WO2023174028A1 - 一种高镍多元正极材料、其制备方法及其应用 - Google Patents

一种高镍多元正极材料、其制备方法及其应用 Download PDF

Info

Publication number
WO2023174028A1
WO2023174028A1 PCT/CN2023/077830 CN2023077830W WO2023174028A1 WO 2023174028 A1 WO2023174028 A1 WO 2023174028A1 CN 2023077830 W CN2023077830 W CN 2023077830W WO 2023174028 A1 WO2023174028 A1 WO 2023174028A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
component
nickel
nickel multi
cathode material
Prior art date
Application number
PCT/CN2023/077830
Other languages
English (en)
French (fr)
Inventor
叶射稳
王碧军
于建
孙辉
马捷
杨平
Original Assignee
宁波容百新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波容百新能源科技股份有限公司 filed Critical 宁波容百新能源科技股份有限公司
Publication of WO2023174028A1 publication Critical patent/WO2023174028A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0416Methods of deposition of the material involving impregnation with a solution, dispersion, paste or dry powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the technical field of lithium-ion batteries, and in particular to a high-nickel multi-component positive electrode material, its preparation method and its application.
  • High-nickel multi-component cathode materials have many problems similar to LiNiO 2 that have not yet been resolved, such as cation mixing, poor thermal safety performance, high residual alkali, and strains and microcracks in secondary particles.
  • Doping and coating strategies have been widely used to modify high-nickel multi-component cathode materials. Bulk doping helps stabilize the crystal structure and improve reaction kinetics, while surface coating helps inhibit side reactions and accelerate the transport of lithium ions.
  • the MO bond formed by high-valence cations M represents W, V, Nb, Ta
  • M represents W, V, Nb, Ta
  • the stronger binding of MO helps inhibit oxygen release, thereby improving structural stability.
  • the Chinese patent with publication number CN111490234A adds the positive electrode material to the water wash solution containing the coating agent, which can effectively remove the residual alkali and obtain a fully covered coating layer.
  • such methods usually achieve surface coating through heterogeneous precipitation reactions.
  • high-nickel materials have high pH and long batch production feeding times, so the coating uniformity is poor in actual mass production.
  • the technical problem solved by the present invention is to provide a high-nickel multi-component cathode material and a preparation method thereof.
  • the high-nickel multi-component cathode material provided by the application has high slurry stability, cycle stability and thermal safety performance.
  • the present application provides a high-nickel multi-component cathode material, which is composed of particles with general formula (I) and a high-valent lithium metal oxide compound coated on the surface of the particles, Li 1+k Me 1-k O 2 (I);
  • Me' is selected from one or two kinds of Mn and Al, R is selected from Mg, Ti, B, Ba, One or more of Sr, Zr, Y and Na;
  • the high-valent metal ions in the high-valent lithium metal oxide compound are cations with no electrons in the outermost d orbital and a valence state of not less than +5.
  • the high-valent metal ion is selected from one or more of Nb 5+ , Mo 6+ , Ta 5+ and W 6+ .
  • the average particle size of the high-nickel multi-component cathode material is 5-20 ⁇ m, and the specific surface area is 0.2-1.5 m 2 /g.
  • the content of the high-valent metal ions is 0.05 to 1 wt%.
  • This application also provides a preparation method of the high-nickel multi-component cathode material, which includes the following steps:
  • the primary filter cake is poured and filtered with an alkali solution containing high-valent metal ions, and solid-liquid separation is performed again to obtain a secondary filter cake;
  • the secondary filter cake is dried and then heat-treated to obtain a high-nickel multi-component cathode material; Li 1+k Me 1-k O 2 (I);
  • Me' is selected from one or two kinds of Mn and Al, R is selected from Mg, Ti, B, Ba, One or more of Sr, Zr, Y and Na;
  • the high-valent metal ions are cations with a valence state of not less than +5 and without electrons in the outermost d orbital.
  • the moisture content of the primary filter cake is 0.05-30wt%
  • the moisture content of the secondary filter cake is 0.05-20wt%.
  • the concentration of high-valent metal ions is 0.05-3 mol/L, and the concentration of the alkali solution is 1-6 times the concentration of high-valent metal ions.
  • the base in the alkaline solution is selected from ammonia water, lithium carbonate or lithium hydroxide.
  • the drying temperature is 50-300°C
  • the heat treatment atmosphere is an atmosphere with a carbon dioxide gas concentration not exceeding 1 wt%
  • the heat treatment temperature is 150-800°C
  • the heat treatment time is 5-36 hours.
  • This application also provides a lithium ion battery, including a positive electrode material and a negative electrode material.
  • the positive electrode material is the high-nickel multi-component positive electrode material or the high-nickel multi-component positive electrode material prepared by the preparation method.
  • This application provides a high-nickel multi-component cathode material, which is composed of Li 1+k Me 1-k O 2 particles and a high-valent lithium metal oxide compound coated on the surface of the particles; the primary particles of the cathode material of this application and Uniform high-valent lithium metal oxide compounds are formed on the surface of the secondary particles, and the high-valent cation-O bonds in them can inhibit the release of oxygen and improve the thermal stability of the material.
  • this application also provides a method for preparing a high-nickel multi-component cathode material, which uses alkali-soluble coating metal salt liquid to evenly cover the wettable interface of the cathode material.
  • this method Wet coating has better uniformity and can coat the internal grain boundaries of secondary particles, improving the slurry stability of the cathode material.
