WO2023221907A1 - 一种同步脱除溶液中氟、氯、铁的方法 - Google Patents

一种同步脱除溶液中氟、氯、铁的方法 Download PDF

Info

Publication number
WO2023221907A1
WO2023221907A1 PCT/CN2023/094114 CN2023094114W WO2023221907A1 WO 2023221907 A1 WO2023221907 A1 WO 2023221907A1 CN 2023094114 W CN2023094114 W CN 2023094114W WO 2023221907 A1 WO2023221907 A1 WO 2023221907A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron
chlorine
solution
catalyst
fluorine
Prior art date
Application number
PCT/CN2023/094114
Other languages
English (en)
French (fr)
Inventor
杨建广
南天翔
张艳
胡晴程
唐朝波
曾伟志
龙伟
Original Assignee
中南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中南大学 filed Critical 中南大学
Publication of WO2023221907A1 publication Critical patent/WO2023221907A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B19/00Obtaining zinc or zinc oxide
    • C22B19/20Obtaining zinc otherwise than by distilling
    • C22B19/26Refining solutions containing zinc values, e.g. obtained by leaching zinc ores
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0453Treatment or purification of solutions, e.g. obtained by leaching
    • C22B23/0461Treatment or purification of solutions, e.g. obtained by leaching by chemical methods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to a method for synchronously removing fluorine, chlorine and iron from a solution, and belongs to the field of non-ferrous metal metallurgy.
  • Nonferrous metal ores are usually associated with iron compounds. During the hydrosmelting process, iron easily enters the solution together with nonferrous metals. At the same time, although the content of impurities such as fluorine and chlorine in minerals is not high, these elements will also enter the solution together with metals during the leaching process. In order to obtain high-quality metal products while protecting production equipment, the concentration of fluoride ions, chloride ions and iron ions in the solution must be low enough.
  • the principles for purifying and removing fluorine and chlorine from a solution are basically the same.
  • the commonly used methods are: 1 Ion exchange method, which uses the replacement reaction of fluorine and chloride ions with exchangeable ions in the ion exchange resin to adsorb fluorine and chlorine ions on the solution. on the resin to achieve the purpose of removing fluorine and chlorine.
  • This method has the advantages of simple equipment, convenient operation, and low operating cost.
  • large water consumption and low dechlorination efficiency are the main reasons that limit the wide application of this method
  • 2 Adsorption method adding active substances with large specific surface area to the solution The adsorption of fluorine and chloride ions on such solid-phase media can achieve the purpose of purifying fluorine and chlorine in the solution.
  • 3Chemical precipitation method adding to the solution a chemical reaction with fluoride ions or chloride ions to form a precipitate phase
  • the substance is the basic principle of this method. For example, adding monovalent copper compounds, silver salts or bismuth-containing compounds can generate chlorine-containing precipitates, and adding calcium salts can generate fluorine-containing precipitates.
  • Chemical precipitation methods usually have the advantage of good industrial adaptability, but the high consumption of chemical reagents and the difficulty in reusing impurity removers limit the application of this method.
  • the basic principle of purification and iron removal in solution is to precipitate and separate iron ions.
  • the main methods commonly used at present are: 1 Iron hydroxide precipitation method. Even if the iron in the solution is precipitated as Fe(OH) 3 colloid, this method mainly involves solid-liquid separation. Difficult problem, especially when the solution contains high iron content, Fe(OH) 3 colloid can easily block the plate and frame filter press, making the production process difficult; 2 Hematite method to precipitate iron, so that the iron in the solution becomes hematite
  • the form of slagging was invented by Japan's Dowa Mining Company from 1968 to 1970. It was put into production at the Iijima Zinc Smelting Plant in Japan in 1972, using the "releaching-hematite method" to sink iron.
  • Yunnan Yunxi Wenshan zinc and indium smelting is domestically
  • the company is also building a hydrometallurgical zinc smelting production line based on the hematite iron sinking technology.
  • This method requires expensive titanium materials to manufacture high-pressure equipment and an attached SO 2 liquefaction plant.
  • the investment cost is high, and there is a separate stage for reducing iron;
  • the goethite method is used to sink iron, so that the iron in the solution enters the slag in the form of goethite. It was developed by the Belgian Vieille Montagne company from 1965 to 1969 and put into production at the Balen factory in 1971.
  • the goethite method has the advantages of simple process equipment, low iron removal cost, and good filtration performance because the iron precipitate is in a crystalline state.
  • the goethite method has problems such as the mixed crystal form of iron slag, which is difficult to control, and the iron sedimentation.
  • the slag has outstanding problems such as low iron content and difficulty in high-value recycling; 4
  • the jarosite method is based on the fact that in the presence of ammonium or alkali metal ions, the iron in the solution generates jarosite and enters the slag for removal, but it also causes The solution brings in impurity ions such as K + , Na + or NH 4 + .
  • the slow iron removal rate increases the reaction time and increases the possibility of main metal inclusions entering the iron removal slag. While increasing the amount of iron removal slag, it also increases the difficulty of filtration, which is not conducive to the realization of iron removal slag. Resource-based, fully quantified high-value recycling.
  • the purpose of the present invention is to provide a method for synchronously removing fluorine, chlorine, and iron from the solution.
  • the method provided by the present invention can shorten the process flow and jointly remove fluorine, chlorine, and iron from the solution at the same time. Accelerate the reaction rate, widen the reaction range, reduce the sensitivity of goethite iron removal to solution properties, increase the operability of goethite iron removal, and obtain iron removal slag with higher iron content, thereby reducing the amount of slag and reducing the Energy consumption, save energy.
  • the invention is a method for synchronously removing fluorine, chlorine and iron from a solution.
  • Gas containing strong oxidizing gas is continuously introduced into a solution containing Fe 2+ , F - and Cl - , and a catalyst is added at the same time, and neutralization is added.
  • the agent controls the pH value to be 1.5 ⁇ 4.2, reacts under shear intensification, and solid-liquid separation obtains purified liquid and iron removal slag.
  • the catalyst is selected from goethite, hematite, lepidocrocite, pyrolusite, and nickel oxide. , at least one of cuprous oxide.
