WO2023228757A1 - 樹脂着色用顔料組成物、及び成形品 - Google Patents

樹脂着色用顔料組成物、及び成形品 Download PDF

Info

Publication number
WO2023228757A1
WO2023228757A1 PCT/JP2023/017683 JP2023017683W WO2023228757A1 WO 2023228757 A1 WO2023228757 A1 WO 2023228757A1 JP 2023017683 W JP2023017683 W JP 2023017683W WO 2023228757 A1 WO2023228757 A1 WO 2023228757A1
Authority
WO
WIPO (PCT)
Prior art keywords
pigment
resin
metal
coloring
nylon
Prior art date
Application number
PCT/JP2023/017683
Other languages
English (en)
French (fr)
Inventor
悠葵 鳥羽田
太郎 森光
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2023556816A priority Critical patent/JP7435922B1/ja
Publication of WO2023228757A1 publication Critical patent/WO2023228757A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/56Organo-metallic compounds, i.e. organic compounds containing a metal-to-carbon bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/006Preparation of organic pigments

Definitions

  • the present invention relates to a pigment composition for coloring polyethylene terephthalate or nylon resin, and a polyethylene terephthalate or nylon molded article molded using the same.
  • phthalocyanine pigments examples include the following Patent Documents 1 to 3.
  • Patent Documents 1 to 3 list copper, iron, zinc, cobalt, nickel, aluminum, titanium, and manganese as central elements in metal phthalocyanine pigments, and polyethylene (PE), polypropylene (PP), and polypropylene (PP) as coloring resins. Nylon and polyamide are mentioned. Further, metal salts, transition metal complexes, and the like are described as being used together.
  • Patent Documents 1 to 3 mentioned above do not mention heat resistance when used for coloring polyester and polyamide resins.
  • the present inventors found that among the metal phthalocyanine pigments and coloring resins described in Patent Documents 1 to 3, metal-free or metal phthalocyanine pigments that can be used with polypropylene and polyethylene are also suitable for polyester and polyamide resins. It was found that when used for coloring purposes, the discoloration (change in hue) during injection molding was large (see Comparative Example 1 of the present application).
  • Polyester and polyamide resins are widely used as engineering plastics in textiles, automobile parts, electrical and electronic equipment, and various molded products, and are important resins in industry.
  • the present invention provides a pigment composition containing a phthalocyanine pigment that is used for coloring polyethylene terephthalate (PET) or nylon resin and is resistant to fading and color change before and after molding, even at high temperatures (for example, 260-300°C) during injection molding. It is to provide.
  • the present inventors surmised that the main cause of the hue change during molding is the inability of metal-free or metal phthalocyanine pigments to stabilize polyester and polyamide resins that have lone pairs of electrons. . Therefore, as a result of intensive studies, the present inventors have found that a pigment composition for resin coloring, in which a transition metal salt is added to a metal-free or metal phthalocyanine pigment, can be used as a coloring agent for resin moldings that are subjected to high-temperature thermal history. The present inventors have discovered that it is possible to obtain a resin molded product with extremely little color change or fading, and have completed the present invention.
  • transition metal salt stabilizes the pigment through interaction between the ⁇ electrons of the phthalocyanine pigment and the d orbital of the transition metal, and the transition metal phthalocyanine pigment coordinates with the lone pair of electrons in PET and nylon resin. This is thought to be because the hue change was significantly suppressed.
  • the present invention “Section 1. A pigment composition for coloring a resin comprising a metal-free or metal phthalocyanine pigment and a transition metal salt, wherein the resin is polyethylene terephthalate or nylon. Item 2. Item 2. The resin coloring pigment composition according to item 1, wherein the central metal of the phthalocyanine pigment is metal-free, tin, or aluminum. Item 3. 3. The pigment composition for coloring a resin according to item 1 or 2, wherein the transition metal in the transition metal salt is iron, cobalt, nickel, copper, ruthenium, rhodium, palladium, or silver. Item 4. 4.
  • Item 4. A polyethylene terephthalate or nylon molded article comprising the resin coloring pigment composition according to any one of Items 1 to 4. ” Regarding.
  • the pigment composition for coloring resins of the present invention can suppress discoloration at high temperatures of 260 to 300° C. during injection molding, even when used for coloring PET and nylon resins, while maintaining high coloring power. Therefore, the pigment composition for resin coloring of the present invention is suitable for masterbatches, dry colors, and paste colors (liquid masterbatches) of PET and nylon resins.
  • the resin coloring pigment composition of the present invention is a resin coloring pigment composition containing a metal-free or metal phthalocyanine pigment and a transition metal salt, and the resin is PET or nylon. That is, the pigment composition of the present invention is for coloring PET or nylon, and contains a metal-free or metal phthalocyanine pigment and a transition metal salt.
  • the central metals in the metal phthalocyanine pigments include, for example, copper (Cu), zinc (Zn), nickel (Ni), cobalt (Co), iron (Fe), aluminum (Al), chromium (Cr), and manganese (Mn).
  • tin and aluminum are preferred.
  • metal-free phthalocyanine pigments without a central metal are also preferred, as are metal phthalocyanine pigments whose central metal is tin or aluminum.
  • the central metal of the phthalocyanine pigment is metal-free, tin, or aluminum, the effect of the present invention of suppressing discoloration at high temperatures can be more effectively achieved.
  • the metal-free or metal phthalocyanine pigments may be used singly or in combination of two or more.
  • metal-free or metal phthalocyanine pigment a commercially available pigment may be used as it is, or the pigment may be synthesized by a known and commonly used method.
  • metal-free phthalocyanine pigments include Pigment Blue 16 (PB16; product name: FASTOGEN BLUE 8120BS, manufactured by DIC Corporation);
  • aluminum phthalocyanine pigments include Pigment Blue 79 (PB79; for example, Joint Venture Meilida Pigment Industry Co.). , Ltd.
  • tin phthalocyanine pigment for example, Tin (II) phthalocyanine can be used.
  • the primary particle size of the metal-free or metal phthalocyanine pigment is, for example, 5 to 500 nm, preferably 10 to 400 nm, more preferably 20 to 300 nm.
  • pigments other than the above-mentioned metal-free or metal phthalocyanine pigments may be used as long as the effects of the present invention are not impaired.
  • organic pigments such as pigments, dioxazine pigments, quinacridone pigments, isoindolinone pigments, metal complex pigments, diketopyrrolopyrrole pigments, and azo pigments, and inorganic pigments such as titanium oxide and carbon black).
  • the proportion of pigments other than these metal-free or phthalocyanine pigments is, for example, 10% by mass or less, preferably 5% by mass or less, based on the total amount of pigments.
  • the transition metal in the above transition metal salt may be any element that exists between Group 3 elements and Group 11 elements in the periodic table, and among them, iron (Fe), cobalt (Co), and nickel (Ni). , copper (Cu), ruthenium (Ru), rhodium (Rh), palladium (Pd), or silver (Ag). Further, as the salt, acetic acid, hydrochloric acid, nitric acid, or sulfuric acid is preferable.
  • transition metal salts include iron acetate, cobalt acetate, nickel acetate, copper acetate, ruthenium acetate, rhodium acetate, palladium acetate, silver acetate, iron chloride, cobalt chloride, nickel chloride, copper chloride, ruthenium chloride, and rhodium chloride.
  • transition metal salts may be used alone or in combination of two or more. Commercially available transition metal salts can be used as they are.
  • the proportion of the transition metal salt is, for example, 0.1 to 5.0 mol, preferably 0.2 to 4.5 mol, more preferably 0.3 to 3.5 mol, per 1 mol of the metal-free or metal phthalocyanine pigment. .
  • the proportion of the transition metal salt is, for example, 3 to 157 parts by weight, preferably 6 to 141 parts by weight, and more preferably 9 to 110 parts by weight, based on 100 parts by weight of the metal-free or metal phthalocyanine pigment.
  • the larger the proportion of the transition metal salt the greater the effect of suppressing discoloration, but the coloring power of the resin becomes smaller, so it is preferably contained within the above-mentioned appropriate range.