  • the method provided by this application can independently control the water washing parameters, avoid the problems of overwashing or uneven coating of the positive electrode material, and can balance various aspects such as material capacity, circulation and safety. Electrochemical properties.
  • Figure 1 is an SEM photograph of the surface-modified high-nickel multi-component material prepared in Example 1 and Comparative Examples 1 and 2 of the present invention.
  • this application provides a high-nickel multi-component cathode material, in which the surfaces of the primary particles and secondary particles of the cathode material are coated with high-valence cationic compounds.
  • this high-nickel multi-component cathode material has high slurry stability, cycle stability and thermal safety.
  • embodiments of the present invention disclose a high-nickel multi-component cathode material, which is composed of particles with general formula (I) and a high-valent lithium metal oxide compound coating the surface of the particles. Li 1+k Me 1-k O 2 (I);
  • Me' is selected from one or two kinds of Mn and Al, R is selected from Mg, Ti, B, Ba, One or more of Sr, Zr, Y and Na;
  • the high-valent metal ions in the high-valent lithium metal oxide compound are cations with no electrons in the outermost d orbital and a valence state of not less than +5.
  • the high-valent metal ions are selected from one or more of Nb 5+ , Mo 6+ , Ta 5+ and W 6+ ; more specifically, the high-valent metal ions are selected from Nb 5+ , Mo 6+ , Ta 5+ or W 6+ .
  • the high-valent metal ions will affect the gas production and cycle performance of high-nickel multi-component cathode materials; high-valent metal ion MO bonds (M represents Nb, Mo, Ta or W) usually have higher properties than the transition metal Me-O bonds in cathode materials.
  • the bond strength, MO contributes to the overall Me-O covalency, inhibits oxygen release, and thereby improves the structural stability of the cathode material.
  • the average particle size of the high-nickel multi-component cathode material is 5 to 20 ⁇ m, and the specific surface area is 0.2 to 1.5 m 2 /g; more specifically, the high nickel multi-component cathode material has The average particle size is 8 to 12 ⁇ m, and the specific surface area is 0.25 to 1.3 m 2 /g.
  • the content of the high-valent metal ions is 0.05 to 1 wt%; more specifically, the content of the high-valent metal ions is 0.20 to 0.80 wt%.
  • This application also provides a preparation method of the high-nickel multi-component cathode material, which includes the following steps:
  • the primary filter cake is poured and filtered with an alkali solution containing high-valent metal ions, and solid-liquid separation is performed again to obtain a secondary filter cake;
  • the secondary filter cake is dried and then heat-treated to obtain a high-nickel multi-component cathode material; Li 1+k Me 1-k O 2 (I);
  • Me' is selected from one or two kinds of Mn and Al, R is selected from Mg, Ti, B, Ba, One or more of Sr, Zr, Y and Na;
  • the high-valent metal ions are cations with a valence state of not less than +5 and without electrons in the outermost d orbital.
  • this application first mixes the initial cathode material with water, and then separates the solid and liquid after washing with water to obtain a primary filter cake; in this process, the general formula of the initial cathode material is as follows: (I ), the preparation method is according to a method well known to those skilled in the art, and the present application has no special restrictions on this.
  • the water-to-material ratio of the initial cathode material and water is 0.5:1 to 5:1, and more specifically, the water-to-material ratio (volume) ratio is 0.8:1 to 2:1.
  • the water washing time is 30s to 30min, more specifically, the water washing time is 1min to 15min.
  • the equipment for solid-liquid separation is well known to those skilled in the art, and can be specifically performed in suction filtration equipment, centrifugal equipment or filter press equipment.
  • the moisture content of the primary filter cake is 0.05-30wt%, more specifically, the moisture content of the primary filter cake is 2-15wt%.
  • the moisture content of the primary filter cake will affect the coating amount of the coating.
  • the moisture content of the secondary filter cake is constant, if the moisture content of the primary filter cake is too high, the concentration of the coating liquid will decrease and the coating amount will decrease. On the contrary, the coating amount increases.
  • the application pours the primary filter cake into an alkali solution containing high-valent metal ions, and separates the solid and liquid again to obtain a secondary filter cake; during this process, high-valent metal acid radicals are formed in the alkali solution containing high-valent alkali metal ions.
  • Ions such as MoO 3 +2OH - ⁇ MoO 4 2- +H 2 O, 2OH - +WO 3 ⁇ WO 4 2- +H 2 O
  • the concentration of the high-valent metal ions is 0.05 ⁇ 3mol/L, more specifically Ground, the concentration of the high-valent metal ions is 0.1 ⁇ 1mol/L. This concentration will affect the thickness of the coating layer and thus affect the performance of the multi-element cathode material.
  • the concentration of the alkali solution is high-valent metal ions 1 to 6 times the concentration, more specifically, the concentration of the alkali solution is 1 to 4 times the concentration of high-valent metal ions; the alkali concentration being too high will lead to an increase in the residual lithium content of the positive electrode, which is not conducive to the viscosity stability of the positive electrode pulping.
  • the base of the alkali solution described in this application is preferably a base that does not bring cationic impurities, and more specifically can be selected from ammonia water, lithium carbonate or lithium hydroxide.
