WO2023037862A1 - 熱伝導性組成物及び熱伝導性シート - Google Patents
熱伝導性組成物及び熱伝導性シート Download PDFInfo
- Publication number
- WO2023037862A1 WO2023037862A1 PCT/JP2022/031612 JP2022031612W WO2023037862A1 WO 2023037862 A1 WO2023037862 A1 WO 2023037862A1 JP 2022031612 W JP2022031612 W JP 2022031612W WO 2023037862 A1 WO2023037862 A1 WO 2023037862A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- thermally conductive
- particles
- conductive composition
- composition according
- low
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 76
- 239000002245 particle Substances 0.000 claims abstract description 116
- 238000001723 curing Methods 0.000 claims abstract description 68
- 238000002844 melting Methods 0.000 claims abstract description 48
- 239000002923 metal particle Substances 0.000 claims abstract description 47
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 39
- 230000008018 melting Effects 0.000 claims abstract description 39
- 229910052751 metal Inorganic materials 0.000 claims abstract description 30
- 239000002184 metal Substances 0.000 claims abstract description 30
- 239000000945 filler Substances 0.000 claims abstract description 21
- 238000001029 thermal curing Methods 0.000 claims abstract description 7
- 238000000034 method Methods 0.000 claims abstract description 6
- 229920002857 polybutadiene Polymers 0.000 claims description 42
- -1 polysiloxane structure Polymers 0.000 claims description 33
- 229920000642 polymer Polymers 0.000 claims description 30
- 239000005062 Polybutadiene Substances 0.000 claims description 27
- 239000010949 copper Substances 0.000 claims description 22
- 229910052709 silver Inorganic materials 0.000 claims description 15
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 14
- 239000004417 polycarbonate Substances 0.000 claims description 13
- 229920000515 polycarbonate Polymers 0.000 claims description 13
- 239000004332 silver Substances 0.000 claims description 12
- JFCQEDHGNNZCLN-UHFFFAOYSA-N glutaric acid group Chemical group C(CCCC(=O)O)(=O)O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 claims description 11
- 229910052802 copper Inorganic materials 0.000 claims description 10
- 229920001281 polyalkylene Polymers 0.000 claims description 10
- 229920001195 polyisoprene Polymers 0.000 claims description 9
- 239000004952 Polyamide Substances 0.000 claims description 8
- 229920002367 Polyisobutene Polymers 0.000 claims description 8
- NIXOWILDQLNWCW-UHFFFAOYSA-M acrylate group Chemical group C(C=C)(=O)[O-] NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims description 8
- 229920002647 polyamide Polymers 0.000 claims description 8
- 229920000193 polymethacrylate Polymers 0.000 claims description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 7
- 230000000694 effects Effects 0.000 claims description 6
- 229910045601 alloy Inorganic materials 0.000 claims description 5
- 239000000956 alloy Substances 0.000 claims description 5
- 230000001747 exhibiting effect Effects 0.000 claims description 5
- 238000011049 filling Methods 0.000 claims description 5
- 230000004907 flux Effects 0.000 claims description 5
- 229920001187 thermosetting polymer Polymers 0.000 claims description 4
- 229910052797 bismuth Inorganic materials 0.000 claims description 3
- 229910052738 indium Inorganic materials 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims description 3
- 229920005989 resin Polymers 0.000 description 57
- 239000011347 resin Substances 0.000 description 57
- 229910000679 solder Inorganic materials 0.000 description 30
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 21
- 239000003822 epoxy resin Substances 0.000 description 20
- 229920000647 polyepoxide Polymers 0.000 description 20
- 239000004925 Acrylic resin Substances 0.000 description 15
- 229920000178 Acrylic resin Polymers 0.000 description 15
- 125000000524 functional group Chemical group 0.000 description 14
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 12
- 239000004065 semiconductor Substances 0.000 description 12
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 11
- 150000001875 compounds Chemical class 0.000 description 10
- 230000017525 heat dissipation Effects 0.000 description 10
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 9
- 239000007788 liquid Substances 0.000 description 9
- 239000004593 Epoxy Substances 0.000 description 8
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical group CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 8
- 125000003700 epoxy group Chemical group 0.000 description 8
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 8
- 229920001721 polyimide Polymers 0.000 description 8
- 150000008065 acid anhydrides Chemical class 0.000 description 7
- 239000000853 adhesive Substances 0.000 description 7
- 230000001070 adhesive effect Effects 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 230000009477 glass transition Effects 0.000 description 7
- 238000007689 inspection Methods 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 125000004018 acid anhydride group Chemical group 0.000 description 6
- 125000004432 carbon atom Chemical group C* 0.000 description 6
- 229920006026 co-polymeric resin Polymers 0.000 description 6
- 238000005227 gel permeation chromatography Methods 0.000 description 6
- 125000005396 acrylic acid ester group Chemical group 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- JOYRKODLDBILNP-UHFFFAOYSA-N urethane group Chemical group NC(=O)OCC JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 5
- 239000004642 Polyimide Substances 0.000 description 4
- 125000002947 alkylene group Chemical group 0.000 description 4
- 150000008064 anhydrides Chemical class 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 4
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical group [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 4
- 239000011888 foil Substances 0.000 description 4
- 238000005498 polishing Methods 0.000 description 4
- 239000009719 polyimide resin Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- RTBFRGCFXZNCOE-UHFFFAOYSA-N 1-methylsulfonylpiperidin-4-one Chemical compound CS(=O)(=O)N1CCC(=O)CC1 RTBFRGCFXZNCOE-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 3
- 229910020830 Sn-Bi Inorganic materials 0.000 description 3
- 229910018728 Sn—Bi Inorganic materials 0.000 description 3
- 229920000800 acrylic rubber Polymers 0.000 description 3
- 125000005529 alkyleneoxy group Chemical group 0.000 description 3
- KAKZBPTYRLMSJV-UHFFFAOYSA-N butadiene group Chemical group C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000010419 fine particle Substances 0.000 description 3
- 238000013007 heat curing Methods 0.000 description 3
- MUTGBJKUEZFXGO-UHFFFAOYSA-N hexahydrophthalic anhydride Chemical compound C1CCCC2C(=O)OC(=O)C21 MUTGBJKUEZFXGO-UHFFFAOYSA-N 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 125000003566 oxetanyl group Chemical group 0.000 description 3
- 229920000058 polyacrylate Polymers 0.000 description 3
- 150000003628 tricarboxylic acids Chemical class 0.000 description 3
- UWFHYGTWXNRUDH-UHFFFAOYSA-N 3-ethyl-3-[4-[(3-ethyloxetan-3-yl)methoxy]butoxymethyl]oxetane Chemical compound C1OCC1(CC)COCCCCOCC1(CC)COC1 UWFHYGTWXNRUDH-UHFFFAOYSA-N 0.000 description 2
- DCOXQQBTTNZJBI-UHFFFAOYSA-N 3-ethyl-3-[[4-[4-[(3-ethyloxetan-3-yl)methoxymethyl]phenyl]phenyl]methoxymethyl]oxetane Chemical group C=1C=C(C=2C=CC(COCC3(CC)COC3)=CC=2)C=CC=1COCC1(CC)COC1 DCOXQQBTTNZJBI-UHFFFAOYSA-N 0.000 description 2
- 229920002121 Hydroxyl-terminated polybutadiene Polymers 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 229910020935 Sn-Sb Inorganic materials 0.000 description 2
- 229910008757 Sn—Sb Inorganic materials 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000004844 aliphatic epoxy resin Substances 0.000 description 2
- FJBTZWJPRJMVLG-UHFFFAOYSA-N bis[(3-ethyloxetan-3-yl)methyl] benzene-1,3-dicarboxylate Chemical compound C=1C=CC(C(=O)OCC2(CC)COC2)=CC=1C(=O)OCC1(CC)COC1 FJBTZWJPRJMVLG-UHFFFAOYSA-N 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical group C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 2
- 150000002009 diols Chemical class 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 125000005462 imide group Chemical group 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 238000005065 mining Methods 0.000 description 2
- 229920003986 novolac Polymers 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 150000002921 oxetanes Chemical class 0.000 description 2
- 125000000466 oxiranyl group Chemical group 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 239000005060 rubber Substances 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical compound OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 2
- UNMJLQGKEDTEKJ-UHFFFAOYSA-N (3-ethyloxetan-3-yl)methanol Chemical compound CCC1(CO)COC1 UNMJLQGKEDTEKJ-UHFFFAOYSA-N 0.000 description 1
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical class ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 1
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- UHKPXKGJFOKCGG-UHFFFAOYSA-N 2-methylprop-1-ene;styrene Chemical compound CC(C)=C.C=CC1=CC=CC=C1.C=CC1=CC=CC=C1 UHKPXKGJFOKCGG-UHFFFAOYSA-N 0.000 description 1
- UKLWXKWTXHHMFK-UHFFFAOYSA-N 3-(chloromethyl)-3-ethyloxetane Chemical compound CCC1(CCl)COC1 UKLWXKWTXHHMFK-UHFFFAOYSA-N 0.000 description 1
- FEJVJGYJIPXMJD-UHFFFAOYSA-N 3-(cyclohexyloxymethyl)-3-ethyloxetane Chemical compound C1CCCCC1OCC1(CC)COC1 FEJVJGYJIPXMJD-UHFFFAOYSA-N 0.000 description 1
- GTQLMFKTKGOMMU-UHFFFAOYSA-N 3-[(3-ethyloxetan-3-yl)methoxycarbonyl]benzoic acid Chemical compound CCC1(COC1)COC(=O)C2=CC=CC(=C2)C(=O)O GTQLMFKTKGOMMU-UHFFFAOYSA-N 0.000 description 1
- BIDWUUDRRVHZLQ-UHFFFAOYSA-N 3-ethyl-3-(2-ethylhexoxymethyl)oxetane Chemical compound CCCCC(CC)COCC1(CC)COC1 BIDWUUDRRVHZLQ-UHFFFAOYSA-N 0.000 description 1
- JUXZNIDKDPLYBY-UHFFFAOYSA-N 3-ethyl-3-(phenoxymethyl)oxetane Chemical compound C=1C=CC=CC=1OCC1(CC)COC1 JUXZNIDKDPLYBY-UHFFFAOYSA-N 0.000 description 1
- FNYWFRSQRHGKJT-UHFFFAOYSA-N 3-ethyl-3-[(3-ethyloxetan-3-yl)methoxymethyl]oxetane Chemical compound C1OCC1(CC)COCC1(CC)COC1 FNYWFRSQRHGKJT-UHFFFAOYSA-N 0.000 description 1
- SLNCKLVYLZHRKK-UHFFFAOYSA-N 3-ethyl-3-[2-[(3-ethyloxetan-3-yl)methoxy]ethoxymethyl]oxetane Chemical compound C1OCC1(CC)COCCOCC1(CC)COC1 SLNCKLVYLZHRKK-UHFFFAOYSA-N 0.000 description 1
- ARTCZOWQELAGLQ-UHFFFAOYSA-N 3-ethyl-3-[2-[2-[2-[(3-ethyloxetan-3-yl)methoxy]ethoxy]ethoxy]ethoxymethyl]oxetane Chemical compound C1OCC1(CC)COCCOCCOCCOCC1(CC)COC1 ARTCZOWQELAGLQ-UHFFFAOYSA-N 0.000 description 1
