WO2020003536A1 - 液相焼結用シート、焼結体、接合体及び接合体の製造方法 - Google Patents

液相焼結用シート、焼結体、接合体及び接合体の製造方法 Download PDF

Info

Publication number
WO2020003536A1
WO2020003536A1 PCT/JP2018/024937 JP2018024937W WO2020003536A1 WO 2020003536 A1 WO2020003536 A1 WO 2020003536A1 JP 2018024937 W JP2018024937 W JP 2018024937W WO 2020003536 A1 WO2020003536 A1 WO 2020003536A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
liquid phase
resin
metal particles
phase sintering
Prior art date
Application number
PCT/JP2018/024937
Other languages
English (en)
French (fr)
Inventor
秀明 山岸
斉藤 晃一
雅記 竹内
史貴 上野
洋子 坂入
佳嗣 松浦
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to PCT/JP2018/024937 priority Critical patent/WO2020003536A1/ja
Publication of WO2020003536A1 publication Critical patent/WO2020003536A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • C08K3/105Compounds containing metals of Groups 1 to 3 or of Groups 11 to 13 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • C08K3/11Compounds containing metals of Groups 4 to 10 or of Groups 14 to 16 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers

Definitions

  • the present invention relates to a sheet for liquid phase sintering, a sintered body, a joined body, and a method for producing the joined body.
  • a solder powder is dispersed as a filler in a thermosetting resin such as an epoxy resin to form a paste, which is used as a conductive adhesive.
  • a paste-like conductive adhesive is applied to a die pad of a supporting member using a dispenser, a printing machine, a stamping machine, or the like, and then the semiconductor element is die-bonded, and the conductive adhesive is heated and cured.
  • Equipment Further, as a paste-like solder, a solder having at least one of a Sn ball and an In ball and a metal ball having a melting point higher than that of the Sn or In is disclosed (for example, see Patent Document 2).
  • the conductive adhesive has been required to have low-temperature bonding properties and high-temperature connection reliability in order to operate semiconductor devices at high temperatures.
  • An adhesive composition has been proposed in which silver particles having a size of not more than a microparticle subjected to a special surface treatment are used to sinter silver particles by heating at 100 ° C. to 400 ° C. (for example, Patent Document 3 and See Patent Document 4.).
  • Patent Document 3 and Patent Document 4 In the adhesive composition proposed in Patent Literature 3 and Patent Literature 4 in which silver particles are sintered with each other, it is considered that the silver particles form a metal bond, and thus the connection reliability at high temperatures is excellent.
  • a transitional liquid phase sintering type metal adhesive is being developed (for example, see Patent Document 5, Non-Patent Document 1 and Non-Patent Document 2).
  • a transitional liquid phase sintering type metal adhesive a combination of metal particles (for example, copper and tin) that generates a liquid phase at a bonding interface is used as a metal component.
  • connection reliability at high temperature is improved by joining copper and copper-tin alloy. It is considered that there is.
  • the conductive adhesive may be in the form of a sheet in addition to the paste, and examples thereof include a solder sheet formed by rolling a solder material containing particles such as Cu as metal particles and Sn particles as solder particles. . (See, for example, Patent Document 6).
  • a paste-like transitional liquid phase sintering type metal adhesive (hereinafter, the paste-like transitional liquid phase sintering type metal adhesive is sometimes referred to as a TLPS (Transient Liquid Phase Sintering) paste) is a solvent. It is included. According to the study of the present inventors, in the case of die bonding mounting using a TLPS paste, it is necessary to perform temporary drying after mounting to reduce the residual solvent amount in the TLPS paste to a certain level or less. If the chip size of the semiconductor element is about 2 mm square, temporary drying can be used, but if the chip size is 5 mm square or more, the solvent remains in the TLPS paste in temporary drying and voids are generated during sintering. Sometimes.
  • TLPS Transient Liquid Phase Sintering
  • TLPS sheets containing a smaller amount of solvent than TLPS paste By using the TLPS sheet, the step of temporary drying can be omitted.
  • the sheet-shaped conductive adhesive generally flows in a state of being wound up in a roll shape, it is desirable that the TLPS sheet also has such flexibility that it can be wound up in a roll shape. .
  • One aspect of the present invention has been made in view of the above-described conventional circumstances, and has a liquid-phase sintering sheet having excellent flexibility and capable of forming a sintered body by a transitional liquid-phase sintering method. It is an object of the present invention to provide a sintered body, a joined body, and a method for manufacturing a joined body using a binding sheet.
  • ⁇ 1> including metal particles and a resin capable of transitional liquid phase sintering
  • a liquid phase sintering sheet having a mass reduction rate of 1% by mass or more when the temperature is raised from 25 ° C. to 260 ° C. at a temperature rising rate of 10 ° C./min.
  • ⁇ 3> The liquid phase sintering sheet according to ⁇ 2>, wherein the first metal particles include Cu.
  • ⁇ 4> The liquid phase sintering sheet according to ⁇ 2> or ⁇ 3>, wherein the second metal particles include Sn.
  • ⁇ 5> The sheet for liquid phase sintering according to any one of ⁇ 1> to ⁇ 4>, wherein the resin includes at least one selected from the group consisting of a thermoplastic resin and a thermosetting resin.
  • ⁇ 6> A sintered body obtained by sintering the sheet for liquid phase sintering according to any one of ⁇ 1> to ⁇ 5>.
  • ⁇ 7> The sintered body according to ⁇ 6>, wherein the elastic modulus at 25 ° C.
  • a liquid-phase sintering sheet having excellent flexibility and capable of forming a sintered body by a transitional liquid-phase sintering method, a sintered body using the liquid-phase sintering sheet, and joining A method for producing a body and a joined body can be provided.
  • the term "step” includes, in addition to a step independent of other steps, even if the purpose of the step is achieved even if it cannot be clearly distinguished from other steps, the step is also included.
  • the numerical ranges indicated by using “to” include the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the upper limit or lower limit described in one numerical range may be replaced with the upper limit or lower limit of the numerical range described in other stages.
  • the upper limit or the lower limit of the numerical range may be replaced with the value shown in the embodiment.
  • each component may include a plurality of corresponding substances.
  • the content or content of each component is the total content or content of the plurality of substances present in the composition. Means quantity.
  • a plurality of types of particles corresponding to each component may be included.
  • the particle size of each component means a value of a mixture of the plurality of types of particles present in the composition unless otherwise specified.
  • the term “layer” or “film” means that when a region where the layer or film exists is observed, in addition to the case where the layer or film is formed over the entire region, only a part of the region is used. The case where it is formed is also included.
  • solid content refers to the remaining components excluding the solvent in the composition.
  • the sheet for liquid phase sintering of the present disclosure includes metal particles and a resin capable of transitional liquid phase sintering, and has a mass when the temperature is raised from 25 ° C. to 260 ° C. at a rate of 10 ° C./min.
  • the reduction rate is 1% by mass or more.
  • the sheet for liquid phase sintering of the present disclosure is useful as a novel conductive bonding material for die bonding. Since the sheet for liquid phase sintering of the present disclosure having a mass reduction rate of 1% by mass or more is excellent in flexibility, when the sheet for liquid phase sintering is wound around a core tube, the sheet is less likely to crack. . Therefore, for example, storage, shipping, and use in a state wound by a general 6-inch core tube become possible.
  • the mass reduction rate needs to be 1% by mass or more, preferably 1.5% by mass or more, and more preferably 2% by mass or more. From the viewpoint of improving the handleability by suppressing the occurrence of stickiness and the like, the mass reduction rate is preferably 4% by mass or less. In addition, from the viewpoint of suppressing the generation of voids during sintering and suppressing a decrease in reliability and performance, the mass reduction rate is more preferably 3% by mass or less. Further, from the viewpoint of the shear strength at the interface between the bonded element and the liquid-phase sintering sheet, the mass reduction rate is preferably 2.1% by mass to 2.5% by mass.
  • mass reduction rate refers to a value measured by the following method.
  • the measurement sample is heated from 25 ° C. to 260 ° C. at a rate of 10 ° C./min using a thermogravimeter.
  • the difference between the mass of the measurement sample before heating and the mass of the measurement sample after heating is divided by the mass of the measurement sample before heating, and a value obtained by multiplying by 100 is defined as a mass reduction rate.
  • the liquid phase sintering sheet contains metal particles and a resin capable of transitional liquid phase sintering, and may contain other components such as a rosin, an activator, and a thixotropic agent as needed.
  • a resin capable of transitional liquid phase sintering may contain other components such as a rosin, an activator, and a thixotropic agent as needed.
  • the liquid phase sintering sheet includes transitionally liquid phase sinterable metal particles.
  • transitional liquid phase sintering in the present disclosure refers to a phenomenon in which a low-melting-point metal transitions to a liquid-phase by heating at a particle interface and a high-melting-point metal reacts and diffuses into a liquid phase. According to the transitional liquid phase sintering, the melting point of the sintered body can be higher than the heating temperature.
  • the combination of metals capable of transitional liquid phase sintering constituting the metal particles capable of transitional liquid phase sintering is not particularly limited.
  • a combination of Au and In a combination of Cu and Sn , Sn and Ag, a combination of Sn and Co, and a combination of Sn and Ni.
  • a first metal particle having a melting point of 400 ° C. or more and a second metal particle having a melting point of 300 ° C. or less may be combined.
  • the melting point of the first metal particles is 400 ° C to 1500 ° C
  • the melting point of the second metal particles is 25 ° C to 300 ° C
  • the melting point of the first metal particles is 900 ° C to 1100 ° C.
  • the melting point of the second metal particles is from 200 ° C. to 300 ° C. For example, when measuring the melting point of metal particles having a melting point of 1300 ° C.
  • the temperature can be measured under conditions of heating from 25 ° C. to 1300 ° C. at a rate of 10 ° C./min.
  • a metal particle capable of transitional liquid phase sintering as an example of a combination of Cu and Sn as a combination of metals capable of transitional liquid phase sintering, (1) Cu In the case of using the first metal particle containing Sn and the second metal particle containing Sn, (2) in the case of using the metal particle containing Cu and Sn in one metal particle, and (3) one metal particle A case in which metal particles containing Cu and Sn and a first metal particle containing Cu or a second metal particle containing Sn are used therein is exemplified.
  • the mass-based ratio of the first metal particles to the second metal particles is preferably from 1.0 to 10.0, more preferably from 1.0 to 5.0, depending on the particle diameter of the metal particles.
  • Metal particles containing two types of metals in one metal particle can be obtained, for example, by forming a layer containing the other metal on the surface of the metal particle containing one metal by plating, vapor deposition, or the like. .
  • One metal particle is formed by applying a particle containing the other metal to the surface of the metal particle containing one metal in a dry manner using a force mainly composed of an impact force in a high-speed airflow to combine the two.
  • Metal particles containing two types of metals therein can also be obtained. When two types of metals are contained in one metal particle, it is preferable that the two types of metals do not form an alloy.
  • a combination of Cu and Sn is preferred as a combination of metals capable of transitional liquid phase sintering.
  • Sn may be Sn alone or an alloy containing Sn, and is preferably an alloy containing Sn.
  • An example of an alloy containing Sn is a Sn-3.0Ag-0.5Cu alloy.
  • the notation in the alloy indicates that the tin alloy contains the element X by A mass% and the element Y by B mass%.
  • the liquid phase transition temperature of a metal particle refers to a temperature at which a transition of a metal particle interface to a liquid phase occurs, for example, a Sn-3.0Ag-0.5Cu alloy particle, which is a type of tin alloy, and a copper particle.
  • the liquid phase transition temperature when using is about 217 ° C.
  • the liquid phase transition temperature of the metal particles was measured by DSC (Differential scanning calorimetry, differential scanning calorimetry) using a platinum pan at a temperature rising rate of 10 ° C./min under a nitrogen stream of 50 ml / min. It can be measured under the condition of heating from 300C to 300C.
  • the ratio by mass of Sn in the second metal particles is 40% by mass to 98% by mass. Is preferably more than 90% by mass and 98% by mass or less, further preferably from 92% by mass to 98% by mass, and particularly preferably from 95% by mass to 98% by mass.
  • the mass-based ratio of Sn to the entire second metal particles is preferably in the above range.
  • the content of the metal particles is not particularly limited.
  • the ratio by mass of the metal particles to the entire solid content of the sheet for liquid phase sintering is preferably 80% by mass or more, more preferably 85% by mass or more, and is 88% by mass or more. Is more preferable.
  • the ratio based on the mass of the metal particles may be 98% by mass or less. When the mass-based ratio of the metal particles is 98% by mass or less, the printability of the composition is impaired when the liquid phase sintering sheet is manufactured by applying the composition to a support as described below. It tends to be difficult.
  • the average particle size of the metal particles is not particularly limited.
  • the average particle size of the metal particles is preferably from 0.5 ⁇ m to 30 ⁇ m, more preferably from 1 ⁇ m to 20 ⁇ m, even more preferably from 1 ⁇ m to 10 ⁇ m.
  • the average particle diameter of the second metal particles is , Preferably 1 ⁇ m to 10 ⁇ m, more preferably 1 ⁇ m to 5 ⁇ m, even more preferably 1 ⁇ m to 3 ⁇ m.
  • the average particle size of the metal particles refers to a volume average particle size measured by a laser diffraction type particle size distribution analyzer (for example, a Beckman Coulter, Inc., LS 13320 laser scattering diffraction particle size distribution analyzer). Specifically, metal particles are added to 125 g of a solvent (terpineol) in a range of 0.01% by mass to 0.3% by mass to prepare a dispersion. About 100 ml of this dispersion is poured into a cell and measured at 25 ° C. The particle size distribution is measured with the refractive index of the solvent being 1.48.