  • the moisture content of the secondary filter cake is 0.05-20wt%, more specifically, the moisture content of the secondary filter cake is 1-12wt%. The moisture content of the secondary filter cake will directly affect the thickness of the coating layer.
  • the thickness of the coating layer will increase, affecting the deintercalation of lithium ions during the charge and discharge process, resulting in a reduction in capacity, and is not conducive to improving the drying efficiency; if The concentration is too low and the coating layer is too thin, resulting in weak protective effect and worsening the gas production and cycle performance of the cathode material.
  • the secondary filter cake is dried and then heat-treated to obtain a high-nickel multi-component cathode material.
  • the initial coating of the cathode material is achieved, that is, the metal acid ions in the coating liquid remaining in the secondary filter cake and
  • the residual lithium on the surface of the multi-element positive electrode material or the dehydration crystallization of lithium ions in the coating alkali solution forms a high-valent lithium metal oxide compound.
  • This coating is formed not only on the surface of the secondary particles, but also on the surface of the primary particles.
  • the drying equipment is conventional drying equipment in this field, but it can be fully mixed and dried without destroying the structure of the cathode material.
  • the drying temperature is 50-300°C, more specifically, the drying temperature is 100-250°C.
  • the heat treatment is carried out in an atmosphere with a carbon dioxide gas concentration not exceeding 1 wt%, preferably in an oxygen or vacuum environment; the temperature of the heat treatment is 150 to 800°C, and the time is 5 to 36 hours. More specifically, the heat treatment is The temperature is 200 ⁇ 600°C and the time is 10h ⁇ 24h.
  • This application also provides a lithium ion battery, which includes a positive electrode material and a negative electrode material, wherein the positive electrode material is the high-nickel multi-component positive electrode material described in the above solution.
  • the primary sintering cathode material powder base material is obtained by mixing nickel composite hydroxide and lithium hydroxide and firing in an oxygen atmosphere. It is represented by Li 1.025 Ni 0.90 Co 0.06 Al 0.04 O 2.
  • the average particle size of this high-nickel cathode powder is 10.6 ⁇ m, with a specific surface area of 0.28m 2 /g; wash 500g of primary sintered cathode material and deionized water at a weight ratio of 1:1 for 10 minutes, and filter and dehydrate the material liquid through a Buchner suction flask for 30 minutes to obtain the moisture content.
  • a tungsten-containing base with a tungsten concentration of 0.50 mol/L was formed by adding 17.38 g of tungsten oxide (WO 3 ) to an aqueous solution formed by dissolving 6.30 g of lithium hydroxide (LiOH ⁇ H 2 O) in 150 mL of pure water. solution. Except for this, a multi-component high nickel material was obtained in the same manner as in Example 1.
  • a multi-component high nickel material was obtained in the same manner as in Example 1 except that the heat treatment temperature was 550°C.
  • a multi-component high nickel material was obtained in the same manner as in Example 1 except that the moisture content of the secondary filter cake was controlled to 16 wt%.
  • niobium concentration formed by adding 4.98g of niobium pentoxide (Nb 2 O 5 ) to an aqueous solution formed by dissolving 4.72g of lithium hydroxide (LiOH ⁇ H 2 O) in 150 mL of pure water was 0.25 mol/L.
  • niobium-containing alkali solution was obtained in the same manner as in Example 1.
  • vanadium concentration formed by adding 3.41g of vanadium pentoxide (V 2 O 5 ) to an aqueous solution formed by dissolving 4.72g of lithium hydroxide (LiOH ⁇ H 2 O) in 150 mL of pure water was 0.25 mol/L. vanadium-containing alkali solution. Except for this, a multi-component high nickel material was obtained in the same manner as in Example 1.
  • tantalum pentoxide Ti 2 O 5
  • LiOH ⁇ H 2 O lithium hydroxide
  • the tantalum concentration was 0.25 mol/L. Tantalum-containing alkali solution. Except for this, a multi-component high nickel material was obtained in the same manner as in Example 1.
  • Example 1 a multi-component high nickel material was obtained in the same manner as in Example 1.
  • tungsten oxide (WO 3 ) was added to an aqueous solution formed by dissolving 12.60g of lithium hydroxide (LiOH ⁇ H 2 O) in 150mL of pure water.
  • the tungsten concentration formed was 0.25mol/L, and the alkali concentration was 0.25mol/L. 2.00mol/L tungsten-containing alkali solution. Except for this, a multi-component high nickel material was obtained in the same manner as in Example 1.
  • Example 1 By shortening the first stage of suction filtration time, a primary filter cake with a moisture content of 35wt% was obtained. Except for this, a multi-component high nickel material was obtained in the same manner as in Example 1.
  • Figure 1 is an SEM photo of a surface-modified high-nickel multi-component material prepared in Example 1 and Comparative Examples 1 and 2 of the present invention. It can be seen from the figure that the method of Example 1 of the present invention can be used to produce high-nickel multi-component materials in one pass. A uniform film-like coating is formed on the surface of the particles and secondary particles. Compared with the traditional dry coating of Comparative Example 2 in the figure, the uniformity and coating area are significantly improved. Combining Table 1 and Figure 1, the results show that the fast ion conductive film fully covering the surface of high-nickel multi-component materials has greatly improved lithium ion transmission and enhanced thermal stability of the material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明提供了一种高镍多元正极材料,由具有通式Li1+kMe1-kO2的颗粒和包覆于所述颗粒表面的高价金属酸锂化合物组成,所述高价金属酸锂化合物中的高价金属离子为最外层d轨道上没有电子的不小于+5价态的阳离子。本申请还提供了一种高镍多元正极材料及其应用。本申请提供的高镍多元正极材料具有高浆料稳定性、循环稳定性和热安全性能,由此平衡了其作为锂离子电池正极材料各方面的电化学性能。

