WO2023189275A1 - 化合物超電導前駆体素線、化合物超電導前駆体撚線および化合物超電導撚線 - Google Patents

化合物超電導前駆体素線、化合物超電導前駆体撚線および化合物超電導撚線 Download PDF

Info

Publication number
WO2023189275A1
WO2023189275A1 PCT/JP2023/008522 JP2023008522W WO2023189275A1 WO 2023189275 A1 WO2023189275 A1 WO 2023189275A1 JP 2023008522 W JP2023008522 W JP 2023008522W WO 2023189275 A1 WO2023189275 A1 WO 2023189275A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound superconducting
superconducting precursor
precursor
wire
compound
Prior art date
Application number
PCT/JP2023/008522
Other languages
English (en)
French (fr)
Inventor
昌弘 杉本
清慈 廣瀬
弘之 福島
諒 谷口
智 淡路
英俊 小黒
Original Assignee
古河電気工業株式会社
国立大学法人東北大学
学校法人東海大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社, 国立大学法人東北大学, 学校法人東海大学 filed Critical 古河電気工業株式会社
Publication of WO2023189275A1 publication Critical patent/WO2023189275A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • H01B12/10Multi-filaments embedded in normal conductors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Definitions

  • the present disclosure relates to a compound superconducting precursor wire, a compound superconducting precursor stranded wire, and a compound superconducting stranded wire.
  • the strands are affected by electromagnetic stress applied during magnet operation.
  • the twisting pitch may be shortened and the void ratio of the twisted wire (the proportion of voids in the twisted wire) may be reduced.
  • the twisting pitch is shortened, and the void ratio of the twisted wires is reduced in the subsequent compression step. If it is made smaller, large processing stress will be applied locally to the compound superconducting precursor wire more frequently, which will cause abnormal deformation or disconnection of the compound superconducting precursor wire, resulting in a significant decrease in manufacturing yield. There was a problem.
  • the Nb 3 in the Nb 3 Sn wires is generated due to the electromagnetic stress generated during excitation.
  • a large strain is applied to the Sn filament, which not only deteriorates the superconducting properties but also, in extreme cases, causes cracks in the Nb 3 Sn filament, making it impossible to maintain the superconducting state.
  • 3Sn superconducting magnets exhibit excellent superconducting properties even under large electromagnetic stress that occurs during excitation.
  • the springback of the wire itself is large, so it is necessary to shorten the twisting pitch or reduce the void ratio of the twisted wire. In some cases, it is difficult to control the dimensions required for a given stranded wire structure, resulting in problems in stranded wire manufacturability. To date, many technological developments have been carried out to address the above problems.
  • Patent Document 1 describes a Nb 3 Sn superconducting wire composited with a CuNb reinforcing material in which a large number of Nb filaments are embedded in a Cu base material.
  • Patent Document 2 specifies the cross-sectional structure of the compound superconducting strand and describes a CuNb-reinforced type compound superconducting stranded wire that prioritizes high strength.
  • Patent Documents 1 and 2 focus on improving superconducting performance under stress, and do not consider improving wire stranding processability, so they cannot be directly applied to the production of large-capacity conductors. .
  • Patent Document 3 by twisting Nb 3 Sn superconducting precursor wires by PIT method with a specific Sn diffusion barrier structure, stabilization by Cu with high conductivity is ensured, and particularly good results are obtained. Techniques for obtaining current stability are disclosed.
  • Patent Document 3 does not intend to improve the manufacturability of the stranded wire or strengthen the stranded wire itself, and therefore cannot be applied to compound superconducting stranded wire conductors to which large electromagnetic stress is applied during operation.
  • Patent Document 4 discloses a method of improving the workability of stranded wires by tempering alloy wires by annealing.
  • Patent Document 5 discloses a method of improving the shape by annealing a stranded wire with defined dimensions and then molding the wire.
  • Patent Document 6 discloses a method of improving the shape of a stranded wire by molding an annealed wire or a primary stranded wire and then reannealing the wire.
  • Patent Documents 4 to 6 are all intended to improve wire stranding processability, they cannot be directly applied to compound superconducting stranded wire conductors to which large electromagnetic stress is applied during operation.
  • Non-Patent Documents 1 and 2 show the performance of Nb rod method Cu-Nb reinforced Nb 3 Sn wires, and describe technology to improve the productivity of compound superconducting precursor stranded wires used for large capacity conductors. It is not what is shown.
  • Non-Patent Documents 3 and 4 in order to improve the current conduction characteristics of the conductor for ITER-CS (conductor for the center solenoid for the International Fusion Experimental Reactor), the twist pitch is shortened and the void ratio of the twisted wire is reduced. introduced a technology for suppressing performance degradation caused by strong electromagnetic stress during operation, but did not present a technology for improving the productivity of stranded wires.
  • Non-Patent Document 5 is a report on the development results of multi-stranded wire that is co-twisted with many copper wires, has a long twisting pitch, reduces the void ratio of the stranded wire, and has a rectangular shape. It does not represent a technology for improving the manufacturability of products.
  • Patent Documents 1 to 6 and Non-Patent Documents 1 to 5 describe are the results of academic research for optimizing the design of compound superconducting wires and stranded conductors.
  • Patent No. 6155253 International Publication No. 2020/066908 Patent No. 6425673 Patent No. 6201815 Patent No. 3148212 Patent No. 2930994
  • a large superconducting conductor used for manufacturing a large superconducting magnet using a compound-based superconducting wire such as Nb 3 Sn has a stranded wire structure.
  • the stranded wire structure includes a round stranded structure and a rectangular structure, but in order to improve the current density per stranded wire cross section and prevent the twist from collapsing, a shaping process (compression process) is applied.
  • the stranded wire is not produced by single twist (stranded wire in which the wires are twisted only once), but is produced by twisting the wires multiple times (high-order twisted structure). In some cases,
  • the twisting pitch is shortened in order to increase the current density and suppress the movement of the superconducting wires due to electromagnetic stress during energization.
  • a configuration that reduces the void ratio of twisted wires is adopted. Therefore, in the stranded wire manufacturing process using the strands (Nb 3 Sn precursor strands) before the Nb 3 Sn generation heat treatment, the strands may break during the stranding process to shorten the twist pitch, or voids in the stranded wires may occur. In the compression process to reduce the ratio, abnormal deformation of the structural material inside the wire occurs, and in extreme cases, wire breakage occurs.
  • Nb 3 Sn superconducting magnets in which Nb 3 Sn precursor stranded wire conductors in such a defective state are used to wind coils and then subjected to Nb 3 Sn generation heat treatment (by the wind-and-react method), 3
  • Nb 3 Sn superconducting strands are formed due to the electromagnetic stress generated during magnet operation.
  • An object of the present disclosure is to provide a compound superconducting precursor strand, a compound superconducting precursor stranded wire, and a compound superconducting stranded wire that are superior in stranded wire manufacturability and superconducting properties than conventional ones.
  • a compound superconducting precursor section composed of a plurality of compound superconducting precursor filaments, and a first matrix precursor in which the plurality of compound superconducting precursor filaments are embedded and containing a first stabilizing material;
  • the reinforcing material portion is made of an alloy or a composite material composed of one metal or two or more metals selected from the group of Nb, Ta, V, W, Mo, Fe, Ti, and Hf. , the compound superconducting precursor wire according to [1] above.
  • the reinforcing filament is made of one metal or an alloy composed of two or more metals selected from the group of Nb, Ta, V, W, Mo, Fe, Ti, and Hf, and the third The compound superconducting precursor wire according to [3] above, wherein the stabilizing material is copper or a copper alloy.
  • the compound superconducting precursor filament is a Nb 3 Sn precursor, and an Sn diffusion prevention part made of Nb or Ta or an alloy or composite thereof is provided between the compound superconducting precursor part and the reinforcing material part.
  • the reinforcing material portion has a space factor of 5.0% or more and 40.0% or less and smaller than the space factor of the compound superconducting precursor portion, and The compound superconducting precursor strand according to any one of [1] to [7] above, wherein the stabilizing material portion disposed on the outer peripheral side of the reinforcing material portion has a space factor of 15.0% or more. .
  • a constituent element is a secondary stranded wire formed by twisting together a plurality of primary stranded wires formed by twisting together a plurality of compound superconducting precursor wires according to any one of [1] to [8] above.
  • Compound superconducting precursor stranded wire having as [10] Twisting one or more compound superconducting precursor wires according to any one of [1] to [8] above and one or more copper wires or copper alloy wires.
  • a compound superconducting precursor stranded wire having as a constituent element a secondary stranded wire formed by twisting together a plurality of primary stranded wires.
  • HV Vickers hardness
  • the maximum oblateness of the compound superconducting precursor portion is greater than 0 and less than or equal to 0.2.
  • FIG. 1 is a cross-sectional view showing an example of a compound superconducting precursor wire according to an embodiment.
  • FIG. 2 is a cross-sectional view showing another example of the compound superconducting precursor wire of the embodiment.
  • FIG. 3 is a cross-sectional view showing an example of the compound superconducting precursor twisted wire of the embodiment.
  • FIG. 4 is a cross-sectional view showing an example of a compound superconducting precursor strand constituting the compound superconducting precursor strand of the embodiment.
  • FIG. 5 is a cross-sectional view showing an example of a compound superconducting strand constituting the compound superconducting stranded wire of the embodiment.
  • FIG. 1 is a cross-sectional view showing an example of a compound superconducting precursor wire according to an embodiment.
  • FIG. 2 is a cross-sectional view showing another example of the compound superconducting precursor wire of the embodiment.
  • FIG. 3 is a cross-sectional view showing an example of the compound super
  • FIG. 6 is a cross-sectional view showing another example of the compound superconducting wire constituting the compound superconducting twisted wire of the embodiment.
  • FIG. 7 is a cross-sectional view showing another example of the compound superconducting wire constituting the compound superconducting twisted wire of the embodiment.
  • compound superconducting precursor stranded wires such as Nb 3 Sn precursor stranded wires made by twisting a plurality of compound superconducting strands, have excellent manufacturability and can be used as superconducting magnets as compound superconducting strands.
  • the properties of the stabilizing material that makes up the compound superconducting wire and the properties of the compound superconducting precursor wire each satisfy a predetermined relationship.
  • the compound superconducting precursor wire of the embodiment is a compound composed of a plurality of compound superconducting precursor filaments and a first matrix precursor in which the plurality of compound superconducting precursor filaments are embedded and containing a first stabilizing material.
  • a stabilizing material consisting of a superconducting precursor portion, a reinforcing material portion disposed on the outer circumferential side of the compound superconducting precursor portion, and a second stabilizing material disposed on at least one of the inner circumferential side and the outer circumferential side of the reinforcing material portion. part, the Vickers hardness (HV) of the stabilizing material part is 90 or less, and the 0.2% tensile yield strength of the compound superconducting precursor wire is 200 MPa or more.
  • FIG. 1 is a cross-sectional view showing an example of a compound superconducting precursor wire according to an embodiment.
  • the compound superconducting precursor wire 1 includes a compound superconducting precursor section 10, a reinforcing material section 30, and a stabilizing material section 40.
  • a compound superconducting precursor section 10 constituting the compound superconducting precursor wire 1 is composed of a plurality of compound superconducting precursor filaments 11 and a first matrix precursor 12.
  • the compound superconducting precursor portion 10 is linear and extends along the axial direction of the compound superconducting precursor strand 1 (wire axial direction).
  • the first matrix precursor 12 embeds a plurality of compound superconducting precursor filaments 11 and includes a first stabilizing material.
  • the compound superconducting precursor filament 11 becomes a compound superconducting filament 21 containing a compound superconducting phase as shown in FIGS. Since it is preferable that the compound superconducting phase constituting the compound superconducting strand 3 described below is a metal compound superconducting phase formed of Nb 3 Sn, the compound superconducting precursor filament 11 is preferably a Nb 3 Sn precursor. , Nb are more preferable.
  • the material constituting the compound superconducting precursor filament 11 is appropriately selected depending on the type of compound superconducting phase.
  • the first matrix precursor 12 containing the first stabilizing material becomes the first matrix 22 containing the first stabilizing material shown in FIGS. 5 to 7 by subjecting it to compound superconductivity generation heat treatment.
  • the first matrix 22 can have the effects of suppressing damage to the compound superconducting filament 21 in the compound superconducting strand 3, and stabilizing it magnetically and thermally. These effects are further improved when the first stabilizing material constituting the first matrix precursor 12 is copper or a copper alloy.
  • the compound superconducting phase is a metal compound superconducting phase formed of Nb 3 Sn
  • the first stabilizing material is preferably formed of a Cu--Sn alloy. The material constituting the first stabilizing material is appropriately selected depending on the type of compound superconducting phase constituting the compound superconducting strand 3.
  • the first stabilizing material of the first matrix precursor 12 is a Cu-Sn alloy
  • the first stabilizing material can contain Sn up to 15.8% by mass (solid solubility limit).