  • a laser diffraction type particle size distribution analyzer for example, a Beckman Coulter, Inc., LS 13320 laser scattering diffraction particle size distribution analyzer.
  • the liquid phase sintering sheet contains a resin.
  • the resin contained in the sheet for liquid phase sintering is not particularly limited, and conventionally known various resins can be used.
  • the resin preferably contains at least one selected from the group consisting of a thermoplastic resin and a thermosetting resin.
  • the thermoplastic resin include a polyamide resin, a polyamideimide resin, a polyimide resin, a polyurethane resin, and a thermoplastic epoxy resin.
  • the thermosetting resin include an epoxy resin, an oxazine resin, a bismaleimide resin, a phenol resin, an unsaturated polyester resin, and a silicone resin.
  • epoxy resin bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolak type epoxy resin, cresol novolak type epoxy resin, naphthalene type epoxy resin, biphenol type epoxy resin, biphenyl novolak type Epoxy resins, cycloaliphatic epoxy resins, and the like are included.
  • One of the above resins may be used alone, or two or more thereof may be used in combination.
  • a thermoplastic resin is preferable as the resin contained in the composition, from the viewpoint of facilitating the flow of the metal particles without hindering the alloy formation during the sintering process.
  • the elastic modulus of the resin at 25 ° C. is preferably 0.01 GPa to 1.0 GPa, more preferably 0.01 GPa to 0.5 GPa, and more preferably 0.01 GPa to 0 GPa, from the viewpoint of securing connection reliability. More preferably, it is 3 GPa.
  • the elastic modulus at 25 ° C. of the resin refers to a value measured by the method of JIS K 7161-1: 2014.
  • the softening point of the resin is preferably lower than the liquid phase transition temperature of the metal particles. If the softening point of the resin is lower than the liquidus transition temperature, when the liquid phase sintering sheet is heated, melting and alloying of the metal particles occur after the softening of the resin. The formation of a liquid phase at the interface is less likely to be inhibited.
  • the softening point of the resin is It is preferable that the second metal particles have a softening point lower than the melting point of the metal particles, from the viewpoint of making it difficult to inhibit the alloy formation of the metal particles in the process.
  • the softening point of a resin refers to a value measured by a thermomechanical analysis method. Specifically, for example, a resin film having a thickness of 100 ⁇ m is heated at 10 ° C./min using a thermomechanical analyzer (TMA8320, Rigaku Co., Ltd., measurement probe: compression-loading standard type). The temperature at which the resin is compressed by a force of 49 mN and displaced by 80 ⁇ m is defined as the softening point of the resin.
  • the softening point of the resin is preferably at least 5 ° C. lower than the liquid phase transition temperature of the metal particles, more preferably at least 10 ° C. lower, from the viewpoint of flowing without inhibiting alloy formation. More preferably, the temperature is at least 15 ° C. lower. Further, the softening point of the resin is preferably 40 ° C. or higher, more preferably 50 ° C. or higher, and further preferably 60 ° C. or higher, from the viewpoint of maintaining the shape of the liquid phase sintering sheet.
  • the thermal decomposition rate of the resin measured using a thermogravimeter under a nitrogen stream, is preferably 2.0% by mass or less. If the thermal decomposition rate of the resin measured under a nitrogen gas flow using a thermogravimeter is 2.0% by mass or less, the change in the elastic modulus of the sintered body due to the thermal history is easily suppressed. Become.
  • the thermal decomposition rate of the resin is more preferably 1.5% by mass or less, and further preferably 1.0% by mass or less.
  • the thermal decomposition rate of a resin refers to a value measured by the following method.
  • 10 mg of a resin placed in a platinum pan was heated from 25 ° C. to 400 ° C. under a condition of a temperature rising rate of 10 ° C./min under a nitrogen flow of 50 ml / min using a thermogravimeter, The rate of weight loss between 200 ° C and 300 ° C is defined as the thermal decomposition rate.
  • thermoplastic resin As the resin, a thermoplastic resin is preferable as described above, and among them, a thermoplastic resin having a functional group or a structure that easily forms a hydrogen bond with the surface of the metal particle has a dispersibility of the resin in the liquid phase sintering sheet. Preferred from a viewpoint.
  • the functional group that easily forms a hydrogen bond with the surface of the metal particle include an amino group and a carboxy group.
  • the structure that easily forms a hydrogen bond with the surface of the metal particle include an amide bond, an imide bond, and a urethane bond.
  • thermoplastic resin a resin containing at least one selected from the group consisting of an amide bond, an imide bond and a urethane bond is preferable.
  • thermoplastic resin examples include at least one selected from the group consisting of a polyamide resin, a polyamideimide resin, a polyimide resin, and a polyurethane resin.
  • the thermoplastic resin is a polyamide-imide resin.
  • the polyamide-imide resin preferably has a molecular structure showing flexibility.
  • the molecular structure exhibiting flexibility include at least one of a polyalkylene oxide structure and a polysiloxane structure.
  • the polyalkylene oxide structure is not particularly limited.
  • the polyalkylene oxide structure preferably includes, for example, a structure represented by the following general formula (1).
  • R 1 represents an alkylene group
  • m represents an integer of 1 to 100
  • “*” represents a bonding position with an adjacent atom.
  • m indicates a rational number which is an average value.
  • the alkylene group represented by R 1 is preferably an alkylene group having 1 to 10 carbon atoms, and more preferably an alkylene group having 1 to 4 carbon atoms.
  • the alkylene group may be linear, branched, or cyclic.
  • Examples of the alkylene group represented by R 1 include a methylene group, an ethylene group, a propylene group, a butylene group, a hexylene group, an octylene group, and a decylene group.
  • the alkylene group represented by R 1 one kind may be used alone, or two or more kinds of different kinds of alkylene groups may be used in combination.
  • m is preferably from 20 to 60, and more preferably from 30 to 40.
  • the structure represented by the general formula (1) preferably includes a structure represented by the following general formula (1A).
  • m represents an integer of 1 to 100, and “*” represents a bonding position with an adjacent atom.
  • the preferred range of m is the same as in the case of the general formula (1).
  • the proportion of the polyalkylene oxide structure represented by the general formula (1) in all the polyalkylene oxide structures is preferably from 75% by mass to 100% by mass, It is more preferably from 85% by mass to 100% by mass, even more preferably from 90% by mass to 100% by mass.
  • the polyalkylene oxide represented by the general formula (1A) accounts for all polyalkylene oxide structures represented by the general formula (1)
  • the ratio of the structure is preferably from 50% by mass to 100% by mass, more preferably from 75% by mass to 100% by mass, and further preferably from 90% by mass to 100% by mass.
  • the polysiloxane structure is not particularly limited.
  • the polysiloxane structure preferably includes, for example, a structure represented by the following general formula (2).
  • R 2 and R 3 each independently represent a divalent organic group
  • R 4 to R 7 each independently represent an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 18 carbon atoms.
  • n represents an integer of 1 to 50
  • “*” represents a bonding position with an adjacent atom.
  • n indicates a rational number which is an average value. Note that the number of carbon atoms of the alkyl group or the aryl group does not include the number of carbon atoms contained in the substituent.
  • examples of the divalent organic group represented by R 2 and R 3 include a divalent saturated hydrocarbon group, a divalent aliphatic ether group, and a divalent aliphatic ester group.
  • the divalent saturated hydrocarbon group may be linear, branched, or cyclic. Further, the divalent saturated hydrocarbon group may have a substituent such as a halogen atom such as a fluorine atom and a chlorine atom.
  • Examples of the divalent saturated hydrocarbon group represented by R 2 and R 3 include a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, a cyclopropylene group, a cyclobutylene group, and a cyclopentylene group.
  • the divalent saturated hydrocarbon groups represented by R 2 and R 3 may be used alone or in combination of two or more.
  • R 2 and R 3 are preferably an ethylene group.
  • the alkyl group having 1 to 20 carbon atoms represented by R 4 to R 7 includes a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a t-butyl group, Examples include an n-octyl group, a 2-ethylhexyl group, and an n-dodecyl group. Among these, a methyl group is preferred.
  • the aryl group having 6 to 18 carbon atoms represented by R 4 to R 7 may be unsubstituted or substituted with a substituent.
  • the substituent include a halogen atom, an alkoxy group, and a hydroxy group.
  • the aryl group having 6 to 18 carbon atoms include a phenyl group, a naphthyl group, and a benzyl group. Among these, a phenyl group is preferred.
  • the alkyl group having 1 to 20 carbon atoms or the aryl group having 6 to 18 carbon atoms represented by R 4 to R 7 one type can be used alone, or two or more types can be used in combination.
  • n is preferably 5 to 25, more preferably 10 to 25.
  • the polyamideimide resin preferably has a structural unit derived from diimide carboxylic acid or a derivative thereof and a structural unit derived from aromatic diisocyanate or aromatic diamine.
  • the structural unit derived from diimide carboxylic acid or a derivative thereof is represented by, for example, the following general formula (3).
  • R 8 represents a divalent group, and “*” represents a bonding position with an adjacent atom.
  • the divalent group represented by R 8 is not particularly limited.
  • the divalent group represented by R 8 may have a structure other than two amino groups contained in the diamine.
  • the diamine is represented by H 2 N—R—NH 2 , the remaining structure excluding the two amino groups refers to the portion represented by “—R—”.
  • Examples of the diamine include an aliphatic diamine, an alicyclic diamine, a siloxane-modified diamine, and an aromatic diamine. Examples of the diamine will be described later.
  • the polyamide-imide resin has a structural unit derived from a diimide carboxylic acid or a derivative thereof and a structural unit derived from an aromatic diisocyanate or an aromatic diamine
  • examples of the structural unit derived from a diimide carboxylic acid or a derivative thereof include the following.
  • a structural unit represented by the general formula (4) a structural unit represented by the general formula (4).
  • R 9 represents a divalent group containing a polyalkylene oxide structure
  • “*” represents a bonding position with an adjacent atom.
  • the polyalkylene oxide structure contained in the divalent group represented by R 9 is not particularly limited.
  • Examples of the polyalkylene oxide structure include a structure represented by the general formula (1) described above.
  • Specific examples of R 1 represented by the general formula (1) and preferable ranges of m and the like are as described above, and the structure represented by the general formula (1) is the same as the structure represented by the general formula (1A). As described above, it is preferable to include them.
  • the polyamide-imide resin has a structural unit derived from a diimide carboxylic acid or a derivative thereof and a structural unit derived from an aromatic diisocyanate or an aromatic diamine
  • examples of the structural unit derived from a diimide carboxylic acid or a derivative thereof include the following.
  • a structural unit represented by the general formula (5) a structural unit represented by the general formula (5).
  • R 10 represents a divalent group containing a polysiloxane structure
  • “*” represents a bonding position with an adjacent atom.
  • the polysiloxane structure contained in the divalent group represented by R 10.
  • examples of the polysiloxane structure include a structure represented by the general formula (2) described above.
  • Specific examples of R 2 to R 7 represented by the general formula (2), preferred ranges of n, and the like are as described above.
  • the general formula (4) Is preferably at least 30 mol%, more preferably at least 33 mol%, even more preferably at least 35 mol%.
  • the ratio of the structural unit represented by the general formula (4) to the structural units derived from diimide carboxylic acid or a derivative thereof may be 60 mol% or less.
  • the general formula (5) Is preferably at least 25 mol%, more preferably at least 35 mol%, even more preferably at least 40 mol%.
  • the ratio of the structural unit represented by the general formula (5) to the structural unit derived from diimide carboxylic acid or a derivative thereof may be 60 mol% or less.
  • the polyamide-imide resin has a structural unit derived from a diimide carboxylic acid or a derivative thereof and a structural unit derived from an aromatic diisocyanate or an aromatic diamine, the general formula (4) ), And the total proportion of the structural units represented by the general formula (5) is preferably at least 60 mol%, more preferably at least 70 mol%, and preferably at least 80 mol%. Is more preferable, and it is particularly preferable that it is 85 mol% or more.
  • the ratio of the total of the structural units represented by the general formula (4) and the structural units represented by the general formula (5) to the structural units derived from diimide carboxylic acid or a derivative thereof is 100 mol% or less. Is also good.
  • the method for producing a polyamideimide resin having a structural unit derived from a diimide carboxylic acid or a derivative thereof and a structural unit derived from an aromatic diisocyanate or an aromatic diamine is not particularly limited, and examples thereof include an isocyanate method and an acid chloride method.
  • an isocyanate method a polyamideimide resin is synthesized using a diimidecarboxylic acid and an aromatic diisocyanate.
  • the acid chloride method a polyamideimide resin is synthesized using a diimidecarboxylic acid chloride and an aromatic diamine.
  • the isocyanate method of synthesizing from a diimide carboxylic acid and an aromatic diisocyanate is more preferable because the structure of the polyamideimide resin can be easily optimized.
  • the diimide carboxylic acid used in the isocyanate method is synthesized using, for example, trimellitic anhydride and a diamine.
  • a siloxane-modified diamine, an alicyclic diamine, an aliphatic diamine and the like are preferable.
  • siloxane-modified diamine examples include those having the following structural formula.
  • R 2 and R 3 each independently represent a divalent organic group
  • R 4 to R 7 each independently represent an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 18 carbon atoms.
