WO2023178902A1 - Procédé pour la récupération de tungstate soluble dans des déchets contenant du tungstène - Google Patents

Procédé pour la récupération de tungstate soluble dans des déchets contenant du tungstène Download PDF

Info

Publication number
WO2023178902A1
WO2023178902A1 PCT/CN2022/108808 CN2022108808W WO2023178902A1 WO 2023178902 A1 WO2023178902 A1 WO 2023178902A1 CN 2022108808 W CN2022108808 W CN 2022108808W WO 2023178902 A1 WO2023178902 A1 WO 2023178902A1
Authority
WO
WIPO (PCT)
Prior art keywords
tungsten
containing waste
leachate
solution
alkali
Prior art date
Application number
PCT/CN2022/108808
Other languages
English (en)
Chinese (zh)
Inventor
冯浩
黄健
黄毅
谭少松
胡继承
Original Assignee
湖北绿钨资源循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖北绿钨资源循环有限公司 filed Critical 湖北绿钨资源循环有限公司
Publication of WO2023178902A1 publication Critical patent/WO2023178902A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/007Wet processes by acid leaching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/30Obtaining chromium, molybdenum or tungsten
    • C22B34/36Obtaining tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/008Wet processes by an alkaline or ammoniacal leaching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention belongs to the technical field of metal tungsten recycling, and specifically relates to a method for recycling soluble tungstate in tungsten-containing waste materials.
  • Tungsten is a rare strategic metal with a series of unique properties such as high melting point, high density, and low thermal expansion coefficient. It is widely used in national defense, aerospace, energy, mining and other fields. In recent years, due to the increased intensity of tungsten resource mining, tungsten reserves have been consumed too quickly, and the sustainable development of tungsten resources is facing new challenges. Therefore, it is of great significance to vigorously develop the efficient resource utilization of tungsten and tungsten alloy waste.
  • tungsten-containing scrap With the continuous innovation in the production technology and application fields of tungsten-containing products, tungsten-containing scrap has gradually become complex and diverse. More than 50% of the world's tungsten resources are used to make cemented carbide, and the tungsten content in scrap cemented carbide has Reaching 74 ⁇ 91%.
  • the methods for separating and recovering metals in tungsten-containing scrap include inorganic acid leaching, chlorination, zinc fusion, oxidation-reduction, etc.
  • tungsten-containing waste materials have gradually become complex and diverse.
  • tungsten-containing scraps such as scrap cemented carbide through a selective acid dissolution process
  • the purpose of the present invention is to efficiently recover a small amount of tungsten in the leachate obtained from acid-soluble tungsten-containing waste, thereby improving the efficient resource utilization of complex tungsten-containing waste, promoting the separation of tungsten and cobalt, and obtaining good economic benefits. and environmental benefits.
  • a method for recycling soluble tungstate in tungsten-containing waste materials including the following steps:
  • the reagent used to adjust the pH in step S2 is an inorganic base or an organic base. It can be understood that the reagent used to adjust the pH is an alkaline solvent that does not precipitate with tungsten, including but not limited to NaOH, KOH, Na 2 CO 3 , NH 3 ⁇ H 2 O, etc.
  • the calcination temperature in step S3 is 300-900°C, more preferably, the calcination temperature is 300-700°C; it can be understood that the calcination time can be adjusted according to the amount of materials used.
  • the alkali leaching process in step S3 is specifically: adding the sintered material into the alkali solution and reacting at 50-100°C; more preferably, reacting at 70-100°C.
  • the alkali leaching reaction time can be set according to the actual situation.
  • the alkali solution is an alkaline solution that does not precipitate with tungsten, including but not limited to NaOH, KOH or a mixture of the two, and the concentration of the alkali solution is 30-180g/L; more preferably, the alkali solution The concentration of alkali solution is 60 ⁇ 180g/L.
  • tungsten-containing waste usually also contains impurity elements such as Fe, Ni, Cu, and Al, which will enter the leachate during the acid leaching process; the present invention utilizes this feature to precipitate the above metal ions to form corresponding Fe(OH) 3 , Ni(OH) 2, etc. precipitate, through the flocculation of this type of precipitation, the tungsten (existing in the form of tungstate, tungsten-containing heteropolyacid, etc.) in the leachate is captured and adsorbed, and the tungsten in the leachate is of tungsten is fixed in the precipitate.
  • impurity elements such as Fe, Ni, Cu, and Al
  • the filter residue obtained from alkali leaching can be added to the leachate as a flocculant for recycling.
  • the recycling method of the present invention has low cost, good recycling effect and is green and environmentally friendly, and provides technical guidance for the industrial recycling of complex tungsten-containing waste materials.
  • the invention provides a method for recycling soluble tungstate in tungsten-containing waste materials. The specific steps are:
  • the process is specifically as follows: take 500g of scrap cemented carbide and place it in a 2L beaker, add 1L of sulfuric acid, acetic acid, nitric acid or their mixed acid (5M) to perform acid leaching of cobalt under stirring conditions. After reacting for 12 hours, filter to obtain the dissolved cobalt liquid (i.e. leachate). Since scrap cemented carbide contains a variety of metal elements, the leachate obtained by the present invention also contains Fe, Ni, Cu, Al and other metal elements in addition to Co and W.
  • the obtained filter residue can be re-added to the leachate in step (1) as a flocculant for recycling. Moreover, tests have proven that within the same pH adjustment range, the removal rate of W in the leachate is significantly increased, indicating that the impurity phase contained in the leachate can be recycled as a flocculant to realize the resource utilization of soluble tungstate.
  • the tungsten extraction effects are 50%, 82%, 88%, 98%, 98.2% and 98.5% respectively (the difference between the original cobalt content in the leachate and the tungsten content in the filter residue obtained from alkali leaching/the original cobalt content in the leachate, when adsorbed by default All the tungsten in the leachate has been flocculated). It shows that as the alkali content increases, the tungsten extraction effect of the flocculant gradually increases. When the alkalinity rises to 120g/L, the tungsten extraction effect changes little.
  • the tungsten extraction rates are respectively: 55%, 64%, 80%, 98.6, 99% and 99.1% (the calculation method is the same as in Example 2). It shows that increasing the alkali boiling temperature is beneficial to the leaching of tungsten, and the optimal alkali boiling temperature is 70 to 100°C.
  • the tungsten extraction rates are 80%, 90%, 85% and 60% respectively (the calculation method is the same as in Example 2), indicating that after the tungsten-containing slag is sintered at 300-700°C, the flocculant structure is destroyed and the adsorbed tungsten-containing slag is released. Heteropolyacid, and then extract tungsten through alkali leaching, and the sintering temperature of 900°C is too high, forming complex compounds between some tungsten and metal elements (such as iron, copper, etc.), thus reducing the subsequent tungsten extraction effect by alkali boiling.
  • the adsorption of soluble tungsten through the flocculation precipitation generated in the leachate can effectively reduce the tungsten in the leachate; then through sintering and alkali leaching, the tungsten is separated from the precipitation to achieve efficient recovery of tungsten resources.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