  • the method of the present invention introduces the above-mentioned metal mineral catalyst and uses the catalyst to catalyze the reaction of chlorine ions and strong oxidizing gas to form chlorine gas, thereby removing the chlorine ions from the solution.
  • the metal mineral catalyst Under this condition, there is no need to introduce crystal seeds. Only under the action of strong oxidants, the pH value is controlled to 1.5 ⁇ 4.2. Under the action of shear strengthening, iron removal slag mainly composed of goethite crystals can be efficiently generated. In addition, shear strengthening can make the iron removal slag particles smaller. Small particles have a larger specific surface area.
  • the large specific surface area can provide more fluoride ion adsorption sites, allowing more fluoride ions to be adsorbed by shear.
  • the iron removal slag obtained by the goethite method is strengthened to achieve efficient adsorption and removal of fluorine. Therefore, through the method of the present invention, fluorine, chlorine and iron can be simultaneously and efficiently removed.
  • the concentration of F - is ⁇ 2g/L
  • the concentration of Cl - is ⁇ 2g/L
  • the concentration of Fe 2+ is ⁇ 20g/L
  • the concentration of F - is ⁇ 1g/L
  • the concentration of Cl - is ⁇ 1g/L
  • the concentration of Fe 2+ is ⁇ 15g/L.
  • the gas containing the strongly oxidizing gas is a mixed gas of the strongly oxidizing gas and oxygen, and the volume ratio of the strongly oxidizing gas and oxygen is 1:0 ⁇ 100, preferably 1:0 ⁇ 1, and further preferably It is 1:0 ⁇ 0.5.
  • the strongly oxidizing gas in the gas containing the strongly oxidizing gas is selected from ozone and/or chlorine, preferably ozone.
  • the gas containing a strong oxidizing gas is ozone.
  • the flow rate of continuously flowing the strongly oxidizing gas into the solution containing Fe 2+ , F - and Cl - is 1 to 200 m 3 /h, preferably 50 to 150 m 3 /h, and further preferably 50 ⁇ 100m 3 /h.
  • the present invention unexpectedly discovered that the metal mineral type catalyst has a catalytic oxidation effect on chloride ions in the goethite iron removal system, making the catalytic oxidation reaction more efficient.
  • the catalyst is selected from at least one of goethite and pyrolusite.
  • the addition amount of the catalyst is 0.01 ⁇ 0.5g/L, preferably 0.05 ⁇ 0.15g/L.
  • the final reaction effect is optimal, because adding too much catalyst will not only cause the catalysts to stick to each other, but also change the solution state and affect the gas-liquid phase.
  • the reaction is not conducive to the catalytic reaction; secondly, excessive addition of solid catalyst will cause it to enter the iron removal slag after the reaction is completed, changing the composition of the iron removal slag and making it difficult to reprocess the iron removal slag; in addition, , adding excess catalyst will not only not speed up the reaction rate, but also increase the cost, which is not energy-saving and environmentally friendly.
  • the particle size of the catalyst is 1 to 10 ⁇ m, preferably 2 to 5 ⁇ m.
  • the particle size of the catalyst is controlled within the above range, and the final reaction effect and impurity removal effect are optimal.
  • the particle size of the catalyst is too large, the contact area between the solution and the catalyst particles will be reduced, causing catalytic oxidation.
  • the reaction rate decreases; if the particle size of the catalyst is too small, the catalyst particles will float on the surface of the solution and cannot effectively participate in the reaction.
  • the neutralizing agent is selected from at least one of metal oxides (MeO), metal carbonates ( Mex (CO 3 ) y ), and metal bicarbonates ( Mex (HCO 3 ) y ).
  • the metal in the metal oxide, metal carbonate, and metal bicarbonate is selected from at least one of Zn, Mn, Ca, Cu, and Ni.
  • the neutralizing agent is selected from ZnO and/or NiO.
  • the particle size of the neutralizing agent is 1 to 100 ⁇ m.
  • the pH value is 3.0 ⁇ 4.0.
  • the shear rate of the shear strengthening is 2000 ⁇ 8000rpm, preferably 3000 ⁇ 5000rpm.
  • the present invention unexpectedly discovered that using the shear strengthening method can accelerate the catalytic oxidation reaction of chloride ions in the goethite iron removal system, increase the oxidation rate of iron ions, and obtain goethite removal methods with smaller crystal size and larger specific surface area.
  • Iron slag allows fluoride ions to be adsorbed on goethite slag, effectively removing fluoride ions in the solution.
  • the reaction temperature is 70 ⁇ 95°C, preferably 80 ⁇ 90°C.
  • the reaction time is 30 to 300 minutes, preferably 90 to 270 minutes.
  • the method of the present invention introduces a catalyst and uses the catalyst to catalyze the reaction between chlorine ions and strong oxidizing gas to form chlorine gas, thereby removing the chloride ions from the solution.
  • a metal mineral catalyst Only under the action of strong oxidants, the pH value is controlled to be 1.5 ⁇ 4.2.
  • iron removal slag mainly composed of goethite crystals can be efficiently generated, and due to the shear strengthening, It can make the iron removal slag particles smaller. Small particles have a larger specific surface area.
  • the large specific surface area can provide more fluoride ion adsorption sites, allowing more fluoride ions to be adsorbed in the shear-enhanced goethite removal method.
  • efficient adsorption and removal of fluorine can be achieved. Therefore, through the method of the present invention, fluorine, chlorine and iron can be simultaneously and efficiently removed.
  • ozone oxidation to remove chlorine has problems such as difficulty in oxidation reaction, poor oxidation effect, and incomplete chlorine removal.
  • the inventor unexpectedly discovered that by adding the metal mineral catalyst of the present invention, chlorine can be removed efficiently, because adding the metal mineral catalyst of the present invention can change the oxidation mechanism.
  • ozone The target is oxidized in the form of O 3 molecules or single O atoms in the solution.
  • ozone decomposes in the solution to form hydroxyl radicals ( ⁇ OH).
  • the hydroxyl radicals are The oxidation ability is stronger, that is, by introducing a metal mineral catalyst, ozone can form hydroxyl radicals as oxidants to oxidize chloride ions. Stronger oxidation performance means faster oxidation rate and better chlorine removal effect.
  • the present invention uses ozone as an oxidant. Compared with traditional air, oxygen and other oxidants, ozone has a stronger oxidizing ability, and the catalyst added in the present invention can promote ferrous ions. It accelerates oxidation and hydrolysis and precipitates in the goethite crystal form. Therefore, under the synergistic effect of the catalyst and ozone, the present invention can simultaneously remove chlorine and efficiently remove iron by the goethite method.
