WO2023182394A1 - 樹脂組成物及び樹脂成形体 - Google Patents

樹脂組成物及び樹脂成形体 Download PDF

Info

Publication number
WO2023182394A1
WO2023182394A1 PCT/JP2023/011367 JP2023011367W WO2023182394A1 WO 2023182394 A1 WO2023182394 A1 WO 2023182394A1 JP 2023011367 W JP2023011367 W JP 2023011367W WO 2023182394 A1 WO2023182394 A1 WO 2023182394A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
resin composition
weight
parts
resin molded
Prior art date
Application number
PCT/JP2023/011367
Other languages
English (en)
French (fr)
Inventor
龍志 松村
郁哉 西川
Original Assignee
積水テクノ成型株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水テクノ成型株式会社 filed Critical 積水テクノ成型株式会社
Publication of WO2023182394A1 publication Critical patent/WO2023182394A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Definitions

  • the present invention relates to a resin composition and a resin molded article using the resin composition.
  • Patent Document 1 listed below discloses a molded body made of resin pellets containing a thermoplastic resin and carbon fibers.
  • the thermoplastic resin is a crystalline resin.
  • the carbon fibers include PAN-based carbon fibers and pitch-based carbon fibers.
  • the mass average fiber length of the carbon fibers in the resin pellets is 0.1 mm to 0.9 mm.
  • the bending strength of the molded body is 280 MPa or more.
  • Patent Document 1 has a problem in that it is difficult to achieve both mechanical strength such as bending strength and electromagnetic shielding performance at a high level when formed into a molded product.
  • An object of the present invention is to provide a resin composition and a resin molded article using the resin composition, which can achieve both high levels of mechanical strength such as bending strength and electromagnetic shielding properties.
  • the resin composition according to the present invention includes a thermoplastic resin (A), carbon black (B), carbon fiber (C), and graphite (D), and the content of the carbon black (B) is The amount is 10 parts by weight or more and 100 parts by weight or less based on 100 parts by weight of the thermoplastic resin (A).
  • the content of the carbon fiber (C) is 10 parts by weight or more and 100 parts by weight or less based on 100 parts by weight of the thermoplastic resin (A).
  • the carbon black (B) has a BET specific surface area of 600 m 2 /g or less.
  • the weight average fiber length of the carbon fibers (C) is 0.5 mm or more and 15 mm or less.
  • the carbon black (B) is oil furnace black.
  • the content of the graphite (D) is 10 parts by weight or more and 200 parts by weight or less based on 100 parts by weight of the thermoplastic resin (A). .
  • the resin composition in a molten state is filled into a mold from a direction perpendicular to the thickness direction of the resin molded body obtained, and the resin composition is molded into a size of 100 mm in length ⁇
  • the electromagnetic wave shielding effect of the resin molded body at a frequency of 100 MHz is 20 dB or more
  • the resin composition is molded in accordance with ISO 294-1 to form a rectangular shape.
  • the bending strength of the rectangular resin molded body measured in accordance with ISO178 is 40 MPa or more.
  • the resin composition in a molten state is filled into a mold from a direction perpendicular to the thickness direction of the resin molded body obtained, and the resin composition is molded into a size of 100 mm in length ⁇
  • the thermal conductivity in the in-plane direction on the main surface of the resin molded body is 1.0 W/(m ⁇ K) or more.
  • the resin molded article according to the present invention is a molded article of a resin composition constructed according to the present invention.
  • the resin molded body has a shape of a heat dissipation chassis, a heat dissipation case, or a heat sink.
  • the present invention it is possible to provide a resin composition that can achieve both mechanical strength such as bending strength and electromagnetic shielding properties at a high level, and a resin molded article using the resin composition.
  • FIG. 1 is a schematic perspective view showing a heat dissipation chassis.
  • FIG. 2 is a schematic perspective view showing the heat dissipation case.
  • FIG. 3 is a schematic perspective view showing the shape of the heat sink.
  • the resin composition of the present invention includes a thermoplastic resin (A), carbon black (B), carbon fiber (C), and graphite (D).
  • the content of the carbon black (B) is 10 parts by weight or more and 100 parts by weight or less based on 100 parts by weight of the thermoplastic resin (A).
  • the resin composition of the present invention contains a thermoplastic resin (A), carbon black (B), carbon fiber (C), and graphite (D), and particularly contains carbon black (B) in the above specific content. Therefore, it is possible to achieve both mechanical strength such as bending strength and electromagnetic shielding performance at a high level.
  • the bending strength of the rectangular resin molded object is preferably 40 MPa or more, more preferably 50 MPa or more, More preferably, it is 60 MPa or more, particularly preferably 90 MPa or more. Further, the upper limit of the bending strength of the resin molded body is not particularly limited, but may be, for example, 250 MPa.
  • Bending strength can be measured in accordance with ISO178.
  • a Tensilon universal testing machine manufactured by Orientec, model number "RTC-1210A" can be used.
  • the electromagnetic shielding effect at a frequency of 100 MHz of the resin molded product obtained under the following molding conditions is preferably 20 dB or more, more preferably 30 dB or more, and still more preferably 40 dB or more.
  • the upper limit of the electromagnetic shielding effect of the resin molded body at a frequency of 100 MHz is, for example, 100 dB, although it is not particularly limited.
  • the resin composition in a molten state is filled into a mold from a direction perpendicular to the thickness direction of the resulting resin molded body and molded to obtain a resin molded body measuring 100 mm long x 100 mm wide x 2 mm thick.
  • the electromagnetic shielding effect (electromagnetic shielding property) at a frequency of 100 MHz can be measured, for example, by the KEC (KEC: abbreviation for "Kansai Electronic Industry Promotion Center”) method.
  • the in-plane thermal conductivity of the main surface of the resin molded body obtained under the above-mentioned molding conditions is preferably 1.0 W/(m ⁇ K) or more, more preferably 1.5 W/(m ⁇ K) or more, more preferably 2.0 W/(m ⁇ K) or more, particularly preferably 3.5 W/(m ⁇ K) or more.
  • the thermal conductivity in the in-plane direction on the main surface of the resin molded body is greater than or equal to the above lower limit, the thermal conductivity of the resulting resin molded body can be further improved.
  • the upper limit of the thermal conductivity in the in-plane direction on the main surface of the resin molded body can be, for example, 50 W/(m ⁇ K).
  • the main surface of the resin molded article refers to the surface with the largest area among the plurality of surfaces on the outer surface of the resin molded article.
  • the thermal conductivity in the in-plane direction on the main surface of the resin molded body can be calculated using the following formula (1).
  • the thermal diffusivity can be measured using, for example, "Xenon Flash Laser Analyzer LFA467 HyperFlash” manufactured by Netsch Japan.
  • thermoplastic resin (A) The thermoplastic resin (A) is not particularly limited, and any known thermoplastic resin can be used. Specific examples of the thermoplastic resin (A) include polyolefin, polystyrene, polyacrylate, polymethacrylate, polyacrylonitrile, polyester, polyamide, polyurethane, polyethersulfone, polyetherketone, polyimide, polydimethylsiloxane, polycarbonate, or these. Examples include copolymers containing at least two of these. These thermoplastic resins may be used alone or in combination. Note that the thermoplastic resin (A) is preferably a resin with a high elastic modulus. Polyolefins (olefin resins) and polyamides (nylon resins) are more preferred, and polyolefins are even more preferred, since they are inexpensive and easy to mold under heating.
  • the polyolefin is not particularly limited, and known polyolefins can be used.
  • Specific examples of polyolefins include polyethylene which is an ethylene homopolymer, ethylene- ⁇ -olefin copolymer, ethylene-(meth)acrylic acid copolymer, ethylene-(meth)acrylic acid ester copolymer, and ethylene-acetic acid.
  • Examples include polyethylene resins such as vinyl copolymers.
  • Polyolefins include polypropylene which is a propylene homopolymer, polypropylene resins such as propylene- ⁇ -olefin copolymers, polybutene which is a butene homopolymer, and homopolymers or copolymers of conjugated dienes such as butadiene and isoprene. etc. These polyolefins may be used alone or in combination. From the viewpoint of further increasing heat resistance and elastic modulus, the polyolefin is preferably polypropylene.
  • the polyolefin (olefin resin) contains an ethylene component.
  • the content of the ethylene component is preferably 5% by mass to 40% by mass. When the content of the ethylene component is within the above range, it is possible to further improve the impact resistance and heat resistance of the resin molded article.
  • the MFR of the thermoplastic resin (A) measured in accordance with JIS K7210 is preferably 10 g/10 minutes or more, more preferably 20 g/10 minutes or more, preferably 200 g/10 minutes or less, and more preferably 150 g/10 minutes. minutes, more preferably 100 g/10 minutes or less, particularly preferably 50 g/10 minutes or less.
  • MFR is within the above range, the fluidity of the thermoplastic resin (A) can be further improved.
  • the content of the thermoplastic resin (A) in the resin composition is preferably 25% by weight or more, more preferably 30% by weight or more, preferably 70% by weight or less, and more preferably 60% by weight or less.
  • the content of the thermoplastic resin (A) is within the above range, the moldability of the resin composition can be further improved.
  • Carbon black (B) As the carbon black (B), for example, Ketjen black, oil furnace black, acetylene black, channel black, thermal black, etc. can be used. Among these, oil furnace black is preferred from the viewpoint of further increasing the conductivity of the resulting resin molded product. Note that the ash content of carbon black (B) is preferably 1% or less. Further, carbon black (B) may contain metal impurities such as Fe and Ni.
  • the BET specific surface area of carbon black (B) is preferably 10 m 2 /g or more, more preferably 30 m 2 /g or more, preferably 1100 m 2 /g or less, more preferably 600 m 2 /g or less, even more preferably 400 m 2 /g or less, particularly preferably 300 m 2 /g or less.
  • the BET specific surface area of carbon black (B) is equal to or greater than the above lower limit, the conductivity of the resulting resin molded article can be further improved, and the electromagnetic shielding properties can be further improved.
  • the BET specific surface area of carbon black (B) is below the above upper limit value, the fluidity of the resin composition during molding can be further improved, and the moldability of the resin composition can be further improved. I can do it.
  • the BET specific surface area can be measured from the nitrogen adsorption isotherm according to the BET method.
  • the measuring device for example, one manufactured by Anton Paar, product number "NOVA touch LX2" can be used.
  • the DBP oil absorption amount of carbon black (B) is not particularly limited, but is preferably 30 ml/100 g or more, more preferably 50 ml/100 g or more, preferably 450 ml/100 g or less, more preferably 400 ml/100 g or less, and even more preferably 300 ml. /100g or less.
  • the DBP oil absorption amount of carbon black (B) is within the above range, the conductivity of the resulting resin molded article can be further improved, and the electromagnetic wave shielding property can be further improved.
  • the DBP oil absorption amount of carbon black (B) can be obtained by calculating the DBP dripping amount at 70% of the maximum torque in accordance with JIS K 6217-4.