Description

一种高镍多元正极材料、其制备方法及其应用
本申请要求于2022年03月17日提交中国专利局、申请号为202210262675.8、发明名称为“一种高镍多元正极材料、其制备方法及其应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及锂离子电池技术领域,尤其涉及一种高镍多元正极材料、其制备方法及其应用。
背景技术
随着新能源汽车续航里程和成本要求的提高,高镍多元正极材料因具有高能量密度和低成本已成为当前重要的研究热点。
高镍多元正极材料存在很多与LiNiO2类似的问题仍未解决,例如:阳离子混排、热安全性能差、残碱高、二次粒子中的应变与微裂纹。掺杂和包覆策略已被广泛用于改性高镍多元正极材料。体相掺杂有助于稳定晶体结构并改善反应动力学,而表面包覆有助于抑制发生副反应和加速锂离子的传输,其中高价态的阳离子形成的M-O键(M代表W、V、Nb、Ta)通常比TM-O键具有更高的键强,M-O的更强结合有助于抑制氧释放,从而提高结构稳定性。
目前实验室开发了许多包覆方法,包括物理混合、液相、液相沉淀、溶胶-凝胶法、化学气相沉积(CVD)、水热法以及原子层沉积(ALD)等,但正极产业化受限于大批量生产要求以及成本控制,目前国内外高镍多元正极厂商的表面包覆方法仍集中在包覆剂与母材干法物理混合法,该方法虽然简单且成本较低,但改性后正极表面实际覆盖率较低,常因未改性活性面裸露导致出现电池浆料粘度不稳定、产气严重、循环内阻高和热稳定性差等问题。
公开号为CN111490234A的中国专利通过将正极材料加入含包覆剂的水洗液,既可以有效除残碱也可以得到全覆盖的包覆层。但此类方法通常通过非均相沉淀反应来实现表面包覆,而高镍材料pH高且大批量生产加料时间较长,在实际大批量生产中包覆均匀性较差。
再如公开号为CN112174221A的中国专利通过添加络合剂来缓慢释放包覆剂金属离子来提高包覆物包覆均匀性,但该法需要较长的包覆时间,易造成材料与溶剂长时间接触,导致材料结构锂溶出,从而造成电池容量的损失和内阻上升。
因此,提供一种表面结构稳定的高镍正极材料及其制备方法,以提高其综合性能具有重要意义。
发明内容
本发明解决的技术问题在于提供一种高镍多元正极材料及其制备方法,本申请提供的高镍多元正极材料具有高浆料稳定性、循环稳定性和热安全性能。
有鉴于此,本申请提供了一种高镍多元正极材料,由具有通式(Ⅰ)的颗粒和包覆于所述颗粒表面的高价金属酸锂化合物组成,
Li1+kMe1-kO2         (Ⅰ);
其中,-0.03≤k≤0.10,Me=NicMe'dCoeRf
0.80≤c≤1,0.00≤d≤0.20,0.05≤e≤0.20,0≤f≤0.05,Me'选自Mn和Al中的一种或两种,R选自Mg、Ti、B、Ba、Sr、Zr、Y和Na中的一种或多种;
所述高价金属酸锂化合物中的高价金属离子为最外层d轨道上没有电子的不小于+5价态的阳离子。
优选的,所述高价金属离子选自Nb5+、Mo6+、Ta5+和W6+的一种或多种。
优选的,所述高镍多元正极材料的平均粒径为5~20μm,比表面积为0.2~1.5m2/g。
优选的,所述高镍多元正极材料中,所述高价金属离子的含量为0.05~1wt%。
本申请还提供了所述的高镍多元正极材料的制备方法,包括以下步骤:
将具有通式(Ⅰ)的初始正极材料与水混合,水洗后固液分离,得到一次滤饼;
将所述一次滤饼浇滤含高价金属离子的碱溶液,再次固液分离,得到二次滤饼;
将所述二次滤饼烘干后热处理,得到高镍多元正极材料;
Li1+kMe1-kO2      (Ⅰ);
其中,-0.03≤k≤0.10,Me=NicMe'dCoeRf
0.80≤c≤1,0.00≤d≤0.20,0.05≤e≤0.20,0≤f≤0.05,Me'选自Mn和Al中的一种或两种,R选自Mg、Ti、B、Ba、Sr、Zr、Y和Na中的一种或多种;
所述高价金属离子为最外层d轨道上没有电子的不小于+5价态的阳离子。
优选的,所述一次滤饼的含水率为0.05~30wt%,所述二次滤饼的含水率为0.05~20wt%。
优选的,所述含高价金属离子的碱溶液中,高价金属离子的浓度为0.05~3mol/L,碱溶液的浓度为高价金属离子的浓度的1~6倍。
优选的,所述碱溶液中的碱选自氨水、碳酸锂或氢氧化锂。
优选的,所述烘干的温度为50~300℃,所述热处理的气氛为二氧化碳气体浓度不超过1wt%的气氛,所述热处理的温度为150~800℃,时间为5~36h。
本申请还提供了一种锂离子电池,包括正极材料和负极材料,所述正极材料为所述的高镍多元正极材料或所述的制备方法所制备的高镍多元正极材料。
本申请提供了一种高镍多元正极材料,其由Li1+kMe1-kO2的颗粒和包覆于所述颗粒表面的高价金属酸锂化合物组成;本申请正极材料的一次颗粒和二次颗粒表面形成了均匀的高价金属酸锂化合物,其中的高价态阳离子-O键可抑制氧释放,提升了材料的热稳定性。
同时,本申请还提供了一种高镍多元正极材料的制备方法,其用溶于碱的包覆金属盐液均匀地覆盖正极材料的可浸润界面,相对于常规物理干混包覆,此种湿法包覆的均匀性更好,且能包覆二次颗粒内部晶界,改善了正极材料的浆料稳定性。进一步的,与传统湿法包覆相比,本申请提供的方法可单独控制水洗参数,避免了正极材料过洗或包覆不均匀的问题,可以平衡材料容量、循环及安全性等各方面的电化学性能。
