合制得Al3+[OOC-C11(C6)-poly(δ-VL)10-OH]3。步骤(2)产物的长链结构为长烷基链,主链碳原子数=12;步骤(3)产物的长链结构为脂肪族聚酯链,主链碳原子数=5*10+12=62。
实施例32
(1)将30mmol 6-羟基己酸与30mmol氢氧化钠混合于50mL水中,在25℃下搅拌2h制得6-羟基己酸钠水溶液。(2)再向其中加入10mmol AlCl3,继续搅拌2h后,通过旋蒸去除体系中的水,烘干得6-羟基己酸铝(Al3+(OOC-C5-OH)3)。(3)将10mmol Al3+(OOC-C5-OH)3与150mmol δ-VL混合于圆底烧瓶,在氮气氛中于120℃油浴加热下搅拌反应8h,通过开环聚合制得Al3+[OOC-C5-poly(δ-VL)5-OH]3。步骤(3)产物的长链结构为脂肪族聚酯链,主链碳原子数=5*5+6=31。
实施例33
(1)将30mmol 4-羟基丁磺酸与24mmol四甲基氢氧化铵混合于50mL水中,在60℃下搅拌12h制得4-羟基丁磺酸四甲基铵水溶液;通过旋蒸去除体系中的水,烘干后得4-羟基丁磺酸四甲基铵(Me4N+ SO3-C4-OH)。(2)再加入900mmol δ-VL,在氮气氛中于160℃油浴加热下搅拌反应2h,通过开环聚合制得Me4N+ SO3-C4-poly(δ-VL)30-OH。步骤(2)产物的长链结构为脂肪族聚酯链,主链碳原子数=5*30+4=154。
实施例34
(1)将30mmol 3-羟基丙磺酸与30mmol四乙基氢氧化铵混合于50mL水中,在100℃下搅拌8h制得3-羟基丙磺酸四乙基铵水溶液;通过旋蒸去除体系中的水,烘干后得4-羟基丁磺酸四乙基铵(Et4N+ SO3-C4-OH)。(2)再加入1500mmol δ-VL,在氮气氛中于100℃油浴加热下搅拌反应24h,通过开环聚合制得Et4N+ SO3-C3-poly(δ-VL)50-OH。步骤(2)产物的长链结构为脂肪族聚酯链,主链碳原子数=5*50+3=253。
实施例35
(1)将30mmol环十五内酯与36mmol氢氧化钠混合,在120℃下搅拌12h制得15-羟基十五酸钠。(2)再向其中加入12mmol AlCl3与50mL水,于100℃下再搅拌3h后冷却室温,分离和收集固体组分,烘干后得15-羟基十五酸铝(Al3+(OOC-C14-OH)3)。(3)将10mmol Al3+(OOC-C14-OH)3与2100mmol δ-VL混合于圆底烧瓶,在氮气氛中于180℃油浴加热下搅拌反应4h,通过开环聚合制得Al3+[OOC-C14-poly(δ-VL)70-OH]3。步骤(2)产物的长链结构为长烷基链,主链碳原子数=15;步骤(3)产物的长链结构为脂肪族聚酯链,主链碳原子数=5*70+15=365。
实施例36
(1)将30mmol ε-己内酯与30mmol氢氧化钾混合,在140℃下搅拌8h制得6-羟基己酸钾。(2)再向其中加入10mmol AlCl3,继续搅拌0.5h后,得6-羟基己酸铝(Al3+(OOC-C5-OH)3)。(3)将10mmol Al3+(OOC-C5-OH)3与2700mmol δ-VL混合于圆底烧瓶,在氮气氛中于140℃油浴加热下搅拌反应24h,通过开环聚合制得Al3+[OOC-C5-poly(δ-VL)90-OH]3。步骤(1)和(2)产物的长链结构为长烷基链,主链碳原子数=15;步骤(3)产物的长链结构为脂肪族聚酯链,主链碳原子数=5*90+6=456。
实施例37
(1)将40mmol环十五内酯与18mmol氢氧化镁混合,在氮气气氛中160℃下搅拌5h制得15-羟基十五酸镁(Mg2+(OOC-C14-OH)2)。(2)将10mmol Mg2+(OOC-C14-OH)2与200mmol δ-VL混合于圆底烧瓶,在氮气氛中于140℃油浴加热下搅拌反应4h,通过开环聚合制得Mg2+[OOC-C14-poly(δ-VL)10-OH]2。步骤(1)产物的长链结构为长烷基链,主链碳原子数=15;步骤(2)产物的长链结构为脂肪族聚酯链,主链碳原子数=5*10+15=65。
实施例38
(1)将40mmol环十五内酯与22mmol氢氧化钙混合,在氮气气氛中180℃下搅拌1h制得15-羟基十五酸钙(Ca2+(OOC-C14-OH)2)。(2)将10mmol Ca2+(OOC-C14-OH)2与200mmol δ-VL混合于圆底烧瓶,在氮气氛中于140℃油浴加热下搅拌反应3h,通过开环聚合制得Ca2+[OOC-C14-poly(δ-VL)10-OH]2。步骤(1)产物的长链结构为长烷基链,主链碳原子数=15;步骤(2)产物的长链结构为脂肪族聚酯链,主链碳原子数=5*10+15=65。
实施例39
(1)将30mmol环十五内酯与30mmol氢氧化钠混合,在120℃下搅拌8h制得15-羟基十五酸钠。(2)再向其中加入10mmol FeCl3,于140℃下再搅拌12h后冷却室温,得Fe3+(OOC-C14-OH)3。(3)将10mmol Fe3+(OOC-C14-OH)3与300mmol δ-VL混合于圆底烧瓶,在氮气氛中于140℃油浴加热下搅拌反应4h,通过开环聚合制得Fe3+[OOC-C14-poly(δ-VL)10-OH]3。步骤(1)和(2)产物的长链结构为长烷基链,主链碳原子数=15;步骤(3)产物的长链结构为脂肪族聚酯链,主链碳原子数=5*10+15=65。
实施例40
步骤(1)同实施例39(1)。(2)再向其中加入15mmol ZnCl2,于160℃下再搅拌4h后冷却室温,得Zn2+(OOC-C14-OH)2。(3)将10mmol Zn2+(OOC-C14-OH)2与200mmolδ-VL混合于圆底烧瓶,在氮气氛中于140℃油浴加热下搅拌反应4h,通过开环聚合制得Zn2+[OOC-C14-poly(δ-VL)10-OH]2。步骤(1)和(2)产物的长链结构为长烷基链,主链碳原子数=15;步骤(3)产物的长链结构为脂肪族聚酯链,主链碳原子数=5*10+15=65。
实施例41
步骤(1)同实施例39(1)。(2)再向其中加入15mmol SnCl2,于120℃下再搅拌1h后冷却室温,得Sn2+(OOC-C14-OH)2。(3)将10mmol Sn2+(OOC-C14-OH)2与200mmolδ-VL混合于圆底烧瓶,在氮气氛中于140℃油浴加热下搅拌反应4h,通过开环聚合制得Sn2+[OOC-C14-poly(δ-VL)10-OH]2。步骤(1)和(2)产物的长链结构为长烷基链,主链碳原子数=15;步骤(3)产物的长链结构为脂肪族聚酯链,主链碳原子数=5*10+15=65。
实施例42
步骤(1)同实施例39(1)。(2)再向其中加入20mmol AlCl3,于220℃下再搅拌0.5h后冷却室温,得Al3+(OOC-C14-OH)3。(3)将10mmol Al3+(OOC-C14-OH)3与300mmol δ-VL混合于圆底烧瓶,在氮气氛中于140℃油浴加热下搅拌反应4h,通过开环聚合制得Al3+[OOC-C14-poly(δ-VL)10-OH]3。步骤(1)和(2)产物的长链结构为长烷基链,主链碳原子数=15;步骤(3)产物的长链结构为脂肪族聚酯链,主链碳原子数=5*10+15=65。
实施例43
步骤(1)同实施例39(1)。(2)再向其中加入16mmol AlCl3,于180℃下再搅拌0.5h后冷却室温,分离和收集固体组分,得Al3+(OOC-C14-OH)3。(3)将10mmol Al3+(OOC-C14-OH)3与300mmol δ-VL混合于圆底烧瓶,在氮气氛中于140℃油浴加热下搅拌反应4h,通过开环聚合制得Al3+[OOC-C14-poly(δ-VL)10-OH]3。步骤(1)和(2)产物的长链结构为长烷基链,主链碳原子数=15;步骤(3)产物的长链结构为脂肪族聚酯链,主链碳原子数=5*10+15=65
实施例44
步骤(1)和步骤(2)步同实施例31(1)与(2)。(3)将10mmol Al3+[OOC-C11(C6)-OH]3与300mmol L-LA混合于圆底烧瓶,在氮气氛中于140℃油浴加热下反应4h,通过开环聚合制得Al3+[OOC-C11(C6)-poly(L-LA)10-OH]3。步骤(3)产物的长链结构为脂肪族聚酯链,主链碳原子数=4*10+12=52。
实施例45
步骤(1)和步骤(2)步同实施例31(1)与(2)。(3)将10mmol Al3+[OOC-C11(C6)-OH]3与300mmol GA混合于圆底烧瓶,在氮气氛中于220℃油浴加热下反应1h,通过开环聚合制得Al3+[OOC-C11(C6)-poly(GA)10-OH]3。步骤(3)产物的长链结构为脂肪族聚酯链,主链碳原子数=4*10+12=52。
实施例46
步骤(1)和步骤(2)步同实施例31(1)与(2)。(3)将10mmol Al3+[OOC-C11(C6)-OH]3与300mmol ε-CL混合于圆底烧瓶,在氮气氛中于140℃油浴加热下反应12h,通过开环聚合制得Al3+[OOC-C11(C6)-poly(ε-CL)10-OH]3。步骤(3)产物的长链结构为脂肪族聚酯 链,主链碳原子数=6*10+12=72。
实施例47
(1)将30mmol 18-羟基十八酸与30mmol氢氧化钠混合于50mL水中,在90℃下搅拌0.5h制得18-羟基十八酸钠水溶液。(2)再向其中加入10mmol AlCl3,于90℃下再搅拌0.5h后冷却室温,分离和收集固体组分,烘干后得12-羟基十八酸铝(Al3+(OOC-C17-OH)3)。(3)将10mmol Al3+(OOC-C17-OH)3与300mmol PDO混合于圆底烧瓶,在氮气氛中于120℃油浴加热下反应4h,再降温至60℃反应16h,通过开环聚合制得Al3+[OOC-C17-poly(PDO)10-OH]3。步骤(3)产物的长链结构为聚醚-酯链,主链碳原子数=4*10+18=58。
实施例48
(1)将30mmol 8-羟基辛酸与30mmol氢氧化钠混合于50mL水中,在90℃下搅拌0.5h制得8-羟基辛酸钠水溶液。(2)再向其中加入10mmol AlCl3,于90℃下再搅拌0.5h后冷却室温,分离和收集固体组分,烘干后得8-羟基辛酸铝(Al3+(OOC-C7-OH)3)。(3)将10mmol Al3+(OOC-C7-OH)3与300mmol PDO混合于圆底烧瓶,在氮气氛中于120℃油浴加热下反应4h,再降温至60℃反应16h,通过开环聚合制得Al3+[OOC-C7-poly(PDO)10-OH]3。步骤(3)产物的长链结构为聚醚-酯链,主链碳原子数=4*10+8=48。
实施例49
(1)将30mmol 2-羟基乙磺酸与30mmol氢氧化钠混合于50mL水中,在90℃下搅拌0.5h制得2-羟基乙磺酸钠水溶液。(2)再向其中加入10mmol AlCl3,继续搅拌2h后,通过旋蒸去除体系中的水,烘干得2-羟基乙磺酸铝(Al3+(SO3-C2-OH)3)。(3)将10mmol Al3+(SO3-C2-OH)3与300mmol PDO混合于圆底烧瓶,在氮气氛中于120℃油浴加热下反应4h,再降温至60℃反应16h,通过开环聚合制得Al3+[SO3-C2-poly(PDO)10-OH]3。步骤(3)产物的长链结构为聚醚-酯链,主链碳原子数=4*10+2=42。
实施例50
步骤(1)和步骤(2)步同实施例31(1)与(2)。(3)将10mmol Al3+[OOC-C11(C6)-OH]3 与300mmol BDXOP混合于圆底烧瓶,在氮气氛中于140℃油浴加热反应4h,再降温至80℃反应12h,通过开环聚合制得Al3+[OOC-C11(C6)-poly(BDXOP)10-OH]3。步骤(3)产物的长链结构为聚醚-酯链,主链碳原子数=5*10+12=62。
实施例51