  • DBP oil absorption can be measured, for example, using an absorption measuring device (manufactured by Asahi Research Institute, product number "S-500").
  • the primary particle diameter of carbon black (B) is not particularly limited, but is preferably 5 nm or more, more preferably 10 nm or more, preferably 70 nm or less, and more preferably 60 nm or less. When the primary particle diameter of carbon black (B) is within the above range, even higher conductivity can be obtained with an even lower concentration of carbon black.
  • the primary particle diameter of carbon black (B) is, for example, the average primary particle diameter determined using image data of carbon black (B) obtained by a transmission electron microscope.
  • the transmission electron microscope for example, one manufactured by JEOL Ltd. under the product name "JEM-2200FS" can be used.
  • the content of carbon black (B) is 10 parts by weight or more, preferably 15 parts by weight or more, more preferably 20 parts by weight or more, even more preferably 30 parts by weight or more, based on 100 parts by weight of the thermoplastic resin (A).
  • the amount is 100 parts by weight or less, preferably 95 parts by weight or less, more preferably 90 parts by weight or less.
  • carbon black (B) two or more types may be used as the carbon black (B).
  • carbon black with a BET specific surface area of 600 m 2 /g or less and carbon black with a BET specific surface area of more than 600 m 2 /g may be used together.
  • the moldability of the resin composition can be further improved, and the electromagnetic wave shielding properties of the resulting resin molded article can be further improved.
  • the content of carbon black having a BET specific surface area of more than 600 m 2 /g is preferably 1 part by weight or more and 30 parts by weight or less based on 100 parts by weight of the thermoplastic resin (A).
  • Carbon fiber (C) The carbon fiber (C) is not particularly limited, but PAN-based carbon fibers or pitch-based carbon fibers can be used. By using carbon fiber (C), mechanical strength such as bending strength of the resulting resin molded product is improved compared to cases where other conductive fibers, metal fibers, non-conductive fibers, or resin fibers are used. and electromagnetic wave shielding properties can be efficiently improved.
  • the weight average fiber length of the carbon fiber (C) is preferably 0.5 mm or more, more preferably 2 mm or more, even more preferably 5 mm or more, preferably 15 mm or less, more preferably 12 mm or less, and still more preferably 9 mm or less.
  • the weight average fiber length of the carbon fibers (C) is equal to or greater than the above lower limit, it is possible to achieve both mechanical strength such as bending strength and electromagnetic wave shielding properties of the resulting resin molded article at an even higher level.
  • the weight average fiber length of carbon fiber (C) is below the said upper limit, the moldability of a resin composition can be improved further.
  • the weight average fiber length of the carbon fibers (C) can be, for example, the average value of 100 fibers measured using a transmission electron microscope (TEM) or a scanning electron microscope (SEM).
  • TEM transmission electron microscope
  • SEM scanning electron microscope
  • the fiber diameter of the carbon fiber (C) is preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more, preferably 30 ⁇ m or less, more preferably 25 ⁇ m or less, and still more preferably 20 ⁇ m or less.
  • the resulting resin molded product can achieve both mechanical strength such as bending strength and electromagnetic shielding properties at a higher level.
  • the fiber diameter of the carbon fibers (C) can be, for example, the average value of 100 fibers measured using a transmission electron microscope (TEM) or a scanning electron microscope (SEM). From the viewpoint of making observation even easier, a test piece cut out from a resin composition or resin molding is heated at 600°C to remove the resin and observed with a transmission electron microscope (TEM) or scanning electron microscope (SEM). It is desirable to do so.
  • TEM transmission electron microscope
  • SEM scanning electron microscope
  • the content of carbon fiber (C) is preferably 10 parts by weight or more, more preferably 15 parts by weight or more, even more preferably 20 parts by weight or more, particularly preferably 35 parts by weight, based on 100 parts by weight of the thermoplastic resin (A). parts or more, preferably 100 parts by weight or less, more preferably 80 parts by weight or less, still more preferably 70 parts by weight or less.
  • the content of carbon fiber (C) is equal to or higher than the above lower limit, it is possible to achieve both mechanical strength such as bending strength and electromagnetic wave shielding properties of the resulting resin molded article at an even higher level.
  • the content of carbon fiber (C) is below the above-mentioned upper limit, the moldability of the resin composition can be further improved.
  • Graphite (D) is not particularly limited, but plate graphite is preferable.
  • the plate-shaped graphite is not particularly limited as long as it is a plate-shaped graphite, and for example, graphite, exfoliated graphite, graphene, or the like can be used. From the viewpoint of further increasing thermal conductivity and electrical conductivity, graphite or exfoliated graphite is preferable. These may be used alone or in combination.
  • Graphite is a laminate of multiple graphene sheets.
  • the number of laminated graphene sheets of graphite is usually about 100,000 to 1,000,000 layers.
  • scaly graphite can be used.
  • expanded graphite may be used.
  • Exfoliated graphite is obtained by exfoliating original graphite, and refers to a stack of graphene sheets that is thinner than the original graphite.
  • the exfoliation treatment to obtain exfoliated graphite is not particularly limited, and either a mechanical exfoliation method using a supercritical fluid or the like or a chemical exfoliation method using an acid may be used.
  • the number of laminated graphene sheets in exfoliated graphite may be less than that in the original graphite, but is preferably 50 or more layers, more preferably 100 or more layers, preferably 1000 layers or less, more preferably 500 layers or less, and even more preferably is less than 200 layers. When the number of stacked graphene sheets is within the above range, the thermal conductivity and electrical conductivity of the resulting resin molded article can be further improved.
  • the volume average particle diameter of the plate graphite is preferably 5 ⁇ m or more, more preferably 30 ⁇ m or more, even more preferably 60 ⁇ m or more, preferably 1000 ⁇ m or less, more preferably 500 ⁇ m or less, even more preferably 350 ⁇ m or less, particularly preferably 300 ⁇ m or less. be.
  • the volume average particle diameter of the plate-shaped graphite is within the above range, the thermal conductivity and electrical conductivity of the resulting resin molded article can be further improved.
  • the volume average particle diameter of plate-like graphite is below the said upper limit, the bending strength of the resin molded object obtained can be further improved.
  • graphite particles may be used for the plate graphite, or graphite particles of different particle sizes may be used as long as the volume average particle size of the plate graphite contained in the resin composition is within the above range. Two or more types may be used in combination.
  • volume average particle diameter refers to a value calculated based on a volume-based distribution by a laser diffraction method using a laser diffraction/scattering particle size distribution measuring device in accordance with JIS Z 8825:2013.
  • volume average particle diameter for example, plate graphite is placed in a soap solution (containing 0.01% neutral detergent) so that the concentration is 2% by weight, and heated at 300W using an ultrasonic homogenizer. Apply ultrasound at power for 1 minute to obtain a suspension.
  • the volume particle size distribution of the plate-like graphite is measured for the suspension using a laser diffraction/scattering particle size distribution measuring device (manufactured by Nikkiso Co., Ltd., product name "Microtrac MT3300").
  • the cumulative 50% value of this volume particle size distribution can be calculated as the volume average particle size of the plate-like graphite.
  • the thickness of the plate graphite is preferably greater than 1 ⁇ m, more preferably 5 ⁇ m or more, preferably 50 ⁇ m or less, and even more preferably 40 ⁇ m or less. When the thickness of the plate graphite is within the above range, the thermal conductivity and electrical conductivity of the resulting resin molded article can be further improved.
  • the aspect ratio of the plate graphite is preferably 5 or more, more preferably 21 or more, preferably less than 2000, more preferably less than 1000, and even more preferably less than 100.
  • the aspect ratio of the plate-like graphite is within the above range, the thermal conductivity and electrical conductivity of the resulting resin molded article can be further improved.
  • the aspect ratio refers to the ratio of the maximum dimension of the plate-shaped graphite in the direction of the laminated surface to the thickness of the plate-shaped graphite.
  • the thickness of the plate graphite can be measured using, for example, a transmission electron microscope (TEM) or a scanning electron microscope (SEM). From the viewpoint of making observation even easier, a test piece cut out from a resin composition or resin molding is heated at 600°C to remove the resin and observed with a transmission electron microscope (TEM) or scanning electron microscope (SEM). It is desirable to do so. Note that the test piece may be cut along the main surface of the resin molding, or along the direction perpendicular to the main surface of the resin molding, as long as the thickness of the plate graphite can be measured by blowing off the resin. You can cut it out.
  • TEM transmission electron microscope
  • SEM scanning electron microscope
  • the content of graphite (D) is preferably 10 parts by weight or more, more preferably 15 parts by weight or more, preferably 200 parts by weight or less, and more preferably 150 parts by weight or less, based on 100 parts by weight of the thermoplastic resin (A). It is.
  • the content of graphite (D) is at least the above lower limit, thermal conductivity and electrical conductivity can be further improved.
  • content of graphite (D) is below the said upper limit, impact resistance can be improved further.
  • the resin composition of the present invention may contain various other additives as optional components within a range that does not impede the effects of the present invention.
  • additives include phenol-based, phosphorus-based, amine-based, sulfur-based antioxidants; ultraviolet absorbers such as benzotriazole-based and hydroxyphenyltriazine-based; metal damage inhibitors; various fillers; and antistatic agents. ; stabilizers; pigments, etc.
  • the resin composition of the present invention may further contain other conductive fibers, metal fibers, non-conductive fibers, etc., within a range that does not impair mechanical strength such as bending strength or electromagnetic shielding properties of the resin molded product obtained. Alternatively, it may contain resin fibers and the like. These may be used alone or in combination.
  • the resin composition of the present invention can be produced by melt-kneading a thermoplastic resin (A), carbon black (B), carbon fiber (C), graphite (D), and other additives as necessary. Obtainable.
  • the melt-kneading method is not particularly limited, but for example, a kneading device such as a twin-screw kneader such as a plastomill, a single-screw extruder, a twin-screw extruder, a Banbury mixer, a roll, a pressure kneader, etc.
  • a kneading device such as a twin-screw kneader such as a plastomill, a single-screw extruder, a twin-screw extruder, a Banbury mixer, a roll, a pressure kneader, etc.
  • a method of kneading at the bottom Among these, a method of melt-kneading using an extruder is preferred.