  • the pigment composition for resin coloring of the present invention preferably contains a pigment dispersant in addition to the pigment and transition metal salt.
  • pigment dispersants include metal soaps such as calcium stearate, zinc stearate, magnesium stearate, and lithium stearate, fatty acid amides such as stearamide and ethylene bisamide, ester waxes, polyethylene waxes, and silane coupling agents. agents, etc.
  • metal soaps such as calcium stearate, zinc stearate, magnesium stearate, and lithium stearate
  • fatty acid amides such as stearamide and ethylene bisamide
  • ester waxes such as stearamide and ethylene bisamide
  • ester waxes such as stearamide and ethylene bisamide
  • ester waxes such as stearamide and ethylene bisamide
  • ester waxes such as stearamide and ethylene bisamide
  • ester waxes such as stearamide and ethylene bisamide
  • ester waxes
  • PET in the resin for coloring commercially available ones can be used, such as "Mitsui PET J125" (manufactured by Mitsui Chemicals, Inc.).
  • the average molecular weight of these PETs is preferably 10,000 to 80,000, more preferably 20,000 to 60,000.
  • the ratio of the pigment containing the metal-free or metal phthalocyanine pigment to 100 parts by mass of PET is, for example, 0.001 to 1 part by mass, preferably 0.01 to 0.5 part by mass.
  • nylon for coloring resins
  • Nylon resin can be used.
  • the product name "UBE NYLON 1013NW8" nylon 6; manufactured by Ube Industries, Ltd.
  • the average molecular weight of these nylons is preferably 10,000 to 25,000, more preferably 12,000 to 18,000.
  • the average molecular weight is a number average molecular weight, and can be measured by GPC analysis using polystyrene as a standard substance.
  • the ratio of the pigment containing the metal-free or metal phthalocyanine pigment to 100 parts by mass of nylon is, for example, 0.001 to 1 part by mass, preferably 0.01 to 0.5 part by mass.
  • the resin coloring method for the resin coloring pigment composition of the present invention may be any method such as masterbatch, dry color, paste color (liquid masterbatch), etc.
  • dry colors can be produced by thoroughly mixing a pigment, a pigment dispersant such as magnesium stearate, and a transition metal salt such as iron acetate.
  • colored pellets can be produced by thoroughly mixing a dry color with a resin.
  • the phthalocyanine pigment stabilized by interaction with the transition metal coordinates with the lone pair of electrons in PET and nylon resin, causing a color change. It can be suppressed. Furthermore, by adding cobalt salt as a transition metal salt to a metal-free or tin phthalocyanine pigment, it has almost the same color as the cobalt phthalocyanine pigment, which is a reference example described below, and exhibits the same or better heat resistance. be able to.
  • the resin composition of the present invention contains PET and nylon resins, and the resin coloring pigment composition of the present invention.
  • PET and nylon resins include those mentioned above as resins for coloring.
  • the resin composition of the present invention may contain resins other than the above-mentioned PET and nylon as long as the effects of the present invention are not impaired.
  • resins include homopolymers and copolymers using ethylene, propylene, butylene, styrene, etc. as monomer components, high-density polyethylene (HDPE), linear low-density polyethylene (L-LDPE), and low-density polyethylene (LDPE).
  • polyolefin resins such as polyethylene, polypropylene, polybutylene, polyester resins other than PET (for example, polytrimethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate), polystyrene resins, thermoplastic ionomer resins, etc. It will be done.
  • the proportion of these resins other than PET and nylon is, for example, 10% by mass or less, preferably 5% by mass or less, based on the total amount of resin.
  • the resin composition of the present invention does not contain components commonly used in resins, such as lubricants, plasticizers, fillers, weathering stabilizers, and various additives, in addition to the above-mentioned resins and the pigment composition for resin coloring of the present invention. It's okay to stay.
  • the lubricant may be either an internal lubricant or an external lubricant, and may include hydrocarbon compounds such as paraffin wax, synthetic polyethylene, and liquid paraffin, stearic acid, behenic acid, 1,2-hydroxystearic acid, and stearyl alcohol. Fatty acid/higher alcohol compounds, fatty acid amide compounds such as stearic acid amide, oleic acid amide, erucic acid amide, methylene bis stearic acid amide, ethylene bis stearic acid amide, glycerin monostearate, glycerin monooleate, butyl stearate, etc. The following ester compounds are mentioned.
  • plasticizers include epoxidized vegetable oils such as epoxidized soybean oil (ESBO) and epoxidized linseed oil (ELSO), phthalate esters such as dioctyl phthalate (DOP) and dibutyl phthalate (DBP), and dibasic acids (adipine Examples include polyester compounds such as polyesters of acids, sebacic acid, phthalic acid, etc.) and glycols (1,2-propanediol, butanediol, etc.).
  • ESBO epoxidized soybean oil
  • ELSO epoxidized linseed oil
  • phthalate esters such as dioctyl phthalate (DOP) and dibutyl phthalate (DBP)
  • dibasic acids adipine Examples include polyester compounds such as polyesters of acids, sebacic acid, phthalic acid, etc.) and glycols (1,2-propanediol, butanediol, etc.).
  • suitable ones can be added depending on the required physical properties, such as wollastonite, potassium titanate, xonotrite, gypsum fiber, aluminum borate, MOS, aramid fiber, various fiber types, carbon fiber (carbon fibers), glass fibers, talc, mica, glass flakes, polyoxybenzoyl whiskers, calcium carbonate, silica, clay, etc.
  • the above-mentioned weathering stabilizers include ultraviolet absorbers such as triazine, benzotriazole, benzophenone, salicylate, and cyanoacrylate compounds, light stabilizers such as hindered amine light stabilizers (HALS), and phenolic (HALS) light stabilizers.
  • light stabilizers such as hindered amine light stabilizers (HALS), and phenolic (HALS) light stabilizers.
  • Antioxidants such as dirt phenol type (dirt phenol type, etc.), phosphorus type (phosphite type, etc.), sulfur type (thioether type, etc.), heavy metal inactivators, chelating agents, etc.
  • the various additives mentioned above include flame retardants such as intumescents, phosphates, halogens, and inorganics, nucleating agents such as phosphates metal salts and sorbitol, fillers such as talc and calcium carbonate, Examples include compatibilizing agents (reactive type and non-reactive type), clarifying agents such as phosphate metal salt type and sorbitol type, and antistatic agents such as nonionic type, anionic type, and cationic type.
  • flame retardants such as intumescents, phosphates, halogens, and inorganics
  • nucleating agents such as phosphates metal salts and sorbitol
  • fillers such as talc and calcium carbonate
  • compatibilizing agents reactive type and non-reactive type
  • clarifying agents such as phosphate metal salt type and sorbitol type
  • antistatic agents such as nonionic type, anionic type, and cationic type.
  • the molded article of the present invention is a polyethylene terephthalate or nylon molded article containing the resin coloring pigment composition or resin composition of the present invention described above.
  • the molding method for these molded products may be injection molding, blow molding, inflation molding, extrusion molding, Engel molding, vacuum molding, etc., but injection molding is preferred.
  • general conditions for PET and nylon may be used, and the resin temperature (cylinder temperature) is, for example, 260 to 300°C.
  • the molded products of the present invention can be used for any purpose, including automobiles/vehicle parts (engine room parts, intake system parts, fuel system parts, etc.), electrical/electronic equipment (industrial equipment connectors, switches, housings, etc.), and films. , injection and extrusion molded products for processing such as sheets, pipes, plates, round bars, and tubes, daily necessities, containers, toys, construction materials, sports equipment, etc.
  • Example 1 polypropylene standard molded plates, nylon and PET test colored pellets were prepared and heat resistance evaluations were performed. Further, as described in Example 2-17 and Comparative Example 1-7, changes were made from Example 1, and heat resistance evaluation was conducted in the same manner. The results of these Examples and Comparative Examples are shown in Tables 1-3 below.
  • Example 1-8 the amount of transition metal salt was about 1 mol per 1 mol of pigment. Furthermore, in Comparative Example 2-5, the amount of metal salt was about 1 mol per 1 mol of pigment.