  • the first stabilizing material of the first matrix precursor 12 may contain a small amount of other elements other than Cu and Sn, for example, 0.20% by mass or more of Ti or the like and 0.35% by mass. % or less.
  • Figure 1 and Figures 2, 5 and 6, which will be described later, show an example of generating a Nb 3 Sn compound superconducting phase using the bronze method . Other methods may also be applied.
  • the compound superconducting phase is Nb 3 Sn is shown here, the compound superconducting phase can also be a compound superconductor that has superconducting characteristics with greater strain sensitivity than alloy-based superconductors such as NbTi. good.
  • the reinforcing material part 30 constituting the compound superconducting precursor wire 1 is cylindrical and arranged on the outer peripheral side of the compound superconducting precursor part 10.
  • the reinforcing material part 30 is preferably made of an alloy or a composite material made of one metal or two or more metals selected from the group of Nb, Ta, V, W, Mo, Fe, Ti, and Hf. . Note that the reinforcing material portion 30 may contain unavoidable impurities.
  • the reinforcing material portion 30 can have the effect of having a high strength function that is resistant to tensile strain and bending strain.
  • the reinforcing material portion 30a may be composed of a plurality of reinforcing filaments 31 and a third matrix 32.
  • the third matrix 32 embeds a plurality of reinforcing filaments 31 and includes a third stabilizing material.
  • the reinforcing material part 30a including the plurality of reinforcing filaments 31 and the third matrix 32 can have an effect of appropriately providing not only a high-strength function but also a stabilizing function.
  • the reinforcing filament 31 constituting the reinforcing material portion 30a is made of one metal selected from the group of Nb, Ta, V, W, Mo, Fe, Ti, and Hf, or an alloy made of two or more metals. It is preferable. Note that the reinforced filament 31 may contain unavoidable impurities.
  • the unavoidable impurities include, for example, 150 ppm or less of O, 15 ppm or less of H, 100 ppm or less of C, 100 ppm or less of N, 50 ppm or less of Fe, 50 ppm or less of Ni, and 50 ppm or less of Ti. 20 ppm or less, Si may be 50 ppm or less, W may be 300 ppm or less, and Ta may be 1000 ppm or less. Further, when the reinforced filament 31 mainly contains Ta, O, H, C, N, Fe, Ni, Ti, Si, W, Nb, and Mo may be included as inevitable impurities.
  • the reinforcing filament 31 is made of one or two metals selected from the group of Nb, Ta, V, W, Mo, and Hf, which do not exhibit ferromagnetism, considering the influence on the compound superconducting wire 3. It is preferably made of an alloy made of the above metals, and furthermore, from the viewpoint of workability, made of an alloy made of one metal or two or more metals selected from the group of Nb, Ta, and V. It is preferable.
  • the alloy composed of two or more metals selected from the above element group constituting the reinforced filament 31 it is preferable to use a Nb-Ta alloy because it has excellent composite workability with copper or copper alloy. is preferred.
  • a Cu-Nb alloy or a Cu-V alloy is preferable because it has excellent composite workability with copper or a copper alloy. .
  • the above-mentioned "hard to form a solid solution in Cu” means that the ratio of the metal or alloy constituting the reinforcing filament 31 to form a solid solution in Cu is less than 1 at% during compound superconductor formation heat treatment (e.g., 600°C to 750°C). say.
  • the reinforcing material part 30a As described above, in the reinforcing material portion 30a, a plurality of reinforcing filaments 31 made of a metal material that is difficult to dissolve in Cu are embedded in the third matrix 32. Therefore, it is possible to suppress the generation of intermetallic compounds in the reinforcing filaments 31 in the reinforcing material part 30a, and compared to the reinforcing material part 30, the reinforcing material part 30a functions as a high-strength component that is resistant to tensile strain and bending strain. Can function.
  • the third stabilizing material constituting the third matrix 32 of the reinforcing material portion 30a is preferably copper or a copper alloy. Note that the third stabilizing material may contain inevitable impurities. Unavoidable impurities in the third stabilizing material include O, Fe, S, and Bi.
  • the third matrix 32 including the third stabilizing material can have the effect of providing the reinforcing material section 30 with a stabilizing function in addition to the reinforcing function.
  • the stabilizing material part 40 constituting the compound superconducting precursor wire 1 is cylindrical, and is disposed on at least one of the inner circumferential side and the outer circumferential side of the reinforcing material part 30.
  • the stabilizing material portion 40 is made of a second stabilizing material. 1 and 2 show an example in which the stabilizing material section 40 is arranged on both the inner and outer circumferential sides of the reinforcing material section 30.
  • the stabilizing material portion 40 can have the effect of suppressing abnormal deformation of the reinforcing material portion 30 during processing and having a stabilizing function.
  • the second stabilizing material constituting the stabilizing material section 40 is preferably copper or a copper alloy, and more preferably oxygen-free copper. Note that the second stabilizing material may contain inevitable impurities. Unavoidable impurities in the second stabilizing material include O, Fe, S, and Bi.
  • the stabilizing material here refers to a material that provides electrical and/or electrical support to the superconductor to ensure thermal contact with the refrigerant and/or to function as an electrical shunt circuit. or a normally conducting metallic material, typically a metal, in thermal contact that is complexed to a superconductor to increase the stability of the superconductor.
  • normal conducting metals such as copper and aluminum have low resistivity and good thermal conductivity at extremely low temperatures, so when used as a matrix for superconducting wires, there is a transition from the superconducting state to the normal conducting state. Also, current bypasses these normally conducting metals. As a result, heat generation is suppressed in the compound superconducting strand 3, which will be described later, and the generated heat is quickly propagated and diffused to be cooled. Furthermore, normal conducting metals such as copper and aluminum, which damp external magnetic flux fluctuations and do not directly transmit them to the superconductor, are widely used as stabilizing materials for superconducting wires.
  • the Vickers hardness (HV) of the stabilizing material portion 40 is 90 or less, and the 0.2% tensile yield strength of the compound superconducting precursor strand 1 is 200 MPa or more.
  • the Vickers hardness of the stabilizing material portion 40 is the Vickers hardness of the stabilizing material portion 40 in a cross section perpendicular to the axial direction of the compound superconducting precursor wire 1.
  • the 0.2% tensile strength of the compound superconducting precursor wire 1 is the 0.2% tensile strength of the compound superconducting precursor wire 1 in the axial direction.
  • the Vickers hardness (HV) of the stabilizing material portion 40 is 90 or less, and the 0.2% tensile strength of the entire compound superconducting precursor wire 1 is 200 MPa or more, the compound superconducting precursor that has conventionally been produced Breaking of the strand 1 and abnormal deformation of the compound superconducting precursor portion 10 inside the compound superconducting precursor strand 1 can be suppressed, and stranded wire manufacturability can be improved. Furthermore, a compound superconducting magnet manufactured using a compound superconducting precursor stranded wire formed by twisting a plurality of compound superconducting precursor wires 1 is robust even under the strong electromagnetic stress that occurs when it is excited, and has excellent properties. Superconducting properties can be maintained.
  • the compound superconducting precursor wire 1 and the compound superconducting precursor stranded wire 2 have excellent manufacturability, and the compound superconducting stranded wire is robust and has excellent superconducting properties, so it is possible to create a compound superconducting magnet with a rational design. It can be provided to
  • the Vickers hardness of the stabilizing material portion 40 is 90 or less, preferably 80 or less, and more preferably 70 or less.
  • the 0.2% tensile strength of the compound superconducting precursor wire 1 is 200 MPa or more, preferably 230 MPa or more, and more preferably 250 MPa or more.
  • the Vickers hardness of the stabilizer portion 40 is desirably 50 or more in order to prevent unacceptable abnormal deformation or harmful damage during the wire stranding or compression process.
  • the 0.2% tensile yield strength of the compound superconducting precursor wire 1 is desirably 400 MPa or less in order to maintain good wire stranding workability.
  • the compound superconducting precursor strand 1 has a structure between the compound superconducting precursor section 10 and the reinforcing material section 30. It is preferable to further include a Sn diffusion prevention part 50 made of Nb, Ta, or an alloy or composite material thereof.
  • Sn in the Cu-Sn alloy constituting the first matrix precursor 12 for forming Nb 3 Sn filaments in the compound superconductor section 20 is absorbed by the reinforcing material section 30 during the compound superconductor generation heat treatment. and diffusion into the stabilizing material section 40, suppressing a decrease in the residual resistance ratio of the second stabilizing material constituting the stabilizing material section 40 and the third stabilizing material constituting the reinforcing material section 30. , has a function of retaining the amount of Sn necessary for reacting with the Nb filament of the compound superconducting precursor filament 11 to generate Nb 3 Sn in the Cu--Sn alloy.
  • the space factor of the reinforcing material portion 30 is 5.0% or more and 40.0% or less and smaller than the space factor of the compound superconducting precursor portion 10, and the reinforcing material It is preferable that the space factor of the stabilizing material part 40 disposed on the outer peripheral side of the part 30 is 15.0% or more.
  • the critical current of the compound superconducting precursor strand 1 can be further improved.
  • the space factor of each component is the ratio of the area of each component to the cross-sectional area perpendicular to the axial direction of the compound superconducting precursor wire 1.
  • the space factor of the reinforcing material portion 30 is the ratio of the area of the reinforcing material portion 30 to the cross-sectional area of the compound superconducting precursor wire 1.
  • the space factor of the compound superconducting precursor section 10 is the ratio of the area of the compound superconducting precursor section 10 to the cross-sectional area of the compound superconducting precursor strand 1.
  • the space factor of the stabilizing material portion 40 is the ratio of the area of the stabilizing material portion 40 to the cross-sectional area of the compound superconducting precursor wire 1.
  • the compound superconducting precursor stranded wire of the embodiment has as a component a secondary stranded wire formed by twisting together a plurality of primary stranded wires formed by twisting together a plurality of compound superconducting precursor wires of the above embodiment. Further, the compound superconducting precursor stranded wire of another embodiment is obtained by twisting one or more compound superconducting precursor wires of the above embodiment and one or more copper wires or copper alloy wires. It has a secondary stranded wire formed by twisting together a plurality of primary stranded wires as a component.
  • each secondary strand is The wire includes one or more copper strands or copper alloy strands.
  • FIG. 3 is a cross-sectional view showing an example of a compound superconducting precursor stranded wire according to another embodiment.
  • a secondary stranded wire 2b formed by twisting three primary stranded wires 2a formed by co-twisting two compound superconducting precursor strands 1 and one copper strand 60 is used as a constituent element
  • a compound superconducting precursor stranded wire 2 is shown, which is formed by rectangular molding a tertiary stranded wire 2c formed by twisting together four secondary stranded wires 2b.
  • the compound superconducting precursor wire 1 is tempered by heat treatment at 200° C. or more and 500° C. or less for several seconds or more and several hours before being subjected to molding. do.
  • This refining may be performed as long as it is in a state before being subjected to the forming process, and may be the compound superconducting precursor strands 1 before being twisted, the primary strands 2a, the secondary strands 2b, A tertiary twisted wire 2c may also be used.
  • This tempering controls the Vickers hardness of the stabilizing material portion 40 and the 0.2% tensile strength of the compound superconducting precursor wire.
  • refining a stranded wire such as a primary stranded wire, it is preferable to perform refining to control the strength of the copper wire or copper alloy wire that is twisted to the compound superconducting precursor wire.
  • the Vickers hardness (HV) of the copper wire or copper alloy wire is preferably 90 or less, more preferably 80 or less, and further preferably 70 or less. preferable.
  • the Vickers hardness of the copper strand or copper alloy strand is the Vickers hardness of the copper strand or copper alloy strand in a cross section perpendicular to the axial direction of the copper strand or copper alloy strand.
  • the compound superconducting precursor stranded wire 2 in which the Vickers hardness (HV) of the copper wire or copper alloy wire is within the above range is suitable for use in large superconducting magnets for generating strong magnetic fields installed in nuclear fusion reactors, etc. It will be done.
  • FIG. 4 is a cross-sectional view showing an example of a compound superconducting precursor strand that constitutes the compound superconducting precursor strand of the embodiment.
  • the maximum oblateness of the compound superconducting precursor portion 10 is preferably greater than 0 and less than or equal to 0.2.
  • the flatness of the compound superconducting precursor portion 10 that is most deformed is more than 0 and 0. It is preferably 2 or less.
  • the flatness of the compound superconducting precursor portion 10 constituting one compound superconducting precursor wire 1 is greater than 0. It is preferably 0.2 or less.
  • the flatness of the compound superconducting precursor section 10 is 0, the cross-sectional shape of the compound superconducting precursor section 10 is a perfect circle.
  • the flatness of the compound superconducting precursor portion 10 is defined as (1-(b/a)).
  • a is the major axis length of the compound superconducting precursor portion 10 in the cross section of the compound superconducting precursor wire 1 (cross section perpendicular to the wire axis direction).
