WO2023182046A1 - エステル化合物及びその製造方法、並びに熱伝導性組成物及び熱伝導性シート - Google Patents

エステル化合物及びその製造方法、並びに熱伝導性組成物及び熱伝導性シート Download PDF

Info

Publication number
WO2023182046A1
WO2023182046A1 PCT/JP2023/009602 JP2023009602W WO2023182046A1 WO 2023182046 A1 WO2023182046 A1 WO 2023182046A1 JP 2023009602 W JP2023009602 W JP 2023009602W WO 2023182046 A1 WO2023182046 A1 WO 2023182046A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermally conductive
ester compound
particles
conductive composition
carbon atoms
Prior art date
Application number
PCT/JP2023/009602
Other languages
English (en)
French (fr)
Inventor
稔 長島
健 西尾
弘毅 渋谷
侑記 岩田
亮子 川上
奕靖 趙
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022205410A external-priority patent/JP2023140277A/ja
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Publication of WO2023182046A1 publication Critical patent/WO2023182046A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/08Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/34Esters of acyclic saturated polycarboxylic acids having an esterified carboxyl group bound to an acyclic carbon atom
    • C07C69/42Glutaric acid esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/66Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety
    • C07C69/67Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of saturated acids
    • C07C69/675Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of saturated acids of saturated hydroxy-carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular

Definitions

  • the present invention relates to an ester compound and a method for producing the ester compound, as well as a thermally conductive composition and a thermally conductive sheet.
  • thermally conductive materials are widely used to prevent the temperature of LSIs and the like from rising.
  • the thermally conductive material can prevent the temperature of the device from rising by diffusing the heat generated by the element or transmitting it to a heat radiating member for discharging it to the outside of the system, such as the atmosphere.
  • thermally conductive materials having polymeric materials such as resin or rubber as a base material
  • it includes a thermosetting adhesive containing a curing component and a curing agent for the curing component, and a metal filler dispersed in the thermosetting adhesive
  • the metal filler includes silver powder and solder powder.
  • the solder powder exhibits a melting temperature lower than the thermosetting temperature of the thermally conductive adhesive, and reacts with the silver powder under the thermosetting conditions of the thermosetting adhesive to lower the melting temperature of the solder powder.
  • the hardening agent is a hardening agent that has flux activity against the metal filler
  • the hardening component is a glycidyl ether type epoxy resin
  • the hardening agent A thermally conductive adhesive in which is a monoacid anhydride of tricarboxylic acid has been proposed (for example, see Patent Document 1).
  • glutaric acid volatizes and expands within the thermally conductive adhesive, forming voids within the coating film, which can significantly reduce thermal conductivity.
  • glutaric acid may have an adverse effect on the metal surrounding the semiconductor.
  • An object of the present invention is to solve the above-mentioned conventional problems and achieve the following objects. That is, an object of the present invention is to provide an ester compound having both excellent flux activity and curability, a method for producing the ester compound, and a thermally conductive composition and a thermally conductive sheet.
  • R 1 to R 3 represent a hydrogen atom, an alkyl group, or a caprolactone skeleton.
  • R 4 represents a hydrogen atom or an alkyl group optionally substituted with a hydroxyl group.
  • R 5 represents a divalent saturated hydrocarbon group having 1 to 3 carbon atoms or a divalent unsaturated hydrocarbon group having 2 to 3 carbon atoms.
  • R 1 and R 2 represent a hydrogen atom, an alkyl group, or a caprolactone skeleton.
  • R 4 and R 6 represent a hydrogen atom or an alkyl group optionally substituted with a hydroxyl group.
  • R 5 represents a divalent saturated hydrocarbon group having 1 to 3 carbon atoms or a divalent unsaturated hydrocarbon group having 2 to 3 carbon atoms.
  • R 5 is either an alkylene group having 2 to 3 carbon atoms or a vinylene group.
  • ⁇ 3> The ester compound according to any one of ⁇ 1> to ⁇ 2>, which is liquid at 25°C and 150°C.
  • ⁇ 4> The ester compound according to any one of ⁇ 1> to ⁇ 2> above, having a molecular weight of 800 g/mol or less.
  • a method for producing the ester compound according to any one of ⁇ 1> to ⁇ 2> comprising: This is a method for producing an ester compound, which includes a step of causing an esterification reaction between an acid anhydride and a polyfunctional alcohol.
  • ⁇ 8> The method for producing an ester compound according to ⁇ 6>, wherein the polyfunctional alcohol is at least one of a caprolactone derivative and glycerin.
  • the curing component is at least one of an epoxy resin and an oxetane compound.
  • the epoxy resin is a glycidyl ether type epoxy resin.
  • thermally conductive composition according to ⁇ 9> wherein the thermally conductive particles are at least one of copper particles, silver-coated particles, and silver particles.
  • a thermally conductive sheet comprising a cured product of the thermally conductive composition according to ⁇ 9> above.
  • an ester compound and a method for producing an ester compound which can solve the above-mentioned conventional problems and achieve the above-mentioned object, and have both excellent flux activity and curability, as well as a thermally conductive composition and a thermally conductive composition, A conductive sheet can be provided.
  • FIG. 1 is a schematic cross-sectional view showing an example of a heat dissipation structure used in the present invention.
  • ester compound of the present invention is represented by at least one of the following general formula (1) and general formula (2).
  • R 1 to R 3 represent a hydrogen atom, an alkyl group, or a caprolactone skeleton.
  • R 4 represents a hydrogen atom or an alkyl group optionally substituted with a hydroxyl group.
  • R 5 represents a divalent saturated hydrocarbon group having 1 to 3 carbon atoms or a divalent unsaturated hydrocarbon group having 2 to 3 carbon atoms.
  • R 1 and R 2 represent a hydrogen atom, an alkyl group, or a caprolactone skeleton.
  • R 4 and R 6 represent a hydrogen atom or an alkyl group optionally substituted with a hydroxyl group.
  • R 5 represents a divalent saturated hydrocarbon group having 1 to 3 carbon atoms or a divalent unsaturated hydrocarbon group having 2 to 3 carbon atoms.
  • the alkyl group for R 1 and R 2 is preferably an alkyl group having 1 to 10 carbon atoms, such as a methyl group, an ethyl group, a propyl group, an isopropyl group, Examples include butyl group, hexyl group, heptyl group, octyl group, 2-ethylhexyl group, tert-octyl group, and cyclohexyl group.
  • the caprolactone skeleton in R 1 and R 2 is represented by the following general formula (i).
  • n represents an integer of 1 or more, preferably 1 to 10.
  • m represents an integer of 2 or more, preferably 2 to 5.
  • alkyl group optionally substituted with a hydroxyl group in R 4 and R 6 examples include methyl group, ethyl group, propyl group, -(CH 2 )-OH, -(CH 2 ) 2 -OH, -(CH 2 ) 3 -OH and the like.
  • R 5 represents a divalent saturated hydrocarbon group having 1 to 3 carbon atoms or a divalent unsaturated hydrocarbon group having 2 to 3 carbon atoms.
  • Examples of the divalent saturated hydrocarbon group having 1 to 3 carbon atoms in R 5 include alkylene groups having 1 to 3 carbon atoms.
  • Examples of the alkylene group having 1 to 3 carbon atoms include a methylene group (-CH 2 -), an ethylene group (-CH 2 CH 2 -), and a propylene group (-CH 2 CH 2 CH 2 -).
  • the ester compound represented by at least one of the above general formula (1) and general formula (2) can be synthesized by reacting a specific acid anhydride with a specific polyfunctional alcohol, as explained below. I can do it.
  • the method for producing an ester compound of the present invention includes a step of causing an esterification reaction between an acid anhydride and a polyfunctional alcohol, and further includes other steps as necessary.
  • the esterification reaction between an acid anhydride and a polyfunctional alcohol is not particularly limited and can be appropriately selected depending on the purpose.
  • the acid anhydride examples include succinic anhydride, glutaric anhydride, maleic anhydride, phthalic anhydride, benzoic anhydride, oxalic anhydride, and the like. These may be used alone or in combination of two or more. Among these, succinic anhydride, glutaric anhydride, and maleic anhydride are preferred.
  • the polyfunctional alcohol is preferably bifunctional or more, and more preferably bifunctional or more and tetrafunctional or less.
  • examples of the polyfunctional alcohol include caprolactone derivatives, glycerin, ethylene glycol, and propylene glycol. These may be used alone or in combination of two or more. Among these, caprolactone derivatives and glycerin are preferred.
  • Examples of the caprolactone derivative include compounds having a caprolactone skeleton represented by the above general formula (i).
  • the caprolactone derivative commercially available products can be used, and examples of the commercially available products include Plaxel 205, Plaxel 205U, Plaxel 303, and Plaxel 410 (all manufactured by Daicel Corporation).
  • R 1 to R 3 represent a hydrogen atom, an alkyl group, or a caprolactone skeleton.
  • R 4 represents a hydrogen atom or an alkyl group optionally substituted with a hydroxyl group.
  • R 5 represents a divalent saturated hydrocarbon group having 1 to 3 carbon atoms or a divalent unsaturated hydrocarbon group having 2 to 3 carbon atoms.
  • the ester compound represented by at least one of the above general formula (1) and general formula (2) can have both a good flux effect and a good function as a curing agent. That is, the ester compound represented by at least one of the above general formula (1) and general formula (2) exhibits a liquid state from room temperature to high temperature, does not react during film formation, and does not affect the wettability of the coating liquid.
  • it is heated in stages, and the first stage of heating produces the flux effect, and then, the second stage of heating causes the epoxy resin mixed in to begin curing. It has a switch function.
  • the heating in the first stage is preferably, for example, 120°C to 150°C.
  • the heating in the second stage is preferably, for example, 150°C to 190°C.
  • the ester compound is preferably liquid at 25°C and 150°C.
  • being liquid means having fluidity that allows application. That the ester compound is liquid at 25° C. and 150° C. can be confirmed, for example, by visually checking the fluidity at 25° C. (room temperature) and by checking the presence or absence of an absorption peak up to 150° C. by DSC.
  • the molecular weight of the ester compound is preferably 800 g/mol or less, more preferably 400 g/mol or more and 700 g/mol or less, since it is liquid.
  • the molecular weight of the ester compound can be measured using, for example, Shodex (registered trademark) GPC-101 (manufactured by Showa Denko K.K.).
  • the ester compound is a curing agent having flux activity. Since the ester compound has flux activity, it can improve the wettability of the molten low-melting metal particles to the thermally conductive particles by heating in the first stage, and can also be used as a curing agent by heating in the second stage.
  • the working epoxy resin can be cured.
  • the thermally conductive composition of the present invention contains the ester compound of the present invention, a curing component, thermally conductive particles, and low melting point metal particles, and further contains other components as necessary.
  • the content of the ester compound of the present invention is not particularly limited and can be appropriately selected depending on the purpose, but is 0.5% by mass or more and 50% by mass or less based on the total amount of the thermally conductive composition. It is preferable.
  • the curing component is preferably at least one of an epoxy resin and an oxetane compound.
  • the epoxy resin is not particularly limited and can be appropriately selected depending on the purpose, such as phenol novolak epoxy resin, cresol novolak epoxy resin, bisphenol A epoxy resin, trisphenol epoxy resin, and tetraphenol. epoxy resins, phenol-xylylene epoxy resins, naphthol-xylylene epoxy resins, phenol-naphthol epoxy resins, phenol-dicyclopentadiene epoxy resins, alicyclic epoxy resins, aliphatic epoxy resins, and the like. These may be used alone or in combination of two or more. Among these, glycidyl ether type epoxy resins are preferred from the viewpoint of reactivity and economy.
  • the oxetane compound is a compound having an oxetanyl group, and may be an aliphatic compound, an alicyclic compound, or an aromatic compound.
  • the oxetane compound may be a monofunctional oxetane compound having only one oxetanyl group, or a polyfunctional oxetane compound having two or more oxetanyl groups.
  • the oxetane compound is not particularly limited and can be appropriately selected depending on the purpose, such as 3,7-bis(3-oxetanyl)-5-oxanonan, 1,4-bis[(3- ethyl-3-oxetanylmethoxy)methyl]benzene, 1,2-bis[(3-ethyl-3-oxetanylmethoxy)methyl]ethane, 1,3-bis[(3-ethyl-3-oxetanylmethoxy)methyl]propane , ethylene glycol bis(3-ethyl-3-oxetanylmethyl) ether, triethylene glycol bis(3-ethyl-3-oxetanylmethyl) ether, tetraethylene glycol bis(3-ethyl-3-oxetanylmethyl) ether, 1, 4-bis(3-ethyl-3-oxetanylmethoxy)butane, 1,6-bis(3-ethyl-3
  • oxetane compound commercially available products can be used, and examples of the commercially available products include the "Aron Oxetane (registered trademark)” series sold by Toagosei Co., Ltd., and the “Aron Oxetane (registered trademark)” series sold by Ube Industries, Ltd. Examples include the “ETERNACOLL (registered trademark)” series.
  • the content of the curing component is not particularly limited and can be appropriately selected depending on the purpose, but it is preferably 0.3% by mass or more and 60% by mass or less based on the total amount of the thermally conductive composition. It is preferably 0.5% by mass or more and 30% by mass or less.
  • the thermally conductive particles are preferably at least one of copper particles, silver-coated particles, and silver particles.
  • the silver-coated particles include silver-coated copper particles, silver-coated nickel particles, and silver-coated aluminum particles.
  • the shape of the thermally conductive particles is not particularly limited and can be appropriately selected depending on the purpose, and includes, for example, spherical, flat, granular, and acicular shapes.
  • the volume average particle diameter of the thermally conductive particles is preferably 10 ⁇ m or more and 300 ⁇ m or less, more preferably 20 ⁇ m or more and 100 ⁇ m or less.
  • the volume average particle diameter of the thermally conductive particles is 10 ⁇ m or more and 300 ⁇ m or less, the volume ratio of the thermally conductive particles to the low melting point metal particles can be increased, and the high thermal conductivity and low thermal resistance of the thermally conductive composition can be increased. realizable.
  • the volume average particle size can be measured, for example, by a laser diffraction/scattering particle size distribution measuring device (product name: Microtrac MT3300EXII).
  • solder particles defined in JIS Z3282-1999 are preferably used.
  • solder particles include Sn-Pb solder particles, Pb-Sn-Sb solder particles, Sn-Sb solder particles, Sn-Pb-Bi solder particles, Sn-Bi solder particles, and Sn-Bi solder particles.
  • -Ag based solder particles, Sn-Cu based solder particles, Sn-Pb-Cu based solder particles, Sn-In based solder particles, Sn-Ag based solder particles, Sn-Pb-Ag based solder particles, Pb-Ag based solder Examples include particles, Sn-Ag-Cu solder particles, and the like. These may be used alone or in combination of two or more. Among these, solder particles containing Sn and at least one selected from Bi, Ag, Cu, and In are preferred, and include Sn-Bi solder particles, Sn-Bi-Ag solder particles, and Sn-Ag solder particles. -Cu-based solder particles and Sn--In based solder particles are more preferred.