  • This invention is aimed at the solutions existing in hydrometallurgy that contain high concentrations of fluorine and chlorine, the iron removal efficiency of the goethite method is low, the gas oxidant consumption is large, the iron removal process parameters are demanding, the iron content in the iron removal slag is low, and the iron slag output is large
  • a method is provided to simultaneously remove fluorine and chlorine in the solution and simultaneously remove iron by goethite method, so that the chloride ions in the solution are catalytically oxidized and escape, the fluoride ions are adsorbed, and the ferrous ions accelerate oxidation, hydrolysis and precipitation.
  • the removal of three impurity elements is completed in one step, shortening the process and reducing energy consumption.
  • the addition of metallic mineral catalysts and shear strengthening methods further increases the catalytic oxidation rate of chloride ions and the oxidation and hydrolysis rate of ferrous ions, reduces the size of iron removal slag, and obtains iron removal slag with a larger specific surface area, reducing the It not only eliminates the main metal inclusions but also improves the adsorption efficiency of fluoride ions, thus reducing the amount of iron slag.
  • the shear strengthening method also reduces the consumption of oxidants and widens the goethite iron removal reaction range, reducing the difficulty of operation.
  • the invention is of great significance to promoting the technological progress and energy conservation and emission reduction of nonferrous metal hydrometallurgy in my country.
  • Figure 1 is a comparison of the fluorine and chlorine removal effects of different strong oxidants and oxygen volume ratios in Example 4.
  • Figure 2 shows the effect of the volume ratio of different strong oxidants to oxygen on the concentration of ferrous ions in the solution in Example 4.
  • Figure 3 is a comparison of the chlorine removal effects of different amounts of metallic mineral catalysts added in Example 5.
  • Figure 4 is a comparison of the effects of different shear rates on fluorine and chlorine removal in Example 6.
  • Figure 5 shows the effect of different shear rates on the concentration of ferrous ions in the solution in Example 6.
  • a hydrometallurgical zinc-containing solution in which the Zn 2+ concentration is 145g/L, the Fe 2+ concentration is 12g/L, the F - concentration is 0.2g/L, the Cl - concentration is 0.1g/L, and H 2 SO 4.
  • the concentration is 18g/L. Take 300mL of this solution and place it in a three-necked flask. Pour in pure ozone gas. The flux of mixed gas per unit volume of the solution is 100m 3 /h. Add 0.15g/L goethite with a particle size of 2 ⁇ m.
  • the raw material components are the same as those used in Example 1. Take 300 mL of this solution and place it in a three-necked flask. Pour in the mixed gas of ozone and oxygen. The flux of the mixed gas per unit volume of the solution is 50m 3 /h. The ratio of ozone and oxygen in the mixed gas is The volume ratio is 1:1, add 0.05g/L mixture catalyst of goethite and lepidocrocite with a particle size of 5 ⁇ m, set the shear speed to 2000rpm, control the solution temperature to 90°C, and add ZnO as a neutralizing agent to control the solution The reaction was carried out at pH 4.0. The reaction ended after 270 minutes. After liquid-solid separation, 7.31g of purified liquid and iron removal slag were obtained. Element content analysis showed that the F - removal rate was 97.04%, the Cl - removal rate was 82.14%, and the iron removal rate was 99.75%.
  • a hydrometallurgical nickel-containing solution in which the Ni 2+ concentration is 68g/L, the Fe 2+ concentration is 10g/L, the F - concentration is 0.1g/L, the Cl - concentration is 0.05g/L, and the initial pH of the solution is 3, take 300mL of this solution and place it in a three-necked flask. Pour in the mixed gas of ozone and oxygen. The flux of the mixed gas per unit volume of the solution is 50m 3 /h. The volume ratio of ozone to oxygen in the mixed gas is 1:1.
  • Example 2 Other conditions are the same as in Example 2, except that the volume ratios of ozone and oxygen in the mixed gas are controlled to be 1:0.1, 1:0.5, 1:2.5, and 1:10 respectively.
  • the final elemental content analysis results of these four groups of experiments are shown in Figures 1 and 2.
  • Example 3 Other conditions are the same as Example 1, except that the addition amounts of metallic mineral catalysts are 0, 0.1g/L, 0.2g/L, 0.3g/L, 0.4g/L, and 0.5g/L respectively.
  • the six sets of experiments are: The final elemental content analysis results are shown in Figure 3.
  • the raw material components are the same as those used in Example 1. Take 300 mL of this solution and place it in a three-necked flask. Add oxygen. The oxygen flux per unit volume of the solution is 100 m 3 /h. Add 0.15 g/L needle iron with a particle size of 2 ⁇ m. For the ore catalyst, set the shear speed to 5000 rpm, control the solution temperature to 80°C, add ZnO as a neutralizing agent, and control the pH of the solution to 3.0 for the reaction. The reaction ended after 270 minutes. After liquid-solid separation, 7.48g of purified liquid and iron removal slag were obtained. Element content analysis showed that the F - removal rate was 45.78%, the Cl - removal rate was 1.05%, and the iron removal rate was 75.85%.
  • the raw material components are the same as those used in Example 1. Take 300 mL of this solution and place it in a three-necked flask. Pure ozone gas is introduced into the solution. The mixed gas flux per unit volume of the solution is 100 m 3 /h. The shear speed is set to 5000 rpm. Control The solution temperature was 80°C, and ZnO was added as a neutralizing agent to control the pH of the solution to 3.0 for the reaction. The reaction ended after 270 minutes. After liquid-solid separation, 7.98g of purified liquid and iron removal slag were obtained. Element content analysis showed that the F - removal rate was 68.74%, the Cl - removal rate was 3.86%, and the iron removal rate was 90.15%.
  • the raw material components are the same as those used in Example 1. Take 300 mL of this solution and place it in a three-necked flask. Pour in pure ozone gas. The mixed gas flux per unit volume of the solution is 100 m 3 /h. Add 0.15 g/L to make the particle size 2 ⁇ m. For the goethite catalyst, control the solution temperature to 80°C, add ZnO as a neutralizing agent, and control the pH of the solution to 3.0 for the reaction. The reaction ended after 270 minutes. After liquid-solid separation, 7.59g of purified liquid and iron removal slag were obtained. Element content analysis showed that the F - removal rate was 75.89%, the Cl - removal rate was 59.45%, and the iron removal rate was 63.87%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种同步脱除溶液中氟、氯、铁的方法;在含Fe 2+、F -、Cl -的溶液中持续通入含强氧化性气体的气体,同时加入催化剂,并加入中和剂控制pH值为1.5~4.2,于剪切强化下反应,固液分离获得净化后液和除铁渣。本发明利用催化剂催化氯离子与强氧化性气体反应形成氯气,并在金属矿物型催化剂存在的情况下,无需引入晶种,只控制pH值于剪切强化下的作用下,即能够高效的生成针铁矿晶型为主的,且具有细小粒径的除铁渣,使更多的氟离子吸附进而实现高效吸附除氟,因此通过本发明的方法,可以同步高效的脱除氟、氯、铁。本发明能够实现一步从溶液中脱除氟、氯和铁,是一种高效、清洁、节能的净化工艺。