  • b is the short axis length of the compound superconducting precursor portion 10 in the cross section of the compound superconducting precursor strand 1.
  • the length of the major axis of the compound superconducting precursor section 10 corresponds to the maximum external dimension of the compound superconducting precursor section 10
  • the length of the minor axis of the compound superconducting precursor section 10 corresponds to the minimum external dimension of the compound superconducting precursor section 10. corresponds to
  • the compound superconducting stranded wire obtained by heat-treating the compound superconducting precursor stranded wire to generate compound superconductivity can maintain a high critical current.
  • the compound superconducting stranded wire of the embodiment is obtained by heating the compound superconducting precursor stranded wire of the above embodiment.
  • This heat treatment is a compound superconductivity generation heat treatment for generating a compound superconducting phase.
  • FIG. 5 is a cross-sectional view showing an example of a compound superconducting strand constituting the compound superconducting stranded wire of the embodiment.
  • FIG. FIG. 6 is a cross-sectional view of a compound superconducting wire obtained by heating the compound superconducting precursor wire having the configuration shown in FIG.
  • FIG. 7 is a cross-sectional view of a compound superconducting wire obtained by heating the compound superconducting precursor wire in the state shown in FIG.
  • the compound superconducting wire 3 has a compound superconductor portion 20, reinforcing material portions 30, 30a, and a stabilizing material portion 40.
  • the compound superconducting strand 3 can be obtained by subjecting a compound superconducting precursor strand 2 comprising a plurality of compound superconducting precursor strands 1 to heat treatment for generating compound superconductivity.
  • the compound superconductor generation heat treatment may be performed on the compound superconducting precursor strands 2 before coil winding, or may be performed on the compound superconducting precursor strands 2 after coil winding.
  • the compound superconductor portion 20 constituting the compound superconducting strand 3 is composed of a plurality of compound superconducting filaments 21 containing a compound superconducting phase and a first matrix 22.
  • the compound superconductor portion 20 is linear and extends along the axial direction of the compound superconductor wire 3 .
  • the first matrix 22 embeds a plurality of compound superconducting filaments 21 and includes a first stabilizing material.
  • the compound superconducting phase is preferably a metal compound superconducting phase formed of Nb 3 Sn.
  • the compound superconducting phase is not limited to Nb 3 Sn, and may be formed of, for example, Nb 3 Al or other metal compound superconducting phase having superconducting properties.
  • the first matrix 22 containing the first stabilizing material can have the effects of suppressing damage to the compound superconducting filaments 21, magnetically stabilizing, and thermally stabilizing the compound superconducting filaments 21 in the compound superconducting wire 3. These effects are further improved when the first stabilizing material constituting the first matrix 22 is copper or a copper alloy.
  • the compound superconducting phase is a metal compound superconducting phase formed of Nb 3 Sn
  • the first stabilizing material is formed of a Cu-Sn alloy. It is preferable. Furthermore, the material constituting the first stabilizing material is appropriately selected depending on the type of compound superconducting phase.
  • the Sn content ratio in the first matrix 22 is the Sn content in the first matrix precursor 12 constituting the compound superconducting precursor strand 1. smaller than the percentage.
  • the Sn content in the first matrix 22 is approximately 0.1% by mass or more and 2.0% by mass. Even if it becomes small, the first matrix 22 does not have the function as a stabilizing material equivalent to Cu.
  • a compound superconductor portion 20 manufactured by a bronze method a compound superconducting precursor strand 1 is prepared in which a plurality of Nb filaments, which are compound superconducting precursor filaments 11, are embedded in a first matrix precursor 12 of a Cu-Sn alloy, which is a first stabilizing material.
  • Nb 3 Sn filaments can be produced.
  • the enlarged views of the compound superconductor portion 20 shown in FIGS. 5 and 6 show an example in which there is an unreacted Nb core portion 23 that remains without reacting with Sn.
  • the core portion 23 may not exist in the compound superconducting filament 21 of the compound superconductor portion 20, and the compound superconducting filament 21 may be made of Nb 3 Sn.
  • the reinforcing material portion 30 is arranged in a cylindrical shape or concentrically distributed over the circumferential direction, and is arranged on the outer peripheral side of the compound superconductor portion 20.
  • the reinforcing material section 30 constituting the compound superconducting wire 3 has basically the same configuration and function as the reinforcing material section 30 constituting the compound superconducting precursor wire 1.
  • the stabilizing material part 40 has a cylindrical shape and is arranged on at least one of the inner circumferential side and the outer circumferential side of the reinforcing material part 30. 5 to 7 show examples in which the stabilizing material portion 40 is arranged on both the inner and outer peripheral sides of the reinforcing material portion 30.
  • the stabilizing material section 40 constituting the compound superconducting wire 3 has basically the same configuration and function as the stabilizing material section 40 constituting the compound superconducting precursor wire 1.
  • the 0.2% tensile strength of the compound superconducting precursor wire 1 is within the predetermined range, and the reinforcing material portions 30 and 30a in the compound superconducting precursor wire 1 provide appropriate tensile strength.
  • breakage of the compound superconducting precursor strands which conventionally occurs during the wire twisting process to shorten the twist pitch and the molding process (compression process) to reduce the void ratio of the twisted wires, can be suppressed.
  • stabilization is The material portion 40 is selectively deformed, and abnormal deformation of the compound superconducting precursor portion 10 is suppressed. As a result, the stranded wire manufacturability is improved, and the compound superconducting precursor stranded wire 2 in which the compound superconducting precursor portion 10 is less deformed can be obtained.
  • a compound superconducting magnet manufactured by a method in which compound superconducting precursor stranded wire 2 is coil-wound and then subjected to compound superconductivity generation heat treatment, and compound superconducting precursor stranded wire 2 is subjected to compound superconductivity generation heat treatment.
  • electromagnetic force is generated by the electromagnetic force applied to the compound superconducting wires 3 in the stranded wires when the magnet is excited.
  • the characteristics of the stabilizing material portion and the characteristics of the compound superconducting precursor wire that constitute the compound superconducting wire satisfy predetermined relationships, which improves the productivity of the stranded wire and the superconducting performance. It has excellent characteristics and enables rational magnet design.
  • the compound superconductor part is Nb 3 Sn formed by a bronze method, has a Sn diffusion prevention part made of Ta, and the reinforcing material part is a Cu-Nb composite material with Nb filaments embedded in an oxygen-free copper matrix.
  • a composite wire of Nb rods and CuSn alloy was obtained by extruding and wire drawing a billet in which a plurality of Nb rods were embedded in a CuSn alloy to which Ti was added.
  • a plurality of these composite wires are arranged in the center of the oxygen-free copper tube to form an assembly, and a tubular Ta is arranged around the outer periphery of this assembly as a Sn diffusion prevention part, and the outer periphery of the tubular Ta is
  • a Cu-Nb reinforcement obtained by extruding and wire-drawing a billet in which an oxygen-free copper tube is placed in the oxygen-free copper tube and multiple Nb rods are embedded in the oxygen-free copper around the outer periphery of the oxygen-free copper tube.
  • a billet for compound superconducting precursor wire was obtained by arranging a plurality of wires for material parts. Subsequently, the compound superconducting precursor wire billet was subjected to extrusion wire drawing to obtain a wire. Subsequently, the wire was heat-treated at a temperature of 200° C. or more and 500° C. or less for several seconds or more and several hours, thereby refining the wire and obtaining a compound superconducting precursor wire.
  • two compound superconducting precursor wires with a diameter of 0.83 mm and one copper wire with a diameter of 0.83 mm are twisted together for primary twisting, and three
  • the secondary strands were twisted together for secondary twisting, the four secondary stranded wires were twisted together for tertiary twisting, and the tertiary stranded wires were rectangularly molded to obtain a compound superconducting precursor stranded wire.
  • the twist pitches of the primary twist, secondary twist, and tertiary twist were 25 mm, 48 mm, and 90 mm, respectively.
  • the rectangular molding process of the tertiary stranded wire was performed so that the void ratio of the stranded wire was 30%.
  • the void ratio of the stranded wire is the ratio of the area within the rectangular dotted line shown in Figure 3, excluding the total area of all compound superconducting precursor wires and all copper wires. .
  • the compound superconducting precursor strands were subjected to compound superconductivity generation heat treatment at 570° C. or higher and 670° C. or lower for several hundred hours to obtain the compound superconducting strands shown in Table 1.
  • Example 2 The reinforcing material part was changed to Ta, and the stabilizing material part was provided on the inner and outer peripheral sides of the reinforcing material part, and the space factor of the reinforcing material part and the stabilizing material part was 0.2 of the compound superconducting precursor wire.
  • a compound superconducting stranded wire was produced in the same manner as in Example 1 except that the % tensile yield strength was changed to the value shown in Table 1.
  • Example 1 A compound superconducting stranded wire was produced in the same manner as in Example 1, except that no thermal refining was performed.
  • Example 2 A compound superconducting stranded wire was produced in the same manner as in Example 2, except that heat refining was not performed.
  • Example 3 A compound superconducting stranded wire was produced in the same manner as in Example 1 except that the reinforcing material part was not provided and the space factor of the stabilizing material part was changed to the value shown in Table 1.
  • Comparative example 4 A compound superconducting stranded wire was produced in the same manner as in Comparative Example 3 except that no thermal refining was performed.
  • the Vickers hardness of the stabilizing material part was measured as follows. First, a sample in which a compound superconducting precursor wire was embedded in an epoxy resin was cut perpendicular to the axial direction of the compound superconducting precursor wire, and the cut surface was polished. Next, in accordance with JIS Z 2244, a pyramidal indenter made of diamond was pressed against the cross section of the compound superconducting precursor wire at a load of 10 g for 15 seconds, and the resulting indentation was measured using a micro Vickers hardener. The Vickers hardness of the stabilizing material portion was measured by a hardness test.
  • the 0.2% tensile strength of the compound superconducting precursor wire is specified in 5. of JIS C 3002. A method similar to (tension) was applied. Specifically, it was obtained by chucking 40 mm of both ends of a compound superconducting precursor wire with a length of 180 mm, applying a tensile strain of 0.2% to 0.5% in the axial direction, and then unloading. The straight line equal to the Young's modulus obtained was offset to a strain of 0.2%, and the point of intersection (stress degree) with the stress-strain curve was defined as 0.2% tensile strength.
  • the critical current of the compound superconducting wire was measured as follows. A compound superconducting wire with a length of 5 cm was placed in liquid helium (4.2 K), and an external magnetic field of 14.5 T was applied perpendicular to the axial direction of the wire, and the compound superconducting wire was energized to form four terminals. The current value when an electric field of 0.1 ⁇ V/cm was generated in the compound superconducting wire using the method (distance between voltage taps 1 cm) was defined as the critical current value.
  • Example 1 and Comparative Example 1 and comparing Example 2 and Comparative Example 2 it is found that the Vickers hardness of the stabilizing material part and the 0.2% tensile yield strength of the compound superconducting precursor wire are controlled.
  • the flatness of the compound superconducting precursor portion of the compound superconducting precursor strand which has the largest deformation, becomes 0.2 or less in the cross section of the compound superconducting precursor stranded wire, and as a result, it is possible to untwist the compound superconducting precursor stranded wire.
  • the critical current of the compound superconducting wire maintained a relatively high value.
  • the oxygen-free copper parts on the surface of the strands that contact each other in the stranded wire do not fuse together, and the flexibility of the compound superconducting stranded wire itself and the strands do not melt when a fluctuating magnetic field is applied during superconducting magnet operation. It is possible to suppress the occurrence of additional AC loss due to the coupled current flowing between the lines.
  • the wire diameter, the number of twists of each order, the twist pitch, the twist order (the number of times of multiple twists), and the void ratio after molding are set to specific values that are difficult to manufacture.
  • the effect of the present invention is not limited to these numerical values, and the effect of the present invention is not limited to these values, but can be applied to any wire diameter that is arbitrarily designed to satisfy the required characteristics such as the current carrying capacity of compound superconducting stranded wires. , is effective for the number of twists, twist pitch, twist order, and void ratio of each twisted wire.
  • Compound superconducting precursor strand 2 Compound superconducting precursor strand 2a Primary strand 2b Secondary strand 2c Tertiary strand 3 Compound superconducting strand 10
  • Compound superconducting precursor portion 11 Compound superconducting precursor filament 12
  • First matrix Precursor 20 Compound superconductor section 21
  • Compound superconducting filament 22 First matrix 23
  • Reinforcement filament 32
  • Third matrix 40 Stabilizing section 50 Sn diffusion prevention section 60 Copper wire