  • the form of the resin composition is not particularly limited, but may be in the form of pellets, for example.
  • the shape is not particularly limited, but examples include spherical, cylindrical, and prismatic shapes. Among these, a cylindrical shape is preferable from the viewpoint of stability of the pellet shape.
  • the diameter thereof is preferably 0.5 mm or more, more preferably 1 mm or more, and preferably 5 mm or less, more preferably 3 mm or less.
  • the length is preferably 1 mm or more, more preferably 3 mm or more, and preferably 10 mm or less, more preferably 7 mm or less.
  • the size of the pellets can be measured by randomly sampling 100 pellets from a sample and using calipers.
  • the diameter (pellet diameter) of the pellets of the resin composition other than the cylindrical shape is preferably 1 mm or more, more preferably 5 mm or more, preferably 15 mm or less, and more preferably 10 mm or less.
  • the pellet diameter can be determined by randomly sampling 100 pellets from a sample and measuring the diameter at the longest point using calipers.
  • the resin molded article of the present invention is a molded article of the resin composition of the present invention described above. Therefore, the resin molded article of the present invention can be obtained by molding the resin composition described above.
  • the resin molded article of the present invention uses the resin composition of the present invention, it is possible to achieve both mechanical strength such as bending strength and electromagnetic shielding performance at a high level.
  • the method for molding the resin composition is not particularly limited, but examples include methods such as press processing, extrusion processing, extrusion lamination, and injection molding. Among these, it is preferable to mold the mixture by injection molding.
  • the bending strength of the resin molded body is preferably 40 MPa or more, more preferably 50 MPa or more, even more preferably 60 MPa or more, and particularly preferably 90 MPa or more. Further, the upper limit of the bending strength of the resin molded body is not particularly limited, but may be, for example, 250 MPa.
  • the electromagnetic shielding effect of the resin molded body at a frequency of 100 MHz is preferably 20 dB or more, more preferably 30 dB or more, and still more preferably 40 dB or more.
  • the upper limit of the electromagnetic shielding effect of the resin molded body at a frequency of 100 MHz is, for example, 100 dB, although it is not particularly limited.
  • the in-plane thermal conductivity of the main surface of the resin molded body is preferably 1.0 W/(m ⁇ K) or more, more preferably 1.5 W/(m ⁇ K) or more, and even more preferably It is 2.0 W/(m ⁇ K) or more, particularly preferably 3.5 W/(m ⁇ K) or more.
  • the upper limit of the thermal conductivity in the in-plane direction on the main surface of the resin molded body can be, for example, 50 W/(m ⁇ K).
  • the resin molded article of the present invention when measuring the bending strength, electromagnetic shielding effect, thermal conductivity, and volume resistivity of the resin molded article of the present invention, the resin molded article is melted and then remolded under the following molding conditions. shall be.
  • the resin composition in a molten state is filled into a mold from a direction perpendicular to the thickness direction of the resulting resin molded body and molded to obtain a resin molded body measuring 100 mm long x 100 mm wide x 2 mm thick.
  • the resin molded article of the present invention has excellent electromagnetic shielding properties, it can be suitably used for the housings of communication devices that require electromagnetic shielding properties, and electronic devices such as smart meters and in-vehicle ECUs.
  • the resin molded article of the present invention also has excellent heat dissipation properties. Therefore, the resin molded body of the present invention may be, for example, a heat dissipation chassis 10 as shown in FIG. 1, a heat dissipation case 20 as shown in FIG. 2, or a heat sink 30 as shown in FIG.
  • a circuit may be formed on the surface of such a resin molded body.
  • Example 1 100 parts by weight of polypropylene (PP) as a thermoplastic resin (A), 30 parts by weight of oil furnace black as carbon black (B), 40 parts by weight of PAN-based carbon fiber as carbon fiber (C), and graphite (
  • a resin composition was obtained by melt-kneading 120 parts by weight of flaky graphite as D) at 180° C. using a Laboplast Mill (manufactured by Toyo Seiki Co., Ltd., product number “R100”). Note that the obtained resin composition was in the form of pellets, and the pellet diameter was 3 mm. The pellet diameter was determined by randomly sampling 100 pellets from the sample and measuring the diameter at the longest point using a caliper.
  • polypropylene a product manufactured by Nippon Polypro Co., Ltd. under the trade name "BC03B” (MFR: 30 g/10 min (230° C.)) was used.
  • oil furnace black "Vulcan As the PAN-based carbon fiber, a product manufactured by Mitsubishi Chemical Corporation under the trade name “TR06U” (weight average fiber length: 6 mm, fiber diameter: 7 ⁇ m) was used.
  • flaky graphite Chuetsu Graphite Industries Co., Ltd., trade name "CPB-300” (volume average particle diameter: 300 ⁇ m) was used.
  • Example 2 As carbon black (B), oil furnace black (manufactured by Asahi Carbon Co., Ltd., trade name “F-200GS”, BET specific surface area: 55 m 2 / g, DBP oil absorption: 180 ml / 100 g, primary particle size: 38 nm) was used. Specifically, as graphite (D), flaky graphite (manufactured by Chuetsu Graphite Industries, trade name "CPB-100B", volume average particle diameter: 80 ⁇ m) was used, and carbon black (B) and carbon fiber (C) A resin composition was obtained in the same manner as in Example 1, except that the contents of , and graphite (D) were changed as shown in Table 1 below.
  • Example 3 As the carbon fiber (C), pitch-based carbon fiber (manufactured by Mitsubishi Chemical Corporation, product name "K237SE”, weight average fiber length: 6 mm, fiber diameter: 11 ⁇ m) was used, and carbon black (B), carbon fiber ( A resin composition was obtained in the same manner as in Example 2, except that the contents of C) and graphite (D) were changed as shown in Table 1 below.
  • Example 4 The resin composition was prepared in the same manner as in Example 1, except that oil furnace black (manufactured by Lion Specialty Chemicals, trade name “Lionite CB", BET specific surface area: 1052 m 2 /g) was used as carbon black (B). I got something.
  • oil furnace black manufactured by Lion Specialty Chemicals, trade name "Lionite CB", BET specific surface area: 1052 m 2 /g
  • Example 5 A resin composition was obtained in the same manner as in Example 1, except that the content of carbon fiber (C) was changed to 20 parts by weight as shown in Table 1 below.
  • Example 6 A resin composition was obtained in the same manner as in Example 1, except that the content of graphite (D) was changed to 200 parts by weight as shown in Table 1 below.
  • Example 7 The procedure was carried out except that flaky graphite (manufactured by Nippon Graphite Industries Co., Ltd., trade name "FB-150", volume average particle diameter: 45 ⁇ m) was used as graphite (D) instead of the flaky graphite of Example 1.
  • a resin composition was obtained in the same manner as in Example 1.
  • Example 8 The procedure was carried out except that expanded graphite (manufactured by Fuji Graphite Industries Co., Ltd., trade name "AED-02", volume average particle diameter: 1000 ⁇ m) was used as graphite (D) instead of the flaky graphite of Example 1.
  • a resin composition was obtained in the same manner as in Example 1.
  • Example 1 A resin composition was prepared in the same manner as in Example 1, except that carbon fiber (C) and graphite (D) were not used, and the content of carbon black (B) was changed as shown in Table 1 below. Obtained.
  • Example 3 A resin composition was prepared in the same manner as in Example 2, except that carbon black (B) and carbon fiber (C) were not used, and the content of graphite (D) was changed as shown in Table 1 below. Obtained.
  • Example 5 A resin composition was prepared in the same manner as in Example 1, except that graphite (D) was not used and the contents of carbon black (B) and carbon fiber (C) were changed as shown in Table 1 below. Obtained.
  • the bending strength of the obtained measurement sample was measured in accordance with ISO178.
  • the bending strength was measured using a Tensilon universal testing machine (manufactured by Orientec, model number "RTC-1210A").
  • the resin compositions obtained in Examples 1 to 8 and Comparative Examples 1 to 5 were injection molded to obtain resin molded bodies measuring 100 mm long x 100 mm wide x 2 mm thick, which were used as measurement samples.
  • the injection molding was performed under the conditions of a resin temperature of 230° C., a mold temperature of 50° C., and an injection speed of 30 mm/s.
  • the electromagnetic shielding effect (electromagnetic shielding performance, unit: dB) of the obtained measurement sample at a frequency of 100 MHz was measured using a KEC method electric field shielding characteristic measurement jig (manufactured by Nippon Shield Enclosure Co., Ltd.). Specifically, electromagnetic waves were emitted from the focal point on the transmitting side, and the intensity of the electromagnetic waves converged on the focal point on the receiving side was measured as the received voltage. The received voltage V 0 when no sample was inserted and the received voltage V when the sample was inserted were measured, and the electromagnetic shielding effect was calculated according to the following equation (2).
  • Electromagnetic shielding effect 20 x log 10 (V 0 /V)...Formula (2)
  • spiral flow flow length The fluidity of the resin compositions obtained in Examples 1 to 8 and Comparative Examples 1 to 5 was evaluated as spiral flow flow length. Specifically, injection molding was performed at a cylinder temperature of 230°C, a mold temperature of 40°C, and an injection pressure of 150 MPa using a mold for measuring resin flow length having an Archimedean spiral flow path with a width of 20 mm and a thickness of 2 mm. The flow length was measured when this was carried out.
  • the resin compositions obtained in Examples 1 to 8 and Comparative Examples 1 to 5 were injection molded to obtain resin molded bodies measuring 100 mm long x 100 mm wide x 2 mm thick. The center part of the obtained resin molded body was punched out into a size of 10 mm long x 2 mm wide x 2 mm thick to prepare a measurement sample. The injection molding was performed under the conditions of a resin temperature of 230° C., a mold temperature of 50° C., and an injection speed of 30 mm/s.
  • the thermal conductivity (in-plane direction) of the obtained measurement sample was measured using a product number "Xenon Flash Laser Analyzer LFA467 HyperFlash” manufactured by Netsch Japan Co., Ltd. Specifically, the measurement sample was fitted into a holder in a direction in which the thermal conductivity could be measured, the thermal diffusivity at 30° C. was measured, and the thermal conductivity was calculated according to the following equation (1).
  • the molded bodies of the resin compositions of Examples 1 to 8 had a bending strength of 90 MPa or more and an electromagnetic shielding performance of 45 dB or more. Further, as is clear from Table 2, the molded bodies of the resin compositions of Comparative Examples 1, 3, and 4 have a bending strength of 60 MPa or less, and the molded bodies of the resin compositions of Comparative Examples 1 to 5 have electromagnetic shielding. The performance was 35 dB or less. Therefore, it was confirmed that the resin compositions of Examples 1 to 8 were able to achieve both mechanical strength and electromagnetic shielding properties at a higher level than the resin compositions of Comparative Examples 1 to 5. Furthermore, it was confirmed that the resin compositions of Examples 1 to 3, 5, and 7 were able to improve the fluidity of the resin composition during molding, and had excellent moldability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