L'invention divulgue un procédé pour la récupération de tungstate soluble dans des déchets contenant du tungstène, comprenant les étapes spécifiques consistant à : lixivier les déchets contenant du tungstène à l'aide d'une solution acide pour obtenir un lixiviat contenant du tungstène, ajuster la valeur de pH du lixiviat à 2 à 14 de telle sorte qu'un précipité qui adsorbe le tungstène soit produit dans le lixiviat, filtrer pour obtenir un laitier contenant du tungstène, calciner le laitier contenant du tungstène, et réaliser ensuite une lixiviation alcaline sur un matériau fritté. Selon le procédé, une petite quantité de tungstène dans un lixiviat acide peut être efficacement récupérée, ce qui améliore l'utilisation efficace des ressources de déchets complexes contenant du tungstène.
PCT/CN2022/108808 2022-03-22 2022-07-29 Procédé pour la récupération de tungstate soluble dans des déchets contenant du tungstène WO2023178902A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210284923.9 2022-03-22
CN202210284923.9A CN114921649B (zh) 2022-03-22 2022-03-22 一种回收含钨废料中可溶性钨酸盐的方法

Publications (1)

Publication Number Publication Date
WO2023178902A1 true WO2023178902A1 (fr) 2023-09-28

Family

ID=82804732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/108808 WO2023178902A1 (fr) 2022-03-22 2022-07-29 Procédé pour la récupération de tungstate soluble dans des déchets contenant du tungstène

Country Status (2)