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

化合物超電導前駆体素線は、複数本の化合物超電導前駆体フィラメント、および前記複数本の化合物超電導前駆体フィラメントを埋設し、第一安定化材を含む第一マトリックス前駆体で構成される化合物超電導前駆体部と、前記化合物超電導前駆体部の外周側に配置される強化材部と、前記強化材部の内周側および外周側の少なくとも一方に配置され、第二安定化材からなる安定化材部とを有し、前記安定化材部のビッカース硬さ(HV)が90以下であり、かつ、前記化合物超電導前駆体素線の0.2%引張耐力が200MPa以上である。

Description

化合物超電導前駆体素線、化合物超電導前駆体撚線および化合物超電導撚線
 本開示は、化合物超電導前駆体素線、化合物超電導前駆体撚線および化合物超電導撚線に関する。
 強磁場発生用の大型超電導マグネットに適用される、NbSnなどの化合物超電導素線を複数本撚り合わせることによって大電流化した化合物超電導撚線において、マグネット運転時に印加される電磁応力による素線の動きに起因する性能低下を抑制し、導体電流密度を増大するために、撚りピッチを短くし、撚線のボイド率(撚線中の空隙部の割合)を小さくする構造とすることがある。
 しかしながら、化合物超電導生成熱処理前の素線(以下、化合物超電導前駆体素線ともいう)を撚り合わせる工程(撚線工程)において、撚りピッチを短くし、その後の圧縮工程において撚線のボイド率を小さくすると、化合物超電導前駆体素線に対して局所的に大きい加工応力が印加される頻度が多くなり、化合物超電導前駆体素線に異常変形や断線が発生することにより、製造歩留まりが著しく低下するという問題があった。さらに、この異常状態にあるNbSn前駆体素線を撚り合わせた撚線に超電導生成熱処理を施したNbSn超電導マグネットは、励磁時に生じる電磁応力によって、NbSn素線中のNbSnフィラメントに大きな歪が印加され、超電導特性が低下するだけでなく、極端な場合、NbSnフィラメントにクラックが入り超電導状態を維持できなくなるという問題があった。
 一方、NbSn前駆体素線内部に高強度材を複合した、高強度型NbSn前駆体素線および複数の素線を撚り合わせた撚線を用い超電導生成熱処理を施して得られるNbSn超電導マグネットは、励磁時に生じる大きな電磁応力下においても優れた超電導特性を示す。しかしながら、高強度材を複合したNbSn前駆体素線は、その構成によっては、素線自体のスプリングバックが大きいため、撚りピッチを短くしたり、撚線のボイド率を小さくしたりする必要がある場合に、所定の撚線構造で要求された寸法に制御することが困難であり、撚線製造性における問題があった。これまで、上記のような問題に対処するために、多くの技術開発が実施されてきた。
 例えば、特許文献1では、Cu母材の中にNbフィラメントを多数本埋設したCuNb強化材と複合化したNbSn超電導線についての記述がある。また、特許文献2では、化合物超電導素線の断面構造を規定し、高強度化を優先したCuNb強化タイプの化合物超電導撚線についての記述がある。しかしながら、特許文献1~2は、応力下での超電導性能向上に着目したものであり、撚線加工性の向上については配慮されていないため、大容量導体の製造に、そのまま適用することはできない。
 また、特許文献3では、PIT法によるNbSn超伝導前駆体素線において、特定のSn拡散バリア構造で撚線化することにより、高い伝導度のCuによる安定化を確実にし、特に良好な電流安定性を得る技術が開示されている。しかしながら、特許文献3は、撚線の製造性の向上や、撚線自体の強化を意図していないため、運転時に大きな電磁応力が印加される化合物超電導撚線導体には適用できない。
 また、特許文献4では、合金素線を焼鈍によって調質し、撚線の加工性を向上する手法が開示されている。また、特許文献5では、寸法規定した撚線を焼鈍してから、成型加工することにより、形状を改善する手法が開示されている。また、特許文献6では、焼鈍した素線または1次撚り線を成型加工後、再焼鈍することにより、撚線の形状を改善する手法が開示されている。しかしながら、特許文献4~6は、いずれも、撚線加工性の向上を意図したものであるが、運転時に大きな電磁応力が印加される化合物超電導撚線導体に、そのまま適用することはできない。
 また、非特許文献1および2は、Nbロッド法Cu-Nb強化型NbSn線材の性能を示したものであり、大容量導体に用いる化合物超電導前駆体撚線の製造性を向上する技術を示したものではない。
 また、非特許文献3および4では、ITER-CS用導体(国際核融合実験炉用センターソレノイド用導体)の通電特性を向上させるために、撚りピッチを短く、撚線のボイド率を小さくすることにより、運転時の強大な電磁応力による性能低下を抑制する技術が紹介されているが、撚線の製造性を向上する技術を示したものではない。
 また、非特許文献5は、多くの銅線と共撚りし、撚りピッチを長く、撚線のボイド率を小さくし、平角形状にした、多重撚線の開発結果についての報告であり、撚線の製造性を向上する技術を示したものではない。
 特許文献1~6および非特許文献1~5が述べているのは、化合物超電導線材および撚線導体設計を適正化するための学術的研究成果である。合理的に、実機コイル用撚線導体を設計し製造するためには、解決すべき課題として、運転時の電磁応力下での超電導特性の向上および撚線の製造性の向上を両立する必要がある。
特許第6155253号公報 国際公開第2020/066908号 特許第6425673号公報 特許第6201815号公報 特許第3148212号公報 特許第2930994号公報
M. Sugimoto, et al.、「Development of Nb-rod-method Cu-Nb rein-forced Nb3Sn Rutherford cables for react-and-wind processed wide-bore high magnetic field coils」、IEEE Trans. Appl. Supercond.、Vol.25 No.3(2015)6000605 M. Sugimoto, et al.、「Evaluation of Various Nb-Rod-Method Cu-Nb/Nb3Sn Wires designed for Practical React-and-Wind Coils」、IEEE Trans. Appl. Supercond.、Vol.30 No.4 (2020)6000905 IEEE Trans. on Appl. Super.、24 3(2014)4802404、Y.Takahashi IEEE Trans. on Appl. Super.、24 3(2014)4200705、Y.Nabara IEEE Trans. on Appl. Super.、27 4(2017)4800206、L.Muzzi
 NbSnなどの化合物系超電導線材を用いた大型超電導マグネットの製造に適用される大型超電導導体は、撚線構造を有する。その撚線構造は、丸撚り構造や平角構造があるが、撚線断面当たりの電流密度を向上させ、撚りが崩れないようにするために、成型加工(圧縮加工)を施す。このような撚線構造では、撚線が1重撚り(素線を1回だけ撚り合わせる撚線)で製作されるのではなく、複数回撚り合わせて製作する多重撚り構造(高次撚り構造)とする場合がある。
 上記のように、従来技術においては、大型超電導マグネットに適用されるNbSn超電導撚線において、電流密度の増大と通電時に電磁応力による超電導素線の動きを抑制するために、撚りピッチを短くする構成や、撚線のボイド率を小さくする構成を採用する。そのため、NbSn生成熱処理前の素線(NbSn前駆体素線)を用いた撚線製造工程において、撚りピッチを短くする撚線加工工程で素線が断線したり、撚線のボイド率を小さくする圧縮工程において、素線内部の構造材の異常変形が生じ、極端な場合、断線したりする。このような不具合状態にあるNbSn前駆体撚線導体を用いて、コイル巻線をした後、NbSn生成熱処理を施す(ワインド・アンド・リアクト法による)NbSn超電導マグネットや、NbSn生成熱処理を施した後、コイル巻線を行う(リアクト・アンド・ワインド法による)NbSn超電導マグネットのいずれにおいても、マグネット運転時に生じる電磁応力によって、NbSn超電導撚線を構成する素線中のNbSnフィラメントに大きな歪が印加され超電導特性が低下し、極端な場合、NbSnフィラメントにクラックが入り、超電導状態を維持できなくなるという問題があった。
 本開示の目的は、従来よりも、撚線製造性および超電導特性に優れた化合物超電導前駆体素線、化合物超電導前駆体撚線および化合物超電導撚線を提供することである。
[1] 複数本の化合物超電導前駆体フィラメント、および前記複数本の化合物超電導前駆体フィラメントを埋設し、第一安定化材を含む第一マトリックス前駆体で構成される化合物超電導前駆体部と、前記化合物超電導前駆体部の外周側に配置される強化材部と、前記強化材部の内周側および外周側の少なくとも一方に配置され、第二安定化材からなる安定化材部とを有する化合物超電導前駆体素線であって、前記安定化材部のビッカース硬さ(HV)が90以下であり、かつ、前記化合物超電導前駆体素線の0.2%引張耐力が200MPa以上である、化合物超電導前駆体素線。
[2] 前記強化材部が、Nb、Ta、V、W、Mo、Fe、TiおよびHfの群から選択される1種の金属または2種以上の金属で構成される合金もしくは複合材からなる、上記[1]に記載の化合物超電導前駆体素線。
[3] 前記強化材部が、複数本の強化フィラメント、および前記複数本の強化フィラメントを埋設し、第三安定化材を含む第三マトリックスで構成される、上記[1]に記載の化合物超電導前駆体素線。
[4] 前記強化フィラメントが、Nb、Ta、V、W、Mo、Fe、TiおよびHfの群から選択される1種の金属または2種以上の金属で構成される合金からなり、前記第三安定化材が銅または銅合金である、上記[3]に記載の化合物超電導前駆体素線。
[5] 前記化合物超電導前駆体フィラメントがNbSn前駆体であり、前記化合物超電導前駆体部と前記強化材部との間に、NbもしくはTaまたはそれらの合金もしくは複合材からなるSn拡散防止部をさらに有する、上記[1]~[4]のいずれか1つに記載の化合物超電導前駆体素線。
[6] 前記第一安定化材が銅または銅合金である、上記[1]~[5]のいずれか1つに記載の化合物超電導前駆体素線。
[7] 前記第二安定化材が銅または銅合金である、上記[1]~[6]のいずれか1つに記載の化合物超電導前駆体素線。
[8] 前記化合物超電導前駆体素線において、前記強化材部の占積率が、5.0%以上40.0%以下、かつ、前記化合物超電導前駆体部の占積率よりも小さく、前記強化材部の外周側に配置される前記安定化材部の占積率が15.0%以上である、上記[1]~[7]のいずれか1つに記載の化合物超電導前駆体素線。
[9] 上記[1]~[8]のいずれか1つに記載の化合物超電導前駆体素線を複数本撚り合わせてなる1次撚線を複数本撚り合わせてなる2次撚線を構成要素として有する、化合物超電導前駆体撚線。