  • the shape of the low melting point metal particles is not particularly limited and can be appropriately selected depending on the purpose, and examples thereof include spherical, flat, granular, and acicular shapes.
  • the melting point of the low melting point metal particles is preferably 100°C or more and 250°C or less, more preferably 120°C or more and 200°C or less.
  • the melting point of the low melting point metal particles is lower than the thermosetting temperature of the thermally conductive composition, so that the low melting point metal particles melted in the cured product of the thermally conductive composition form a network through the thermally conductive particles. It is preferable because it can form a metal continuous phase and achieve high thermal conductivity and low thermal resistance.
  • the low melting point metal particles react with the thermally conductive particles under the heat curing treatment conditions of the thermally conductive composition to form an alloy having a higher melting point than the low melting point metal particles, thereby melting at high temperatures. This improves reliability. Moreover, the heat resistance of the cured product of the thermally conductive composition is improved.
  • the thermal curing treatment of the thermally conductive composition is performed, for example, at a temperature of 150° C. or more and 200° C. for 30 minutes or more and 2 hours or less.
  • the volume average particle size of the low melting point metal particles is preferably 10 ⁇ m or less, more preferably 1 ⁇ m or more and 5 ⁇ m or less.
  • the volume average particle size of the low melting point metal particles can be measured in the same manner as the volume average particle size of the thermally conductive particles.
  • the thermally conductive composition may contain other components as long as the effects of the present invention are not impaired.
  • the other components are not particularly limited and can be selected as appropriate depending on the purpose, such as non-metal thermally conductive particles (e.g. aluminum nitride, alumina, carbon fiber, etc.), binder resin, additives. (For example, antioxidants, ultraviolet absorbers, curing accelerators, silane coupling agents, leveling agents, flame retardants, etc.).
  • the binder resin is not particularly limited and can be selected as appropriate depending on the purpose, such as polybutadiene, polysiloxane, poly(meth)acrylate, polyalkylene compound, polyalkyleneoxy compound, polyisoprene, polyisobutylene, polyamide. Examples include compounds, polycarbonates, and the like. These may be used alone or in combination of two or more.
  • the thermally conductive composition of the present invention is prepared by uniformly mixing the ester compound of the present invention, epoxy resin, thermally conductive particles, low melting point metal particles, and other components as necessary by a conventional method. be able to.
  • the thermally conductive composition may be either a sheet-like thermally conductive sheet or a paste-like thermally conductive paste (sometimes referred to as a thermally conductive adhesive or thermally conductive grease).
  • thermally conductive sheets are preferred from the viewpoint of ease of handling, and thermally conductive pastes are preferred from the viewpoint of cost.
  • the thermally conductive sheet of the present invention includes a cured product of the thermally conductive composition of the present invention, and is formed into a sheet from the thermally conductive composition of the present invention.
  • the average thickness of the thermally conductive sheet is preferably 500 ⁇ m or less, more preferably 200 ⁇ m or less, and even more preferably 100 ⁇ m or less.
  • the lower limit of the average thickness of the thermally conductive sheet is not particularly limited and can be appropriately selected depending on the purpose, but is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, and even more preferably 50 ⁇ m or more.
  • the method for producing the thermally conductive sheet is not particularly limited and can be appropriately selected depending on the purpose. For example, (1) molding the thermally conductive composition into a predetermined shape and curing it, A method of manufacturing a thermally conductive sheet by forming a conductive molded body and slicing the obtained thermally conductive molded body into sheet shapes, (2) curing the thermally conductive composition on a support with a release layer. Examples include a method of manufacturing a thermally conductive sheet by forming a cured material layer containing a material. Note that in (2) above, the support is peeled off when the thermally conductive sheet is laminated on the heat dissipation substrate.
  • the thermally conductive composition and thermally conductive sheet of the present invention are, for example, thermal interface materials that fill a minute gap between a heat source such as an LSI and a heat sink, thereby allowing heat to flow smoothly between the two.
  • TIM1 thermal interface materials that fill a minute gap between a heat source such as an LSI and a heat sink, thereby allowing heat to flow smoothly between the two.
  • TIM1 It can be suitably used when a heat dissipation board on which an LED chip or an IC chip is mounted is adhered to a heat sink to configure a power LED module or a power IC module.
  • power LED modules include wire bonding type and flip chip type
  • power IC modules include wire bonding type.
  • the heat dissipation structure used in the present invention is composed of a heat generating element, a thermally conductive material, and a heat dissipating member, and the heat dissipating structure of the present invention as the heat conductive material is provided between the heat generating element and the heat dissipating member. It has a cured product of a sexual composition.
  • the heating element is not particularly limited and can be selected as appropriate depending on the purpose, for example, CPU (Central Processing Unit), MPU (Micro Processing Unit), GPU (Graphics Processing Unit). Electronic parts such as Can be mentioned.
  • CPU Central Processing Unit
  • MPU Micro Processing Unit
  • GPU Graphics Processing Unit
  • the heat dissipation member is not particularly limited as long as it is a structure that dissipates heat generated by electronic components (heat generating elements), and can be appropriately selected depending on the purpose.
  • heat spreaders, heat sinks, vapor chambers, heat Examples include pipes.
  • the heat spreader is a member for efficiently transmitting heat from the electronic component to other components.
  • the material of the heat spreader is not particularly limited and can be appropriately selected depending on the purpose, such as copper and aluminum.
  • the heat spreader usually has a flat plate shape.
  • the heat sink is a member for releasing heat from the electronic component into the air.
  • the material of the heat sink is not particularly limited and can be appropriately selected depending on the purpose, such as copper and aluminum.
  • the heat sink has, for example, a plurality of fins.
  • the heat sink includes, for example, a base portion and a plurality of fins extending in non-parallel directions (for example, perpendicular directions) to one surface of the base portion.
  • the heat spreader and the heat sink generally have a solid structure with no internal space.
  • the vapor chamber is a hollow structure.
  • a volatile liquid is sealed in the internal space of the hollow structure.
  • Examples of the vapor chamber include a plate-shaped hollow structure such as a hollow structure of the heat spreader and a hollow structure of the heat sink.
  • the heat pipe is a hollow structure having a cylindrical shape, a substantially cylindrical shape, or a flat cylindrical shape. A volatile liquid is sealed in the internal space of the hollow structure.
  • FIG. 1 is a schematic cross-sectional view showing an example of a semiconductor device as a heat dissipation structure.
  • the cured product (thermally conductive sheet) 1 of the thermally conductive composition of the present invention radiates heat generated by electronic components 3 such as semiconductor elements, and as shown in FIG. It is fixed to the main surface 2a facing the electronic component 3 and the heat spreader 2, and is held between the electronic component 3 and the heat spreader 2. Further, the thermally conductive sheet 1 is sandwiched between the heat spreader 2 and the heat sink 5.
  • the thermally conductive sheet 1 and the heat spreader 2 constitute a heat radiating member that radiates heat from the electronic component 3.
  • the heat spreader 2 is formed into a rectangular plate shape, for example, and has a main surface 2a facing the electronic component 3, and a side wall 2b erected along the outer periphery of the main surface 2a.
  • a thermally conductive sheet 1 is provided on a main surface 2a surrounded by side walls 2b, and a heat sink 5 is provided on the other surface 2c opposite to the main surface 2a via the thermally conductive sheet 1.
  • the heat spreader 2 is formed using, for example, copper or aluminum, which has good thermal conductivity, because the higher the thermal conductivity, the lower the thermal resistance, and the more efficiently absorbs heat from the electronic components 3 such as semiconductor elements. can do.
  • the electronic component 3 is, for example, a semiconductor element such as a BGA, and is mounted on the wiring board 6. Further, the heat spreader 2 also has the front end surface of the side wall 2b mounted on the wiring board 6, so that the side wall 2b surrounds the electronic component 3 at a predetermined distance. Then, by bonding the thermally conductive sheet 1 to the main surface 2a of the heat spreader 2, a heat radiating member is formed that absorbs the heat generated by the electronic component 3 and radiates the heat from the heat sink 5.
  • Example 2 ⁇ Synthesis of ester compound> Example 1 was carried out in the same manner as in Example 1, except that glutaric anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) was replaced with succinic anhydride (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) represented by the following structural formula. , synthesized ester compounds. The target compound became liquid, and the yield was 95%.
  • glutaric anhydride manufactured by Tokyo Chemical Industry Co., Ltd.
  • succinic anhydride manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.
  • Example 3 ⁇ Synthesis of ester compound> Example 1 was carried out in the same manner as in Example 1, except that glutaric anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) was replaced with maleic anhydride (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) represented by the following structural formula. Synthesis was performed. The target ester compound became liquid, and the yield was 91%.
  • Example 4 Synthesis was carried out in the same manner as in Example 1, except that the caprolactone derivative (manufactured by Daicel Corporation, Plaxel 303) was replaced with glycerin (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.). The target compound became liquid, and the yield was 90%.
  • the caprolactone derivative manufactured by Daicel Corporation, Plaxel 303
  • glycerin manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.
  • Example 5 ⁇ Synthesis of ester compound> Example 1 was carried out in the same manner as in Example 1, except that the caprolactone derivative (manufactured by Daicel Corporation, Plaxel 303) was replaced with a caprolactone derivative represented by the following general formula (iii) (manufactured by Daicel Corporation, Plaxel 205U). The synthesis was performed using The target compound became liquid, and the yield was 90%.
  • Example 6 In Example 2, the procedure was the same as in Example 2, except that the caprolactone derivative (manufactured by Daicel Corporation, Plaxel 303) was replaced with the caprolactone derivative represented by the above general formula (iii) (manufactured by Daicel Corporation, Plaxel 205U). The synthesis was performed using The target compound became liquid, and the yield was 90%.
  • Example 1 was carried out in the same manner as in Example 1, except that glutaric anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) was replaced with "H-TMAn-S" (manufactured by Mitsubishi Chemical Corporation) shown by the following structural formula. The synthesis was performed using The target compound became a solid, and the yield was 88%.
  • thermal conductivity was measured as follows. The results are shown in Tables 2-1 to 2-3. ⁇ Thermal conductivity> After applying each thermally conductive composition on a copper substrate (30 mm x 30 mm x 2 mm), a spacer with a height of 0.125 mm was placed and another copper substrate (30 mm x 30 mm x 2 mm) was placed on top of the spacer. Each thermally conductive composition was placed between two copper substrates to a thickness of 0.125 mm and a side of 20 mm, and oven cured at 150° C. for 60 minutes. Thermal resistance (°C ⁇ cm 2 /W) of the cured product (interfacial Cu) of each thermally conductive composition was measured by a method based on ASTM-D5470.
  • the thermal resistance of the cured product was calculated by subtracting the thermal resistance of the copper metal plate from this result, and the thermal conductivity (W/mK) was determined from the thermal resistance and the thickness of the cured product, and evaluated according to the following criteria.
  • Thermal conductivity is 11.0 W/m ⁇ K or more
  • Thermal conductivity is 8.0 W/m ⁇ K or more and less than 11.0 W/m ⁇ K
  • Thermal conductivity is less than 8.0 W/m ⁇ K
  • the thermally conductive composition and thermally conductive sheet of the present invention can realize high thermal conductivity and low thermal resistance, so they can be used, for example, in CPUs, MPUs, power transistors, LEDs, etc. whose device operation efficiency and life span are adversely affected by temperature.
  • various electrical devices such as laser diodes, various batteries (various secondary batteries such as lithium ion batteries, various fuel cells, capacitors, amorphous silicon, crystalline silicon, compound semiconductors, various solar cells such as wet solar cells, etc.), heat It is suitable for use around the heat source of heating equipment, heat exchangers, and heat piping of floor heating equipment where effective use of heat is required.
  • Thermal conductive material thermal conductive sheet
  • Heat dissipation member heat spreader
  • Main surface Heating element (electronic component)
  • Top surface 5 Heat dissipation member (heat sink) 6 Wiring board