附图说明
图1为本发明实施例1和比较例1、2制备的表面改性后的高镍多元材料的SEM照片。
具体实施方式
为了进一步理解本发明,下面结合实施例对本发明优选实施方案进行描述,但是应当理解,这些描述只是为进一步说明本发明的特征和优点,而不是对本发明权利要求的限制。
鉴于目前高镍正极材料表面结构不稳定而带来的一系列问题,本申请提供了一种高镍多元正极材料,其在正极材料的一次颗粒和二次颗粒表面均包覆有高价态阳离子化合物,该种高镍多元正极材料具有高浆料稳定性、循环稳定性和热安全性。具体的,本发明实施例公开了一种高镍多元正极材料,由具有通式(Ⅰ)的颗粒和包覆于所述颗粒表面的高价金属酸锂化合物组成,
Li1+kMe1-kO2      (Ⅰ);
其中,-0.03≤k≤0.10,Me=NicMe'dCoeRf
0.80≤c≤1,0.00≤d≤0.20,0.05≤e≤0.20,0≤f≤0.05,Me'选自Mn和Al中的一种或两种,R选自Mg、Ti、B、Ba、Sr、Zr、Y和Na中的一种或多种;
所述高价金属酸锂化合物中的高价金属离子为最外层d轨道上没有电子的不小于+5价态的阳离子。
在本申请中,所述高价金属离子选自Nb5+、Mo6+、Ta5+和W6+中的一种或多种;更具体地,所述高价金属离子选自Nb5+、Mo6+、Ta5+或W6+。所述高价金属离子会影响高镍多元正极材料的产气和循环性能;高价金属离子M-O键(M代表Nb、Mo、Ta或W)通常比正极材料中的过渡金属Me-O键具有更高的键强度,M-O有助于总的Me-O共价,抑制氧释放,从而提高正极材料的结构稳定性。
对于本申请所述高镍多元正极材料,所述高镍多元正极材料的平均粒径为5~20μm,比表面积为0.2~1.5m2/g;更具体地,所述高镍多元正极材料的平均粒径为8~12μm,比表面积为0.25~1.3m2/g。
所述高镍多元正极材料中,所述高价金属离子的含量为0.05~1wt%;更具体地,所述高价金属离子的含量为0.20~0.80wt%。
本申请还提供了所述的高镍多元正极材料的制备方法,包括以下步骤:
将具有通式(Ⅰ)的初始正极材料与水混合,水洗后固液分离,得到一次滤饼;
将所述一次滤饼浇滤含高价金属离子的碱溶液,再次固液分离,得到二次滤饼;
将所述二次滤饼烘干后热处理,得到高镍多元正极材料;
Li1+kMe1-kO2     (Ⅰ);
其中,-0.03≤k≤0.10,Me=NicMe'dCoeRf
0.80≤c≤1,0.00≤d≤0.20,0.05≤e≤0.20,0≤f≤0.05,Me'选自Mn和Al中的一种或两种,R选自Mg、Ti、B、Ba、Sr、Zr、Y和Na中的一种或多种;
所述高价金属离子为最外层d轨道上没有电子的不小于+5价态的阳离子。
在制备高镍多元正极材料的过程中,本申请首先将初始正极材料与水混合,水洗后固液分离,得到一次滤饼;在此过程中,所述初始正极材料的通式如式(Ⅰ)所示,其制备方法按照本领域技术人员熟知的方法制备,对此本申请没有特别的限制。所述初始正极材料与水的水料比为0.5:1~5:1,更具体地,所述水料比(体积)比为0.8:1~2:1。所述水洗的时间为30s~30min,更具体地,所述水洗的时间为1min~15min。所述固液分离的设备为本领域技术人员熟知的设备,具体可在抽滤设备、离心设备或压滤设备中进行。所述一次滤饼的含水率为0.05~30wt%,更具体地,所述一次滤饼的含水率为2~15wt%。所述一次滤饼的含水率会影响包覆物的包覆量,在二次滤饼含水率一定时,若一次滤饼含水率过高则将导致包覆液浓度降低,包覆量下降,反之包覆量升高。
然后本申请将所述一次滤饼浇滤含高价金属离子的碱溶液,再次固液分离,即得到二次滤饼;在此过程中,含高价碱金属离子的碱溶液中形成了高价金属酸根离子(如MoO3+2OH-→MoO4 2-+H2O、2OH-+WO3→WO4 2-+H2O);所述高价金属离子的浓度为0.05~3mol/L,更具体地,所述高价金属离子的浓度为0.1~1mol/L,该浓度会影响包覆层的厚度从而影响多元正极材料的性能,若浓度过高导致包覆层过厚,影响充放电过程锂离子脱嵌导致容量降低,若浓度过低,包覆层过薄,导致防护效果较弱,与正极残碱消耗量少,不利于正极制浆粘度稳定性;所述碱溶液的浓度为高价金属离子浓度的1~6倍,更具体地,所述碱溶液的浓度为高价金属离子浓度1~4倍;所述碱浓度过高将导致正极残余锂含量增加,不利于正极制浆粘度稳定性,碱浓度过低不利于高价金属氧化物的溶解,此外pH的降低也会加快正极在液相中的锂脱出,破坏其层状结构。 本申请中所述碱溶液的碱优选不带来阳离子杂质的碱,更具体地可以选自氨水、碳酸锂或氢氧化锂。所述二次滤饼的含水率为0.05~20wt%,更具体地,所述二次滤饼的含水率为1~12wt%。所述二次滤饼含水率将直接影响包覆层的厚度,含水率过高将导致包覆层厚度增加,影响充放电过程锂离子脱嵌导致容量降低,且不利于提升烘干效率;若浓度过低,包覆层过薄,导致防护效果较弱,恶化正极材料的产气和循环性能。