  • Example 1 500 g of polypropylene resin (product name: Novatec PP BC3, manufactured by Nippon Polypro Co., Ltd.), 1 g of FASTOGEN BLUE 8120BS (C.I. Pigment Blue 16) manufactured by DIC, 1 g of magnesium stearate manufactured by Sakai Chemical Industry Co., Ltd., and manufactured by Kanto Kagaku Co., Ltd. 1 g of dry color pre-mixed with 0.30 g of iron acetate was added and mixed well. This was put into an injection molding machine (model number: PNX60III-5A, manufactured by Nissei Jushi Kogyo Co., Ltd., hereinafter the same), and molding was carried out at 280° C.
  • nylon resin product name: UBE NYLON 1013NW8, manufacturer: Ube Industries, Ltd.
  • FASTOGEN BLUE 8120BS C.I. Pigment Blue 16
  • DIC 1 g of magnesium stearate manufactured by Sakai Chemical Industry Co., Ltd.
  • Kanto 1 g of dry color prepared by pre-mixing 0.30 g of iron acetate manufactured by Kagakusha was added and mixed well. This was put into an injection molding machine and molded at 280° C. for residence times of 0 and 10 minutes to obtain a nylon test molded plate.
  • PET resin product name: Mitsui Pet J125, manufacturer: Mitsui Chemicals, Ltd.
  • FASTOGEN BLUE 8120BS C.I. Pigment Blue 16
  • M.I. Pigment Blue 16 magnesium stearate manufactured by Sakai Chemical Industries, Ltd.
  • Kanto Chemical 1 g of dry color premixed with 0.30 g of iron acetate manufactured by Co., Ltd. was added and mixed well. This was put into an injection molding machine and molded at 280° C. for 0 minutes and 10 minutes to obtain a PET test molded plate.
  • the colors of the three molded plates produced above were measured. Based on the colorimetric value of a molded plate injected with a residence time of 0 minutes for PP standard colored pellets, the dE value was calculated based on the colorimetric value of a molded plate injected with a residence time of 10 minutes for nylon and PET test colored pellets. Color measurement was performed using a spectrophotometer (model number: Datacolor 650, manufactured by Suncolor Co., Ltd.).
  • dE1 in Tables 1 and 2 is the difference (hue change) in the colorimetric value of the nylon test colored pellet from the PP standard colored pellet used as the reference
  • dE2 in Table 1 is the difference in colorimetric value (hue change) from the PP standard colored pellet used as the reference.
  • dE3 in Table 3 is the difference (hue change) in the colorimetric values of the nylon test colored pellets from a residence time of 0 minutes to a residence time of 10 minutes.
  • dE4 in Table 3 is the difference (hue change) between the colorimetric values of the PET test colored pellets from a residence time of 0 minutes and a residence time of 10 minutes.
  • the tinting power is a value specific to the device, calculated from the colorimetric value of a molded plate injected with a test colored pellet at a residence time of 10 minutes, based on the colorimetric value of a molded plate injected with a residence time of 10 minutes of standard colored pellets. It can be said that a pigment with a coloring power of 60% or more has a small color change.
  • the L*a*b* measurement values in Table 3 are the values for the residence time of 0 minutes for the nylon test colored pellets, and if the difference in each point is less than 2 points between the molded plates, it can be determined that the hue is the same. .
  • Example 2 It was molded in the same manner as in Example 1 except that 0.30 g of iron acetate manufactured by Kanto Kagaku Co., Ltd. was replaced with 0.31 g of cobalt acetate manufactured by Kanto Kagaku Co., Ltd., and heat resistance evaluation was performed.
  • Example 3 It was molded in the same manner as in Example 1, except that 0.30 g of iron acetate manufactured by Kanto Kagaku Co., Ltd. was replaced with 0.31 g of nickel acetate manufactured by Kanto Kagaku Co., Ltd., and the heat resistance was evaluated.
  • Example 4 It was molded in the same manner as in Example 1, except that 0.30 g of iron acetate manufactured by Kanto Kagaku Co., Ltd. was replaced with 0.31 g of copper acetate manufactured by Kanto Kagaku Co., Ltd., and the heat resistance was evaluated.
  • Example 5 It was molded in the same manner as in Example 1 except that 0.30 g of iron acetate manufactured by Kanto Kagaku Co., Ltd. was replaced with 0.36 g of ruthenium chloride manufactured by Kanto Kagaku Co., Ltd., and heat resistance evaluation was performed.
  • Example 6 It was molded in the same manner as in Example 1 except that 0.30 g of iron acetate manufactured by Kanto Kagaku Co., Ltd. was replaced with 0.32 g of silver nitrate manufactured by Kanto Kagaku Co., Ltd., and heat resistance evaluation was performed.
  • Example 7 1 g of FASTOGEN BLUE 8120BS manufactured by DIC was combined with 1 g of PB79 (C.I. Pigment Blue 79) manufactured by Joint Venture Meilida Pigment Industry Co., Ltd. and 0.30 g of iron acetate manufactured by Kanto Kagaku Co., Ltd. and 0.30 g of iron acetate manufactured by Kanto Kagaku Co., Ltd. 31g The molding was performed in the same manner as in Example 1, except that the molding was performed, and the heat resistance was evaluated.
  • PB79 C.I. Pigment Blue 79
  • Example 8 Same as Example 1 except that 1 g of FASTOGEN BLUE 8120BS manufactured by DIC was replaced with 1 g of Tin (II) phthalocyanine manufactured by Tokyo Chemical Industry Co., Ltd., and 0.30 g of iron acetate manufactured by Kanto Kagaku Co., Ltd. was replaced with 0.31 g of cobalt acetate manufactured by Kanto Kagaku Co., Ltd. It was molded using the following method and its heat resistance was evaluated.
  • Example 9 It was molded in the same manner as in Example 1, except that 0.30 g of iron acetate manufactured by Kanto Kagaku Co., Ltd. was replaced with 0.08 g of copper acetate manufactured by Kanto Kagaku Co., Ltd. (0.25 mol per 1 mol of pigment), and heat resistance evaluation was performed. .
  • Example 10 It was molded in the same manner as in Example 1, except that 0.30 g of iron acetate manufactured by Kanto Kagaku Co., Ltd. was replaced with 0.16 g of copper acetate manufactured by Kanto Kagaku Co., Ltd. (0.50 mol per 1 mol of pigment), and heat resistance evaluation was performed. .
  • Example 11 It was molded in the same manner as in Example 1, except that 0.30 g of iron acetate manufactured by Kanto Kagaku Co., Ltd. was replaced with 0.24 g of copper acetate manufactured by Kanto Kagaku Co., Ltd. (0.75 mol per 1 mol of pigment), and heat resistance evaluation was performed. .
  • Example 12 It was molded in the same manner as in Example 1, except that 0.30 g of iron acetate manufactured by Kanto Kagaku Co., Ltd. was changed to 0.31 g of copper acetate manufactured by Kanto Kagaku Co., Ltd. (1.00 mol per 1 mol of pigment), and heat resistance evaluation was performed. .
  • Example 13 It was molded in the same manner as in Example 1, except that 0.30 g of iron acetate manufactured by Kanto Kagaku Co., Ltd. was replaced with 0.39 g of copper acetate manufactured by Kanto Kagaku Co., Ltd. (1.25 mol per 1 mol of pigment), and heat resistance evaluation was performed. .
  • Example 14 It was molded in the same manner as in Example 1, except that 0.30 g of iron acetate manufactured by Kanto Kagaku Co., Ltd. was replaced with 0.47 g of copper acetate manufactured by Kanto Kagaku Co. (1.50 mol per 1 mol of pigment), and heat resistance evaluation was performed. .
  • Example 15 It was molded in the same manner as in Example 1, except that 0.30 g of iron acetate manufactured by Kanto Kagaku Co., Ltd. was replaced with 0.63 g of copper acetate manufactured by Kanto Kagaku Co., Ltd. (2.00 mol per 1 mol of pigment), and heat resistance evaluation was performed. .
  • Example 16 It was molded in the same manner as in Example 1, except that 0.30 g of iron acetate manufactured by Kanto Kagaku Co., Ltd. was replaced with 0.94 g of copper acetate manufactured by Kanto Kagaku Co., Ltd. (3.00 mol per 1 mol of pigment), and heat resistance evaluation was performed. .
  • Example 17 It was molded in the same manner as in Example 1, except that 0.30 g of iron acetate manufactured by Kanto Kagaku Co., Ltd. was changed to 1.26 g of copper acetate manufactured by Kanto Kagaku Co. (4.00 mol per 1 mol of pigment), and heat resistance evaluation was performed. .
  • Example 1 except that 1 g of FASTOGEN BLUE 8120BS manufactured by DIC was replaced with 1 g of PB79 (C.I. Pigment Blue 79) manufactured by Joint Venture Meilida Pigment Industry Co., Ltd., and 0.30 g of iron acetate manufactured by Kanto Kagaku Co., Ltd. was not added. It was molded in the same manner and the heat resistance was evaluated.
  • PB79 C.I. Pigment Blue 79
  • iron acetate manufactured by Kanto Kagaku Co., Ltd.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明が解決しようとする課題は、ポリエチレンテレフタレート(PET)又はナイロン樹脂着色用として、射出成型時における高温(例えば260-300℃)においても退色および成型前後での色相変化が生じにくい、フタロシアニン顔料を含む顔料組成物を提供することである。 具体的には、本発明の樹脂着色用顔料組成物は、無金属または金属フタロシアニン顔料と遷移金属塩を含む樹脂着色用顔料組成物であって、前記樹脂がポリエチレンテレフタレート又はナイロンである。