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Hydrogenated Pyridines (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Epoxy Resins (AREA)

Abstract

下記一般式(1)及び一般式(2)の少なくともいずれかで表されるエステル化合物を提供する。 前記一般式(1)中、R1~R3は水素原子、アルキル基、又はカプロラクトン骨格を表す。R4は水素原子又は水酸基で置換されていてもよいアルキル基を表す。R5は炭素数1~3の二価飽和炭化水素基又は炭素数2~3の二価不飽和炭化水素基を表す。 前記一般式(2)中、R1及びR2は水素原子、アルキル基、又はカプロラクトン骨格を表す。R4及びR6は水素原子又は水酸基で置換されていてもよいアルキル基を表す。R5は炭素数1~3の二価飽和炭化水素基又は炭素数2~3の二価不飽和炭化水素基を表す。

Description

エステル化合物及びその製造方法、並びに熱伝導性組成物及び熱伝導性シート
 本発明は、エステル化合物及びエステル化合物の製造方法、並びに熱伝導性組成物及び熱伝導性シートに関する。
 各種電子機器におけるLSI等では、用いられている素子の発熱によりLSI自身が長時間高温に晒されると動作不良や故障につながる恐れがある。このため、LSI等の昇温を防ぐために熱伝導性材料が広く用いられている。前記熱伝導性材料は素子の発熱を拡散させるか、あるいは大気等の系外に放出させるための放熱部材に伝えることによって機器の昇温を防ぐことができる。
 このような熱伝導性材料として金属又はセラミックスを用いると、軽量化しにくい、加工性が悪い、又は柔軟性が低くなるという問題がある。そこで、樹脂又はゴム等からなる高分子材料を母材とする熱伝導性材料が種々提案されている。例えば、硬化成分及び該硬化成分用の硬化剤を含有する熱硬化性接着剤と、該熱硬化性接着剤中に分散した金属フィラーとを有し、金属フィラーは、銀粉及びハンダ粉を有し、該ハンダ粉は、熱伝導性接着剤の熱硬化処理温度よりも低い溶融温度を示し、かつ該熱硬化性接着剤の熱硬化処理条件下で銀粉と反応して、当該ハンダ粉の溶融温度より高い融点を示す高融点ハンダ合金を生成するものであり、該硬化剤は、金属フィラーに対してフラックス活性を有する硬化剤であり、該硬化成分が、グリシジルエーテル型エポキシ樹脂であり、硬化剤がトリカルボン酸のモノ酸無水物である熱伝導性接着剤が提案されている(例えば、特許文献1参照)。
特許第5796242号公報
 しかしながら、上記特許文献1に記載の従来技術では、フラックス活性を有する硬化剤であるトリカルボン酸のモノ酸無水物が熱硬化性接着剤中に含まれる水又はアルコール成分などによって分解され、フラックス活性及び硬化性が低下してしまうという問題がある。
 また、分子量が比較的小さく炭化水素鎖長が短く、融点も低いフラックスとしてグルタル酸が知られている。しかし、前記グルタル酸を熱伝導性接着剤に配合すると、グルタル酸は常温で固体結晶として析出してしまうため、塗膜性能に不具合が生じることがある。更に、グルタル酸は融点が95℃~98℃と比較的高温であるため、金属表面への濡れ性を発現させるのに高温加熱が必要となる。また、グルタル酸の沸点が200℃付近であり高温圧着時に、熱伝導性接着剤内でグルタル酸が揮発膨張し塗膜内に空隙を形成し、熱伝導率を著しく減少させることがあるばかりでなく、残存したグルタル酸が半導体周囲の金属に対して悪影響を与える恐れがある。
 本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、優れたフラックス活性と硬化性を兼ね備えたエステル化合物及びエステル化合物の製造方法、並びに熱伝導性組成物及び熱伝導性シートを提供することを目的とする。
 前記課題を解決するための手段としては、以下の通りである。即ち、
 <1> 下記一般式(1)及び一般式(2)の少なくともいずれかで表されることを特徴とするエステル化合物である。
Figure JPOXMLDOC01-appb-C000003
 ただし、前記一般式(1)中、R~Rは水素原子、アルキル基、又はカプロラクトン骨格を表す。Rは水素原子又は水酸基で置換されていてもよいアルキル基を表す。Rは炭素数1~3の二価飽和炭化水素基又は炭素数2~3の二価不飽和炭化水素基を表す。
Figure JPOXMLDOC01-appb-C000004
 ただし、前記一般式(2)中、R及びRは水素原子、アルキル基、又はカプロラクトン骨格を表す。R及びRは水素原子又は水酸基で置換されていてもよいアルキル基を表す。Rは炭素数1~3の二価飽和炭化水素基又は炭素数2~3の二価不飽和炭化水素基を表す。
 <2> 前記Rが、炭素数2~3のアルキレン基及びビニレン基のいずれかである、前記<1>に記載のエステル化合物である。
 <3> 25℃及び150℃で液状である、前記<1>から<2>のいずれかに記載のエステル化合物である。
 <4> 分子量が800g/mol以下である、前記<1>から<2>のいずれかに記載のエステル化合物である。
 <5> フラックス活性を有する硬化剤である、前記<1>から<2>のいずれかに記載のエステル化合物である。
 <6> 前記<1>から<2>のいずれかに記載のエステル化合物を製造する方法であって、
 酸無水物と多官能アルコールをエステル化反応させる工程を含むことを特徴とするエステル化合物の製造方法である。
 <7> 前記酸無水物が、コハク酸無水物、グルタル酸無水物、及びマレイン酸無水物から選択される少なくとも1種である、前記<6>に記載のエステル化合物の製造方法である。
 <8> 前記多官能アルコールが、カプロラクトン誘導体及びグリセリンの少なくともいずれかである、前記<6>に記載のエステル化合物の製造方法である。
 <9> 前記<1>から<2>のいずれかに記載のエステル化合物、硬化成分、熱伝導性粒子、及び低融点金属粒子を含有することを特徴とする熱伝導性組成物である。
 <10> 前記硬化成分がエポキシ樹脂及びオキセタン化合物の少なくともいずれかである、前記<9>に記載の熱伝導性組成物である。
 <11> 前記エポキシ樹脂がグリシジルエーテル型エポキシ樹脂である、前記<10>に記載の熱伝導性組成物である。
 <12> 前記熱伝導性粒子が銅粒子、銀被覆粒子、及び銀粒子の少なくともいずれかである、前記<9>に記載の熱伝導性組成物である。
 <13> 前記低融点金属粒子がSnと、Bi、Ag、Cu、及びInから選択される少なくとも1種とを含む、前記<9>に記載の熱伝導性組成物である。
 <14> 前記<9>に記載の熱伝導性組成物の硬化物を含むことを特徴とする熱伝導性シートである。
 本発明によると、従来における前記諸問題を解決し、前記目的を達成することができ、優れたフラックス活性と硬化性を兼ね備えたエステル化合物及びエステル化合物の製造方法、並びに熱伝導性組成物及び熱伝導性シートを提供することができる。
図1は、本発明で用いられる放熱構造体の一例を示す概略断面図である。
(エステル化合物)
 本発明のエステル化合物は、下記一般式(1)及び一般式(2)の少なくともいずれかで表される。
Figure JPOXMLDOC01-appb-C000005
 ただし、前記一般式(1)中、R~Rは水素原子、アルキル基、又はカプロラクトン骨格を表す。Rは水素原子又は水酸基で置換されていてもよいアルキル基を表す。Rは炭素数1~3の二価飽和炭化水素基又は炭素数2~3の二価不飽和炭化水素基を表す。
Figure JPOXMLDOC01-appb-C000006
 ただし、前記一般式(2)中、R及びRは水素原子、アルキル基、又はカプロラクトン骨格を表す。R及びRは水素原子又は水酸基で置換されていてもよいアルキル基を表す。Rは炭素数1~3の二価飽和炭化水素基又は炭素数2~3の二価不飽和炭化水素基を表す。
 前記一般式(1)及び一般式(2)において、R及びRのアルキル基としては、炭素数1~10のアルキル基が好ましく、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、tert-オクチル基、シクロヘキシル基などが挙げられる。
 R及びRにおけるカプロラクトン骨格は、下記一般式(i)で表される。
Figure JPOXMLDOC01-appb-C000007
 ただし、前記一般式(i)中、nは1以上の整数を表し、1~10が好ましい。mは2以上の整数を表し、2~5が好ましい。
 R及びRにおける水酸基で置換されていてもよいアルキル基としては、例えば、メチル基、エチル基、プロピル基、-(CH)-OH、-(CH-OH、-(CH-OHなどが挙げられる。
 Rは炭素数1~3の二価飽和炭化水素基又は炭素数2~3の二価不飽和炭化水素基を表す。
 Rにおける炭素数1~3の二価飽和炭化水素基としては、例えば、炭素数1~3のアルキレン基などが挙げられる。炭素数1~3のアルキレン基としては、例えば、メチレン基(-CH-)、エチレン基(-CHCH-)、プロピレン基(-CHCHCH-)などが挙げられる。
 Rの炭素数2~3の二価不飽和炭化水素基としては、例えば、ビニレン基(-CH=CH-)、-CH=CH-CH-などが挙げられる。