本申请最后将二次滤饼烘干后热处理,得到高镍多元正极材料,此过程中,实现了正极材料的初始包覆,即二次滤饼中残留的包覆液中的金属酸根离子和多元正极材料表面残锂或包覆碱液中锂离子脱水结晶形成了高价金属酸锂化合物,该包覆物不仅在二次颗粒表面形成,且在一次颗粒表面形成。所述烘干的设备为本领域常规的烘干设备,但其以不破坏正极材料结构的前提下充分地混合烘干即可,优选的为犁刀式干燥机、双锥干燥机或振动干燥机;所述烘干的温度为50~300℃,更具体地,所述烘干的温度为100~250℃。所述热处理在二氧化碳气体浓度不超过1wt%的气氛中进行,优选在氧气或真空环境中热处理;所述热处理的温度为150~800℃,时间为5~36h,更具体地,所述热处理的温度为200~600℃,时间为10h~24h。
本申请还提供了一种锂离子电池,其包括正极材料和负极材料,其中所述正极材料为上述方案所述的高镍多元正极材料。
为了进一步理解本发明,下面结合实施例对本发明提供的高镍多元正极材料、其制备方法及其应用进行详细说明,本发明的保护范围不受以下实施例的限制。
实施例1
一次烧结正极料粉末母材通过镍复合氢氧化物和氢氧化锂混合并在氧气气氛下烧成所得,用Li1.025Ni0.90Co0.06Al0.04O2表示,该高镍正极粉末的平均粒径为10.6μm,比表面积为0.28m2/g;将500g一次烧结正极料和去离子水以1:1重量比水洗10min,通过布氏抽滤瓶将料液进行抽滤脱水30min,得到含水率为10wt%的一次滤饼;将3.15g的氢氧化锂(LiOH·H2O)溶解于150mL的纯水中而形成的水溶液中添加8.69g的氧化钨(WO3)而形成的钨浓度为0.25mol/L的含钨碱溶液;将碱溶均匀浇滤在一次滤饼,并再进行抽滤,得到 含水率为8wt%的二次滤饼;再将二次滤饼放入双锥真空干燥机,以120℃干燥6h得到水洗烘干料;将烘干料在氧气气氛下,2℃/min加热至400℃,保温时间为10h,将热处理后的物料过325目筛即得到均匀包覆W的多元高镍材料。通过ICP法对所得到正极活性物质的组成进行分析,确认了W的含量为0.20wt%。
实施例2
将6.30g的氢氧化锂(LiOH·H2O)溶解于150mL的纯水中而形成的水溶液中添加17.38g的氧化钨(WO3)而形成的钨浓度为0.50mol/L的含钨碱溶液。除此以外,与实施例1相同地得到多元高镍材料。
实施例3
将热处理温度设为550℃,除此以外,与实施例1相同地得到多元高镍材料。
实施例4
将二次滤饼含水率控制在16wt%,除此以外,与实施例1相同地得到多元高镍材料。
实施例5
将4.72g的氢氧化锂(LiOH·H2O)溶解于150mL的纯水中而形成的水溶液中添加4.98g的五氧化二铌(Nb2O5)而形成的铌浓度为0.25mol/L的含铌碱溶液。除此以外,与实施例1相同地得到多元高镍材料。
实施例6
将4.72g的氢氧化锂(LiOH·H2O)溶解于150mL的纯水中而形成的水溶液中添加3.41g的五氧化二钒(V2O5)而形成的钒浓度为0.25mol/L的含钒碱溶液。除此以外,与实施例1相同地得到多元高镍材料。
实施例7
将1.57g的氢氧化锂(LiOH·H2O)溶解于150mL的纯水中而形成的水溶液中添加8.29g的五氧化二钽(Ta2O5)而形成的钽浓度为0.25mol/L的含钽碱溶液。除此以外,与实施例1相同地得到多元高镍材料。
比较例1
将150mL的纯水均匀浇滤在一次滤饼,并再进行抽滤,得到含水率为 8wt%的二次滤饼。除此以外,与实施例1相同地得到多元高镍材料。
比较例2
将500g分子式为Li1.025Ni0.90Co0.06Al0.04O2,平均粒径为10.6μm,比表面积为0.28m2/g的一次烧结正极料和去离子水以1:1重量比水洗10min,通过布氏抽滤漏斗将料液进行抽滤脱水30min,得到含水率为10wt%的一次滤饼;将150mL的纯水均匀浇滤在一次滤饼,并再进行抽滤,得到含水率为8wt%的二次滤饼;再将二次滤饼放入双锥真空干燥机,以120℃干燥6h得到水洗烘干料;向400g水洗烘干料中添加1.01g纳米氧化钨(WO3)和0.19g氢氧化锂(LiOH·H2O),并用高混机机械混合均匀;将纳米包覆的烘干料在氧气气氛下,2℃/min加热至400℃,保温时间为10h,将热处理后的物料过325目筛即为均匀包覆W的多元高镍材料。通过ICP法对所得到正极活性物质的组成进行分析,确认了W的含量为0.20wt%。
比较例3
将12.60g的氢氧化锂(LiOH·H2O)溶解于150mL的纯水中而形成的水溶液中添加8.69g的氧化钨(WO3)而形成的钨浓度为0.25mol/L,碱浓度为2.00mol/L的含钨碱溶液。除此以外,与实施例1相同地得到多元高镍材料。
比较例4
通过减短第一段抽滤时间得到含水率为35wt%的一次滤饼。除此以外,与实施例1相同地得到多元高镍材料。
比较例5
通过减短第二段抽滤时间得到含水率为25wt%的二次滤饼。除此以外,与实施例1相同地得到多元高镍材料。
将上述的实施例和比较例样采用相同的测试条件进行物化性质测试以及电化学测试,测试结果如下表1中所示。
表1实施例与比较例的理化及电性能对比表