步骤(1)和步骤(2)步同实施例31(1)与(2)。(3)将10mmol Al3+[OOC-C11(C6)-OH]3与30mmol δ-VL混合于圆底烧瓶,在氮气氛中于140℃油浴加热下反应1h,通过开环聚合制得Al3+[OOC-C11(C6)-poly(δ-VL)1-OH]3。步骤(3)产物的长链结构为脂肪族聚酯链,主链碳原子数=5*1+12=17。
实施例52
步骤(1)和步骤(2)步同实施例31(1)与(2)。(3)将10mmol Al3+[OOC-C11(C6)-OH]3与3000mmol δ-VL混合于圆底烧瓶,在氮气氛中于140℃油浴加热下反应48h,通过开环聚合制得Al3+[OOC-C11(C6)-poly(δ-VL)100-OH]3。步骤(3)产物的长链结构为脂肪族聚酯链,主链碳原子数=5*100+12=512。
实施例53
步骤(1)和步骤(2)步同实施例31(1)与(2)。(3)将10mmol Al3+[OOC-C11(C6)-OH]3与600mmol L-乳酸加入圆底烧瓶,在水泵减压至3000Pa以及油浴控温80、100、120、140℃温度下依次各反应2h,再在140℃下采用油泵减压至100Pa反应8h,通过缩聚制得Al3+[OOC-C11(C6)-poly(L-LA)10-OH]3。步骤(3)产物的长链结构为脂肪族聚酯链,主链碳原子数=4*10+12=52。
实施例54
步骤(1)和步骤(2)步同实施例31(1)与(2)。(3)将10mmol Al3+[OOC-C11(C6)-OH]3与1500mmol羟基乙酸加入圆底烧瓶,在水泵减压至3000Pa以及油浴控温80、100、120、140℃温度下依次各反应2h,再在160℃下采用油泵减压至100Pa反应6h,通过缩聚制得Al3+[OOC-C11(C6)-poly(GA)25-OH]3。步骤(3)产物的长链结构为脂肪族聚酯链,主链碳原子数=4*25+12=112。
实施例55
步骤(1)和步骤(2)步同实施例31(1)与(2)。(3)将10mmol Al3+[OOC-C11(C6)-OH]3与30mmol丁二酸和30mmol乙二醇加入圆底烧瓶,在水泵减压至3000Pa以及油浴控温80、100、120、140℃温度下依次各反应2h,通过缩聚制得Al3+[OOC-C11(C6)-poly(ES)1-OH]3。步骤(3)产物的长链结构为脂肪族聚酯链,主链碳原子数=6*1+12=18。
实施例56
步骤(1)和步骤(2)步同实施例31(1)与(2)。(3)将10mmol Al3+[OOC-C11(C6)-OH]3与300mmol丁二酸和300mmol丁二醇加入圆底烧瓶,在水泵减压至3000Pa以及油浴控温80、100、120、140℃温度下依次各反应2h,再在160℃下采用油泵减压至100Pa反应8h,通过缩聚制得Al3+[OOC-C11(C6)-poly(BS)10-OH]3。步骤(3)产物的长链结构为脂肪族聚酯链,主链碳原子数=8*10+12=92。
实施例57
步骤(1)和步骤(2)步同实施例31(1)与(2)。(3)将10mmol Al3+[OOC-C11(C6)-OH]3与2100mmol丁二酸和2100mmol己二醇加入圆底烧瓶,在水泵减压至3000Pa以及油浴控温80、100、120、140℃温度下依次各反应2h,再在160℃下采用油泵减压至100Pa反应40h,通过缩聚制得Al3+[OOC-C11(C6)-poly(HS)70-OH]3。步骤(3)产物的长链结构为脂肪族聚酯链,主链碳原子数=10*70+12=712。
实施例58
步骤(1)和步骤(2)步同实施例31(1)与(2)。(3)将10mmol Al3+[OOC-C11(C6)-OH]3与300mmol己二酸和300mmol乙二醇加入圆底烧瓶,在水泵减压至3000Pa以及油浴控温120、140、160、180℃温度下依次各反应2h,再在220℃下采用油泵减压至100Pa反应2h,通过缩聚制得Al3+[OOC-C11(C6)-poly(EA)10-OH]3。步骤(3)产物的长链结构为脂肪族聚酯链,主链碳原子数=8*10+12=92。
实施例59
步骤(1)和步骤(2)步同实施例31(1)与(2)。(3)将10mmol Al3+[OOC-C11(C6)-OH]3 与300mmol己二酸和300mmol丁二醇加入圆底烧瓶,在水泵减压至1*104Pa以及油浴控温80、100、120、140℃温度下依次各反应2h,再在160℃下采用油泵减压至100Pa反应12h,通过缩聚制得Al3+[OOC-C11(C6)-poly(BA)10-OH]3。步骤(3)产物的长链结构为脂肪族聚酯链,主链碳原子数=10*10+12=112。
实施例60
步骤(1)和步骤(2)步同实施例31(1)与(2)。(3)将10mmol Al3+[OOC-C11(C6)-OH]3与3000mmol己二酸和3000mmol己二醇加入圆底烧瓶,在水泵减压至3000Pa以及油浴控温80、100、120、140℃温度下依次各反应2h,再在160℃下采用油泵机组减压至1Pa反应40h,通过缩聚制得Al3+[OOC-C11(C6)-poly(HA)100-OH]3。步骤(3)产物的长链结构为脂肪族聚酯链,主链碳原子数=12*100+12=1212。
实施例61
(1)将100mmol(以聚合物中酯键数量计)PES与10mmol氢氧化钠混合,在160℃下搅拌12h得到含端羧酸钠与端羟基的聚丁二酸乙二醇酯Na+ OOC-poly(ES)10-OH。(2)将6mmol Na+ OOC-poly(ES)10-OH与3mmol ZnCl2混合,在160℃下搅拌2h得到Zn2+[OOC-poly(ES)10-OH]2。步骤(2)产物的长链结构为脂肪族聚酯链,主链碳原子数=6*10=60。
实施例62
(1)将100mmol(以聚合物中酯键数量计)PBS与100mmol氢氧化钾混合,在120℃下搅拌48h得到含端羧酸钾与端羟基的聚丁二酸丁二醇酯K+ OOC-poly(ES)1-OH。(2)将6mmol K+ OOC-poly(BS)1-OH与3mmol ZnCl2混合,在160℃下搅拌2h得到Zn2+[OOC-poly(BS)1-OH]2。步骤(2)产物的长链结构为脂肪族聚酯链,主链碳原子数=8*1=8。
实施例63
将200mmol(以聚合物中酯键数量计)PHS与1mmol氢氧化镁混合,在180℃下搅拌2h得到Mg2+[OOC-poly(HS)100-OH]2。产物的长链结构为脂肪族聚酯链,主链碳原子数=10*100=1000。
实施例64
将100mmol(以聚合物中酯键数量计)PEA与1mmol氢氧化钙混合,在200℃下搅拌1h得到Ca2+[OOC-poly(EA)50-OH]2。产物的长链结构为脂肪族聚酯链,主链碳原子数=8*50=400。
实施例65
将100mmol(以聚合物中酯键数量计)PBA与5mmol四甲基氢氧化铵混合,在140℃下搅拌6h得到Me4N+ OOC-poly(BA)20-OH。产物的长链结构为脂肪族聚酯链,主链碳原子数=10*20=200。
实施例66
将100mmol(以聚合物中酯键数量计)PHA与10mmol四乙基氢氧化铵混合,在120℃下搅拌8h得到Et4N+ OOC-poly(HA)10-OH。产物的长链结构为脂肪族聚酯链,主链碳原子数=12*10=120。
实施例67
(1)将200mmol(以聚合物中酯键数量计)PLLA与10mmol氢氧化钠混合,在180℃下搅拌1h得到含端羧酸钠与端羟基的聚左旋丙交酯(Na+ OOC-poly(L-LA)10-OH)。(2)将6mmol Na+ OOC-poly(L-LA)10-OH与3mmol ZnCl2混合,在180℃下搅拌1h得到含端羧酸锌与端羟基的聚左旋丙交酯(Zn2+[OOC-poly(L-LA)10-OH]2)。步骤(2)产物的长链结构为脂肪族聚酯链,主链碳原子数=4*10=40。
实施例68
(1)将200mmol(以聚合物中酯键数量计)PGA与10mmol氢氧化钠混合,在220℃下搅拌1h得到含端羧酸钠与端羟基的聚乙交酯(Na+ OOC-poly(GA)10-OH)。(2)将6mmol Na+ OOC-poly(GA)10-OH与3mmol ZnCl2混合,在220℃下搅拌0.5h得到含端羧酸锌与端羟基的聚乙交酯(Zn2+[OOC-poly(GA)10-OH]2)。步骤(2)产物的长链结构为脂肪族聚酯链,主链碳原子数=4*10=40。
实施例69
(1)将145mmol(以聚合物中酯键数量计)PCL与10mmol氢氧化钠混合,在100℃ 下搅拌12h得到含端羧酸钠与端羟基的聚己内酯(Na+ OOC-poly(ε-CL)14.5-OH)。(2)将6mmol Na+ OOC-poly(ε-CL)14.5-OH与3mmol ZnCl2混合,在120℃下搅拌2h得到含端羧酸锌与端羟基的聚己内酯(Zn2+[OOC-poly(ε-CL)14.5-OH]2)。步骤(2)产物的长链结构为脂肪族聚酯链,主链碳原子数=6*14.5=87。
实施例70
(1)将100mmol(以聚合物中酯键数量计)PVL与10mmol氢氧化钠混合,在60℃下搅拌48h得到含端羧酸钠与端羟基的聚戊内酯(Na+ OOC-poly(δ-VL)10-OH)。(2)将6mmol Na+ OOC-poly(δ-VL)10-OH与3mmol ZnCl2混合,在100℃下搅拌2h得到含端羧酸锌与端羟基的聚戊内酯(Zn2+[OOC-poly(δ-VL)10-OH]2)。步骤(2)产物的长链结构为脂肪族聚酯链,主链碳原子数=5*10=50。
实施例71
(1)将100mmol(以聚合物中酯键数量计)PPDO与10mmol氢氧化钠混合,在120℃下搅拌14h得到含端羧酸钠与端羟基的聚对二氧环己酮(Na+ OOC-poly(PDO)10-OH)。(2)将6mmol Na+ OOC-poly(PDO)10-OH与6.6mmol ZnCl2混合,在120℃下搅拌2h得到含端羧酸锌与端羟基的聚对二氧环己酮(Zn2+[OOC-poly(PDO)10-OH]2)。步骤(2)产物的长链结构为聚醚-酯链,主链碳原子数=4*10=40。
实施例72
(1)将100mmol(以聚合物中酯键数量计)PBDXO与10mmol氢氧化钠混合,在160℃下搅拌8h得到含端羧酸钠与端羟基的聚醚-酯Na+ OOC-poly(BDXOP)10-OH。(2)将6mmol Na+ OOC-poly(BDXO)10-OH与2.4mmol ZnCl2混合,在140℃下搅拌2h得到Zn2+[OOC-poly(BDXO)10-OH]2。步骤(2)产物的长链结构为聚醚-酯链,主链碳原子数=5*10=50。
实施例73
(1)将100mmol(以聚合物中酯键数量计)PBDXOP与10mmol氢氧化钠混合,在160℃下搅拌10h得到含端羧酸钠与端羟基的聚醚-酯Na+ OOC-poly(BDXOP)10-OH。
(2)将6mmol Na+ OOC-poly(BDXOP)10-OH与3mmol ZnCl2混合,在140℃下搅拌2h 得到Zn2+[OOC-poly(BDXOP)10-OH]2。步骤(2)产物的长链结构为聚醚-酯链,主链碳原子数=5*10=50。
实施例74
(1)将10mmol(以端羧酸计)含端羧酸与端羟基的聚乙二醇(HOOC-poly(EG)100-OH)与10mmol氢氧化钠混合,在60℃下搅拌4h得到含端羧酸钠与端羟基的聚乙二醇(Na+ OOC-poly(EG)100-OH)。(2)将6mmol Na+ OOC-poly(EG)100-OH与3mmol ZnCl2混合,在25℃下搅拌4h后得Zn2+[OOC-poly(EG)100-OH]2。步骤(2)产物的长链结构为聚醚链,主链碳原子数=2*100=200。
实施例75