 これらの中でも、炭素数2~3のアルキレン基及びビニレン基のいずれかであることが、優れたフラックス活性と硬化性を兼ね備える点から好ましい。
 上記一般式(1)及び一般式(2)の少なくともいずれかで表されるエステル化合物は、以下に説明するように、特定の酸無水物に特定の多官能アルコールを作用させることにより合成することができる。
(エステル化合物の製造方法)
 本発明のエステル化合物の製造方法は、本発明のエステル化合物を製造する方法であって、酸無水物と多官能アルコールをエステル化反応させる工程を含み、更に必要に応じてその他の工程を含む。酸無水物と多官能アルコールのエステル化反応としては、特に制限はなく、目的に応じて適宜選択することができる。
 前記酸無水物としては、例えば、コハク酸無水物、グルタル酸無水物、マレイン酸無水物、フタル酸無水物、安息香酸無水物、シュウ酸無水物などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、コハク酸無水物、グルタル酸無水物、マレイン酸無水物が好ましい。
 前記多官能アルコールは、2官能以上であることが好ましく、2官能以上4官能以下であることがより好ましい。前記多官能アルコールとしては、例えば、カプロラクトン誘導体、グリセリン、エチレングリコール、プロピレングリコールなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、カプロラクトン誘導体、グリセリンが好ましい。
 前記カプロラクトン誘導体としては、上記一般式(i)で表されるカプロラクトン骨格を有する化合物などが挙げられる。
 前記カプロラクトン誘導体としては、市販品を用いることができ、前記市販品としは、例えば、プラクセル205、プラクセル205U、プラクセル303、プラクセル410(いずれも、株式会社ダイセル製)などが挙げられる。
 以下に、特定の酸無水物と3官能アルコールとのエステル化反応の一例を示す。
Figure JPOXMLDOC01-appb-C000008
 ただし、前記反応式中、R~Rは水素原子、アルキル基、又はカプロラクトン骨格を表す。Rは水素原子又は水酸基で置換されていてもよいアルキル基を表す。Rは炭素数1~3の二価飽和炭化水素基又は炭素数2~3の二価不飽和炭化水素基を表す。
<その他の工程>
 その他の工程としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、濃縮工程、分離精製工程などが挙げられる。
 上記一般式(1)及び一般式(2)の少なくともいずれかで表されるエステル化合物は、良好なフラックス効果及び良好な硬化剤としての機能を両立できる。即ち、上記一般式(1)及び一般式(2)の少なくともいずれかで表されるエステル化合物は、常温~高温まで液状を呈し、成膜中には反応が起こらず塗工液の濡れ性を向上させ、製品として使用する際に段階的に加熱され、第1段階の加熱によりフラックスの効果を発揮し、次いで、第2段階の加熱により共に配合していたエポキシ樹脂により硬化が始まる加熱硬化開始スイッチ機能を備えている。
 前記第1段階の加熱は、例えば、120℃~150℃であることが好ましい。
 前記第2段階の加熱は、例えば、150℃~190℃であることが好ましい。
 前記エステル化合物は、25℃及び150℃で液状であることが好ましい。
 ここで、液状であるとは、塗布可能な流動性を有していることを意味する。エステル化合物が25℃及び150℃で液状であることは、例えば、25℃(常温)での目視による流動性の確認及びDSCによる150℃までの吸収ピークの有無により確認することができる。
 前記エステル化合物の分子量は、液状である点から、800g/mol以下であることが好ましく、400g/mol以上700g/mol以下がより好ましい。前記エステル化合物の分子量は、例えば、Shodex(登録商標) GPC-101(昭和電工株式会社製)により測定することができる。
 前記エステル化合物はフラックス活性を有する硬化剤であることが好ましい。前記エステル化合物は、フラックス活性を有しているので第1段階の加熱により熱伝導性粒子に対する溶融した低融点金属粒子の濡れ性を向上させることができると共に、第2段階の加熱により硬化剤として働きエポキシ樹脂を硬化させることができる。
(熱伝導性組成物)
 本発明の熱伝導性組成物は、本発明のエステル化合物、硬化成分、熱伝導性粒子、及び低融点金属粒子を含有し、更に必要に応じてその他の成分を含有する。
<エステル化合物>
 本発明のエステル化合物の含有量は、特に制限はなく、目的に応じて適宜選択することができるが、熱伝導性組成物の全量に対して、0.5質量%以上50質量%以下であることが好ましい。
<硬化成分>
 硬化成分は、エポキシ樹脂及びオキセタン化合物の少なくともいずれかであることが好ましい。
-エポキシ樹脂-
 前記エポキシ樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、トリスフェノール型エポキシ樹脂、テトラフェノール型エポキシ樹脂、フェノール-キシリレン型エポキシ樹脂、ナフトール-キシリレン型エポキシ樹脂、フェノール-ナフトール型エポキシ樹脂、フェノール-ジシクロペンタジエン型エポキシ樹脂、脂環式エポキシ樹脂、脂肪族エポキシ樹脂などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、反応性及び経済性の点から、グリシジルエーテル型エポキシ樹脂が好ましい。
-オキセタン化合物-
 前記オキセタン化合物は、オキセタニル基を有する化合物であり、脂肪族化合物、脂環式化合物、又は芳香族化合物であってもよい。
 前記オキセタン化合物は、オキセタニル基を1つのみ有する1官能のオキセタン化合物であってもよいし、オキセタニル基を2つ以上有する多官能のオキセタン化合物であってもよい。
 前記オキセタン化合物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、3,7-ビス(3-オキセタニル)-5-オキサ-ノナン、1,4-ビス[(3-エチル-3-オキセタニルメトキシ)メチル]ベンゼン、1,2-ビス[(3-エチル-3-オキセタニルメトキシ)メチル]エタン、1,3-ビス[(3-エチル-3-オキセタニルメトキシ)メチル]プロパン、エチレングリコールビス(3-エチル-3-オキセタニルメチル)エーテル、トリエチレングリコールビス(3-エチル-3-オキセタニルメチル)エーテル、テトラエチレングリコールビス(3-エチル-3-オキセタニルメチル)エーテル、1,4-ビス(3-エチル-3-オキセタニルメトキシ)ブタン、1,6-ビス(3-エチル-3-オキセタニルメトキシ)ヘキサン、3-エチル-3-(フェノキシ)メチルオキセタン、3-エチル-3-(シクロヘキシルオキシメチル)オキセタン、3-エチル-3-(2-エチルヘキシルオキシメチル)オキセタン、3-エチル-3-ヒドロキシメチルオキセタン、3-エチル-3-(クロロメチル)オキセタン、3-エチル-3{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタン、キシリレンビスオキセタン、4,4′-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ビフェニル(OXBP)、イソフタル酸ビス[(3-エチル-3-オキセタニル)メチル]エステル(OXIPA)などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、4,4′-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ビフェニル(OXBP)、イソフタル酸ビス[(3-エチル-3-オキセタニル)メチル]エステル(OXIPA)が好ましい。
 前記オキセタン化合物としては、市販品を用いることができ、前記市販品としては、例えば、東亞合成株式会社から販売されている「アロンオキセタン(登録商標)」シリーズ、宇部興産株式会社から販売されている「ETERNACOLL(登録商標)」シリーズなどが挙げられる。
 前記硬化成分の含有量は、特に制限はなく、目的に応じて適宜選択することができるが、熱伝導性組成物の全量に対して、0.3質量%以上60質量%以下であることが好ましく、0.5質量%以上30質量%以下であることがより好ましい。
<熱伝導性粒子>
 前記熱伝導性粒子としては、銅粒子、銀被覆粒子、及び銀粒子の少なくともいずれかが好ましい。
 前記銀被覆粒子としては、例えば、銀被覆銅粒子、銀被覆ニッケル粒子、銀被覆アルミニウム粒子などが挙げられる。
 前記熱伝導性粒子の形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、球状、扁平状、粒状、針状などが挙げられる。
 前記熱伝導性粒子の体積平均粒径は、10μm以上300μm以下が好ましく、20μm以上100μm以下がより好ましい。熱伝導性粒子の体積平均粒径が10μm以上300μm以下であると、熱伝導性粒子の低融点金属粒子に対する体積割合を大きくすることができ、熱伝導性組成物の高熱伝導性及び低熱抵抗を実現できる。