- WUGFSEWXAWXRTM-UHFFFAOYSA-N 3-ethyl-3-[2-[2-[2-[2-[(3-ethyloxetan-3-yl)methoxy]ethoxy]ethoxy]ethoxy]ethoxymethyl]oxetane Chemical compound C1OCC1(CC)COCCOCCOCCOCCOCC1(CC)COC1 WUGFSEWXAWXRTM-UHFFFAOYSA-N 0.000 description 1
- UXEOSBGULDWPRJ-UHFFFAOYSA-N 3-ethyl-3-[5-[(3-ethyloxetan-3-yl)methoxy]pentoxymethyl]oxetane Chemical compound C1OCC1(CC)COCCCCCOCC1(CC)COC1 UXEOSBGULDWPRJ-UHFFFAOYSA-N 0.000 description 1
- GBDPVIKGIRHANI-UHFFFAOYSA-N 3-ethyl-3-[6-[(3-ethyloxetan-3-yl)methoxy]hexoxymethyl]oxetane Chemical compound C1OCC1(CC)COCCCCCCOCC1(CC)COC1 GBDPVIKGIRHANI-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N Acrylic acid Chemical compound OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000004953 Aliphatic polyamide Substances 0.000 description 1
- 229910016331 Bi—Ag Inorganic materials 0.000 description 1
- WDDATYYWXSGWKJ-UHFFFAOYSA-L C(CCCC(=O)[O-])(=O)[O-].[Ag+2] Chemical compound C(CCCC(=O)[O-])(=O)[O-].[Ag+2] WDDATYYWXSGWKJ-UHFFFAOYSA-L 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical compound SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 description 1
- 229920000459 Nitrile rubber Polymers 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical group OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 1
- 229920007126 Platamid® HX 2592 Polymers 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- 229910020816 Sn Pb Inorganic materials 0.000 description 1
- 229910020836 Sn-Ag Inorganic materials 0.000 description 1
- 229910020922 Sn-Pb Inorganic materials 0.000 description 1
- 229910020988 Sn—Ag Inorganic materials 0.000 description 1
- 229910008783 Sn—Pb Inorganic materials 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 150000001334 alicyclic compounds Chemical class 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 150000007824 aliphatic compounds Chemical class 0.000 description 1
- 229920003231 aliphatic polyamide Polymers 0.000 description 1
- 150000001412 amines Chemical group 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 125000005587 carbonate group Chemical group 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- WTNDADANUZETTI-UHFFFAOYSA-N cyclohexane-1,2,4-tricarboxylic acid Chemical compound OC(=O)C1CCC(C(O)=O)C(C(O)=O)C1 WTNDADANUZETTI-UHFFFAOYSA-N 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 125000005442 diisocyanate group Chemical group 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- VANNPISTIUFMLH-UHFFFAOYSA-N glutaric anhydride Chemical class O=C1CCCC(=O)O1 VANNPISTIUFMLH-UHFFFAOYSA-N 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 125000004184 methoxymethyl group Chemical group [H]C([H])([H])OC([H])([H])* 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- AHHWIHXENZJRFG-UHFFFAOYSA-N oxetane Chemical compound C1COC1 AHHWIHXENZJRFG-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920002587 poly(1,3-butadiene) polymer Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920005995 polystyrene-polyisobutylene Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229920006132 styrene block copolymer Polymers 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 239000001384 succinic acid Substances 0.000 description 1
- 229940014800 succinic anhydride Drugs 0.000 description 1
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 229920000428 triblock copolymer Polymers 0.000 description 1
- 125000006839 xylylene group Chemical group 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/42—Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
- C08G59/4215—Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof cycloaliphatic
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/02—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
- C08G65/04—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
- C08G65/06—Cyclic ethers having no atoms other than carbon and hydrogen outside the ring
- C08G65/16—Cyclic ethers having four or more ring atoms
- C08G65/18—Oxetanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/08—Metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L63/00—Compositions of epoxy resins; Compositions of derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L71/00—Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
- C08L71/02—Polyalkylene oxides
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K5/00—Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
- C09K5/08—Materials not undergoing a change of physical state when used
- C09K5/14—Solid materials, e.g. powdery or granular
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/373—Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
Definitions
- the present invention relates to thermally conductive compositions and thermally conductive sheets.
- the heat dissipation substrate and the heat sink are made of a thermally conductive composition. Adhesion is performed by things.
- thermosetting adhesive containing a curing component and a curing agent, and a thermally conductive adhesive having a metal filler dispersed in the thermosetting adhesive, wherein the metal filler is , silver powder and solder powder, the solder powder exhibits a melting temperature lower than the heat curing treatment temperature of the thermally conductive adhesive, and reacts with the silver powder under the heat curing treatment conditions of the thermosetting adhesive to produce a high melting point solder alloy exhibiting a melting point higher than the melting temperature of the solder powder, wherein the hardening agent is a hardening agent having flux activity with respect to the metal filler, and the hardening component is glycidyl ether
- a thermally conductive adhesive has been proposed which is a type epoxy resin and whose curing agent is a monoacid anhydride of tricarboxylic acid (see, for example, Patent Document 1).
- Patent Document 1 when a solder powder having a large average particle size is used to bond silver particles having a small average particle size to form a network of a high-melting-point solder alloy, heat is generated by volume ratio. The content of solder powder with low conductivity results in a higher content of silver particles, which cannot satisfy high thermal conductivity and low thermal resistance. Further, when solder powder having a low melting point is used, there is a problem that a resin layer is formed on the surface of an interface material that is difficult for the molten solder powder to wet, resulting in a decrease in thermal conductivity.
- an object of the present invention is to solve the above-mentioned problems in the past and to achieve the following objects. That is, an object of the present invention is to provide a thermally conductive composition and a thermally conductive sheet that can achieve high thermal conductivity and low thermal resistance.
- Means for solving the above problems are as follows. Namely ⁇ 1> Containing a curing component, a curing agent for curing the curing component, and a metal filler,
- the metal filler contains thermally conductive particles and low melting point metal particles, and the volume average particle size of the thermally conductive particles is larger than the volume average particle size of the low melting point metal particles,
- the thermally conductive composition is characterized in that the melting point of the low melting point metal particles is lower than the thermal curing treatment temperature of the thermally conductive composition.
- thermoly conductive composition according to any one of ⁇ 1> to ⁇ 2>, wherein the metal filler has a volume filling rate of 50% by volume or more.
- ⁇ 5> At least one structure selected from a polybutadiene structure, a polysiloxane structure, a poly(meth)acrylate structure, a polyalkylene structure, a polyalkyleneoxy structure, a polyisoprene structure, a polyisobutylene structure, a polyamide structure, and a polycarbonate structure in the molecule
- ⁇ 6> The thermally conductive composition according to any one of ⁇ 1> to ⁇ 5>, wherein the thermally conductive particles are at least one of copper particles, silver-coated particles, and silver particles.
- ⁇ 7> The thermally conductive composition according to any one of ⁇ 1> to ⁇ 6>, wherein the low-melting-point metal particles contain Sn and at least one selected from Bi, Ag, Cu, and In. is.
- the low-melting-point metal particles react with the thermally-conductive particles under the thermal curing conditions of the thermally-conductive composition to form an alloy exhibiting a melting point higher than that of the low-melting-point metal particles.
- ⁇ 9> The thermally conductive composition according to any one of ⁇ 1> to ⁇ 8>, wherein the curing agent has flux activity with respect to the metal filler.
- thermoly conductive composition according to any one of ⁇ 1> to ⁇ 9>, wherein the equivalent ratio (C/D) between the curing component C and the curing agent D is 0.5 or more and 3 or less. It is a thing.
- ⁇ 11> The thermally conductive composition according to any one of ⁇ 1> to ⁇ 10>, wherein the curing component is at least one of an oxirane ring compound and an oxetane compound.
- the curing component is an oxetane compound
- a thermally conductive sheet comprising the thermally conductive composition according to any one of ⁇ 1> to ⁇ 12> formed into a sheet.
- thermoly conductive composition and a thermally conductive sheet that can solve the above-mentioned conventional problems, achieve the above-mentioned objects, and achieve high thermal conductivity and low thermal resistance.
- FIG. 1 is a schematic cross-sectional view showing an example of a heat dissipation structure used in the present invention.
- 2A is a cross-sectional photograph of the cut surface obtained by cutting the cured product (interface Cu) of the thermally conductive composition of Example 1, polishing the resulting cut surface, and photographing the polished surface with a semiconductor inspection microscope.
- 2B is a cross-sectional photograph of the cut surface obtained by cutting the cured product (interface Al) of the thermally conductive composition of Example 1, polishing the resulting cut surface, and photographing the polished surface with a semiconductor inspection microscope.
- 3A is a cross-sectional photograph of the cut surface obtained by cutting the cured product (interface Cu) of the thermally conductive composition of Comparative Example 1, polishing the obtained cut surface, and photographing the polished surface with a semiconductor inspection microscope.