(1)将10mmol(以端羧酸计)含端羧酸与端羟基的聚四氢呋喃(HOOC-poly(THF)50-OH)与8mmol氢氧化钠混合,在120℃下搅拌0.5h得到含端羧酸钠与端羟基的聚四氢呋喃(Na+ OOC-poly(THF)50-OH)(2)再加入4mmol ZnCl2混合,在160℃下搅拌2h后得Zn2+(OOC-poly(THF)50-OH)2。步骤(2)产物的长链结构为聚醚链,主链碳原子数=4*50=200。
实施例76
(1)将10mmol(以端羧酸计)HOOC-poly(EG)100-OH与12mmol氢氧化钠混合,在60℃下搅拌2h得到Na+ OOC-poly(EG)100-OH。(2)再加入6mmol ZnCl2混合,在25℃下搅拌12h后得Zn2+[OOC-poly(EG)100-OH]2。步骤(2)产物的长链结构为聚醚链,主链碳原子数=2*100=200。
实施例77
(1)将10mmol(以端羧酸计)HOOC-poly(EG)100-OH与9mmol氢氧化钠混合,在80℃下搅拌1h得到Na+ OOC-poly(EG)100-OH。(2)再加入9mmol SnCl2混合,在25℃下搅拌12h后得Sn2+[OOC-poly(EG)100-OH]2。步骤(2)产物的长链结构为聚醚链,主链碳原子数=2*100=200。
实施例78
(1)将30mmol(以端羧酸计)HOOC-poly(EG)100-OH与33mmol氢氧化钠混合,在25℃下搅拌12h得到Na+ OOC-poly(EG)100-OH。(2)再加入11mmol FeCl3混合,在25℃下搅拌12h后得Fe3+[OOC-poly(EG)100-OH]3。步骤(2)产物的长链结构为聚醚链,主链碳原子数=2*100=200。
实施例79
(1)将30mmol(以端羧酸计)HOOC-poly(EG)100-OH与30mmol氢氧化钠混合,在40℃下搅拌4h得到Na+ OOC-poly(EG)100-OH。(2)再加入10mmol AlCl3混合,在25℃下搅拌12h后得Al3+[OOC-poly(EG)100-OH]3。步骤(2)产物的长链结构为聚醚链,主链碳原子数=2*100=200。
实施例80
(1)将10mmol(以端羧酸计)HOOC-poly(EG)100-OH与10mmol氢氧化钠混合,在40℃下搅拌8h得到Na+ OOC-poly(EG)100-OH。(2)再加入7.5mmol ZnCl2混合,在25℃下搅拌12h后得Zn2+[OOC-poly(EG)100-OH]2。步骤(2)产物的长链结构为聚醚链,主链碳原子数=2*100=200。
应用实施例1
使用如实施例1步骤(1)所制备的Cl +MIm-C8-OH催化PVL水解。催化剂端羟基与PVL酯键摩尔比为1/100,所加入水与PVL质量比为1/1。在水热反应釜中140℃下进行4h水解后冷却至室温。解聚转化率为98%。
应用实施例2
使用如实施例1步骤(1)所制备的Cl +MIm-C8-OH催化PVL醇解。催化剂端羟基与PVL酯键摩尔比为1/100,所加入甲醇与PVL质量比为2/1。在水热反应釜中140℃下进行4h醇解后冷却至室温。解聚转化率为99%。
应用实施例3
使用如实施例1步骤(1)所制备的Cl +MIm-C8-OH催化PVL环化解聚。催化剂端羟基与PVL酯键摩尔比为1/100。在油泵减压至100Pa以及160℃条件下进行搅拌,并不断 蒸馏出环化解聚产物。2h后解聚收率为56%。
应用实施例4
使用如实施例1步骤(2)所制备的FeCl3-Cl +MIm-C8-OH催化PVL水解。催化剂端羟基与PVL酯键摩尔比为1/100,所加入水与PVL质量比为1.5/1。在水热反应釜中140℃下进行3h水解后冷却至室温。解聚转化率为99%。
应用实施例5
使用如实施例1步骤(2)所制备的FeCl3-Cl +MIm-C8-OH催化PVL醇解。催化剂端羟基与PVL酯键摩尔比为1/100,所加入甲醇与PVL质量比为2/1。在水热反应釜中140℃下进行3h醇解后冷却至室温。解聚转化率为99%。
应用实施例6
使用如实施例1步骤(2)所制备的FeCl3-Cl +MIm-C8-OH催化PVL环化解聚。催化剂端羟基与PVL酯键摩尔比为1/100。在油泵减压至100Pa以及160℃条件下进行搅拌,并不断蒸馏出环化解聚产物。2h后解聚收率为85%。
应用实施例7
使用如实施例1步骤(3)所制备的FeCl3-Cl +MIm-C8-poly(δ-VL)10-OH催化PVL水解。催化剂端羟基与PVL酯键摩尔比为1/100,所加入水与PVL质量比为1.2/1。在水热反应釜中140℃下进行2h水解后冷却至室温。解聚转化率为100%。
应用实施例8
使用如实施例1步骤(3)所制备的FeCl3-Cl +MIm-C8-poly(δ-VL)10-OH催化PVL醇解。催化剂端羟基与PVL酯键摩尔比为1/100,所加入甲醇与PVL质量比为5/1。在水热反应釜中140℃下进行2h醇解后冷却至室温。解聚转化率为100%。
应用实施例9
使用如实施例1步骤(3)所制备的FeCl3-Cl +MIm-C8-poly(δ-VL)10-OH催化PVL环化解聚。催化剂端羟基与PVL酯键摩尔比为1/100。在油泵减压至100Pa以及160℃条件下进行搅拌,并不断蒸馏出环化解聚产物。1.5h后解聚收率为98%,2h后解聚收率为107% (由于催化剂中含有-poly(δ-VL)-链段,当过度反应时,催化剂会发生解聚,导致产物质量>反应物PVL的质量)。
应用实施例10
使用如实施例2步骤(3)所制备的FeCl3-Cl +MIm-C3-poly(δ-VL)5-OH催化PVL环化解聚。催化剂端羟基与PVL酯键摩尔比为1/100。在油泵减压至100Pa以及160℃条件下进行搅拌,并不断蒸馏出环化解聚产物。1.5h后解聚收率为97%。
应用实施例11
使用如实施例3步骤(3)所制备的FeCl3-Br +MIm-C2-poly(δ-VL)30-OH催化PVL环化解聚。催化剂端羟基与PVL酯键摩尔比为1/100。在油泵减压至100Pa以及160℃条件下进行搅拌,并不断蒸馏出环化解聚产物。1.5h后解聚收率为94%。
应用实施例12
使用如实施例4步骤(3)所制备的FeCl3-Cl +BIm-C3-poly(δ-VL)50-OH催化PVL环化解聚。催化剂端羟基与PVL酯键摩尔比为1/100。在油泵减压至100Pa以及160℃条件下进行搅拌,并不断蒸馏出环化解聚产物。1.5h后解聚收率为107%。
应用实施例13
使用如实施例5步骤(3)所制备的FeCl3-Cl +MThi-C3-poly(δ-VL)70-OH催化PVL环化解聚。催化剂端羟基与PVL酯键摩尔比为1/100。在油泵减压至100Pa以及160℃条件下进行搅拌,并不断蒸馏出环化解聚产物。1.5h后解聚收率为109%。
应用实施例14
使用如实施例6步骤(3)所制备的FeCl3-Cl +Thi-C3-poly(δ-VL)90-OH催化PVL环化解聚。催化剂端羟基与PVL酯键摩尔比为1/100。在油泵减压至100Pa以及160℃条件下进行搅拌,并不断蒸馏出环化解聚产物。1.5h后解聚收率为118%。
应用实施例15
使用如实施例7步骤(3)所制备的FeCl3-Cl +BzThi-C3-poly(δ-VL)10-OH催化PVL环化解聚。催化剂端羟基与PVL酯键摩尔比为1/100。在油泵减压至100Pa以及160℃条件 下进行搅拌,并不断蒸馏出环化解聚产物。1.5h后解聚收率为96%。
应用实施例16
使用如实施例8步骤(3)所制备的SnCl2-Cl +MIm-C3-poly(δ-VL)10-OH催化PVL环化解聚。催化剂端羟基与PVL酯键摩尔比为1/100。在油泵减压至100Pa以及160℃条件下进行搅拌,并不断蒸馏出环化解聚产物。1h后解聚收率为98%。
应用实施例17
使用如实施例9步骤(3)所制备的ZnCl2-Cl +MIm-C3-poly(δ-VL)10-OH催化PVL环化解聚。催化剂端羟基与PVL酯键摩尔比为1/100。在油泵减压至100Pa以及160℃条件下进行搅拌,并不断蒸馏出环化解聚产物。1h后解聚收率为94%。
应用实施例18
使用如实施例10步骤(3)所制备的AlCl3-Cl +MIm-C3-poly(δ-VL)10-OH催化PVL环化解聚。催化剂端羟基与PVL酯键摩尔比为1/100。在油泵减压至100Pa以及160℃条件下进行搅拌,并不断蒸馏出环化解聚产物。2h后解聚收率为79%。
应用实施例19
使用如实施例11步骤(3)所制备的1.7·FeCl3-Cl +MIm-C3-poly(δ-VL)10-OH催化PVL环化解聚。催化剂端羟基与PVL酯键摩尔比为1/100。在油泵减压至100Pa以及160℃条件下进行搅拌,并不断蒸馏出环化解聚产物。1h后解聚收率为92%。
应用实施例20
使用如实施例12步骤(3)所制备的3·FeCl3-Cl +MIm-C3-poly(δ-VL)10-OH催化PVL环化解聚。催化剂端羟基与PVL酯键摩尔比为1/100。在油泵减压至100Pa以及160℃条件下进行搅拌,并不断蒸馏出环化解聚产物。1h后解聚收率为43%,反应体系发生明显碳化。
应用实施例21
使用如实施例13步骤(3)所制备的1.3·FeCl3-Cl +MIm-C3-poly(δ-VL)10-OH催化PVL环化解聚。催化剂端羟基与PVL酯键摩尔比为1/100。在油泵减压至100Pa以及160℃条 件下进行搅拌,并不断蒸馏出环化解聚产物。1h后解聚收率为90%。
应用实施例22
使用如实施例14步骤(3)所制备的FeCl3-Cl +MIm-C3-poly(L-LA)10-OH催化PLLA环化解聚。催化剂端羟基与PLLA酯键摩尔比为1/50。在油泵减压至100Pa以及200℃条件下进行搅拌,并不断蒸馏出环化解聚产物。0.75h后解聚收率为96%,1h后解聚收率104%。经核磁氢谱测试,结果如附图7所示,回收产物为高纯度L-LA;经气相色谱测试,结果如附图8所示,回收产物中L-LA含量>98%,消旋丙交酯含量约1%。
应用实施例23
使用如实施例15步骤(3)所制备的FeCl3-Cl +MIm-C3-poly(GA)10-OH催化PGA环化解聚。催化剂端羟基与PGA酯键摩尔比为1/100。在油泵减压至100Pa以及220℃条件下进行搅拌,并不断蒸馏出环化解聚产物。1h后解聚收率为98%。
应用实施例24
使用如实施例16步骤(3)所制备的FeCl3-Cl +MIm-C3-poly(ε-CL)10-OH催化PCL环化解聚。催化剂端羟基与PCL酯键摩尔比为1/100。在油泵减压至100Pa以及200℃条件下进行搅拌,并不断蒸馏出环化解聚产物。4h后解聚收率为98%,6h后解聚收率107%。经核磁氢谱测试,结果如附图9所示,回收产物为-CL单体、环状二聚体和环状三聚体的混合物;经气相色谱测试,结果如附图10所示,回收产物中ε-CL单体、环状二聚体和环状三聚体的占比分别为82.90%、15.23%和1.76%。
应用实施例25
使用如实施例17步骤(3)所制备的FeCl3-Cl +MIm-C3-poly(PDO)10-OH催化PPDO环化解聚。催化剂端羟基与PPDO酯键摩尔比为1/100。在油泵减压至100Pa以及160℃条件下进行搅拌,并不断蒸馏出环化解聚产物。1h后解聚收率为99%。经核磁氢谱测试,结果如附图11所示,回收产物为高纯度PDO;经气相色谱测试,结果如附图12所示,回收产物中PDO单体含量为99.61%,PDO环状二聚体含量为0.28%。
应用实施例26
使用如实施例18步骤(3)所制备的FeCl3-Cl +MIm-C3-poly(PDO)10-OH催化PPDO环化解聚。催化剂端羟基与PPDO酯键摩尔比为1/100。在油泵减压至100Pa以及140℃条件下进行搅拌,并不断蒸馏出环化解聚产物。1h后解聚收率为97%。
应用实施例27
使用如实施例19步骤(3)所制备的FeCl3-Cl +MIm-C3-poly(BDXO)10-OH催化PBDXO环化解聚。催化剂端羟基与PBDXO酯键摩尔比为1/100。在油泵减压至100Pa以及160℃条件下进行搅拌,并不断蒸馏出环化解聚产物。2h后解聚收率为94%。