 前記体積平均粒径は、例えば、レーザ回折・散乱式粒子径分布測定装置(製品名:Microtrac MT3300EXII)により、測定することができる。
<低融点金属粒子>
 前記低融点金属粒子としては、JIS Z3282-1999に規定されているはんだ粒子が好適に用いられる。
 前記はんだ粒子としては、例えば、Sn-Pb系はんだ粒子、Pb-Sn-Sb系はんだ粒子、Sn-Sb系はんだ粒子、Sn-Pb-Bi系はんだ粒子、Sn-Bi系はんだ粒子、Sn-Bi-Ag系はんだ粒子、Sn-Cu系はんだ粒子、Sn-Pb-Cu系はんだ粒子、Sn-In系はんだ粒子、Sn-Ag系はんだ粒子、Sn-Pb-Ag系はんだ粒子、Pb-Ag系はんだ粒子、Sn-Ag-Cu系はんだ粒子などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 これらの中でも、Snと、Bi、Ag、Cu、及びInから選択される少なくとも1種と、を含むはんだ粒子が好ましく、Sn-Bi系はんだ粒子、Sn-Bi-Ag系はんだ粒子、Sn-Ag-Cu系はんだ粒子、Sn-In系はんだ粒子がより好ましい。
 前記低融点金属粒子の形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、球状、扁平状、粒状、針状などが挙げられる。
 前記低融点金属粒子の融点は、100℃以上250℃以下が好ましく、120℃以上200℃以下がより好ましい。
 前記低融点金属粒子の融点は前記熱伝導性組成物の熱硬化処理温度よりも低いことが、熱伝導性組成物の硬化物中に溶融した低融点金属粒子により熱伝導性粒子を介してネットワーク(金属の連続相)を形成でき、高熱伝導性及び低熱抵抗を実現できる点から好ましい。
 前記低融点金属粒子が、前記熱伝導性組成物の熱硬化処理条件下で前記熱伝導性粒子と反応して、前記低融点金属粒子より高い融点を示す合金となることにより、高温下で溶融することを防止でき、信頼性が向上する。また、熱伝導性組成物の硬化物の耐熱性が向上する。
 前記熱伝導性組成物の熱硬化処理は、例えば、150℃以上200℃の温度で30分間以上2時間以下の条件で行われる。
 前記低融点金属粒子の体積平均粒径は、10μm以下が好ましく、1μm以上5μm以下がより好ましい。低融点金属粒子の体積平均粒径が10μm以下であると、低融点金属粒子の熱伝導性粒子に対する体積割合を小さくすることができ、熱伝導性組成物の高熱伝導性及び低熱抵抗を実現できる。
 前記低融点金属粒子の体積平均粒径は、上記熱伝導性粒子の体積平均粒径と同様にして測定することができる。
<その他の成分>
 前記熱伝導性組成物は、本発明の効果を損なわない限りにおいてその他の成分を含有してもよい。前記その他の成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、金属以外の熱伝導性粒子(例えば、窒化アルミ、アルミナ、炭素繊維等)、バインダー樹脂、添加剤(例えば、酸化防止剤、紫外線吸収剤、硬化促進剤、シランカップリング剤、レベリング剤、難燃剤等)などが挙げられる。
-バインダー樹脂-
 バインダー樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリブタジエン、ポリシロキサン、ポリ(メタ)アクリレート、ポリアルキレン化合物、ポリアルキレンオキシ化合物、ポリイソプレン、ポリイソブチレン、ポリアミド化合物、ポリカーボネートなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 本発明の熱伝導性組成物は、本発明のエステル化合物、エポキシ樹脂、熱伝導性粒子、低融点金属粒子、及び更に必要に応じてその他の成分を常法により均一に混合することにより調製することができる。
 前記熱伝導性組成物は、シート状の熱伝導性シート、及びペースト状の熱伝導性ペースト(熱伝導性接着剤、又は熱伝導性グリースと称することもある)のいずれであってもよい。これらの中でも、取り扱いのし易さの点から熱伝導性シートが好ましく、コストの面から熱伝導性ペーストが好ましい。
(熱伝導性シート)
 本発明の熱伝導性シートは、本発明の熱伝導性組成物の硬化物を含み、本発明の熱伝導性組成物をシート化したものである。
 前記熱伝導性シートの平均厚みは、薄型化の観点から、500μm以下が好ましく、200μm以下がより好ましく、100μm以下が更に好ましい。前記熱伝導性シートの平均厚みの下限値は、特に制限はなく、目的に応じて適宜選択することができるが、5μm以上が好ましく、10μm以上がより好ましく、50μm以上が更に好ましい。
 前記熱伝導性シートの製造方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、(1)前記熱伝導性組成物を所定の形状に成形して硬化させ、熱伝導性成形体を形成し、得られた熱伝導性成形体をシート状にスライスし、熱伝導性シートを製造する方法、(2)剥離層付き支持体上に前記熱伝導性組成物の硬化物を含む硬化物層を形成し熱伝導性シートを製造する方法などが挙げられる。なお、前記(2)においては、熱伝導性シートを放熱基板に積層する際に支持体を剥離する。
 本発明の熱伝導性組成物及び熱伝導性シートは、例えば、LSI等の熱源とヒートシンクとの間の微小な間隙を埋めることで、両者の間に熱がスムーズに流れるようにするサーマルインターフェイスマテリアル(TIM1)、LEDチップ又はICチップを実装した放熱基板を、ヒートシンクに接着してパワーLEDモジュール又はパワーICモジュールを構成する際に好適に使用することができる。
 ここで、パワーLEDモジュールとしては、ワイヤーボンディング実装タイプのものとフリップチップ実装タイプのものがあり、パワーICモジュールとしてはワイヤーボンディング実装タイプのものがある。
<放熱構造体>
 本発明に用いられる放熱構造体は、発熱体と、熱伝導性材料と、放熱部材とから構成され、前記発熱体と前記放熱部材の間に、前記熱伝導性材料としての本発明の熱伝導性組成物の硬化物を有する。
 前記発熱体としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、CPU(Central Processing Unit)、MPU(Micro Processing Unit)、GPU(Graphics Processing Unit)等の電子部品などが挙げられる。
 前記放熱部材としては、電子部品(発熱体)の発する熱を放熱する構造体であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、ヒートスプレッダ、ヒートシンク、ベーパーチャンバー、ヒートパイプなどが挙げられる。
 前記ヒートスプレッダは、前記電子部品の熱を他の部品に効率的に伝えるための部材である。前記ヒートスプレッダの材質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、銅、アルミニウムなどが挙げられる。前記ヒートスプレッダは、通常、平板形状である。
 前記ヒートシンクは、前記電子部品の熱を空気中に放出するための部材である。前記ヒートシンクの材質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、銅、アルミニウムなどが挙げられる。前記ヒートシンクは、例えば、複数のフィンを有する。前記ヒートシンクは、例えば、ベース部と、前記ベース部の一方の面に対して非平行方向(例えば、直交する方向)に向かって延びるように設けられた複数のフィンを有する。
 前記ヒートスプレッダ、及び前記ヒートシンクは、一般的に、内部に空間を持たない中実構造である。
 前記ベーパーチャンバーは、中空構造体である。前記中空構造体の内部空間には、揮発性の液体が封入されている。前記ベーパーチャンバーとしては、例えば、前記ヒートスプレッダを中空構造にしたもの、前記ヒートシンクを中空構造にしたような板状の中空構造体などが挙げられる。
 前記ヒートパイプは、円筒状、略円筒状、又は扁平筒状の中空構造体である。前記中空構造体の内部空間には、揮発性の液体が封入されている。
 ここで、図1は、放熱構造体としての半導体装置の一例を示す概略断面図である。本発明の熱伝導性組成物の硬化物(熱伝導性シート)1は、半導体素子等の電子部品3の発する熱を放熱するものであり、図1に示すように、ヒートスプレッダ2の電子部品3と対峙する主面2aに固定され、電子部品3と、ヒートスプレッダ2との間に挟持されるものである。また、熱伝導性シート1は、ヒートスプレッダ2とヒートシンク5との間に挟持される。そして、熱伝導性シート1は、ヒートスプレッダ2とともに、電子部品3の熱を放熱する放熱部材を構成する。
 ヒートスプレッダ2は、例えば、方形板状に形成され、電子部品3と対峙する主面2aと、主面2aの外周に沿って立設された側壁2bとを有する。ヒートスプレッダ2は、側壁2bに囲まれた主面2aに熱伝導性シート1が設けられ、また主面2aと反対側の他面2cに熱伝導性シート1を介してヒートシンク5が設けられる。ヒートスプレッダ2は、高い熱伝導率を有するほど、熱抵抗が減少し、効率よく半導体素子等の電子部品3の熱を吸熱することから、例えば、熱伝導性の良好な銅やアルミニウムを用いて形成することができる。