图1为本发明实施例1和比较例1、2制备的表面改性后的高镍多元材料的SEM照片;由图中可知,采用本发明所述实施例1方法可以在高镍多元材料一次颗粒及二次颗粒表面形成均匀的薄膜状包覆物,相比图中比较例2的传统干法包覆均匀性和包覆面积都有明显提升。结合表1和图1,结果表明高镍多元材料表面全包覆快离子导电膜在锂离子传输、增强材料热稳定性方面都有较大提升。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种高镍多元正极材料,由具有通式(Ⅰ)的颗粒和包覆于所述颗粒表面的高价金属酸锂化合物组成,
    Li1+kMe1-kO2    (Ⅰ);
    其中,-0.03≤k≤0.10,Me=NicMe'dCoeRf
    0.80≤c≤1,0.00≤d≤0.20,0.05≤e≤0.20,0≤f≤0.05,Me'选自Mn和Al中的一种或两种,R选自Mg、Ti、B、Ba、Sr、Zr、Y和Na中的一种或多种;
    所述高价金属酸锂化合物中的高价金属离子为最外层d轨道上没有电子的不小于+5价态的阳离子。
  2. 根据权利要求1所述的高镍多元正极材料,其特征在于,所述高价金属离子选自Nb5+、Mo6+、Ta5+和W6+的一种或多种。
  3. 根据权利要求1所述的高镍多元正极材料,其特征在于,所述高镍多元正极材料的平均粒径为5~20μm,比表面积为0.2~1.5m2/g。
  4. 根据权利要求1所述的高镍多元正极材料,其特征在于,所述高镍多元正极材料中,所述高价金属离子的含量为0.05~1wt%。
  5. 权利要求1所述的高镍多元正极材料的制备方法,包括以下步骤:
    将具有通式(Ⅰ)的初始正极材料与水混合,水洗后固液分离,得到一次滤饼;
    将所述一次滤饼浇滤含高价金属离子的碱溶液,再次固液分离,得到二次滤饼;
    将所述二次滤饼烘干后热处理,得到高镍多元正极材料;
    Li1+kMe1-kO2   (Ⅰ);
    其中,-0.03≤k≤0.10,Me=NicMe'dCoeRf
    0.80≤c≤1,0.00≤d≤0.20,0.05≤e≤0.20,0≤f≤0.05,Me'选自Mn和Al中的一种或两种,R选自Mg、Ti、B、Ba、Sr、Zr、Y和Na中的一种或多种;
    所述高价金属离子为最外层d轨道上没有电子的不小于+5价态的阳离子。
  6. 根据权利要求5所述的制备方法,其特征在于,所述一次滤饼的含水率为0.05~30wt%,所述二次滤饼的含水率为0.05~20wt%。
  7. 根据权利要求5所述的制备方法,其特征在于,所述含高价金属离子的碱溶液中,高价金属离子的浓度为0.05~3mol/L,碱溶液的浓度为高价金属离子的浓度的1~6倍。
  8. 根据权利要求5所述的制备方法,其特征在于,所述碱溶液中的碱选自氨水、碳酸锂或氢氧化锂。
  9. 根据权利要求5所述的制备方法,其特征在,所述烘干的温度为50~300℃,所述热处理的气氛为二氧化碳气体浓度不超过1wt%的气氛,所述热处理的温度为150~800℃,时间为5~36h。
  10. 一种锂离子电池,包括正极材料和负极材料,其特征在于,所述正极材料为权利要求1~4任一项所述的高镍多元正极材料或权利要求5~9任一项所述的制备方法所制备的高镍多元正极材料。
PCT/CN2023/077830 2022-03-17 2023-02-23 一种高镍多元正极材料、其制备方法及其应用 WO2023174028A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210262675.8A CN114725338A (zh) 2022-03-17 2022-03-17 一种高镍多元正极材料、其制备方法及其应用
CN202210262675.8 2022-03-17