Description

一种同步脱除溶液中氟、氯、铁的方法 技术领域
本发明涉及一种同步脱除溶液中氟、氯、铁的方法,属于有色金属冶金领域。
背景技术
有色金属矿通常与铁的化合物伴生,湿法冶炼过程中铁易与有色金属一同进入溶液。同时,尽管杂质氟、氯等非金属元素在矿物中的含量并不高,但这些元素也会在浸出过程中与金属一起进入溶液。为了获得高质量的金属产品,同时保护生产设备,溶液中的氟离子、氯离子和铁离子浓度必须足够低。
溶液中净化除氟、氯的原理基本相同,目前常用的方法有:①离子交换法,即是利用氟、氯离子与离子交换树脂中的可交换离子发生置换反应,使氟、氯离子吸附于树脂上,从而达到除氟、氯的目的。这种方法具有设备简单,操作便捷,运营成本低的优势,但是耗水量大,脱氯效率低是限制该方法广泛应用的主要原因;②吸附法,在溶液中加入具有活性的、比表面积大的、化学稳定性强的固相物质使氟、氯离子吸附在这类固相介质上能够实现净化溶液中氟、氯的目的,但是由于吸附剂对溶液的性质要求高,原料适应性较差,且价格昂贵,因此目前吸附法的主要应用集中在深度净化氟、氯含量极低的废水和溶液;③化学沉淀法,在溶液中加入能够与氟离子或者氯离子发生化学反应生成沉淀物相的物质是这种方法的基本原理。例如,加入一价铜化合物、银盐或者含铋化合物可以生成含氯沉淀物质,加入钙盐可以生成含氟沉淀物质。化学沉淀法通常具有工业适应性较好的优点,但是化学试剂消耗量大、除杂剂难以实现回用导致的成本高限制了这种方法的应用。
溶液中净化除铁的基本原理是将铁离子沉淀分离,目前常用的主要方法有:①氢氧化铁沉淀法,即使溶液中的铁以Fe(OH) 3胶体析出,该方法主要存在固液分离困难的问题,特别是当溶液含铁较高时,Fe(OH) 3胶体易堵塞板框压滤机导致生产过程难以进行;②赤铁矿法沉铁,使溶液中的铁以赤铁矿形式入渣,1968年~1970年由日本同和矿业公司发明,1972年在日本饭岛炼锌厂投入生产,采用“复浸出—赤铁矿法”沉铁,国内目前云南云锡文山锌铟冶炼有限公司也正建设基于赤铁矿法沉铁技术路线的湿法炼锌生产线。该法需要昂贵钛材制造高压设备和附设SO 2液化工厂,投资费用高,且有一个单独还原铁的阶段;③针铁矿法沉铁,使溶液中的铁以针铁矿形态入渣。1965年~1969年由比利时老山公司(Vieille Montagne)研制,1971年在巴伦(Balen)厂投产。针铁矿法具有工艺设备简单、除铁成本较低、铁沉降物呈结晶态因而过滤性能良好等优点,但目前大量工业实践发现针铁矿法存在沉铁渣晶型混杂难控制、沉铁渣铁低含量低、难以高值回收利用等突出问题;④黄钾铁矾法,基于有铵或碱金属离子存在时,溶液中的铁生成黄钾铁矾进入渣中而除去,但也给溶液带入了如K +、Na +或NH 4 +等杂质离子。
技术问题
综合来看,以上溶液除氟、氯和除铁的方法各有优缺点,也部分解决了湿法冶金过程铁分离及溶液净化的问题,但是在实际应用上仍存在一些技术难题有待进一步地研究和解决。主要技术难题集中在以下方面,现阶段溶液的除氟、氯和除铁在不同的工序中进行,不仅操作复杂,还伴随着巨大的能量消耗。对于针铁矿法除铁,已开展的研究表明,针铁矿法除铁包括一系列复杂的物理化学反应过程,包括亚铁离子的氧化,铁离子的水解以及中和反应等。这些化学反应过程受温度、晶种、搅拌速度、催化程度、组分浓度以及溶液pH等因素影响。铁在溶液中的还原、氧化、结晶析出涉及一系列气、液、固三相耦合的化学、物理反应,反应机理非常复杂,尤其在亚铁离子氧化过程中,包括了氧化剂溶解、扩散、吸附、解离等多个步骤才能完成氧化反应,同时由于受多因素的共同影响,导致了亚铁氧化效率低下,进一步使得针铁矿除铁反应进行缓慢,不仅影响了生产效率,还造成了氧化剂消耗量的增加,浪费了资源。另外,缓慢的除铁速率使反应时间增加,提高了主金属夹杂进入除铁渣的可能性,使除铁渣渣量增加的同时,还增加了过滤的难度,并不利于实现除铁渣的资源化、全量化高值回收利用。
技术解决方案
针对现有技术的不同,本发明的目的在于提供一种同步脱除溶液中氟、氯、铁的方法,本发明所提供的方法可以缩短工艺流程,共同去除溶液中氟、氯和铁的同时加快反应速率、拓宽反应区间,降低针铁矿法除铁对溶液性质的敏感性,增加针铁矿法除铁的可操作性,获得铁含量更高的除铁渣,从而减少渣量,降低能耗,节约能源。
为了实现上述目的,本发明采用如下技术方案:
本发明一种同步脱除溶液中氟、氯、铁的方法,在含Fe 2+、F -、Cl -的溶液中持续通入含强氧化性气体的气体,同时加入催化剂,并加入中和剂控制pH值为1.5~4.2,于剪切强化下反应,固液分离获得净化后液和除铁渣,所述催化剂选自针铁矿、赤铁矿、纤铁矿、软锰矿、氧化镍、氧化亚铜中的至少一种。
本发明的方法,通过引入上述的金属矿物型催化剂,利用催化剂催化氯离子与强氧化性气体反应形成氯气,从而脱除溶液的氯离子,而更意外的是,在金属矿物型催化剂存在的情况下,无需引入晶种,只在强氧化剂的作用下,控制pH值为1.5~4.2,于剪切强化下的作用下,即能够高效的生成针铁矿晶型为主的除铁渣,而又由于剪切强化下可以使得除铁渣颗粒更小,小的颗粒具备更大的比表面积,大的比表面积能够提供更多的氟离子吸附位点,使更多的氟离子吸附于剪切强化针铁矿法除铁所得到的除铁渣上,进而实现高效吸附除氟,因此通过本发明的方法,可以同步高效的脱除氟、氯、铁。