曲げ強度などの機械的強度と電磁波シールド性とを高いレベルで両立することができる、樹脂組成物を提供する。 熱可塑性樹脂(A)と、カーボンブラック(B)と、炭素繊維(C)と、黒鉛(D)とを含み、カーボンブラック(B)の含有量が、熱可塑性樹脂(A)100重量部に対し、10重量部以上、100重量部以下である、樹脂組成物。

Description

樹脂組成物及び樹脂成形体
 本発明は、樹脂組成物及び該樹脂組成物を用いた樹脂成形体に関する。
 従来、屋内外で使用する通信機器や、防犯カメラ又はスマートメータなどの電子機器の筐体、カーナビ、スマートメータなどのマルチインフォメーションディスプレイ、車載カメラの放熱シャーシ、LED放熱ヒートシンク、SoC、あるいはGDC等の放熱板には、金属板や、熱伝導性を有する樹脂成形体などが用いられている。なお、SoCとは「System-on-a-chip」のことをいい、GDCとは「Graphics Display Controller」のことをいう。
 下記の特許文献1には、熱可塑性樹脂及び炭素繊維を含む樹脂ペレットを成形した、成形体が開示されている。特許文献1では、上記熱可塑性樹脂は、結晶性樹脂である。上記炭素繊維は、PAN系炭素繊維及びピッチ系炭素繊維を含む。樹脂ペレット中の炭素繊維の質量平均繊維長は、0.1mm~0.9mmである。また、上記成形体の曲げ強度は、280MPa以上である。
特開2020-079412号公報
 近年、CPUの高速化に伴い、従来よりも高い電磁波シールド性を有する樹脂成形体が求められている。
 しかしながら、特許文献1のような樹脂組成物は、成形体にしたときに、曲げ強度等の機械的強度と電磁波シールド性とを高いレベルで両立することが難しいという問題がある。
 本発明の目的は、曲げ強度などの機械的強度と電磁波シールド性とを高いレベルで両立することができる、樹脂組成物及び該樹脂組成物を用いた樹脂成形体を提供することにある。
 本発明に係る樹脂組成物は、熱可塑性樹脂(A)と、カーボンブラック(B)と、炭素繊維(C)と、黒鉛(D)とを含み、前記カーボンブラック(B)の含有量が、前記熱可塑性樹脂(A)100重量部に対し、10重量部以上、100重量部以下である。
 本発明に係る樹脂組成物のある特定の局面では、前記炭素繊維(C)の含有量が、前記熱可塑性樹脂(A)100重量部に対し、10重量部以上、100重量部以下である。
 本発明に係る樹脂組成物の他の特定の局面では、前記カーボンブラック(B)のBET比表面積が、600m/g以下である。
 本発明に係る樹脂組成物のさらに他の特定の局面では、前記炭素繊維(C)の重量平均繊維長が、0.5mm以上、15mm以下である。
 本発明に係る樹脂組成物のさらに他の特定の局面では、前記カーボンブラック(B)が、オイルファーネスブラックである。
 本発明に係る樹脂組成物のさらに他の特定の局面では、前記黒鉛(D)の含有量が、前記熱可塑性樹脂(A)100重量部に対し、10重量部以上、200重量部以下である。
 本発明に係る樹脂組成物のさらに他の特定の局面では、金型内に溶融状態の前記樹脂組成物を得られる樹脂成形体の厚み方向に直交する方向から充填させて成形し、縦100mm×横100mm×厚み2mmの樹脂成形体を得たときに、前記樹脂成形体の周波数100MHzにおける電磁波シールド効果が、20dB以上であり、前記樹脂組成物をISO294-1に準拠して成形し、短冊形樹脂成形体を得たときに、前記短冊形樹脂成形体のISO178に準拠して測定された曲げ強度が40MPa以上である。
 本発明に係る樹脂組成物のさらに他の特定の局面では、金型内に溶融状態の前記樹脂組成物を得られる樹脂成形体の厚み方向に直交する方向から充填させて成形し、縦100mm×横100mm×厚み2mmの樹脂成形体を得たときに、前記樹脂成形体の主面における面内方向の熱伝導率が、1.0W/(m・K)以上である。
 本発明に係る樹脂成形体は、本発明に従って構成される樹脂組成物の成形体である。
 本発明に係る樹脂成形体のある特定の局面では、前記樹脂成形体が、放熱シャーシ、放熱筐体、又はヒートシンク形状である。
 本発明によれば、曲げ強度などの機械的強度と電磁波シールド性とを高いレベルで両立することができる、樹脂組成物及び該樹脂組成物を用いた樹脂成形体を提供することができる。
図1は、放熱シャーシを示す模式的斜視図である。 図2は、放熱筐体を示す模式的斜視図である。 図3は、ヒートシンク形状を示す模式的斜視図である。
 以下、本発明の詳細を説明する。
 [樹脂組成物]
 本発明の樹脂組成物は、熱可塑性樹脂(A)と、カーボンブラック(B)と、炭素繊維(C)と、黒鉛(D)とを含む。上記カーボンブラック(B)の含有量は、前記熱可塑性樹脂(A)100重量部に対し、10重量部以上、100重量部以下である。
 本発明の樹脂組成物は、熱可塑性樹脂(A)と、カーボンブラック(B)と、炭素繊維(C)と、黒鉛(D)とを含み、特にカーボンブラック(B)を上記特定の含有量で含むので、曲げ強度などの機械的強度と電磁波シールド性とを高いレベルで両立することができる。
 本発明の樹脂組成物をISO294-1に準拠して成形し、短冊形樹脂成形体を得たときに、該短冊形樹脂成形体の曲げ強度は、好ましくは40MPa以上、より好ましくは50MPa以上、さらに好ましくは60MPa以上、特に好ましくは90MPa以上である。また、上記樹脂成形体の曲げ強度の上限値は、特に制限されないが、例えば、250MPaとすることができる。
 曲げ強度は、ISO178に準拠して測定することができる。曲げ強度の測定には、例えば、テンシロン万能試験機(オリエンテック社製、型番「RTC-1210A」)を用いることができる。
 本発明においては、下記の成形条件で得られた樹脂成形体の周波数100MHzにおける電磁波シールド効果が、好ましくは20dB以上、より好ましくは30dB以上、さらに好ましくは40dB以上である。また、樹脂成形体の周波数100MHzにおける電磁波シールド効果の上限値は、特に限定されないが、例えば、100dBである。
 <成形条件>
 金型内に溶融状態の樹脂組成物を得られる樹脂成形体の厚み方向に直交する方向から充填させて成形し、縦100mm×横100mm×厚み2mmの樹脂成形体を得る。
 周波数100MHzにおける電磁波シールド効果(電磁波遮蔽性)は、例えば、KEC(KEC:「関西電子工業振興センター」の略称)法により測定することができる。
 本発明において、上述の成形条件で得られた樹脂成形体の主面における面内方向の熱伝導率は、好ましくは1.0W/(m・K)以上、より好ましくは1.5W/(m・K)以上、さらに好ましくは2.0W/(m・K)以上、特に好ましくは3.5W/(m・K)以上である。樹脂成形体の主面における面内方向の熱伝導率が上記下限値以上である場合、得られる樹脂成形体の熱伝導性をより一層向上させることができる。また、樹脂成形体の主面における面内方向の熱伝導率の上限値は、例えば、50W/(m・K)とすることができる。なお、樹脂成形体の主面とは、樹脂成形体の外表面における複数の面のうち最も面積の大きい面のことをいうものとする。
 樹脂成形体の主面における面内方向の熱伝導率は、下記式(1)を用いて計算することができる。
 熱伝導率(W/(m・K))=比重(g/cm)×比熱(J/g・K)×熱拡散率(mm/s)…式(1)
 熱拡散率は、例えば、ネッチジャパン社製、「キセノンフラッシュレーザーアナライザ LFA467 HyperFlash」を用いて測定することができる。
 以下、樹脂組成物の各成分について、詳細に説明する。
 (熱可塑性樹脂(A))
 熱可塑性樹脂(A)としては、特に限定されず、公知の熱可塑性樹脂を用いることができる。熱可塑性樹脂(A)の具体例としては、ポリオレフィン、ポリスチレン、ポリアクリレート、ポリメタクリレート、ポリアクリロニトリル、ポリエステル、ポリアミド、ポリウレタン、ポリエーテルスルホン、ポリエーテルケトン、ポリイミド、ポリジメチルシロキサン、ポリカーボネート、又はこれらのうち少なくとも2種を含む共重合体などが挙げられる。これらの熱可塑性樹脂は、単独で用いてもよく、複数を併用してもよい。なお、熱可塑性樹脂(A)としては、弾性率の高い樹脂であることが好ましい。安価であり、加熱下での成形が容易であることから、ポリオレフィン(オレフィン系樹脂)及びポリアミド(ナイロン系樹脂)がより好ましく、ポリオレフィンがさらに好ましい。