  • n represents an integer of 1 to 50. Specific examples of R 2 to R 7 , preferred ranges of n, and the like are the same as in the case of the general formula (2).
  • siloxane-modified diamines include KF-8010, KF-8012, X-22-161A, X-22-161B, X-22-9409 (all Shin-Etsu Chemical Co., Ltd.) and the like.
  • Examples of the alicyclic diamine include 2,2-bis [4- (4-aminocyclohexyloxy) cyclohexyl] propane, bis [4- (3-aminocyclohexyloxy) cyclohexyl] sulfone, and bis [4- (4-aminocyclohexyl) Oxy) cyclohexyl] sulfone, 2,2-bis [4- (4-aminocyclohexyloxy) cyclohexyl] hexafluoropropane, bis [4- (4-aminocyclohexyloxy) cyclohexyl] methane, 4,4′-bis (4 -Aminocyclohexyloxy) dicyclohexyl, bis [4- (4-aminocyclohexyloxy) cyclohexyl] ether, bis [4- (4-aminocyclohexyloxy) cyclohexyl] ketone
  • oxypropylene diamine is preferable.
  • Commercially available oxypropylene diamines include Jeffamine D-230 (Mitsui Chemical Fine Co., Ltd., amine equivalent: 115, trade name), Jeffamine D-400 (Mitsui Chemical Fine Co., amine equivalent: 200, trade name), Examples include Jeffamine D-2000 (Mitsui Chemical Fine Co., Ltd., amine equivalent: 1,000, trade name), Jeffamine D-4000 (Mitsui Chemical Fine Co., Ltd., amine equivalent: 2,000, trade name) and the like.
  • a polyamideimide resin synthesized using the above diamine in an amount of 60 mol% to 100 mol% based on the total amount of the diamine is preferable.
  • Siloxane-modified polyamideimide resins are more preferred.
  • an aromatic diamine can be used in combination, if necessary.
  • the aromatic diamine include p-phenylenediamine, m-phenylenediamine o-phenylenediamine, 2,4-diaminotoluene, 2,5-diaminotoluene, 2,4-diaminoxylene, diaminodulene, 5-diaminonaphthalene, 2,6-diaminonaphthalene, benzidine, 4,4′-diaminoterphenyl, 4,4 ′ ′′-diaminoquarterphenyl, 4,4′-diaminodiphenylmethane, 1,2-bis (anilino) Ethane, 4,4'-diaminodiphenyl ether, diaminodiphenyl sulfone, 2,2-bis (p-aminophenyl) propane, 2,2-bis (p-aminophenyl) hexafluoropropane
  • aromatic diisocyanate examples include diisocyanates obtained by reacting an aromatic diamine with phosgene and the like.
  • aromatic diisocyanate examples include aromatic diisocyanates such as tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, naphthalene diisocyanate, diphenyl ether diisocyanate, and phenylene-1,3-diisocyanate.
  • aromatic diisocyanates such as tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, naphthalene diisocyanate, diphenyl ether diisocyanate, and phenylene-1,3-diisocyanate.
  • 4,4'-diphenylmethane diisocyanate, diphenyl ether diisocyanate and the like are preferable.
  • the polymerization reaction of the polyamideimide resin by the isocyanate method is usually performed by N-methyl-2-pyrrolidone (NMP), N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAC), dimethylsulfoxide (DMSO),
  • NMP N-methyl-2-pyrrolidone
  • DMF N, N-dimethylformamide
  • DMAC N-dimethylacetamide
  • DMSO dimethylsulfoxide
  • the reaction is carried out in a solvent such as dimethyl sulfate, sulfolane, ⁇ -butyrolactone, cresol, halogenated phenol, cyclohexane and dioxane.
  • the reaction temperature is preferably from 0 ° C to 200 ° C, more preferably from 100 ° C to 180 ° C, even more preferably from 130 ° C to 160 ° C.
  • the molar ratio (diimidecarboxylic acid / aromatic diisocyanate) of diimidecarboxylic acid and aromatic diisocyanate in the polymerization reaction of the polyamideimide resin by the isocyanate method is preferably 1.0 to 1.5. It is more preferably from 0.05 to 1.3, and still more preferably from 1.1 to 1.2.
  • the sheet for liquid phase sintering may contain other components.
  • Other components include rosin, activators, thixotropic agents and the like.
  • the rosin include dehydroabietic acid, dihydroabietic acid, neoabietic acid, dihydropimaric acid, pimaric acid, isopimaric acid, tetrahydroabietic acid, and parastolic acid.
  • the activator include aminodecanoic acid, pentane-1,5-dicarboxylic acid, triethanolamine, diphenylacetic acid, sebacic acid, phthalic acid, benzoic acid, dibromosalicylic acid, anisic acid, iodosalicylic acid, picolinic acid and the like.
  • thixotropic agent examples include 12-hydroxystearic acid, 12-hydroxystearic acid triglyceride, ethylenebisstearic acid amide, hexamethylenebisoleic acid amide, N, N'-distearyladipic acid amide and the like.
  • the proportion of the resin in the solid content excluding the metal particles is preferably 30% by mass to 60% by mass, more preferably 35% by mass to 55% by mass, and more preferably 40% by mass to 55% by mass. More preferably, it is from 50% by mass to 50% by mass.
  • the proportion of the resin in the solid content excluding the metal particles is 30% by mass or more, when the liquid phase sintering sheet is manufactured by applying the composition to a support as described below, the composition is It becomes easy to be in a paste state. If the proportion of the resin in the solid content excluding the metal particles is 60% by mass or less, the sintering of the metal particles tends to be hardly hindered.
  • the method for producing the liquid phase sintering sheet is not particularly limited.
  • the composition is prepared by mixing the transitionally liquid phase sinterable metal particles, resin, and other components used as necessary to form a liquid phase sintering sheet, and further subjecting them to stirring, melting, dispersion, and the like. Is prepared. Next, this composition is applied to a support and dried if necessary, whereby a sheet for liquid phase sintering can be obtained. A solvent may be added to the composition as needed.
  • the liquid phase sintering sheet may be wound into a roll. Further, the liquid phase sintering sheet may be formed in a sheet shape.
  • the liquid phase sintering sheet may include a support or may be in a state where the support is removed.
  • the solvent is preferably an organic solvent from the viewpoint of dissolving the resin, and is preferably 300 ° C. or lower to suppress the generation of voids during sintering. More preferably, the solvent has a boiling point.
  • solvents examples include terpineol, stearyl alcohol, tripropylene glycol methyl ether, diethylene glycol, diethylene glycol monoethyl ether (ethoxyethoxyethanol), diethylene glycol monohexyl ether, diethylene glycol monomethyl ether, dipropylene glycol-n-propyl ether, Alcohols such as dipropylene glycol-n-butyl ether, tripropylene glycol-n-butyl ether, 1,3-butanediol, 1,4-butanediol, and propylene glycol phenyl ether; tributyl citrate, 4-methyl-1,3 -Dioxolan-2-one, ⁇ -butyrolactone, sulfolane, 2- (2-butoxyethoxy) ethanol, diethylene Esters such as alcohol monoethyl ether acetate, dipropylene glycol methyl ether acetate, diethylene glycol monobutyl ether,
  • the content of the solvent is not particularly limited, and the proportion based on the weight of the solvent in the entire composition is preferably 0.1% by mass to 10% by mass, It is more preferably from 2% by mass to 7% by mass, and still more preferably from 3% by mass to 5% by mass.
  • the apparatus for mixing, stirring, dispersing, etc. used in preparing the composition is not particularly limited, and may be a three-roll mill, a planetary mixer, a planetary mixer, a rotation-revolution-type stirring apparatus, a raikai. , A twin-screw kneader, a thin-layer shearing / dispersing machine or the like can be used. Further, these devices may be used in appropriate combination. During the above treatment, heating may be performed as necessary. After the treatment, the maximum particle size of the composition may be adjusted by filtration. Filtration can be performed using a filtration device. Examples of the filter for filtration include a metal mesh, a metal filter, and a nylon mesh.
  • the support preferably contains a polyester resin from the viewpoint of heat resistance.
  • the polyester resin include a polyethylene terephthalate (PET) resin, a polyethylene naphthalate resin, a polybutylene terephthalate resin, and a copolymer and a modified resin thereof.
  • PET polyethylene terephthalate
  • the thickness of the support is not particularly limited, and is preferably 5 ⁇ m to 100 ⁇ m, more preferably 10 ⁇ m to 70 ⁇ m. When the thickness is 5 ⁇ m to 100 ⁇ m, the handleability tends to be excellent.
  • the method of applying the composition to the support is not particularly limited, and known application methods such as a squeegee method, a roll coating method, a bar coating method, a kiss coating method, a masking method, and a screen printing method can be used. .
  • the sintered body of the present disclosure is obtained by sintering the liquid phase sintering sheet of the present disclosure.
  • the method for sintering the liquid phase sintering sheet of the present disclosure is not particularly limited.
  • the electric resistivity of the sintered body is preferably 1 ⁇ 10 ⁇ 4 ⁇ ⁇ cm (1 ⁇ 10 ⁇ 6 ⁇ ⁇ m) or less.
  • the elastic modulus of the sintered body at 25 ° C. is preferably in the range of 1 GPa to 5 GPa, more preferably in the range of 1 GPa to 4.5 GPa, and even more preferably in the range of 1 GPa to 3.5 GPa.
  • the elastic modulus at 25 ° C. of the sintered body refers to a value measured using a tensile tester. A 1 kN load cell is used for the measurement, and the pulling speed is 50 mm / min.
  • the joined body of the present disclosure is one in which the element and the support member are joined via the sintered body of the present disclosure.
  • the support member is not particularly limited, and a material in which the material of the portion where the elements are joined is metal is used. Examples of the metal which is the material of the portion where the elements are joined include gold, silver, copper, nickel and the like. Further, among the above, a plurality of metals may be patterned on the base material to form a support member. Specific examples of the support member include a lead frame, a wired tape carrier, a rigid wiring board, a flexible wiring board, a wired glass substrate, a wired silicon wafer, and a wafer level CSP (Wafer Level Chip Size Package).
  • the elements are not particularly limited, and include active elements such as semiconductor chips, transistors, diodes, light emitting diodes, and thyristors, and passive elements such as capacitors, resistors, resistor arrays, coils, and switches.
  • Examples of the joined body include a semiconductor device and an electronic component. Specific examples of the semiconductor device include a diode, a rectifier, a thyristor, a MOS (Metal Oxide Semiconductor) gate driver, a power switch, a power MOSFET (Metal Oxide Semiconductor Field-Effect Transistor), an IGBT (Insulated Transistor transistor), and an IGBT (Insulated Transistor transistor). Examples include a power module including a fast recovery diode, a transmitter, an amplifier, and an LED module.
  • the method for manufacturing a joined body according to the present disclosure includes disposing the liquid phase sintering sheet according to the present disclosure on at least one of a position where the element is joined on the support member and a position where the element is joined with the support member on the element. Forming a layer, contacting the support member and the element via the sheet layer, and heating and sintering the sheet layer.
  • the sheet layer is formed by arranging the liquid phase sintering sheet on at least one of the portion of the support member where the element is joined and the portion of the element where the element is joined with the support member.
  • the sheet layer is formed, for example, by arranging a liquid-phase sintering sheet cut to an appropriate size at at least one of a place where the element is joined to the support member and a place where the element is joined to the support member in the element. May be.
  • the sintered body is formed by heating the sheet layer in a state where the support member and the element are in contact with each other via the sheet layer.
  • the sintering of the sheet layer may be performed by a heat treatment or a heat and pressure treatment.
  • a heat treatment hot plate, hot air dryer, hot air heating furnace, nitrogen dryer, infrared dryer, infrared heating furnace, far infrared heating furnace, microwave heating device, laser heating device, electromagnetic heating device, heater heating An apparatus, a steam heating furnace, or the like can be used.
  • a hot plate press device or the like may be used, or the above-described heating treatment may be performed while applying pressure.
  • the heating temperature for sintering the sheet layer depends on the type of metal particles, but is preferably 180 ° C. or higher, more preferably 190 ° C. or higher, and further preferably 220 ° C. or higher.
  • the upper limit of the heating temperature is not particularly limited, but is, for example, 300 ° C. or less.
  • the heating time for sintering the sheet layer depends on the type of the metal particles, but is preferably 5 seconds to 10 hours, more preferably 30 seconds to 8 minutes, and more preferably 3 minutes to 6 minutes. Is more preferred.
  • the sintering of the sheet layer be performed in an atmosphere having a low oxygen concentration.
  • the low oxygen concentration atmosphere refers to a state where the oxygen concentration is 500 ppm or less, and preferably 200 ppm or less.
  • TLPS sheet 20 g of the prepared composition was poured on a release PET film having a size of 100 mm ⁇ 10 mm and masked at a height of 0.1 mm. Using a plastic squeegee, the poured composition was applied so that the surface became smooth. The coated PET film is placed in a 100 ° C. nitrogen oven at a nitrogen flow rate of 30 L / min for 1 minute (Example 1), 2 minutes (Example 2), 3 minutes (Example 3), and 60 minutes ( Comparative Example 1) Drying was performed to obtain a TLPS sheet. When used for mounting on a chip, the produced sheet was used after being adjusted to an arbitrary size.
  • a resin-free composition was prepared in the same manner except that the polyamide-imide resin was not added, a resin-free composition was used in place of the composition, and the drying time was changed to 4 minutes in the same manner as in Example 1.
  • a TLPS sheet of Comparative Example 2 was produced.
  • the mass reduction rate of the TLPS sheet was measured using a thermogravimeter (Thermo plus TG8120 (product name), Rigaku Corporation). Measurement conditions were as follows: a room temperature (25 ° C.) to a sintering temperature of 260 ° C. in a nitrogen atmosphere of 30 L / min at a heating rate of 10 ° C./min. Table 1 shows the results.
  • the TLPS sheet produced as described above was arranged on a copper lead frame using pointed tweezers to form a sheet layer.
  • An Si chip having a size of 5 mm ⁇ 5 mm and a gold-plated surface was placed on the sheet layer, and lightly pressed with tweezers to obtain a sample of the sheet layer before sintering.
  • the sample was set in a furnace of a reflow simulator apparatus (cores Co., Ltd., core9046a), and heated at a temperature of 250 ° C. or more at an oxygen concentration of 500 ppm or less for 1 minute or more to obtain a sintered sample of the sheet layer.
  • the cross section was finished smoothly with a polishing apparatus in which a buff polishing cloth impregnated with a buff abrasive was set.
  • the cross section of the sintered body of this SEM sample was observed with an SEM device (TM-1000, Hitachi, Ltd.) at an imprint voltage of 15 kV. Based on the observation results, the metal color of the cross section and the black color of the void were binarized, and the area ratio (void rate) occupied by the voids was calculated by using table analysis software. Table 1 shows the results.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Mechanical Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