 電子部品3は、例えば、BGA等の半導体素子であり、配線基板6へ実装される。またヒートスプレッダ2も、側壁2bの先端面が配線基板6に実装され、これにより側壁2bによって所定の距離を隔てて電子部品3を囲んでいる。
 そして、ヒートスプレッダ2の主面2aに、熱伝導性シート1が接着されることにより、電子部品3の発する熱を吸収し、ヒートシンク5より放熱する放熱部材が形成される。
 以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。
(実施例1)
<エステル化合物の合成>
 熱電対、攪拌装置、冷却管、及び加温装置を備えたガラス製の三口フラスコに、下記一般式(ii)で表されるカプロラクトン誘導体(株式会社ダイセル製、プラクセル303)50質量部を計量し、これにメチルエチルケトン(富士フイルム和光純薬株式会社製)43.3質量部を添加し、よく攪拌して完全に溶解させた。
 次いで、触媒としてトリエチルアミン(東京化成工業株式会社製)1質量部を加えて、更によく攪拌した。完全に溶解させた後、下記構造式で示すグルタル酸無水物(Glutaric Anhydride、東京化成工業株式会社製)50質量部を三口フラスコ内に漏斗を用いて粉末状のまま滴下した。上記を完全に反応が終了するまで、60℃で一定に保ち、24時間攪拌させた。上述の合成体を常温に冷却後、ナスフラスコに移しエバポレーターで濃縮した後、減圧乾燥(60℃で24時間)して、目的のエステル化合物を収率93%で得た。
[一般式(ii)]
<カプロラクトン誘導体(株式会社ダイセル製、プラクセル303)>
 ただし、Rは水素原子又はアルキル基を表す。nは1以上の整数を表す。
(実施例2)
<エステル化合物の合成>
 実施例1において、グルタル酸無水物(東京化成工業株式会社製)を下記構造式で示すコハク酸無水物(富士フイルム和光純薬株式会社製)に代えた以外は、実施例1と同様にして、エステル化合物の合成を行った。目的の化合物は液状となり、収率は95%であった。
(実施例3)
<エステル化合物の合成>
 実施例1において、グルタル酸無水物(東京化成工業株式会社製)を下記構造式で示すマレイン酸無水物(富士フイルム和光純薬株式会社製)に代えた以外は、実施例1と同様にして合成を行った。目的のエステル化合物は液状となり、収率は91%であった。
(実施例4)
<エステル化合物の合成>
 実施例1において、カプロラクトン誘導体(株式会社ダイセル製、プラクセル303)をグリセリン(富士フイルム和光純薬株式会社製)に代えた以外は、実施例1と同様にして合成を行った。目的の化合物は液状となり、収率は90%であった。
(実施例5)
<エステル化合物の合成>
 実施例1において、カプロラクトン誘導体(株式会社ダイセル製、プラクセル303)を下記一般式(iii)で表されるカプロラクトン誘導体(株式会社ダイセル製、プラクセル205U)に代えた以外は、実施例1と同様にして合成を行った。目的の化合物は液状となり、収率は90%であった。
[一般式(iii)]
<カプロラクトン誘導体(株式会社ダイセル製、プラクセル205U)>
 ただし、Rは水素原子又はアルキレン基を表す。nは1以上の整数、mは1以上の整数を表す。
(実施例6)
 実施例2において、カプロラクトン誘導体(株式会社ダイセル製、プラクセル303)を上記一般式(iii)で表されるカプロラクトン誘導体(株式会社ダイセル製、プラクセル205U)に代えた以外は、実施例2と同様にして合成を行った。目的の化合物は液状となり、収率は90%であった。
(比較例1)
<エステル化合物の合成>
 実施例1において、グルタル酸無水物(東京化成工業株式会社製)を、下記構造式で示す「MH-700」(リカシッドMH-700、新日本理化株式会社製)に代えた以外は、実施例1と同様にして合成を行った。目的の化合物は固体状となり、収率は、94%であった。
(比較例2)
<エステル化合物の合成>
 実施例1において、グルタル酸無水物(東京化成工業株式会社製)を、下記構造式で示す「H-TMAn-S」(三菱化学株式会社製)に代えた以外は、実施例1と同様にして合成を行った。目的の化合物は固体状となり、収率は、88%であった。
(比較例3)
 エステル化していないグルタル酸(東京化成工業株式会社製)を用意した。
 次に、得られた実施例1~6、比較例1~2のエステル化合物、及び比較例3のグルタル酸について、以下のようにして、性状及び分子量を測定した。結果を表1-1及び表1-2に示した。
<エステル化合物及びグルタル酸の性状の確認>
 エステル化合物及びグルタル酸が25℃及び150℃で液状であることは、25℃で目視による流動性の有無を確認し、更に示差走査熱量測定(DSC)による150℃までの吸熱ピークの有無を確認した。
 ・25℃で固体であり、150℃までに吸熱ピークが有り→150℃で液状
 ・25℃で固体であり、150℃までに吸熱ピークが無し→150℃で固体
<エステル化合物の分子量>
 エステル化合物の分子量は、Shodex(登録商標) GPC-101(昭和電工株式会社製)により測定した。
Figure JPOXMLDOC01-appb-T000016
(実施例7~18及び比較例4~9)
<熱伝導性組成物の調製>
 表2-1から表2-3に示す組成及び含有量を、攪拌装置(泡とり練太郎・自動公転ミキサー、株式会社シンキー製)を用いて均一になるように混合し、実施例7~18及び比較例4~9の熱伝導性組成物を調製した。
<硬化物の作製>
 30mm×30mm×2mmのアルミニウム基板(A5052P)上に各熱伝導性組成物を塗布した後、高さ0.125mmのスペーサを配置してスペーサの上に別のアルミニウム基板(30mm×30mm×2mm)を載せて、2枚のアルミニウム基板の間に各熱伝導性組成物を厚さが0.125mm、1辺が20mmとなるように挟み込み、150℃で60分間オーブンキュアを施し、各熱伝導性組成物の硬化物(界面Al)を得た。
<硬化性>
 次に、得られた各硬化物について、以下の基準に基づき、硬化性を評価した。結果を表2-1から表2-3に示した。
[評価基準]
  〇:2枚のアルミニウム基板を引き剥がすことができない
  △:2枚のアルミニウム基板をペンチ等により引き剥がすことができる
  ×:2枚のアルミニウム基板を手で簡単に引き剥がすことができる
 次に、以下のようにして、熱伝導率を測定した。結果を表2-1から表2-3に示した。
<熱伝導率>
 銅基板(30mm×30mm×2mm)の上に各熱伝導性組成物を塗布した後、高さ0.125mmのスペーサを配置してスペーサの上に別の銅基板(30mm×30mm×2mm)を載せて、2枚の銅基板の間に各熱伝導性組成物を厚さが0.125mm、1辺が20mmとなるように挟み込み、150℃で60分間オーブンキュアを施した。
 各熱伝導性組成物の硬化物(界面Cu)について、ASTM-D5470に準拠した方法で熱抵抗(℃・cm/W)を測定した。この結果から銅属板の熱抵抗を引いて硬化物の熱抵抗を算出し、熱抵抗と硬化物の厚みから熱伝導率(W/mK)を求め、下記の基準で評価した。
[評価基準]
  〇:熱伝導率が11.0W/m・K以上
  △:熱伝導率が8.0W/m・K以上11.0W/m・K未満
  ×:熱伝導率が8.0W/m・K未満
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
 表2-1から表2-3中の各材料の詳細については、以下の通りである。
 ・ベースポリマー:M1276、アルケマ株式会社製、ポリアミド化合物
 ・エポキシ樹脂:グリシジルエーテル型エポキシ樹脂、AER9000、旭化成株式会社製(エポキシ当量:350)
 ・オキセタン化合物:4,4′-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ビフェニル(OXBP)、UBE株式会社製
 ・熱伝導性粒子:AgコートCu粒子、福田金属箔粉工業株式会社製、体積平均粒径Dv:40μm
 ・低融点金属粒子:Sn58Bi42、三井金属鉱業株式会社製、体積平均粒径Dv:4μm、融点139℃
 本発明の熱伝導性組成物及び熱伝導性シートは、高熱伝導性及び低熱抵抗を実現できるので、例えば、温度によって素子動作の効率や寿命等に悪影響が生じるCPU、MPU、パワートランジスタ、LED、レーザーダイオード、各種電池(リチウムイオン電池等の各種二次電池、各種燃料電池、キャパシタ、アモルファスシリコン、結晶シリコン、化合物半導体、湿式太陽電池等の各種太陽電池等)などの各種の電気デバイス周り、熱の有効利用が求められる暖房機器の熱源周り、熱交換器、床暖房装置の熱配管周りなどに好適に用いられる。
 本国際出願は2022年3月22日に出願した日本国特許出願2022-045665号及び2022年12月22日に出願した日本国特許出願2022-205410号に基づく優先権を主張するものであり、日本国特許出願2022-045665号及び日本国特許出願2022-205410号の全内容を本国際出願に援用する。
   1   熱伝導性材料(熱伝導性シート)
   2   放熱部材(ヒートスプレッダ)
  2a   主面
   3   発熱体(電子部品)
  3a   上面
   5   放熱部材(ヒートシンク)
   6   配線基板