- 3B is a cross-sectional photograph of the cut surface obtained by cutting the cured product (interface Al) of the thermally conductive composition of Comparative Example 1, polishing the obtained cut surface, and photographing the polished surface with a semiconductor inspection microscope.
- the thermally conductive composition of the present invention contains a curing component, a curing agent, and a metal filler, and has a polybutadiene structure, a polysiloxane structure, a poly(meth)acrylate structure, a polyalkylene structure, and a polyalkyleneoxy structure in the molecule. structure, a polyisoprene structure, a polyisobutylene structure, a polyamide structure, and a polycarbonate structure (hereinafter referred to as a "specific polymer”) having at least one structure, and if necessary contains other ingredients.
- At least one of an oxirane ring compound and an oxetane compound is preferably used as the curing component.
- the oxirane ring compound is a compound having an oxirane ring, and examples thereof include epoxy resins.
- the epoxy resin is not particularly limited and can be appropriately selected depending on the intended purpose. type epoxy resin, tetraphenol type epoxy resin, phenol-xylylene type epoxy resin, naphthol-xylylene type epoxy resin, phenol-naphthol type epoxy resin, phenol-dicyclopentadiene type epoxy resin, alicyclic epoxy resin, aliphatic epoxy resin etc. These may be used individually by 1 type, and may use 2 or more types together.
- the oxetane compound is a compound having an oxetanyl group, and may be an aliphatic compound, an alicyclic compound, or an aromatic compound.
- the oxetane compound may be a monofunctional oxetane compound having only one oxetanyl group, or a polyfunctional oxetane compound having two or more oxetanyl groups.
- the oxetane compound is not particularly limited and may be appropriately selected depending on the intended purpose.
- oxetane compound a commercially available product can be used.
- commercially available product include the "Aron Oxetane (registered trademark)” series sold by Toagosei Co., Ltd., and sold by Ube Industries, Ltd. "ETERNACOLL (registered trademark)” series and the like.
- glycidyl ether type epoxy resins phenol novolak type epoxy resins, cresol novolak type epoxy resins, phenol-dicyclopentadiene type epoxy resins, bisphenol A type epoxy resins, aliphatic epoxy resins, 4'-bis[(3-ethyl-3-oxetanyl)methoxymethyl]biphenyl (OXBP), isophthalic acid bis[(3-ethyl-3-oxetanyl)methyl]ester (OXIPA) are preferred.
- the content of the curing component is not particularly limited and can be appropriately selected depending on the intended purpose. preferable.
- a curing agent corresponding to the above-mentioned curing component such as an acid anhydride curing agent, an aliphatic amine curing agent, an aromatic amine curing agent, a phenolic curing agent, and a mercaptan curing agent.
- polyaddition-type curing agents such as , catalyst-type curing agents such as imidazole, and the like. These may be used individually by 1 type, and may use 2 or more types together.
- acid anhydride curing agents are preferred.
- the curing component is an epoxy resin
- the acid anhydride-based curing agent does not generate gas during heat curing and can achieve a long pot life when mixed with the epoxy resin.
- the acid anhydride curing agent examples include cyclohexane-1,2-dicarboxylic anhydride and monoacid anhydride of tricarboxylic acid.
- the monoacid anhydride of the tricarboxylic acid examples include cyclohexane-1,2,4-tricarboxylic acid-1,2-acid anhydride.
- the curing agent preferably has flux activity from the viewpoint of improving the wettability of the molten low-melting-point metal particles with respect to the thermally conductive particles.
- Examples of the method for expressing the flux activity in the curing agent include a method of introducing a proton acid group such as a carboxy group, a sulfonyl group, or a phosphoric acid group into the curing agent by a known method.
- a carboxyl group examples thereof include carboxyl group-containing organic acids such as glutaric acid and succinic acid.
- the curing agent may be a compound modified from glutaric anhydride or succinic anhydride, or a metal salt of an organic acid such as silver glutarate.
- the content of the curing agent is not particularly limited and can be appropriately selected depending on the intended purpose. preferable.
- the curing component is an oxetane compound and the curing agent is glutaric acid from the viewpoint of achieving higher thermal conductivity.
- the molar equivalent equivalent ratio (C/D) between the curing component C and the curing agent D varies depending on the type of the curing component and the curing agent used, and cannot be generally defined, but is 0.5 or more. 3 or less is preferable, 0.5 or more and 2 or less is more preferable, and 0.7 or more and 1.5 or less is still more preferable.
- the equivalent ratio (C/D) is 0.5 or more and 3 or less, there is an advantage that the low-melting-point metal particles can be sufficiently melted to form a network when the thermally conductive composition is thermally cured.
- Metal fillers include thermally conductive particles and low melting point metal particles.
- Thermal Conductive Particles At least one of copper particles, silver-coated particles, and silver particles is preferable as the thermally conductive particles.
- the silver-coated particles include silver-coated copper particles, silver-coated nickel particles, and silver-coated aluminum particles.
- the shape of the thermally conductive particles is not particularly limited and can be appropriately selected depending on the intended purpose. Examples thereof include spherical, flat, granular and acicular shapes.
- the volume average particle diameter of the thermally conductive particles is preferably 10 ⁇ m or more and 300 ⁇ m or less, more preferably 20 ⁇ m or more and 100 ⁇ m or less.
- the volume average particle size of the thermally conductive particles is 10 ⁇ m or more and 300 ⁇ m or less, the volume ratio of the thermally conductive particles to the low-melting metal particles can be increased, and the thermally conductive composition has high thermal conductivity and low thermal resistance. realizable.
- the volume average particle diameter can be measured by, for example, a laser diffraction/scattering particle size distribution analyzer (device name: Microtrac MT3300EXII).
- solder particles defined in JIS Z3282-1999 are preferably used as the low melting point metal particles.
- solder particles include Sn—Pb solder particles, Pb—Sn—Sb solder particles, Sn—Sb solder particles, Sn—Pb—Bi solder particles, Sn—Bi solder particles, Sn—Bi -Ag-based solder particles, Sn--Cu-based solder particles, Sn--Pb--Cu-based solder particles, Sn--In-based solder particles, Sn--Ag-based solder particles, Sn--Pb--Ag-based solder particles, Pb--Ag-based solder Particles, Sn--Ag--Cu solder particles, and the like.
- solder particles containing Sn and at least one selected from Bi, Ag, Cu, and In are preferable, Sn—Bi solder particles, Sn—Bi—Ag solder particles, Sn—Ag -Cu-based solder particles and Sn--In-based solder particles are more preferred.
- the shape of the low-melting-point metal particles is not particularly limited and can be appropriately selected depending on the intended purpose.
- the melting point of the low melting point metal particles is preferably 100° C. or higher and 250° C. or lower, more preferably 120° C. or higher and 200° C. or lower. Since the melting point of the low-melting metal particles is lower than the thermal curing temperature of the thermally conductive composition, the low-melting metal particles melted in the cured product of the thermally conductive composition form a network via the thermally conductive particles. (metal continuous phase) can be formed, and high thermal conductivity and low thermal resistance can be achieved.
- the low-melting-point metal particles react with the thermally-conductive particles under the thermal curing treatment conditions of the thermally-conductive composition to form an alloy exhibiting a higher melting point than the low-melting-point metal particles, thereby melting at a high temperature. can be prevented, and reliability is improved. Moreover, the heat resistance of the cured product of the thermally conductive composition is improved.
- the thermal curing treatment of the thermally conductive composition is performed, for example, at a temperature of 150° C. to 200° C. for 30 minutes to 2 hours.
- the volume average particle size of the low melting point metal particles is preferably 10 ⁇ m or less, more preferably 1 ⁇ m or more and 5 ⁇ m or less.
- the volume average particle diameter of the low melting point metal particles can be measured in the same manner as the volume average particle diameter of the thermally conductive particles.
- the volume average particle size of the thermally conductive particles is larger than the volume average particle size of the low melting point metal particles, and the volume average particle size ratio (A/B) between the thermally conductive particles A and the low melting point metal particles B is preferably 2 or more, more preferably 3 or more, and still more preferably 5 or more.
- the upper limit of the volume-average particle size ratio (A/B) is preferably 20 or less, more preferably 10 or less.
- the thermally conductive particles become the main component in the thermally conductive composition, and the thermally conductive particles and the thermally conductive particles Since the low-melting-point metal particles existing between the particles are melted by heating and alloyed with the thermally conductive particles to form a network, high thermal conductivity and low thermal resistance of the thermally conductive composition can be realized.
- the volume ratio (A/B) between the thermally conductive particles A and the low melting point metal particles B in the thermally conductive composition is preferably 1 or more, more preferably 1.5 or more, and still more preferably 2 or more. .
- the upper limit of the volume ratio (A/B) is preferably 5 or less, more preferably 4 or less, and even more preferably 3 or less.
- the volume ratio (A/B) is 1 or more, the volume ratio of the thermally conductive particles having a larger volume average particle size than the low melting point metal particles is large, so that the flow of the molten low melting point metal particles is suppressed. can be done. In addition, separation is less likely to occur even at interfaces (for example, aluminum) to which the low-melting-point metal particles are difficult to wet.
- the volume filling rate of the metal filler is preferably 50% by volume or more, more preferably 60% by volume or more, still more preferably 70% by volume or more, and particularly preferably 75% by volume or more.
- the upper limit of the volume filling rate of the metal filler is preferably 90% by volume or less, more preferably 85% by volume or less.
- the thermally conductive composition of the present invention preferably contains a specific polymer in order to impart flexibility and sheet properties.
- the specific polymer has a polybutadiene structure, a polysiloxane structure, a poly(meth)acrylate structure, a polyalkylene structure, a polyalkyleneoxy structure, a polyisoprene structure, a polyisobutylene structure, a polyamide structure, and a polycarbonate structure in the molecule.
- a polymer is used that has at least one structure that is
- Examples of the specific polymer include polybutadiene structures possessed by polybutadiene and hydrogenated polybutadiene, etc., polysiloxane structures possessed by silicone rubbers, etc., poly(meth)acrylate structures, polyalkylene structures (polyalkylene structures having 2 to 15 carbon atoms).