Description

樹脂着色用顔料組成物、及び成形品
 本発明は、ポリエチレンテレフタレート又はナイロン樹脂着色用顔料組成物、これを用いて成形したポリエチレンテレフタレート又はナイロン成形品に関する。
 プラスチック(特にエンジニアプラスチック)着色用の顔料市場では、射出成型時の260~300℃といった高温に耐えることができる高耐熱性かつ高安定性を有する顔料が求められている。現状、このような顔料としてはフタロシアニン顔料やキナクリドン顔料などが使用されている。なかでもプラスチック着色用フタロシアニン顔料としては、下記特許文献1-3が挙げられる。
 特許文献1-3には、金属フタロシアニン顔料における中心元素として、銅、鉄、亜鉛、コバルト、ニッケル、アルミニウム、チタン、マンガンが挙げられ、着色する樹脂として、ポリエチレン(PE)、ポリプロピレン(PP)、ナイロン、ポリアミドが挙げられている。また、共に用いるものとして金属塩、遷移金属錯体などの記載がある。
特開2004-131612号公報 特開平9-111138号公報 特開2007-249160号公報
 上記特許文献1-3には、ポリエステルおよびポリアミド系樹脂着色用途に使用した場合の耐熱性に関する記載はない。本発明者らは、検討の結果、これらの特許文献1-3に記載の金属フタロシアニン顔料および着色する樹脂のうち、ポリプロピレンおよびポリエチレンで使用可能な無金属または金属フタロシアニン顔料でも、ポリエステルおよびポリアミド系樹脂着色用途で使用すると射出成型時の変色(色相変化)が大きいことが判明した(本願比較例1参照)。
 ポリエステルおよびポリアミド系樹脂は、エンジニアプラスチックとして、繊維、自動車部品、電気・電子機器、各種成形品など広く使用されており、産業界において重要な樹脂である。本発明は、ポリエチレンテレフタレート(PET)又はナイロン樹脂着色用として、射出成型時における高温(例えば260-300℃)においても退色および成型前後での色相変化が生じにくい、フタロシアニン顔料を含む顔料組成物を提供することである。
 本発明者らは、検討の結果、成型時の色相変化は、非共有電子対を持つポリエステルおよびポリアミド系樹脂に対して無金属または金属フタロシアニン顔料が安定化できないことが主原因であると推測した。そこで、本発明者らは、鋭意検討の結果、無金属または金属フタロシアニン顔料に遷移金属塩を添加した樹脂着色用顔料組成物が、とりわけ高温の熱履歴がかかる樹脂成形物の着色材として使用した場合、色変化つまり退色が極めて少ない樹脂成形物を得られることを見出し、本発明を完成するに至った。これは遷移金属塩を添加することでフタロシアニン顔料のπ電子と遷移金属のd軌道とのインタラクションにより顔料が安定化し、遷移金属フタロシアニン顔料がPETおよびナイロン樹脂の非共有電子対に配位することで色相変化を著しく抑えられたためと考えられる。
 即ち本発明は、
『項1. 無金属または金属フタロシアニン顔料と遷移金属塩を含む樹脂着色用顔料組成物であって、前記樹脂がポリエチレンテレフタレート又はナイロンである樹脂着色用顔料組成物。
項2. 前記フタロシアニン顔料の中心金属が、無金属、スズ、又はアルミニウムである項1に記載の樹脂着色用顔料組成物。
項3. 前記遷移金属塩における遷移金属が、鉄、コバルト、ニッケル、銅、ルテニウム、ロジウム、パラジウム、又は銀である項1または2に記載の樹脂着色用顔料組成物。
項4.前記遷移金属塩の割合が、前記無金属または金属フタロシアニン顔料1molに対して、0.1~5.0molである項1~3のいずれか1項に記載の樹脂着色用顔料組成物。
項5. 項1~4のいずれか1項に記載の樹脂着色用顔料組成物を含むポリエチレンテレフタレート又はナイロン成形品。』
に関する。
 本発明の樹脂着色用顔料組成物は、高い着色力を維持しつつ、PETやナイロン樹脂着色用に使用しても射出成型時の260~300℃といった高温での変色を抑制できる。そのため本発明の樹脂着色用顔料組成物は、PETおよびナイロン樹脂のマスターバッチ、ドライカラー、およびペーストカラー(リキッドマスターバッチ)に好適である。
 以下、本発明を詳細に説明する。
<樹脂着色用顔料組成物>
 本発明の樹脂着色用顔料組成物は、無金属または金属フタロシアニン顔料と遷移金属塩を含む樹脂着色用顔料組成物であって、前記樹脂がPET又はナイロンである。即ち本発明の顔料組成物は、PET又はナイロン着色用であり、無金属または金属フタロシアニン顔料と遷移金属塩を含む。
 上記金属フタロシアニン顔料における中心金属は、例えば銅(Cu)、亜鉛(Zn)、ニッケル(Ni)、コバルト(Co)、鉄(Fe)、アルミニウム(Al)、クロム(Cr)、マンガン(Mn)が挙げられるが、なかでもスズ、アルミニウムが好ましい。また、中心金属のない無金属フタロシアニン顔料もスズやアルミニウムが中心金属である金属フタロシアニン顔料と同様に好ましい。フタロシアニン顔料の中心金属が、無金属、スズ、又はアルミニウムであると、高温での変色抑制という本発明の効果をより発揮することができる。本発明において無金属または金属フタロシアニン顔料は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 上記無金属または金属フタロシアニン顔料は、製品として市販されている顔料をそのまま用いてもよく、公知慣用の方法で顔料を合成して用いてもよい。無金属フタロシアニン顔料としては、例えばピグメントブルー16(PB16;製品名「FASTOGEN BLUE 8120BS」DIC社製)、アルミフタロシアニン顔料としては、例えばピグメントブルー79(PB79;例えばJoint Venture Meilida Pigment Industry Co.,Ltd社製)、スズフタロシアニン顔料としては、例えばTin(II)phthalocyanineなどを使用することができる。
 上記無金属または金属フタロシアニン顔料の一次粒子径は、例えば5~500nm、好ましくは10~400nm、より好ましくは20~300nmである。