优选的方案,所述含Fe 2+、F -、Cl -的溶液中,F -的浓度<2g/L,Cl -的浓度<2g/L,Fe 2+的浓度<20g/L,优选为F -的浓度<1g/L,Cl -的浓度<1g/L,Fe 2+的浓度<15g/L。
优选的方案,所述含强氧化性气体的气体为强氧化性气体与氧气的混合气体,强氧化性气体与氧气的体积比为1:0~100,优选为1:0~1,进一步优选为1:0~0.5。
优选的方案,所述含强氧化性气体的气体中的强氧化性气体选自臭氧和/或氯气,优选为臭氧。
进一步的优选,所述含强氧化性气体的气体为臭氧。
优选的方案,在含Fe 2+、F -、Cl -的溶液中持续通入含强氧化性气体的流量为1~200m 3/h,优选为50~150m 3/h,进一步的优选为50~100m 3/h。
本发明意外的发现金属矿物型催化剂对针铁矿法除铁体系中氯离子具有催化氧化的作用,让催化氧化反应进行的更加高效。
优选的方案,所述催化剂选自针铁矿、软锰矿中的至少一种。
优选的方案,所述催化剂的加入量为0.01~0.5g/L,优选为0.05~0.15g/L。
在本发明中,通过将催化剂的加入量控制在上述范围,最终反应效果最优,因为催化剂加多了不仅会使催化剂之间相互粘结,还会改变溶液状态,影响气-液两相的反应,不利于催化反应进行;其次,过量加入作为固体的催化剂,会使其在反应结束后一同进入到除铁渣中,改变除铁渣的成分,使除铁渣再处理变得困难;另外,过量的加入催化剂不仅不会加快反应速率,还增加了成本,并不节能环保。
优选的方案,所述催化剂的粒度为1~10μm,优选为2~5μm。
在本发明中,将催化剂的粒径控制在上述范围内,最终反应效果最优,除杂效果最佳,而若催化剂的粒径过大会导致溶液与催化剂颗粒的接触面积减小,使催化氧化反应速率降低;催化剂的粒径过小会导致催化剂颗粒浮在溶液表面不能有效的参与反应。
优选的方案,所述中和剂选自金属氧化物(MeO)、金属碳酸盐(Me x(CO 3) y)、金属碳酸氢盐(Me x(HCO 3) y)中的至少一种,其中金属氧化物、金属碳酸盐、金属碳酸氢盐中的金属选自Zn、Mn、Ca、Cu、Ni中的至少一种。
进一步的优选,所述中和剂选自ZnO和/或NiO。
优选的方案,所述中和剂的粒径为1~100μm。
优选的方案,所述pH值为3.0~4.0。
优选的方案,所述剪切强化的剪切速率为2000~8000rpm,优选为3000~5000rpm。
本发明意外的发现使用剪切强化法,可以加快针铁矿法除铁体系中氯离子的催化氧化反应,提高铁离子的氧化速率,获得晶体尺寸更小和比表面积更大的针铁矿除铁渣,使氟离子吸附于针铁矿渣上,有效去除溶液中的氟离子。
优选的方案,所述反应的温度为70~95℃,优选为80~90℃。
优选的方案,所述反应的时间为30~300min,优选为90~270min。
反应结束后,液固分离,滤渣洗涤、烘干,得到净化后的溶液和铁含量高的除铁渣。
有益效果
本发明的方法,通过引入催化剂,利用催化剂催化氯离子与强氧化性气体反应形成氯气,从而脱除溶液的氯离子,而更意外的是,在金属矿物型催化剂存在的情况下,无需引入晶种,只在强氧化剂的作用下,控制pH值为1.5~4.2,于剪切强化的作用下,即能够高效的生成针铁矿晶型为主的除铁渣,而又由于剪切强化下可以使得除铁渣颗粒更小,小的颗粒具备更大的比表面积,大的比表面积能够提供更多的氟离子吸附位点,使更多的氟离子吸附于剪切强化针铁矿法除铁所得到的除铁渣上,进而实现高效吸附除氟,因此通过本发明的方法,可以同步高效的脱除氟、氯、铁。
在现有技术中,使用臭氧氧化除氯存在氧化反应发生困难、氧化效果差、除氯除不彻底等问题。发明人意外的发现,通过加入本发明中的金属矿物型催化剂,却能够高效的除氯,因为加入本发明的金属矿物型催化剂,可以使氧化机理发生改变,通常在没有催化剂的情况下,臭氧在溶液中以O 3分子或者单个O原子的形式对目标进行氧化,当加入催化剂后臭氧在溶液中分解形成羟基自由基(·OH),相比于O 3和单个O原子,羟基自由基的氧化能力更强,即引入金属矿物型催化剂,臭氧可以形成以羟基自由基为氧化剂对氯离子进行氧化的。更强的氧化性能意味着氧化速率更快,除氯效果更好。
而对于除铁,现有技术中,为了使得稳定的诱导铁离子结晶,需要引用晶种,使新生成的针铁矿晶体在原晶种的基础上继续生长,一方面加快除铁反应速率,另一方面稳定控制除铁渣晶型,而本发明采用,以臭氧作用氧化剂,相比于传统空气、氧气等氧化剂,臭氧的氧化能力更强,且本发明加入的在催化剂,能促进亚铁离子加速氧化水解并以针铁矿晶型沉淀,因此本发明在催化剂与臭氧的协同作用下,可以同步的除去氯气,并且以针铁矿法高效除铁。