- a polyalkylene structure having 3 to 10 carbon atoms is more preferred, and a polyalkylene structure having 5 to 6 carbon atoms is even more preferred), a polyalkyleneoxy structure (a polyalkyleneoxy structure having 2 to 15 carbon atoms is preferred) , more preferably a polyalkyleneoxy structure having 3 to 10 carbon atoms, more preferably a polyalkyleneoxy structure having 5 to 6 carbon atoms), a polyisoprene structure, a polyisobutylene structure, and a polycarbonate structure.
- Said specific polymer preferably has a high molecular weight in order to exhibit flexibility.
- the number average molecular weight (Mn) of the specific polymer is preferably 1,000 or more and 1,000,000 or less, more preferably 5,000 or more and 900,000 or less.
- the number average molecular weight (Mn) is a polystyrene equivalent number average molecular weight measured using GPC (gel permeation chromatography).
- the specific polymer is preferably selected from polymers having a glass transition temperature (Tg) of 25° C. or lower and polymers that are liquid at 25° C. in order to exhibit flexibility.
- the glass transition temperature of the polymer having a glass transition temperature (Tg) of 25° C. or lower is preferably 20° C. or lower, more preferably 15° C. or lower.
- the lower limit of the glass transition temperature is not particularly limited and can be appropriately selected depending on the purpose, but -15°C or higher is preferable.
- As the polymer that is liquid at 25°C a polymer that is liquid at 20°C or lower is preferable, and a polymer that is liquid at 15°C or lower is more preferable.
- the specific polymer preferably has a functional group capable of reacting with the curing component.
- the functional group capable of reacting with the curing component includes a functional group that appears upon heating.
- the functional group capable of reacting with the curing component for example, one or more functional groups selected from the group consisting of a hydroxyl group, a carboxyl group, an acid anhydride group, a phenolic hydroxyl group, an epoxy group, an isocyanate group and a urethane group. is.
- the functional group is preferably a hydroxy group, an acid anhydride group, a phenolic hydroxyl group, an epoxy group, an isocyanate group or a urethane group, more preferably a hydroxy group, an acid anhydride group, a phenolic hydroxyl group or an epoxy group.
- phenolic hydroxyl groups are particularly preferred.
- One preferred embodiment of said specific polymer is a butadiene resin.
- the butadiene resin a butadiene resin having a liquid state at 25°C or a glass transition temperature of 25°C or lower is preferable. At least one selected from the group consisting of anhydride group-containing butadiene resins, epoxy group-containing butadiene resins, isocyanate group-containing butadiene resins and urethane group-containing butadiene resins is more preferred, and phenolic hydroxyl group-containing butadiene resins are even more preferred.
- the hydrogenated polybutadiene skeleton-containing resin include hydrogenated polybutadiene skeleton-containing epoxy resins.
- the phenolic hydroxyl group-containing butadiene resin include resins having a polybutadiene structure and having a phenolic hydroxyl group.
- the "butadiene resin” refers to a resin containing a polybutadiene structure, and in these resins, the polybutadiene structure may be contained in the main chain or in the side chain. Part or all of the butadiene structure may be hydrogenated.
- the “hydrogenated polybutadiene skeleton-containing resin” refers to a resin in which at least a portion of the polybutadiene skeleton is hydrogenated, and does not necessarily have to be a resin in which the polybutadiene skeleton is completely hydrogenated.
- the number average molecular weight (Mn) of the butadiene resin is preferably 1,000 to 100,000, more preferably 5,000 to 50,000, still more preferably 7,500 to 30,000, and 10,000 to 15, 000 is particularly preferred.
- the number average molecular weight (Mn) of the butadiene resin is a polystyrene equivalent number average molecular weight measured using GPC (gel permeation chromatography).
- the functional group equivalent is preferably 100 to 10,000, more preferably 200 to 5,000.
- the functional group equivalent is the number of grams of resin containing 1 gram equivalent of functional group.
- epoxy equivalent can be measured according to JIS K7236.
- the hydroxyl equivalent can be calculated by dividing the molecular weight of KOH by the hydroxyl value measured according to JIS K1557-1.
- butadiene resin Commercially available products can be used as the butadiene resin, and examples of the commercially available products include “Ricon 657” (epoxy group-containing polybutadiene), “Ricon 130MA8", “Ricon 130MA13”, and “Ricon 130MA20", “Ricon 131MA5", “Ricon 131MA10”, “Ricon 131MA17”, “Ricon 131MA20”, “Ricon 184MA6” (acid anhydride group-containing polybutadiene); Nippon Soda Co., Ltd.
- JP-100", “JP -200” epoxidized polybutadiene
- GQ-1000 hydroxyl group- and carboxy group-introduced polybutadiene
- G-1000 both hydroxyl-terminated polybutadiene
- GI- 1000 both hydroxyl-terminated polybutadiene
- Daicel PB3600”, “PB4700” (polybutadiene skeleton epoxy compound)
- Epofriend A1005", "Epo Friend A1010", “Epo Friend A1020” epoxy compound of styrene, butadiene and styrene block copolymer
- Nagase ChemteX Corporation FCA-061L
- R-45EPT polybutadiene skeleton epoxy compound
- a resin having an imide structure can also be used as another preferred embodiment of the specific polymer.
- resins having an imide structure include linear polyimides made from hydroxyl-terminated polybutadiene, diisocyanate compounds and tetrabasic acid anhydride (polyimides described in JP-A-2006-37083 and WO 2008/153208). is mentioned.
- the polybutadiene structure content of the polyimide resin is preferably 60% by mass to 95% by mass, more preferably 75% by mass to 85% by mass. Details of the polyimide resin can be referred to, for example, Japanese Patent Laid-Open No. 2006-37083 and International Publication No. 2008/153208.
- a preferred embodiment of the specific polymer is isoprene resin.
- isoprene resins include “KL-610” and “KL-613” manufactured by Kuraray Co., Ltd.
- isoprene resin refers to a resin containing a polyisoprene structure. In these resins, the polyisoprene structure may be contained in the main chain or in the side chain.
- One preferred embodiment of said particular polymer is a carbonate resin.
- the carbonate resin a carbonate resin having a glass transition temperature of 25° C. or less is preferable, and a hydroxyl group-containing carbonate resin, a phenolic hydroxyl group-containing carbonate resin, a carboxy group-containing carbonate resin, an acid anhydride group-containing carbonate resin, and an epoxy group-containing carbonate resin. , isocyanate group-containing carbonate resins and urethane group-containing carbonate resins.
- the "carbonate resin” refers to a resin containing a polycarbonate structure, and in these resins, the polycarbonate structure may be contained in the main chain or in the side chain.
- the number average molecular weight (Mn) of the carbonate resin and the functional group equivalent weight when it has a functional group are the same as those of the butadiene resin, and the preferred range is also the same.
- commercially available products can be used as the carbonate resin, and examples of the commercially available products include “T6002” and “T6001” (polycarbonate diol) manufactured by Asahi Kasei Chemicals Corporation; “C-1090” manufactured by Kuraray Co., Ltd. , “C-2090” and “C-3090” (polycarbonate diol).
- a linear polyimide made from a hydroxyl group-terminated polycarbonate, a diisocyanate compound, and a tetrabasic acid anhydride can also be used.
- the content of the polycarbonate structure in the polyimide resin is preferably 60% by mass to 95% by mass, more preferably 75% by mass to 85% by mass. Details of the polyimide resin can be referred to in International Publication No. 2016/129541, the contents of which are incorporated herein.
- an acrylic resin is an acrylic resin.
- an acrylic resin having a glass transition temperature (Tg) of 25° C. or less is preferable, and a hydroxyl group-containing acrylic resin, a phenolic hydroxyl group-containing acrylic resin, a carboxyl group-containing acrylic resin, an acid anhydride group-containing acrylic resin, an epoxy At least one resin selected from the group consisting of group-containing acrylic resins, isocyanate group-containing acrylic resins and urethane group-containing acrylic resins is more preferable.
- the "acrylic resin” refers to a resin containing a poly(meth)acrylate structure. In these resins, the poly(meth)acrylate structure is contained in the main chain or in the side chain. good too.
- the acrylic resin preferably has a number average molecular weight (Mn) of 10,000 to 1,000,000, more preferably 30,000 to 900,000.
- Mn number average molecular weight
- the number average molecular weight (Mn) of the acrylic resin is a polystyrene-equivalent number average molecular weight measured using GPC (gel permeation chromatography).
- the functional group equivalent is preferably 1,000 to 50,000, more preferably 2,500 to 30,000.
- acrylic resin examples of the commercially available products include Teisan Resin “SG-70L”, “SG-708-6”, “WS-023” manufactured by Nagase ChemteX Corporation, "SG-700AS”, “SG-280TEA” (Carboxy group-containing acrylic acid ester copolymer resin, acid value 5 mgKOH/g to 34 mgKOH/g, weight average molecular weight 400,000 to 900,000, Tg -30°C to 5°C) , "SG-80H”, “SG-80H-3", “SG-P3” (epoxy group-containing acrylic acid ester copolymer resin, epoxy equivalent 4761 g / eq to 14285 g / eq, weight average molecular weight 350,000 to 850,000 , Tg 11 ° C to 12 ° C), "SG-600TEA”, “SG-790” (hydroxy group-containing acrylic acid ester copolymer resin, hydroxyl value 20 mgKOH / g to 40
- a preferred embodiment of the specific polymer is siloxane resin, alkylene resin, alkyleneoxy resin, and isobutylene resin.
- siloxane resin refers to a resin containing a polysiloxane structure, and in these resins the polysiloxane structure may be contained in the main chain or in the side chain.
- alkylene resin and the alkyleneoxy resin examples include “PTXG-1000” and “PTXG-1800” manufactured by Asahi Kasei Fibers Co., Ltd.; manufactured by Mitsubishi Chemical Corporation. "YX-7180” (resin containing an alkylene structure having an ether bond); “EXA-4850-150", “EXA-4816”, “EXA-4822” manufactured by DIC Corporation; "EP- 4000”, “EP-4003”, “EP-4010", “EP-4011”;”BEO-60E” and “BPO-20E” manufactured by New Japan Chemical Co., Ltd.; “YL7175” manufactured by Mitsubishi Chemical Corporation, “ YL7410” and the like.