液相焼結用シートは、遷移的液相焼結可能な金属粒子と樹脂とを含み、昇温速度が10℃/分の条件で25℃から260℃まで昇温したときの質量減少率が、1質量%以上である。

Description

液相焼結用シート、焼結体、接合体及び接合体の製造方法
 本発明は、液相焼結用シート、焼結体、接合体及び接合体の製造方法に関する。
 半導体装置を製造する際、半導体素子と支持部材とを接着させる方法としては、エポキシ樹脂等の熱硬化性樹脂にはんだ粉を充てん剤として分散させてペースト状とし、これを導電性接着剤として使用する方法が挙げられる(例えば、特許文献1参照。)。
 この方法では、ディスペンサー、印刷機、スタンピングマシン等を用いて、ペースト状の導電性接着剤を支持部材のダイパッドに塗布した後、半導体素子をダイボンディングし、導電性接着剤を加熱硬化して半導体装置とする。
 また、ペースト状のはんだとして、少なくともSnボール又はInボールのどちらかと、該Sn又はInより融点の高い金属ボールを有するはんだが開示されている(例えば、特許文献2参照。)。
 近年、半導体素子の高速化、高集積化等が進むに伴い、半導体装置を高温で作動させるために、導電性接着剤に低温での接合性及び高温での接続信頼性が求められている。
 特殊な表面処理を施したマイクロサイズ以下の銀粒子を用いることで、100℃~400℃での加熱により銀粒子同士が焼結する接着剤組成物が提案されている(例えば、特許文献3及び特許文献4参照。)。特許文献3及び特許文献4で提案されている銀粒子同士が焼結する接着剤組成物では、銀粒子が金属結合を形成するため、高温下での接続信頼性が優れるものと考えられる。
 一方で、銀以外の金属粒子を用いた例として、遷移的液相焼結型金属接着剤の開発が進められている(例えば、特許文献5、非特許文献1及び非特許文献2参照。)。遷移的液相焼結型金属接着剤では、金属成分として接合界面に液相を生じる金属粒子の組み合わせ(例えば銅と錫)が用いられる。
 特許文献5、非特許文献1及び非特許文献2に記載の遷移的液相焼結型金属接着剤では、銅及び銅錫合金が接合することにより、高温下での接続信頼性が向上しているものと考えられる。
 導電性接着剤にはペースト状の他にシート状のものもあり、例として金属粒子としてCu等の粒子と、はんだ粒子としてSnの粒子を含むはんだ材料を圧延して形成したはんだシートが挙げられる。(例えば、特許文献6参照。)。
特表2000-517092号公報 特開2002-254194号公報 特許第4353380号公報 特開2015-224263号公報 特表2015-530705号公報 特開2002-305213号公報
菅沼克昭 監修、「次世代パワー半導体実装の要素技術と信頼性」、シーエムシー出版、2016年5月31日、p.29-30 朗 豊群、他3名、第26回エレクトロニクス実装学会春季講演大会講演論文集、一般社団法人エレクトロニクス実装学会、2014年7月17日、p.295-296
 ペースト状の遷移的液相焼結型金属接着剤(以下、ペースト状の遷移的液相焼結型金属接着剤を、TLPS(Transient Liquid Phase Sintering)ペーストと称することがある。)には、溶剤が含まれている。本発明者等の検討によると、TLPSペーストを用いたダイボンディング実装の際には、実装後に仮乾燥を行ない、TLPSペースト中の残溶剤量を一定以下まで減らす必要がある。
 半導体素子のチップサイズが2mm角程度であれば、仮乾燥で対応可能であるが、5mm角以上の大きなチップサイズになると、仮乾燥ではTLPSペースト内部に溶剤が残り、焼結時にボイドが発生することがある。ボイドは接合部の強度を低下させることに加え、熱伝導率の低下等の性能面でも悪影響を与える傾向がある。
 そこで、TLPSペーストに比較して含有される溶剤量の少ないTLPSシートに注目が集まっている。TLPSシートを用いることで仮乾燥の工程を省略することが可能になる。しかしながら、シート状の導電性接着剤は一般にロール状に巻き取られた状態で流通することから、TLPSシートについても、ロール状に巻き取ることのできる程度に柔軟性を有していることが望ましい。
 本発明の一態様は、上記従来の事情に鑑みてなされたものであり、遷移的液相焼結法による焼結体を形成可能な柔軟性に優れる液相焼結用シート並びにこの液相焼結用シートを用いた焼結体、接合体及び接合体の製造方法を提供することを目的とする。
 前記課題を達成するための具体的手段は以下の通りである。
  <1> 遷移的液相焼結可能な金属粒子と樹脂とを含み、
 昇温速度が10℃/分の条件で25℃から260℃まで昇温したときの質量減少率が、1質量%以上である液相焼結用シート。
  <2> 前記金属粒子が、融点が400℃以上の第1の金属粒子と、融点が300℃以下で平均粒子径が1μm~10μmの第2の金属粒子と、を含む<1>に記載の液相焼結用シート。
  <3> 前記第1の金属粒子が、Cuを含む<2>に記載の液相焼結用シート。
  <4> 前記第2の金属粒子が、Snを含む<2>又は<3>に記載の液相焼結用シート。
  <5> 前記樹脂が、熱可塑性樹脂及び熱硬化性樹脂からなる群より選択される少なくとも1種を含む<1>~<4>のいずれか1項に記載の液相焼結用シート。
  <6> <1>~<5>のいずれか1項に記載の液相焼結用シートを焼結してなる焼結体。
  <7> 25℃における弾性率が、1GPa~5GPaの範囲にある<6>に記載の焼結体。
  <8> 素子と支持部材とが、<6>又は<7>に記載の焼結体を介して接合された接合体。
  <9> 支持部材における素子の接合される箇所及び前記素子における前記支持部材と接合される箇所の少なくとも一方に、<1>~<5>のいずれか1項に記載の液相焼結用シートを配置してシート層を形成する工程と、前記シート層を介して、前記支持部材と前記素子とを接触させる工程と、前記シート層を加熱して焼結する工程と、を有する接合体の製造方法。
 本発明の一態様によれば、遷移的液相焼結法による焼結体を形成可能な柔軟性に優れる液相焼結用シート並びにこの液相焼結用シートを用いた焼結体、接合体及び接合体の製造方法を提供することができる。
 以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
 本開示において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
 本開示において各成分に該当する粒子は複数種含んでいてもよい。組成物中に各成分に該当する粒子が複数種存在する場合、各成分の粒子径は、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
 本開示において「層」又は「膜」との語には、当該層又は膜が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
 本開示において「固形分」とは、組成物中の溶剤を除いた残りの成分をいう。
<液相焼結用シート>
 本開示の液相焼結用シートは、遷移的液相焼結可能な金属粒子と樹脂とを含み、昇温速度が10℃/分の条件で25℃から260℃まで昇温したときの質量減少率が、1質量%以上のものである。本開示の液相焼結用シートは、新規なダイボンディング用導電性接合材として有用である。
 質量減少率が1質量%以上である本開示の液相焼結用シートは柔軟性に優れるため、液相焼結用シートが巻き芯管に巻き取られた際に、シートにヒビが生じにくい。そのため、例えば、一般的な6インチ巻き芯管で巻き取られた状態での保存、出荷及び使用が可能となる。
 質量減少率は、1質量%以上であることを要し、1.5質量%以上であることが好ましく、2質量%以上であることがより好ましい。
ベタ付きの発生等を抑制することによる取り扱い性の向上の観点から、質量減少率は、4質量%以下であることが好ましい。また、焼結時におけるボイドの発生を抑制し、信頼性及び性能の低下を抑制する観点から、質量減少率は、3質量%以下であることがより好ましい。また、接合後の素子と液相焼結用シートとの界面におけるシェア強度の観点から、質量減少率は2.1質量%~2.5質量%であることが好ましい。
 本開示において「質量減少率」は、下記方法により測定された値をいう。
 熱重量測定装置を使用して、測定試料を25℃から260℃まで昇温速度10℃/分の条件で昇温する。加熱前の測定試料の質量と加熱後の測定試料の質量との差分を加熱前の測定試料の質量で除して100を掛けて求められた値を、質量減少率とする。
 液相焼結用シートは、遷移的液相焼結可能な金属粒子と樹脂とを含み、必要に応じてロジン、活性剤、チキソ剤等のその他の成分を含んでもよい。
 以下、液相焼結用シートに含まれる成分について説明する。
(遷移的液相焼結可能な金属粒子)
 液相焼結用シートは、遷移的液相焼結可能な金属粒子を含む。
 本開示における「遷移的液相焼結」とは、低融点金属の粒子界面における加熱による液相への転移と、高融点金属の液相への反応拡散により進行する現象をいう。遷移的液相焼結によれば、焼結体の融点が加熱温度を上回ることができる。
 遷移的液相焼結が可能な金属粒子を構成する遷移的液相焼結が可能な金属の組み合わせは特に限定されるものではなく、例えば、AuとInとの組み合わせ、CuとSnとの組み合わせ、SnとAgとの組み合わせ、SnとCoとの組み合わせ及びSnとNiとの組み合わせが挙げられる。
 遷移的液相焼結が可能な金属粒子としては、融点が400℃以上の第1の金属粒子と、融点が300℃以下の第2の金属粒子とを組み合わせてもよい。第1の金属粒子の融点が400℃~1500℃であり、第2の金属粒子の融点が25℃~300℃であることが好ましく、第1の金属粒子の融点が900℃~1100℃であり、第2の金属粒子の融点が200℃~300℃であることがより好ましい。
 金属粒子の融点は、例えば融点が1300℃以下である金属粒子について測定する場合、DSC(Differential scanning calorimetry、示差走査熱量測定)により、白金製の測定パンを使用し、50ml/分の窒素気流下にて、10℃/分の昇温速度で25℃から1300℃まで加熱する条件で測定することができる。
 本開示において、遷移的液相焼結が可能な金属粒子としては、遷移的液相焼結が可能な金属の組み合わせとしてCuとSnとの組み合わせである場合を例にとると、(1)Cuを含む第1の金属粒子とSnを含む第2の金属粒子とを用いる場合、(2)一つの金属粒子中にCuとSnとを含有する金属粒子を用いる場合、(3)一つの金属粒子中にCuとSnとを含有する金属粒子とCuを含む第1の金属粒子又はSnを含む第2の金属粒子とを用いる場合等が挙げられる。
 金属粒子としてCuを含む第1の金属粒子とSnを含む第2の金属粒子とを用いる場合、第1の金属粒子と第2の金属粒子との質量基準の比率(第1の金属粒子/第2の金属粒子)は、金属粒子の粒子径にもよるが、1.0~10.0であることが好ましく、1.0~5.0であることがより好ましい。
 一つの金属粒子中に2種類の金属を含有する金属粒子は、例えば、一方の金属を含む金属粒子の表面に、めっき、蒸着等により他方の金属を含む層を形成することで得ることができる。また、一方の金属を含む金属粒子の表面に、高速気流中で衝撃力を主体とした力を用いて乾式で他方の金属を含む粒子を付与して両者を複合化する方法により一つの金属粒子中に2種類の金属を含有する金属粒子を得ることもできる。なお、一つの金属粒子中に2種類の金属が含有される場合、2種類の金属が合金を形成していないことが好ましい。
 本開示においては、遷移的液相焼結が可能な金属の組み合わせとしては、CuとSnとの組み合わせが好ましい。
 なお、CuとSnとの組み合わせを適用する場合、SnはSn単体であってもSnを含む合金であってもよく、Snを含む合金であることが好ましい。Snを含む合金の例としては、Sn-3.0Ag-0.5Cu合金等が挙げられる。なお、合金における表記は、例えばSn-AX-BYの場合は、錫合金の中に、元素XがA質量%、元素YがB質量%含まれていることを示す。
 焼結による銅-錫金属化合物(CuSn)を生成する反応は250℃付近で進行するため、CuとSnとを組み合わせて用いることで、リフロー炉等の一般的な設備による焼結が可能である。
 本開示において、金属粒子の液相転移温度とは、金属粒子界面の液相への転移が生じる温度を指し、例えば錫合金の一種であるSn-3.0Ag-0.5Cu合金粒子と銅粒子を用いた場合の液相転移温度は約217℃である。
 金属粒子の液相転移温度は、DSC(Differential scanning calorimetry、示差走査熱量測定)により、白金製のパンを使用し、50ml/分の窒素気流下にて、10℃/分の昇温速度で25℃から300℃まで加熱する条件で測定することができる。
 金属粒子としてCuを含む第1の金属粒子とSnを含む第2の金属粒子とを用いる場合、第2の金属粒子に占めるSnの質量基準の割合は、40質量%~98質量%であることが好ましく、90質量%を超え98質量%以下であることがより好ましく、92質量%~98質量%であることがさらに好ましく、95質量%~98質量%であることが特に好ましい。第2の金属粒子として、Snを含む2種類以上の金属粒子が用いられる場合、第2の金属粒子全体に占めるSnの質量基準の割合が上記範囲であることが好ましい。
 金属粒子の含有率は特に限定されるものではない。例えば、液相焼結用シートの固形分全体に占める金属粒子の質量基準の割合は、80質量%以上であることが好ましく、85質量%以上であることがより好ましく、88質量%以上であることがさらに好ましい。また、金属粒子の質量基準の割合は、98質量%以下であってもよい。金属粒子の質量基準の割合が98質量%以下であれば、液相焼結用シートを後述するように支持体に組成物を塗布することで製造する際に、組成物の印刷性が損なわれにくい傾向にある。