 ポリオレフィンとしては、特に限定されず、公知のポリオレフィンを用いることができる。ポリオレフィンの具体例としては、エチレン単独重合体であるポリエチレン、エチレン-α-オレフィン共重合体、エチレン-(メタ)アクリル酸共重合体、エチレン-(メタ)アクリル酸エステル共重合体、エチレン-酢酸ビニル共重合体などのポリエチレン系樹脂が挙げられる。また、ポリオレフィンは、プロピレン単独重合体であるポリプロピレン、プロピレン-α-オレフィン共重合体などのポリプロピレン系樹脂、ブテン単独重合体であるポリブテン、ブタジエン、イソプレンなどの共役ジエンの単独重合体又は共重合体などであってもよい。これらのポリオレフィンは、単独で用いてもよく、複数を併用してもよい。耐熱性や弾性率をより一層高める観点から、ポリオレフィンとしては、ポリプロピレンであることが好ましい。
 また、ポリオレフィン(オレフィン系樹脂)は、エチレン成分を含有していることが好ましい。エチレン成分の含有量は、5質量%~40質量%であることが好ましい。エチレン成分の含有量が、上記範囲内にある場合、樹脂成形体の耐衝撃性をより一層高めつつ、耐熱性をより一層高めることができる。
 熱可塑性樹脂(A)のJIS K7210に準拠して測定されたMFRは、好ましくは10g/10分以上、より好ましくは20g/10分以上、好ましくは200g/10分以下、より好ましくは150g/10分以下、さらに好ましくは100g/10分以下、特に好ましくは50g/10分以下である。MFRが上記範囲内にある場合、熱可塑性樹脂(A)の流動性をより一層高めることができる。
 樹脂組成物中における熱可塑性樹脂(A)の含有量は、好ましくは25重量%以上、より好ましくは30重量%以上、好ましくは70重量%以下、より好ましくは60重量%以下である。熱可塑性樹脂(A)の含有量が上記範囲内にある場合、樹脂組成物の成形性をより一層高めることができる。
 (カーボンブラック(B))
 カーボンブラック(B)としては、例えば、ケッチェンブラック、オイルファーネスブラック、アセチレンブラック、チャンネルブラック、サーマルブラックなどを用いることができる。なかでも、得られる樹脂成形体の導電性をより一層高める観点から、オイルファーネスブラックであることが好ましい。なお、カーボンブラック(B)の灰分は、1%以下であることが好ましい。また、カーボンブラック(B)は、Fe、Niなどの金属不純物を含有していてもよい。
 カーボンブラック(B)のBET比表面積は、好ましくは10m/g以上、より好ましくは30m/g以上、好ましくは1100m/g以下、より好ましくは600m/g以下、さらに好ましくは400m/g以下、特に好ましくは300m/g以下である。カーボンブラック(B)のBET比表面積が上記下限値以上である場合、得られる樹脂成形体の導電性をより一層高めることができ、電磁波シールド性をより一層高めることができる。また、カーボンブラック(B)のBET比表面積が上記上限値以下である場合、成形時における樹脂組成物の流動性をより一層向上させることができ、樹脂組成物の成形性をより一層向上させることができる。
 BET比表面積は、BET法に準拠して、窒素の吸着等温線から測定することができる。測定装置としては、例えば、アントンパール社製、品番「NOVAtouchLX2」を用いることができる。
 カーボンブラック(B)のDBP吸油量は、特に限定されないが、好ましくは30ml/100g以上、より好ましくは50ml/100g以上、好ましくは450ml/100g以下、より好ましくは400ml/100g以下、さらに好ましくは300ml/100g以下である。カーボンブラック(B)のDBP吸油量が上記範囲内である場合、得られる樹脂成形体の導電性をより一層高めることができ、電磁波シールド性をより一層高めることができる。
 本明細書において、カーボンブラック(B)のDBP吸油量は、JIS K 6217-4に準拠して最大トルクの70%でDBP滴下量を算出することにより得ることができる。DBP吸油量は、例えば、吸収量測定器(あさひ総研社製、品番「S-500」)を用いて測定することができる。
 カーボンブラック(B)の一次粒子径は、特に限定されないが、好ましくは5nm以上、より好ましくは10nm以上、好ましくは70nm以下、より好ましくは60nm以下である。カーボンブラック(B)の一次粒子径が上記範囲内にある場合、より一層低濃度のカーボンブラック含有量でより一層高い導電性を得ることができる。
 なお、本明細書において、カーボンブラック(B)の一次粒子径は、例えば、透過型電子顕微鏡により得られたカーボンブラック(B)の画像データを用いて求めた平均一次粒子径である。透過型電子顕微鏡としては、例えば、日本電子社製、製品名「JEM-2200FS」を用いることができる。
 カーボンブラック(B)の含有量は、熱可塑性樹脂(A)100重量部に対し、10重量部以上、好ましくは15重量部以上、より好ましくは20重量部以上、さらに好ましくは30重量部以上、100重量部以下、好ましくは95重量部以下、より好ましくは90重量部以下である。カーボンブラック(B)の含有量が上記下限値以上である場合、得られる樹脂成形体の導電性をより一層高めることができ、電磁波シールド性をより一層高めることができる。また、カーボンブラック(B)の含有量が上記上限値以下である場合、樹脂組成物の成形性をより一層高めることができる。
 なお、カーボンブラック(B)として、2種以上のカーボンブラックを用いてもよい。例えば、BET比表面積が600m/g以下のカーボンブラックと、BET比表面積が600m/gより大きいカーボンブラックとを併用してもよい。この場合、樹脂組成物の成形性をより一層向上させることができ、得られる樹脂成形体の電磁波シールド性をより一層高めることができる。なお、BET比表面積が600m/gより大きいカーボンブラックは、添加量が多すぎると樹脂組成物の流動性や成形性が悪化することがある。そのため、BET比表面積が600m/gより大きいカーボンブラックの含有量は、熱可塑性樹脂(A)100重量部に対し、1重量部以上、30重量部以下とすることが好ましい。
 (炭素繊維(C))
 炭素繊維(C)としては、特に限定されないが、PAN系炭素繊維又はピッチ系炭素繊維などを用いることができる。炭素繊維(C)を用いることにより、他の導電性繊維や、金属繊維、非導電性繊維、あるいは樹脂繊維を用いた場合と比較して、得られる樹脂成形体の曲げ強度などの機械的強度と電磁波シールド性とを効率よく高めることができる。
 炭素繊維(C)の重量平均繊維長は、好ましくは0.5mm以上、より好ましくは2mm以上、さらに好ましくは5mm以上、好ましくは15mm以下、より好ましくは12mm以下、さらに好ましくは9mm以下である。炭素繊維(C)の重量平均繊維長が上記下限値以上である場合、得られる樹脂成形体の曲げ強度などの機械的強度と電磁波シールド性とをより一層高いレベルで両立することができる。また、炭素繊維(C)の重量平均繊維長が上記上限値以下である場合、樹脂組成物の成形性をより一層向上させることができる。
 なお、炭素繊維(C)の重量平均繊維長は、例えば、透過型電子顕微鏡(TEM)や走査型電子顕微鏡(SEM)を用いて測定した100個の平均値とすることができる。
 炭素繊維(C)の繊維径は、好ましくは3μm以上、より好ましくは5μm以上、好ましくは30μm以下、より好ましくは25μm以下、さらに好ましくは20μm以下である。炭素繊維(C)の繊維径が上記範囲内にある場合、得られる樹脂成形体の曲げ強度などの機械的強度と電磁波シールド性とをより一層高いレベルで両立することができる。
 なお、炭素繊維(C)の繊維径は、例えば、透過型電子顕微鏡(TEM)や走査型電子顕微鏡(SEM)を用いて測定した100個の平均値とすることができる。より一層観察し易くする観点から、樹脂組成物又は樹脂成形体から切り出した試験片を600℃で加熱することで樹脂を飛ばして透過型電子顕微鏡(TEM)又は走査型電子顕微鏡(SEM)で観察することが望ましい。
 炭素繊維(C)の含有量は、熱可塑性樹脂(A)100重量部に対し、好ましくは10重量部以上、より好ましくは15重量部以上、さらに好ましくは20重量部以上、特に好ましくは35重量部以上であり、好ましくは100重量部以下、より好ましくは80重量部以下、さらに好ましくは70重量部以下である。炭素繊維(C)の含有量が上記下限値以上である場合、得られる樹脂成形体の曲げ強度などの機械的強度と電磁波シールド性とをより一層高いレベルで両立することができる。また、炭素繊維(C)の含有量が上記上限値以下である場合、樹脂組成物の成形性をより一層向上させることができる。
 (黒鉛(D))
 黒鉛(D)としては、特に限定されないが、板状黒鉛であることが好ましい。板状黒鉛としては、板状の黒鉛である限りにおいて特に限定されず、例えば、黒鉛、薄片化黒鉛、又はグラフェンなどを用いることができる。熱伝導性及び導電性をより一層高める観点から、好ましくは黒鉛又は薄片化黒鉛である。これらは、単独で用いてもよく、複数を併用してもよい。