应用实施例28
使用如实施例20步骤(3)所制备的FeCl3-Cl +MIm-C3-poly(BDXOP)10-OH催化PBDXOP环化解聚。催化剂端羟基与PBDXOP酯键摩尔比为1/100。在油泵减压至100Pa以及160℃条件下进行搅拌,并不断蒸馏出环化解聚产物。2h后解聚收率为90%。
应用实施例29
使用如实施例21步骤(3)所制备的FeCl3-Cl +MIm-C3-poly(δ-VL)1-OH催化PVL环化解聚。催化剂端羟基与PVL酯键摩尔比为1/100。在油泵减压至100Pa以及160℃条件下进行搅拌,并不断蒸馏出环化解聚产物。1.5h后解聚收率为56%。
应用实施例30
使用如实施例22步骤(3)所制备的FeCl3-Cl +MIm-C3-poly(δ-VL)100-OH催化PVL环化解聚。催化剂端羟基与PVL酯键摩尔比为1/100。在油泵减压至100Pa以及160℃条件下进行搅拌,并不断蒸馏出环化解聚产物。1.5h后解聚收率为80%。
应用实施例31
使用如实施例23步骤(3)所制备的FeCl3-Cl +MIm-C3-poly(L-LA)10-OH催化PLLA环化解聚。催化剂端羟基与PLLA酯键摩尔比为1/100。在油泵减压至100Pa以及200℃条件下进行搅拌,并不断蒸馏出环化解聚产物。0.75h后解聚收率为98%。
应用实施例32
使用如实施例24步骤(3)所制备的FeCl3-Cl +MIm-C3-poly(GA)25-OH催化PGA环化 解聚。催化剂端羟基与PGA酯键摩尔比为1/100。在油泵减压至100Pa以及220℃条件下进行搅拌,并不断蒸馏出环化解聚产物。1h后解聚收率为108%。
应用实施例33
使用如实施例25步骤(3)所制备的FeCl3-Cl +MIm-C3-poly(ES)1-OH催化PES水解。催化剂端羟基与PES酯键摩尔比为1/100,所加入水与PES质量比为4/1。在水热反应釜中140℃下进行4h水解后冷却至室温。解聚转化率为99%。
应用实施例34
使用如实施例26步骤(3)所制备的FeCl3-Cl +MIm-C3-poly(BS)10-OH催化PBS水解。催化剂端羟基与PBS酯键摩尔比为1/100,所加入水与PBS质量比为8/1。在水热反应釜中140℃下进行4h水解后冷却至室温。解聚转化率为100%。
应用实施例35
使用如实施例27步骤(3)所制备的FeCl3-Cl +MIm-C3-poly(HS)70-OH催化PHS水解。催化剂端羟基与PHS酯键摩尔比为1/100,所加入水与PHS质量比为2/1。在水热反应釜中140℃下进行4h水解后冷却至室温。解聚转化率为97%。
应用实施例36
使用如实施例28步骤(3)所制备的FeCl3-Cl +MIm-C3-poly(EA)10-OH催化PEA水解。催化剂端羟基与PEA酯键摩尔比为1/100,所加入水与PEA质量比为15/1。在水热反应釜中140℃下进行4h水解后冷却至室温。解聚转化率为100%。
应用实施例37
使用如实施例29步骤(3)所制备的FeCl3-Cl +MIm-C3-poly(BA)10-OH催化PBA水解。催化剂端羟基与PBA酯键摩尔比为1/100,所加入水与PBA质量比为20/1。在水热反应釜中140℃下进行4h水解后冷却至室温。解聚转化率为100%。
应用实施例38
使用如实施例30步骤(3)所制备的FeCl3-Cl +MIm-C3-poly(HA)100-OH催化PHA水解。催化剂端羟基与PHA酯键摩尔比为1/100,所加入水与PHA质量比为12/1。在水热 反应釜中140℃下进行4h水解后冷却至室温。解聚转化率为99%。
应用实施例39
使用如实施例31步骤(2)所制备的Al3+[OOC-C11(C6)-OH]3催化PVL环化解聚。催化剂端羟基与PVL酯键摩尔比为1/100。在油泵减压至100Pa以及160℃条件下进行搅拌,并不断蒸馏出环化解聚产物。2h后解聚收率为85%。
应用实施例40
使用如实施例31步骤(3)所制备的Al3+[OOC-C11(C6)-poly(δ-VL)10-OH]3催化PVL环化解聚。催化剂端羟基与PVL酯键摩尔比为1/100。在油泵减压至100Pa以及160℃条件下进行搅拌,并不断蒸馏出环化解聚产物。2h后解聚收率为94%。
应用实施例41
使用如实施例32步骤(3)所制备的Al3+[OOC-C5-poly(δ-VL)5-OH]3催化PVL环化解聚。催化剂端羟基与PVL酯键摩尔比为1/100。在油泵减压至100Pa以及160℃条件下进行搅拌,并不断蒸馏出环化解聚产物。2h后解聚收率为95%。
应用实施例42
使用如实施例33步骤(2)所制备的Me4N+ SO3-C4-poly(δ-VL)30-OH催化PVL环化解聚。催化剂端羟基与PVL酯键摩尔比为1/100。在油泵减压至100Pa以及160℃条件下进行搅拌,并不断蒸馏出环化解聚产物。2h后解聚收率为59%。
应用实施例43
使用如实施例34步骤(2)所制备的Et4N+ SO3-C3-poly(δ-VL)50-OH催化PVL环化解聚。催化剂端羟基与PVL酯键摩尔比为1/100。在油泵减压至100Pa以及160℃条件下进行搅拌,并不断蒸馏出环化解聚产物。2h后解聚收率为47%。
应用实施例44
使用如实施例35步骤(3)所制备的Al3+[OOC-C14-poly(δ-VL)70-OH]3催化PVL环化解聚。催化剂端羟基与PVL酯键摩尔比为1/100。在油泵减压至100Pa以及160℃条件下进行搅拌,并不断蒸馏出环化解聚产物。2h后解聚收率为133%。
应用实施例45
使用如实施例36步骤(3)所制备的Al3+[OOC-C5-poly(δ-VL)90-OH]3催化PVL环化解聚。催化剂端羟基与PVL酯键摩尔比为1/100。在油泵减压至100Pa以及160℃条件下进行搅拌,并不断蒸馏出环化解聚产物。2h后解聚收率为142%。
应用实施例46
使用如实施例37步骤(2)所制备的Mg2+[OOC-C14-poly(δ-VL)10-OH]2催化PVL环化解聚。催化剂端羟基与PVL酯键摩尔比为1/100。在油泵减压至100Pa以及160℃条件下进行搅拌,并不断蒸馏出环化解聚产物。2h后解聚收率为105%。
应用实施例47
使用如实施例38步骤(2)所制备的Ca2+[OOC-C14-poly(δ-VL)10-OH]2催化PVL环化解聚。催化剂端羟基与PVL酯键摩尔比为1/100。在油泵减压至100Pa以及160℃条件下进行搅拌,并不断蒸馏出环化解聚产物。2h后解聚收率为98%。
应用实施例48
使用如实施例39步骤(3)所制备的Fe3+[OOC-C14-poly(δ-VL)10-OH]3催化PVL环化解聚。催化剂端羟基与PVL酯键摩尔比为1/100。在油泵减压至100Pa以及160℃条件下进行搅拌,并不断蒸馏出环化解聚产物。1h后解聚收率为96%。
应用实施例49
使用如实施例40步骤(3)所制备的Zn2+[OOC-C14-poly(δ-VL)10-OH]2催化PVL环化解聚。催化剂端羟基与PVL酯键摩尔比为1/100。在油泵减压至100Pa以及160℃条件下进行搅拌,并不断蒸馏出环化解聚产物。1h后解聚收率为100%。
应用实施例50
使用如实施例41步骤(3)所制备的Sn2+[OOC-C14-poly(δ-VL)10-OH]2催化PVL环化解聚。催化剂端羟基与PVL酯键摩尔比为1/100。在油泵减压至100Pa以及160℃条件下进行搅拌,并不断蒸馏出环化解聚产物。1h后解聚收率为103%。
应用实施例51
使用如实施例42步骤(3)所制备的Al3+[OOC-C14-poly(δ-VL)10-OH]3催化PVL环化解聚。催化剂端羟基与PVL酯键摩尔比为1/100。在油泵减压至100Pa以及160℃条件下进行搅拌,并不断蒸馏出环化解聚产物。2h后解聚收率为94%。
应用实施例52
使用如实施例43步骤(3)所制备的Al3+[OOC-C14-poly(δ-VL)10-OH]3催化PVL环化解聚。催化剂端羟基与PVL酯键摩尔比为1/100。在油泵减压至100Pa以及160℃条件下进行搅拌,并不断蒸馏出环化解聚产物。2h后解聚收率为94%。
应用实施例53
使用如实施例44步骤(3)所制备的Al3+[OOC-C11(C6)-poly(L-LA)10-OH]3催化PLLA环化解聚。催化剂端羟基与PLLA酯键摩尔比为1/100。在油泵减压至100Pa以及200℃条件下进行搅拌,并不断蒸馏出环化解聚产物。2h后解聚收率为98%。
应用实施例54
使用如实施例45步骤(3)所制备的Al3+[OOC-C11(C6)-poly(GA)10-OH]3催化PGA环化解聚。催化剂端羟基与PGA酯键摩尔比为1/100。在油泵减压至100Pa以及220℃条件下进行搅拌,并不断蒸馏出环化解聚产物。1h后解聚收率为88%。
应用实施例55
使用如实施例46步骤(3)所制备的Al3+[OOC-C11(C6)-poly(ε-CL)10-OH]3催化PCL环化解聚。催化剂端羟基与PCL酯键摩尔比为1/100。在油泵减压至100Pa以及200℃条件下进行搅拌,并不断蒸馏出环化解聚产物。6h后解聚收率为84%。
应用实施例56
使用如实施例47步骤(3)所制备的Al3+[OOC-C17-poly(PDO)10-OH]3催化PPDO环化解聚。催化剂端羟基与PPDO酯键摩尔比为1/100。在油泵减压至100Pa以及160℃条件下进行搅拌,并不断蒸馏出环化解聚产物。2h后解聚收率为101%。
应用实施例57
使用如实施例48步骤(3)所制备的Al3+[OOC-C7-poly(PDO)10-OH]3催化PPDO环化解聚。催化剂端羟基与PPDO酯键摩尔比为1/100。在油泵减压至100Pa以及160℃条件下进行搅拌,并不断蒸馏出环化解聚产物。2h后解聚收率为102%。
应用实施例58
使用如实施例49步骤(3)所制备的Al3+[SO3-C2-poly(PDO)10-OH]3催化PBDXO环化解聚。催化剂端羟基与PBDXO酯键摩尔比为1/100。在油泵减压至100Pa以及160℃条件下进行搅拌,并不断蒸馏出环化解聚产物。4h后解聚收率为89%。
应用实施例59
使用如实施例50步骤(3)所制备的Al3+[OOC-C11(C6)-poly(BDXOP)10-OH]3催化PBDXOP环化解聚。催化剂端羟基与PBDXOP酯键摩尔比为1/100。在油泵减压至100Pa以及160℃条件下进行搅拌,并不断蒸馏出环化解聚产物。4h后解聚收率为83%。
应用实施例60
使用如实施例51步骤(3)所制备的Al3+[OOC-C11(C6)-poly(δ-VL)1-OH]3催化PVL环化解聚。催化剂端羟基与PVL酯键摩尔比为1/100。在油泵减压至100Pa以及160℃条件下进行搅拌,并不断蒸馏出环化解聚产物。2h后解聚收率为68%。
应用实施例61
使用如实施例52步骤(3)所制备的Al3+[OOC-C11(C6)-poly(δ-VL)100-OH]3催化PVL环化解聚。催化剂端羟基与PVL酯键摩尔比为1/100。在油泵减压至100Pa以及160℃条件下进行搅拌,并不断蒸馏出环化解聚产物。2h后解聚收率为83%。
应用实施例62
使用如实施例53步骤(3)所制备的Al3+[OOC-C11(C6)-poly(L-LA)10-OH]3催化PLLA环化解聚。催化剂端羟基与PLLA酯键摩尔比为1/100。在油泵减压至100Pa以及200℃条件下进行搅拌,并不断蒸馏出环化解聚产物。2h后解聚收率为100%。
应用实施例63
使用如实施例54步骤(3)所制备的Al3+[OOC-C11(C6)-poly(GA)25-OH]3催化PGA环 化解聚。催化剂端羟基与PGA酯键摩尔比为1/100。在油泵减压至100Pa以及220℃条件下进行搅拌,并不断蒸馏出环化解聚产物。1h后解聚收率为101%。
应用实施例64