- alkylene resin refers to a resin containing a polyalkylene structure
- alkyleneoxy resin refers to a resin containing a polyalkyleneoxy structure.
- the polyalkylene structure and polyalkyleneoxy structure may be contained in the main chain or in the side chain.
- isobutylene resin Commercially available products can be used as the isobutylene resin, and examples of the commercially available products include “SIBSTAR-073T” (styrene-isobutylene-styrene triblock copolymer) and “SIBSTAR-042D” manufactured by Kaneka Corporation. (styrene-isobutylene diblock copolymer).
- the "isobutylene resin” refers to a resin containing a polyisobutylene structure. In these resins, the polyisobutylene structure may be contained in the main chain or in the side chain.
- Preferred embodiments of the specific polymer include acrylic rubber particles, polyamide fine particles, silicone particles, and the like.
- Specific examples of the acrylic rubber particles include fine particles of resins made insoluble and infusible in organic solvents by chemically cross-linking resins exhibiting rubber elasticity such as acrylonitrile-butadiene rubber, butadiene rubber and acrylic rubber.
- XER-91 manufactured by Japan Synthetic Rubber Co., Ltd.
- Kogyo Co., Ltd. and the like.
- the polyamide fine particles may be aliphatic polyamide such as nylon, furthermore, any material having a flexible skeleton such as polyamideimide. SP500 (manufactured by Toray Industries, Inc.) and the like can be mentioned.
- polyamide resin Commercially available products can be used as the polymer having a polyamide structure (polyamide resin).
- examples of the commercially available products include Tomide 558, 560, 535 (manufactured by T&K TOKA Co., Ltd.), Platamid HX2592, M1276, H2544 (manufactured by Arkema Co., Ltd.) and the like.
- the content of the specific polymer is preferably 1% by mass or more and 50% by mass or less, more preferably 1% by mass or more and 30% by mass or less, and 1% by mass or more and 10% by mass with respect to the total amount of the thermally conductive composition. More preferred are:
- the thermally conductive composition may contain other components as long as the effects of the present invention are not impaired.
- the other components are not particularly limited and can be appropriately selected depending on the purpose. antioxidants, ultraviolet absorbers, curing accelerators, silane coupling agents, leveling agents, flame retardants, etc.).
- the thermally conductive composition of the present invention can be prepared by uniformly mixing the curing component, the curing agent, the metal filler, the specific polymer, and optionally other components by a conventional method. .
- the thermally conductive composition may be either a sheet-like thermally conductive sheet or a paste-like thermally conductive paste (also referred to as thermally conductive adhesive or thermally conductive grease).
- a thermally conductive sheet is preferable from the viewpoint of ease of handling, and a thermally conductive paste is preferable from the viewpoint of cost.
- the thermally conductive sheet of the present invention is obtained by forming the thermally conductive composition of the present invention into a sheet.
- the average thickness of the thermally conductive sheet is preferably 500 ⁇ m or less, more preferably 200 ⁇ m or less, and even more preferably 100 ⁇ m or less, from the viewpoint of thinning.
- the lower limit of the average thickness of the thermally conductive sheet is not particularly limited and can be appropriately selected depending on the intended purpose.
- the method for producing the thermally conductive sheet is not particularly limited and can be appropriately selected according to the purpose.
- a method for producing a thermally conductive sheet by molding a conductive molded body and slicing the obtained thermally conductive molded body into sheets; and a method of forming a cured product layer containing a material to produce a thermally conductive sheet.
- the support is peeled off when the thermally conductive sheet is laminated on the heat dissipation substrate.
- the thermally conductive composition and thermally conductive sheet of the present invention are suitably used, for example, when a power LED module or a power IC module is constructed by bonding a heat dissipation substrate on which an LED chip or an IC chip is mounted to a heat sink.
- the power LED module includes a wire bonding mounting type and a flip chip mounting type
- the power IC module includes a wire bonding mounting type.
- the heat dissipating structure used in the present invention comprises a heating element, a heat conductive material, and a heat dissipating member, and a cured product of the heat conductive composition of the present invention is placed between the heat generating element and the heat dissipating member. have.
- the heating element is not particularly limited and can be appropriately selected according to the purpose. Examples include electronic components such as CPU (Central Processing Unit), MPU (Micro Processing Unit), GPU (Graphics Processing Unit), etc. mentioned.
- CPU Central Processing Unit
- MPU Micro Processing Unit
- GPU Graphics Processing Unit
- the heat dissipating member is not particularly limited as long as it is a structure that dissipates the heat generated by the electronic component (heating element), and can be appropriately selected according to the purpose. pipes, etc.
- the heat spreader is a member for efficiently transferring heat from the electronic component to other components.
- the material of the heat spreader is not particularly limited and can be appropriately selected depending on the purpose. Examples thereof include copper and aluminum.
- the heat spreader usually has a flat plate shape.
- the heat sink is a member for releasing heat of the electronic component into the air.
- the material of the heat sink is not particularly limited and can be appropriately selected depending on the purpose. Examples thereof include copper and aluminum.
- the heat sink has, for example, a plurality of fins.
- the heat sink has, for example, a base portion and a plurality of fins provided so as to extend in a non-parallel direction (for example, a direction orthogonal to) one surface of the base portion.
- the heat spreader and the heat sink are generally solid structures with no internal space.
- the vapor chamber is a hollow structure. A volatile liquid is enclosed in the internal space of the hollow structure. Examples of the vapor chamber include a heat spreader having a hollow structure, a plate-like hollow structure having a heat sink having a hollow structure, and the like.
- the heat pipe is a cylindrical, substantially cylindrical, or flat cylindrical hollow structure. A volatile liquid is enclosed in the internal space of the hollow structure.
- FIG. 1 is a schematic cross-sectional view showing an example of a semiconductor device as a heat dissipation structure.
- a cured product (thermally conductive sheet) 1 of the thermally conductive composition of the present invention is for dissipating heat generated by an electronic component 3 such as a semiconductor element. and is sandwiched between the electronic component 3 and the heat spreader 2 . Also, the thermally conductive sheet 1 is sandwiched between the heat spreader 2 and the heat sink 5 .
- the thermally conductive sheet 1 and the heat spreader 2 constitute a heat radiating member that radiates heat from the electronic component 3 .
- the heat spreader 2 is formed, for example, in the shape of a square plate, and has a main surface 2a facing the electronic component 3 and side walls 2b erected along the outer periphery of the main surface 2a.
- the heat spreader 2 is provided with the heat conductive sheet 1 on the main surface 2a surrounded by the side walls 2b, and is provided with the heat sink 5 via the heat conductive sheet 1 on the other surface 2c opposite to the main surface 2a.
- the heat spreader 2 has a higher thermal conductivity, the thermal resistance decreases and the heat of the electronic component 3 such as a semiconductor element is efficiently absorbed. can do.
- the electronic component 3 is, for example, a semiconductor element such as BGA, and is mounted on the wiring board 6 .
- the heat spreader 2 is also mounted on the wiring board 6 at the tip surface of the side wall 2b so that the side wall 2b surrounds the electronic component 3 with a predetermined distance therebetween.
- each thermal conductive composition was sandwiched between two 30 mm ⁇ 30 mm ⁇ 2 mm aluminum plates (A5052P) with a spacer of 0.125 mm and a diameter of 20 mm, and oven cured at 150 ° C. for 60 minutes.
- a cured product (interface Al) of each thermally conductive composition was obtained.
- ⁇ Network formability> The cured product (interface Al) of each thermally conductive composition is cut, the resulting cut surface is polished, and the polished surface is photographed with a semiconductor inspection microscope (MX61L, manufactured by Olympus Corporation), and is formed from low-melting metal particles. The presence or absence of a formed network (metal continuous phase) was observed, and network formability was evaluated according to the following criteria. [Evaluation criteria] ⁇ : The low-melting-point metal particles were completely melted and connected with the thermally conductive particles. ⁇ : The low-melting-point metal particles were partially melted and connected with the thermally-conductive particles.
- ⁇ Thermal conductivity> A 0.125 mm spacer between the cured product (interface Al) of each thermally conductive composition and two copper plates of 30 mm ⁇ 30 mm ⁇ 2 mm, each thermally conductive composition is sandwiched so that the diameter is 20 mm, 150 C. for 60 minutes, and the thermal resistance (.degree. C..cm.sup.2 /W) of the cured product (interface Cu) of each thermally conductive composition was measured according to ASTM-D5470. Subtract the thermal resistance of the metal plate from the result to calculate the thermal resistance of the cured product. From the thermal resistance and the thickness of the cured product, determine the thermal conductivity (W / m K), and measure the thermal conductivity according to the following criteria. evaluated.
- Examples 8 to 12 to which the specific polymer was added were superior in sheet bending resistance to Examples 1 to 7 to which the specific polymer was not added.
- Examples 11 and 12 using an oxetane compound as a curing component and glutaric acid as a curing agent are examples 8 and 10 using an epoxy resin as a curing component and cyclohexane-1,2-dicarboxylic anhydride as a curing agent. It was found that the thermal conductivity is superior to that of
- -Curing agent- * MH-700 Rikashid MH-700, manufactured by Shin Nippon Rika Co., Ltd., a liquid alicyclic acid anhydride containing 4-methyl HHMA (cyclohexane-1,2-dicarboxylic anhydride) as the main component * Glutaric acid: Tokyo Kasei Co., Ltd., 1,3-propanedicarboxylic acid
- volume average particle diameter Dv of the low melting point metal particles is a value measured by a laser diffraction/scattering particle size distribution analyzer (device name: Microtrac MT3300EXII).
- volume average particle diameter Dv of the thermally conductive particles is a value measured by a laser diffraction/scattering particle size distribution analyzer (device name: Microtrac MT3300EXII).
- the thermally conductive composition and thermally conductive sheet of the present invention can achieve high thermal conductivity and low thermal resistance.