Publications (1)

Publication Number Publication Date
WO2023174028A1 true WO2023174028A1 (zh) 2023-09-21

Family

ID=82237144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/077830 WO2023174028A1 (zh) 2022-03-17 2023-02-23 一种高镍多元正极材料、其制备方法及其应用

Country Status (2)

Country Link
CN (1) CN114725338A (zh)
WO (1) WO2023174028A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114725338A (zh) * 2022-03-17 2022-07-08 宁波容百新能源科技股份有限公司 一种高镍多元正极材料、其制备方法及其应用
CN115050946B (zh) * 2022-07-22 2023-11-24 珠海冠宇电池股份有限公司 正极活性材料及其制备方法、正极片和电池

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108172821A (zh) * 2017-12-28 2018-06-15 复旦大学 一种消除残锂并制备锂离子导体包覆高镍三元的正极材料的方法
JP2020070211A (ja) * 2018-10-31 2020-05-07 住友金属鉱山株式会社 リチウムニッケル含有複合酸化物とその製造方法、および、該リチウムニッケル含有複合酸化物を母材として用いたリチウムイオン二次電池用正極活物質とその製造方法
JP2020087822A (ja) * 2018-11-29 2020-06-04 住友金属鉱山株式会社 リチウムニッケル含有複合酸化物とその製造方法、および、該リチウムニッケル含有複合酸化物を母材として用いたリチウムイオン二次電池用正極活物質とその製造方法
JP2020087823A (ja) * 2018-11-29 2020-06-04 住友金属鉱山株式会社 リチウムニッケル含有複合酸化物、および、該リチウムニッケル含有複合酸化物を母材として用いたリチウムイオン二次電池用正極活物質とその製造方法
CN111952554A (zh) * 2020-07-03 2020-11-17 江苏可兰素环保科技有限公司 一种锂离子电池三元正极材料及其制备方法
CN113839040A (zh) * 2021-08-31 2021-12-24 蜂巢能源科技有限公司 高镍三元正极材料及其制备方法、锂离子电池
CN114725338A (zh) * 2022-03-17 2022-07-08 宁波容百新能源科技股份有限公司 一种高镍多元正极材料、其制备方法及其应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104218243B (zh) * 2014-07-01 2017-04-12 宁波金和锂电材料有限公司 一种高稳定性的镍钴铝酸锂正极材料及其制备方法
CN109994716B (zh) * 2018-11-07 2020-10-20 北京泰丰先行新能源科技有限公司 一种包覆型高镍三元前驱体及其制备方法
CN111490234A (zh) * 2019-01-29 2020-08-04 湖南杉杉能源科技股份有限公司 一种高镍多元正极材料的表面改性方法
CN110451585A (zh) * 2019-05-11 2019-11-15 浙江美都海创锂电科技有限公司 一种高镍、长循环单晶锂离子电池正极材料制备方法
CN111211362B (zh) * 2020-01-13 2021-03-23 北京当升材料科技股份有限公司 补锂洗涤液及其应用和高镍多元正极材料及其制备方法
CN112382741B (zh) * 2020-10-12 2022-09-13 深圳市贝特瑞纳米科技有限公司 高镍正极材料及其制备方法、锂离子二次电池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108172821A (zh) * 2017-12-28 2018-06-15 复旦大学 一种消除残锂并制备锂离子导体包覆高镍三元的正极材料的方法
JP2020070211A (ja) * 2018-10-31 2020-05-07 住友金属鉱山株式会社 リチウムニッケル含有複合酸化物とその製造方法、および、該リチウムニッケル含有複合酸化物を母材として用いたリチウムイオン二次電池用正極活物質とその製造方法
JP2020087822A (ja) * 2018-11-29 2020-06-04 住友金属鉱山株式会社 リチウムニッケル含有複合酸化物とその製造方法、および、該リチウムニッケル含有複合酸化物を母材として用いたリチウムイオン二次電池用正極活物質とその製造方法
JP2020087823A (ja) * 2018-11-29 2020-06-04 住友金属鉱山株式会社 リチウムニッケル含有複合酸化物、および、該リチウムニッケル含有複合酸化物を母材として用いたリチウムイオン二次電池用正極活物質とその製造方法
CN111952554A (zh) * 2020-07-03 2020-11-17 江苏可兰素环保科技有限公司 一种锂离子电池三元正极材料及其制备方法
CN113839040A (zh) * 2021-08-31 2021-12-24 蜂巢能源科技有限公司 高镍三元正极材料及其制备方法、锂离子电池
CN114725338A (zh) * 2022-03-17 2022-07-08 宁波容百新能源科技股份有限公司 一种高镍多元正极材料、其制备方法及其应用

Also Published As

Publication number Publication date
CN114725338A (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
WO2023174028A1 (zh) 一种高镍多元正极材料、其制备方法及其应用
JP7426414B2 (ja) 複合型リチウムイオン電池の正極材料、リチウムイオン電池及び車
CN110931768A (zh) 一种高镍类单晶锂离子电池三元正极材料及制备方法
US20160351898A1 (en) Method for preparing a positive active material for a lithium secondary battery
WO2024046046A1 (zh) 一种正极活性材料及其应用
WO2021209079A2 (zh) 具有超晶格结构的正极活性材料及制备方法、锂离子电池
WO2022260072A1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2023024446A1 (zh) 一种四元正极材料及其制备方法和应用
WO2023179247A1 (zh) 一种超高镍三元前驱体及其制备方法
CN111162271A (zh) 多元正极材料及其制备方法和锂离子电池
WO2024087387A1 (zh) 二次电池及用电设备
JP2023508021A (ja) 正極活物質、その製造方法、およびこれを含むリチウム二次電池
CN114530588B (zh) 多元素浓度梯度掺杂的前驱体材料及其制备方法、正极材料
WO2022237091A1 (zh) 复合负极材料及其制备方法、负极材料及锂离子电池
WO2020230424A1 (ja) 非水電解質二次電池用正極活物質及び非水電解質二次電池用正極
CN113772718B (zh) 一种SnS-SnS2@GO异质结构复合材料及其制备方法和应用
JP2001122628A (ja) リチウムマンガン複合酸化物粒子状組成物とその製造方法及び二次電池
WO2024103956A1 (zh) 一种正极材料及包括该正极材料的正极片和电池
WO2024066809A1 (zh) 正极材料及其制备方法、正极极片、二次电池和电子设备
WO2024060550A1 (zh) 一种三元正极材料、其制备方法及锂离子电池
WO2023130829A1 (zh) 一种锂离子电池正极材料及其制备方法和锂离子电池
CN112599736B (zh) 一种掺硼磷酸锂包覆锂离子电池正极材料及其制备方法
JP6633161B1 (ja) 正極活物質、及び、その製造方法、並びに、正極、及びリチウムイオン電池
WO2020066848A1 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池、及び非水電解質二次電池用正極活物質の製造方法
JP7405929B1 (ja) リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23769536

Country of ref document: EP

Kind code of ref document: A1