 金属粒子の平均粒子径は、特に限定されるものではない。例えば、金属粒子の平均粒子径は、0.5μm~30μmであることが好ましく、1μm~20μmであることがより好ましく、1μm~10μmであることがさらに好ましい。
 遷移的液相焼結が可能な金属粒子として融点が400℃以上の第1の金属粒子と融点が300℃以下の第2の金属粒子とを組み合わせる場合、第2の金属粒子の平均粒子径は、1μm~10μmであることが好ましく、1μm~5μmであることがより好ましく、1μm~3μmであることがさらに好ましい。
 金属粒子の平均粒子径は、レーザー回折式粒度分布計(例えば、ベックマン・コールター株式会社、LS 13 320型レーザー散乱回折法粒度分布測定装置)によって測定される体積平均粒子径をいう。具体的には、溶剤(テルピネオール)125gに、金属粒子を0.01質量%~0.3質量%の範囲内で添加し、分散液を調製する。この分散液の約100ml程度をセルに注入して25℃で測定する。粒度分布は溶剤の屈折率を1.48として測定する。
(樹脂)
 液相焼結用シートは、樹脂を含む。液相焼結用シートに含まれる樹脂は特に限定されるものではなく、従来から公知の各種樹脂を用いることができる。
 樹脂としては、熱可塑性樹脂及び熱硬化性樹脂からなる群より選択される少なくとも1種を含むことが好ましい。
 熱可塑性樹脂としては、ポリアミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂、ポリウレタン樹脂、熱可塑性エポキシ樹脂等が挙げられる。
 熱硬化性樹脂としては、エポキシ樹脂、オキサジン樹脂、ビスマレイミド樹脂、フェノール樹脂、不飽和ポリエステル樹脂、シリコーン樹脂等が挙げられる。また、エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェノール型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、環式脂肪族エポキシ樹脂等が挙げられる。
 上記樹脂は、1種のみ用いられてもよく、2種以上併用されていてもよい。
 これらの中でも、組成物に含まれる樹脂としては、焼結の過程において金属粒子の合金形成を阻害せずに流動しやすくする観点から、熱可塑性樹脂が好ましい。
 樹脂の25℃における弾性率は、接続信頼性を確保する観点から、0.01GPa~1.0GPaであることが好ましく、0.01GPa~0.5GPaであることがより好ましく、0.01GPa~0.3GPaであることがさらに好ましい。
 樹脂の25℃における弾性率は、JIS K 7161-1:2014の方法により測定された値をいう。
 樹脂の軟化点は、金属粒子の液相転移温度よりも低いことが好ましい。
 樹脂の軟化点が液相転移温度よりも低ければ、液相焼結用シートを加熱した際に、樹脂の軟化した後に金属粒子の溶融及び合金化が生じるため、軟化していない樹脂による金属の界面における液相の形成が阻害されにくくなる。
 遷移的液相焼結が可能な金属粒子として、融点が400℃以上の第1の金属粒子と融点が300℃以下の第2の金属粒子とを組み合わせる場合、樹脂の軟化点は、焼結の過程において金属粒子の合金形成を阻害しにくくする観点から、第2の金属粒子の融点よりも低い軟化点を示すことが好ましい。
 樹脂の軟化点は、熱機械分析法により測定された値をいう。具体的には、例えば、100μmの厚みの樹脂フィルムについて、熱機械的分析装置(TMA8320、株式会社リガク、測定用プローブ:圧縮加重法標準型)を用いて、10℃/分にて加熱しながら49mNの力で圧縮し、80μm変位した温度を樹脂の軟化点とする。
 樹脂の軟化点は、合金形成を阻害せずに流動する観点から、金属粒子の液相転移温度よりも5℃以上低い温度であることが好ましく、10℃以上低い温度であることがより好ましく、15℃以上低い温度であることがさらに好ましい。
 また、樹脂の軟化点は、液相焼結用シートの形状保持の観点から、40℃以上であることが好ましく、50℃以上であることがより好ましく、60℃以上であることがさらに好ましい。
 熱重量測定装置を用いて窒素気流下にて測定した、樹脂の熱分解率は、2.0質量%以下であることが好ましい。熱重量測定装置を用いて窒素気流下にて測定した、樹脂の熱分解率が2.0質量%以下であれば、熱履歴が与えられることによる焼結体の弾性率の変化が抑制されやすくなる。
 樹脂の熱分解率は、1.5質量%以下であることがより好ましく、1.0質量%以下であることがさらに好ましい。
 本開示において、樹脂の熱分解率は、以下の方法により測定された値をいう。
 熱重量測定装置を用いて50ml/分の窒素気流下にて、白金製のパンに配置された樹脂10mgを、10℃/分の昇温速度の条件で25℃から400℃まで加熱した際に、200℃から300℃の間での重量減少率を熱分解率とする。
 樹脂としては、前記の通り熱可塑性樹脂が好ましく、その中でも、金属粒子の表面と水素結合を作りやすい官能基又は構造を有する熱可塑性樹脂が、液相焼結用シート中における樹脂の分散性の観点から好ましい。金属粒子の表面と水素結合を作りやすい官能基としては、アミノ基、カルボキシ基等が挙げられる。また、金属粒子の表面と水素結合を作りやすい構造としては、アミド結合、イミド結合、ウレタン結合等が挙げられる。
 熱可塑性樹脂としては、アミド結合、イミド結合及びウレタン結合からなる群より選択される少なくとも1種を含むものが好ましい。
 このような熱可塑性樹脂としては、ポリアミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂及びポリウレタン樹脂からなる群より選択される少なくとも1種が挙げられる。熱可塑性樹脂としては、ポリアミドイミド樹脂であることが好ましい。
 ポリアミドイミド樹脂の変形による応力の緩和の観点から、ポリアミドイミド樹脂は柔軟性を示す分子構造を有していることが好ましい。柔軟性を示す分子構造として、ポリアルキレンオキサイド構造及びポリシロキサン構造の少なくとも一方が挙げられる。
 ポリアミドイミド樹脂がポリアルキレンオキサイド構造を有する場合、ポリアルキレンオキサイド構造に特に限定はない。ポリアルキレンオキサイド構造としては、例えば、下記一般式(1)で表される構造を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000001
 一般式(1)中、Rはアルキレン基を示し、mは1~100の整数を示し、「*」は隣接する原子との結合位置を示す。ポリアルキレンオキサイド構造が複数種の集合体である場合、mは平均値である有理数を示す。
 一般式(1)において、Rで示されるアルキレン基としては、炭素数1~10のアルキレン基であることが好ましく、炭素数1~4のアルキレン基であることがより好ましい。アルキレン基は、直鎖状であってもよく、分岐鎖状であってもよく、環状であってもよい。Rで表されるアルキレン基としては、メチレン基、エチレン基、プロピレン基、ブチレン基、ヘキシレン基、オクチレン基、デシレン基等が挙げられる。Rで表されるアルキレン基は、1種単独であっても種類の異なる2種以上のアルキレン基が併用されてもよい。
 一般式(1)において、mは20~60であることが好ましく、30~40であることがより好ましい。
 一般式(1)で表される構造は、下記一般式(1A)で表される構造を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000002
 一般式(1A)中、mは1~100の整数を示し、「*」は隣接する原子との結合位置を示す。mの好ましい範囲は、一般式(1)の場合と同様である。
 ポリアミドイミド樹脂がポリアルキレンオキサイド構造を有する場合、全てのポリアルキレンオキサイド構造に占める一般式(1)で表されるポリアルキレンオキサイド構造の割合は、75質量%~100質量%であることが好ましく、85質量%~100質量%であることがより好ましく、90質量%~100質量%であることがさらに好ましい。
 ポリアミドイミド樹脂が一般式(1)で表されるポリアルキレンオキサイド構造を有する場合、一般式(1)で表される全てのポリアルキレンオキサイド構造に占める一般式(1A)で表されるポリアルキレンオキサイド構造の割合は、50質量%~100質量%であることが好ましく、75質量%~100質量%であることがより好ましく、90質量%~100質量%であることがさらに好ましい。
 ポリアミドイミド樹脂がポリシロキサン構造を有する場合、ポリシロキサン構造に特に限定はない。ポリシロキサン構造としては、例えば、下記一般式(2)で表される構造を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000003
 一般式(2)中、R及びRは各々独立に2価の有機基を示し、R~Rは各々独立に炭素数1~20のアルキル基又は炭素数6~18のアリール基を示し、nは1~50の整数を示し、「*」は隣接する原子との結合位置を示す。ポリシロキサン構造が複数種の集合体である場合、nは平均値である有理数を示す。
 なお、アルキル基又はアリール基の炭素数には、置換基に含まれる炭素原子の数を含めないものとする。
 一般式(2)において、R及びRで示される2価の有機基としては、2価の飽和炭化水素基、2価の脂肪族エーテル基、2価の脂肪族エステル基等が挙げられる。
 R及びRが2価の飽和炭化水素基である場合、2価の飽和炭化水素基は直鎖状であってもよく、分岐鎖状であってもよく、環状であってもよい。また、2価の飽和炭化水素基はフッ素原子、塩素原子等のハロゲン原子などの置換基を有していてもよい。
 R及びRで示される2価の飽和炭化水素基としては、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、シクロプロピレン基、シクロブチレン基、シクロペンチレン基等が挙げられる。R及びRで示される2価の飽和炭化水素基は、1種を単独で又は2種以上を組み合わせて用いることができる。R及びRとしては、エチレン基であることが好ましい。
 一般式(2)において、R~Rで示される炭素数1~20のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基、n-オクチル基、2-エチルヘキシル基、n-ドデシル基等が挙げられる。これらの中でも、メチル基であることが好ましい。
 一般式(2)において、R~Rで示される炭素数6~18のアリール基は、無置換でも置換基で置換されていてもよい。アリール基が置換基を有する場合の置換基としては、ハロゲン原子、アルコキシ基、ヒドロキシ基等が挙げられる。
 炭素数6~18のアリール基としては、フェニル基、ナフチル基、ベンジル基等が挙げられる。これらの中でも、フェニル基であることが好ましい。
 R~Rで示される炭素数1~20のアルキル基又は炭素数6~18のアリール基は、1種を単独で又は2種以上を組み合わせて用いることができる。
 一般式(2)において、nは5~25であることが好ましく、10~25であることがより好ましい。
 ポリアミドイミド樹脂としては、ジイミドカルボン酸又はその誘導体由来の構造単位と芳香族ジイソシアネート又は芳香族ジアミン由来の構造単位とを有するものであることが好ましい。
 本開示において、ジイミドカルボン酸又はその誘導体由来の構造単位は、例えば、下記一般式(3)で表される。
Figure JPOXMLDOC01-appb-C000004
 一般式(3)中、Rは2価の基を示し、「*」は隣接する原子との結合位置を示す。Rで示される2価の基は特に限定されるものではない。
 Rで示される2価の基としては、ジアミンに含まれる2つのアミノ基を除いた残りの構造であってもよい。ジアミンをHN-R-NHで表したときに、2つのアミノ基を除いた残りの構造は「-R-」で表された部分をいう。
 ジアミンとしては、脂肪族ジアミン、脂環式ジアミン、シロキサン変性ジアミン、芳香族ジアミン等が挙げられる。ジアミンの例は後述する。
 ポリアミドイミド樹脂がジイミドカルボン酸又はその誘導体由来の構造単位と芳香族ジイソシアネート又は芳香族ジアミン由来の構造単位とを有するものである場合、ジイミドカルボン酸又はその誘導体由来の構造単位としては、例えば、下記一般式(4)で表される構造単位が挙げられる。
Figure JPOXMLDOC01-appb-C000005
 一般式(4)中、Rはポリアルキレンオキサイド構造を含む2価の基を示し、「*」は隣接する原子との結合位置を示す。
 Rで示される2価の基に含まれるポリアルキレンオキサイド構造に特に限定はない。ポリアルキレンオキサイド構造としては、例えば、上述の一般式(1)で表される構造が挙げられる。一般式(1)で示されるRの具体例等及びmの好ましい範囲等は、上述の通りであり、一般式(1)で表される構造が一般式(1A)で表される構造を含むことが好ましいことも上述の通りである。
 ポリアミドイミド樹脂がジイミドカルボン酸又はその誘導体由来の構造単位と芳香族ジイソシアネート又は芳香族ジアミン由来の構造単位とを有するものである場合、ジイミドカルボン酸又はその誘導体由来の構造単位としては、例えば、下記一般式(5)で表される構造単位が挙げられる。
Figure JPOXMLDOC01-appb-C000006
 一般式(5)中、R10はポリシロキサン構造を含む2価の基を示し、「*」は隣接する原子との結合位置を示す。
 R10で示される2価の基に含まれるポリシロキサン構造に特に限定はない。ポリシロキサン構造としては、例えば、上述の一般式(2)で表される構造が挙げられる。一般式(2)で示されるR~Rの具体例、nの好ましい範囲等は上述のとおりである。