[10] 上記[1]~[8]のいずれか1つに記載の化合物超電導前駆体素線の1本または複数本と銅素線または銅合金素線の1本または複数本とを撚り合わせてなる1次撚線を複数本撚り合わせてなる2次撚線を構成要素として有する、化合物超電導前駆体撚線。
[11] 前記銅素線または前記銅合金素線のビッカース硬さ(HV)が90以下である、上記[10]に記載の化合物超電導前駆体撚線。
[12] 前記化合物超電導前駆体撚線を構成する前記化合物超電導前駆体素線の1本または複数本の横断面のうち、前記化合物超電導前駆体部の最大扁平率が0超0.2以下である、上記[9]~[11]のいずれか1つに記載の化合物超電導前駆体撚線。
[13] 上記[9]~[12]のいずれか1つに記載の化合物超電導前駆体撚線を加熱させてなる化合物超電導撚線。
 本開示によれば、従来よりも、撚線製造性および超電導特性に優れた化合物超電導前駆体素線、化合物超電導前駆体撚線および化合物超電導撚線を提供することができる。
図1は、実施形態の化合物超電導前駆体素線の一例を示す横断面図である。 図2は、実施形態の化合物超電導前駆体素線の他の例を示す横断面図である。 図3は、実施形態の化合物超電導前駆体撚線の一例を示す横断面図である。 図4は、実施形態の化合物超電導前駆体撚線を構成する化合物超電導前駆体素線の一例を示す横断面図である。 図5は、実施形態の化合物超電導撚線を構成する化合物超電導素線の一例を示す横断面図である。 図6は、実施形態の化合物超電導撚線を構成する化合物超電導素線の他の例を示す横断面図である。 図7は、実施形態の化合物超電導撚線を構成する化合物超電導素線の他の例を示す横断面図である。
 以下、実施形態に基づき詳細に説明する。
 本発明者らは、複数の化合物超電導素線を撚り合わせてなるNbSn前駆体撚線などの化合物超電導前駆体撚線において、その製造性に優れ、かつ、化合物超電導撚線として超電導マグネットに組み込んだときに、優れた超電導特性を得るために、鋭意研究を重ねた結果、化合物超電導素線を構成する安定化材部の特性および化合物超電導前駆体素線の特性がそれぞれ所定の関係を満たすことで、従来技術が抱える問題を解決した化合物超電導前駆体素線およびそれを用いた化合物超電導前駆体撚線、ならびに撚線後に化合物超電導相を生成するための化合物超電導生成熱処理を施して得られる化合物超電導撚線を発明するに至った。
 はじめに、実施形態の化合物超電導前駆体素線について説明する。
 実施形態の化合物超電導前駆体素線は、複数本の化合物超電導前駆体フィラメント、および複数本の化合物超電導前駆体フィラメントを埋設し、第一安定化材を含む第一マトリックス前駆体で構成される化合物超電導前駆体部と、化合物超電導前駆体部の外周側に配置される強化材部と、強化材部の内周側および外周側の少なくとも一方に配置され、第二安定化材からなる安定化材部とを有し、安定化材部のビッカース硬さ(HV)が90以下であり、かつ、化合物超電導前駆体素線の0.2%引張耐力が200MPa以上である。
 図1は、実施形態の化合物超電導前駆体素線の一例を示す横断面図である。図1に示すように、化合物超電導前駆体素線1は、化合物超電導前駆体部10と強化材部30と安定化材部40とを有する。
 化合物超電導前駆体素線1を構成する化合物超電導前駆体部10は、複数本の化合物超電導前駆体フィラメント11と第一マトリックス前駆体12とで構成される。化合物超電導前駆体部10は、線状であり、化合物超電導前駆体素線1の軸方向(素線軸方向)に沿って延在している。第一マトリックス前駆体12は、複数本の化合物超電導前駆体フィラメント11を埋設し、第一安定化材を含む。
 化合物超電導前駆体フィラメント11は、後述する化合物超電導相を生成するための化合物超電導生成熱処理を施すことによって、後述する図5~7に示す化合物超電導相を含む化合物超電導フィラメント21になる。後述する化合物超電導素線3を構成する化合物超電導相がNbSnで形成される金属化合物超電導相であることが好ましいことから、化合物超電導前駆体フィラメント11はNbSn前駆体であることが好ましく、Nbであることがより好ましい。化合物超電導相の種類に応じて、化合物超電導前駆体フィラメント11を構成する材料は適宜選択される。
 第一安定化材を含む第一マトリックス前駆体12は、化合物超電導生成熱処理を施すことによって、図5~7に示す第一安定化材を含む第一マトリックス22になる。第一マトリックス22は、化合物超電導素線3における、化合物超電導フィラメント21の損傷の抑制、磁気的安定化、熱的安定化という効果を奏することができる。第一マトリックス前駆体12を構成する第一安定化材が銅または銅合金であると、これらの効果がさらに向上する。
 また、化合物超電導相がNbSnで形成される金属化合物超電導相であることが好ましいことから、第一安定化材はCu-Sn合金で形成されていることが好ましい。化合物超電導素線3を構成する化合物超電導相の種類に応じて、第一安定化材を構成する材料は適宜選択される。
 第一マトリックス前駆体12の第一安定化材がCu-Sn合金である場合、第一安定化材はSnを最大で15.8質量%(固溶限)まで含有することができる。加えて、第一マトリックス前駆体12の第一安定化材は、CuおよびSn以外の他の元素を少量であれば含有してもよく、例えばTiなどを0.20質量%以上0.35質量%以下の範囲で含有することが好ましい。
 図1および後述する図2、5~6では、ブロンズ法によってNbSnの化合物超電導相を生成する例を示しているが、NbSnの化合物超電導相の生成には、内部スズ法などの別の方法を適用してもよい。また、ここでは、化合物超電導相がNbSnである例を示しているが、化合物超電導相は、NbTiなどの合金系超電導体と比較して、歪感受性の大きい超電導特性を有する化合物超電導体でもよい。
 化合物超電導前駆体素線1を構成する強化材部30は、筒状であり、化合物超電導前駆体部10の外周側に配置される。強化材部30は、Nb、Ta、V、W、Mo、Fe、TiおよびHfの群から選択される1種の金属または2種以上の金属で構成される合金もしくは複合材からなることが好ましい。なお、強化材部30は、不可避不純物を含んでもよい。強化材部30は、引張り歪および曲げ歪に強い高強度機能を具備するという効果を奏することができる。
 また、図2に示すように、強化材部30aは、複数本の強化フィラメント31と第三マトリックス32とで構成されてもよい。第三マトリックス32は、複数本の強化フィラメント31を埋設し、第三安定化材を含む。複数本の強化フィラメント31および第三マトリックス32を備える強化材部30aは、強化材部30に比べて、高強度機能だけでなく安定化機能を適切に具備するという効果を奏することができる。
 強化材部30aを構成する強化フィラメント31は、Nb、Ta、V、W、Mo、Fe、TiおよびHfの群から選択される1種の金属または2種以上の金属で構成される合金からなることが好ましい。なお、強化フィラメント31は、不可避不純物を含んでもよい。
 例えば強化フィラメント31がNbを主として含有する場合、不可避不純物として、例えば、Oが150ppm以下、Hが15ppm以下、Cが100ppm以下、Nが100ppm以下、Feが50ppm以下、Niが50ppm以下、Tiが20ppm以下、Siが50ppm以下、Wが300ppm以下、およびTaが1000ppm以下含まれることがある。また、強化フィラメント31がTaを主として含有する場合、不可避不純物として、O、H、C、N、Fe、Ni、Ti、Si、W、NbおよびMoが含まれることがある。
 強化フィラメント31を構成するこれらの金属または合金は、化合物超電導生成熱処理時に、Cuに固溶しにくいため、Cuとの化合物が形成されにくく、曲げ歪特性の向上に有効に寄与する。そのなかでも、強化フィラメント31は、化合物超電導素線3への影響を考慮すると、強磁性を示さないNb、Ta、V、W、MoおよびHfの群から選択される1種の金属または2種以上の金属で構成される合金からなることが好ましく、さらに、加工性の点からはNb、TaおよびVの群から選択される1種の金属または2種以上の金属で構成される合金からなることが好ましい。
 また、強化フィラメント31を構成する上記元素群から選択される2種以上の金属で構成される合金としては、銅または銅合金との複合加工性に優れるという点で、Nb-Ta合金であることが好ましい。また、上記元素群から選択される金属と銅とで構成される合金としては、銅または銅合金との複合加工性に優れるという点で、Cu-Nb合金またはCu-V合金であることが好ましい。
 上記のCuに固溶しにくいとは、化合物超電導生成熱処理(例えば、600℃~750℃)において、強化フィラメント31を構成する金属または合金がCuに固溶する割合が1at%未満であることをいう。
 上記のように、強化材部30aでは、Cuに固溶しにくい金属材料で構成される複数の強化フィラメント31が第三マトリックス32に埋設されている。そのため、強化材部30a内の強化フィラメント31に金属間化合物が生成されることを抑制でき、強化材部30に比べて、強化材部30aは引張り歪および曲げ歪に強い高強度な構成要素として機能できる。
 強化材部30aの第三マトリックス32を構成する第三安定化材は、銅または銅合金であることが好ましい。なお、第三安定化材は、不可避不純物を含んでもよい。第三安定化材の不可避不純物としては、O、Fe、SおよびBiが挙げられる。第三安定化材を含む第三マトリックス32は、強化材部30に強化機能に加えて安定化機能を具備させるという効果を奏することができる。
 化合物超電導前駆体素線1を構成する安定化材部40は、筒状であり、強化材部30の内周側および外周側の少なくとも一方に配置される。安定化材部40は、第二安定化材からなる。図1~2では、安定化材部40が強化材部30の内周側および外周側の両方に配置される例を示している。安定化材部40は、強化材部30の加工中の異常変形を抑制し、安定化機能を具備するという効果を奏することができる。
 安定化材部40を構成する第二安定化材は、銅または銅合金であることが好ましく、無酸素銅であることがより好ましい。なお、第二安定化材は、不可避不純物を含んでもよい。第二安定化材の不可避不純物としては、O、Fe、SおよびBiが挙げられる。
 また、上記のように、化合物超電導前駆体素線1では、化合物超電導前駆体部10を構成する第一安定化材、安定化材部40を構成する第二安定化材、および強化材部30aを構成する第三安定化材を使用している。ここでいう安定化材とは、JIS H 7005:2005に規定されているように、冷媒と熱的接触を確保し、および/または、電気的分流回路として働くように超電導体に電気的および/または熱的に接触させた、一般的には金属である材料であって、超電導体に複合化されて超電導体の安定性を増加させる常電導金属材料を意味する。具体的には、銅やアルミニウムなどの常電導金属は、極低温で比抵抗が低く、熱伝導が良いため、超電導線のマトリックスとして使用した場合、超電導状態から常電導状態への転移があっても、これらの常電導金属に電流がバイパスして流れる。これにより、後述する化合物超電導素線3において、発熱が抑えられ、また、発生した熱はすばやく伝播・拡散し、冷却される。さらには、外部の磁束変動をダンピングして超電導体にじかに磁束変動を伝えない、銅やアルミニウムなどの常電導金属が、超電導線の安定化材として広く用いられる。