 黒鉛とは、複数のグラフェンシートの積層体である。黒鉛のグラフェンシートの積層数は、通常、10万層~100万層程度である。このような黒鉛としては、例えば、鱗片状黒鉛を用いることができる。難燃性をより一層高める観点から、膨張黒鉛であってもよい。
 薄片化黒鉛とは、元の黒鉛を剥離処理して得られるものであり、元の黒鉛よりも薄いグラフェンシート積層体をいう。薄片化黒鉛にするための剥離処理としては、特に限定されず、超臨界流体などを用いた機械的剥離法、あるいは酸を用いた化学的剥離法のいずれを用いてもよい。薄片化黒鉛におけるグラフェンシートの積層数は、元の黒鉛より少なければよいが、好ましくは50層以上、より好ましくは100層以上であり、好ましくは1000層以下、より好ましくは500層以下、さらに好ましくは200層以下である。グラフェンシートの積層数が上記範囲内にある場合、得られる樹脂成形体の熱伝導性及び導電性をより一層向上させることができる。
 板状黒鉛の体積平均粒子径は、好ましくは5μm以上、より好ましくは30μm以上、さらに好ましくは60μm以上、好ましくは1000μm以下、より好ましくは500μm以下、さらに好ましくは350μm以下、特に好ましくは300μm以下である。板状黒鉛の体積平均粒子径が、上記範囲内にある場合、得られる樹脂成形体の熱伝導性及び導電性をより一層向上させることができる。また、板状黒鉛の体積平均粒子径が上記上限値以下である場合、得られる樹脂成形体の曲げ強度をより一層向上させることができる。また、板状黒鉛は、1種類の黒鉛粒子を使用してもよいし、樹脂組成物に含まれる板状黒鉛の体積平均粒子径が上記の範囲内であれば、異なる粒径の黒鉛粒子を2種類以上組み合わせて使用してもよい。
 なお、体積平均粒子径とは、JIS Z 8825:2013に準拠し、レーザー回折/散乱式粒度分布測定装置を用いて、レーザー回折法により、体積基準分布で算出した値をいう。
 体積平均粒子径の測定に際しては、例えば、板状黒鉛をその濃度が2重量%となるように石鹸水溶液(中性洗剤:0.01%含有)に投入し、超音波ホモジナイザーを用いて300Wの出力で超音波を1分間照射し、懸濁液を得る。次に、懸濁液についてレーザー回折/散乱式粒度分布測定装置(日機装社製、製品名「マイクロトラックMT3300」)により板状黒鉛の体積粒子径分布を測定する。この体積粒子径分布の累積50%の値を板状黒鉛の体積平均粒子径として算出することができる。
 板状黒鉛の厚みは、好ましくは1μmより大きく、より好ましくは5μm以上、好ましくは50μm以下、より好ましくは40μm以下である。板状黒鉛の厚みが上記範囲内である場合、得られる樹脂成形体の熱伝導性及び導電性をより一層高めることができる。
 板状黒鉛のアスペクト比は、好ましくは5以上、より好ましくは21以上、好ましくは2000未満、より好ましくは1000未満、さらに好ましくは100未満である。板状黒鉛のアスペクト比が、上記範囲内にある場合、得られる樹脂成形体の熱伝導性及び導電性をより一層高めることができる。なお、本明細書において、アスペクト比とは、板状黒鉛の厚みに対する板状黒鉛の積層面方向における最大寸法の比をいう。
 なお、板状黒鉛の厚みは、例えば、透過型電子顕微鏡(TEM)や走査型電子顕微鏡(SEM)を用いて測定することができる。より一層観察し易くする観点から、樹脂組成物又は樹脂成形体から切り出した試験片を600℃で加熱することで樹脂を飛ばして透過型電子顕微鏡(TEM)又は走査型電子顕微鏡(SEM)で観察することが望ましい。なお、試験片は、樹脂を飛ばして板状黒鉛の厚みを測定できる限り、樹脂成形体の主面に沿う方向に沿って切り出してもよく、樹脂成形体の主面に直交する方向に沿って切り出してもよい。
 黒鉛(D)の含有量は、熱可塑性樹脂(A)100重量部に対し、好ましくは10重量部以上、より好ましくは15重量部以上、好ましくは200重量部以下、より好ましくは150重量部以下である。黒鉛(D)の含有量が上記下限値以上である場合、熱伝導性及び導電性をより一層高めることができる。また、黒鉛(D)の含有量が上記上限値以下である場合、耐衝撃性をより一層高めることができる。
 (その他添加剤)
 本発明の樹脂組成物は、本発明の効果を阻害しない範囲において、任意成分として様々なその他添加剤を含んでいてもよい。添加剤としては、例えば、フェノール系、リン系、アミン系、イオウ系などの酸化防止剤;ベンゾトリアゾール系、ヒドロキシフェニルトリアジン系などの紫外線吸収剤;金属害防止剤;各種充填剤;帯電防止剤;安定剤;顔料などが挙げられる。また、本発明の樹脂組成物は、得られる樹脂成形体の曲げ強度などの機械的強度や電磁波シールド性等を損なわない範囲で、さらに他の導電性繊維や、金属繊維、非導電性繊維、あるいは樹脂繊維などを含んでいてもよい。これらは、1種を単独で用いてもよく、複数種を併用してもよい。
 (樹脂組成物の製造方法)
 本発明の樹脂組成物は、熱可塑性樹脂(A)と、カーボンブラック(B)と、炭素繊維(C)と、黒鉛(D)と、必要に応じてその他添加剤とを溶融混練することにより得ることができる。
 溶融混練の方法については、特に限定されないが、例えば、プラストミルなどの二軸スクリュー混練機、単軸押出機、二軸押出機、バンバリーミキサー、ロール、加圧式ニーダーなどの混練装置を用いて、加熱下において混練する方法などが挙げられる。これらのなかでも、押出機を用いて溶融混練する方法が好ましい。なお、樹脂組成物の形態としては、特に限定されないが、例えば、ペレットとすることができる。
 ペレットとする場合、その形状は特に限定されないが、球形、円柱形、角柱形などが挙げられる。これらのなかでもペレット形状の安定性の観点から円柱形が好ましい。また、ペレットのサイズは例えば円柱形の場合は、その直径は、好ましくは0.5mm以上、より好ましくは1mm以上であり、好ましくは5mm以下、より好ましくは3mm以下である。その長さは、好ましくは1mm以上、より好ましくは3mm以上であり、好ましくは10mm以下、より好ましくは7mm以下である。ペレットのサイズは、試料からペレット100粒をランダムに採取し、ノギスを用いて測定することができる。
 なお、円柱形以外の樹脂組成物のペレットの直径(ペレット径)は、1mm以上が好ましく、5mm以上がより好ましく、15mm以下が好ましく、10mm以下がより好ましい。ペレット径は、試料からペレット100粒をランダムに採取し、ノギスを用いて最長箇所での直径を測定することで求めることができる。
 [樹脂成形体]
 本発明の樹脂成形体は、上述した本発明の樹脂組成物の成形体である。従って、本発明の樹脂成形体は、上述した樹脂組成物を成形することにより得ることができる。
 本発明の樹脂成形体では、本発明の樹脂組成物を用いているので、曲げ強度などの機械的強度と電磁波シールド性とを高いレベルで両立することができる。
 樹脂組成物の成形方法としては、特に限定されないが、例えば、プレス加工、押出加工、押出ラミ加工、又は射出成形などの方法が挙げられる。なかでも、混合物を射出成形により成形することが好ましい。
 本発明において、樹脂成形体の曲げ強度は、好ましくは40MPa以上、より好ましくは50MPa以上、さらに好ましくは60MPa以上、特に好ましくは90MPa以上である。また、樹脂成形体の曲げ強度の上限値は、特に制限されないが、例えば、250MPaとすることができる。
 本発明において、樹脂成形体の周波数100MHzにおける電磁波シールド効果が、好ましくは20dB以上、より好ましくは30dB以上、さらに好ましくは40dB以上である。また、樹脂成形体の周波数100MHzにおける電磁波シールド効果の上限値は、特に限定されないが、例えば、100dBである。
 本発明において、樹脂成形体の主面における面内方向の熱伝導率は、好ましくは1.0W/(m・K)以上、より好ましくは1.5W/(m・K)以上、さらに好ましくは2.0W/(m・K)以上、特に好ましくは3.5W/(m・K)以上である。また、樹脂成形体の主面における面内方向の熱伝導率の上限値は、例えば、50W/(m・K)とすることができる。
 なお、本発明の樹脂成形体の曲げ強度、電磁波シールド効果、熱伝導率、及び体積抵抗率を測定するに際しては、樹脂成形体を一旦溶融させて以下の成形条件で再成形して測定するものとする。
 <成形条件>
 金型内に溶融状態の樹脂組成物を得られる樹脂成形体の厚み方向に直交する方向から充填させて成形し、縦100mm×横100mm×厚み2mmの樹脂成形体を得る。
 本発明の樹脂成形体は、電磁波シールド性に優れているので、電磁波シールド性が要求される通信機器や、スマートメータあるいは車載ECUなどの電子機器の筐体に好適に用いることができる。
