WO2024053494A1 - (メタ)アクリル基含有ポリカルボン酸化合物、熱伝導組成物、及び熱伝導シート - Google Patents

(メタ)アクリル基含有ポリカルボン酸化合物、熱伝導組成物、及び熱伝導シート Download PDF

Info

Publication number
WO2024053494A1
WO2024053494A1 PCT/JP2023/031350 JP2023031350W WO2024053494A1 WO 2024053494 A1 WO2024053494 A1 WO 2024053494A1 JP 2023031350 W JP2023031350 W JP 2023031350W WO 2024053494 A1 WO2024053494 A1 WO 2024053494A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermally conductive
group
meth
acid compound
polycarboxylic acid
Prior art date
Application number
PCT/JP2023/031350
Other languages
English (en)
French (fr)
Inventor
稔 長島
健 西尾
弘毅 渋谷
侑記 岩田
奕靖 趙
誠 井上
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Publication of WO2024053494A1 publication Critical patent/WO2024053494A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C271/00Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C271/06Esters of carbamic acids
    • C07C271/08Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms
    • C07C271/10Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C271/16Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • C08F20/36Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate containing oxygen in addition to the carboxy oxygen, e.g. 2-N-morpholinoethyl (meth)acrylate or 2-isocyanatoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks

Definitions

  • the present invention relates to a (meth)acrylic group-containing polycarboxylic acid compound, a thermally conductive composition, and a thermally conductive sheet.
  • thermally conductive materials are widely used to prevent the temperature of LSIs and the like from rising.
  • the thermally conductive material can prevent the temperature of the device from rising by diffusing the heat generated by the element or transmitting it to a heat radiating member for discharging it to the outside of the system, such as the atmosphere.
  • thermoly conductive materials such as resin or rubber
  • polymeric materials such as resin or rubber
  • A one or more types selected from a polybutadiene structure, a polysiloxane structure, a poly(meth)acrylate structure, a polyalkylene structure, a polyalkyleneoxy structure, a polyisoprene structure, a polyisobutylene structure, and a polycarbonate structure in the molecule
  • B an epoxy resin
  • C a thermally conductive filler
  • D an active ester curing agent
  • Mn number average molecular weight
  • Patent Document 1 Since the technique described in Patent Document 1 uses a thermoplastic resin as the base polymer, there is a problem in that the adhesive strength decreases significantly when the heating temperature exceeds the melting point of the thermoplastic resin. Further, since the curing reaction between the oxetane compound as a curing component and the polycarboxylic acid is subject to restrictions by the molecular structure of the oxetane compound, there is a risk that the adhesive strength will decrease.
  • the present invention aims to solve the above-mentioned conventional problems and achieve the following objects. That is, the present invention contains a novel (meth)acrylic group-containing polycarboxylic acid compound that can exhibit high adhesive strength and a good flux effect, and contains the above-mentioned (meth)acrylic group-containing polycarboxylic acid compound, and has high thermal conductivity and low thermal conductivity. It is an object of the present invention to provide a thermally conductive composition and a thermally conductive sheet that can realize resistance.
  • R 1 and R 3 represent an alkylene group.
  • R 2 represents a single bond or an alkylene group.
  • R 4 represents an alkylene group.
  • -OCO-A represents an acrylic group or a methacrylic group.
  • R 1 and R 2 represent an alkylene group.
  • R 4 represents an alkylene group.
  • R 5 represents a hydrogen atom or an alkyl group.
  • -OCO-A represents an acrylic group or a methacrylic group.
  • ⁇ 5> Contains the (meth)acrylic group-containing polycarboxylic acid compound according to any one of ⁇ 1> to ⁇ 4>, a curing component, a radical polymerization initiator, thermally conductive particles, and low melting point metal particles. This is a characteristic thermally conductive composition.
  • ⁇ 6> The thermally conductive composition according to ⁇ 5>, wherein the content of the (meth)acrylic group-containing polycarboxylic acid compound is from 1% by volume to 10% by volume.
  • ⁇ 7> The thermally conductive composition according to any one of ⁇ 5> to ⁇ 6>, wherein the curing component is at least one of an oxirane ring compound and an oxetane compound.
  • thermally conductive composition according to any one of ⁇ 5> to ⁇ 7>, wherein the thermally conductive particles are at least one of copper particles, silver-coated particles, and silver particles.
  • a thermally conductive sheet comprising a cured product of the thermally conductive composition according to any one of ⁇ 5> to ⁇ 9>.
  • a novel (meth)acrylic group-containing polycarboxylic acid compound that can solve the above-mentioned problems in the past, achieve the above-mentioned objectives, and exhibit high adhesive strength and a good flux effect;
  • a thermally conductive composition and a thermally conductive sheet containing an acrylic group-containing polycarboxylic acid compound and capable of realizing high thermal conductivity and low thermal resistance can be provided.
  • FIG. 1 is a schematic cross-sectional view showing an example of a heat dissipation structure used in the present invention.
  • the (meth)acrylic group-containing polycarboxylic acid compound of the present invention is represented by at least one of the following general formula (1) and general formula (2).
  • R 1 and R 3 represent an alkylene group.
  • R 2 represents a single bond or an alkylene group.
  • R 4 represents an alkylene group.
  • -OCO-A represents an acrylic group or a methacrylic group.
  • R 1 and R 2 represent an alkylene group.
  • R 4 represents an alkylene group.
  • R 5 represents a hydrogen atom or an alkyl group.
  • -OCO-A represents an acrylic group or a methacrylic group.
  • the alkylene groups for R 1 , R 2 and R 3 are preferably alkylene groups having 1 to 10 carbon atoms, such as methylene group, ethylene group, propylene group, isopropylene group, butylene group. group, hexylene group, heptylene group, octylene group, 2-ethylhexylene group, tert-octylene group, cyclohexylene group, etc.
  • the alkylene groups for R 1 and R 2 are preferably alkylene groups having 1 to 10 carbon atoms, such as methylene group, ethylene group, propylene group, isopropylene group, butylene group, hexylene group. group, heptylene group, octylene group, 2-ethylhexylene group, tert-octylene group, cyclohexylene group, etc.
  • the alkyl group for R 5 is preferably an alkyl group having 1 to 10 carbon atoms, such as a methyl group, ethyl group, propyl group, isopropyl group, butyl group, hexyl group, heptyl group, Examples include octyl group, 2-ethylhexyl group, tert-octyl group, and cyclohexyl group.
  • the alkylene group for R 4 is preferably an alkylene group having 1 to 5 carbon atoms, such as a methylene group, an ethylene group, a propylene group, an isopropylene group, a butylene group, etc. Examples include groups.
  • R 2 is preferably a single bond, and R 1 and R 3 are -CH 2 -.
  • R 4 is preferably an ethylene group. This case corresponds to the case of synthesis using 2-acryloyloxyethyl isocyanate as the (meth)acrylic modified isocyanate.
  • the (meth)acrylic group-containing polycarboxylic acid compound represented by at least one of the above general formula (1) and general formula (2) is a polycarboxylic acid compound having a hydroxyl group. It can be synthesized by reacting with a modified isocyanate.
  • the method for producing the (meth)acrylic group-containing polycarboxylic acid compound used in the present invention includes a step of subjecting a hydroxyl group-containing polycarboxylic acid and a (meth)acrylic modified isocyanate to a urethanization reaction, and further performs other steps as necessary. including.
  • Examples of the polycarboxylic acid having a hydroxyl group include hydroxydicarboxylic acid and hydroxytricarboxylic acid.
  • Examples of the hydroxydicarboxylic acid include tartaric acid, malic acid, and tartronic acid.
  • Examples of the hydroxytricarboxylic acid include citric acid and 1-hydroxy-1,2,3-propanetricarboxylic acid.
  • Examples of the (meth)acrylic modified isocyanate include 2-acryloyloxyethyl isocyanate and 2-methacryloyloxyethyl isocyanate.
  • As the (meth)acrylic modified isocyanate commercially available products can be used. Examples of the commercially available products include 2-acryloyloxyethyl isocyanate (Karens AOI, manufactured by Showa Denko K.K.), 2-methacryloyloxyethyl isocyanate, and 2-methacryloyloxyethyl isocyanate. Examples include NART (manufactured by Showa Denko K.K., Karenz MOI).
  • R 1 and R 3 represent an alkylene group.
  • R 2 represents a single bond or an alkylene group.
  • R 4 represents an alkylene group.
  • -OCO-A represents an acrylic group or a methacrylic group.
  • the conditions for the urethanization reaction between polycarboxylic acid having a hydroxyl group and (meth)acrylic modified isocyanate are not particularly limited and can be appropriately selected depending on the purpose. For example, under a constant temperature atmosphere, uniform Examples include a method of stirring.
  • the (meth)acrylic group-containing polycarboxylic acid compound represented by at least one of the above general formulas (1) and (2) can have both a good flux effect and an adhesive function as a (meth)acrylic resin. .
  • the (meth)acrylic group-containing polycarboxylic acid compound begins to harden due to the polymerization initiator blended together, and exhibits adhesive and film functions as a (meth)acrylic resin.
  • hybrid curing can be achieved by using a curing component and a curing agent together.
  • the heating in the first stage is preferably, for example, 120°C to 150°C.
  • the heating in the second stage is preferably, for example, 150°C to 190°C.
  • the thermally conductive composition of the present invention contains the (meth)acrylic group-containing polycarboxylic acid compound of the present invention, a curing component, a radical polymerization initiator, thermally conductive particles, and low melting point metal particles, and further contains other components as necessary. Contains the following ingredients.