- various electric devices such as laser diodes, various batteries (various secondary batteries such as lithium ion batteries, various fuel cells, capacitors, amorphous silicon, crystalline silicon, compound semiconductors, various solar cells such as wet solar cells, etc.), heat It is suitable for use around the heat source of heating equipment, around heat exchangers, around heat pipes of floor heating equipment, etc. where effective use of is required.
- Thermally conductive material thermally conductive sheet
- Heat dissipation member heat spreader
- main surface heating element (electronic component)
- upper surface heat dissipation member (heat sink) 6 wiring board
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Combustion & Propulsion (AREA)
- Thermal Sciences (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
<1> 硬化成分と、該硬化成分を硬化させる硬化剤と、金属フィラーとを含有し、
前記金属フィラーが熱伝導性粒子及び低融点金属粒子を含み、前記熱伝導性粒子の体積平均粒径が前記低融点金属粒子の体積平均粒径よりも大きく、
前記低融点金属粒子の融点が熱伝導性組成物の熱硬化処理温度よりも低いことを特徴とする熱伝導性組成物である。
<2> 前記熱伝導性粒子Aと前記低融点金属粒子Bとの体積平均粒径比(A/B)が2以上である、前記<1>に記載の熱伝導性組成物である。
<3> 前記金属フィラーの体積充填率が50体積%以上である、前記<1>から<2>のいずれかに記載の熱伝導性組成物である。
<4> 前記熱伝導性粒子Aと前記低融点金属粒子Bとの体積比(A/B)が1以上である、前記<1>から<3>のいずれかに記載の熱伝導性組成物である。
<5> 分子内に、ポリブタジエン構造、ポリシロキサン構造、ポリ(メタ)アクリレート構造、ポリアルキレン構造、ポリアルキレンオキシ構造、ポリイソプレン構造、ポリイソブチレン構造、ポリアミド構造、及びポリカーボネート構造から選択される少なくとも1種の構造を有するポリマーを含有する、前記<1>から<4>のいずれかに記載の熱伝導性組成物である。
<6> 前記熱伝導性粒子が、銅粒子、銀被覆粒子、及び銀粒子の少なくともいずれかである、前記<1>から<5>のいずれかに記載の熱伝導性組成物である。
<7> 前記低融点金属粒子がSnと、Bi、Ag、Cu、及びInから選択される少なくとも1種とを含む、前記<1>から<6>のいずれかに記載の熱伝導性組成物である。
<8> 前記低融点金属粒子が、前記熱伝導性組成物の熱硬化処理条件下で前記熱伝導性粒子と反応して、前記低融点金属粒子より高い融点を示す合金となる、前記<1>から<7>のいずれかに記載の熱伝導性組成物である。
<9> 前記硬化剤が前記金属フィラーに対してフラックス活性を有する、前記<1>から<8>のいずれかに記載の熱伝導性組成物である。
<10> 前記硬化成分Cと前記硬化剤Dとの当量比(C/D)が、0.5以上3以下である、前記<1>から<9>のいずれかに記載の熱伝導性組成物である。
<11> 前記硬化成分がオキシラン環化合物及びオキセタン化合物の少なくともいずれかである、前記<1>から<10>のいずれかに記載の熱伝導性組成物である。
<12> 前記硬化成分がオキセタン化合物であり、
前記硬化剤がグルタル酸である、前記<1>から<11>のいずれかに記載の熱伝導性組成物である。
<13> 前記<1>から<12>のいずれかに記載の熱伝導性組成物をシート化したことを特徴とする熱伝導性シートである。
本発明の熱伝導性組成物は、硬化成分と、硬化剤と、金属フィラーとを含有し、分子内に、ポリブタジエン構造、ポリシロキサン構造、ポリ(メタ)アクリレート構造、ポリアルキレン構造、ポリアルキレンオキシ構造、ポリイソプレン構造、ポリイソブチレン構造、ポリアミド構造、及びポリカーボネート構造から選択される少なくとも1種の構造を有するポリマー(以下、「特定のポリマー」と称する)を含有することが好ましく、更に必要に応じてその他の成分を含有する。
硬化成分としては、オキシラン環化合物及びオキセタン化合物の少なくともいずれかを用いることが好ましい。
前記オキシラン環化合物は、オキシラン環を有する化合物であり、例えば、エポキシ樹脂などが挙げられる。
前記エポキシ樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、グリシジルエーテル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、トリスフェノール型エポキシ樹脂、テトラフェノール型エポキシ樹脂、フェノール-キシリレン型エポキシ樹脂、ナフトール-キシリレン型エポキシ樹脂、フェノール-ナフトール型エポキシ樹脂、フェノール-ジシクロペンタジエン型エポキシ樹脂、脂環式エポキシ樹脂、脂肪族エポキシ樹脂などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
前記オキセタン化合物は、オキセタニル基を有する化合物であり、脂肪族化合物、脂環式化合物、又は芳香族化合物であってもよい。
前記オキセタン化合物は、オキセタニル基を1つのみ有する1官能のオキセタン化合物であってもよいし、オキセタニル基を2つ以上有する多官能のオキセタン化合物であってもよい。
前記硬化剤としては、上記硬化成分に対応した硬化剤であって、例えば、酸無水物系硬化剤、脂肪族アミン系硬化剤、芳香族アミン系硬化剤、フェノール系硬化剤、メルカプタン系硬化剤等の重付加型硬化剤、イミダゾール等の触媒型硬化剤などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、酸無水物系硬化剤が好ましい。前記酸無水物系硬化剤は硬化成分がエポキシ樹脂である場合、熱硬化の際にガスの発生がなく、エポキシ樹脂と混合した際に長いポットライフを実現でき、また、得られる硬化物の電気的特性、化学的特性、及び機械的特性間の良好なバランスを実現できる点から好ましい。
前記酸無水物系硬化剤としては、例えば、シクロヘキサン-1,2-ジカルボン酸無水物、トリカルボン酸のモノ酸無水物などが挙げられる。前記トリカルボン酸のモノ酸無水物としては、例えば、シクロへキサン-1,2,4-トリカルボン酸-1,2-酸無水物などが挙げられる。
前記当量比(C/D)が0.5以上3以下であると、熱伝導性組成物を熱硬化時に低融点金属粒子が十分に溶融してネットワークを形成できるという利点がある。
金属フィラーとしては、熱伝導性粒子及び低融点金属粒子を含む。
前記熱伝導性粒子としては、銅粒子、銀被覆粒子、及び銀粒子の少なくともいずれかが好ましい。
前記銀被覆粒子としては、例えば、銀被覆銅粒子、銀被覆ニッケル粒子、銀被覆アルミニウム粒子などが挙げられる。
前記熱伝導性粒子の形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、球状、扁平状、粒状、針状などが挙げられる。
前記熱伝導性粒子の体積平均粒径は、10μm以上300μm以下が好ましく、20μm以上100μm以下がより好ましい。熱伝導性粒子の体積平均粒径が10μm以上300μm以下であると、熱伝導性粒子の低融点金属粒子に対する体積割合を大きくすることができ、熱伝導性組成物の高熱伝導性及び低熱抵抗を実現できる。
前記体積平均粒径は、例えば、レーザ回折・散乱式粒子径分布測定装置(装置名:Microtrac MT3300EXII)により、測定することができる。
前記低融点金属粒子としては、JIS Z3282-1999に規定されているはんだ粒子が好適に用いられる。
前記はんだ粒子としては、例えば、Sn-Pb系はんだ粒子、Pb-Sn-Sb系はんだ粒子、Sn-Sb系はんだ粒子、Sn-Pb-Bi系はんだ粒子、Sn-Bi系はんだ粒子、Sn-Bi-Ag系はんだ粒子、Sn-Cu系はんだ粒子、Sn-Pb-Cu系はんだ粒子、Sn-In系はんだ粒子、Sn-Ag系はんだ粒子、Sn-Pb-Ag系はんだ粒子、Pb-Ag系はんだ粒子、Sn-Ag-Cu系はんだ粒子などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
これらの中でも、Snと、Bi、Ag、Cu、及びInから選択される少なくとも1種と、を含むはんだ粒子が好ましく、Sn-Bi系はんだ粒子、Sn-Bi-Ag系はんだ粒子、Sn-Ag-Cu系はんだ粒子、Sn-In系はんだ粒子がより好ましい。
前記低融点金属粒子の融点は、100℃以上250℃以下が好ましく、120℃以上200℃以下がより好ましい。
前記低融点金属粒子の融点は前記熱伝導性組成物の熱硬化処理温度よりも低いことが、熱伝導性組成物の硬化物中に溶融した低融点金属粒子により熱伝導性粒子を介してネットワーク(金属の連続相)を形成でき、高熱伝導性及び低熱抵抗を実現できる点から好ましい。
前記低融点金属粒子が、前記熱伝導性組成物の熱硬化処理条件下で前記熱伝導性粒子と反応して、前記低融点金属粒子より高い融点を示す合金となることにより、高温下で溶融することを防止でき、信頼性が向上する。また、熱伝導性組成物の硬化物の耐熱性が向上する。
前記熱伝導性組成物の熱硬化処理は、例えば、150℃以上200℃の温度で30分間以上2時間以下の条件で行われる。
前記低融点金属粒子の体積平均粒径は、上記熱伝導性粒子の体積平均粒径と同様にして測定することができる。
前記熱伝導性粒子よりも体積平均粒径が小さい低融点金属粒子を用いることにより、熱伝導性組成物中で前記熱伝導性粒子が主成分となり、前記熱伝導性粒子と前記熱伝導性粒子の間に存在する低融点金属粒子が加熱により溶融し熱伝導性粒子と合金化してネットワークを形成するために、熱伝導性組成物の高熱伝導率及び低熱抵抗が実現できる。
前記体積比(A/B)が1以上であると、低融点金属粒子よりも体積平均粒径が大きい熱伝導性粒子の体積割合が多くなるため、溶融した低融点金属粒子の流動を抑えることができる。また、低融点金属粒子が濡れにくい界面(例えば、アルミニウム)に対しても分離が発生しにくいため、界面の材質の影響を抑えることができ、界面材質の選択性が向上する。
前記金属フィラーの体積充填率が50体積%以上であると、熱伝導性組成物の高熱伝導率及び低熱抵抗が実現できる。