 ポリアミドイミド樹脂がジイミドカルボン酸又はその誘導体由来の構造単位と芳香族ジイソシアネート又は芳香族ジアミン由来の構造単位とを有するものである場合、ジイミドカルボン酸又はその誘導体由来の構造単位に占める一般式(4)で表される構造単位の割合は、30モル%以上であることが好ましく、33モル%以上であることがより好ましく、35モル%以上であることがさらに好ましい。なお、ジイミドカルボン酸又はその誘導体由来の構造単位に占める一般式(4)で表される構造単位の割合は、60モル%以下であってもよい。
 ポリアミドイミド樹脂がジイミドカルボン酸又はその誘導体由来の構造単位と芳香族ジイソシアネート又は芳香族ジアミン由来の構造単位とを有するものである場合、ジイミドカルボン酸又はその誘導体由来の構造単位に占める一般式(5)で表される構造単位の割合は、25モル%以上であることが好ましく、35モル%以上であることがより好ましく、40モル%以上であることがさらに好ましい。なお、ジイミドカルボン酸又はその誘導体由来の構造単位に占める一般式(5)で表される構造単位の割合は、60モル%以下であってもよい。
 ポリアミドイミド樹脂がジイミドカルボン酸又はその誘導体由来の構造単位と芳香族ジイソシアネート又は芳香族ジアミン由来の構造単位とを有するものである場合、ジイミドカルボン酸又はその誘導体由来の構造単位に占める一般式(4)で表される構造単位及び一般式(5)で表される構造単位の合計の割合は、60モル%以上であることが好ましく、70モル%以上であることがより好ましく、80モル%以上であることがさらに好ましく、85モル%以上であることが特に好ましい。なお、ジイミドカルボン酸又はその誘導体由来の構造単位に占める一般式(4)で表される構造単位及び一般式(5)で表される構造単位の合計の割合は、100モル%以下であってもよい。
 ジイミドカルボン酸又はその誘導体由来の構造単位と芳香族ジイソシアネート又は芳香族ジアミン由来の構造単位とを有するポリアミドイミド樹脂の製造方法は特に限定されるものではなく、例えば、イソシアネート法及び酸クロライド法が挙げられる。
 イソシアネート法では、ジイミドカルボン酸と芳香族ジイソシアネートとを用いてポリアミドイミド樹脂を合成する。酸クロライド法では、ジイミドカルボン酸塩化物と芳香族ジアミンとを用いてポリアミドイミド樹脂を合成する。ジイミドカルボン酸と芳香族ジイソシアネートから合成するイソシアネート法が、ポリアミドイミド樹脂の構造の最適化を図りやすく、より好ましい。
 以下、ジイミドカルボン酸と芳香族ジイソシアネートから合成するイソシアネート法によるポリアミドイミド樹脂の合成方法について詳細に説明する。
 イソシアネート法に用いられるジイミドカルボン酸は、例えば、無水トリメリト酸及びジアミンを用いて合成される。ジイミドカルボン酸の合成に用いられるジアミンとしては、シロキサン変性ジアミン、脂環式ジアミン、脂肪族ジアミン等が好適である。
 シロキサン変性ジアミンとしては、例えば、以下の構造式を有するものが挙げられる。
Figure JPOXMLDOC01-appb-C000007
 一般式(6)中、R及びRは各々独立に2価の有機基を示し、R~Rは各々独立に炭素数1~20のアルキル基又は炭素数6~18のアリール基を示し、nは1~50の整数を示す。R~Rの具体例、nの好ましい範囲等は、一般式(2)の場合と同様である。
 市販のシロキサン変性ジアミンとしては、KF-8010、KF-8012、X-22-161A、X-22-161B、X-22-9409(以上、信越化学工業株式会社)等が挙げられる。
 脂環式ジアミンとしては、2,2-ビス[4-(4-アミノシクロヘキシルオキシ)シクロヘキシル]プロパン、ビス[4-(3-アミノシクロヘキシルオキシ)シクロヘキシル]スルホン、ビス[4-(4-アミノシクロヘキシルオキシ)シクロヘキシル]スルホン、2,2-ビス[4-(4-アミノシクロヘキシルオキシ)シクロヘキシル]ヘキサフルオロプロパン、ビス[4-(4-アミノシクロヘキシルオキシ)シクロヘキシル]メタン、4,4’-ビス(4-アミノシクロヘキシルオキシ)ジシクロヘキシル、ビス[4-(4-アミノシクロヘキシルオキシ)シクロヘキシル]エーテル、ビス[4-(4-アミノシクロヘキシルオキシ)シクロヘキシル]ケトン、1,3-ビス(4-アミノシクロヘキシルオキシ)ベンゼン、1,4-ビス(4-アミノシクロヘキシルオキシ)ベンゼン、2,2’-ジメチルビシクロヘキシル-4,4’-ジアミン、2,2’-ビス(トリフルオロメチル)ジシクロヘキシル-4,4’-ジアミン、2,6,2’,6’-テトラメチルジシクロヘキシル-4,4’-ジアミン、5,5’-ジメチル-2,2’-スルホニル-ジシクロヘキシル-4,4’-ジアミン、3,3’-ジヒドロキシジシクロヘキシル-4,4’-ジアミン、4,4’-ジアミノジシクロヘキシルエーテル、4,4’-ジアミノジシクロヘキシルスルホン、4,4’-ジアミノジシクロヘキシルケトン、4,4’-ジアミノジシクロヘキシルメタン、4,4’-ジアミノジシクロヘキシルエーテル、3,3’-ジアミノジシクロヘキシルエーテル、2,2-ビス(4-アミノシクロヘキシル)プロパン等が挙げられ、1種を単独で又は2種以上を組み合わせて用いることができる。
 これらの中でも、2,2-ビス[4-(4-アミノシクロヘキシルオキシ)シクロヘキシル]プロパン、ビス[4-(3-アミノシクロヘキシルオキシ)シクロヘキシル]スルホン、ビス[4-(4-アミノシクロヘキシルオキシ)シクロヘキシル]スルホン、2,2-ビス[4-(4-アミノシクロヘキシルオキシ)シクロヘキシル]ヘキサフルオロプロパン、ビス[4-(4-アミノシクロヘキシルオキシ)シクロヘキシル]メタン、4,4’-ビス(4-アミノシクロヘキシルオキシ)ジシクロヘキシル、ビス[4-(4-アミノシクロヘキシルオキシ)シクロヘキシル]エーテル、ビス[4-(4-アミノシクロヘキシルオキシ)シクロヘキシル]ケトン及び4,4’-ジアミノジシクロヘキシルメタンからなる群より選択される少なくとも1種の脂環式ジアミンが好ましい。
 脂肪族ジアミンとしては、オキシプロピレンジアミンが好ましい。市販のオキシプロピレンジアミンとしては、ジェファーミンD-230(三井化学ファイン株式会社、アミン当量:115、商品名)、ジェファーミンD-400(三井化学ファイン株式会社、アミン当量:200、商品名)、ジェファーミンD-2000(三井化学ファイン株式会社、アミン当量:1,000、商品名)、ジェファーミンD-4000(三井化学ファイン株式会社、アミン当量:2,000、商品名)等が挙げられる。
 上記ジアミンの1種を単独で用いても又は2種以上を組み合わせて用いてもよい。上記ジアミンをジアミン全量に対して60モル%~100モル%用いて合成されるポリアミドイミド樹脂が好ましく、その中でも耐熱性及び低弾性率を同時に達成するために、シロキサン変性ジアミンを含んで合成されるシロキサン変性ポリアミドイミド樹脂がより好ましい。
 ジアミンとしては、必要に応じて芳香族ジアミンを併用することもできる。
 芳香族ジアミンの具体例としては、p-フェニレンジアミン、m-フェニレンジアミンo-フェニレンジアミン、2,4-ジアミノトルエン、2,5-ジアミノトルエン、2,4-ジアミノキシレン、ジアミノジュレン、1,5-ジアミノナフタレン、2,6-ジアミノナフタレン、ベンジジン、4,4’-ジアミノターフェニル、4,4’’’-ジアミノクォーターフェニル、4,4’-ジアミノジフェニルメタン、1,2-ビス(アニリノ)エタン、4,4’-ジアミノジフェニルエ-テル、ジアミノジフェニルスルホン、2,2-ビス(p-アミノフェニル)プロパン、2,2-ビス(p-アミノフェニル)ヘキサフルオロプロパン、3,3-ジメチルベンジジン、3,3’-ジメチル-4,4’-ジアミノジフェニルエ-テル、3,3’-ジメチル-4,4’-ジアミノジフェニルメタン、ジアミノベンゾトリフルオライド、1,4-ビス(p-アミノフェノキシ)ベンゼン、4,4’-ビス(p-アミノフェノキシ)ビフェニル、2,2’-ビス{4-(p-アミノフェノキシ)フェニル}プロパン、ジアミノアントラキノン、4,4’-ビス(3-アミノフェノキシフェニル)ジフェニルスルホン、1,3-ビス(アニリノ)ヘキサフルオロプロパン、1,4-ビス(アニリノ)オクタフルオロブタン、1,5-ビス(アニリノ)デカフルオロペンタン、1,7-ビス(アニリノ)テトラデカフルオロヘプタン、2,2-ビス{4-(p-アミノフェノキシ)フェニル}ヘキサフルオロプロパン、2,2-ビス{4-(3-アミノフェノキシ)フェニル}ヘキサフルオロプロパン、2,2-ビス{4-(2-アミノフェノキシ)フェニル}ヘキサフルオロプロパン、2,2-ビス{4-(4-アミノフェノキシ)-3,5-ジメチルフェニル}ヘキサフルオロプロパン、2,2-ビス{4-(4-アミノフェノキシ)-3,5-ジトリフルオロメチルフェニル}ヘキサフルオロプロパン、p-ビス(4-アミノ-2-トリフルオロメチルフェノキシ)ベンゼン、4,4’-ビス(4-アミノ-2-トリフルオロメチルフェノキシ)ビフェニル、4,4’-ビス(4-アミノ-3-トリフルオロメチルフェノキシ)ビフェニル、4,4’-ビス(4-アミノ-2-トリフルオロメチルフェノキシ)ジフェニルスルホン、4,4’-ビス(3-アミノ-5-トリフルオロメチルフェノキシ)ジフェニルスルホン、2,2-ビス{4-(4-アミノ-3-トリフルオロメチルフェノキシ)フェニル}ヘキサフルオロプロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン等が挙げられる。芳香族ジアミンはジアミン全量に対して0モル%~40モル%の範囲で任意に用いることができる。
 芳香族ジイソシアネートとしては、芳香族ジアミンとホスゲン等との反応によって得られるジイソシアネートが挙げられる。芳香族ジイソシアネートの具体例としては、トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、ナフタレンジイソシアネート、ジフェニルエーテルジイソシアネート、フェニレン-1,3-ジイソシアネート等の芳香族ジイソシアネートが挙げられる。これらの中でも、4,4’-ジフェニルメタンジイソシアネート、ジフェニルエーテルジイソシアネート等が好ましい。
 イソシアネート法によるポリアミドイミド樹脂の重合反応は、通常、N-メチル-2-ピロリドン(NMP)、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAC)、ジメチルスルホキシド(DMSO)、硫酸ジメチル、スルホラン、γ-ブチロラクトン、クレゾ-ル、ハロゲン化フェノ-ル、シクロヘキサン、ジオキサン等の溶剤中で行われる。反応温度は、0℃~200℃であることが好ましく、100℃~180℃であることがより好ましく、130℃~160℃であることがさらに好ましい。
 イソシアネート法によるポリアミドイミド樹脂の重合反応におけるジイミドカルボン酸及び芳香族ジイソシアネートのモル基準の配合比(ジイミドカルボン酸/芳香族ジイソシアネート)としては、1.0~1.5であることが好ましく、1.05~1.3であることがより好ましく、1.1~1.2であることがさらに好ましい。
(その他の成分)
 液相焼結用シートは、その他の成分を含んでもよい。その他の成分としては、ロジン、活性剤、チキソ剤等が挙げられる。
 ロジンとしては、デヒドロアビエチン酸、ジヒドロアビエチン酸、ネオアビエチン酸、ジヒドロピマル酸、ピマル酸、イソピマル酸、テトラヒドロアビエチン酸、パラストリン酸等が挙げられる。
 活性剤としては、アミノデカン酸、ペンタン-1,5-ジカルボン酸、トリエタノールアミン、ジフェニル酢酸、セバシン酸、フタル酸、安息香酸、ジブロモサリチル酸、アニス酸、ヨードサリチル酸、ピコリン酸等が挙げられる。
 チキソ剤としては、12-ヒドロキシステアリン酸、12-ヒドロキシステアリン酸トリグリセリド、エチレンビスステアリン酸アマイド、ヘキサメチレンビスオレイン酸アマイド、N,N’-ジステアリルアジピン酸アマイド等が挙げられる。
 液相焼結用シートにおいて、金属粒子を除く固形分中における樹脂の占める割合は、30質量%~60質量%であることが好ましく、35質量%~55質量%であることがより好ましく、40質量%~50質量%であることがさらに好ましい。金属粒子を除く固形分中における樹脂の占める割合が30質量%以上であれば、液相焼結用シートを後述するように支持体に組成物を塗布することで製造する際に、組成物がペーストの状態になりやすくなる。金属粒子を除く固形分中における樹脂の占める割合が60質量%以下であれば、金属粒子の焼結が阻害されにくくなる傾向にある。
(液相焼結用シートの製造方法)
 液相焼結用シートの製造方法は特に限定されるものではない。液相焼結用シートを構成する遷移的液相焼結可能な金属粒子、樹脂、必要に応じて用いられるその他の成分を混合し、さらに撹拌、溶融、分散等の処理をすることにより組成物を調製する。次いで、この組成物を支持体に塗布し、必要に応じて乾燥することで、液相焼結用シートを得ることができる。組成物には必要に応じて溶剤を添加してもよい。
 液相焼結用シートは、ロール状に巻き取られていてもよい。また、液相焼結用シートは枚葉状に形成されてもよい。
 液相焼結用シートは、支持体を含んでもよいし、支持体を取り除いた状態であってもよい。
 液相焼結用シートの製造に用いられる組成物に溶剤を添加する場合、樹脂を溶解する観点から、溶剤は有機溶剤が好ましく、焼結時のボイドの発生を抑制するために300℃以下の沸点を有している溶剤であることがより好ましい。