 本発明の樹脂成形体は、放熱性にも優れている。そのため、本発明の樹脂成形体は、例えば、図1に示すような放熱シャーシ10や、図2に示すような放熱筐体20、又は図3に示すようなヒートシンク30であってもよい。
 また、このような樹脂成形体の表面には、回路形成がなされていてもよい。
 以下、本発明の具体的な実施例及び比較例を挙げることにより、本発明の効果を明らかにする。なお、本発明は以下の実施例に限定されるものではない。
 (実施例1)
 熱可塑性樹脂(A)としてのポリプロピレン(PP)100重量部と、カーボンブラック(B)としてのオイルファーネスブラック30重量部と、炭素繊維(C)としてのPAN系炭素繊維40重量部と、黒鉛(D)としての鱗片状黒鉛120重量部とを、ラボプラストミル(東洋精機社製、品番「R100」)を用いて、180℃で溶融混練することにより樹脂組成物を得た。なお、得られた樹脂組成物は、ペレット状であり、ペレット径は、3mmであった。ペレット径は、試料からペレット100粒をランダムに採取し、ノギスを用いて最長箇所での直径を測定することで求めた。また、ポリプロピレンとしては、日本ポリプロ社製、商品名「BC03B」(MFR:30g/10min(230℃))を用いた。オイルファーネスブラックとしては、キャボット社製、商品名「VulcanXC72」(BET比表面積:254m/g、DBP吸油量:174ml/100g、一次粒子径:30nm)を用いた。PAN系炭素繊維としては、三菱ケミカル社製、商品名「TR06U」(重量平均繊維長:6mm、繊維径:7μm)を用いた。鱗片状黒鉛としては、中越黒鉛工業所製、商品名「CPB-300」(体積平均粒子径:300μm)を用いた。
 (実施例2)
 カーボンブラック(B)として、オイルファーネスブラック(旭カーボン社製、商品名「F-200GS」、BET比表面積:55m/g、DBP吸油量:180ml/100g、一次粒子径:38nm)を用いたこと、黒鉛(D)として、鱗片状黒鉛(中越黒鉛工業所製、商品名「CPB-100B」、体積平均粒子径:80μm)を用いたこと、並びにカーボンブラック(B)、炭素繊維(C)、及び黒鉛(D)の含有量を下記の表1のように変更したこと以外は、実施例1と同様にして樹脂組成物を得た。
 (実施例3)
 炭素繊維(C)として、ピッチ系炭素繊維(三菱ケミカル社製、商品名「K237SE」、重量平均繊維長:6mm、繊維径:11μm)を用いたこと、並びにカーボンブラック(B)、炭素繊維(C)、及び黒鉛(D)の含有量を下記の表1のように変更したこと以外は、実施例2と同様にして樹脂組成物を得た。
 (実施例4)
 カーボンブラック(B)として、オイルファーネスブラック(ライオンスペシャリティケミカルズ社製、商品名「ライオナイトCB」、BET比表面積:1052m/g)を用いたこと以外は、実施例1と同様にして樹脂組成物を得た。
 (実施例5)
 炭素繊維(C)の含有量を下記の表1のように、20重量部に変更したこと以外は、実施例1と同様にして樹脂組成物を得た。
 (実施例6)
 黒鉛(D)の含有量を下記の表1のように、200重量部に変更したこと以外は、実施例1と同様にして樹脂組成物を得た。
 (実施例7)
 黒鉛(D)として、実施例1の鱗片状黒鉛の代わりに、鱗片状黒鉛(日本黒鉛工業社製、商品名「FB-150」、体積平均粒子径:45μm)を用いたこと以外は、実施例1と同様にして樹脂組成物を得た。
 (実施例8)
 黒鉛(D)として、実施例1の鱗片状黒鉛の代わりに、膨張化黒鉛(富士黒鉛工業社製、商品名「AED-02」、体積平均粒子径:1000μm)を用いたこと以外は、実施例1と同様にして樹脂組成物を得た。
 (比較例1)
 炭素繊維(C)及び黒鉛(D)を用いなかったこと、並びにカーボンブラック(B)の含有量を下記の表1のように変更したこと以外は、実施例1と同様にして樹脂組成物を得た。
 (比較例2)
 カーボンブラック(B)及び黒鉛(D)を用いなかったこと以外は、実施例2と同様にして樹脂組成物を得た。
 (比較例3)
 カーボンブラック(B)及び炭素繊維(C)を用いなかったこと、並びに黒鉛(D)の含有量を下記の表1のように変更したこと以外は、実施例2と同様にして樹脂組成物を得た。
 (比較例4)
 カーボンブラック(B)として、ケッチェンブラック(ライオンスペシャリティケミカルズ社製、商品名「EC600J」、BET比表面積:1270m/g)、炭素繊維(C)として、PAN系炭素繊維(東レ社製、商品名「トレカチョップド炭素繊維」、重量平均繊維長:3mm、繊維径:7μm)、黒鉛(D)として、鱗片状黒鉛(日本黒鉛工業社製、商品名「CB-100」、体積平均粒子径:100μm)を用いたこと、並びにカーボンブラック(B)、炭素繊維(C)、及び黒鉛(D)の含有量を下記の表1のように変更したこと以外は、実施例1と同様にして樹脂組成物を得た。
 (比較例5)
 黒鉛(D)を用いなかったこと、並びにカーボンブラック(B)及び炭素繊維(C)の含有量を下記の表1のように変更したこと以外は、実施例1と同様にして樹脂組成物を得た。
 [評価]
 (曲げ強度)
 実施例1~8及び比較例1~5で得られた樹脂組成物を射出成形し、ISO294-1に準拠した短冊形試験片である縦80mm×横10mm×厚み4mmの樹脂成形体を得て、これを測定サンプルとした。なお、射出成形は、樹脂温度230℃、金型温度50℃、射出速度30mm/sの条件で行った。
 得られた測定サンプルの曲げ強度をISO178に準拠して測定した。曲げ強度は、テンシロン万能試験機(オリエンテック社製、型番「RTC-1210A」)を用いて測定した。
 (電磁波シールド効果)
 実施例1~8及び比較例1~5で得られた樹脂組成物を射出成形し、縦100mm×横100mm×厚み2mmの樹脂成形体を得て、これを測定サンプルとした。なお、射出成形は、樹脂温度230℃、金型温度50℃、射出速度30mm/sの条件で行った。
 得られた測定サンプルの周波数100MHzにおける電磁波シールド効果(電磁波シールド性能、単位:dB)は、KEC法電界シールド特性測定用冶具(日本シールドエンクロージャー社製)を用いて測定した。具体的には、送信側の焦点から電磁波を放射し、受信側の焦点に収束した電磁波の強度を受信電圧として測定した。サンプル未挿入時の受信電圧V及びサンプル挿入時の受信電圧Vを測定し、以下の式(2)に従って電磁波シールド効果を算出した。
 電磁波シールド効果=20×log10(V/V)…式(2)
 (スパイラルフロー流動長)
 実施例1~8及び比較例1~5で得られた樹脂組成物の流動性はスパイラルフロー流動長として評価した。具体的には、幅20mm×厚さ2mmのアルキメデス螺旋スパイラル状の流路を持つ樹脂流動長測定用金型を用いて、シリンダー温度230℃、金型温度40℃、射出圧力150MPaにて射出成形を行ったときの流動長を測定した。
 (熱伝導率)
 実施例1~8及び比較例1~5で得られた樹脂組成物を射出成形し、縦100mm×横100mm×厚み2mmの樹脂成形体を得た。得られた樹脂成形体の中心部を縦10mm×横2mm×厚み2mmに打ち抜き、測定サンプルとした。なお、射出成形は、樹脂温度230℃、金型温度50℃、射出速度30mm/sの条件で行った。
 得られた測定サンプルの熱伝導率(面内方向)は、ネッチジャパン社製、品番「キセノンフラッシュレーザーアナライザ LFA467 HyperFlash」を用いて測定した。具体的には、熱伝導率が測定できる向きで測定サンプルをホルダにはめ込み、30℃における熱拡散率を測定し、以下の式(1)に従って熱伝導率を算出した。
 熱伝導率(W/(m・K))=比重(g/cm)×比熱(J/g・K)×熱拡散率(mm/s)…式(1)
 結果を下記の表1及び表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1から明らかなように、実施例1~8の樹脂組成物の成形体は、曲げ強度が90MPa以上であり、かつ電磁波シールド性能が45dB以上であった。また、表2から明らかなように、比較例1、3、4の樹脂組成物の成形体は、曲げ強度が60MPa以下であり、比較例1~5の樹脂組成物の成形体は、電磁波シールド性能が35dB以下であった。従って、実施例1~8の樹脂組成物では、比較例1~5の樹脂組成物と比較して、機械的強度と電磁波シールド性とを高いレベルで両立することができることを確認できた。また、実施例1~3、5、7の樹脂組成物では、成形時における樹脂組成物の流動性を高めることができ、成形性にも優れていることが確認できた。
 10…放熱シャーシ
 20…放熱筐体
 30…ヒートシンク