本発明の熱伝導性組成物は、柔軟性及びシート性を付与するために、特定のポリマーを含有することが好ましい。
前記特定のポリマーとしては、分子内に、ポリブタジエン構造、ポリシロキサン構造、ポリ(メタ)アクリレート構造、ポリアルキレン構造、ポリアルキレンオキシ構造、ポリイソプレン構造、ポリイソブチレン構造、ポリアミド構造、及びポリカーボネート構造から選択される少なくとも1種の構造を有するポリマーが用いられる。
前記数平均分子量(Mn)は、GPC(ゲル浸透クロマトグラフィー)を使用して測定されるポリスチレン換算の数平均分子量である。
前記ガラス転移温度(Tg)が25℃以下であるポリマーのガラス転移温度は、20℃以下が好ましく、15℃以下がより好ましい。ガラス転移温度の下限は、特に制限はなく、目的に応じて適宜選択することができるが、-15℃以上が好ましい。
25℃で液状であるポリマーとしては、20℃以下で液状であるポリマーが好ましく、15℃以下で液状であるポリマーがより好ましい。
上記硬化成分と反応し得る官能基としては、例えば、ヒドロキシ基、カルボキシ基、酸無水物基、フェノール性水酸基、エポキシ基、イソシアネート基及びウレタン基からなる群から選択される1種以上の官能基である。これらの中でも、前記官能基としては、ヒドロキシ基、酸無水物基、フェノール性水酸基、エポキシ基、イソシアネート基及びウレタン基が好ましく、ヒドロキシ基、酸無水物基、フェノール性水酸基、エポキシ基がより好ましく、フェノール性水酸基が特に好ましい。
前記水素化ポリブタジエン骨格含有樹脂としては、例えば、水素化ポリブタジエン骨格含有エポキシ樹脂などが挙げられる。
前記フェノール性水酸基含有ブタジエン樹脂としては、ポリブタジエン構造を有し、かつフェノール性水酸基を有する樹脂などが挙げられる。
ここで、前記「水素化ポリブタジエン骨格含有樹脂」とは、ポリブタジエン骨格の少なくとも一部が水素化された樹脂をいい、必ずしもポリブタジエン骨格が完全に水素化された樹脂である必要はない。
ここで、前記ブタジエン樹脂の数平均分子量(Mn)は、GPC(ゲル浸透クロマトグラフィー)を使用して測定されるポリスチレン換算の数平均分子量である。
前記ポリイミド樹脂のポリブタジエン構造の含有率は、60質量%~95質量%が好ましく、75質量%~85質量%がより好ましい。
前記ポリイミド樹脂の詳細については、例えば、特開2006-37083号公報、国際公開第2008/153208号パンフレットの記載を参酌することができる。
ここで、前記「カーボネート樹脂」とは、ポリカーボネート構造を含有する樹脂をいい、これらの樹脂においてポリカーボネート構造は主鎖に含まれていても側鎖に含まれていてもよい。
ここで、前記「アクリル樹脂」とは、ポリ(メタ)アクリレート構造を含有する樹脂をいい、これらの樹脂においてポリ(メタ)アクリレート構造は主鎖に含まれていても側鎖に含まれていてもよい。
ここで、前記アクリル樹脂の数平均分子量(Mn)は、GPC(ゲル浸透クロマトグラフィー)を使用して測定されるポリスチレン換算の数平均分子量である。
ここで、前記「アルキレン樹脂」とは、ポリアルキレン構造を含有する樹脂をいい、「アルキレンオキシ樹脂」とは、ポリアルキレンオキシ構造を含有する樹脂をいう。これらの樹脂においてポリアルキレン構造、ポリアルキレンオキシ構造は主鎖に含まれていても側鎖に含まれていてもよい。
前記アクリルゴム粒子の具体例としては、アクリロニトリルブタジエンゴム、ブタジエンゴム、アクリルゴムなどのゴム弾性を示す樹脂に化学的架橋処理を施し、有機溶剤に不溶かつ不融とした樹脂の微粒子体が挙げられ、具体的には、XER-91(日本合成ゴム株式会社製);スタフィロイドAC3355、AC3816、AC3832、AC4030、AC3364、IM101(以上、ガンツ化成株式会社製);パラロイドEXL2655、EXL2602(以上、呉羽化学工業株式会社製)などが挙げられる。
前記熱伝導性組成物は、本発明の効果を損なわない限りにおいてその他の成分を含有してもよい。前記その他の成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、金属以外の熱伝導性粒子(例えば、窒化アルミ、アルミナ、炭素繊維等)、添加剤(例えば、酸化防止剤、紫外線吸収剤、硬化促進剤、シランカップリング剤、レベリング剤、難燃剤等)などが挙げられる。
本発明の熱伝導性シートは、本発明の熱伝導性組成物をシート化したものである。
前記熱伝導性シートの平均厚みは、薄型化の観点から、500μm以下が好ましく、200μm以下がより好ましく、100μm以下が更に好ましい。前記熱伝導性シートの平均厚みの下限値は、特に制限はなく、目的に応じて適宜選択することができるが、5μm以上が好ましく、10μm以上がより好ましく、50μm以上が更に好ましい。
ここで、パワーLEDモジュールとしては、ワイヤーボンディング実装タイプのものとフリップチップ実装タイプのものがあり、パワーICモジュールとしてはワイヤーボンディング実装タイプのものがある。
本発明に用いられる放熱構造体は、発熱体と、熱伝導性材料と、放熱部材とから構成され、前記発熱体と前記放熱部材の間に、本発明の熱伝導性組成物の硬化物を有する。
前記ヒートスプレッダは、前記電子部品の熱を他の部品に効率的に伝えるための部材である。前記ヒートスプレッダの材質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、銅、アルミニウムなどが挙げられる。前記ヒートスプレッダは、通常、平板形状である。
前記ヒートシンクは、前記電子部品の熱を空気中に放出するための部材である。前記ヒートシンクの材質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、銅、アルミニウムなどが挙げられる。前記ヒートシンクは、例えば、複数のフィンを有する。前記ヒートシンクは、例えば、ベース部と、前記ベース部の一方の面に対して非平行方向(例えば、直交する方向)に向かって延びるように設けられた複数のフィンを有する。
前記ヒートスプレッダ、及び前記ヒートシンクは、一般的に、内部に空間を持たない中実構造である。
前記ベーパーチャンバーは、中空構造体である。前記中空構造体の内部空間には、揮発性の液体が封入されている。前記ベーパーチャンバーとしては、例えば、前記ヒートスプレッダを中空構造にしたもの、前記ヒートシンクを中空構造にしたような板状の中空構造体などが挙げられる。
前記ヒートパイプは、円筒状、略円筒状、又は扁平筒状の中空構造体である。前記中空構造体の内部空間には、揮発性の液体が封入されている。
そして、ヒートスプレッダ2の主面2aに、熱伝導性シート1が接着されることにより、電子部品3の発する熱を吸収し、ヒートシンク5より放熱する放熱部材が形成される。
<熱伝導性組成物の調製>
下記の表1~表4に記載の組成及び含有量を、撹拌装置(泡とり練太郎・自動公転ミキサー、株式会社シンキー製)を用いて均一に混合し、実施例1~12及び比較例1~2の熱伝導性組成物を調製した。なお、表1~表4中における各成分の含有量は質量部である。
次に、30mm×30mm×2mmのアルミニウム板(A5052P)2枚の間に0.125mmのスペーサ、直径20mmとなるように各熱伝導性組成物を挟み込み、150℃で60分間オーブンキュアを施し、各熱伝導性組成物の硬化物(界面Al)を得た。
100℃で15分間乾燥した各熱伝導性シートを45度又は90度折り曲げて、各熱伝導性シートの折り曲げた箇所の目視観察を行い、下記の基準によりシート性を評価した。
[評価基準]
◎:折り曲げた熱伝導性シートの曲げた箇所に90度折り曲げて割れが生じなかった
〇:折り曲げた熱伝導性シートの曲げた箇所に45度折り曲げて割れが生じなかった
×:折り曲げた熱伝導性シートの曲げた箇所に割れが発生した
各熱伝導性組成物の硬化物(界面Al)を切断し、得られた切断面を研磨し、研磨面を半導体検査顕微鏡(MX61L、オリンパス株式会社製)で撮影し、低融点金属粒子により形成されたネットワーク(金属の連続相)の有無を観察し、下記の基準により、ネットワーク形成性を評価した。
[評価基準]
◎:低融点金属粒子が完全に溶融し、熱伝導性粒子と繋がった
〇:低融点金属粒子が一部溶融し、熱伝導性粒子と繋がった
×:低融点金属粒子が溶融していない
上記各熱伝導性組成物の硬化物(界面Al)、及び30mm×30mm×2mmの銅板2枚の間に0.125mmのスペーサ、直径20mmとなるように各熱伝導性組成物を挟み込み、150℃で60分間オーブンキュアを施し、各熱伝導性組成物の硬化物(界面Cu)について、ASTM-D5470に準拠した方法で熱抵抗(℃・cm2/W)を測定した。その結果から金属板の熱抵抗を引いて硬化物の熱抵抗を算出し、前記熱抵抗と硬化物の厚みから、熱伝導率(W/m・K)を求め、下記の基準により熱伝導性を評価した。
[評価基準]
◎:熱伝導率が11.0W/m・K以上
〇:熱伝導率が8.0W/m・K以上11.0W/m・K未満
×:熱伝導率が8.0W/m・K未満
また、実施例1及び比較例1の熱伝導性組成物の硬化物(界面Al)を切断し、得られた切断面を研磨し、研磨面を半導体検査顕微鏡(MX61L、オリンパス株式会社製)で撮影した断面写真を図2B及び図3Bに示した。
また、硬化成分としてオキセタン化合物、硬化剤としてグルタル酸を用いた実施例11~12は、硬化成分としてエポキシ樹脂、硬化剤としてシクロヘキサン-1,2-ジカルボン酸無水物を用いた実施例8~10に比べて熱伝導性が優れていることがわかった。
*AER9000:旭化成株式会社製
*OXBP:UBE株式会社製、4,4′-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ビフェニル
*OXIPA:UBE株式会社製、イソフタル酸ビス[(3-エチル-3-オキセタニル)メチル]エステル
*MH-700:リカシッドMH-700、新日本理化株式会社製、4-メチルHHMA(シクロヘキサン-1,2-ジカルボン酸無水物)を主成分とする液状脂環式酸無水物
*グルタル酸:東京化成株式会社製、1,3-プロパンジカルボン酸
*Sn58Bi42:三井金属鉱業株式会社製、体積平均粒径Dv:4μm、融点139℃
*Sn58In42:5N Plus社製、体積平均粒径Dv:16μm、融点117℃
*Sn58Bi42:三井金属鉱業株式会社製、体積平均粒径Dv:20μm、融点139℃
上記低融点金属粒子の体積平均粒径Dvは、レーザ回折・散乱式粒子径分布測定装置(装置名:Microtrac MT3300EXII)により、測定した値である。
*AgコートCu粒子:福田金属箔粉工業株式会社製、体積平均粒径Dv:40μm
*AgコートCu粒子:福田金属箔粉工業株式会社製、体積平均粒径Dv:5μm
*Cu粒子:福田金属箔粉工業株式会社製、体積平均粒径Dv:40μm
*Cu粒子:福田金属箔粉工業株式会社製、体積平均粒径Dv:5μm
上記熱伝導性粒子の体積平均粒径Dvは、レーザ回折・散乱式粒子径分布測定装置(装置名:Microtrac MT3300EXII)により、測定した値である。
*LIR-410:クラプレン(登録商標)、株式会社クラレ製、イソプレン系液状ゴム