  • the content of the (meth)acrylic group-containing polycarboxylic acid compound of the present invention represented by at least one of the above general formula (1) and general formula (2) is not particularly limited, and is appropriately selected depending on the purpose. However, it is preferably 1 volume % or more and 10 volume % or less, and more preferably 1 volume % or more and 5 volume % or less, based on the total volume of the thermally conductive composition.
  • the (meth)acrylic group-containing polycarboxylic acid compound of the present invention represented by at least one of the above general formula (1) and general formula (2) can be obtained by subjecting the thermally conductive composition before curing to Fourier transform infrared spectroscopy (FT-IR), etc.
  • FT-IR Fourier transform infrared spectroscopy
  • ⁇ Curing component As the curing component, it is preferable to use at least one of an oxirane ring compound and an oxetane compound.
  • the oxirane ring compound is a compound having an oxirane ring, and includes, for example, an epoxy resin.
  • the epoxy resin is not particularly limited and can be appropriately selected depending on the purpose, such as glycidyl ether type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A type epoxy resin, trisphenol. type epoxy resin, tetraphenol type epoxy resin, phenol-xylylene type epoxy resin, naphthol-xylylene type epoxy resin, phenol-naphthol type epoxy resin, phenol-dicyclopentadiene type epoxy resin, alicyclic epoxy resin, aliphatic epoxy resin Examples include. These may be used alone or in combination of two or more.
  • the oxetane compound is a compound having an oxetanyl group, and may be an aliphatic compound, an alicyclic compound, or an aromatic compound.
  • the oxetane compound may be a monofunctional oxetane compound having only one oxetanyl group, or a polyfunctional oxetane compound having two or more oxetanyl groups.
  • the oxetane compound is not particularly limited and can be appropriately selected depending on the purpose, such as 3,7-bis(3-oxetanyl)-5-oxanonan, 1,4-bis[(3- ethyl-3-oxetanylmethoxy)methyl]benzene, 1,2-bis[(3-ethyl-3-oxetanylmethoxy)methyl]ethane, 1,3-bis[(3-ethyl-3-oxetanylmethoxy)methyl]propane , ethylene glycol bis(3-ethyl-3-oxetanylmethyl) ether, triethylene glycol bis(3-ethyl-3-oxetanylmethyl) ether, tetraethylene glycol bis(3-ethyl-3-oxetanylmethyl) ether, 1, 4-bis(3-ethyl-3-oxetanylmethoxy)butane, 1,6-bis(3-ethyl-3
  • oxetane compound commercially available products can be used, and examples of the commercially available products include the "Aron Oxetane (registered trademark)” series sold by Toagosei Co., Ltd., and the “Aron Oxetane (registered trademark)” series sold by Ube Industries, Ltd. Examples include the “ETERNACOLL (registered trademark)” series.
  • glycidyl ether type epoxy resin phenol novolac type epoxy resin, cresol novolac type epoxy resin, phenol-dicyclopentadiene type epoxy resin, bisphenol A type epoxy resin, aliphatic epoxy resin, 4, 4'-bis[(3-ethyl-3-oxetanyl)methoxymethyl]biphenyl (OXBP) and isophthalic acid bis[(3-ethyl-3-oxetanyl)methyl]ester (OXIPA) are preferred.
  • the content of the curing component is not particularly limited and can be appropriately selected depending on the purpose, but is preferably 0.5% by mass or more and 60% by mass or less based on the total amount of the thermally conductive composition. .
  • the thermally conductive particles are preferably at least one of copper particles, silver-coated particles, and silver particles.
  • the silver-coated particles include silver-coated copper particles, silver-coated nickel particles, and silver-coated aluminum particles.
  • the shape of the thermally conductive particles is not particularly limited and can be appropriately selected depending on the purpose, and examples thereof include spherical, flat, granular, and acicular shapes.
  • the volume average particle size of the thermally conductive particles is preferably 10 ⁇ m or more and 300 ⁇ m or less, more preferably 20 ⁇ m or more and 100 ⁇ m or less.
  • the volume average particle diameter of the thermally conductive particles is 10 ⁇ m or more and 300 ⁇ m or less, the volume ratio of the thermally conductive particles to the low melting point metal particles can be increased, and high thermal conductivity and low thermal resistance of the thermally conductive composition can be achieved.
  • the volume average particle diameter can be measured, for example, by a laser diffraction/scattering particle size distribution measuring device (device name: Microtrac MT3300EXII, manufactured by Microtrac Bell Co., Ltd.).
  • solder particles defined in JIS Z3282-1999 are preferably used.
  • solder particles include Sn-Pb solder particles, Pb-Sn-Sb solder particles, Sn-Sb solder particles, Sn-Pb-Bi solder particles, Sn-Bi solder particles, and Sn-Bi solder particles.
  • -Ag based solder particles, Sn-Cu based solder particles, Sn-Pb-Cu based solder particles, Sn-In based solder particles, Sn-Ag based solder particles, Sn-Pb-Ag based solder particles, Pb-Ag based solder Examples include particles, Sn-Ag-Cu solder particles, and the like. These may be used alone or in combination of two or more. Among these, solder particles containing Sn and at least one selected from Bi, Ag, Cu, and In are preferred, and include Sn-Bi solder particles, Sn-Bi-Ag solder particles, and Sn-Ag solder particles. -Cu-based solder particles and Sn--In based solder particles are more preferred.
  • the shape of the low melting point metal particles is not particularly limited and can be appropriately selected depending on the purpose, and examples thereof include spherical, flat, granular, and acicular shapes.
  • the melting point of the low melting point metal particles is preferably 100°C or more and 250°C or less, more preferably 120°C or more and 200°C or less.
  • the melting point of the low melting point metal particles is lower than the heat curing temperature of the heat conductive composition. It is preferable because it can form a continuous phase (continuous phase) and can realize high thermal conductivity and low thermal resistance.
  • the low melting point metal particles react with the heat conductive particles under the heat curing treatment conditions of the heat conductive composition to form an alloy having a higher melting point than the low melting point metal particles, thereby melting at high temperatures.
  • the thermal curing treatment of the thermally conductive composition is performed, for example, at a temperature of 150° C. or more and 200° C. for 30 minutes or more and 2 hours or less.
  • the volume average particle size of the low melting point metal particles is preferably 10 ⁇ m or less, more preferably 1 ⁇ m or more and 5 ⁇ m or less.
  • the volume average particle size of the low melting point metal particles can be measured in the same manner as the volume average particle size of the heat conductive particles.
  • radical polymerization initiator examples include aromatic ketones, acylphosphine oxide compounds, aromatic onium salt compounds, organic peroxides, thio compounds (thioxanthone compounds, thiophenyl group-containing compounds, etc.), hexaarylbiimidazole compounds, Examples include ketooxime ester compounds, borate compounds, azinium compounds, metallocene compounds, active ester compounds, compounds having a carbon-halogen bond, and alkylamine compounds. Among these, organic peroxides are preferred.
  • the organic peroxide is not particularly limited and can be appropriately selected depending on the purpose, and examples thereof include benzoyl peroxide, lauryl peroxide, t-butyl peroxide, and cumene hydroperoxide.
  • the content of the radical polymerization initiator in the thermally conductive composition is not particularly limited and can be appropriately selected depending on the purpose.
  • the thermally conductive composition may contain other components as long as the effects of the present invention are not impaired.
  • the other components are not particularly limited and can be selected as appropriate depending on the purpose. Examples include antioxidants, ultraviolet absorbers, curing accelerators, silane coupling agents, leveling agents, flame retardants, etc.).
  • the flux component it is preferable to use, for example, carboxylic acids such as levulinic acid, maleic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, and sebacic acid. Thereby, it is possible to obtain a good solder connection and also to function as a curing agent for the curing component.
  • carboxylic acids such as levulinic acid, maleic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, and sebacic acid.
  • a blocked carboxylic acid in which a carboxyl group is blocked with an alkyl vinyl ether may be used. This makes it possible to control the temperature at which the flux effect and curing agent function are exhibited. Furthermore, since the solubility in the resin is improved, it is possible to improve mixing and coating unevenness when forming a film.
  • the thermally conductive composition of the present invention contains the (meth)acrylic group-containing polycarboxylic acid compound of the present invention, a curing component, thermally conductive particles, low melting point metal particles, a radical polymerization initiator, and further other components as necessary. It can be prepared by uniformly mixing by a conventional method.
  • the thermally conductive composition may be either a sheet-like thermally conductive sheet or a paste-like thermally conductive paste (sometimes referred to as a thermally conductive adhesive or a thermally conductive grease).
  • thermally conductive sheets are preferred from the viewpoint of ease of handling, and thermally conductive pastes are preferred from the viewpoint of cost.
  • the thermally conductive sheet of the present invention includes a cured product of the thermally conductive composition of the present invention, and is formed into a sheet from the thermally conductive composition of the present invention.
  • the average thickness of the thermally conductive sheet is preferably 500 ⁇ m or less, more preferably 200 ⁇ m or less, and even more preferably 100 ⁇ m or less.
  • the lower limit of the average thickness of the thermally conductive sheet is not particularly limited and can be appropriately selected depending on the purpose, but is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, and even more preferably 50 ⁇ m or more.