 また、安定化材部40のビッカース硬さ(HV)が90以下であり、かつ、化合物超電導前駆体素線1の0.2%引張耐力が200MPa以上である。安定化材部40のビッカース硬さは、化合物超電導前駆体素線1の軸方向に垂直な横断面における安定化材部40のビッカース硬さである。また、化合物超電導前駆体素線1の0.2%引張耐力は、化合物超電導前駆体素線1の軸方向の0.2%引張耐力である。
 安定化材部40のビッカース硬さ(HV)が90以下であり、かつ、化合物超電導前駆体素線1全体の0.2%引張耐力が200MPa以上であると、従来生じていた化合物超電導前駆体素線1の断線や化合物超電導前駆体素線1内部の化合物超電導前駆体部10の異常変形を抑制し、撚線製造性を向上できる。さらに、複数の化合物超電導前駆体素線1を撚り合わせてなる化合物超電導前駆体撚線を用いて製造した化合物超電導マグネットは、励磁したときに生じる強大な電磁応力下においても堅牢であり、優れた超電導特性を維持することができる。このように、化合物超電導前駆体素線1および化合物超電導前駆体撚線2は製造性に優れており、化合物超電導撚線は堅牢かつ超電導特性に優れているので、合理的な設計の化合物超電導マグネットに供することができる。
 上記理由から、安定化材部40のビッカース硬さは、90以下、好ましくは80以下、より好ましくは70以下である。同様の理由から、化合物超電導前駆体素線1の0.2%引張耐力は、200MPa以上、好ましくは230MPa以上、より好ましくは250MPa以上である。尚、安定化材部40のビッカース硬さは、撚線加工や圧縮工程において、許容できない異常変形や有害な外傷の発生を抑制するために50以上であることが望ましい。また、化合物超電導前駆体素線1の0.2%引張耐力は、良好な撚線加工性を維持するために、400MPa以下であることが望ましい。
 また、化合物超電導前駆体部10の化合物超電導前駆体フィラメント11がNbSn前駆体である場合、化合物超電導前駆体素線1は、化合物超電導前駆体部10と強化材部30との間に、NbもしくはTaまたはそれらの合金もしくは複合材からなるSn拡散防止部50をさらに有することが好ましい。
 Sn拡散防止部50は、化合物超電導生成熱処理時に、NbSnフィラメントを化合物超電導体部20に形成するための第一マトリックス前駆体12を構成するCu-Sn合金中のSnが、強化材部30や安定化材部40に拡散することを防止し、安定化材部40を構成する第二安定化材および強化材部30を構成する第三安定化材の残留抵抗比の低下を抑止すると共に、化合物超電導前駆体フィラメント11のNbフィラメントと反応してNbSnを生成するために必要なSn量を、Cu-Sn合金中に保持する機能を有している。
 また、化合物超電導前駆体素線1において、強化材部30の占積率が、5.0%以上40.0%以下、かつ、化合物超電導前駆体部10の占積率よりも小さく、強化材部30の外周側に配置される安定化材部40の占積率が15.0%以上であることが好ましい。強化材部30の占積率および安定化材部40の占積率がそれぞれ上記範囲内であると、化合物超電導前駆体素線1の臨界電流をさらに向上できる。
 各構成部の占積率とは、化合物超電導前駆体素線1の軸方向に垂直な横断面積に占める各構成部の面積の割合である。具体的には、強化材部30の占積率は、化合物超電導前駆体素線1の横断面積に占める強化材部30の面積の割合である。化合物超電導前駆体部10の占積率は、化合物超電導前駆体素線1の横断面積に占める化合物超電導前駆体部10の面積の割合である。安定化材部40の占積率は、化合物超電導前駆体素線1の横断面積に占める安定化材部40の面積の割合である。
 次に、実施形態の化合物超電導前駆体撚線について説明する。
 実施形態の化合物超電導前駆体撚線は、上記実施形態の化合物超電導前駆体素線を複数本撚り合わせてなる1次撚線を複数本撚り合わせてなる2次撚線を構成要素として有する。また、他の実施形態の化合物超電導前駆体撚線は、上記実施形態の化合物超電導前駆体素線の1本または複数本と銅素線または銅合金素線の1本または複数本とを撚り合わせてなる1次撚線を複数本撚り合わせてなる2次撚線を構成要素として有する。化合物超電導前駆体素線のみで構成される2次撚線を構成要素として有する上記実施形態の化合物超電導前駆体撚線に対して、他の実施形態の化合物超電導前駆体撚線では、各次撚線に1本以上の銅素線または銅合金素線が含まれる。
 図3は、他の実施形態の化合物超電導前駆体撚線の一例を示す横断面図である。ここでは、2本の化合物超電導前駆体素線1と1本の銅素線60とを共撚りさせてなる1次撚線2aを3本撚り合わせてなる2次撚線2bを構成要素とし、4本の2次撚線2bを撚り合わせてなる3次撚線2cを平角成型加工させてなる化合物超電導前駆体撚線2を示している。
 化合物超電導前駆体撚線2の製造時、成型加工を施す前の状態で、200℃以上500℃以下で、数秒以上数時間以内の熱処理を施すことによって、化合物超電導前駆体素線1を調質する。この調質は、成型加工を施す前の状態であればよく、撚り合わせる前の化合物超電導前駆体素線1でもよいし、1次撚線2aでもよいし、2次撚線2bでもよいし、3次撚線2cでもよい。この調質によって、安定化材部40のビッカース硬さおよび化合物超電導前駆体素線の0.2%引張耐力を制御する。また、1次撚線などの撚線を調質する場合、化合物超電導前駆体素線に撚り合わせられる銅素線または銅合金素線の強度を制御する調質を行うことが好ましい。
 化合物超電導前駆体撚線2において、銅素線または銅合金素線のビッカース硬さ(HV)は、90以下であることが好ましく、80以下であることがより好ましく、70以下であることがさらに好ましい。銅素線または銅合金素線のビッカース硬さは、銅素線または銅合金素線の軸方向に垂直な横断面における銅素線または銅合金素線のビッカース硬さである。銅素線または銅合金素線のビッカース硬さ(HV)が上記範囲内である化合物超電導前駆体撚線2は、核融合炉などに搭載される強磁場発生用の大型超電導マグネットに好適に用いられる。
 また、図4は、実施形態の化合物超電導前駆体撚線を構成する化合物超電導前駆体素線の一例を示す横断面図である。化合物超電導前駆体撚線を構成する化合物超電導前駆体素線1の1本または複数本の横断面のうち、化合物超電導前駆体部10の最大扁平率が0超0.2以下であることが好ましい。換言すると、化合物超電導前駆体撚線を構成する1本または複数本の化合物超電導前駆体素線1の横断面のうち、最も変形している化合物超電導前駆体部10の扁平率は0超0.2以下であることが好ましい。化合物超電導前駆体撚線を構成する化合物超電導前駆体素線1が1本である場合、1本の化合物超電導前駆体素線1を構成している化合物超電導前駆体部10の扁平率は0超0.2以下であることが好ましい。化合物超電導前駆体部10の扁平率が0である場合、化合物超電導前駆体部10の横断面形状は真円である。
 化合物超電導前駆体部10の扁平率は、(1-(b/a))で定義される。aは、化合物超電導前駆体素線1の横断面(素線軸方向に垂直な断面)における、化合物超電導前駆体部10の長軸長さである。bは、化合物超電導前駆体素線1の横断面における、化合物超電導前駆体部10の短軸長さである。化合物超電導前駆体部10の長軸長さは、化合物超電導前駆体部10の最大外形寸法に相当し、化合物超電導前駆体部10の短軸長さは、化合物超電導前駆体部10の最小外形寸法に相当する。
 化合物超電導前駆体部10の扁平率が上記範囲内であると、化合物超電導前駆体撚線を化合物超電導生成熱処理して得られる化合物超電導撚線は高い臨界電流を維持できる。こうした理由から、化合物超電導前駆体部10の扁平率が小さいほど、化合物超電導撚線の超電導特性が良好である。
 次に、実施形態の化合物超電導撚線について説明する。実施形態の化合物超電導撚線は、上記実施形態の化合物超電導前駆体撚線を加熱させてなる。この加熱処理は、化合物超電導相を生成するための化合物超電導生成熱処理である。
 図5は、実施形態の化合物超電導撚線を構成する化合物超電導素線の一例を示す横断面図であり、図1の構成を有する化合物超電導前駆体素線を加熱させてなる化合物超電導素線の横断面図である。図6は、図2の構成を有する化合物超電導前駆体素線を加熱させてなる化合物超電導素線の横断面図である。図7は、図4の状態の化合物超電導前駆体素線を加熱させてなる化合物超電導素線の横断面図である。
 図5~7に示すように、化合物超電導素線3は、化合物超電導体部20と強化材部30、30aと安定化材部40とを有する。化合物超電導素線3は、複数の化合物超電導前駆体素線1を備える化合物超電導前駆体撚線2に対して化合物超電導生成熱処理を施すことによって得ることができる。化合物超電導生成熱処理は、コイル巻線前の化合物超電導前駆体撚線2に対して実施してもよいし、コイル巻線後の化合物超電導前駆体撚線2に対して実施してもよい。
 化合物超電導素線3を構成する化合物超電導体部20は、化合物超電導相を含む複数本の化合物超電導フィラメント21および第一マトリックス22で構成される。化合物超電導体部20は、線状であり、化合物超電導素線3の軸方向に沿って延在している。第一マトリックス22は、複数本の化合物超電導フィラメント21を埋設し、第一安定化材を含む。
 化合物超電導相は、NbSnで形成される金属化合物超電導相であることが好ましい。化合物超電導相は、NbSnに限定されるものではなく、例えば、NbAlや、超電導特性を有する他の金属化合物超電導相で形成されてもよい。
 第一安定化材を含む第一マトリックス22は、化合物超電導素線3における、化合物超電導フィラメント21の損傷の抑制、磁気的安定化、熱的安定化という効果を奏することができる。第一マトリックス22を構成する第一安定化材が銅または銅合金であると、これらの効果がさらに向上する。
 化合物超電導相がNbSnで形成される金属化合物超電導相であることが好ましいことから、ブロンズ法NbSn前駆体素線の場合、第一安定化材はCu-Sn合金で形成されていることが好ましい。また、化合物超電導相の種類に応じて、第一安定化材を構成する材料は適宜選択される。
 第一マトリックス22の第一安定化材がCu-Sn合金である場合、第一マトリックス22中のSn含有割合は、化合物超電導前駆体素線1を構成する第一マトリックス前駆体12中のSn含有割合よりも小さい。Cu-Sn合金中のSnが化合物超電導フィラメント21としてのNbSnフィラメントの生成に使用される結果として、第一マトリックス22中のSn含有割合が0.1質量%以上2.0質量%程度に小さくなっても、第一マトリックス22はCuに相当する安定化材としての機能を有しない。
 図5~6では、ブロンズ法によって製造した化合物超電導体部20を示している。ブロンズ法では、第一安定化材であるCu-Sn合金の第一マトリックス前駆体12中に、化合物超電導前駆体フィラメント11であるNbフィラメントが複数本埋設された状態の化合物超電導前駆体素線1に対し、化合物超電導相を生成するための化合物超電導生成熱処理を施すと、第一マトリックス前駆体12中のSnが拡散して、Nbフィラメントの表面と反応することによって、Nbフィラメントから化合物超電導フィラメント21であるNbSnフィラメントを生成することができる。