 

Claims (14)

  1.  下記一般式(1)及び一般式(2)の少なくともいずれかで表されることを特徴とするエステル化合物。
    Figure JPOXMLDOC01-appb-C000001
     ただし、前記一般式(1)中、R~Rは水素原子、アルキル基、又はカプロラクトン骨格を表す。Rは水素原子又は水酸基で置換されていてもよいアルキル基を表す。Rは炭素数1~3の二価飽和炭化水素基又は炭素数2~3の二価不飽和炭化水素基を表す。
    Figure JPOXMLDOC01-appb-C000002
     ただし、前記一般式(2)中、R及びRは水素原子、アルキル基、又はカプロラクトン骨格を表す。R及びRは水素原子又は水酸基で置換されていてもよいアルキル基を表す。Rは炭素数1~3の二価飽和炭化水素基又は炭素数2~3の二価不飽和炭化水素基を表す。
  2.  前記Rが、炭素数2~3のアルキレン基及びビニレン基のいずれかである、請求項1に記載のエステル化合物。
  3.  25℃及び150℃で液状である、請求項1から2のいずれかに記載のエステル化合物。
  4.  分子量が800g/mol以下である、請求項1から2のいずれかに記載のエステル化合物。
  5.  フラックス活性を有する硬化剤である、請求項1から2のいずれかに記載のエステル化合物。
  6.  請求項1から2のいずれかに記載のエステル化合物を製造する方法であって、
     酸無水物と多官能アルコールをエステル化反応させる工程を含むことを特徴とするエステル化合物の製造方法。
  7.  前記酸無水物が、コハク酸無水物、グルタル酸無水物、及びマレイン酸無水物から選択される少なくとも1種である、請求項6に記載のエステル化合物の製造方法。
  8.  前記多官能アルコールが、カプロラクトン誘導体及びグリセリンの少なくともいずれかである、請求項6に記載のエステル化合物の製造方法。
  9.  請求項1から2のいずれかに記載のエステル化合物、硬化成分、熱伝導性粒子、及び低融点金属粒子を含有することを特徴とする熱伝導性組成物。
  10.  前記硬化成分がエポキシ樹脂及びオキセタン化合物の少なくともいずれかである、請求項9に記載の熱伝導性組成物。
  11.  前記エポキシ樹脂がグリシジルエーテル型エポキシ樹脂である、請求項10に記載の熱伝導性組成物。
  12.  前記熱伝導性粒子が銅粒子、銀被覆粒子、及び銀粒子の少なくともいずれかである、請求項9に記載の熱伝導性組成物。
  13.  前記低融点金属粒子がSnと、Bi、Ag、Cu、及びInから選択される少なくとも1種とを含む、請求項9に記載の熱伝導性組成物。
  14.  請求項9に記載の熱伝導性組成物の硬化物を含むことを特徴とする熱伝導性シート。

     
PCT/JP2023/009602 2022-03-22 2023-03-13 エステル化合物及びその製造方法、並びに熱伝導性組成物及び熱伝導性シート WO2023182046A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022045665 2022-03-22
JP2022-045665 2022-03-22
JP2022205410A JP2023140277A (ja) 2022-03-22 2022-12-22 エステル化合物及びその製造方法、並びに熱伝導性組成物及び熱伝導性シート
JP2022-205410 2022-12-22

Publications (1)

Publication Number Publication Date
WO2023182046A1 true WO2023182046A1 (ja) 2023-09-28

Family

ID=88101344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/009602 WO2023182046A1 (ja) 2022-03-22 2023-03-13 エステル化合物及びその製造方法、並びに熱伝導性組成物及び熱伝導性シート

Country Status (2)

Country Link
TW (1) TW202348596A (ja)
WO (1) WO2023182046A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11131042A (ja) * 1997-08-28 1999-05-18 Shin Etsu Chem Co Ltd 熱硬化性接着剤及びそれを用いたフレキシブル印刷配線板材料
JP2002038037A (ja) * 2000-07-28 2002-02-06 Nippon Yushi Basf Coatings Kk 含フッ素系熱硬化性組成物
JP2009523860A (ja) * 2006-01-17 2009-06-25 エシコン・インコーポレイテッド ジイソシアネート末端マクロマーおよび製造方法
JP2012188646A (ja) * 2011-02-24 2012-10-04 Sony Chemical & Information Device Corp 熱伝導性接着剤
JP2013006999A (ja) * 2011-06-27 2013-01-10 Nitto Shinko Kk 熱硬化性接着剤、熱硬化性接着シート、及び、相間絶縁シート
JP2015098588A (ja) * 2013-10-17 2015-05-28 デクセリアルズ株式会社 異方性導電接着剤及び接続構造体
WO2017108960A1 (en) * 2015-12-22 2017-06-29 Ratiopharm Gmbh Method for producing monomethyl fumarate compounds
US20180244834A1 (en) * 2015-09-15 2018-08-30 Ndsu Research Foundation Bio-based thermosets

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11131042A (ja) * 1997-08-28 1999-05-18 Shin Etsu Chem Co Ltd 熱硬化性接着剤及びそれを用いたフレキシブル印刷配線板材料
JP2002038037A (ja) * 2000-07-28 2002-02-06 Nippon Yushi Basf Coatings Kk 含フッ素系熱硬化性組成物
JP2009523860A (ja) * 2006-01-17 2009-06-25 エシコン・インコーポレイテッド ジイソシアネート末端マクロマーおよび製造方法
JP2012188646A (ja) * 2011-02-24 2012-10-04 Sony Chemical & Information Device Corp 熱伝導性接着剤
JP2013006999A (ja) * 2011-06-27 2013-01-10 Nitto Shinko Kk 熱硬化性接着剤、熱硬化性接着シート、及び、相間絶縁シート
JP2015098588A (ja) * 2013-10-17 2015-05-28 デクセリアルズ株式会社 異方性導電接着剤及び接続構造体
US20180244834A1 (en) * 2015-09-15 2018-08-30 Ndsu Research Foundation Bio-based thermosets
WO2017108960A1 (en) * 2015-12-22 2017-06-29 Ratiopharm Gmbh Method for producing monomethyl fumarate compounds

Also Published As

Publication number Publication date
TW202348596A (zh) 2023-12-16

Similar Documents

Publication Publication Date Title
US9084373B2 (en) Thermally conductive adhesive
WO2017014238A1 (ja) 熱伝導性樹脂組成物、熱伝導性シートおよび半導体装置
WO2008044496A1 (fr) Composition de résine liquide destinée à étanchéifier des éléments électroniques, et appareil électronique utilisant cette composition
JPWO2018181737A1 (ja) ペースト状樹脂組成物
WO2021117758A1 (ja) 熱硬化性樹脂組成物、樹脂シートおよび金属ベース基板
JP2017025186A (ja) 熱伝導性樹脂組成物、回路基板用積層体、回路基板および半導体装置
JP2017130676A (ja) 三次元集積回路積層体
JP2013098217A (ja) パワー半導体モジュール用部品の製造方法
WO2023182046A1 (ja) エステル化合物及びその製造方法、並びに熱伝導性組成物及び熱伝導性シート
JP2012216836A (ja) 三次元集積回路積層体
JP3708423B2 (ja) エポキシ樹脂用フェノール系硬化剤及びそれを用いたエポキシ樹脂組成物
JP7476482B2 (ja) 熱伝導性シート
JP3826104B2 (ja) 無溶剤型液状銀ペースト組成物及びそれを用いた半導体装置
JP2023140277A (ja) エステル化合物及びその製造方法、並びに熱伝導性組成物及び熱伝導性シート
JP7200674B2 (ja) 放熱構造体の製造方法
WO2024053494A1 (ja) (メタ)アクリル基含有ポリカルボン酸化合物、熱伝導組成物、及び熱伝導シート
WO2023238694A1 (ja) 積層体及びその製造方法
JP2012079872A (ja) フリップチップ接続用アンダーフィル剤、及びそれを用いる半導体装置の製造方法
JP2021183682A (ja) 樹脂被覆無機粒子、熱硬化性樹脂組成物、半導体装置、樹脂被覆無機粒子の製造方法
WO2024048358A1 (ja) 積層体及び積層体の製造方法
JP7445065B1 (ja) 熱伝導性組成物、及び積層体の製造方法
WO2023037862A1 (ja) 熱伝導性組成物及び熱伝導性シート
CN117916877A (zh) 导热性组合物和导热性片
WO2023238692A1 (ja) 積層体及びその製造方法
KR102570823B1 (ko) 반도체용 접착제 및 그것을 이용한 반도체 장치의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23774643

Country of ref document: EP

Kind code of ref document: A1