 本発明の樹脂着色用顔料組成物では、本発明の効果を損なわない範囲で、上記無金属または金属フタロシアニン顔料以外の顔料(スレン系顔料、インジゴ系顔料、ペリノン系顔料、ペリレン系顔料、フタロン系顔料、ジオキサジン系顔料、キナクリドン系顔料、イソインドリノン系顔料、金属錯体系顔料、ジケトピロロピロール系顔料、アゾ顔料などの有機顔料、酸化チタン、カーボンブラックなどの無機顔料など)を含んでもよい。これらの無金属またはフタロシアニン顔料以外の顔料の割合は、顔料全量に対して、例えば10質量%以下、好ましくは5質量%以下が好ましい。
 上記遷移金属塩における遷移金属としては、周期表で第3族元素から第11族元素の間に存在する元素であればよいが、なかでも鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、又は銀(Ag)が好ましい。また、塩としては、酢酸、塩酸、硝酸、又は硫酸が好ましい。具体的には遷移金属塩として、酢酸鉄、酢酸コバルト、酢酸ニッケル、酢酸銅、酢酸ルテニウム、酢酸ロジウム、酢酸パラジウム、酢酸銀、塩化鉄、塩化コバルト、塩化ニッケル、塩化銅、塩化ルテニウム、塩化ロジウム、塩化パラジウム、塩化銀、硝酸鉄、硝酸コバルト、硝酸ニッケル、硝酸銅、硝酸ルテニウム、硝酸ロジウム、硝酸パラジウム、硝酸銀、硫酸鉄、硫酸コバルト、硫酸ニッケル、硫酸銅、硫酸ルテニウム、硫酸ロジウム、硫酸パラジウム、硫酸銀が好ましい。本発明においてこれらの遷移金属塩は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらの遷移金属塩は、市販されているものをそのまま用いることができる。
 遷移金属塩の割合は、上記無金属または金属フタロシアニン顔料1molに対して、例えば0.1~5.0mol、好ましくは0.2~4.5mol、より好ましくは0.3~3.5molである。また、遷移金属塩の割合は、無金属または金属フタロシアニン顔料100質量部に対して、例えば3~157質量部、好ましくは6~141質量部、より好ましくは9~110質量部である。遷移金属塩の割合が多いほど変色抑制の効果は大きくなるが、樹脂の着色力が小さくなるため、上記の適切な範囲で含むことが好ましい。
 本発明の樹脂着色用顔料組成物は、顔料及び遷移金属塩以外に顔料分散剤を含むことが好ましい。このような顔料分散剤としては、ステアリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸マグネシウム、ステアリン酸リチウム等の金属石けん、ステアリン酸アマイド、エチレンビスアマイド等の脂肪酸アミド、エステル系ワックス、ポリエチレンワックス、シランカップリング剤等が挙げられる。なかでもステアリン酸マグネシウムを含むことが好ましい。上記無金属または金属フタロシアニン顔料を含む顔料100質量部に対する顔料分散剤の割合は、例えば50~500質量部、好ましくは100~400質量部である。
 着色用の樹脂におけるPETとしては、市販されているものを用いることができ、例えば「三井ペット J125」(三井化学株式会社製)を使用することができる。これらのPETの平均分子量は10000~80000が好ましく、20000~60000がより好ましい。PET100質量部に対する、上記無金属または金属フタロシアニン顔料を含む顔料の割合は、例えば0.001~1質量部、好ましくは0.01~0.5質量部である。
 また、着色用の樹脂におけるナイロン(ポリアミド)としては、ナイロン6、ナイロン6,6、ナイロン6,10、ナイロンM5T、ナイロン6T、ナイロン6I、ナイロン9T、ナイロン11、ナイロン12など各種市販されているナイロン樹脂を用いることができる。ナイロンの市販品としては、例えば製品名「UBE NYLON 1013NW8」(ナイロン6;宇部興産株式会社製)を使用することができる。これらのナイロンの平均分子量は10000~25000が好ましく、12000~18000がより好ましい。当該平均分子量は、数平均分子量のことであり、ポリスチレンを標準物質としてGPC分析により測定することができる。ナイロン100質量部に対する、上記無金属または金属フタロシアニン顔料を含む顔料の割合は、例えば0.001~1質量部、好ましくは0.01~0.5質量部である。
 本発明の樹脂着色用顔料組成物における樹脂着色の方法としては、マスターバッチ、ドライカラー、ペーストカラー(リキッドマスターバッチ)などいずれの方法であってもよい。例えばドライカラーは、顔料とステアリン酸マグネシウムなどの顔料分散剤と酢酸鉄などの遷移金属塩とをよく混合することで作製できる。また、着色ペレットは、樹脂に対してドライカラーを良く混合することで作製することができる。
 本発明では、遷移金属塩を無金属または金属フタロシアニン顔料に添加することで、遷移金属との相互作用により安定化したフタロシアニン顔料がPETおよびナイロン樹脂の非共有電子対に配位し、色変化を抑えることができる。さらに遷移金属塩として、コバルト塩を無金属またはスズフタロシアニン顔料に添加することで、後述の参考例であるコバルトフタロシアニン顔料とほぼ同じ色を有しつつ耐熱性が同等またはそれ以上の性能を発揮することができる。
<樹脂組成物>
 本発明の樹脂組成物は、PET及びナイロン樹脂と、上記本発明の樹脂着色用顔料組成物を含む。PET及びナイロン樹脂としては、着色用の樹脂として上述のものが挙げられる。
 本発明の樹脂組成物は、本発明の効果を損なわない範囲で、上記PET及びナイロン以外の樹脂を含んでいてもよい。このような樹脂としては、エチレン、プロピレン、ブチレン、スチレン等をモノマー成分として用いたホモポリマーやコポリマー、高密度ポリエチレン(HDPE)、直鎖状低密度ポリエチレン(L-LDPE)、低密度ポリエチレン(LDPE)等のポリエチレン、ポリプロピレン、ポリブチレン等のポリオレフィン樹脂、PET以外のポリエステル樹脂(例えば、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート)、ポリスチレン樹脂、熱可塑性アイオノマー樹脂などが挙げられる。これらPET及びナイロン以外の樹脂の割合は、樹脂全量に対して、例えば10質量%以下、好ましくは5質量%以下が好ましい。
 本発明の樹脂組成物は、上記樹脂および本発明の樹脂着色用顔料組成物以外に、滑剤、可塑剤、フィラー、耐候安定剤、各種添加剤等の樹脂において一般的に使用される成分を含んでいてもよい。