使用如实施例55步骤(3)所制备的Al3+[OOC-C11(C6)-poly(ES)1-OH]3催化PES水解。催化剂端羟基与PES酯键摩尔比为1/100,所加入水与PES质量比为2/1。在水热反应釜中140℃下进行4h水解后冷却至室温。解聚转化率为99%。
应用实施例65
使用如实施例56步骤(3)所制备的Al3+[OOC-C11(C6)-poly(BS)10-OH]3催化PBS水解。催化剂端羟基与PBS酯键摩尔比为1/100,所加入水与PBS质量比为2/1。在水热反应釜中140℃下进行4h水解后冷却至室温。解聚转化率为100%。
应用实施例66
使用如实施例57步骤(3)所制备的Al3+[OOC-C11(C6)-poly(HS)70-OH]3催化PHS水解。催化剂端羟基与PHS酯键摩尔比为1/10000,所加入水与PHS质量比为2/1。在水热反应釜中140℃下进行12h水解后冷却至室温。解聚转化率为34%。
应用实施例67
使用如实施例58步骤(3)所制备的Al3+[OOC-C11(C6)-poly(EA)10-OH]3催化PEA水解。催化剂端羟基与PEA酯键摩尔比为1/1000,所加入水与PEA质量比为2/1。在水热反应釜中140℃下进行8h水解后冷却至室温。解聚转化率为67%。
应用实施例68
使用如实施例59步骤(3)所制备的Al3+[OOC-C11(C6)-poly(BA)10-OH]3催化PBA水解。催化剂端羟基与PBA酯键摩尔比为1/200,所加入水与PBA质量比为2/1。在水热反应釜中140℃下进行6h水解后冷却至室温。解聚转化率为95%。
应用实施例69
使用如实施例60步骤(3)所制备的Al3+[OOC-C11(C6)-poly(HA)100-OH]3催化PHA水解。催化剂端羟基与PHA酯键摩尔比为1/100,所加入水与PHA质量比为2/1。在水热 反应釜中140℃下进行4h水解后冷却至室温。解聚转化率为98%。
应用实施例70
使用如实施例61步骤(2)所制备的Zn2+[OOC-poly(ES)10-OH]2催化PES水解。催化剂端羟基与PES酯键摩尔比为1/100,所加入水与PES质量比为2/1。在水热反应釜中140℃下进行3h水解后冷却至室温。解聚转化率为100%。
应用实施例71
使用如实施例62步骤(2)所制备的Zn2+[OOC-poly(BS)1-OH]2催化PBS水解。催化剂端羟基与PBS酯键摩尔比为1/50,所加入水与PBS质量比为2/1。在水热反应釜中140℃下进行3h水解后冷却至室温。解聚转化率为99%。
应用实施例72
使用如实施例63所制备的Mg2+[OOC-poly(HS)100-OH]2催化PHS水解。催化剂端羟基与PHS酯键摩尔比为1/20,所加入水与PHS质量比为2/1。在水热反应釜中140℃下进行3h水解后冷却至室温。解聚转化率为100%。
应用实施例73
使用如实施例64所制备的Ca2+[OOC-poly(EA)50-OH]2催化PEA水解。催化剂端羟基与PEA酯键摩尔比为1/10,所加入水与PEA质量比为2/1。在水热反应釜中140℃下进行3h水解后冷却至室温。解聚转化率为100%。
应用实施例74
使用如实施例65所制备的Me4N+ OOC-poly(BA)20-OH催化PBA水解。催化剂端羟基与PBA酯键摩尔比为1/100,所加入水与PBA质量比为2/1。在水热反应釜中140℃下进行3h水解后冷却至室温。解聚转化率为96%。
应用实施例75
使用如实施例66所制备的Et4N+ OOC-poly(HA)10-OH催化PHA水解。催化剂端羟基与PHA酯键摩尔比为1/100,所加入水与PHA质量比为2/1。在水热反应釜中140℃下进行3h水解后冷却至室温。解聚转化率为96%。
应用实施例76
使用如实施例67步骤(2)所制备的Zn2+[OOC-poly(L-LA)10-OH]2催化PLLA环化解聚。催化剂端羟基与PLLA酯键摩尔比为1/100。在油泵减压至100Pa以及200℃条件下进行搅拌,并不断蒸馏出环化解聚产物。1h后解聚收率为106%。反应前0.5h,反应体系黏度从570Pa·s降低至22Pa·s。
应用实施例77
使用如实施例68步骤(2)所制备的Zn2+[OOC-poly(GA)10-OH]2催化PGA环化解聚。催化剂端羟基与PGA酯键摩尔比为1/100。在油泵减压至100Pa以及220℃条件下进行搅拌,并不断蒸馏出环化解聚产物。1h后解聚收率为103%。
应用实施例78
使用如实施例69步骤(2)所制备的Zn2+[OOC-poly(ε-CL)14.5-OH]2催化PCL环化解聚。催化剂端羟基与PCL酯键摩尔比为1/100。在油泵减压至100Pa以及200℃条件下进行搅拌,并不断蒸馏出环化解聚产物。4h后解聚收率为98%。
应用实施例79
使用如实施例70步骤(2)所制备的Zn2+[OOC-poly(δ-VL)10-OH]2催化PVL环化解聚。催化剂端羟基与PVL酯键摩尔比为1/100。在油泵减压至100Pa以及160℃条件下进行搅拌,并不断蒸馏出环化解聚产物。1h后解聚收率为102%。
应用实施例80
使用如实施例71步骤(2)所制备的Zn2+[OOC-poly(PDO)10-OH]2催化PPDO环化解聚。催化剂端羟基与PPDO酯键摩尔比为1/100。在油泵减压至100Pa以及160℃条件下进行搅拌,并不断蒸馏出环化解聚产物。1h后解聚收率为109%。
应用实施例81
使用如实施例72步骤(2)所制备的Zn2+[OOC-poly(BDXO)10-OH]2催化PBDXO环化解聚。催化剂端羟基与PBDXO酯键摩尔比为1/100。在油泵减压至100Pa以及160℃条件下进行搅拌,并不断蒸馏出环化解聚产物。1h后解聚收率为89%。
应用实施例82
使用如实施例73步骤(2)所制备的Zn2+[OOC-poly(BDXOP)10-OH]2催化PBDXOP环化解聚。催化剂端羟基与PBDXOP酯键摩尔比为1/100。在油泵减压至100Pa以及160℃条件下进行搅拌,并不断蒸馏出环化解聚产物。1h后解聚收率为94%。
应用实施例83
使用如实施例74步骤(2)所制备的Zn2+[OOC-poly(EG)100-OH]2催化PVL环化解聚。催化剂端羟基与PVL酯键摩尔比为1/100。在油泵减压至100Pa以及160℃条件下进行搅拌,并不断蒸馏出环化解聚产物。1h后解聚收率为97%。
应用实施例84
使用如实施例75步骤(2)所制备的Zn2+(OOC-poly(THF)50-OH)2、HOOC-poly(THF)50-OH催化PVL环化解聚。催化剂端羟基与PVL酯键摩尔比为1/100。在油泵减压至100Pa以及160℃条件下进行搅拌,并不断蒸馏出环化解聚产物。1h后解聚收率为55%。
应用实施例85
使用如实施例76步骤(2)所制备的Zn2+[OOC-poly(EG)100-OH]2催化PVL环化解聚。催化剂端羟基与PVL酯键摩尔比为1/100。在油泵减压至100Pa以及160℃条件下进行搅拌,并不断蒸馏出环化解聚产物。1h后解聚收率为96%。
应用实施例86
使用如实施例77步骤(2)所制备的Sn2+[OOC-poly(EG)100-OH]2催化PVL环化解聚。催化剂端羟基与PVL酯键摩尔比为1/100。在油泵减压至100Pa以及160℃条件下进行搅拌,并不断蒸馏出环化解聚产物。1h后解聚收率为105%。
应用实施例87
使用如实施例78步骤(2)所制备的Fe3+[OOC-poly(EG)100-OH]3催化PVL环化解聚。催化剂端羟基与PVL酯键摩尔比为1/100。在油泵减压至100Pa以及160℃条件下进行搅拌,并不断蒸馏出环化解聚产物。1h后解聚收率为97%。
应用实施例88
使用如实施例79步骤(2)所制备的Al3+[OOC-poly(EG)100-OH]3催化PVL环化解聚。催化剂端羟基与PVL酯键摩尔比为1/100。在油泵减压至100Pa以及160℃条件下进行搅拌,并不断蒸馏出环化解聚产物。2h后解聚收率为92%。
应用实施例89
使用如实施例80步骤(2)所制备的Zn2+[OOC-poly(EG)100-OH]2催化PVL环化解聚。催化剂端羟基与PVL酯键摩尔比为1/100。在油泵减压至100Pa以及160℃条件下进行搅拌,并不断蒸馏出环化解聚产物。1h后解聚收率为99%。
应用实施例90
使用如实施例26步骤(3)所制备的FeCl3-Cl +MIm-C3-poly(BS)10-OH催化PBS水解。催化剂端羟基与PBS酯键摩尔比为1/100,所加入水与PBS质量比为1/2。在水热反应釜中140℃下进行1h水解后冷却至室温。解聚转化率72%,产物含丁二酸、丁二醇、丁二酸丁二醇酯以及丁二酸丁二醇寡聚体。
应用实施例91
使用如实施例26步骤(3)所制备的FeCl3-Cl +MIm-C3-poly(BS)10-OH催化PBS水解。催化剂端羟基与PBS酯键摩尔比为1/100,所加入水与PBS质量比为10/1。在水热反应釜中160℃下进行2h水解后冷却至室温。解聚转化率100%。
应用实施例92
使用如实施例26步骤(3)所制备的FeCl3-Cl +MIm-C3-poly(BS)10-OH催化PBS水解。催化剂端羟基与PBS酯键摩尔比为1/100,所加入水与PBS质量比为20/1。在水热反应釜中80℃下进行12h水解后冷却至室温。解聚转化率71%。
应用实施例93
使用如实施例26步骤(3)所制备的FeCl3-Cl +MIm-C3-poly(BS)10-OH催化PBS水解。催化剂端羟基与PBS酯键摩尔比为1/100,所加入甲醇与PBS质量比为2/1。在40℃进行12h醇解。解聚转化率11%。
应用实施例94
使用如实施例26步骤(3)所制备的FeCl3-Cl +MIm-C3-poly(BS)10-OH催化PBS水解。催化剂端羟基与PBS酯键摩尔比为1/100,所加入丁二醇与PBS质量比为2/1。在200℃进行1h醇解后冷却至室温。解聚转化率100%。
应用实施例95
使用如实施例71步骤(2)所制备的Zn2+[OOC-poly(PDO)10-OH]2催化PPDO环化解聚。催化剂端羟基与PPDO酯键摩尔比为1/10000。在油泵减压至100Pa以及160℃条件下进行搅拌,并不断蒸馏出环化解聚产物。1h后解聚收率为55%。
应用实施例96
使用如实施例71步骤(2)所制备的Zn2+[OOC-poly(PDO)10-OH]2催化PPDO环化解聚。催化剂端羟基与PPDO酯键摩尔比为1/1000。在油泵减压至100Pa以及160℃条件下进行搅拌,并不断蒸馏出环化解聚产物。1h后解聚收率为79%。
应用实施例97
使用如实施例71步骤(2)所制备的Zn2+[OOC-poly(PDO)10-OH]2催化PPDO环化解聚。催化剂端羟基与PPDO酯键摩尔比为1/10。在油泵减压至100Pa以及120℃条件下进行搅拌,并不断蒸馏出环化解聚产物。12h后解聚收率为101%。
应用实施例98
使用如实施例71步骤(2)所制备的Zn2+[OOC-poly(PDO)10-OH]2催化PPDO环化解聚。催化剂端羟基与PPDO酯键摩尔比为1/100。将PPDO与催化剂熔融共混后冷却室温,再粉碎并过40目筛。然后在80℃常压(1*105Pa)条件下使用甲苯进行抽提,不断生成单体并转移到抽提液(甲苯)中,12h后解聚转化率为47%。
应用实施例99
使用如实施例71步骤(2)所制备的Zn2+[OOC-poly(PDO)10-OH]2催化PPDO环化解聚。催化剂端羟基与PPDO酯键摩尔比为1/100。在油泵减压至100Pa以及300℃条件下进行搅拌,并不断蒸馏出环化解聚产物。0.5h后解聚收率为103%。
应用实施例100
使用如实施例71步骤(2)所制备的Zn2+[OOC-poly(PDO)10-OH]2催化PPDO环化解聚。催化剂端羟基与PPDO酯键摩尔比为1/100。在油泵减压至100Pa以及400℃条件下进行搅拌,并不断蒸馏出环化解聚产物。0.5h后解聚收率为101%。