本发明针对湿法冶金中存在的溶液含氟、氯浓度高,针铁矿法除铁效率低,气体氧化剂消耗量大,除铁工艺参数要求苛刻,除铁渣中铁含量低,铁渣产量大的问题,提供了一种同步脱除溶液中氟和氯,同时针铁矿法除铁的方法,使溶液中氯离子被催化氧化逸出、氟离子被吸附、亚铁离子加速氧化水解沉淀,一步完成了三种杂质元素的去除,缩短了工序,降低了能耗。另外,金属矿物型催化剂和剪切强化手段的加入,进一步提高了氯离子催化氧化速率和亚铁离子氧化水解速度,减小了除铁渣尺寸,获得了比表面积更大的除铁渣,减少了主金属夹杂的同时提高了氟离子的吸附效率,使铁渣量减少。同时,剪切强化手段还减少了氧化剂的消耗和扩宽了针铁矿除铁反应区间,降低了操作难度。本发明对促进我国有色金属湿法冶金技术进步和节能减排具有重要意义。
附图说明
图1为实施例4中不同强氧化剂与氧气体积比对除氟、氯效果对比,
图2为实施例4中不同强氧化剂与氧气体积比对溶液中亚铁离子浓度的影响,
图3为实施例5中不同含量的金属矿物催化剂加入量对除氯效果对比,
图4为实施例6不同剪切速率对除氟、氯效果对比,
图5为实施例6不同剪切速率对溶液中亚铁离子浓度的影响。
本发明的实施方式
以下结合实施例旨在进一步说明本发明,而并非限制本发明。
实施例1
一种湿法炼锌含铁溶液,其中Zn 2+浓度为145g/L,Fe 2+浓度为12g/L,F -浓度为0.2g/L,Cl -浓度为0.1g/L,H 2SO 4浓度为18g/L,取此溶液300mL置于三口烧瓶中,通入纯臭氧气体,单位体积溶液通入混合气体通量为100m 3/h,加入0.15g/L粒度为2μm的针铁矿催化剂,设置剪切转速为5000rpm,控制溶液温度为80℃,加入ZnO作为中和剂控制溶液pH为3.0进行反应。90min后结束反应,液固分离后获得净化后液和除铁渣7.14g,通过元素含量分析表明,F -去除率为98.74%,Cl -去除率为86.23%,除铁率为99.68%。
实施例2
原料成分与实施例1所用原料成分相同,取此溶液300mL置于三口烧瓶中,通入臭氧和氧气混合气体,单位体积溶液通入混合气体通量为50m 3/h,混合气体中臭氧与氧气的体积比为1:1,加入0.05g/L粒度为5μm的针铁矿和纤铁矿的混合物催化剂,设置剪切转速为2000rpm,控制溶液温度为90℃,加入ZnO作为中和剂控制溶液pH为4.0进行反应。270min后结束反应,液固分离后获得净化后液和除铁渣7.31g,通过元素含量分析表明,F -去除率为97.04%,Cl -去除率为82.14%,除铁率为99.75%。
实施例3
一种湿法炼镍含铁溶液,其中Ni 2+浓度为68g/L,Fe 2+浓度为10g/L,F -浓度为0.1g/L,Cl -浓度为0.05g/L,溶液初始pH为3,取此溶液300mL置于三口烧瓶中,通入臭氧和氧气混合气体,单位体积溶液通入混合气体通量为50m 3/h,混合气体中臭氧与氧气的体积比为1:1,加入0.05g/L粒度为5μm的针铁矿和纤铁矿的混合物催化剂,设置剪切转速为3000rpm,控制溶液温度为90℃,加入NiO作为中和剂控制溶液pH为4.0进行反应。270min后结束反应,液固分离后获得净化后液和除铁渣6.54g,通过元素含量分析表明,F -去除率为94.45%,Cl -去除率为78.64%,除铁率为99.24%。
实施例4
其他条件与实施例2相同,仅是控制混合气体中臭氧与氧气的体积比为别为1:0.1、1:0.5、1:2.5、1:10。该四组实验,最终通过元素含量分析结果如图1、图2所示。
实施例5
其他条件与实施例1相同,仅是金属矿物催化剂的加入量分别为0、0.1g/L、0.2g/L、0.3g/L、0.4g/L、0.5g/L,该六组实验,最终通过元素含量分析结果如图3所示。
实施例6
其他条件与实施例1相同,仅是剪切速度的分别为0rpm、2000rpm、4000rpm、6000rpm、8000rpm,该六组实验,最终通过元素含量分析结果如图4、图5所示。
对比例1
原料成分与实施例1所用原料成分相同,取此溶液300mL置于三口烧瓶中,通入氧气,单位体积溶液通入氧气通量为100m 3/h,加入0.15g/L粒度为2μm的针铁矿催化剂,设置剪切转速为5000rpm,控制溶液温度为80℃,加入ZnO作为中和剂控制溶液pH为3.0进行反应。270min后结束反应,液固分离后获得净化后液和除铁渣7.48g,通过元素含量分析表明,F -去除率为45.78%,Cl -去除率为1.05%,除铁率为75.85%。
对比例2
原料成分与实施例1所用原料成分相同,取此溶液300mL置于三口烧瓶中,通入纯臭氧气体,单位体积溶液通入混合气体通量为100m 3/h,设置剪切转速为5000rpm,控制溶液温度为80℃,加入ZnO作为中和剂控制溶液pH为3.0进行反应。270min后结束反应,液固分离后获得净化后液和除铁渣7.98g,通过元素含量分析表明,F -去除率为68.74%,Cl -去除率为3.86%,除铁率为90.15%。
对比例3
原料成分与实施例1所用原料成分相同,取此溶液300mL置于三口烧瓶中,通入纯臭氧气体,单位体积溶液通入混合气体通量为100m 3/h,加入0.15g/L粒度为2μm的针铁矿催化剂,控制溶液温度为80℃,加入ZnO作为中和剂控制溶液pH为3.0进行反应。270min后结束反应,液固分离后获得净化后液和除铁渣7.59g,通过元素含量分析表明,F -去除率为75.89%,Cl -去除率为59.45%,除铁率为63.87%。