Claims (10)

  1.  熱可塑性樹脂(A)と、カーボンブラック(B)と、炭素繊維(C)と、黒鉛(D)とを含み、
     前記カーボンブラック(B)の含有量が、前記熱可塑性樹脂(A)100重量部に対し、10重量部以上、100重量部以下である、樹脂組成物。
  2.  前記炭素繊維(C)の含有量が、前記熱可塑性樹脂(A)100重量部に対し、10重量部以上、100重量部以下である、請求項1に記載の樹脂組成物。
  3.  前記カーボンブラック(B)のBET比表面積が、600m/g以下である、請求項1又は2に記載の樹脂組成物。
  4.  前記炭素繊維(C)の重量平均繊維長が、0.5mm以上、15mm以下である、請求項1~3のいずれか1項に記載の樹脂組成物。
  5.  前記カーボンブラック(B)が、オイルファーネスブラックである、請求項1~4のいずれか1項に記載の樹脂組成物。
  6.  前記黒鉛(D)の含有量が、前記熱可塑性樹脂(A)100重量部に対し、10重量部以上、200重量部以下である、請求項1~5のいずれか1項に記載の樹脂組成物。
  7.  金型内に溶融状態の前記樹脂組成物を得られる樹脂成形体の厚み方向に直交する方向から充填させて成形し、縦100mm×横100mm×厚み2mmの樹脂成形体を得たときに、前記樹脂成形体の周波数100MHzにおける電磁波シールド効果が、20dB以上であり、
     前記樹脂組成物をISO294-1に準拠して成形し、短冊形樹脂成形体を得たときに、前記短冊形樹脂成形体のISO178に準拠して測定された曲げ強度が40MPa以上である、請求項1~6のいずれか1項に記載の樹脂組成物。
  8.  金型内に溶融状態の前記樹脂組成物を得られる樹脂成形体の厚み方向に直交する方向から充填させて成形し、縦100mm×横100mm×厚み2mmの樹脂成形体を得たときに、前記樹脂成形体の主面における面内方向の熱伝導率が、1.0W/(m・K)以上である、請求項1~7のいずれか1項に記載の樹脂組成物。
  9.  請求項1~8のいずれか1項に記載の樹脂組成物の成形体である、樹脂成形体。
  10.  放熱シャーシ、放熱筐体、又はヒートシンク形状である、請求項9に記載の樹脂成形体。
PCT/JP2023/011367 2022-03-25 2023-03-23 樹脂組成物及び樹脂成形体 WO2023182394A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022050161 2022-03-25
JP2022-050161 2022-03-25

Publications (1)

Publication Number Publication Date
WO2023182394A1 true WO2023182394A1 (ja) 2023-09-28

Family

ID=88101590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/011367 WO2023182394A1 (ja) 2022-03-25 2023-03-23 樹脂組成物及び樹脂成形体

Country Status (1)

Country Link
WO (1) WO2023182394A1 (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63298909A (ja) * 1987-05-28 1988-12-06 Nippon Steel Chem Co Ltd 導電性熱可塑性樹脂板
JP2001351644A (ja) * 2000-06-07 2001-12-21 Kawasaki Steel Corp 燃料電池用セパレータおよび燃料電池
JP2003096317A (ja) * 2001-07-18 2003-04-03 Mitsubishi Engineering Plastics Corp 熱可塑性樹脂組成物
JP2004221071A (ja) * 2002-12-26 2004-08-05 Showa Denko Kk 導電性組成物用炭素質材料及びその用途
JP2004277637A (ja) * 2003-03-18 2004-10-07 Nichias Corp 導電性樹脂組成物、燃料電池セパレータ及び燃料電池セパレータの製造方法
JP2005272591A (ja) * 2004-03-24 2005-10-06 Mitsubishi Plastics Ind Ltd 導電性熱可塑性樹脂フィルム
JP2006206780A (ja) * 2005-01-28 2006-08-10 Mitsubishi Chemicals Corp 導電性熱可塑性樹脂組成物
JP2009144000A (ja) * 2007-12-12 2009-07-02 Starlite Co Ltd 樹脂炭素複合材料
JP2013204009A (ja) * 2012-03-29 2013-10-07 Toyo Tire & Rubber Co Ltd タイヤ用ゴム組成物及びその製造方法
WO2018199008A1 (ja) * 2017-04-26 2018-11-01 積水テクノ成型株式会社 樹脂成形体
JP2020079412A (ja) 2015-03-31 2020-05-28 三菱ケミカル株式会社 樹脂ペレット、樹脂ペレットの製造方法、成形体及び成形体の製造方法
JP2021048346A (ja) * 2019-09-20 2021-03-25 積水テクノ成型株式会社 電磁波シールド材

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63298909A (ja) * 1987-05-28 1988-12-06 Nippon Steel Chem Co Ltd 導電性熱可塑性樹脂板
JP2001351644A (ja) * 2000-06-07 2001-12-21 Kawasaki Steel Corp 燃料電池用セパレータおよび燃料電池
JP2003096317A (ja) * 2001-07-18 2003-04-03 Mitsubishi Engineering Plastics Corp 熱可塑性樹脂組成物
JP2004221071A (ja) * 2002-12-26 2004-08-05 Showa Denko Kk 導電性組成物用炭素質材料及びその用途
JP2004277637A (ja) * 2003-03-18 2004-10-07 Nichias Corp 導電性樹脂組成物、燃料電池セパレータ及び燃料電池セパレータの製造方法
JP2005272591A (ja) * 2004-03-24 2005-10-06 Mitsubishi Plastics Ind Ltd 導電性熱可塑性樹脂フィルム
JP2006206780A (ja) * 2005-01-28 2006-08-10 Mitsubishi Chemicals Corp 導電性熱可塑性樹脂組成物
JP2009144000A (ja) * 2007-12-12 2009-07-02 Starlite Co Ltd 樹脂炭素複合材料
JP2013204009A (ja) * 2012-03-29 2013-10-07 Toyo Tire & Rubber Co Ltd タイヤ用ゴム組成物及びその製造方法
JP2020079412A (ja) 2015-03-31 2020-05-28 三菱ケミカル株式会社 樹脂ペレット、樹脂ペレットの製造方法、成形体及び成形体の製造方法
WO2018199008A1 (ja) * 2017-04-26 2018-11-01 積水テクノ成型株式会社 樹脂成形体
JP2021048346A (ja) * 2019-09-20 2021-03-25 積水テクノ成型株式会社 電磁波シールド材

Similar Documents

Publication Publication Date Title
CN110198989B (zh) 树脂成形体
JP7255944B2 (ja) 樹脂成形体
Wei et al. Epoxy/graphene nanocomposites–processing and properties: a review
JP5205947B2 (ja) 樹脂炭素複合材料
JP6310618B2 (ja) 樹脂成形体
KR101154502B1 (ko) 차단성과 전기전도성이 우수한 수지 복합체 및 이를 이용한 성형품
JP2014133842A (ja) 導電性樹脂組成物
JP2016041806A (ja) 樹脂組成物、樹脂組成物の製造方法、粉状混合物、レドックスフロー電池用双極板、及び燃料電池用セパレータ
dos Anjos et al. Synergistic effect of adding graphene nanoplates and carbon nanotubes in polycarbonate/acrylonitrile‐styrene‐butadiene copolymer blend
KR101805949B1 (ko) 폴리올레핀계 수지 조성물 및 그의 제조 방법
JP7127234B1 (ja) 樹脂組成物、樹脂成形体及びその製造方法
WO2023182394A1 (ja) 樹脂組成物及び樹脂成形体
WO2023182395A1 (ja) 樹脂組成物及び樹脂成形体
WO2020166584A1 (ja) 放熱体、放熱構造体及び電子機器
WO2020158913A1 (ja) 樹脂成形体
CN118871533A (zh) 树脂组合物和树脂成型体
JP5919004B2 (ja) ポリフェニレンスルフィド系樹脂組成物並びに該樹脂組成物を基本素材とする成形品類
CN116761853A (zh) 树脂组合物、树脂成型体及其制造方法
JP6804846B2 (ja) 樹脂成形体
Mirzaliyev et al. Fluoropolymer nanocomposites for electromagnetic interference shielding application
KR20230046157A (ko) 전기 및 열 전도성이 우수한 폴리아미드 수지 조성물 및 이로 이루어진 성형품
JPS58206646A (ja) 導電性射出成形体
JP2011032481A (ja) 導電性樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23774989

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024509186

Country of ref document: JP