 上記滑剤としては、内部滑剤、外部滑剤いずれであってもよく、パラフィンワックス、合成ポリエチレン、流動パラフィンなどの炭化水素系化合物、ステアリン酸、ベヘニン酸、1,2-ヒドロキシステアリン酸、ステアリルアルコールなどの脂肪酸・高級アルコール系化合物、ステアリン酸アミド、オレイン酸アミド、エルカ酸アミド、メチレンビスステアリン酸アミド、エチレンビスステアリン酸アミドなどの脂肪酸アミド系化合物、グリセリンモノステアレート、グリセリンモノオレート、ブチルステアレートなどのエステル系化合物が挙げられる。
 上記可塑剤としては、エポキシ化大豆油(ESBO)、エポキシ化アマニ油(ELSO)等のエポキシ化植物油、ジオクチルフタレート(DOP)、ジブチルフタレート(DBP)等のフタル酸エステル類、二塩基酸(アジピン酸、セバチン酸、フタル酸など)とグリコール類(1,2-プロパンジオール、ブタンジオールなど)のポリエステル等のポリエステル系化合物が挙げられる。
 上記フィラーとしては、求められる物性に応じて適当なものを添加することができ、ウォラストナイト、チタン酸カリウム、ゾノトライト、石膏繊維、アルミボレート、MOS、アラミド繊維、各種ファイバー系、カーボンファイバー(炭素繊維)、グラスファイバー(ガラス繊維)、タルク、マイカ、ガラスフレーク、ポリオキシベンゾイルウイスカー、炭酸カルシウム、シリカ、クレー等が挙げられる。
 上記耐候安定剤としては、トリアジン系、ベンゾトリアゾール系、ベンゾフェノン系、サリシレート系、シアノアクリレート系化合物などの紫外線吸収剤、ヒンダートアミン系光安定剤(HALS)等の光安定剤、フェノール系(ヒンダートフェノール系など)、リン系(ホスファイト系など)、イオウ系(チオエーテル系など)等の酸化防止剤、重金属不活化剤、キレート剤等が挙げられる。
 上記各種添加剤としては、イントメッセント系、リン酸エステル系、ハロゲン系、無機系などの難燃剤、リン酸エステル金属塩系、ソルビトール系などの核剤、タルク、炭酸カルシウムなどの充填剤、相溶化剤(反応型、非反応型)、リン酸エステル金属塩系、ソルビトール系などの透明化剤、非イオン系、アニオン系、カチオン系などの帯電防止剤等が挙げられる。
<成形品>
 本発明の成形品は、上述の本発明の樹脂着色用顔料組成物または樹脂組成物を含むポリエチレンテレフタレート又はナイロン成形品である。これらの成形品の成型方法としては、射出成型、ブロー成型、インフレーション成型、押出し成型、エンゲル成型、真空成型等いずれであってもよいが、射出成型が好ましい。射出成型では、一般的なPET及びナイロンの条件でよく、樹脂温度(シリンダー温度)は、例えば260~300℃である。
 本発明の成形品は、用途は問わず、自動車・車両部品(エンジンルーム内部品、吸気系部品、燃料系部品など)、電気・電子機器(産業用機器のコネクター、スイッチ、ハウジングなど)、フィルム、シート、パイプ、板、丸棒、チューブなど加工用の射出・押出成形品、日用雑貨、容器、玩具、建築資材、スポーツ用具等である。
 以下、実施例及び比較例を用いて本発明を更に詳細に説明する。
 下記実施例1に記載のとおり、ポリプロピレン標準成型板、ナイロンおよびPET試験着色ペレットを作製して耐熱性評価を行った。また、実施例2-17および比較例1-7に記載のとおり実施例1から変更をし、同様に耐熱性評価を行った。これらの実施例および比較例の結果は、下記表1-3に記載のとおりである。実施例1-8では、顔料1molに対して遷移金属塩が約1molとなるようにした。また、比較例2-5では、顔料1molに対して金属塩が約1molとなるようにした。
[実施例1]
 ポリプロピレン樹脂(製品名:ノバテックPP BC3、日本ポリプロ株式会社製)500gに、DIC社製FASTOGEN BLUE 8120BS(C.I.ピグメントブルー16)1gと堺化学工業社製ステアリン酸マグネシウム1gと関東化学社製酢酸鉄0.30gを事前に混合したものであるドライカラーを1g加え、よく混合した。これを射出成型機(型番:PNX60III―5A、日精樹脂工業社製、以下同じ)に投入し、280℃の滞留時間0分で成形を実施し、PP標準成型板とした。
 次に、ナイロン樹脂(製品名:UBE NYLON 1013NW8、メーカー:宇部興産株式会社)1000gにDIC社製FASTOGEN BLUE 8120BS(C.I.ピグメントブルー16)1gと堺化学工業社製ステアリン酸マグネシウム1gと関東化学社製酢酸鉄0.30gを事前に混合したものであるドライカラーを1g加え、よく混合した。これを射出成型機に投入し、280℃の滞留時間0分および10分で成形を実施し、nylon試験成型板とした。
 そして、PET樹脂(製品名:三井ペット J125、メーカー:三井化学株式会社)1000gにDIC社製FASTOGEN BLUE 8120BS(C.I.ピグメントブルー16)1gと堺化学工業社製ステアリン酸マグネシウム1gと関東化学社製酢酸鉄0.30gを事前に混合したドライカラーを1g加え、よく混合した。これを射出成型機に投入し、280℃の滞留時間0分および10分で成形を実施し、PET試験成型板とした。
(耐熱性評価)
 上記で作製した3つの成型板を測色した。PP標準着色ペレットの滞留時間0分で射出した成型板の測色値を基準として、nylonおよびPET試験着色ペレットの滞留時間10分で射出した成型板の測色値とのdE値を算出した。測色は、分光光度計(型番:Datacolor 650、サンカラー株式会社製)にて行った。
 表1および表2におけるdE1は、基準としたPP標準着色ペレットからのnylon試験着色ペレットの測色値の差(色相変化)であり、表1におけるdE2は、基準としたPP標準着色ペレットからのPET試験着色ペレットの測色値の差(色相変化)であり、表3におけるdE3は、nylon試験着色ペレットの滞留時間0分からの同じく滞留時間10分の測色値の差(色相変化)であり、表3におけるdE4は、PET試験着色ペレットの滞留時間0分からの同じく滞留時間10分の測色値の差(色相変化)である。
 なお、dE値(dE1~4)が小さい顔料ほど色変化が小さく、高安定性と言える。着色力は標準着色ペレットの滞留時間0分で射出した成型板の測色値を基準として試験着色ペレットの滞留時間10分で射出した成型板の測色値から算出した装置固有の値である。着色力が60%以上ある顔料は、色変化が小さいと言える。