Claims (10)

  1. 一种同步脱除溶液中氟、氯、铁的方法,其特征在于:在含Fe 2+、F -、Cl -的溶液中持续通入含强氧化性气体的气体,同时加入催化剂,并加入中和剂控制pH值为1.5~4.2,于剪切强化下反应,固液分离获得净化后液和除铁渣,所述催化剂选自针铁矿、赤铁矿、纤铁矿、软锰矿、氧化镍、氧化亚铜中的至少一种。
  2. 根据权利要求1所述的一种同步脱除溶液中氟、氯、铁的方法,其特征在于:所述含Fe 2+、F -、Cl -的溶液中,F -的浓度<2g/L,Cl -的浓度<2g/L,Fe 2+的浓度<20g/L。
  3. 根据权利要求1所述的一种同步脱除溶液中氟、氯、铁的方法,其特征在于:所述含强氧化性气体的气体为强氧化性气体与氧气的混合气体,强氧化性气体与氧气的体积比为1:0~100;
    所述含强氧化性气体的气体中的强氧化性气体选自臭氧和/或氯气。
  4. 根据权利要求1或3所述的一种同步脱除溶液中氟、氯、铁的方法,其特征在于:在含Fe 2+、F -、Cl -的溶液中持续通入含强氧化性气体的气体的流量为1~200m 3/h。
  5. 根据权利要求1所述的一种同步脱除溶液中氟、氯、铁的方法,其特征在于:所述催化剂选自针铁矿、软锰矿中的至少一种。
  6. 根据权利要求1或5所述的一种同步脱除溶液中氟、氯、铁的方法,其特征在于:所述催化剂的加入量为0.01~0.5g/L;
    所述催化剂的粒度为1~10μm。
  7. 根据权利要求1所述的一种同步脱除溶液中氟、氯、铁的方法,其特征在于:所述中和剂选自金属氧化物、金属碳酸盐、金属碳酸氢盐中的至少一种,其中金属氧化物、金属碳酸盐、金属碳酸氢盐中的金属选自Zn、Mn、Ca、Cu、Ni中的至少一种。
  8. 根据权利要求1所述的一种同步脱除溶液中氟、氯、铁的方法,其特征在于:所述pH值为3.0~4.0。
  9. 根据权利要求1或3所述的一种同步脱除溶液中氟、氯、铁的方法,其特征在于:所述剪切强化的剪切速率为2000~8000rpm。
  10. 根据权利要求1或3所述的一种同步脱除溶液中氟、氯、铁的方法,其特征在于:所述反应的温度为70~95℃,所述反应的时间为30~300min。
PCT/CN2023/094114 2022-05-19 2023-05-15 一种同步脱除溶液中氟、氯、铁的方法 WO2023221907A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210545473.4A CN114892003B (zh) 2022-05-19 2022-05-19 一种同步脱除溶液中氟、氯、铁的方法
CN202210545473.4 2022-05-19

Publications (1)

Publication Number Publication Date
WO2023221907A1 true WO2023221907A1 (zh) 2023-11-23

Family

ID=82723652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/094114 WO2023221907A1 (zh) 2022-05-19 2023-05-15 一种同步脱除溶液中氟、氯、铁的方法

Country Status (2)