  • the method for producing the thermally conductive sheet is not particularly limited and can be appropriately selected depending on the purpose.
  • thermally conductive molding A method for manufacturing a thermally conductive sheet by molding a thermally conductive molded body and slicing the obtained thermally conductive molded body into sheet shapes, (2) a cured product layer containing a cured product of the thermally conductive composition on a support with a release layer; Examples include a method of manufacturing a heat conductive sheet by forming a heat conductive sheet.
  • the support body is peeled off when laminating the heat conductive sheet on the heat dissipation substrate.
  • the thermally conductive composition and thermally conductive sheet of the present invention are, for example, a thermal interface material (TIM1) that fills a minute gap between a heat source such as an LSI and a heat sink so that heat flows smoothly between the two ), it can be suitably used when configuring a power LED module or a power IC module by bonding a heat dissipation board on which an LED chip or an IC chip is mounted to a heat sink.
  • power LED modules include wire bonding type and flip chip type
  • power IC modules include wire bonding type.
  • the heat dissipation structure used in the present invention is composed of a heat generating element, a heat conductive material, and a heat dissipating member, and the heat conductive composition of the present invention as the heat conductive material is placed between the heat generating body and the heat dissipating member. It has a cured product.
  • the heating element is not particularly limited and can be selected as appropriate depending on the purpose, for example, a CPU (Central Processing Unit), an MPU (Micro Processing Unit), a GPU (Graphics Processing Unit), etc. electronic parts etc. Can be mentioned.
  • a CPU Central Processing Unit
  • MPU Micro Processing Unit
  • GPU Graphics Processing Unit
  • the heat dissipation member is not particularly limited as long as it is a structure that dissipates heat generated by electronic components (heat generating elements), and can be appropriately selected depending on the purpose.
  • heat spreaders, heat sinks, vapor chambers, heat Examples include pipes.
  • the heat spreader is a member for efficiently transmitting heat from the electronic component to other components.
  • the material of the heat spreader is not particularly limited and can be appropriately selected depending on the purpose, such as copper and aluminum.
  • the heat spreader usually has a flat plate shape.
  • the heat sink is a member for releasing heat from the electronic component into the air.
  • the material of the heat sink is not particularly limited and can be appropriately selected depending on the purpose, such as copper and aluminum.
  • the heat sink has, for example, a plurality of fins.
  • the heat sink includes, for example, a base portion and a plurality of fins extending in non-parallel directions (for example, perpendicular directions) to one surface of the base portion.
  • the heat spreader and the heat sink generally have a solid structure with no internal space.
  • the vapor chamber is a hollow structure.
  • a volatile liquid is sealed in the internal space of the hollow structure.
  • Examples of the vapor chamber include a plate-shaped hollow structure such as a hollow structure of the heat spreader and a hollow structure of the heat sink.
  • the heat pipe is a hollow structure having a cylindrical shape, a substantially cylindrical shape, or a flat cylindrical shape. A volatile liquid is sealed in the internal space of the hollow structure.
  • FIG. 1 is a schematic cross-sectional view showing an example of a semiconductor device as a heat dissipation structure.
  • a cured product (thermal conductive sheet) 1 of the thermally conductive composition of the present invention radiates heat generated by an electronic component 3 such as a semiconductor element, and as shown in FIG.
  • the electronic component 3 is fixed to the main surface 2a of the heat spreader 2, and is held between the electronic component 3 and the heat spreader 2. Further, the thermally conductive sheet 1 is sandwiched between the heat spreader 2 and the heat sink 5.
  • the heat conductive sheet 1 and the heat spreader 2 constitute a heat radiating member that radiates heat from the electronic component 3.
  • the heat spreader 2 is formed into a rectangular plate shape, for example, and has a main surface 2a facing the electronic component 3, and a side wall 2b erected along the outer periphery of the main surface 2a.
  • a heat conductive sheet 1 is provided on a main surface 2a surrounded by side walls 2b, and a heat sink 5 is provided on the other surface 2c opposite to the main surface 2a via the heat conductive sheet 1.
  • the heat spreader 2 is formed using, for example, copper or aluminum, which has good thermal conductivity, because the higher the thermal conductivity, the lower the thermal resistance, and the more efficiently the heat spreader 2 absorbs the heat of the electronic components 3 such as semiconductor elements. can do.
  • the electronic component 3 is, for example, a semiconductor element such as a BGA, and is mounted on the wiring board 6. Further, the heat spreader 2 also has the front end surface of the side wall 2b mounted on the wiring board 6, so that the side wall 2b surrounds the electronic component 3 at a predetermined distance. Then, by bonding the heat conductive sheet 1 to the main surface 2a of the heat spreader 2, a heat radiating member is formed that absorbs the heat generated by the electronic component 3 and radiates the heat from the heat sink 5.
  • volume average particle size of heat conductive particles and low melting point metal particles was measured using a laser diffraction/scattering particle size distribution measuring device (device name: Microtrac MT3300EXII, manufactured by Microtrac Bell Co., Ltd.).
  • FT-IR absorption of (meth)acrylic group-containing polycarboxylic acid compound was measured by the ATR method using Nicolet iS10 manufactured by Thermo Fisher Scientific Co., Ltd.
  • citric acid represented by the following structural formula (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) was weighed and dropped into the three-necked flask using a funnel in a solid state. Since side reactions occur when the temperature rises, the temperature was kept constant at 30° C. and stirred for 24 hours until the reaction was completely completed. After cooling the obtained compound to room temperature, it was transferred to an eggplant flask and concentrated using an evaporator, and then dried under reduced pressure (at 30° C. for 48 hours) to synthesize the desired acrylic group-containing tricarboxylic acid compound (yield: 93%).
  • the 13 C-NMR peak of the obtained acrylic group-containing dicarboxylic acid compound of Compound 3 is shown below.
  • 13C -NMR (CDCl 3 , ⁇ ppm); 40.03 (20; 40), 61.99 (21; 15), 62.35 (21; 15), 62.71 (21; 15), 73.62 (2; 3), 73.99 (2; 3), 127.82 (29; 27), 131.10 (30; 28), 131.51 (30; 28), 131.92 (30; 28) , 154.11 (7; 5), 170.61 (9; 11)
  • Example 1 As the base resin, 3.26% by volume of the acrylic group-containing tricarboxylic acid compound of Synthesis Example 1, 2.24% by volume of the low melting point flux (P303K, manufactured by Dexerials Co., Ltd.), and 2.24% by volume of the oxetane compound (OXBP, manufactured by UBE Co., Ltd.) In addition, 56.30 volume % of Ag-coated Cu particles (manufactured by Fukuda Metal Foil & Powder Industry Co., Ltd., volume average particle diameter Dv: 40 ⁇ m) as thermally conductive particles, and Sn 58 Bi 42 particles as low melting point metal particles.
  • P303K manufactured by Dexerials Co., Ltd.
  • OXBP oxetane compound
  • thermally conductive composition 35.96% by volume was added and mixed uniformly using a stirrer (foam remover Rentaro automatic revolving mixer, manufactured by Shinky Co., Ltd.). Further, 0.025% by volume of a radical polymerization initiator (Perloil TCP, manufactured by NOF Corporation) was added and stirred thoroughly to prepare the thermally conductive composition of Example 1.
  • the obtained thermally conductive composition was applied onto a release film (38GS, manufactured by Lintec Corporation) with a thickness of 38 ⁇ m by a bar coating method, heated at 80° C. for 15 minutes, and dried to form a thermally conductive sheet with an average thickness of 100 ⁇ m. was created.
  • Example 2 In Example 1, the thermally conductive composition of Example 2 and A thermally conductive sheet was produced.
  • Example 3 In Example 1, the thermally conductive composition of Example 3 and A thermally conductive sheet was produced.
  • Example 4 In Example 1, the thermally conductive composition of Example 4 and A thermally conductive sheet was produced.
  • Example 5 In Example 1, the thermally conductive composition of Example 5 and A thermally conductive sheet was produced.
  • Example 1 In Example 1, 3.26 volume % of the acrylic group-containing tricarboxylic acid compound in Synthesis Example 1 was changed to 3.26 volume % of M-1276 (polyamide resin, manufactured by Arkema Corporation), and a radical polymerization initiator (Perloyl TCP) was used. A thermally conductive composition and a thermally conductive sheet of Comparative Example 1 were produced in the same manner as in Example 1, except that the composition (manufactured by NOF Corporation) was not added.
  • M-1276 polyamide resin, manufactured by Arkema Corporation
  • Perloyl TCP radical polymerization initiator
  • Example 1 was performed as in Example 1, except that 3.26% by volume of the acrylic group-containing tricarboxylic acid compound in Synthesis Example 1 was changed to 3.26% by volume of acrylic monomer (UA-306H, manufactured by Kyoeisha Chemical Co., Ltd.). Similarly, a thermally conductive composition and a thermally conductive sheet of Comparative Example 2 were produced.
  • the thermally conductive composition and thermally conductive sheet of the present invention using the (meth)acrylic group-containing polycarboxylic acid compound of the present invention can exhibit high adhesive strength and good flux effect, and can realize high thermal conductivity.
  • Thermal conductive material thermal conductive sheet
  • Heat dissipation member heat spreader
  • Main surface Heating element (electronic component)
  • Top surface 5 Heat dissipation member (heat sink) 6 Wiring board

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polymerisation Methods In General (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

下記一般式(1)及び下記一般式(2)の少なくともいずれかで表される(メタ)アクリル基含有ポリカルボン酸化合物である。R及びRはアルキレン基を表す。Rは単結合、又はアルキレン基を表す。Rはアルキレン基を表す。-OCO-Aはアクリル基又はメタクリル基を表す。R及びRはアルキレン基を表す。Rはアルキレン基を表す。Rは水素原子又はアルキル基を表す。-OCO-Aはアクリル基又はメタクリル基を表す。

Description

(メタ)アクリル基含有ポリカルボン酸化合物、熱伝導組成物、及び熱伝導シート
 本発明は、(メタ)アクリル基含有ポリカルボン酸化合物、熱伝導組成物、及び熱伝導シートに関する。
 各種電子機器におけるLSI(Large Scale Integration)等では、用いられている素子の発熱によりLSI自身が長時間高温に晒されると動作不良や故障につながる恐れがある。このため、LSI等の昇温を防ぐために熱伝導材料が広く用いられている。前記熱伝導材料は素子の発熱を拡散させるか、あるいは大気等の系外に放出させるための放熱部材に伝えることによって機器の昇温を防ぐことができる。
 このような熱伝導材料として金属又はセラミックスを用いると、軽量化しにくい、加工性が悪い、又は柔軟性が低くなるという問題がある。そこで、樹脂又はゴム等からなる高分子材料を母材とする熱伝導材料が種々提案されている。例えば、(A)分子内に、ポリブタジエン構造、ポリシロキサン構造、ポリ(メタ)アクリレート構造、ポリアルキレン構造、ポリアルキレンオキシ構造、ポリイソプレン構造、ポリイソブチレン構造、及びポリカーボネート構造から選択される1種以上の構造を有する高分子化合物、(B)エポキシ樹脂、(C)熱伝導フィラー、及び(D)活性エステル硬化剤、を含有し、(A)成分は、数平均分子量(Mn)が1,000~1,000,000であり、又はガラス転移温度(Tg)が25℃以下の樹脂、及び25℃で液状である樹脂から選択される1種以上であり、(A)成分の含有量は、樹脂成分を100質量%とした場合、10質量%以上65質量%以下であり、(C)成分の含有量が、樹脂組成物の不揮発成分を100質量%としたとき、85質量%以上である樹脂組成物が提案されている(例えば、特許文献1参照)。
特許第6787210号公報
 上記特許文献1に記載の技術では、ベースポリマーとして熱可塑性樹脂を用いているので、加熱温度が熱可塑性樹脂の融点を超えると、接着強度が大幅に低下してしまうという問題がある。また、硬化成分としてのオキセタン化合物とポリカルボン酸との硬化反応は、オキセタン化合物の分子構造の制約を受けるため、接着強度が低下してしまうおそれがある。
 本発明は、従来にける前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、高い接着強度と良好なフラックス効果を発揮できる新規な(メタ)アクリル基含有ポリカルボン酸化合物、前記(メタ)アクリル基含有ポリカルボン酸化合物を含有し、高熱伝導性及び低熱抵抗を実現できる熱伝導組成物、及び熱伝導シートを提供することを目的とする。
 前記課題を解決するための手段としては、以下の通りである。即ち、
 <1> 下記一般式(1)及び下記一般式(2)の少なくともいずれかで表されることを特徴とする(メタ)アクリル基含有ポリカルボン酸化合物である。
 ただし、前記一般式(1)中、R及びRはアルキレン基を表す。Rは単結合、又はアルキレン基を表す。Rはアルキレン基を表す。-OCO-Aはアクリル基又はメタクリル基を表す。
 ただし、前記一般式(2)中、R及びRはアルキレン基を表す。Rはアルキレン基を表す。Rは水素原子又はアルキル基を表す。-OCO-Aはアクリル基又はメタクリル基を表す。
 <2> 前記一般式(1)において、前記Rが単結合であり、前記R及び前記Rが-CH-である、前記<1>に記載の(メタ)アクリル基含有ポリカルボン酸化合物である。
 <3> 前記Rがエチレン基である、前記<1>から<2>のいずれかに記載の(メタ)アクリル基含有ポリカルボン酸化合物である。
 <4> フラックス活性を有する、前記<1>から<3>のいずれかに記載の(メタ)アクリル基含有ポリカルボン酸化合物である。
 <5> 前記<1>から<4>のいずれかに記載の(メタ)アクリル基含有ポリカルボン酸化合物、硬化成分、ラジカル重合開始剤、熱伝導粒子、及び低融点金属粒子を含有することを特徴とする熱伝導組成物である。
 <6> 前記(メタ)アクリル基含有ポリカルボン酸化合物の含有量が、1体積%以上10体積%以下である、前記<5>に記載の熱伝導組成物である。
 <7> 前記硬化成分がオキシラン環化合物及びオキセタン化合物の少なくともいずれかである、前記<5>から<6>のいずれかに記載の熱伝導組成物である。
 <8> 前記熱伝導粒子が銅粒子、銀被覆粒子、及び銀粒子の少なくともいずれかである、前記<5>から<7>のいずれかに記載の熱伝導組成物である。
 <9> 前記低融点金属粒子がSnと、Bi、Ag、Cu、及びInから選択される少なくとも1種とを含む、前記<5>から<8>のいずれかに記載の熱伝導組成物である。
 <10> 前記<5>から<9>のいずれかに記載の熱伝導組成物の硬化物を含むことを特徴とする熱伝導シートである。
 本発明によると、従来における前記諸問題を解決し、前記目的を達成することができ、高い接着強度と良好なフラックス効果を発揮できる新規な(メタ)アクリル基含有ポリカルボン酸化合物、前記(メタ)アクリル基含有ポリカルボン酸化合物を含有し、高熱伝導性及び低熱抵抗を実現できる熱伝導組成物、及び熱伝導シートを提供することができる。
図1は、本発明で用いられる放熱構造体の一例を示す概略断面図である。
((メタ)アクリル基含有ポリカルボン酸化合物)
 本発明の(メタ)アクリル基含有ポリカルボン酸化合物は、下記一般式(1)及び一般式(2)の少なくともいずれかで表される。
 ただし、前記一般式(1)中、R及びRはアルキレン基を表す。Rは単結合、アルキレン基を表す。Rはアルキレン基を表す。-OCO-Aはアクリル基又はメタクリル基を表す。
 ただし、前記一般式(2)中、R及びRはアルキレン基を表す。Rはアルキレン基を表す。Rは水素原子又はアルキル基を表す。-OCO-Aはアクリル基又はメタクリル基を表す。
 前記一般式(1)において、R、R、及びRのアルキレン基としては、炭素数1~10のアルキレン基が好ましく、例えば、メチレン基、エチレン基、プロピレン基、イソプロピレン基、ブチレン基、ヘキシレン基、ヘプチレン基、オクチレン基、2-エチルヘキシレン基、tert-オクチレン基、シクロヘキシレン基などが挙げられる。
 前記一般式(2)において、R、及びRのアルキレン基としては、炭素数1~10のアルキレン基が好ましく、例えば、メチレン基、エチレン基、プロピレン基、イソプロピレン基、ブチレン基、ヘキシレン基、ヘプチレン基、オクチレン基、2-エチルヘキシレン基、tert-オクチレン基、シクロヘキシレン基などが挙げられる。
 前記一般式(2)において、Rのアルキル基としては、炭素数1~10のアルキル基が好ましく、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、tert-オクチル基、シクロヘキシル基などが挙げられる。
 前記一般式(1)及び前記一般式(2)において、Rのアルキレン基としては、炭素数1~5のアルキレン基が好ましく、例えば、メチレン基、エチレン基、プロピレン基、イソプロピレン基、ブチレン基などが挙げられる。
 前記一般式(1)において、Rが単結合であり、R及びRが-CH-であることが好ましい。この場合、ヒドロキシトリカルボン酸としてクエン酸を用いて合成した場合に該当する。
 前記一般式(1)及び一般式(2)において、Rがエチレン基であることが好ましい。この場合、(メタ)アクリル変性イソシアネートとして2-アクリロイルオキシエチルイソシアナートを用いて合成した場合に該当する。
 上記一般式(1)及び一般式(2)の少なくともいずれかで表される(メタ)アクリル基含有ポリカルボン酸化合物は、以下に説明するように、水酸基を有するポリカルボン酸に(メタ)アクリル変性イソシアネートを作用させることにより合成することができる。
<(メタ)アクリル基含有ポリカルボン酸化合物の製造方法>
 本発明に用いられる(メタ)アクリル基含有ポリカルボン酸化合物の製造方法は、水酸基を有するポリカルボン酸と(メタ)アクリル変性イソシアネートをウレタン化反応させる工程を含み、更に必要に応じてその他の工程を含む。
 前記水酸基を有するポリカルボン酸としては、例えば、ヒドロキシジカルボン酸、ヒドロキシトリカルボン酸などが挙げられる。
 前記ヒドロキシジカルボン酸としては、例えば、酒石酸、リンゴ酸、タルトロン酸などが挙げられる。
 前記ヒドロキシトリカルボン酸としては、例えば、クエン酸、1-ヒドロキシ-1,2,3-プロパントリカルボン酸などが挙げられる。
 前記(メタ)アクリル変性イソシアネートとしては、例えば、2-アクリロイルオキシエチルイソシアナート、2-メタクリロイルオキシエチルイソシアナートなどが挙げられる。
 前記(メタ)アクリル変性イソシアネートとしては、市販品を用いることができ、前記市販品としては、例えば、2-アクリロイルオキシエチルイソシアナート(昭和電工株式会社製、カレンズAOI)、2-メタクリロイルオキシエチルイソシアナート(昭和電工株式会社製、カレンズMOI)などが挙げられる。
 以下に、水酸基を有するポリカルボン酸と(メタ)アクリル変性のイソシアネートとのウレタン化反応の一例を示す。
 ただし、前記反応式中、R及びRはアルキレン基を表す。Rは単結合、又はアルキレン基を表す。Rはアルキレン基を表す。-OCO-Aはアクリル基又はメタクリル基を表す。
 水酸基を有するポリカルボン酸と(メタ)アクリル変性イソシアネートのウレタン化反応の条件としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、恒温に保たれた温度雰囲気下、均一攪拌する方法などが挙げられる。
<その他の工程>
 その他の工程としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、濃縮工程、分離精製工程などが挙げられる。
 上記一般式(1)及び一般式(2)の少なくともいずれかで表される(メタ)アクリル基含有ポリカルボン酸化合物は、良好なフラックス効果と(メタ)アクリル樹脂としての接着機能とを両立できる。そして、成膜中は反応が起こらず塗工液の濡れ性を向上させ、製品として使用する際に段階的に加熱され第1段階の加熱により、フラックスの効果を発揮し、次いで、第2段階の加熱により共に配合していた重合開始剤により(メタ)アクリル基含有ポリカルボン酸化合物の硬化が始まり、(メタ)アクリル樹脂としての接着機能及び膜機能が発揮される。更に、硬化成分及び硬化剤を併用することにより、ハイブリッド硬化を達成できる。
 前記第1段階の加熱は、例えば、120℃~150℃であることが好ましい。
 前記第2段階の加熱は、例えば、150℃~190℃であることが好ましい。
(熱伝導組成物)
 本発明の熱伝導組成物は、本発明の(メタ)アクリル基含有ポリカルボン酸化合物、硬化成分、ラジカル重合開始剤、熱伝導粒子、及び低融点金属粒子を含有し、更に必要に応じてその他の成分を含有する。
<(メタ)アクリル基含有ポリカルボン酸化合物>
 上記一般式(1)及び一般式(2)の少なくともいずれかで表される本発明の(メタ)アクリル基含有ポリカルボン酸化合物の含有量は、特に制限はなく、目的に応じて適宜選択することができるが、熱伝導組成物の全体積に対して、1体積%以上10体積%以下が好ましく、1体積%以上5体積%以下がより好ましい。
 上記一般式(1)及び一般式(2)の少なくともいずれかで表される本発明の(メタ)アクリル基含有ポリカルボン酸化合物は、硬化前の熱伝導組成物をフーリエ変換赤外分光法(FT-IR)などにより分析することができる。
<硬化成分>
 硬化成分としては、オキシラン環化合物及びオキセタン化合物の少なくともいずれかを用いることが好ましい。
-オキシラン環化合物-
 前記オキシラン環化合物は、オキシラン環を有する化合物であり、例えば、エポキシ樹脂などが挙げられる。
 前記エポキシ樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、グリシジルエーテル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、トリスフェノール型エポキシ樹脂、テトラフェノール型エポキシ樹脂、フェノール-キシリレン型エポキシ樹脂、ナフトール-キシリレン型エポキシ樹脂、フェノール-ナフトール型エポキシ樹脂、フェノール-ジシクロペンタジエン型エポキシ樹脂、脂環式エポキシ樹脂、脂肪族エポキシ樹脂などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
-オキセタン化合物-
 前記オキセタン化合物は、オキセタニル基を有する化合物であり、脂肪族化合物、脂環式化合物、又は芳香族化合物であってもよい。
 前記オキセタン化合物は、オキセタニル基を1つのみ有する1官能のオキセタン化合物であってもよいし、オキセタニル基を2つ以上有する多官能のオキセタン化合物であってもよい。
 前記オキセタン化合物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、3,7-ビス(3-オキセタニル)-5-オキサ-ノナン、1,4-ビス[(3-エチル-3-オキセタニルメトキシ)メチル]ベンゼン、1,2-ビス[(3-エチル-3-オキセタニルメトキシ)メチル]エタン、1,3-ビス[(3-エチル-3-オキセタニルメトキシ)メチル]プロパン、エチレングリコールビス(3-エチル-3-オキセタニルメチル)エーテル、トリエチレングリコールビス(3-エチル-3-オキセタニルメチル)エーテル、テトラエチレングリコールビス(3-エチル-3-オキセタニルメチル)エーテル、1,4-ビス(3-エチル-3-オキセタニルメトキシ)ブタン、1,6-ビス(3-エチル-3-オキセタニルメトキシ)ヘキサン、3-エチル-3-(フェノキシ)メチルオキセタン、3-エチル-3-(シクロヘキシルオキシメチル)オキセタン、3-エチル-3-(2-エチルヘキシルオキシメチル)オキセタン、3-エチル-3-ヒドロキシメチルオキセタン、3-エチル-3-(クロロメチル)オキセタン、3-エチル-3{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタン、キシリレンビスオキセタン、4,4'-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ビフェニル(OXBP)、イソフタル酸ビス[(3-エチル-3-オキセタニル)メチル]エステル(OXIPA)などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 前記オキセタン化合物としては、市販品を用いることができ、前記市販品としては、例えば、東亞合成株式会社から販売されている「アロンオキセタン(登録商標)」シリーズ、宇部興産株式会社から販売されている「ETERNACOLL(登録商標)」シリーズなどが挙げられる。
 上記オキシラン環化合物及びオキセタン化合物の中でも、グリシジルエーテル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノール-ジシクロペンタジエン型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、脂肪族エポキシ樹脂、4,4′-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ビフェニル(OXBP)、イソフタル酸ビス[(3-エチル-3-オキセタニル)メチル]エステル(OXIPA)が好ましい。
 前記硬化成分の含有量は、特に制限はなく、目的に応じて適宜選択することができるが、熱伝導組成物の全量に対して、0.5質量%以上60質量%以下であることが好ましい。
<熱伝導粒子>
 前記熱伝導粒子としては、銅粒子、銀被覆粒子、及び銀粒子の少なくともいずれかが好ましい。
 前記銀被覆粒子としては、例えば、銀被覆銅粒子、銀被覆ニッケル粒子、銀被覆アルミニウム粒子などが挙げられる。
 前記熱伝導粒子の形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、球状、扁平状、粒状、針状などが挙げられる。
 前記熱伝導粒子の体積平均粒径は、10μm以上300μm以下が好ましく、20μm以上100μm以下がより好ましい。熱伝導粒子の体積平均粒径が10μm以上300μm以下であると、熱伝導粒子の低融点金属粒子に対する体積割合を大きくすることができ、熱伝導組成物の高熱伝導性及び低熱抵抗を実現できる。
 前記体積平均粒径は、例えば、レーザ回折・散乱式粒子径分布測定装置(装置名:Microtrac MT3300EXII、マイクロトラック・ベル株式会社製)により、測定することができる。
<低融点金属粒子>
 前記低融点金属粒子としては、JIS Z3282-1999に規定されているはんだ粒子が好適に用いられる。
 前記はんだ粒子としては、例えば、Sn-Pb系はんだ粒子、Pb-Sn-Sb系はんだ粒子、Sn-Sb系はんだ粒子、Sn-Pb-Bi系はんだ粒子、Sn-Bi系はんだ粒子、Sn-Bi-Ag系はんだ粒子、Sn-Cu系はんだ粒子、Sn-Pb-Cu系はんだ粒子、Sn-In系はんだ粒子、Sn-Ag系はんだ粒子、Sn-Pb-Ag系はんだ粒子、Pb-Ag系はんだ粒子、Sn-Ag-Cu系はんだ粒子などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 これらの中でも、Snと、Bi、Ag、Cu、及びInから選択される少なくとも1種と、を含むはんだ粒子が好ましく、Sn-Bi系はんだ粒子、Sn-Bi-Ag系はんだ粒子、Sn-Ag-Cu系はんだ粒子、Sn-In系はんだ粒子がより好ましい。
 前記低融点金属粒子の形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、球状、扁平状、粒状、針状などが挙げられる。
 前記低融点金属粒子の融点は、100℃以上250℃以下が好ましく、120℃以上200℃以下がより好ましい。
 前記低融点金属粒子の融点は前記熱伝導組成物の熱硬化処理温度よりも低いことが、熱伝導組成物の硬化物中に溶融した低融点金属粒子により熱伝導粒子を介してネットワーク(金属の連続相)を形成でき、高熱伝導性及び低熱抵抗を実現できる点から好ましい。
 前記低融点金属粒子が、前記熱伝導組成物の熱硬化処理条件下で前記熱伝導粒子と反応して、前記低融点金属粒子より高い融点を示す合金となることにより、高温下で溶融することを防止でき、信頼性が向上する。また、熱伝導組成物の硬化物の耐熱性が向上する。
 前記熱伝導組成物の熱硬化処理は、例えば、150℃以上200℃の温度で30分間以上2時間以下の条件で行われる。
 前記低融点金属粒子の体積平均粒径は、10μm以下が好ましく、1μm以上5μm以下がより好ましい。低融点金属粒子の体積平均粒径が10μm以下であると、低融点金属粒子の熱伝導粒子に対する体積割合を小さくすることができ、熱伝導組成物の高熱伝導性及び低熱抵抗を実現できる。
 前記低融点金属粒子の体積平均粒径は、上記熱伝導粒子の体積平均粒径と同様にして測定することができる。
<ラジカル重合開始剤>
 ラジカル重合開始剤としては、例えば、芳香族ケトン類、アシルフォスフィンオキサイド化合物、芳香族オニウム塩化合物、有機過酸化物、チオ化合物(チオキサントン化合物、チオフェニル基含有化合物など)、ヘキサアリールビイミダゾール化合物、ケトオキシムエステル化合物、ボレート化合物、アジニウム化合物、メタロセン化合物、活性エステル化合物、炭素ハロゲン結合を有する化合物、アルキルアミン化合物などが挙げられる。これらの中でも、有機過酸化物が好ましい。
 前記有機過酸化物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ベンゾイルパーオキサイド、ラウリルパーオキサイド、t-ブチルパーオキサイド、クメンヒドロパーオキサイドなどが挙げられる。
 前記熱伝導組成物における前記ラジカル重合開始剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができる。
<その他の成分>
 前記熱伝導組成物は、本発明の効果を損なわない限りにおいてその他の成分を含有してもよい。前記その他の成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、フラックス成分、金属以外の熱伝導粒子(例えば、窒化アルミ、アルミナ、炭素繊維等)、添加剤(例えば、酸化防止剤、紫外線吸収剤、硬化促進剤、シランカップリング剤、レベリング剤、難燃剤等)などが挙げられる。
-フラックス成分-
 フラックス成分としては、例えば、レブリン酸、マレイン酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、セバシン酸等のカルボン酸を用いることが好ましい。これにより、良好なはんだ接続を得ることができるとともに、硬化成分の硬化剤として機能させることができる。
 また、前記フラックス成分として、カルボキシル基がアルキルビニルエーテルでブロック化されたブロック化カルボン酸を用いてもよい。これにより、フラックス効果、及び硬化剤機能が発揮される温度をコントロールすることができる。また、樹脂に対する溶解性が向上するため、フィルム化する際の混合・塗布ムラを改善することができる。
 本発明の熱伝導組成物は、本発明の(メタ)アクリル基含有ポリカルボン酸化合物、硬化成分、熱伝導粒子、低融点金属粒子、ラジカル重合開始剤、及び更に必要に応じてその他の成分を常法により均一に混合することにより調製することができる。
 前記熱伝導組成物は、シート状の熱伝導シート、及びペースト状の熱伝導ペースト(熱伝導接着剤、又は熱伝導グリースと称することもある)のいずれであってもよい。これらの中でも、取り扱いのし易さの点から熱伝導シートが好ましく、コストの面から熱伝導ペーストが好ましい。
(熱伝導シート)
 本発明の熱伝導シートは、本発明の熱伝導組成物の硬化物を含み、本発明の熱伝導組成物をシート化したものである。
 前記熱伝導シートの平均厚みは、薄型化の観点から、500μm以下が好ましく、200μm以下がより好ましく、100μm以下が更に好ましい。前記熱伝導シートの平均厚みの下限値は、特に制限はなく、目的に応じて適宜選択することができるが、5μm以上が好ましく、10μm以上がより好ましく、50μm以上が更に好ましい。
 前記熱伝導シートの製造方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、(1)前記熱伝導組成物を所定の形状に成型して硬化させ、熱伝導成形体を成形し、得られた熱伝導成形体をシート状にスライスし、熱伝導シートを製造する方法、(2)剥離層付き支持体上に前記熱伝導組成物の硬化物を含む硬化物層を形成し熱伝導シートを製造する方法などが挙げられる。なお、前記(2)においては、熱伝導シートを放熱基板に積層する際に支持体を剥離する。
 本発明の熱伝導組成物及び熱伝導シートは、例えば、LSI等の熱源とヒートシンクとの間の微小な間隙を埋めることで、両者の間に熱がスムーズに流れるようにするサーマルインターフェイスマテリアル(TIM1)、LEDチップ又はICチップを実装した放熱基板を、ヒートシンクに接着してパワーLEDモジュール又はパワーICモジュールを構成する際に好適に使用することができる。
 ここで、パワーLEDモジュールとしては、ワイヤーボンディング実装タイプのものとフリップチップ実装タイプのものがあり、パワーICモジュールとしてはワイヤーボンディング実装タイプのものがある。
<放熱構造体>
 本発明に用いられる放熱構造体は、発熱体と、熱伝導材料と、放熱部材とから構成され、前記発熱体と前記放熱部材の間に、前記熱伝導材料としての本発明の熱伝導組成物の硬化物を有する。
 前記発熱体としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、CPU(Central Processing Unit)、MPU(Micro Processing Unit)、GPU(Graphics Processing Unit)等の電子部品などが挙げられる。
 前記放熱部材としては、電子部品(発熱体)の発する熱を放熱する構造体であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、ヒートスプレッダ、ヒートシンク、ベーパーチャンバー、ヒートパイプなどが挙げられる。
 前記ヒートスプレッダは、前記電子部品の熱を他の部品に効率的に伝えるための部材である。前記ヒートスプレッダの材質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、銅、アルミニウムなどが挙げられる。前記ヒートスプレッダは、通常、平板形状である。
 前記ヒートシンクは、前記電子部品の熱を空気中に放出するための部材である。前記ヒートシンクの材質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、銅、アルミニウムなどが挙げられる。前記ヒートシンクは、例えば、複数のフィンを有する。前記ヒートシンクは、例えば、ベース部と、前記ベース部の一方の面に対して非平行方向(例えば、直交する方向)に向かって延びるように設けられた複数のフィンを有する。
 前記ヒートスプレッダ、及び前記ヒートシンクは、一般的に、内部に空間を持たない中実構造である。
 前記ベーパーチャンバーは、中空構造体である。前記中空構造体の内部空間には、揮発性の液体が封入されている。前記ベーパーチャンバーとしては、例えば、前記ヒートスプレッダを中空構造にしたもの、前記ヒートシンクを中空構造にしたような板状の中空構造体などが挙げられる。
 前記ヒートパイプは、円筒状、略円筒状、又は扁平筒状の中空構造体である。前記中空構造体の内部空間には、揮発性の液体が封入されている。
 ここで、図1は、放熱構造体としての半導体装置の一例を示す概略断面図である。本発明の熱伝導組成物の硬化物(熱伝導シート)1は、半導体素子等の電子部品3の発する熱を放熱するものであり、図1に示すように、ヒートスプレッダ2の電子部品3と対峙する主面2aに固定され、電子部品3と、ヒートスプレッダ2との間に挟持されるものである。また、熱伝導シート1は、ヒートスプレッダ2とヒートシンク5との間に挟持される。そして、熱伝導シート1は、ヒートスプレッダ2とともに、電子部品3の熱を放熱する放熱部材を構成する。
 ヒートスプレッダ2は、例えば、方形板状に形成され、電子部品3と対峙する主面2aと、主面2aの外周に沿って立設された側壁2bとを有する。ヒートスプレッダ2は、側壁2bに囲まれた主面2aに熱伝導シート1が設けられ、また主面2aと反対側の他面2cに熱伝導シート1を介してヒートシンク5が設けられる。ヒートスプレッダ2は、高い熱伝導率を有するほど、熱抵抗が減少し、効率よく半導体素子等の電子部品3の熱を吸熱することから、例えば、熱伝導性の良好な銅又はアルミニウムを用いて形成することができる。
 電子部品3は、例えば、BGA等の半導体素子であり、配線基板6へ実装される。またヒートスプレッダ2も、側壁2bの先端面が配線基板6に実装され、これにより側壁2bによって所定の距離を隔てて電子部品3を囲んでいる。
 そして、ヒートスプレッダ2の主面2aに、熱伝導シート1が接着されることにより、電子部品3の発する熱を吸収し、ヒートシンク5より放熱する放熱部材が形成される。
 以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。
 以下の合成例、実施例、及び比較例では、以下のようにして、熱伝導粒子及び低融点金属粒子の体積平均粒径、(メタ)アクリル基含有ポリカルボン酸化合物のFT-IR吸収、並びに13C-NMRスペクトルの測定を行った、
<熱伝導粒子及び低融点金属粒子の体積平均粒径>
 熱伝導粒子及び低融点金属粒子の体積平均粒径は、レーザ回折・散乱式粒子径分布測定装置(装置名:Microtrac MT3300EXII、マイクロトラック・ベル株式会社製)を使用し、測定した。
<(メタ)アクリル基含有ポリカルボン酸化合物のFT-IR吸収の測定>
 (メタ)アクリル基含有ポリカルボン酸化合物のFT-IR吸収は、サーモフィッシャーサイエンティフィック株式会社製Nicolet iS10を使用し、ATR法で測定を行った。
<(メタ)アクリル基含有ポリカルボン酸化合物の13C-NMRスペクトルの測定>
 (メタ)アクリル基含有ポリカルボン酸化合物の13C-NMRスペクトルは、JNM-ECZ400R/S3核磁気共鳴装置(JEOL RESONANCE社製)で測定した。
(合成例1)
<アクリル基含有トリカルボン酸化合物の合成>
 熱電対、攪拌装置、冷却管、及び加温装置を備えたガラス製の三口フラスコに、2-アクリロイルオキシエチルイソシアナート(昭和電工株式会社製、カレンズAOI)68.0質量部、これに2-ブタノン(超脱水)(富士フイルム和光純薬株式会社製)50質量部を添加し、良く攪拌して完全に溶解させた。完全に溶解させた後、下記構造式で表されるクエン酸(富士フイルム和光純薬株式会社製)50質量部を計量し、三口フラスコ内にジョーゴを用いて固形状のまま滴下した。温度が上昇すると副反応を生じるため、上記を完全に反応が終了するまで、30℃で一定に保ち、24時間攪拌させた。得られた合成物を常温に冷却後、ナスフラスコに移しエバポレーターで濃縮した後、減圧乾燥(30℃で48時間)して目的のアクリル基含有トリカルボン酸化合物を合成した(収率93%)。なお、得られた合成例1のアクリル基含有トリカルボン酸化合物のFT-IR吸収の測定を行い合成前後のピークを確認し、NCOのピーク(約2270cm-1~2240cm-1)がすべて消失していることを確認した。
[クエン酸]
<同定データ>
 合成例1のアクリル基含有トリカルボン酸化合物のFT-IR吸収を以下に示す。
 809cm-1、982cm-1、1064cm-1、1181cm-1、1268cm-1、1408cm-1、1557cm-1、1713cm-1及び2700cm-1~3700cm-1にカルボン酸由来のブロードな吸収振動が見られた。
 得られた合成例1のアクリル基含有トリカルボン酸化合物の13C-NMRのピークについて、以下に示す。
 13C-NMR(CDCl,δppm);39.49(15),39.83(15),40.13(3;8),40.46(3,8),40.79(3;8),62.08(16),62.44(16),62.80(16),76.75(2),127.82(22)131.10(23),131.51(23),131.92(23),154.27(6),165.71(18),173.05(11),173.34(4;9)
 上記13C-NMRのピークにおける括弧書きの部分の数字は以下のとおりである。
(合成例2)
<メタクリル基含有トリカルボン酸化合物の合成>
 合成例1において、2-アクリロイルオキシエチルイソシアナート(昭和電工株式会社製、カレンズAOI)を、2-メタクリロイルオキシエチルイソシアナート(昭和電工株式会社製、カレンズMOI)に代えた以外は、合成例1と同様にして、メタクリル基含有トリカルボン酸化合物を合成した(収率93%)。なお、得られた合成例2のメタクリル基含有トリカルボン酸化合物のFT-IR吸収の測定を行い合成前後のピークを確認し、NCOのピーク(約2270cm-1~2240cm-1)がすべて消失していることを確認した。
<同定データ>
 合成例2のメタクリル基含有トリカルボン酸化合物のFT-IR吸収を以下に示す。
 810cm-1、983cm-1、1067cm-1、1126cm-1、1182cm-1、1270cm-1、1336cm-1、1408cm-1、1566cm-1、1634cm-1、1703cm-1及び2700cm-1~3700cm-1にカルボン酸由来のブロードな吸収振動が見られた。
 得られた合成例2のメタクリル基含有トリカルボン酸化合物の13C-NMRのピークについて、以下に示す。
 13C-NMR(CDCl,δppm);17.75(23),39.26(15),39.60(15),40.13(3;8),40.46(3;8),40.79(3;8),62.48(16),62.84(16),63.20(16),76.75(2),125.52(24),125.92(24),126.32(24),135.76(22),166.52(18),173.05(11),173.34(4;9)
 上記13C-NMRのピークにおける括弧書きの部分の数字は以下のとおりである。
(合成例3)
<アクリル基含有ジカルボン酸化合物の合成>
 合成例1において、クエン酸(富士フイルム和光純薬株式会社製)50質量部を、下記構造式で表されるL(+)-酒石酸(関東化学株式会社製)26.6質量部に変更した以外は、合成例1と同様にして、アクリル基含有ジカルボン酸化合物を合成した(収率93%)。なお、合成物3のアクリル基含有ジカルボン酸化合物のFT-IR吸収の測定を行い合成前後のピークを確認し、NCOのピーク(約2270cm-1~2240cm-1)がすべて消失していることを確認した。
[酒石酸]
<同定データ>
 合成物3のアクリル基含有ジカルボン酸化合物のFT-IR吸収を以下に示す。
 810cm-1、987cm-1、1081cm-1、1121cm-1、1218cm-1、1383cm-1、1409cm-1、1634cm-1、1722cm-1及び2700cm-1~3700cm-1にカルボン酸由来のブロードな吸収振動が見られた。
 得られた合成物3のアクリル基含有ジカルボン酸化合物の13C-NMRのピークについて、以下に示す。
 13C-NMR(CDCl,δppm);40.03(20;40),61.99(21;15),62.35(21;15),62.71(21;15),73.62(2;3),73.99(2;3),127.82(29;27),131.10(30;28),131.51(30;28),131.92(30;28),154.11(7;5),170.61(9;11)
 上記13C-NMRのピークにおける括弧書きの部分の数字は以下のとおりである。
(実施例1)
 ベース樹脂として合成例1のアクリル基含有トリカルボン酸化合物3.26体積%、低融点フラックス(P303K、デクセリアルズ株式会社製)2.24体積%、及びオキセタン化合物(OXBP、UBE株式会社製)2.24体積%を加え、更に、熱伝導粒子としてAgコートCu粒子(福田金属箔粉工業株式会社製、体積平均粒径Dv:40μm)56.30体積%、及び低融点金属粒子としてSn58Bi42粒子(三井金属鉱業株式会社製、体積平均粒径Dv:4μm)35.96体積%を加えて、攪拌装置(泡とり練太郎・自動公転ミキサー、株式会社シンキー製)を用いて均一に混合した。更に、ラジカル重合開始剤(パーロイルTCP、日油株式会社製)0.025体積%を加えて良く攪拌し、実施例1の熱伝導組成物を調製した。
 得られた熱伝導組成物を、厚み38μmの剥離フィルム(38GS、リンテック株式会社製)上にバーコート法により付与し、80℃で15分間加熱し、乾燥させて、平均厚み100μmの熱伝導シートを作製した。
(実施例2)
 実施例1において、合成例1のアクリル基含有トリカルボン酸化合物を、合成例2のメタクリル基含有トリカルボン酸化合物に代えた以外は、実施例1と同様にして、実施例2の熱伝導組成物及び熱伝導シートを作製した。
(実施例3)
 実施例1において、合成例1のアクリル基含有トリカルボン酸化合物を、合成例3のアクリル基含有ジカルボン酸化合物に代えた以外は、実施例1と同様にして、実施例3の熱伝導組成物及び熱伝導シートを作製した。
(実施例4)
 実施例1において、合成例1のアクリル基含有トリカルボン酸化合物の含有量3.26体積%を1体積%に変更した以外は、実施例1と同様にして、実施例4の熱伝導組成物及び熱伝導シートを作製した。
(実施例5)
 実施例1において、合成例1のアクリル基含有トリカルボン酸化合物の含有量3.26体積%を10体積%に変更した以外は、実施例1と同様にして、実施例5の熱伝導組成物及び熱伝導シートを作製した。
(比較例1)
 実施例1において、合成例1のアクリル基含有トリカルボン酸化合物3.26体積%を、M-1276(ポリアミド樹脂、アルケマ株式会社製)3.26体積%に変更し、ラジカル重合開始剤(パーロイルTCP、日油株式会社製)を添加しない以外は、実施例1と同様にして、比較例1の熱伝導組成物及び熱伝導シートを作製した。
(比較例2)
 実施例1において、合成例1のアクリル基含有トリカルボン酸化合物3.26体積%を、アクリルモノマー(UA-306H、共栄社化学株式会社製)3.26体積%に変更した以外は、実施例1と同様にして、比較例2の熱伝導組成物及び熱伝導シートを作製した。
<硬化物の作製>
 次に、30mm×30mm×2mmのアルミニウム板(A5052P)2枚の間に0.125mmのスペーサを配置し、直径20mmに打ち抜いた各熱伝導組成物を挟み込み、150℃で60分間オーブンキュアを施し、各熱伝導組成物の硬化物(界面Al)を得た。
 次に、得られた各硬化物について、以下のようにして、接着性及び熱伝導率を評価した。結果を表1及び表2に示した。
<接着性>
 各熱伝導組成物の硬化物を130℃に加熱したホットプレート上で1分間加熱し、引き剥がしの状況を確認し、下記の基準で接着性を評価した。
[評価基準]
  A:2枚のアルミニウム板を引き剥がすことができない
  B:ペンチなどを用いて引き剥がすことができる
  C:2枚のアルミニウム板をずらすと簡単に引き剥がすことができる
<熱伝導率>
 30mm×30mm×2mmの銅板2枚の間に0.125mmのスペーサを配置し、直径20mmに打ち抜いた各熱伝導組成物を挟み込み、150℃で60分間オーブンキュアを施し、各熱伝導組成物の硬化物(界面Cu)について、ASTM-D5470に準拠した方法で熱抵抗(℃・cm/W)を測定した。その結果から銅板の熱抵抗を引いて硬化物の熱抵抗を算出し、熱抵抗と硬化物の厚みから熱伝導率(W/m・K)を求め、下記の基準で評価した。
[評価基準]
  A:熱伝導率が11.0W/m・K以上
  B:熱伝導率が8.0W/m・K以上11.0W/m・K未満
  C:熱伝導率が8.0W/m・K未満
 表1及び表2中の各成分の詳細は、以下のとおりである。
*アクリルモノマー:UA-306H、共栄社化学株式会社製、ペンタエリスリトールトリアクリレートヘキサメチレンジイソシアネート ウレタンプレポリマー
*ポリアミド樹脂:M-1276、アルケマ株式会社製
*P303K:低融点フラックス、デクセリアルズ株式会社製
*OXBP:オキセタン化合物、UBE株式会社製、4,4'-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ビフェニル
*熱伝導粒子:AgコートCu粒子、福田金属箔粉工業株式会社製、体積平均粒径Dv:40μm
*低融点金属粒子:Sn58Bi42粒子、三井金属鉱業株式会社製、体積平均粒径Dv:4μm
*ラジカル重合開始剤:パーロイルTCP、日油株式会社製
 本発明の(メタ)アクリル基含有ポリカルボン酸化合物を用いた本発明の熱伝導組成物及び熱伝導シートは、高い接着強度と良好なフラックス効果を発揮し得、高熱伝導性を実現できるので、例えば、温度によって素子動作の効率や寿命等に悪影響が生じるCPU、MPU、パワートランジスタ、LED、レーザーダイオード、各種電池(リチウムイオン電池等の各種二次電池、各種燃料電池、キャパシタ、アモルファスシリコン、結晶シリコン、化合物半導体、湿式太陽電池等の各種太陽電池等)などの各種の電気デバイス周り、熱の有効利用が求められる暖房機器の熱源周り、熱交換器、床暖房装置の熱配管周りなどに好適に用いられる。
 本国際出願は2022年9月5日に出願した日本国特許出願2022-140623号に基づく優先権を主張するものであり、日本国特許出願2022-140623号の全内容を本国際出願に援用する。
   1   熱伝導性材料(熱伝導性シート)
   2   放熱部材(ヒートスプレッダ)
  2a   主面
   3   発熱体(電子部品)
  3a   上面
   5   放熱部材(ヒートシンク)
   6   配線基板

Claims (10)

  1.  下記一般式(1)及び下記一般式(2)の少なくともいずれかで表されることを特徴とする(メタ)アクリル基含有ポリカルボン酸化合物。
     ただし、前記一般式(1)中、R及びRはアルキレン基を表す。Rは単結合、又はアルキレン基を表す。Rはアルキレン基を表す。-OCO-Aはアクリル基又はメタクリル基を表す。
     ただし、前記一般式(2)中、R及びRはアルキレン基を表す。Rはアルキレン基を表す。Rは水素原子又はアルキレン基を表す。-OCO-Aはアクリル基又はメタクリル基を表す。
  2.  前記一般式(1)において、前記Rが単結合であり、前記R及び前記Rが-CH-である、請求項1に記載の(メタ)アクリル基含有ポリカルボン酸化合物。
  3.  前記Rがエチレン基である、請求項1から2のいずれかに記載の(メタ)アクリル基含有ポリカルボン酸化合物。
  4.  フラックス活性を有する、請求項1から3のいずれかに記載の(メタ)アクリル基含有ポリカルボン酸化合物。
  5.  請求項1から4のいずれかに記載の(メタ)アクリル基含有ポリカルボン酸化合物、硬化成分、ラジカル重合開始剤、熱伝導粒子、及び低融点金属粒子を含有することを特徴とする熱伝導組成物。
  6.  前記(メタ)アクリル基含有ポリカルボン酸化合物の含有量が、1体積%以上10体積%以下である、請求項5に記載の熱伝導組成物。
  7.  前記硬化成分がオキシラン環化合物及びオキセタン化合物の少なくともいずれかである、請求項5から6のいずれかに記載の熱伝導組成物。
  8.  前記熱伝導粒子が銅粒子、銀被覆粒子、及び銀粒子の少なくともいずれかである、請求項5から7のいずれかに記載の熱伝導組成物。
  9.  前記低融点金属粒子がSnと、Bi、Ag、Cu、及びInから選択される少なくとも1種とを含む、請求項5から8のいずれかに記載の熱伝導組成物。
  10.  請求項5から9のいずれかに記載の熱伝導組成物の硬化物を含むことを特徴とする熱伝導シート。
PCT/JP2023/031350 2022-09-05 2023-08-29 (メタ)アクリル基含有ポリカルボン酸化合物、熱伝導組成物、及び熱伝導シート WO2024053494A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-140623 2022-09-05
JP2022140623A JP2024035964A (ja) 2022-09-05 2022-09-05 (メタ)アクリル基含有ポリカルボン酸化合物、熱伝導組成物、及び熱伝導シート

Publications (1)

Publication Number Publication Date
WO2024053494A1 true WO2024053494A1 (ja) 2024-03-14

Family

ID=90190974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/031350 WO2024053494A1 (ja) 2022-09-05 2023-08-29 (メタ)アクリル基含有ポリカルボン酸化合物、熱伝導組成物、及び熱伝導シート

Country Status (3)

Country Link
JP (1) JP2024035964A (ja)
TW (1) TW202421724A (ja)
WO (1) WO2024053494A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000069393A1 (en) * 1999-05-13 2000-11-23 3M Innovative Properties Company Fluoride releasing orthodontic adhesive
JP2002514211A (ja) * 1997-04-11 2002-05-14 ミネソタ マイニング アンド マニュファクチャリング カンパニー 改良された取扱性能を有する歯科用組成物
JP2005529637A (ja) * 2002-04-18 2005-10-06 スリーエム イノベイティブ プロパティズ カンパニー 歯科矯正接着剤
JP2018141106A (ja) * 2017-02-28 2018-09-13 住友ベークライト株式会社 熱硬化性樹脂組成物、キャリア基材付き樹脂シートおよび半導体装置
WO2020003536A1 (ja) * 2018-06-29 2020-01-02 日立化成株式会社 液相焼結用シート、焼結体、接合体及び接合体の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002514211A (ja) * 1997-04-11 2002-05-14 ミネソタ マイニング アンド マニュファクチャリング カンパニー 改良された取扱性能を有する歯科用組成物
WO2000069393A1 (en) * 1999-05-13 2000-11-23 3M Innovative Properties Company Fluoride releasing orthodontic adhesive
JP2005529637A (ja) * 2002-04-18 2005-10-06 スリーエム イノベイティブ プロパティズ カンパニー 歯科矯正接着剤
JP2018141106A (ja) * 2017-02-28 2018-09-13 住友ベークライト株式会社 熱硬化性樹脂組成物、キャリア基材付き樹脂シートおよび半導体装置
WO2020003536A1 (ja) * 2018-06-29 2020-01-02 日立化成株式会社 液相焼結用シート、焼結体、接合体及び接合体の製造方法

Also Published As

Publication number Publication date
JP2024035964A (ja) 2024-03-15
TW202421724A (zh) 2024-06-01

Similar Documents

Publication Publication Date Title
US12042883B2 (en) Sinterable films and pastes and methods for use thereof
JP7056649B2 (ja) ペースト状樹脂組成物
KR101525487B1 (ko) 경화성 방열 조성물
KR102336087B1 (ko) 수지 조성물
JP4994743B2 (ja) フィルム状接着剤及びそれを使用する半導体パッケージの製造方法
WO2020184583A1 (ja) 回路接続用接着剤フィルム及びその製造方法、回路接続構造体の製造方法、並びに、接着剤フィルム収容セット
KR20190057400A (ko) 열전도성 페이스트 및 전자 장치
JP4507488B2 (ja) 接合材料
US9249294B2 (en) Conductive resin composition and cured product thereof
WO2012105550A1 (ja) 樹脂組成物および半導体装置
JP2018039992A (ja) 樹脂組成物および該樹脂組成物を用いた三次元積層型半導体装置
CN110024092B (zh) 导热性膏和电子装置
WO2024053494A1 (ja) (メタ)アクリル基含有ポリカルボン酸化合物、熱伝導組成物、及び熱伝導シート
JP3708423B2 (ja) エポキシ樹脂用フェノール系硬化剤及びそれを用いたエポキシ樹脂組成物
JP2012216836A (ja) 三次元集積回路積層体
JP2012216838A (ja) 三次元集積回路積層体
JP7200674B2 (ja) 放熱構造体の製造方法
JP2012216837A (ja) 三次元集積回路積層体
JP7501105B2 (ja) 樹脂被覆無機粒子、熱硬化性樹脂組成物、半導体装置、樹脂被覆無機粒子の製造方法
WO2023182046A1 (ja) エステル化合物及びその製造方法、並びに熱伝導性組成物及び熱伝導性シート
JP2023140277A (ja) エステル化合物及びその製造方法、並びに熱伝導性組成物及び熱伝導性シート
JP2017217882A (ja) 積層体、接着層及び金属材付き半導体チップ、及び半導体装置の製造方法
WO2023238694A1 (ja) 積層体及びその製造方法
WO2023037862A1 (ja) 熱伝導性組成物及び熱伝導性シート
WO2024048358A1 (ja) 積層体及び積層体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23863033

Country of ref document: EP

Kind code of ref document: A1