*エポフレンドAT501:株式会社ダイセル製、スチレン-ブタジエンブロック共重合体のエポキシ化合物
*M1276:アルケマ株式会社製、ポリアミド化合物
2 放熱部材(ヒートスプレッダ)
2a 主面
3 発熱体(電子部品)
3a 上面
5 放熱部材(ヒートシンク)
6 配線基板
Claims (13)
- 硬化成分と、該硬化成分を硬化させる硬化剤と、金属フィラーとを含有し、
前記金属フィラーが熱伝導性粒子及び低融点金属粒子を含み、前記熱伝導性粒子の体積平均粒径が前記低融点金属粒子の体積平均粒径よりも大きく、
前記低融点金属粒子の融点が熱伝導性組成物の熱硬化処理温度よりも低いことを特徴とする熱伝導性組成物。 - 前記熱伝導性粒子Aと前記低融点金属粒子Bとの体積平均粒径比(A/B)が2以上である、請求項1に記載の熱伝導性組成物。
- 前記金属フィラーの体積充填率が50体積%以上である、請求項1から2のいずれかに記載の熱伝導性組成物。
- 前記熱伝導性粒子Aと前記低融点金属粒子Bとの体積比(A/B)が1以上である、請求項1から2のいずれかに記載の熱伝導性組成物。
- 分子内に、ポリブタジエン構造、ポリシロキサン構造、ポリ(メタ)アクリレート構造、ポリアルキレン構造、ポリアルキレンオキシ構造、ポリイソプレン構造、ポリイソブチレン構造、ポリアミド構造、及びポリカーボネート構造から選択される少なくとも1種の構造を有するポリマーを含有する、請求項1から2のいずれかに記載の熱伝導性組成物。
- 前記熱伝導性粒子が、銅粒子、銀被覆粒子、及び銀粒子の少なくともいずれかである、請求項1から2のいずれかに記載の熱伝導性組成物。
- 前記低融点金属粒子がSnと、Bi、Ag、Cu、及びInから選択される少なくとも1種とを含む、請求項1から2のいずれかに記載の熱伝導性組成物。
- 前記低融点金属粒子が、前記熱伝導性組成物の熱硬化処理条件下で前記熱伝導性粒子と反応して、前記低融点金属粒子より高い融点を示す合金となる、請求項1から2のいずれかに記載の熱伝導性組成物。
- 前記硬化剤が前記金属フィラーに対してフラックス活性を有する、請求項1から2のいずれかに記載の熱伝導性組成物。
- 前記硬化成分Cと前記硬化剤Dとの当量比(C/D)が、0.5以上3以下である、請求項1から2のいずれかに記載の熱伝導性組成物。
- 前記硬化成分がオキシラン環化合物及びオキセタン化合物の少なくともいずれかである、請求項1から2のいずれかに記載の熱伝導性組成物。
- 前記硬化成分がオキセタン化合物であり、
前記硬化剤がグルタル酸である、請求項1から2のいずれかに記載の熱伝導性組成物。 - 請求項1から2のいずれかに記載の熱伝導性組成物をシート化したことを特徴とする熱伝導性シート。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202280060982.6A CN117916877A (zh) | 2021-09-09 | 2022-08-22 | 导热性组合物和导热性片 |
KR1020247007886A KR20240042066A (ko) | 2021-09-09 | 2022-08-22 | 열 전도성 조성물 및 열 전도성 시트 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-146584 | 2021-09-09 | ||
JP2021146584 | 2021-09-09 | ||
JP2022-090891 | 2022-06-03 | ||
JP2022090891A JP2023039902A (ja) | 2021-09-09 | 2022-06-03 | 熱伝導性組成物及び熱伝導性シート |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023037862A1 true WO2023037862A1 (ja) | 2023-03-16 |
Family
ID=85506587
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/031612 WO2023037862A1 (ja) | 2021-09-09 | 2022-08-22 | 熱伝導性組成物及び熱伝導性シート |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR20240042066A (ja) |
TW (1) | TW202323351A (ja) |
WO (1) | WO2023037862A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004039829A (ja) * | 2002-07-03 | 2004-02-05 | Shin Etsu Chem Co Ltd | 放熱部材、その製造方法及びその敷設方法 |
JP2004335872A (ja) * | 2003-05-09 | 2004-11-25 | Fujitsu Ltd | 熱伝導性材料およびそれを用いた熱伝導性接合体とその製造方法 |
JP2007173317A (ja) * | 2005-12-19 | 2007-07-05 | Fujitsu Ltd | 実装方法 |
JP5796242B2 (ja) * | 2011-02-24 | 2015-10-21 | デクセリアルズ株式会社 | 熱伝導性接着剤 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5810757Y2 (ja) | 1980-11-28 | 1983-02-28 | 進 亀井 | 型枠構築用座金 |
-
2022
- 2022-08-22 WO PCT/JP2022/031612 patent/WO2023037862A1/ja active Application Filing
- 2022-08-22 KR KR1020247007886A patent/KR20240042066A/ko unknown
- 2022-09-02 TW TW111133384A patent/TW202323351A/zh unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004039829A (ja) * | 2002-07-03 | 2004-02-05 | Shin Etsu Chem Co Ltd | 放熱部材、その製造方法及びその敷設方法 |
JP2004335872A (ja) * | 2003-05-09 | 2004-11-25 | Fujitsu Ltd | 熱伝導性材料およびそれを用いた熱伝導性接合体とその製造方法 |
JP2007173317A (ja) * | 2005-12-19 | 2007-07-05 | Fujitsu Ltd | 実装方法 |
JP5796242B2 (ja) * | 2011-02-24 | 2015-10-21 | デクセリアルズ株式会社 | 熱伝導性接着剤 |
Also Published As
Publication number | Publication date |
---|---|
KR20240042066A (ko) | 2024-04-01 |
TW202323351A (zh) | 2023-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101687434B1 (ko) | 산소 장벽 조성물 및 관련 방법 | |
TWI519593B (zh) | Method for manufacturing interlayer filler material, coating liquid and cubic element body circuit for cubic element body circuit | |
KR20120106993A (ko) | 폴리이미드 수지 조성물, 그것을 포함하는 접착제, 적층체 및 디바이스 | |
WO2012133818A1 (ja) | 三次元集積回路積層体、及び三次元集積回路積層体用の層間充填材 | |
JP5830883B2 (ja) | 半導体用接着剤組成物、半導体装置及び半導体装置の製造方法 | |
JP2017130676A (ja) | 三次元集積回路積層体 | |
WO1999067794A1 (en) | Uv-curable epoxy formulations, including conductive compositions | |
JP2007023191A (ja) | 一液型エポキシ樹脂組成物 | |
JP2009224109A (ja) | 絶縁シート及び積層構造体 | |
WO2015107990A1 (ja) | 接着組成物ならびにそれを有する接着フィルム、接着組成物付き基板、半導体装置およびその製造方法 | |
WO2023037862A1 (ja) | 熱伝導性組成物及び熱伝導性シート | |
JP2012216836A (ja) | 三次元集積回路積層体 | |
JP2011129717A (ja) | 半導体パッケージおよび半導体装置 | |
JP2023039902A (ja) | 熱伝導性組成物及び熱伝導性シート | |
JP2009057575A (ja) | 液状エポキシ樹脂組成物及び電子部品装置 | |
JP2011192818A (ja) | 半導体チップ接合用接着フィルム | |
JP2012216837A (ja) | 三次元集積回路積層体 | |
CN117916877A (zh) | 导热性组合物和导热性片 | |
WO2021117604A1 (ja) | 接着剤組成物、接着フィルム及び接続構造体 | |
WO2023238694A1 (ja) | 積層体及びその製造方法 | |
JP2017217882A (ja) | 積層体、接着層及び金属材付き半導体チップ、及び半導体装置の製造方法 | |
JP5047632B2 (ja) | フリップチップ接続用熱圧接着剤を用いた実装方法 | |
JP7445065B1 (ja) | 熱伝導性組成物、及び積層体の製造方法 | |
WO2023182046A1 (ja) | エステル化合物及びその製造方法、並びに熱伝導性組成物及び熱伝導性シート | |
WO2024048358A1 (ja) | 積層体及び積層体の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22867184 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18690044 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280060982.6 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22867184 Country of ref document: EP Kind code of ref document: A1 |