Country Link
CN (1) CN114892003B (zh)
WO (1) WO2023221907A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114892003B (zh) * 2022-05-19 2023-04-11 中南大学 一种同步脱除溶液中氟、氯、铁的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002028446A (ja) * 2000-07-13 2002-01-29 Nippon Steel Corp 有機塩素化合物分解方法および触媒
JP2008196039A (ja) * 2007-02-15 2008-08-28 Mitsui Mining & Smelting Co Ltd 湿式亜鉛製錬用工程液からフッ素を除去する方法
CN106381388A (zh) * 2016-09-12 2017-02-08 北京矿冶研究总院 一种从硫酸锌溶液中脱除氟氯的方法
CN110339805A (zh) * 2019-07-22 2019-10-18 中南大学 一种溶液除铁方法以及铁基吸附材料的制备方法
CN111961851A (zh) * 2020-08-10 2020-11-20 中南大学 一种含亚铁溶液针铁矿法除铁的方法
CN114058847A (zh) * 2021-11-05 2022-02-18 金川集团股份有限公司 一种镍精矿氯气浸出液的除铁方法
CN114892003A (zh) * 2022-05-19 2022-08-12 中南大学 一种同步脱除溶液中氟、氯、铁的方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB944905A (en) * 1959-03-10 1963-12-18 Mini Of Mines For The State Of Separation of iron from ores and minerals
ES2184630B1 (es) * 2001-08-03 2004-01-16 Soc Es Carburos Metalicos Sa Procedimiento de lixiviacion selectiva de metales.
JP2005104809A (ja) * 2003-10-02 2005-04-21 Sumitomo Metal Mining Co Ltd 塩化ニッケル水溶液の精製方法
CN102010994A (zh) * 2010-12-29 2011-04-13 株洲冶炼集团股份有限公司 一种湿法炼锌过程中高酸高铁溶液针铁矿沉铁方法
JP6263171B2 (ja) * 2012-06-22 2018-01-17 ビーエイチピー ビリトン エスエスエム ディベロップメント プロプライエタリー リミテッド 大気圧下での赤鉄鉱としての第二鉄の除去
CN108018428A (zh) * 2017-12-28 2018-05-11 长春工程学院 一种钕铁硼油泥和粉状废料综合处理除铁和有机物等杂质的设备和方法
CN110894573B (zh) * 2019-07-22 2022-02-18 中冶长天国际工程有限责任公司 一种利用链篦机-回转窑系统氧化球团生产工艺及系统
CN110894574B (zh) * 2019-07-22 2022-06-14 中冶长天国际工程有限责任公司 一种链篦机、链篦机回转窑氧化球团脱硝系统及方法
CN211367682U (zh) * 2019-07-22 2020-08-28 中冶长天国际工程有限责任公司 一种链篦机-回转窑系统
CN113913626A (zh) * 2021-09-30 2022-01-11 昆明理工大学 一种超声协同臭氧氧化去除湿法炼锌溶液中杂质铁的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002028446A (ja) * 2000-07-13 2002-01-29 Nippon Steel Corp 有機塩素化合物分解方法および触媒
JP2008196039A (ja) * 2007-02-15 2008-08-28 Mitsui Mining & Smelting Co Ltd 湿式亜鉛製錬用工程液からフッ素を除去する方法
CN106381388A (zh) * 2016-09-12 2017-02-08 北京矿冶研究总院 一种从硫酸锌溶液中脱除氟氯的方法
CN110339805A (zh) * 2019-07-22 2019-10-18 中南大学 一种溶液除铁方法以及铁基吸附材料的制备方法
CN111961851A (zh) * 2020-08-10 2020-11-20 中南大学 一种含亚铁溶液针铁矿法除铁的方法
CN114058847A (zh) * 2021-11-05 2022-02-18 金川集团股份有限公司 一种镍精矿氯气浸出液的除铁方法
CN114892003A (zh) * 2022-05-19 2022-08-12 中南大学 一种同步脱除溶液中氟、氯、铁的方法

Also Published As

Publication number Publication date
CN114892003A (zh) 2022-08-12
CN114892003B (zh) 2023-04-11

Similar Documents

Publication Publication Date Title
CN107287422B (zh) 湿法炼锌中的连续除铁工艺
CN109536720A (zh) 一种硫酸铜溶液中氯的脱除方法
CN105648214B (zh) 一种控电位硫化分离溶液中有价金属的方法
WO2023221907A1 (zh) 一种同步脱除溶液中氟、氯、铁的方法
CN113913626A (zh) 一种超声协同臭氧氧化去除湿法炼锌溶液中杂质铁的方法
CN110775998A (zh) 一种工业化回收锌生产纳米氧化锌的系统及方法
CN1108885C (zh) 一种电镀污泥的资源化及无害化处理工艺
CN102230080B (zh) 湿法炼锌中对含锌原料脱氯的方法
CN113862464B (zh) 一种黑铜泥中铜及稀散金属回收的方法
CN113512652B (zh) 一种从煤系固体废弃物中提取金属镓的方法
CN1674331A (zh) 利用废干电池制备锰锌铁氧体颗粒料和混合碳酸盐的方法
CN110339805B (zh) 一种溶液除铁方法以及铁基吸附材料的制备方法
CN112358090A (zh) 一种黄金冶炼含氰及重金属废水的无害化处理方法
CN115652114B (zh) 一种含铊溶液中铊的资源化回收工艺
CN107419301A (zh) 一种络合沉淀剂的制备方法与一种铜电解液的净化方法
CN1019317B (zh) 镉提取过程中的除铁方法
CN114703379B (zh) 湿法炼锌中性浸出液深度净化的方法
CN116314991A (zh) 一种基于酸性富钒液的钒电解液及其制备方法
Zhao et al. Removal of chlorine from zinc sulfate solution: a review
CN113151677B (zh) 一种硫酸盐无酸浸取钴中间品的方法
CN112777642B (zh) 利用回转窑渣还原浸出软锰矿制备高纯硫酸锰的方法
CN105983707A (zh) 一种从含铼高砷铜硫化物中制备高纯铼粉的方法
CN108585057A (zh) 一种基于超细氢氧化铁胶体分离砷碱渣中砷与碱的方法
CN110357164B (zh) 氧化锰矿浆循环高效烟气脱硫耦合硫酸锰绿色纯化的方法
CN113416855A (zh) 一种从硫化镍精矿浸出液制备硫酸镍的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23806859

Country of ref document: EP

Kind code of ref document: A1