应用实施例101
使用如实施例71步骤(2)所制备的Zn2+[OOC-poly(PDO)10-OH]2催化PPDO环化解聚。催化剂端羟基与PPDO酯键摩尔比为1/100。在油泵机组减压至1Pa以及160℃条件下进行搅拌,并不断蒸馏出环化解聚产物。1h后解聚收率为107%。
应用实施例102
使用如实施例71步骤(2)所制备的Zn2+[OOC-poly(PDO)10-OH]2催化PPDO环化解聚。催化剂端羟基与PPDO酯键摩尔比为1/100。在油泵减压至10Pa以及160℃条件下进行搅拌,并不断蒸馏出环化解聚产物。1h后解聚收率为105%。
应用实施例103
使用如实施例71步骤(2)所制备的Zn2+[OOC-poly(PDO)10-OH]2催化PPDO环化解聚。催化剂端羟基与PPDO酯键摩尔比为1/100。在油泵减压至1000Pa以及160℃条件下进行搅拌,并不断蒸馏出环化解聚产物。1h后解聚收率为98%。
应用实施例104
使用如实施例71步骤(2)所制备的Zn2+[OOC-poly(PDO)10-OH]2催化PPDO环化解聚。催化剂端羟基与PPDO酯键摩尔比为1/100。在水泵减压至1*104Pa以及160℃条件下进行搅拌,并不断蒸馏出环化解聚产物。1h后解聚收率为93%。
应用实施例105
使用如实施例67步骤(2)所制备的Zn2+[OOC-poly(L-LA)10-OH]2催化L-乳酸缩聚和环化解聚。催化剂端羟基与L-乳酸摩尔比为1/50。在水泵减压至3000Pa以及80、100、120、140℃依次各反应2h并不断蒸馏出所生成水,再在油泵减压至100Pa以及140℃条件下反应2h并不断蒸馏出所生成水,制得齐聚物。随后升温至160℃在1Pa压力下进行 环化解聚,不断生成和蒸馏出产物,3h后收率为99%,粗产物中L-LA含量约92%,消旋丙交酯含量约1%。
应用实施例106
使用如实施例67步骤(2)所制备的Zn2+[OOC-poly(L-LA)10-OH]2催化L-乳酸甲酯缩聚和环化解聚。催化剂端羟基与L-乳酸甲酯摩尔比为1/100。在140℃常压反应4h并不断蒸馏出所生成甲醇,然后缓慢减压至3000Pa继续反应2h并不断蒸馏出所生成甲醇,制得齐聚物。随后升温至160℃在100Pa压力下进行环化解聚,不断生成和蒸馏出产物,3h后收率为96%,粗产物中L-LA含量约93%,消旋丙交酯含量约1%。
应用实施例107
使用如实施例67步骤(2)所制备的Zn2+[OOC-poly(L-LA)10-OH]2催化L-乳酸乙酯缩聚和环化解聚。催化剂端羟基与L-乳酸乙酯摩尔比为1/200。在140℃常压反应6h并不断蒸馏出所生成乙醇,然后缓慢减压至3000Pa继续反应2h并不断蒸馏出所生成乙醇,制得齐聚物。随后升温至160℃在10Pa压力下进行环化解聚,不断生成和蒸馏出产物,3h后收率为95%,粗产物中L-LA含量约93%,消旋丙交酯含量约1%。
应用实施例108
使用如实施例69步骤(2)所制备的Zn2+[OOC-poly(ε-CL)14.5-OH]2与催化6-羟基己酸缩聚和环化解聚。催化剂端羟基与6-羟基己酸摩尔比为1/20。在水泵减压至3000Pa以及80、100、120、140℃依次各反应2h并不断蒸馏出所生成水,再在油泵减压至100Pa以及160℃条件下反应2h并不断蒸馏出所生成水,制得齐聚物。随后升温至200℃在1Pa压力下进行环化解聚,不断生成和蒸馏出产物,4h后收率为101%,粗产物中ε-CL单体含量约81%、ε-CL环状二聚体含量约16%、ε-CL环状三聚体含量约2%。
应用实施例109
使用如实施例69步骤(2)所制备的Zn2+[OOC-poly(ε-CL)14.5-OH]2催化6-羟基己酸甲酯缩聚和环化解聚。催化剂端羟基与6-羟基己酸甲酯摩尔比为1/10。在160℃常压反应2h并不断蒸馏出所生成甲醇,然后缓慢减压至3000Pa继续反应2h并不断蒸馏出所生成甲醇,制得齐聚物。随后升温至200℃在100Pa压力下进行环化解聚,不断生成和蒸馏出 产物,4h后收率为96%,粗产物中ε-CL单体含量约80%、ε-CL环状二聚体含量约17%、ε-CL环状三聚体含量约2%。
应用实施例110
使用如实施例69步骤(2)所制备的Zn2+[OOC-poly(ε-CL)14.5-OH]2催化6-羟基己酸乙酯缩聚和环化解聚。催化剂端羟基与6-羟基己酸乙酯摩尔比为1/20。在160℃常压反应4h并不断蒸馏出所生成乙醇,然后缓慢减压至3000Pa继续反应4h并不断蒸馏出所生成乙醇,制得齐聚物。随后升温至200℃在10Pa压力下进行环化解聚,不断生成和蒸馏出产物,4h后收率为95%,粗产物中ε-CL单体含量约78%、ε-CL环状二聚体含量约18%、ε-CL环状三聚体含量约2%。
应用实施例111
使用如实施例68步骤(2)所制备的Zn2+[OOC-poly(GA)10-OH]2催化羟基乙酸缩聚和环化解聚。催化剂端羟基与羟基乙酸摩尔比为1/100。在水泵减压至3000Pa以及100、120、140℃依次各反应3h并不断蒸馏出所生成水,再在油泵减压至100Pa以及160℃条件下反应2h并不断蒸馏出所生成水,制得齐聚羟基乙酸。随后升温至220℃在1000Pa压力下进行环化解聚,不断生成和蒸馏出产物,1h后收率为95%。
应用实施例112
使用如实施例68步骤(2)所制备的Zn2+[OOC-poly(GA)10-OH]2催化羟基乙酸甲酯缩聚和环化解聚。催化剂端羟基与羟基乙酸甲酯摩尔比为1/1000。在140℃常压反应2h并不断蒸馏出所生成甲醇,然后缓慢减压至3000Pa和缓慢升温至180℃反应6h并不断蒸馏出所生成甲醇,制得齐聚羟基乙酸。冷却至室温后粉碎并过40目筛,再在80℃常压(1*105Pa)条件下使用二甲苯进行抽提,不断生成单体并转移到抽提液(二甲苯)中,12h后解聚转化率为31%。
应用实施例113
使用如实施例68步骤(2)所制备的Zn2+[OOC-poly(GA)10-OH]2催化羟基乙酸乙酯缩聚和环化解聚。催化剂端羟基与羟基乙酸乙酯摩尔比为1/10000。在140℃常压反应2h并不断蒸馏出所生成乙醇,然后缓慢减压至3000Pa和缓慢升温至180℃反应6h并不断蒸 馏出所生成乙醇,再升温至220℃反应0.5h并不断蒸馏出所生成乙醇,制得齐聚羟基乙酸。随后升温至400℃在1*104Pa压力下进行环化解聚,不断生成和蒸馏出产物,1h后收率为91%。
应用实施例114
使用如实施例70步骤(2)所制备的Zn2+[OOC-poly(δ-VL)10-OH]2催化5-羟基戊酸缩聚和环化解聚。催化剂端羟基与5-羟基戊酸摩尔比为1/50。在水泵减压至3000Pa以及80、100、120、140、160℃依次各反应2h并不断蒸馏出所生成水,再在油泵减压至100Pa以及160℃条件下反应2h并不断蒸馏出所生成水,制得齐聚5-羟基戊酸。随后保持160℃在1Pa压力下进行环化解聚,不断生成和蒸馏出产物,2h后收率为105%。
应用实施例115
使用如实施例70步骤(2)所制备的Zn2+[OOC-poly(δ-VL)10-OH]2催化5-羟基戊酸甲酯缩聚和环化解聚。催化剂端羟基与5-羟基戊酸甲酯摩尔比为1/100。在160℃常压反应6h并不断蒸馏出所生成甲醇,然后缓慢减压至3000Pa继续反应2h并不断蒸馏出所生成甲醇,制得齐聚5-羟基戊酸。随后保持160℃在100Pa压力下进行环化解聚,不断生成和蒸馏出产物,6h后收率为100%。
应用实施例116
使用如实施例70步骤(2)所制备的Zn2+[OOC-poly(δ-VL)10-OH]2催化5-羟基戊酸乙酯缩聚和环化解聚。催化剂端羟基与5-羟基戊酸乙酯摩尔比为1/200。在160℃常压反应6h并不断蒸馏出所生成乙醇,然后缓慢减压至3000Pa继续反应2h并不断蒸馏出所生成乙醇,制得齐聚5-羟基戊酸。随后保持160℃在10Pa压力下进行环化解聚,不断生成和蒸馏出产物,6h后收率为92%。
应用实施例117
使用如实施例47步骤(2)所制备的Al3+(OOC-C17-OH)3催化12-羟基十八酸缩聚和环化解聚。催化剂端羟基与12-羟基十八酸摩尔比为1/100。在水泵减压至3000Pa以及80、100、120、140、160℃依次各反应2h并不断蒸馏出所生成水,再在油泵减压至100Pa以及160℃条件下反应2h并不断蒸馏出所生成水,制得齐聚12-羟基十八酸。随后升温至 220℃在1Pa压力下进行环化解聚,不断生成和蒸馏出产物,1.5h后收率为95%。
应用实施例118
使用如实施例47步骤(2)所制备的Al3+(OOC-C17-OH)3催化12-羟基十八酸甲酯缩聚和环化解聚。催化剂端羟基与12-羟基十八酸甲酯摩尔比为1/100。在160℃常压反应6h并不断蒸馏出所生成甲醇,然后缓慢减压至3000Pa继续反应2h并不断蒸馏出所生成甲醇,制得齐聚12-羟基十八酸。随后升温至220℃在1Pa压力下进行环化解聚,不断生成和蒸馏出产物,1.5h后收率为91%。
应用实施例119
使用如实施例47步骤(2)所制备的Al3+(OOC-C17-OH)3催化12-羟基十八酸乙酯缩聚和环化解聚。催化剂端羟基与12-羟基十八酸乙酯摩尔比为1/100。在160℃常压反应6h并不断蒸馏出所生成乙醇,然后缓慢减压至3000Pa继续反应2h并不断蒸馏出所生成乙醇,制得齐聚12-羟基十八酸。随后升温至220℃在1Pa压力下进行环化解聚,不断生成和蒸馏出产物,1.5h后收率为89%。
应用实施例120
使用如实施例67步骤(2)所制备的Zn2+[OOC-poly(L-LA)10-OH]2催化PCL与PLLA共混物(质量比50/50)环化解聚。催化剂端羟基与聚酯酯键摩尔比为1/100。在油泵减压至100Pa以及200℃条件下进行搅拌,并不断蒸馏出环化解聚产物。1h后解聚收率为51%(相对共混物),解聚产物中L-LA含量为96%、ε-CL单体及其环状寡聚体含量为3%。
应用实施例121
使用如实施例67步骤(2)所制备的Zn2+[OOC-poly(L-LA)10-OH]2催化L-LA与ε-CL嵌段共聚物(共聚结构单元摩尔比57/43)环化解聚。催化剂端羟基与聚酯酯键摩尔比为1/100。在油泵减压至100Pa以及200℃条件下进行搅拌,并不断蒸馏出环化解聚产物。1h后解聚收率为66%(相对共聚物),解聚产物中L-LA含量为95%、ε-CL单体及其环状寡聚体含量为7%。
应用实施例122
使用如实施例67步骤(2)所制备的Zn2+[OOC-poly(L-LA)10-OH]2催化L-LA与PDO无规共聚物(共聚结构单元摩尔比45/55)环化解聚。催化剂端羟基与聚酯酯键摩尔比为1/100。在油泵减压至100Pa以及200℃条件下进行搅拌,并不断蒸馏出环化解聚产物。1h后解聚收率为93%(相对共聚物),解聚产物中L-LA含量为95%、PDO含量为91%。
应用实施例123
使用如实施例67步骤(2)所制备的Zn2+[OOC-poly(L-LA)10-OH]2催化聚对苯二甲酸-己二酸丁二醇酯(PBAT)与PLLA共混物(质量比30/70)环化解聚。催化剂端羟基与聚酯酯键摩尔比为1/100。在油泵减压至100Pa以及200℃条件下进行搅拌,并不断蒸馏出环化解聚产物。1h后解聚收率为101%(相对PLLA),解聚产物中L-LA含量为99%。
应用实施例124
使用如实施例67步骤(2)所制备的Zn2+[OOC-poly(L-LA)10-OH]2催化碳酸钙与PLLA复合物(质量比38/62)环化解聚。催化剂端羟基与聚酯酯键摩尔比为1/100。在油泵减压至100Pa以及200℃条件下进行搅拌,并不断蒸馏出环化解聚产物。1h后解聚收率为105%(相对PLLA),解聚产物中L-LA含量为99%。
应用实施例125
使用如实施例67步骤(2)所制备的Zn2+[OOC-poly(L-LA)10-OH]2催化淀粉与PLLA复合物(质量比20/80)环化解聚。催化剂端羟基与聚酯酯键摩尔比为1/100。在油泵减压至100Pa以及200℃条件下进行搅拌,并不断蒸馏出环化解聚产物。1h后解聚收率为98%(相对PLLA),解聚产物中L-LA含量为99%。
应用实施例126
使用如实施例71步骤(2)所制备的Zn2+[OOC-poly(PDO)10-OH]2催化PPDO聚氨酯环化解聚。催化剂端羟基与PPDO酯键摩尔比为1/100。在油泵减压至100Pa以及180℃条件下进行搅拌,并不断蒸馏出环化解聚产物。2h后解聚收率为95%(相对PPDO)。
应用实施例127
使用如实施例71步骤(2)所制备的Zn2+[OOC-poly(PDO)10-OH]2催化PPDO与碳纤 维复合材料的环化解聚。催化剂端羟基与PPDO酯键摩尔比为1/100。在油泵减压至100Pa以及180℃条件下进行搅拌,并不断蒸馏出环化解聚产物。2h后解聚收率为93%(相对PPDO)。
应用实施例128
使用如实施例71步骤(2)所制备的Zn2+[OOC-poly(PDO)10-OH]2催化化学交联PPDO环化解聚。催化剂端羟基与PPDO酯键摩尔比为1/100。在油泵减压至100Pa以及180℃条件下进行搅拌,并不断蒸馏出环化解聚产物。2h后解聚收率为82%(相对PPDO质量)。

Claims (11)

  1. 一种聚酯解聚或环酯合成催化剂,该催化剂为同时含有端离子基团和端羟基结构的长链型催化剂,其端离子基团或为与长链结构相连的阳离子,或为与长链结构相连的阴离子,结构通式分别如下:
    长链结构的主链碳原子数≥8;结构通式Ⅰ的长链结构为长烷基链、脂肪族聚酯链或聚醚-酯链中的任一种;结构通式Ⅱ的长链结构为长烷基链、脂肪族聚酯链、聚醚-酯链或聚醚链中的任一种。
  2. 根据权利要求1所述的聚酯解聚或环酯合成催化剂,其中该催化剂中所述长链结构的长烷基链为正辛烷链、正十五烷链或α-己基十二烷链;脂肪族聚酯链为聚丁二酸乙二醇酯、聚丁二酸丁二醇酯、聚丁二酸己二醇酯、聚己二酸乙二醇酯、聚己二酸丁二醇酯、聚己二酸己二醇酯、聚乳酸、聚乙交酯、聚己内酯或聚戊内酯;聚醚-酯链为聚对二氧环己酮、聚3,4-二氢-2H-苯并[1,4]二氧西平-2-酮或聚4-苯基-3,4-二氢-2H-苯并[1,4]二氧西平-2-酮;聚醚链为聚乙二醇或聚四氢呋喃。
  3. 根据权利要求1或2所述的聚酯解聚或环酯合成催化剂,其中该催化剂中以上催化剂结构通式Ⅰ中所述阳离子为咪唑鎓离子或噻唑鎓离子,阴离子为卤离子或卤离子化金属氯化物;结构通式Ⅱ中所述阴离子为有机羧酸根离子或有机磺酸根离子,阳离子为金属离子或季铵离子。
  4. 根据权利要求3所述的聚酯解聚或环酯合成催化剂,其中该催化剂中以上催化剂结构通式Ⅰ中所述咪唑鎓离子为1-长链取代-3-甲基咪唑鎓离子或1-长链取代-3-丁基咪唑鎓离子,噻唑鎓离子为3-长链取代-4-甲基噻唑鎓离子、3-长链取代苯并噻唑鎓离子或3-长链取代噻唑鎓离子;所述结构通式Ⅰ中卤离子为氯离子或溴离子;所述结构通式Ⅰ中卤离子化金属氯化物为氯离子化氯化亚锡、氯离子化氯化铝、氯离子化氯化锌、溴离子化氯化铁或氯离子化氯化铁;所述结构通式Ⅱ中有机羧酸根离子为脂肪族羧酸根离子;所述结构通式Ⅱ中有机磺酸根离子为脂肪族磺酸根离子;所述结构通式Ⅱ中金属离子为钠离子、钾离子、镁离子、钙离子、锌离子、锡离子、铁离子或铝离子;所述构通式Ⅱ中季铵离子为四甲基铵离子或四乙基铵离子。
  5. 一种权利要求1所述的聚酯解聚或环酯合成催化剂的制备方法,其中制备结构通式I的催化剂的工艺步骤和条件如下:
    (1)将含羟基的卤代烷与0.8–1.2倍摩尔量的含咪唑或噻唑结构的化合物进行季铵化反应,得到含羟基的卤化咪唑鎓盐、含羟基的卤化噻唑鎓盐、结构通式Ⅰ中长烷基链的含羟基的卤化咪唑鎓盐催化剂或结构通式Ⅰ中长烷基链的含羟基的卤化噻唑鎓盐催化剂;
    (2)将第(1)步骤所得的含羟基的卤化咪唑鎓盐、含羟基的卤化噻唑鎓盐、结构通式Ⅰ中长烷基链的含羟基的卤化咪唑鎓盐催化剂或结构通式Ⅰ中长烷基链的含羟基的卤化噻唑鎓盐催化剂再与1–3倍摩尔量的路易斯酸性金属离子氯化物进行路易斯酸碱中和反应,使上述盐的阴离子由卤离子转化为卤离子化金属氯化物,得到另一类含羟基的咪唑鎓盐、另一类含羟基的噻唑鎓盐、结构通式Ⅰ中另一类长烷基链的含羟基的咪唑鎓盐催化剂或结构通式Ⅰ中另一类长烷基链的含羟基的噻唑鎓盐催化剂;
    (3)将第(2)步骤所得的另一类含羟基的咪唑鎓盐、另一类含羟基的噻唑鎓盐、结构通式Ⅰ中另一类长烷基链的含羟基的咪唑鎓盐催化剂或结构通式Ⅰ中另一类长烷基链的含羟基的噻唑鎓盐催化剂再与1–100倍摩尔量的环酯或环醚-酯进行开环聚合反应,制得结构通式Ⅰ中长链结构为聚酯或聚醚-酯的咪唑鎓盐催化剂或结构通式Ⅰ中长链结构为聚酯或聚醚-酯的噻唑鎓盐催化剂;或者将第(2)步骤所得的另一类含羟基的咪唑鎓盐、另一类含羟基的噻唑鎓盐、结构通式Ⅰ中另一类长烷基链的含羟基的咪唑鎓盐催化剂或结构通式Ⅰ中另一类长烷基链的含羟基的噻唑鎓盐催化剂再与1–100倍摩尔量的羟基酸混合或与1–100倍摩尔量的二元酸和1–100倍摩尔量的二元醇混合,通过酯化缩聚反应制得结构通式Ⅰ中长链结构为脂肪族聚酯的咪唑鎓盐或噻唑鎓盐催化剂,
    制备结构通式II的催化剂的工艺步骤和条件如下:
    (1)将含羟基的有机羧酸或含羟基的有机磺酸与碱金属氢氧化物、碱土金属氢氧化物或季铵碱按羧酸根或磺酸根与氢氧根的摩尔比为0.8–1.2混合,通过布朗斯特酸碱中和反应制得阳离子为碱金属离子、碱土金属离子或季铵离子的含羟基的有机羧酸盐、有机磺酸盐、结构通式Ⅱ中长烷基链的含羟基的有机羧酸盐催化剂或结构通式Ⅱ中长烷基链的含羟基的有机磺酸盐催化剂;或将环酯与碱金属氢氧化物、碱土金属氢氧化物或季铵碱按环酯与氢氧根的摩尔比为0.8–1.2混合,通过酯键碱解反应制得阳离子为碱金属离子、碱土金属离子或季铵离子的含羟基的有机羧酸盐或结构通式Ⅱ中长烷基链的含羟基的有机磺酸盐催化剂;
    (2)将第(1)步骤所得的阳离子为碱金属离子的有机羧酸盐、有机磺酸盐、结构通 式Ⅱ中长烷基链的含羟基的有机羧酸盐催化剂或结构通式Ⅱ中长烷基链的含羟基的有机磺酸盐催化剂再与路易斯酸性金属离子氯化物按羧酸根或磺酸根/氯离子摩尔比为0.8–2.2混合,通过复分解反应,制得另一类阳离子为路易斯酸性金属离子的含羟基的有机羧酸盐、有机磺酸盐、结构通式Ⅱ中长烷基链的含羟基的有机羧酸盐催化剂或结构通式Ⅱ中长烷基链的含羟基的有机磺酸盐催化剂;
    (3)将第(2)步骤所得阳离子为碱金属离子、碱土金属离子、季铵离子或路易斯酸性金属离子的含羟基的有机羧酸盐、有机磺酸盐、结构通式Ⅱ中长烷基链的含羟基的有机羧酸盐催化剂或结构通式Ⅱ中长烷基链的含羟基的有机磺酸盐催化剂再与1–100倍摩尔量的环酯或环醚-酯混合,通过开环聚合反应制得结构通式Ⅱ中长链结构为聚酯或聚醚-酯的催化剂,或者再与1–100倍摩尔量的羟基酸混合或与1–100倍摩尔量的二元酸和1–100倍摩尔量的二元醇混合,通过酯化缩聚反应制得结构通式Ⅱ中长链结构为聚酯的催化剂,
    或者,制备制备结构通式II的催化剂的工艺步骤和条件如下:
    (1)将脂肪族聚酯或聚醚-酯与碱金属氢氧化物、碱土金属氢氧化物或季铵碱按酯键与氢氧根的摩尔比为1–100混合,然后在高于相应聚合物熔点的温度下进行酯键碱解反应制得结构通式Ⅱ中阳离子为碱金属离子、碱土金属离子或季铵离子的含端羧酸盐与端羟基的脂肪族聚酯或聚醚-酯的催化剂;或者将含端羧酸与端羟基的聚醚与碱金属氢氧化物、碱土金属氢氧化物或季铵碱按端羧酸根与氢氧根的摩尔比为0.8–1.2混合,然后在高于相应聚合物熔点的温度下进行布朗斯特酸碱中和反应,制得结构通式Ⅱ中阳离子为碱金属离子、碱土金属离子或季铵离子的含端羧酸盐与端羟基的脂肪族聚酯、聚醚-酯或聚醚的催化剂;
    (2)将第(1)步骤所得的结构通式Ⅱ中阳离子为碱金属离子的含端羧酸盐与端羟基的脂肪族聚酯、聚醚-酯或聚醚的催化剂再与路易斯酸性金属离子氯化物按羧酸根/氯离子摩尔比为1–2混合,然后在高于相应聚合物熔点的温度下进行复分解反应,制得结构通式Ⅱ中阳离子为路易斯酸性金属离子的含端羧酸盐与端羟基的脂肪族聚酯、聚醚-酯或聚醚的催化剂。
  6. 根据权利要求5所述的聚酯解聚或环酯合成催化剂的制备方法,其中制备结构通式I的催化剂的工艺步骤中所述的季铵化反应使用的含羟基的卤代烷为8-氯正辛醇、3-氯-1-丙醇或2-溴-1-乙醇,使用的含咪唑或噻唑结构的化合物为1-甲基咪唑、1-丁基咪唑、4-甲基噻唑、噻唑或苯并噻唑,其反应温度为60–120℃,反应时间为12–48h;
    制备结构通式I的催化剂的工艺步骤中所述的路易斯酸碱中和反应使用的MCln为氯化锌、氯化亚锡、氯化铝或氯化铁,其反应温度为25–120℃,反应时间为0.5–12h;
    制备结构通式I的催化剂的工艺步骤或制备结构通式II的催化剂的工艺步骤中所述的开环聚合反应使用的环酯或环醚-酯为丙交酯、乙交酯、ε-己内酯、δ-戊内酯、对二氧环己酮、3,4-二氢-2H-苯并[1,4]二氧西平-2-酮或4-苯基-3,4-二氢-2H-苯并[1,4]二氧西平-2-酮,其反应温度为60–220℃,反应时间为1–48h;
    制备结构通式I的催化剂的工艺步骤或制备结构通式II的催化剂的工艺步骤中所述的酯化缩聚反应使用的二元酸为1,4-丁二酸或1,6-己二酸,使用的二元醇为1,2-乙二醇、1,4-丁二醇或1,6-己二醇,其反应温度为80–220℃,反应时间为8–24h,反应压力为1–1*105Pa;
    制备结构通式II的催化剂的工艺步骤中所述的布朗斯特酸碱中和反应使用的含羟基的有机羧酸为12-羟基十八酸、6-羟基己酸、18-羟基十八酸或8-羟基辛酸,使用的含羟基有机磺酸为4-羟基丁磺酸、3-羟基丙磺酸或2-羟基乙磺酸,使用的碱金属氢氧化物为氢氧化钠或氢氧化钾,使用碱土金属氢氧化物为氢氧化镁或氢氧化钙,使用的季铵碱为四甲基氢氧化铵或四乙基氢氧化铵,其反应温度为25–180℃,反应时间为0.5–12h;
    制备结构通式II的催化剂的工艺步骤中所述的酯键碱解反应使用的环酯为环十五内酯或ε-CL,使用的碱金属氢氧化物为氢氧化钠或氢氧化钾,使用的碱土金属氢氧化物为氢氧化镁或氢氧化钙,使用的季铵碱为四甲基氢氧化铵或四乙基氢氧化铵,其反应温度为25–180℃,反应时间为0.5–12h;
    制备结构通式II的催化剂的工艺步骤中所述的复分解反应使用的MCln为ZnCl2、SnCl2、AlCl3或FeCl3,其反应温度为25–220℃,反应时间为0.5–12h;
    制备结构通式II的催化剂的工艺步骤中所述的酯键碱解反应使用的脂肪族聚酯为PES、PBS、PHS、PEA、PBA、PHA、PLA、PGA、PCL或PVL,使用的聚醚-酯为PPDO、PBDXO或PDBXOP,其反应温度为60–220℃,反应时间为1–48h;
    制备结构通式II的催化剂的工艺步骤中所述的布朗斯特酸碱中和反应使用的聚醚为PEG或PTHF,其反应温度为25–120℃,反应时间为0.5–12h。
  7. 一种回收单体或单体和寡聚体的方法,其包括在权利要求1的催化剂存在下催化聚酯的水解、醇解或环化解聚。
  8. 根据权利要求7所述的方法,其包括:将聚酯和水或者醇、催化剂按配比混合,在0.1–2MPa压力条件下加热至40–200℃进行水解或醇解反应1–12h,然后回收得到相应单体或单体和寡聚体的水或者醇溶液;或者在1–1*104Pa压力条件下加热至80–400℃进行环化解聚0.5–12h,并同步进行蒸馏或萃取将生成的环酯单体或环酯单体和环状寡聚体从反应体系中分离出来;其中聚酯与水或者醇的比例为100﹕50–2000wt%,催化剂以端羟基计 与聚酯中酯键的摩尔比为0.01–10mol%。
  9. 一种合成环酯单体或合成环酯单体和环状寡聚体的方法,其包括在权利要求1的催化剂存在下使羟基酸或羟基酸酯发生缩聚和环化反应。
  10. 根据权利要求9所述的方法,其包括:
    (1)先将催化剂以端羟基计与羟基酸或羟基酸酯的摩尔比0.01–10mol%混合,然后在100–1*105Pa下升温至80–220℃进行缩聚反应4–12h,同时通过蒸馏去除反应体系中生成的水或醇,得到齐聚羟基酸;
    (2)将步骤(1)得到的齐聚羟基酸在1–1*105Pa下进行升温至80–400℃环化解聚反应0.5–4h,并同步进行蒸馏或萃取将生成的环酯单体或环酯单体和环状寡聚体从反应体系中分离出来。
  11. 根据权利要求10所述的方法,其中所述羟基酸为羟基乙酸、乳酸、6-羟基己酸、5-羟基戊酸或12-羟基十八酸,所述羟基酸酯为羟基乙酸甲酯、羟基乙酸乙酯、乳酸甲酯、乳酸乙酯、6-羟基己酸甲酯、6-羟基己酸乙酯、5-羟基戊酸甲酯、5-羟基戊酸乙酯、12-羟基十八酸甲酯或12-羟基十八酸乙酯中的任一种。
PCT/CN2023/082814 2022-06-02 2023-03-21 一种聚酯解聚或环酯合成催化剂及制备方法和应用 WO2023231524A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210623079.8 2022-06-02
CN202210623079.8A CN114805776A (zh) 2022-06-02 2022-06-02 一种聚酯解聚或环酯合成催化剂及制备方法和应用

Publications (1)

Publication Number Publication Date
WO2023231524A1 true WO2023231524A1 (zh) 2023-12-07

Family

ID=82518525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/082814 WO2023231524A1 (zh) 2022-06-02 2023-03-21 一种聚酯解聚或环酯合成催化剂及制备方法和应用

Country Status (2)

Country Link
CN (1) CN114805776A (zh)
WO (1) WO2023231524A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114805776A (zh) * 2022-06-02 2022-07-29 四川大学 一种聚酯解聚或环酯合成催化剂及制备方法和应用
CN116396248B (zh) * 2023-04-12 2024-05-03 大连理工大学 一种将聚酯解聚为环状内酯的方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104327260A (zh) * 2014-11-03 2015-02-04 东华大学 一种生物可降解再生聚酯的制备方法
CN104447341A (zh) * 2014-11-03 2015-03-25 东华大学 一种聚酯醇解方法
CN105658611A (zh) * 2013-10-15 2016-06-08 国际商业机器公司 用于使聚酯解聚的方法和材料
KR101888612B1 (ko) * 2017-12-26 2018-08-14 (주)시온텍 글리콜 변성 폴리에틸렌 테레프탈레이트 폐기물의 화학적 재활용 방법
EP3392288A1 (en) * 2017-04-21 2018-10-24 Sulzer Chemtech AG A process to prepare a cyclic oligomer and a cyclic oligomer obtainable thereby and a process to polymerize it
CN109337059A (zh) * 2018-09-06 2019-02-15 四川大学 一种以噻唑鎓盐为催化剂的环酯本体开环聚合方法及催化剂制备方法
CN109776782A (zh) * 2019-01-03 2019-05-21 华南理工大学 一种离子型有机催化剂及其制备方法和应用
CN112264090A (zh) * 2020-11-19 2021-01-26 沈阳工业大学 一种双酸型离子液体催化剂及其制备方法与应用
CN114315728A (zh) * 2020-10-12 2022-04-12 中国科学院大连化学物理研究所 一种咪唑类离子液体及其在醇解聚2,5-呋喃二甲酸酯中的应用
CN114805776A (zh) * 2022-06-02 2022-07-29 四川大学 一种聚酯解聚或环酯合成催化剂及制备方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022041326A1 (zh) * 2020-08-27 2022-03-03 中国科学院青岛生物能源与过程研究所 一种应用于催化环酯开环聚合和聚酯材料可控解聚的锌催化剂及其催化方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105658611A (zh) * 2013-10-15 2016-06-08 国际商业机器公司 用于使聚酯解聚的方法和材料
CN104327260A (zh) * 2014-11-03 2015-02-04 东华大学 一种生物可降解再生聚酯的制备方法
CN104447341A (zh) * 2014-11-03 2015-03-25 东华大学 一种聚酯醇解方法
EP3392288A1 (en) * 2017-04-21 2018-10-24 Sulzer Chemtech AG A process to prepare a cyclic oligomer and a cyclic oligomer obtainable thereby and a process to polymerize it
KR101888612B1 (ko) * 2017-12-26 2018-08-14 (주)시온텍 글리콜 변성 폴리에틸렌 테레프탈레이트 폐기물의 화학적 재활용 방법
CN109337059A (zh) * 2018-09-06 2019-02-15 四川大学 一种以噻唑鎓盐为催化剂的环酯本体开环聚合方法及催化剂制备方法
CN109776782A (zh) * 2019-01-03 2019-05-21 华南理工大学 一种离子型有机催化剂及其制备方法和应用
CN114315728A (zh) * 2020-10-12 2022-04-12 中国科学院大连化学物理研究所 一种咪唑类离子液体及其在醇解聚2,5-呋喃二甲酸酯中的应用
CN112264090A (zh) * 2020-11-19 2021-01-26 沈阳工业大学 一种双酸型离子液体催化剂及其制备方法与应用
CN114805776A (zh) * 2022-06-02 2022-07-29 四川大学 一种聚酯解聚或环酯合成催化剂及制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
UO-QIANG TIAN, WEN LIU, LI CHEN, SI-CHONG CHEN: "Ring-opening Polymerization of Cyclic Esters in Bulk Catalyzed by PS Mesoporous Microspheres Supported Thiazolium Chloride", ACTA POLYMERICA SINICA, KEXUE CHUBANSHE, BEIJING, CN, vol. 53, no. 1, 31 January 2022 (2022-01-31), CN , pages 30 - 36, XP009551093, ISSN: 1000-3304, DOI: 10.11777/j.issn1000-3304.2021.21162 *

Also Published As

Publication number Publication date
CN114805776A (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
WO2023231524A1 (zh) 一种聚酯解聚或环酯合成催化剂及制备方法和应用
Fang et al. High-efficiency glycolysis of poly (ethylene terephthalate) by sandwich-structure polyoxometalate catalyst with two active sites
CA2800797C (en) Preparation of caprolactone, caprolactam, 2,5-tetrahydrofuran-dimethanol, 1,6-hexanediol or 1,2,6-hexanetriol from 5-hydroxymethyl-2-furfuraldehyde
Deng et al. A review on transesterification of propylene carbonate and methanol for dimethyl carbonate synthesis
CN102746500B (zh) 三元复合催化剂催化乳酸熔融缩聚合成高分子量聚乳酸的方法
CN105273176A (zh) 聚酯制备用的催化剂及其制备方法和应用
US11702395B2 (en) Bimetal oxide catalyst and methods
US9416223B2 (en) Device and method for producing polyester
CN104031253B (zh) 环胍催化剂法合成聚己二酸丁二醇酯‑共‑对苯二甲酸丁二醇酯的工艺方法
CN104447341B (zh) 一种聚酯醇解方法
Rozulan et al. A review on direct carboxylation of glycerol waste to glycerol carbonate and its applications
CN103724606B (zh) 一种共聚酯及其制备方法
CN111378105B (zh) 生物质复合催化剂的制备方法及聚对苯二甲酸己二酸丁二醇酯的制备方法
CN109081929A (zh) 一种制备耐水解聚酯薄膜的方法
CN103881072B (zh) 可生物降解脂肪族—芳香族嵌段混合聚酯的制备方法
CN101220138B (zh) 聚乳酸的溶剂热合成制备方法
WO2015140818A1 (en) Pendant furyl containing bisphenols, polymers therefrom and a process for the preparation thereof
CN109666131B (zh) 聚对苯二甲酸丁二醇酯树脂的制备方法
CN114621425B (zh) 用于聚丁二酸-共-对苯二甲酸丁二醇酯合成的钛系组合物及合成pbst方法
CN101302283B (zh) 一种含有稀土化合物的聚乳酸及其制备方法
CN115536824A (zh) 一种低环状副产物聚丁二酸丁二醇聚酯的制备方法
CN114752042A (zh) 一种高分子量聚酯的制备方法及产品
CN101302281B (zh) 一种聚乳酸及其制备方法
CN111087593A (zh) 抑制thf生成及耐水解的催化剂组合物及其制备方法和应用
JP5729217B2 (ja) 脂肪族ポリエステルの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23814721

Country of ref document: EP

Kind code of ref document: A1