Country Link
CN (1) CN114921649B (fr)
WO (1) WO2023178902A1 (fr)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4741886A (en) * 1986-10-24 1988-05-03 Gte Products Corporation Process for recovering tungsten from tungsten bearing material containing arsenic
CN101177303A (zh) * 2007-11-02 2008-05-14 北京有色金属研究总院 一种从钨酸盐溶液中除钼、砷、锑、锡的方法
CN101643848A (zh) * 2009-09-04 2010-02-10 中南大学 从钨酸盐溶液中除去钒的方法
RU2427657C1 (ru) * 2010-03-11 2011-08-27 Лидия Алексеевна Воропанова Селективное извлечение вольфрама ( vi ) из растворов катионов тяжелых металлов
CN105502500A (zh) * 2014-09-25 2016-04-20 中国石油化工股份有限公司 一种工业钼酸铵的提纯方法
JP2016089219A (ja) * 2014-11-05 2016-05-23 日清鋼業株式会社 タングステンの回収方法
CN110093511A (zh) * 2019-05-29 2019-08-06 湖南长宏新能源材料有限责任公司 一种处理危险废物—钨渣并回收有价金属的全封闭工艺
CN110156084A (zh) * 2019-06-04 2019-08-23 赣州市海龙钨钼有限公司 一种采用硬质合金废料生产仲钨酸铵的工艺方法
CN113454248A (zh) * 2019-02-25 2021-09-28 三菱综合材料株式会社 钨的回收方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5796716B2 (ja) * 2012-03-17 2015-10-21 三菱マテリアル株式会社 コバルト含有液の不純物除去方法
CN113387387A (zh) * 2021-08-03 2021-09-14 崇义章源钨业股份有限公司 一种利用含钨废料短流程制备钨酸钠溶液的方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4741886A (en) * 1986-10-24 1988-05-03 Gte Products Corporation Process for recovering tungsten from tungsten bearing material containing arsenic
CN101177303A (zh) * 2007-11-02 2008-05-14 北京有色金属研究总院 一种从钨酸盐溶液中除钼、砷、锑、锡的方法
CN101643848A (zh) * 2009-09-04 2010-02-10 中南大学 从钨酸盐溶液中除去钒的方法
RU2427657C1 (ru) * 2010-03-11 2011-08-27 Лидия Алексеевна Воропанова Селективное извлечение вольфрама ( vi ) из растворов катионов тяжелых металлов
CN105502500A (zh) * 2014-09-25 2016-04-20 中国石油化工股份有限公司 一种工业钼酸铵的提纯方法
JP2016089219A (ja) * 2014-11-05 2016-05-23 日清鋼業株式会社 タングステンの回収方法
CN113454248A (zh) * 2019-02-25 2021-09-28 三菱综合材料株式会社 钨的回收方法
CN110093511A (zh) * 2019-05-29 2019-08-06 湖南长宏新能源材料有限责任公司 一种处理危险废物—钨渣并回收有价金属的全封闭工艺
CN110156084A (zh) * 2019-06-04 2019-08-23 赣州市海龙钨钼有限公司 一种采用硬质合金废料生产仲钨酸铵的工艺方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LYU YING, SUN FANG: "Study of Separation of Tungsten and Molybdenum from High W-containing Molybdate Acid Sodium Solution by Fe(OH)3 Adsorption", XIYOU-JINSHU-YU-YINGZHI-HEJIN = RARE METALS AND CEMENTED CARBIDES, CHANGSHA YOUSE YEJIN SHEJI YANJIUYUAN, CN, vol. 33, no. 3, 30 September 2005 (2005-09-30), CN , pages 1 - 3, XP093094428, ISSN: 1004-0536 *

Also Published As

Publication number Publication date
CN114921649B (zh) 2023-11-10
CN114921649A (zh) 2022-08-19

Similar Documents

Publication Publication Date Title
CN102206755B (zh) 一种从钕铁硼废料中分离回收有价元素的方法
CN102244309B (zh) 一种从电动汽车锂系动力电池中回收锂的方法
CN108751259B (zh) 一种含钨废料生产偏钨酸铵的方法及其装置
CN104911359A (zh) 一种从锰废渣中提取钴和镍的工艺方法
CN102212697A (zh) 钨渣处理方法
CN101186969B (zh) 一种从合金中分离稀土、铁、铜、钴和钨的方法
Zheng et al. Selective recovery of Cr from electroplating nanosludge via crystal modification and dilute acid leaching
CN103290224A (zh) 钨渣中有价金属的回收工艺
CN106048231A (zh) 废旧钽电容器中回收钽、银、镍和铁的方法
JP2011179038A (ja) 超硬合金スクラップからタングステンを回収する方法。
CN108950199A (zh) 一种利用硫化镍钴矿制备用于合成三元前驱体的镍钴溶液的方法
CN102888515A (zh) 一种黄钠铁矾渣的综合利用方法
CN102304620A (zh) 一种废旧镍氢电池综合回收处理方法
CN110512095A (zh) 一种从钨冶金磷砷渣中提取和稳定砷的方法
CN104745821A (zh) 基于酸洗污泥中回收镍、铜金属的方法
CN110205493B (zh) 钴渣与镍钼矿混合浸出提取钴、镍的方法
CN101693554A (zh) 石煤矿提取五氧化二钒的方法
CN106757156B (zh) 一种从含Re高温合金废料中回收Re的方法
CN105734293A (zh) 一种高品位铅冰铜资源综合回收工艺
CN117758080A (zh) 一种钛白废酸和碱沉废渣协同提钪的方法
CN105110300A (zh) 一种含硫化锰的复合锰矿提取锰及硫的方法
CN1952187A (zh) 从废旧硬质合金中提取金属钨和其他稀有金属的方法
CN114875252B (zh) 一种含钨废料的回收方法
WO2023178902A1 (fr) Procédé pour la récupération de tungstate soluble dans des déchets contenant du tungstène
CN115404362A (zh) 一种从钨渣中高效分离回收钨的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22932954

Country of ref document: EP

Kind code of ref document: A1