 また、表3におけるL*a*b*測定値は、nylon試験着色ペレットの滞留時間0分の値であり、それぞれのポイント差が、成型板間で2ポイント未満であれば同じ色相と判断できる。
[実施例2]
 関東化学社製酢酸鉄0.30gを関東化学社製酢酸コバルト0.31gに変えた以外は実施例1と同様の方法で成形し、耐熱性評価を行った。
[実施例3]
 関東化学社製酢酸鉄0.30gを関東化学社製酢酸ニッケル0.31gに変えた以外は実施例1と同様の方法で成形し、耐熱性評価を行った。
[実施例4]
 関東化学社製酢酸鉄0.30gを関東化学社製酢酸銅0.31gに変えた以外は実施例1と同様の方法で成形し、耐熱性評価を行った。
[実施例5]
 関東化学社製酢酸鉄0.30gを関東化学社製塩化ルテニウム0.36gに変えた以外は実施例1と同様の方法で成形し、耐熱性評価を行った。
[実施例6]
 関東化学社製酢酸鉄0.30gを関東化学社製硝酸銀0.32gに変えた以外は実施例1と同様の方法で成形し、耐熱性評価を行った。
[実施例7]
 DIC社製FASTOGEN BLUE 8120BS 1gをJoint Venture Meilida Pigment Industry Co.,Ltd社製PB79 1g (C.I.ピグメントブルー79)と関東化学社製酢酸鉄0.30gを関東化学社製酢酸コバルト0.31gに変えた以外は実施例1と同様の方法で成形し、耐熱性評価を行った。
[実施例8]
 DIC社製FASTOGEN BLUE 8120BS 1gを東京化成工業社製Tin(II)phthalocyanine 1gに、関東化学社製酢酸鉄0.30gを関東化学社製酢酸コバルト0.31gに変えた以外は実施例1と同様の方法で成形し、耐熱性評価を行った。
[実施例9]
 関東化学社製酢酸鉄0.30gを関東化学社製酢酸銅0.08g(顔料1molに対して0.25mol)にした以外は実施例1と同様の方法で成形し、耐熱性評価を行った。
[実施例10]
 関東化学社製酢酸鉄0.30gを関東化学社製酢酸銅0.16g(顔料1molに対して0.50mol)にした以外は実施例1と同様の方法で成形し、耐熱性評価を行った。
[実施例11]
 関東化学社製酢酸鉄0.30gを関東化学社製酢酸銅0.24g(顔料1molに対して0.75mol)にした以外は実施例1と同様の方法で成形し、耐熱性評価を行った。
[実施例12]
 関東化学社製酢酸鉄0.30gを関東化学社製酢酸銅0.31g(顔料1molに対して1.00mol)にした以外は実施例1と同様の方法で成形し、耐熱性評価を行った。
[実施例13]
 関東化学社製酢酸鉄0.30gを関東化学社製酢酸銅0.39g(顔料1molに対して1.25mol)にした以外は実施例1と同様の方法で成形し、耐熱性評価を行った。
[実施例14]
 関東化学社製酢酸鉄0.30gを関東化学社製酢酸銅0.47g(顔料1molに対して1.50mol)にした以外は実施例1と同様の方法で成形し、耐熱性評価を行った。
[実施例15]
 関東化学社製酢酸鉄0.30gを関東化学社製酢酸銅0.63g(顔料1molに対して2.00mol)にした以外は実施例1と同様の方法で成形し、耐熱性評価を行った。
[実施例16]
 関東化学社製酢酸鉄0.30gを関東化学社製酢酸銅0.94g(顔料1molに対して3.00mol)にした以外は実施例1と同様の方法で成形し、耐熱性評価を行った。
[実施例17]
 関東化学社製酢酸鉄0.30gを関東化学社製酢酸銅1.26g(顔料1molに対して4.00mol)にした以外は実施例1と同様の方法で成形し、耐熱性評価を行った。
[比較例1]
 関東化学社製酢酸鉄を添加しない以外は実施例1と同様の方法で成形し、耐熱性評価を行った。
[比較例2]
 関東化学社製酢酸鉄0.30gを関東化学社製酢酸マグネシウム0.25gに変えた以外は実施例1と同様の方法で成形し、耐熱性評価を行った。
[比較例3]
 関東化学社製酢酸鉄0.30gを関東化学社製硫酸アルミニウム0.30gに変えた以外は実施例1と同様の方法で成形し、耐熱性評価を行った。
[比較例4]
 関東化学社製酢酸鉄0.30gを関東化学社製酢酸カルシウム0.27gに変えた以外は実施例1と同様の方法で成形し、耐熱性評価を行った。
[比較例5]
 関東化学社製酢酸鉄0.30gを関東化学社製酢酸亜鉛0.32g変えた以外は実施例1と同様の方法で成形し、耐熱性評価を行った。
[比較例6]
 DIC社製FASTOGEN BLUE 8120BS 1gをJoint Venture Meilida Pigment Industry Co.,Ltd社製PB79 1g(C.I.ピグメントブルー79)とし、関東化学社製酢酸鉄0.30gを添加しない以外は実施例1と同様の方法で成形し、耐熱性評価を行った。
[比較例7]
 DIC社製FASTOGEN BLUE 8120BS 1gを東京化成工業社製Tin(II)phthalocyanine 1gとし、関東化学社製酢酸鉄0.30gを添加しない以外は実施例1と同様の方法で成形し、耐熱性評価を行った。
[参考例1]
 DIC社製FASTOGEN BLUE 8120BS 1gをCobalt phthalocyanine 1gとし、関東化学社製酢酸鉄0.30gを添加しない以外は実施例1と同様の方法で成形し、耐熱性評価を行った。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 上記表1より、処理剤として遷移金属塩を添加すると、添加しないときに比べてPP樹脂基準における測色値の差(色相変化)が小さくなり、耐熱性が向上していることが分かる。上記表2より、処理剤である酢酸銅の添加量が増えるとPP樹脂基準における測色値の差(色相変化)が小さくなり、耐熱性が向上するが、着色力が低下する傾向であることが分かる。上記表3より、同じnylonまたはPET樹脂における滞留0分を基準にしたときにおいても測色値の差(色相変化)が小さくなり、耐熱性が向上していることが分かる。表3より、コバルト塩を無金属またはスズフタロシアニン顔料に添加することで、参考例1であるコバルトフタロシアニン顔料とほぼ同じ色を有しつつ耐熱性が同等またはそれ以上の耐熱性とすることができたことが分かる。

Claims (5)

  1.  無金属または金属フタロシアニン顔料と遷移金属塩を含む樹脂着色用顔料組成物であって、前記樹脂がポリエチレンテレフタレート又はナイロンである樹脂着色用顔料組成物。
  2.  前記フタロシアニン顔料の中心金属が、無金属、スズ、又はアルミニウムである請求項1に記載の樹脂着色用顔料組成物。
  3.  前記遷移金属塩における遷移金属が、鉄、コバルト、ニッケル、銅、ルテニウム、ロジウム、パラジウム、又は銀である請求項1または2に記載の樹脂着色用顔料組成物。
  4.  前記遷移金属塩の割合が、前記無金属または金属フタロシアニン顔料1molに対して、0.1~5.0molである請求項1または2に記載の樹脂着色用顔料組成物。
  5.  請求項1または2に記載の樹脂着色用顔料組成物を含むポリエチレンテレフタレート又はナイロン成形品。
PCT/JP2023/017683 2022-05-24 2023-05-11 樹脂着色用顔料組成物、及び成形品 WO2023228757A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023556816A JP7435922B1 (ja) 2022-05-24 2023-05-11 樹脂着色用顔料組成物、及び成形品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-084409 2022-05-24
JP2022084409 2022-05-24

Publications (1)

Publication Number Publication Date
WO2023228757A1 true WO2023228757A1 (ja) 2023-11-30

Family

ID=88919154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/017683 WO2023228757A1 (ja) 2022-05-24 2023-05-11 樹脂着色用顔料組成物、及び成形品

Country Status (2)

Country Link
JP (1) JP7435922B1 (ja)
WO (1) WO2023228757A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004083674A (ja) * 2002-08-26 2004-03-18 Toyo Ink Mfg Co Ltd プラスチック用着色剤およびその使用
JP2008266434A (ja) * 2007-04-19 2008-11-06 Mitsubishi Engineering Plastics Corp 黒色のレーザー溶着用ポリアミド樹脂組成物およびこれを用いた成形品
WO2014034624A1 (ja) * 2012-08-31 2014-03-06 三菱瓦斯化学株式会社 ポリアミド樹脂組成物及びその製造方法
JP2014125617A (ja) * 2012-12-27 2014-07-07 Mitsubishi Gas Chemical Co Inc ポリアミド樹脂組成物及びその製造方法
JP2017071657A (ja) * 2015-10-05 2017-04-13 大日精化工業株式会社 顔料分散剤、顔料組成物、及び顔料着色剤
JP2017071658A (ja) * 2015-10-05 2017-04-13 大日精化工業株式会社 顔料分散剤、顔料組成物、及び顔料着色剤
CN110938195A (zh) * 2019-12-05 2020-03-31 中国纺织科学研究院有限公司 一种聚酯的制备方法及聚酯

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004083674A (ja) * 2002-08-26 2004-03-18 Toyo Ink Mfg Co Ltd プラスチック用着色剤およびその使用
JP2008266434A (ja) * 2007-04-19 2008-11-06 Mitsubishi Engineering Plastics Corp 黒色のレーザー溶着用ポリアミド樹脂組成物およびこれを用いた成形品
WO2014034624A1 (ja) * 2012-08-31 2014-03-06 三菱瓦斯化学株式会社 ポリアミド樹脂組成物及びその製造方法
JP2014125617A (ja) * 2012-12-27 2014-07-07 Mitsubishi Gas Chemical Co Inc ポリアミド樹脂組成物及びその製造方法
JP2017071657A (ja) * 2015-10-05 2017-04-13 大日精化工業株式会社 顔料分散剤、顔料組成物、及び顔料着色剤
JP2017071658A (ja) * 2015-10-05 2017-04-13 大日精化工業株式会社 顔料分散剤、顔料組成物、及び顔料着色剤
CN110938195A (zh) * 2019-12-05 2020-03-31 中国纺织科学研究院有限公司 一种聚酯的制备方法及聚酯

Also Published As

Publication number Publication date
JPWO2023228757A1 (ja) 2023-11-30
JP7435922B1 (ja) 2024-02-21

Similar Documents

Publication Publication Date Title
JP6803855B2 (ja) ポリアミド樹脂組成物、キット、成形品の製造方法および成形品
CN102181094B (zh) 聚丙烯类树脂抗静电防老化的白色母粒及制备方法
SK284118B6 (sk) Predzmesová a zmesová kompozícia
KR20080041184A (ko) 레이저 마킹용 폴리아미드 수지 조성물 및 레이저 마킹이된 폴리아미드 수지 성형체
JP2019508554A (ja) 黒く着色されたポリアミド組成物、その製造および使用
JPWO2019216368A1 (ja) 樹脂組成物、キット、樹脂組成物の製造方法、成形品の製造方法および成形品
EP3931260A1 (de) Polyamid-formmassen mit erhöhter hydrolysebeständigkeit
JP7197350B2 (ja) ポリアミド樹脂組成物、キット、成形品の製造方法および成形品
JP7435922B1 (ja) 樹脂着色用顔料組成物、及び成形品
JPWO2020149398A1 (ja) 樹脂組成物、成形品、キットおよび成形品の製造方法
US20240010819A1 (en) Resin composition, molded article, and applications thereof
WO2021010255A1 (ja) 樹脂組成物、成形品、キット、および、成形品の製造方法
US11746234B2 (en) Polyamide resin composition and molded article
US8207248B2 (en) Polyethylene composition having reduced warpage in molded articles
KR20040106510A (ko) 합성 수지 제품 분쇄물의 재이용 방법
WO2000026302A1 (fr) Composition de resine thermoplastique et arts associes
JP2023119761A (ja) 顔料組成物、樹脂組成物、及び成形品
JP2021123643A (ja) 樹脂組成物、キット、成形品の製造方法および成形品
WO2004056493A1 (de) Elektrostatisch lackierbare formteile in verbundtechnik
JP7023048B2 (ja) マスターバッチ、樹脂成形品、マスターバッチの製造方法及び樹脂成形品の製造方法
WO2021206059A1 (ja) 着色剤、並びにこれを含むマスターバッチ、着色樹脂組成物、及び成形品
WO2020051524A1 (en) Vehicle headlight assembly
JP2021001240A (ja) 樹脂着色用マスターバッチ、ポリアミド樹脂組成物、成形品およびそれらの製造方法
JP2021165349A (ja) 着色剤、並びにこれを含むマスターバッチ、着色樹脂組成物、及び成形品
JP2007161743A (ja) 着色されたポリエチレンテレフタレート樹脂組成物ならびにその成形品

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023556816

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23811632

Country of ref document: EP

Kind code of ref document: A1