 このような溶剤の例としては、テルピネオール、ステアリルアルコール、トリプロピレングリコールメチルエーテル、ジエチレングリコール、ジエチレングリコールモノエチルエーテル(エトキシエトキシエタノール)、ジエチレングリコールモノヘキシルエーテル、ジエチレングリコールモノメチルエーテル、ジプロピレングリコール-n-プロピルエーテル、ジプロピレングリコール-n-ブチルエーテル、トリプロピレングリコール-n-ブチルエーテル、1,3-ブタンジオール、1,4-ブタンジオール、プロピレングリコールフェニルエーテル等のアルコール類;クエン酸トリブチル、4-メチル-1,3-ジオキソラン-2-オン、γ-ブチロラクトン、スルホラン、2-(2-ブトキシエトキシ)エタノール、ジエチレングリコールモノエチルエーテルアセテート、ジプロピレングリコールメチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、グリセリントリアセテート等のエステル類;イソホロン等のケトン;N-メチル-2-ピロリドン等のラクタム;フェニルアセトニトリル等のニトリル類などを挙げることができる。溶剤は、1種を単独で又は2種以上を組み合わせて使用してもよい。
 組成物に溶剤を添加する場合、溶剤の含有率は特に限定されるものではなく、組成物全体に占める溶剤の質量基準の割合は、0.1質量%~10質量%であることが好ましく、2質量%~7質量%であることがより好ましく、3質量%~5質量%であることがさらに好ましい。
 組成物を調製する際に用いられる混合、撹拌、分散等のための装置としては、特に限定されるものではなく、3本ロールミル、プラネタリーミキサ、遊星式ミキサ、自転公転型撹拌装置、らいかい機、二軸混練機、薄層せん断分散機等を使用することができる。また、これらの装置を適宜組み合わせて使用してもよい。上記処理の際、必要に応じて加熱してもよい。
 処理後、ろ過により組成物の最大粒子径を調整してもよい。ろ過は、ろ過装置を用いて行うことができる。ろ過用のフィルタとしては、例えば、金属メッシュ、メタルフィルター及びナイロンメッシュが挙げられる。
 支持体は、耐熱性の観点から、ポリエステル樹脂を含むことが好ましい。ポリエステル樹脂としては、例えば、ポリエチレンテレフタレート(PET)樹脂、ポリエチレンナフタレート樹脂及びポリブチレンテレフタレート樹脂並びにこれらの共重合体及び変性樹脂が挙げられる。
 支持体の厚みは特に限定されず、5μm~100μmであることが好ましく、10μm~70μmであることがより好ましい。厚みが5μm~100μmであると、取扱い性に優れる傾向にある。
 組成物の支持体への塗布方法は特に限定されるものではなく、スキージ法、ロールコート法、バーコート法、キスコート法、マスキング法、スクリーン印刷法等の公知の塗布方法を使用することができる。
<焼結体>
 本開示の焼結体は、本開示の液相焼結用シートを焼結してなるものである。本開示の液相焼結用シートを焼結する方法は特に限定されるものではない。
 焼結体の電気抵抗率は、1×10-4Ω・cm(1×10-6Ω・m)以下であることが好ましい。
 焼結体の25℃における弾性率は、1GPa~5GPaの範囲にあることが好ましく、1GPa~4.5GPaの範囲にあることがより好ましく、1GPa~3.5GPaの範囲にあることがさらに好ましい。
 焼結体の25℃における弾性率は、引張り試験機を用いて測定した値をいう。測定には1kNのロードセルを用い、50mm/分の引張り速度とする。
<接合体及びその製造方法>
 本開示の接合体は、素子と支持部材とが本開示の焼結体を介して接合されたものである。
 支持部材としては特に限定されるものではなく、素子の接合される箇所の材質が金属であるものが用いられる。素子の接合される箇所の材質である金属としては、金、銀、銅、ニッケル等が挙げられる。また、上記のうち複数の金属が基材上にパターニングされて支持部材が構成されていてもよい。
 支持部材の具体例としては、リードフレーム、配線済みのテープキャリア、リジッド配線板、フレキシブル配線板、配線済みのガラス基板、配線済みのシリコンウエハ、ウエハーレベルCSP(Wafer Level Chip Size Package)で採用される再配線層等が挙げられる。
 素子としては特に限定されるものではなく、半導体チップ、トランジスタ、ダイオード、発光ダイオード、サイリスタ等の能動素子、コンデンサ、抵抗体、抵抗アレイ、コイル、スイッチ等の受動素子などが挙げられる。
 また、接合体としては、半導体装置、電子部品等が挙げられる。半導体装置の具体例としては、ダイオード、整流器、サイリスタ、MOS(Metal Oxide Semiconductor)ゲートドライバ、パワースイッチ、パワーMOSFET(Metal Oxide Semiconductor Field-Effect Transistor)、IGBT(Insulated Gate Bipolar Transistor)、ショットキーダイオード、ファーストリカバリダイオード等を備えるパワーモジュール、発信機、増幅器、LEDモジュールなどが挙げられる。
 本開示の接合体の製造方法は、支持部材における素子の接合される箇所及び前記素子における前記支持部材と接合される箇所の少なくとも一方に、本開示の液相焼結用シートを配置してシート層を形成する工程と、前記シート層を介して、前記支持部材と前記素子とを接触させる工程と、前記シート層を加熱して焼結する工程と、を有する。
 液相焼結用シートを支持部材における素子の接合される箇所及び素子における支持部材と接合される箇所の少なくとも一方に配置することでシート層が形成される。
 シート層は、例えば、適切な大きさに裁断した液相焼結用シートを、支持部材における素子の接合される箇所及び素子における支持部材と接合される箇所の少なくとも一方に配置することで形成してもよい。
 シート層を介して支持部材と素子とを接触させた状態で、シート層を加熱することにより焼結体を形成する。シート層の焼結は、加熱処理で行ってもよいし、加熱加圧処理で行ってもよい。
 加熱処理には、ホットプレート、温風乾燥機、温風加熱炉、窒素乾燥機、赤外線乾燥機、赤外線加熱炉、遠赤外線加熱炉、マイクロ波加熱装置、レーザー加熱装置、電磁加熱装置、ヒーター加熱装置、蒸気加熱炉等を用いることができる。
 また、加熱加圧処理には、熱板プレス装置等を用いてもよいし、加圧しながら上述の加熱処理を行ってもよい。
 シート層を焼結するための加熱温度は、金属粒子の種類によるが、180℃以上であることが好ましく、190℃以上であることがより好ましく、220℃以上であることがさらに好ましい。当該加熱温度の上限は、特に制限されないが、例えば300℃以下である。
 シート層を焼結するための加熱時間は、金属粒子の種類によるが、5秒間~10時間であることが好ましく、30秒~8分であることがより好ましく、3分~6分であることがさらに好ましい。
 本開示の接合体の製造方法においては、シート層の焼結は、低酸素濃度の雰囲気下で行うことが好ましい。低酸素濃度雰囲気下とは、酸素濃度が500ppm以下の状態をいい 、好ましくは200ppm以下である。
 以下、実施例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。
(組成物の調製)
 100mLのポリエチレン瓶に後述の方法で調製した0.6gのポリアミドイミド樹脂(樹脂溶液として1.2g)と12-ヒドロキシステアリン酸(富士フイルム和光純薬株式会社)0.3g、デヒドロアビエチン酸(富士フイルム和光純薬株式会社)0.9g、トリエタノールアミン(富士フイルム和光純薬株式会社)0.3g及びNMP(富士フイルム和光純薬株式会社)3.0gを秤量し、密栓してロータ撹拌機により30分間撹拌し、混合した。この混合物に、銅粒子A(三井金属鉱業株式会社、球状、平均粒子径:5μm)34.0g、銅粒子B(三井金属鉱業株式会社、球状、平均粒子径:15μm)34.0g、錫合金粒子(SAC305、Sn-3.0Ag-0.5Cu、三井金属鉱業株式会社、球状、平均粒子径:3.0μm)26.3gを秤量して混合し、スパチュラで乾燥粉がなくなるまでかき混ぜ、密栓をして自転公転型撹拌装置(Planetary Vacuum Mixer ARV-310、株式会社シンキー)により、2000回転/分で10秒間撹拌し、組成物とした。
-ポリアミドイミド樹脂の合成-
 熱電対、撹拌機及び窒素吹込口を取り付けた300mlのセパラブルフラスコに約250ml/分で窒素ガスを流しながらシロキサン変性ジアミン(X-22-161A、信越化学工業株式会社、商品名、一般式(6)において、R及びRがエチレン基(-CHCH-)であり、R~Rがいずれもメチル基であり、nが約20であるジアミン)32.0g、4,4’-ジアミノジシクロヘキシルメタン(ワンダミンHM(WHM)、新日本理化株式会社、商品名)0.935g、オキシプロピレンジアミン(ジェファーミンD-2000、三井化学ファイン株式会社、商品名、(-OCHCH(CH)-)の繰り返し数mが約33であるジアミン)40.0g、無水トリメリト酸17.9g及びN-メチル-2-ピロリドン100gを加え撹拌し、溶解した。この溶液にトルエン50gを加え、150℃以上の温度で6時間の脱水還流によるイミド環閉環反応を行った後トルエンを留去し、冷却後に4,4’-ジフェニルメタンジイソシアネート(MDI)13.4gを加え、150℃にて2時間反応させ、ポリアミドイミド樹脂を合成した。固形分は50質量%であった。
(TLPSシートの作製)
 100mm×10mmの大きさで、0.1mmの高さでマスキングを行なった離型PETフィルム上に調製した組成物を20g流し入れた。プラスチックスキージを使用し、流し入れた組成物を表面が滑らかになるように塗布した。塗布を行なったPETフィルムを、窒素流量が30L/分で、100℃の窒素オーブン内で1分(実施例1)、2分(実施例2)、3分(実施例3)及び60分(比較例1)間乾燥し、TLPSシートとした。チップとの実装に使用する際には、作製したシートを任意の大きさに調整して使用した。
 また、ポリアミドイミド樹脂を添加しない以外は同様にして樹脂未添加組成物を調製し、組成物に替えて樹脂未添加組成物を用い、乾燥時間を4分とした以外は実施例1と同様にして比較例2のTLPSシートを作製した。
(TLPSシートの質量減少率の測定)
 TLPSシートの質量減少率は、熱重量測定装置(Thermo plus TG8120(製品名)、株式会社リガク)を用いて測定を行なった。測定条件は、30L/分の窒素雰囲気において室温(25℃)から焼結温度である260℃までを昇温速度10℃/分で行なった。結果を表1に示す。
(焼結済みサンプルの調製)
 上述のようにして作製したTLPSシートを、銅製のリードフレーム上に先のとがったピンセットを用いて配置してシート層とした。シート層上に、5mm×5mmのサイズで被着面が金めっきされているSiチップを載せ、ピンセットで軽く押さえてシート層の焼結前サンプルとした。リフローシミュレータ装置(株式会社コアーズ、core9046a)の炉内にサンプルをセットし、酸素濃度500ppm以下で、温度250℃以上にて1分以上加熱し、シート層の焼結済みサンプルとした。
(1)ダイシェア強度
 1kNのロードセルを装着した万能型ボンドテスタ(4000シリーズ、DAGE社)を用い、測定スピード500μm/秒、測定高さ100μmでSiチップを水平方向に押し、焼結済みサンプルのダイシェア強度を測定した。9回の測定結果の平均をダイシェア強度とした。結果を表1に示す。
(2)断面SEM観察(ボイド率)
 焼結済みサンプルをカップ内にサンプルクリップ(SamplklipI、Buehler製)で固定し、周囲にエポキシ注形樹脂(エポマウント、リファインテック株式会社)をサンプル全体が埋まるまで流し込み、真空デシケータ内に静置して30秒間減圧して脱泡した。その後、室温(25℃)で8時間以上放置してエポキシ注形樹脂を硬化した。耐水研磨紙(カーボマックペーパー、リファインテック株式会社)を装着した研磨装置(Refine Polisher HV、リファインテック株式会社)で接合部まで削り断面を露出させた。その後、バフ研磨剤を染み込ませたバフ研磨布をセットした研磨装置で断面を平滑に仕上げた。このSEM用サンプルについての焼結体の断面をSEM装置(TM-1000、株式会社日立製作所)により印過電圧15kVで観察した。観察結果に基づいて、断面の金属色及びボイドの黒色を二値化し、表分析ソフトを使用することによってボイドが占める面積割合(ボイド率)を算出した。結果を表1に示す。
(3)弾性率試験
 縦10mm×横100mmのTLPSシートを、離型処理したアルミニウム箔(東洋アルミニウム株式会社、セパニウム50B2C-ET)上に配置してシート層とした。シート層を窒素オーブン装置(ヤシマ工業株式会社、P-P50-3AO2)を用い、250℃で窒素流量が30L/分の条件にて30分間加熱して焼結し、焼結済みサンプル片を得た。サンプル片の弾性率を、引張り試験機(オートグラフAGS-X、株式会社島津製作所)にて測定することで、弾性率の変化を確認した。測定には1kNのロードセルを用い、50mm/分の引張り速度で行った。結果を表1に示す。
4)柔軟性試験(6インチ巻き取り)
 縦70mm×横10mmに裁断したTLPSシートを、直径6インチの筒に巻き取り、30分放置した。放置後のTLPSシート表面を目視にて観察し、TLPSシート表面に割れが生じているか否かを確認し、TLPSシートの柔軟性を評価した。割れが生じていない場合を「A」と、割れが生じている場合を「B」とした。結果を表1に示す。
 また、放置後のTLPSシート表面を、レーザー顕微鏡(キーエンス株式会社)にて倍率1000倍で観察し、TLPSシート表面に生じたヒビの数を数え上げた。ヒビの数に基づいて下記基準に従いTLPSシートの柔軟性を評価した。結果を表1に示す。
 なお、柔軟性試験の評価において「割れ」とは、TLPSシートの表面に目視により確認される亀裂をいう。また、柔軟性試験の評価において「ヒビ」とは、目視によっては確認されないもののレーザー顕微鏡で観察すれば確認される、TLPSシートの表面の亀裂をいう。
-評価基準(ヒビ)-
A: ヒビの数が5個以下
B: ヒビの数が6個~15個
C: ヒビの数が16個以上
Figure JPOXMLDOC01-appb-T000008
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に援用されて取り込まれる。