 また、図5~6に示す化合物超電導体部20の拡大図では、Snと反応せずに残った未反応Nbの芯部分23が存在する例を示している。ただし、化合物超電導前駆体素線1の第一マトリックス前駆体12中に含有されるSnの量や、化合物超電導前駆体素線1の化合物超電導前駆体フィラメント11の径サイズなどによっては、未反応の芯部分23が化合物超電導体部20の化合物超電導フィラメント21に存在せず、化合物超電導フィラメント21はNbSnからなることもある。
 強化材部30は、筒状または周方向に亘って同心円状に分散して配置されており、化合物超電導体部20の外周側に配置される。化合物超電導素線3を構成する強化材部30は、化合物超電導前駆体素線1を構成する強化材部30と基本的に同じ構成および機能を有する。
 安定化材部40は、筒状であり、強化材部30の内周側および外周側の少なくとも一方に配置される。図5~7では、安定化材部40が強化材部30の内周側および外周側の両方に配置される例を示している。化合物超電導素線3を構成する安定化材部40は、化合物超電導前駆体素線1を構成する安定化材部40と基本的に同じ構成および機能を有する。
 上記で述べたように、化合物超電導前駆体素線1の0.2%引張耐力が所定範囲内であり、化合物超電導前駆体素線1中の強化材部30、30aにより、引張に対する耐力を適切に保つことができるので、撚りピッチを短くする撚線工程や、撚線のボイド率を小さくする成型加工(圧縮加工)で従来生じていた化合物超電導前駆体素線の断線が抑制される。さらに、安定化材部40のビッカース硬さが所定範囲内であり、強化材部30、30aが化合物超電導前駆体部10を保護するので、撚線のボイド率を小さくする成型加工において、安定化材部40が選択的に変形して、化合物超電導前駆体部10の異常変形が抑制される。その結果、撚線製造性が向上し、化合物超電導前駆体部10の変形が少ない化合物超電導前駆体撚線2を得ることができる。
 また、化合物超電導前駆体撚線2をコイル巻線した後に化合物超電導生成熱処理を施す方法(ワインド・アンド・リアクト法)で製造した化合物超電導マグネット、および化合物超電導前駆体撚線2を化合物超電導生成熱処理した後にコイル巻線をする方法(リアクト・アンド・ワインド法)で製造した化合物超電導マグネットのいずれの場合においても、マグネット励磁時に、撚線中の化合物超電導素線3に印加される電磁力によって生じる、化合物超電導素線3の化合物超電導フィラメント21に印加される歪が、強化材部30、30aを複合していることにより小さくなるだけでなく、化合物超電導体部20の変形が少ないので、超電導特性が向上する。
 こうしたことから、撚線製造性と超電導特性の両方が向上するので、結果として、合理的なマグネット設計が可能になる。具体的には、ワインド・アンド・リアクト法で製造する化合物超電導マグネットにおいて、励磁時に生じる電磁応力が、化合物超電導撚線に繰り返して印加される場合、強化材部に加工歪が印加されて強度が増大し、化合物超電導フィラメントの残留歪が緩和される効果により、超電導特性が向上する。また、リアクト・アンド・ワインド法で製造する化合物超電導マグネットにおいて、化合物超電導撚線に室温で適切な事前曲げ歪印加処理を施すことによって、優れた超電導特性を得ることができる。その結果、いずれの製造方法においても、合理的な化合物超電導マグネット設計が可能になる。
 以上説明した実施形態によれば、化合物超電導素線を構成する安定化材部の特性および化合物超電導前駆体素線の特性がそれぞれ所定の関係を満たすことによって、従来よりも撚線製造性および超電導特性に優れ、合理的なマグネット設計が可能になる。
 以上、実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本開示の概念および特許請求の範囲に含まれるあらゆる態様を含み、本開示の範囲内で種々に改変することができる。
 次に、実施例および比較例について説明するが、本開示はこれら実施例に限定されるものではない。
(実施例1)
 化合物超電導体部がブロンズ法によって形成されたNbSnであり、TaからなるSn拡散防止部を備え、強化材部が無酸素銅のマトリックス中にNbフィラメントを埋設したCu-Nb複合材であり、無酸素銅の安定化材部を強化材部の外周側に有する複数の化合物超電導素線を備える化合物超電導撚線を製造した。以下、詳細に説明する。
 Tiが添加されたCuSn合金に複数本のNbロッドを埋設したビレットに対して、押出加工と伸線加工とを施すことによって、NbロッドとCuSn合金の複合素線を得た。続いて、無酸素銅管の中央部にこの複合素線を複数本配置して集合体を構成し、この集合体の外周に管状のTaをSn拡散防止部として配置し、管状のTaの外周に無酸素銅管を配置し、無酸素銅管の外周に、無酸素銅に複数本のNbロッドを埋設したビレットに対して押出加工と伸線加工とを施して得られたCu-Nb強化材部用の素線を複数本配置することにより、化合物超電導前駆体素線用ビレットを得た。続いて、化合物超電導前駆体素線用ビレットに対して、押出し伸線加工を施すことによって、素線を得た。続いて、素線を200℃以上500℃以下で、数秒以上数時間以内の熱処理を施すことによって、素線を調質して化合物超電導前駆体素線を得た。
 続いて、図3に示すように、直径0.83mmの2本の化合物超電導前駆体素線と直径0.83mmの1本の銅素線とを撚り合わせて1次撚りし、3本の1次撚線を撚り合わせて2次撚りし、4本の2次撚り線を撚り合わせて3次撚りし、3次撚線を平角成型加工して、化合物超電導前駆体撚線を得た。1次撚り、2次撚り、3次撚りの撚りピッチは、それぞれ25mm、48mm、90mmとした。3次撚線の平角成型加工は、撚線のボイド率30%とした。ここで、撚線のボイド率とは、図3に示す矩形状の点線内の面積に占める、全ての化合物超電導前駆体素線および全ての銅素線の合計面積を除いた面積の割合である。
 続いて、化合物超電導前駆体撚線を570℃以上670℃以下で、数100時間の化合物超電導生成熱処理を施すことによって、表1に示す化合物超電導撚線を得た。
(実施例2)
 強化材部をTaに変更し、安定化材部を強化材部の内周側と外周側に備え、強化材部および安定化材部の占積率ならびに化合物超電導前駆体素線の0.2%引張耐力を表1の値に変更したこと以外は実施例1と同様にして、化合物超電導撚線を製造した。
(比較例1)
 調質を行わなかったこと以外は実施例1と同様にして、化合物超電導撚線を製造した。
(比較例2)
 調質を行わなかったこと以外は実施例2と同様にして、化合物超電導撚線を製造した。
(比較例3)
 強化材部を設けず、安定化材部の占積率を表1の値に変更したこと以外は実施例1と同様にして、化合物超電導撚線を製造した。
(比較例4)
 調質を行わなかったこと以外は比較例3と同様にして、化合物超電導撚線を製造した。
 上記実施例および比較例で製造した化合物超電導前駆体撚線から取り出した化合物超電導前駆体素線、および化合物超電導撚線から取り出した化合物超電導素線について下記の特性を調査した。結果を表1に示す。
 安定化材部のビッカース硬さは、次のようにして測定した。まず、化合物超電導前駆体素線をエポキシ系樹脂に埋め込んだサンプルを化合物超電導前駆体素線の軸方向に対して垂直に切断し、切断面を研磨した。続いて、JIS Z 2244に準拠し、化合物超電導前駆体素線の横断面に対して、ダイヤモンドでできた角錐形圧子を、荷重10g、時間15秒で押し付け、生じた圧痕を計測するマイクロビッカース硬さ試験によって、安定化材部のビッカース硬さを測定した。
 化合物超電導前駆体素線の0.2%引張耐力は、JIS C 3002の5.(引張り)に準ずる方法を適用した。具体的には、長さ180mmの化合物超電導前駆体素線の両端40mmをチャッキングし、軸方向に0.2%~0.5%の引張歪を印加してから除荷したときに得られたヤング率に等しい直線を、歪0.2%までオフセットし、応力歪曲線との交点(応力度)を0.2%引張耐力とした。
 化合物超電導素線の臨界電流は、次のようにして測定した。長さ5cmの化合物超電導素線を液体ヘリウム中(4.2K)で、外部磁場14.5Tを素線の軸方向に対して垂直に印加した状態で、化合物超電導素線に通電し、4端子法(電圧タップ間距離1cm)で0.1μV/cmの電界が化合物超電導素線に発生したときの電流値を臨界電流値とした。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、安定化材部のビッカース硬さが90以下であり、かつ、化合物超電導前駆体素線の0.2%引張耐力が200MPa以上である化合物超電導前駆体素線を用いると、撚線製造性および超電導特性に優れていた。
 また、実施例1と比較例1の比較、および実施例2と比較例2の比較をすると、安定化材部のビッカース硬さおよび化合物超電導前駆体素線の0.2%引張耐力を制御する調質を施すことによって、化合物超電導前駆体撚線の横断面で、最も変形が大きい化合物超電導前駆体素線の化合物超電導前駆体部の扁平率が0.2以下となり、その結果、撚り戻した化合物超電導素線の臨界電流が、相対的に高い値を維持していた。
 また、比較例3~4に比べて実施例1~2では、化合物超電導前駆体部の異常変形発生頻度が少なく、最も変形した化合物超電導前駆体部の扁平率が小さいことから、本開示の効果により、撚線製造性が向上した。そして、引張応力200MPa印加時の臨界電流(4.2K、14.5T)は、強化材部と複合化することの効果により、強化材部がない場合よりも、3割近く高い値であった。
 なお、上記の実施例のように、Cu-Nb複合材中のNbはフィラメント状にCuマトリックス中に分散させることが有効であるが、CuとNbとをそれぞれシート状に積層させても同様な効果を得ることができる。また、上記の実施例では、化合物超電導前駆体素線や銅素線の表面処理を施していないが、素線表面にCrメッキなどの処理を施すと、化合物超電導前駆体撚線の化合物超電導生成熱処理時に、撚線中で接触する素線表面の無酸素銅部位同士が融着することが無く、化合物超電導撚線自体の可とう性や、超電導マグネット運転において、変動磁場が印加された時に素線間に流れる結合電流による付加的な交流損失発生を抑制することができる。さらに、上記の実施例においては、素線直径、各次の撚り本数、撚りピッチ、撚り次数(多重に撚り合わせる回数)、成型加工後のボイド率について、撚線製造が難しい具体的な数値に対して効果を確認したが、本発明の効果は、これらの数値に限定されるものではなく、化合物超電導撚線の通電容量等の要求特性を満足するために任意に設計された、素線直径、各次撚線の撚り本数、撚りピッチ、撚り次数、ボイド率に対して有効である。
 1 化合物超電導前駆体素線
 2 化合物超電導前駆体撚線
 2a 1次撚線
 2b 2次撚線
 2c 3次撚線
 3 化合物超電導素線
 10 化合物超電導前駆体部
 11 化合物超電導前駆体フィラメント
 12 第一マトリックス前駆体
 20 化合物超電導体部
 21 化合物超電導フィラメント
 22 第一マトリックス
 23 芯部分
 30、30a 強化材部
 31 強化フィラメント
 32 第三マトリックス
 40 安定化材部
 50 Sn拡散防止部
 60 銅素線

Claims (13)

  1.  複数本の化合物超電導前駆体フィラメント、および前記複数本の化合物超電導前駆体フィラメントを埋設し、第一安定化材を含む第一マトリックス前駆体で構成される化合物超電導前駆体部と、
     前記化合物超電導前駆体部の外周側に配置される強化材部と、
     前記強化材部の内周側および外周側の少なくとも一方に配置され、第二安定化材からなる安定化材部と
    を有する化合物超電導前駆体素線であって、
     前記安定化材部のビッカース硬さ(HV)が90以下であり、かつ、前記化合物超電導前駆体素線の0.2%引張耐力が200MPa以上である、化合物超電導前駆体素線。
  2.  前記強化材部が、Nb、Ta、V、W、Mo、Fe、TiおよびHfの群から選択される1種の金属または2種以上の金属で構成される合金もしくは複合材からなる、請求項1に記載の化合物超電導前駆体素線。
  3.  前記強化材部が、複数本の強化フィラメント、および前記複数本の強化フィラメントを埋設し、第三安定化材を含む第三マトリックスで構成される、請求項1に記載の化合物超電導前駆体素線。
  4.  前記強化フィラメントが、Nb、Ta、V、W、Mo、Fe、TiおよびHfの群から選択される1種の金属または2種以上の金属で構成される合金からなり、前記第三安定化材が銅または銅合金である、請求項3に記載の化合物超電導前駆体素線。
  5.  前記化合物超電導前駆体フィラメントがNbSn前駆体であり、前記化合物超電導前駆体部と前記強化材部との間に、NbもしくはTaまたはそれらの合金もしくは複合材からなるSn拡散防止部をさらに有する、請求項1~4のいずれか1項に記載の化合物超電導前駆体素線。
  6.  前記第一安定化材が銅または銅合金である、請求項1~5のいずれか1項に記載の化合物超電導前駆体素線。
  7.  前記第二安定化材が銅または銅合金である、請求項1~6のいずれか1項に記載の化合物超電導前駆体素線。
  8.  前記化合物超電導前駆体素線において、
     前記強化材部の占積率が、5.0%以上40.0%以下、かつ、前記化合物超電導前駆体部の占積率よりも小さく、
     前記強化材部の外周側に配置される前記安定化材部の占積率が15.0%以上である、請求項1~7のいずれか1項に記載の化合物超電導前駆体素線。
  9.  請求項1~8のいずれか1項に記載の化合物超電導前駆体素線を複数本撚り合わせてなる1次撚線を複数本撚り合わせてなる2次撚線を構成要素として有する、化合物超電導前駆体撚線。
  10.  請求項1~8のいずれか1項に記載の化合物超電導前駆体素線の1本または複数本と銅素線または銅合金素線の1本または複数本とを撚り合わせてなる1次撚線を複数本撚り合わせてなる2次撚線を構成要素として有する、化合物超電導前駆体撚線。
  11.  前記銅素線または前記銅合金素線のビッカース硬さ(HV)が90以下である、請求項10に記載の化合物超電導前駆体撚線。
  12.  前記化合物超電導前駆体撚線を構成する前記化合物超電導前駆体素線の1本または複数本の横断面のうち、前記化合物超電導前駆体部の最大扁平率が0超0.2以下である、請求項9~11のいずれか1項に記載の化合物超電導前駆体撚線。
  13.  請求項9~12のいずれか1項に記載の化合物超電導前駆体撚線を加熱させてなる化合物超電導撚線。
PCT/JP2023/008522 2022-03-31 2023-03-07 化合物超電導前駆体素線、化合物超電導前駆体撚線および化合物超電導撚線 WO2023189275A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-061124 2022-03-31
JP2022061124A JP2023151498A (ja) 2022-03-31 2022-03-31 化合物超電導前駆体素線、化合物超電導前駆体撚線および化合物超電導撚線

Publications (1)

Publication Number Publication Date
WO2023189275A1 true WO2023189275A1 (ja) 2023-10-05

Family

ID=88201372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/008522 WO2023189275A1 (ja) 2022-03-31 2023-03-07 化合物超電導前駆体素線、化合物超電導前駆体撚線および化合物超電導撚線

Country Status (2)

Country Link
JP (1) JP2023151498A (ja)
WO (1) WO2023189275A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07141930A (ja) * 1993-10-13 1995-06-02 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Nb3 Sn超電導導体および超電導コイルの製造方法
JPH0982149A (ja) * 1995-09-14 1997-03-28 Kobe Steel Ltd 強度および加工性に優れたNb▲3▼Sn超電導線材
WO2013154187A1 (ja) * 2012-04-12 2013-10-17 古河電気工業株式会社 化合物超電導線及びその製造方法
WO2020066907A1 (ja) * 2018-09-28 2020-04-02 古河電気工業株式会社 絶縁被覆化合物超電導線およびその巻替え方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07141930A (ja) * 1993-10-13 1995-06-02 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Nb3 Sn超電導導体および超電導コイルの製造方法
JPH0982149A (ja) * 1995-09-14 1997-03-28 Kobe Steel Ltd 強度および加工性に優れたNb▲3▼Sn超電導線材
WO2013154187A1 (ja) * 2012-04-12 2013-10-17 古河電気工業株式会社 化合物超電導線及びその製造方法
WO2020066907A1 (ja) * 2018-09-28 2020-04-02 古河電気工業株式会社 絶縁被覆化合物超電導線およびその巻替え方法

Also Published As

Publication number Publication date
JP2023151498A (ja) 2023-10-16

Similar Documents

Publication Publication Date Title
KR102205386B1 (ko) 금속성 초전도성 와이어에 대한 확산 배리어
WO2013154187A1 (ja) 化合物超電導線及びその製造方法
JP2013062239A (ja) Nb3Sn超電導線材及びその製造方法
JP7335886B2 (ja) 絶縁被覆化合物超電導線およびその巻替え方法
US10902978B2 (en) Diffusion barriers for metallic superconducting wires
JP6585519B2 (ja) Nb3Sn超電導線材製造用前駆体、およびNb3Sn超電導線材の製造方法
JP6182577B2 (ja) 化合物系超電導線材の製造方法および化合物系超電導ケーブルの製造方法
KR102423559B1 (ko) 금속성 초전도성 와이어를 위한 확산 배리어
WO2023189275A1 (ja) 化合物超電導前駆体素線、化合物超電導前駆体撚線および化合物超電導撚線
EP2333793B1 (en) Superconductors with improved mechanical strength
JPWO2020066908A1 (ja) 化合物超電導撚線およびその巻替え方法
JP5117166B2 (ja) パルス用NbTi超電導多芯線およびパルス用NbTi超電導成形撚線
WO2013031830A1 (ja) Nb3Sn超電導線材製造用前駆体およびNb3Sn超電導線材
JP4532369B2 (ja) 化合物超電導線材及び化合物超電導ケーブルの製造方法
JP5718171B2 (ja) 化合物超電導撚線の製造方法
JP3754522B2 (ja) Nb▲3▼Sn超電導線材
Potanina et al. Experimental results on the development of superconducting NbTi/Cu-Mn/Cu wires for magnet systems of SIS100 and SIS300 synchrotrons of FAIR
JP5164815B2 (ja) Nb3Sn超電導線材製造用前駆体およびNb3Sn超電導線材
JP2009059652A (ja) ブロンズ法Nb3Sn超電導線材およびその前駆体
WO2023013726A1 (ja) 化合物超電導線用前駆体線、化合物超電導線および化合物超電導線の巻替え方法
JP2004342561A (ja) Nb▲3▼Sn超電導線材
JP2009004128A (ja) ブロンズ法Nb3Sn超電導線材およびその前駆体
JP3585770B2 (ja) 超電導導体およびその製造方法
JP2003045247A (ja) 超電導線材
JP5170897B2 (ja) 平角超電導成形撚線及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23779302

Country of ref document: EP

Kind code of ref document: A1