Claims (9)

  1.  遷移的液相焼結可能な金属粒子と樹脂とを含み、
     昇温速度が10℃/分の条件で25℃から260℃まで昇温したときの質量減少率が、1質量%以上である液相焼結用シート。
  2.  前記金属粒子が、融点が400℃以上の第1の金属粒子と、融点が300℃以下で平均粒子径が1μm~10μmの第2の金属粒子と、を含む請求項1に記載の液相焼結用シート。
  3.  前記第1の金属粒子が、Cuを含む請求項2に記載の液相焼結用シート。
  4.  前記第2の金属粒子が、Snを含む請求項2又は請求項3に記載の液相焼結用シート。
  5.  前記樹脂が、熱可塑性樹脂及び熱硬化性樹脂からなる群より選択される少なくとも1種を含む請求項1~請求項4のいずれか1項に記載の液相焼結用シート。
  6.  請求項1~請求項5のいずれか1項に記載の液相焼結用シートを焼結してなる焼結体。
  7.  25℃における弾性率が、1GPa~5GPaの範囲にある請求項6に記載の焼結体。
  8.  素子と支持部材とが、請求項6又は請求項7に記載の焼結体を介して接合された接合体。
  9.  支持部材における素子の接合される箇所及び前記素子における前記支持部材と接合される箇所の少なくとも一方に、請求項1~請求項5のいずれか1項に記載の液相焼結用シートを配置してシート層を形成する工程と、前記シート層を介して、前記支持部材と前記素子とを接触させる工程と、前記シート層を加熱して焼結する工程と、を有する接合体の製造方法。
PCT/JP2018/024937 2018-06-29 2018-06-29 液相焼結用シート、焼結体、接合体及び接合体の製造方法 WO2020003536A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/024937 WO2020003536A1 (ja) 2018-06-29 2018-06-29 液相焼結用シート、焼結体、接合体及び接合体の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/024937 WO2020003536A1 (ja) 2018-06-29 2018-06-29 液相焼結用シート、焼結体、接合体及び接合体の製造方法

Publications (1)

Publication Number Publication Date
WO2020003536A1 true WO2020003536A1 (ja) 2020-01-02

Family

ID=68984478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024937 WO2020003536A1 (ja) 2018-06-29 2018-06-29 液相焼結用シート、焼結体、接合体及び接合体の製造方法

Country Status (1)

Country Link
WO (1) WO2020003536A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024053494A1 (ja) * 2022-09-05 2024-03-14 デクセリアルズ株式会社 (メタ)アクリル基含有ポリカルボン酸化合物、熱伝導組成物、及び熱伝導シート
WO2024070250A1 (ja) * 2022-09-26 2024-04-04 デクセリアルズ株式会社 熱伝導組成物、熱伝導シート、熱伝導組成物の製造方法及び熱伝導シートの製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015004122A (ja) * 2013-02-28 2015-01-08 株式会社豊田中央研究所 金属ナノ粒子ペースト、それを含有する接合材料、およびそれを用いた半導体装置
WO2015159480A1 (ja) * 2014-04-14 2015-10-22 バンドー化学株式会社 接合用組成物及びそれを用いた金属接合体
JP2016210666A (ja) * 2015-05-13 2016-12-15 昭和電工株式会社 カーボンシートの保管方法、複合シートの保管方法、カーボンシート、複合シート、及び巻回体
JP2018006735A (ja) * 2016-06-24 2018-01-11 日東電工株式会社 加熱接合用シート及びダイシングテープ付き加熱接合用シート

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015004122A (ja) * 2013-02-28 2015-01-08 株式会社豊田中央研究所 金属ナノ粒子ペースト、それを含有する接合材料、およびそれを用いた半導体装置
WO2015159480A1 (ja) * 2014-04-14 2015-10-22 バンドー化学株式会社 接合用組成物及びそれを用いた金属接合体
JP2016210666A (ja) * 2015-05-13 2016-12-15 昭和電工株式会社 カーボンシートの保管方法、複合シートの保管方法、カーボンシート、複合シート、及び巻回体
JP2018006735A (ja) * 2016-06-24 2018-01-11 日東電工株式会社 加熱接合用シート及びダイシングテープ付き加熱接合用シート

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024053494A1 (ja) * 2022-09-05 2024-03-14 デクセリアルズ株式会社 (メタ)アクリル基含有ポリカルボン酸化合物、熱伝導組成物、及び熱伝導シート
WO2024070250A1 (ja) * 2022-09-26 2024-04-04 デクセリアルズ株式会社 熱伝導組成物、熱伝導シート、熱伝導組成物の製造方法及び熱伝導シートの製造方法

Similar Documents

Publication Publication Date Title
TWI326695B (en) Adhesive film and semiconductor device using same
JP5373192B2 (ja) 接着剤組成物、半導体装置の製造方法及び半導体装置
KR102220124B1 (ko) 접착제, 접착 필름, 반도체 장치 및 그의 제조 방법
WO2011004706A1 (ja) 接着組成物、接着シート、それらを用いた回路基板および半導体装置ならびにそれらの製造方法
TW201109407A (en) Film-like adhesive agent for sealing semiconductor, semiconductor device, and process for manufacturing the semiconductor device
TWI546322B (zh) 交聯聚醯亞胺樹脂、其製造方法、接著劑樹脂組成物、其硬化物、覆層膜、電路基板、熱傳導性基板及熱傳導性聚醯亞胺膜
JP2008248114A (ja) 接着剤組成物
WO2020003536A1 (ja) 液相焼結用シート、焼結体、接合体及び接合体の製造方法
TW201829793A (zh) 組成物、黏著劑、燒結體、接合體及接合體的製造方法
TW200836271A (en) Resin paste for die bonding, method for manufacturing semiconductor device, and semiconductor device
JP2013227435A (ja) 半導体装置製造用接着剤シートおよび半導体装置の製造方法
WO2018105746A1 (ja) 接合体の製造方法、遷移的液相焼結用組成物、焼結体及び接合体
TWI457413B (zh) An agent composition, a method for manufacturing a semiconductor device, and a semiconductor device
JP6589638B2 (ja) 接着剤組成物、その硬化物を含む半導体装置およびそれを用いた半導体装置の製造方法
WO2018105745A1 (ja) 組成物、接着剤、焼結体、接合体及び接合体の製造方法
WO2018105128A1 (ja) 組成物、接着剤、焼結体、接合体及び接合体の製造方法
WO2019138557A1 (ja) 液相焼結用組成物、接着剤、焼結体、接合構造、接合体、及び接合体の製造方法
JP5857462B2 (ja) 半導体封止用接着剤、半導体装置の製造方法及び半導体装置
WO2019138558A1 (ja) 液相焼結用組成物、接着剤、焼結体、接合構造、接合体、及び接合体の製造方法
WO2019138556A1 (ja) 液相焼結用組成物、接着剤、焼結体、接合構造、接合体、及び接合体の製造方法
JPH09286859A (ja) ポリイミド樹脂及び該樹脂を用いたフィルム接着剤の製造方法
JPH1095958A (ja) 半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18924685

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18924685

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP