WO2024103956A1 - 一种正极材料及包括该正极材料的正极片和电池 - Google Patents

一种正极材料及包括该正极材料的正极片和电池 Download PDF

Info

Publication number
WO2024103956A1
WO2024103956A1 PCT/CN2023/119698 CN2023119698W WO2024103956A1 WO 2024103956 A1 WO2024103956 A1 WO 2024103956A1 CN 2023119698 W CN2023119698 W CN 2023119698W WO 2024103956 A1 WO2024103956 A1 WO 2024103956A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
electrode material
battery
lithium
present disclosure
Prior art date
Application number
PCT/CN2023/119698
Other languages
English (en)
French (fr)
Inventor
叶孔强
李芳成
罗静
曾家江
李素丽
Original Assignee
珠海冠宇电池股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海冠宇电池股份有限公司 filed Critical 珠海冠宇电池股份有限公司
Publication of WO2024103956A1 publication Critical patent/WO2024103956A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention belongs to the technical field of batteries, and in particular relates to a positive electrode material and a positive electrode sheet and a battery comprising the positive electrode material.
  • lithium-rich manganese-based cathode materials can provide a gram capacity of more than 250mAh/g, which is far higher than the actual gram capacity of currently commercialized cathode materials. It is one of the most promising cathode materials for the next generation of power batteries.
  • lithium-rich manganese-based cathode materials also have some urgent problems that need to be solved: (1) low initial coulombic efficiency; (2) poor rate performance; (3) decreased energy density during the cycle, etc. These problems have seriously hindered the commercial application of lithium-rich manganese-based cathode materials.
  • the purpose of the present disclosure is to provide a positive electrode material and a positive electrode sheet and a battery comprising the positive electrode material.
  • the positive electrode material is a positive electrode material based on lithium-rich manganese-based modification, the positive electrode material has an O2 phase stacking structure, the positive electrode material has a high gram capacity and first coulombic efficiency, good cycle stability and excellent rate performance, and can improve the problems of low first coulombic efficiency and poor rate performance of lithium-rich manganese-based positive electrode materials.
  • a positive electrode material the chemical formula of the positive electrode material is:
  • a 0.75, 0.8, 0.85, 0.9 or 0.95
  • b 0.25, 0.2, 0.15, 0.1 or 0.05.
  • doping with the element M can improve the structural stability of the positive electrode material.
  • the content of the doping element is too high, it may cause excessive capacity loss.
  • the structural stability can be improved while ensuring the capacity.
  • the positive electrode material has a layered O2 phase structure.
  • the transition metal atoms in the transition metal layer and the lithium atoms in the lithium atom layer will form MO6 and LiO6 octahedra with the surrounding oxygen atoms, and are arranged alternately to form a periodic layered structure.
  • some lithium atoms replace the transition metal atoms in the transition metal layer to form a super structure; and in the O2 phase structure, the MO6 octahedron and the LiO6 octahedron have both common faces and common edges.
  • the layered O2 phase structure has a unique lithium-deficient structure that can accommodate additional lithium ions, so that the positive electrode material has a higher gram capacity.
  • the lithium layer of the layered O2 phase structure contains a certain amount of sodium ions with a large ionic radius, and the diffusion rate of the lithium ions is relatively fast, so that the rate performance of the positive electrode material is very excellent.
  • the sodium ions in the lithium layer can also serve as pillars to support the crystal structure, thereby improving the structural stability of the material.
  • the positive electrode material is a modified positive electrode material based on a lithium-rich manganese-based material, which can effectively make up for the shortcomings of the lithium-rich manganese-based positive electrode material and can greatly improve the first coulombic efficiency and rate performance of the lithium-rich manganese-based positive electrode material without reducing the gram capacity.
  • the median particle size of the positive electrode material is 7 ⁇ m to 15 ⁇ m (exemplarily, 7 ⁇ m, 8 ⁇ m, 9 ⁇ m, 10 ⁇ m, 11 ⁇ m, 12 ⁇ m, 13 ⁇ m, 14 ⁇ m or 15 ⁇ m); when the median particle size of the positive electrode material is within this range, the compaction density of the positive electrode material can be increased; otherwise, the compaction density of the positive electrode material will be reduced, and the energy density of the battery will be reduced. Moreover, when the median particle size of the positive electrode material is less than 7 ⁇ m, it is easy to increase the consumption of the electrolyte and may cause a decrease in the cycle performance. When the median particle size is greater than 15 ⁇ m, the rate performance may be affected.
  • the compaction density of the positive electrode material is 3 g/cm 3 to 4 g/cm 3 (exemplarily, 3 g/cm 3 , 3.1 g/cm 3 , 3.2 g/cm 3 , 3.3 g/cm 3 , 3.4 g/cm 3 , 3.5 g/cm 3 , 3.6 g/cm 3 , 3.7 g/cm 3 , 3.8 g/cm 3 , 3.9 g/cm 3 or 4 g/cm 3 ).
  • the interior of the positive electrode material of the present invention is a dense structure, which can significantly improve the compaction density of the positive electrode material.
  • Conventional lithium-rich manganese-based positive electrode materials contain many voids inside, and their compaction density is usually 2.5 g/cm 3 to 2.9 g/cm 3 , and their energy density does not have a great advantage. Therefore, the positive electrode material of the present invention has a higher compaction density, thereby being able to improve the energy density of the battery.
  • the particles of the positive electrode material include particles having a dense structure.
  • the 2 ⁇ diffraction angle of the X-ray diffraction pattern of the positive electrode material has a first diffraction peak in the range of 18° to 19°; the 2 ⁇ diffraction angle of the X-ray diffraction pattern has a second diffraction peak in the range of 20.65° to 20.75°.
  • the 2 ⁇ diffraction angle of the X-ray diffraction pattern of the positive electrode material is in the range of 44° to 47°, and there are characteristic diffraction peaks of the 103 crystal plane and the 104 crystal plane of the positive electrode material.
  • the positive electrode material satisfies: 2 ⁇ I 104 /I 103 ⁇ 3;
  • I 103 is the peak intensity of the characteristic diffraction peak of the 103 crystal plane of the positive electrode material
  • I 104 is the peak intensity of the characteristic diffraction peak of the 104 crystal plane of the positive electrode material.
  • the positive electrode material when the positive electrode material satisfies: 2 ⁇ I 104 /I 103 ⁇ 3; within this range, the positive electrode material has excellent cycle performance and rate performance.
  • the content of Li2CO3 in the residual lithium on the surface of the positive electrode material i.e., the mass of Li2CO3 in the residual lithium on the surface of the positive electrode material relative to the total mass of the positive electrode material
  • the content of Li2CO3 in the residual lithium is less than 2000ppm.
  • the content of LiOH in the residual lithium on the surface of the positive electrode material i.e., the mass of LiOH in the residual lithium on the surface of the positive electrode material relative to the total mass of the positive electrode material
  • the content of LiOH in the residual lithium is less than 800 ppm.
  • the gas production problem can be effectively alleviated to obtain a battery with higher capacity, less significant gas production, and excellent cycle and rate performance.
  • the present disclosure also proposes a method for preparing the above-mentioned positive electrode material, which is prepared by an ion exchange method.
  • the positive electrode material is prepared by the following method:
  • the cathode material is calcined at a temperature of 250° C. to 300° C. for 1 to 4 hours, and then the product is filtered, washed and dried to obtain the cathode material.
  • the salt containing the M element in step (1), can be selected from at least one of sulfate, nitrate or chloride, and the salt containing the M element is formulated according to the stoichiometric ratio in the chemical formula of the positive electrode material; in step (2), the salt containing the TM element can be selected from at least one of sulfate, nitrate or chloride, and the salt containing the TM element is formulated according to the stoichiometric ratio in the chemical formula of the positive electrode material.
  • the first precipitant and the second precipitant are each independently selected from at least one of sodium carbonate, sodium hydroxide and sodium bicarbonate.
  • the first complexing agent and the second complexing agent are selected from aqueous ammonia.
  • the Na source is selected from at least one of sodium carbonate, sodium hydroxide and sodium chloride.
  • the first Li source and the second Li source are each independently selected from at least one of lithium carbonate, lithium hydroxide, lithium chloride and lithium nitrate.
  • the present disclosure also provides a positive electrode sheet, which includes the positive electrode material.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer disposed on at least one side surface of the positive electrode current collector, and the positive electrode active material layer includes the above-mentioned positive electrode material.
  • the positive electrode active material layer further includes a conductive agent and a binder.
  • the mass percentage of each component in the positive electrode active material layer is: 70wt%-99wt% (exemplarily, 70wt%, 75wt%, 80wt%, 85wt%, 90wt%, 95wt% or 99wt%) of positive electrode material, 0.5wt%-15wt% (exemplarily, 15wt%, 12.5wt%, 10wt%, 7.5wt%, 5wt%, 2.5wt% or 0.5wt%) of conductive agent and 0.5wt%-15wt% (exemplarily, 15wt%, 12.5wt%, 10wt%, 7.5wt%, 5wt%, 2.5wt% or 0.5wt%) of binder.
  • 70wt%-99wt% exemplarily, 70wt%, 75wt%, 80wt%, 85wt%, 90wt%, 95wt% or 99wt%
  • 0.5wt%-15wt% exemplarily, 15wt%, 12.5wt%, 10wt
  • the mass percentage of each component in the positive electrode active material layer is: 80wt%-98wt% of positive electrode material, 1wt%-10wt% of conductive agent and 1wt%-10wt% of binder.
  • the mass percentage of each component in the positive electrode active material layer is: 90wt%-96wt% of positive electrode material, 2wt%-5wt% of conductive agent and 2wt%-5wt% of binder.
  • the present disclosure also provides a battery, which includes the above-mentioned positive electrode material and/or the above-mentioned positive electrode sheet.
  • the charging cut-off voltage of the battery is greater than or equal to 4.6V.
  • the gram capacity of the positive electrode material at a charging cut-off voltage of not less than 4.6V is not less than 255 mAh/g.
  • the present disclosure provides a positive electrode material and a positive electrode sheet and a battery comprising the positive electrode material.
  • the material is a modified positive electrode material based on a lithium-rich manganese-based material.
  • the positive electrode material has an O2 phase stacking structure.
  • the positive electrode material has a high gram capacity and first coulombic efficiency and excellent rate performance. It can improve the shortcomings of the lithium-rich manganese-based positive electrode material and can greatly improve the first coulombic efficiency and rate performance of the lithium-rich manganese-based material without reducing the gram capacity.
  • FIG1 is an XRD spectrum of the positive electrode material in Example 1, wherein the circled portion is the second diffraction peak of the positive electrode material.
  • FIG. 2 is a SEM image of the positive electrode material in Example 1.
  • FIG3 is a cross-sectional view (SEM image) of a positive electrode sheet containing the positive electrode material in Example 1.
  • Figure 4 is the XRD spectrum of the positive electrode material in Comparative Example 1.
  • Figure 5 is the XRD spectrum of the positive electrode material in Comparative Example 2.
  • the experiment will use CR2032 button cells to study the electrochemical performance of the positive electrode material disclosed in the present invention.
  • the positive electrode sheet uses N-methylpyrrolidone NMP as a solvent.
  • the positive electrode active material (the positive electrode material prepared in the embodiment and the comparative example), the conductive agent Super P and the binder polyvinylidene fluoride PVDF are mixed in a mass ratio of 94:3:3 to prepare a positive electrode slurry with a solid content of 70%.
  • the positive electrode slurry is evenly coated on the surface of the aluminum foil, placed in a vacuum oven at 100°C and baked for 12 hours, and then rolled and cut to obtain a positive electrode sheet.
  • the electrolyte is a 1 mol/L LiPF 6 solution
  • the solvent is a mixed solution of ethylene carbonate EC, ethyl methyl carbonate EMC and diethyl carbonate DEC, with a volume ratio of 1:1:1.
  • the negative electrode of the button battery uses a Li sheet
  • the positive electrode uses the positive electrode sheet described in the present disclosure.
  • the positive electrode sheet, the separator, the electrolyte, the Li sheet and the battery shell are assembled into a button battery in an argon-protected glove box.
  • the performance test process of the button battery is as follows;
  • the morphology and structure of the positive electrode material powder can be tested and analyzed by scanning electron microscopy.
  • the element distribution of the positive electrode material powder can be tested and analyzed by SEM-EDS (scanning electron microscope-energy spectrum).
  • the element content of the positive electrode material powder is tested by ICP detector; for the positive electrode sheet containing the positive electrode material, NMP can be used to dissolve the positive electrode sheet, and then the powder is filtered, washed and dried to obtain the powder, and then the element content is tested and analyzed by ICP detector.
  • the surface residual lithium test is carried out by acid-base neutralization titration method to test and analyze the residual lithium content.
  • the compaction density of the powder material is tested and analyzed by a compaction density meter.
  • the laser particle size analyzer can be used to test and analyze the median particle size of the positive electrode material powder.
  • Cobalt sulfate and aluminum sulfate were added to deionized water at a Co:Al molar ratio of 0.97:0.03, and a precipitant sodium hydroxide and a complexing agent ammonia water were added at a concentration of 1.2 mol/L, wherein the molar ratio of the complexing agent to the precipitant was 0.5, and the pH was adjusted to 7.5.
  • the water was heated at a temperature of 60°C for co-precipitation for 12 hours, and then the precipitate was washed, dried, and ground to obtain a carbonate precursor Co 0.97 Al 0.03 CO 3 ;
  • Ni:Co:Mn 0.13:0.13:0.54.
  • Nickel sulfate, cobalt sulfate and manganese sulfate are weighed and dissolved in deionized water, and stirred to obtain a salt solution.
  • Sodium carbonate as a precipitant and ammonia water as a complexing agent are added at a concentration of 2 mol/L to prepare an alkaline solution, wherein the molar ratio of the complexing agent to the precipitant is 2.
  • the alkaline solution and the salt solution are then added dropwise to the deionized water to maintain the pH value between 7.5 and 8, and the water is heated at 60°C to perform a coprecipitation reaction for 12 hours.
  • the obtained precipitate is then washed, dried and ground to obtain a carbonate precursor Ni 0.13 Mn 0.54 Co 0.13 (CO 3 ) 0.8 ;
  • the chemical formula of the positive electrode material in this embodiment is: 0.85Li 1.14 Ni 0.13 Co 0.13 Mn 0.54 O 2 ⁇ 0.15Li 0.95 Na 0.025 Co 0.97 Al 0.03 O 2 .
  • the preparation process of the positive electrode material is the same as that of Example 1, except that in step (3), the weight ratio of Co 0.97 Al 0.03 CO 3 and Ni 0.13 Mn 0.54 Co 0.13 (CO 3 ) 0.8 is 15:85, and the compacted density is 3.2 g/cm 3 .
  • the chemical formula of the positive electrode material in this embodiment is: 0.8Li 1.14 Ni 0.13 Co 0.13 Mn 0.54 O 2 ⁇ 0.2Li 0.95 Na 0.025 Co 0.97 Al 0.03 O 2 .
  • the preparation process of the positive electrode material is the same as that of Example 1, except that in step (3), the weight ratio of Co 0.97 Al 0.03 CO 3 and Ni 0.13 Mn 0.54 Co 0.13 (CO 3 ) 0.8 is 20:80, and the compacted density is 3.3 g/cm 3 .
  • the chemical formula of the positive electrode material in this comparative example is: Li 1.14 Ni 0.13 Co 0.13 Mn 0.54 O 2 , and the preparation process is the same as that of Example 1, except that the content of Co 0.97 Al 0.03 CO 3 in step (3) is 0, and its compaction density is 2.8 g/cm 3 .
  • the XRD spectrum of the positive electrode material is shown in FIG4 .
  • the chemical formula of the positive electrode material in this comparative example is: 0.5Li 1.14 Ni 0.13 Co 0.13 Mn 0.54 O 2 ⁇ 0.5Li 0.95 Na 0.025 Co 0.97 Al 0.03 O 2 .
  • the preparation process of the positive electrode material is the same as that of Example 1, except that in step (3), the weight ratio of Co 0.97 Al 0.03 CO 3 and Ni 0.13 Mn 0.54 Co 0.13 (CO 3 ) 0.8 is 50:50.
  • the XRD spectrum of the positive electrode material is shown in FIG5 .
  • the chemical formula of the positive electrode material in this comparative example is: Li 0.95 Na 0.025 Co 0.97 Al 0.03 O 2 .
  • the preparation process is the same as that of Example 1, except that the content of Ni 0.13 Mn 0.54 Co 0.13 (CO 3 ) 0.8 in step (3) is 0.
  • the positive electrode material disclosed in the present invention can effectively make up for the shortcomings of lithium-rich manganese-based positive electrode materials, and greatly improve the first coulombic efficiency and rate performance of lithium-rich manganese-based positive electrode materials without reducing the gram capacity.
  • the interior of the positive electrode material disclosed in the present invention is a dense structure, indicating that the particles of the positive electrode material disclosed in the present invention include particles with a dense structure. It is precisely because the particles of the positive electrode material include particles with a dense structure that the compaction density of the positive electrode material reaches 3.0 g/cm 3 to 4.0 g/cm 3 , while the interior of the conventional lithium-rich manganese-based positive electrode material contains many voids and cannot reach the high compaction density of the present application. This shows that the use of the positive electrode material disclosed in the present invention can increase the compaction density of the positive electrode sheet, thereby increasing the energy density of the battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种正极材料及包括该正极材料的正极片和电池。所述正极材料的化学式为:a[xLi 2MnO 3·(1-x)LiTMO 2]·bLi x1Na y1Co 1-z1M z1O 2,其中,0<x<1,TM选自Ni、Co和Mn中的一种或多种,a>b,且a+b=1,0.8<x1<1,0<y1<0.05,0<z1<0.05,M为Al、Mg、Ti、Mn、Zr、P、Ni和Fe中的至少一种。所述正极材料为基于富锂锰基改性的正极材料,所述正极材料具有O2相堆积结构,所述正极材料具有较高的克容量和首次库伦效率以及优异的倍率性能。

Description

一种正极材料及包括该正极材料的正极片和电池 技术领域
本公开属于电池技术领域,具体涉及一种正极材料及包括该正极材料的正极片和电池。
背景技术
随着对电动汽车续航里程以及电池能量密度的不断提升,开发出高能量密度、高性能、低成本的正极材料一直是锂离子电池研究的热点方向。在现有正极材料中,富锂锰基正极材料能提供超过250mAh/g的克容量,远超过目前已经商业化正极材料的实际克容量,是下一代动力电池最有前景的正极材料之一。但是,富锂锰基正极材料也存在一些急需解决的问题:(1)首次库伦效率偏低;(2)倍率性能差;(3)循环过程中能量密度下降等。这些问题严重阻碍了富锂锰基正极材料的商业化应用进程。
对于上述富锂锰基正极材料存在的问题,目前研究人员已经提出了很多的改性方法,但是,还是存在首次库伦效率偏低、倍率性能差等问题。
发明内容
为了改善现有技术的不足,本公开的目的是提供一种正极材料及包括该正极材料的正极片和电池。所述正极材料为基于富锂锰基改性的正极材料,所述正极材料具有O2相堆积结构,所述正极材料具有较高的克容量和首次库伦效率、较好的循环稳定性以及优异的倍率性能,能够改善富锂锰基正极材料首次库伦效率低和倍率性能差的问题。
本公开目的是通过如下技术方案实现的:
一种正极材料,所述正极材料的化学式为:
a[xLi2MnO3·(1-x)LiTMO2]·bLix1Nay1Co1-z1Mz1O2,其中,0<x<1,TM选自Ni、Co和Mn中的至少一种,a>b,且a+b=1,0.8<x1<1,0<y1<0.05,0<z1<0.05,M为Al、Mg、Ti、Mn、Zr、P、Ni和Fe中的至少一种。
根据本公开的实施方式,0.75≤a≤0.95,0.05≤b≤0.25。示例性地,a为0.75、0.8、0.85、0.9或0.95;b为0.25、0.2、0.15、0.1或0.05。
根据本公开的实施方式,M元素的掺杂可以提高正极材料的结构稳定性,但掺杂元素的含量过高时,可能会导致容量损失过大,在本申请所限定的范围内(0<z1<0.05),能够在保证容量的情况下提高结构稳定性。
根据本公开的实施方式,所述正极材料具有层状O2相结构。
根据本公开的实施方式,所述正极材料中,过渡金属层中的过渡金属原子和锂原子层中的锂原子会和周围的氧原子组成MO6和LiO6八面体,并交替排列形成周期性层状结构,同时有部分锂原子替换了过渡金属层中的过渡金属原子形成超结构;且在O2相结构中MO6八面体和LiO6八面体有共面也有共棱。
根据本公开的实施方式,所述层状O2相结构具有独特的缺锂结构,可以容纳额外的锂离子,使得所述正极材料具有较高的克容量。
根据本公开的实施方式,所述层状O2相结构的锂层中含有一定量的大离子半径的钠离子,锂离子的扩散速度较快,使得所述正极材料的倍率性能非常优异,且钠离子在锂层还可以作为支柱支撑晶体结构,可提高材料的结构稳定性。
根据本公开的实施方式,所述正极材料为基于富锂锰基改性的正极材料,其能够有效弥补富锂锰基正极材料的缺点,可以在不降低克容量的前提下,极大程度地提高富锂锰基正极材料的首次库伦效率和倍率性能。
根据本公开的实施方式,所述正极材料的中值粒径为7μm~15μm(示例性地,7μm、8μm、9μm、10μm、11μm、12μm、13μm、14μm或15μm);当所述正极材料的中值粒径在此范围内时,可以提高正极材料的压实密度;反之则会降低正极材料的压实密度,降低电池的能量密度。不仅如此,正极材料的中值粒径小于7μm时,容易增加电解液的消耗,并且可能导致循环性能下降,当中值粒径大于15μm时,可能会影响倍率性能。
根据本公开的实施方式,所述正极材料的压实密度为3g/cm3~4g/cm3(示例性地,3g/cm3、3.1g/cm3、3.2g/cm3、3.3g/cm3、3.4g/cm3、3.5g/cm3、3.6g/cm3、3.7g/cm3、3.8g/cm3、3.9g/cm3或4g/cm3)。从含有本公开的正极材料的正极片截面图(SEM镜图)(如图3)中可以看出,本公开的正极材料的内部是密实的结构,这可以显著提升正极材料的压实密度,而常规的富锂锰基正极材料的内部含有很多空洞,其压实密度通常是2.5g/cm3~2.9g/cm3,能量密度没有很大的优势,因此,本公开的正极材料具有较高的压实密度,从而能够提高电池的能量密度。
根据本公开的实施方式,所述正极材料的颗粒包括具有密实结构的颗粒。
根据本公开的实施方式,所述正极材料的X射线衍射图的2θ衍射角在18°~19°范围内存在第一衍射峰;X射线衍射图的2θ衍射角在20.65°~20.75°范围内存在第二衍射峰。
根据本公开的实施方式,所述正极材料的X射线衍射图的2θ衍射角在44°~47°范围内存在所述正极材料的103晶面特征衍射峰和104晶面特征衍射峰。
根据本公开的实施方式,所述正极材料满足:
2<I104/I103<3;
其中,I103为所述正极材料的103晶面特征衍射峰的峰强度;I104为所述正极材料的104晶面特征衍射峰的峰强度。
根据本公开的实施方式,所述正极材料满足:2<I104/I103<3时;在该范围内,所述正极材料具有优异的循环性能和倍率性能。
根据本公开的实施方式,所述正极材料表面的残锂中Li2CO3的含量(即所述正极材料表面的残锂中Li2CO3的质量相对于正极材料总质量的含量)小于3000ppm,优选地,所述残锂中Li2CO3的含量小于2000ppm。
根据本公开的实施方式,所述正极材料表面的残锂中LiOH的含量(即所述正极材料表面的残锂中LiOH的质量相对于正极材料总质量的含量)小于1000ppm,优选地,所述残锂中LiOH的含量小于800ppm。
根据本公开的实施方式,所述正极材料的残锂量在该范围内时,可以有效缓解产气问题,获得容量较高、产气不显著、且循环和倍率性能优异的电池。
本公开还提出了一种上述正极材料的制备方法,其是采用离子交换方法制备得到的。
根据本公开的实施方式,所述正极材料是通过如下方法制备得到的:
(1)将可溶性钴盐和含M元素的盐按照Co:M摩尔比为(1-z1):z1加入到去离子水中,配置成0.2mol/L~2mol/L的第一盐溶液;将第一沉淀剂和第一络合剂溶解在去离子水中配制成pH为7~9的第一碱溶液;然后将配制好的第一盐溶液和第一碱溶液同时匀速滴加到去离子水中,保持整个过程中的pH在7~9之间,温度在50℃~80℃之间,进行共沉淀反应8h~24h,然后过滤、洗涤、干燥沉淀物,得到(Co1-z1Mz1)CO3前驱体或(Co1-z1Mz1)(OH)2前驱体;
(2)将可溶性锰盐和含TM元素的盐按照Mn:TM摩尔比为x:(1-x)加入到去离子水中,配置成0.2mol/L~2mol/L的第二盐溶液;将第二沉淀剂和第二络合剂溶解在去离子水中配制成pH为7~9的第二碱溶液;然后将配制好的第二盐溶液和第二碱溶液同时匀速滴加到去离子水中,保持整个过程中的pH在7~9之间,温度在50℃~80℃之间,进行共沉淀反应8h~24h,然后过滤、洗涤、干燥沉淀物,得到(MnxTM1-x)CO3前驱体或(MnxTM1-x)(OH)2前驱体;
(3)将步骤(2)的前驱体和步骤(1)的前驱体按照质量比为(95%~75%):(5%~25%)混合均匀(在该质量比中,步骤(2)的前驱体和步骤(1)的前驱体的质量份数之和为100%;示例性地,质量比为95%:5%、90%:10%、85%:15%、80%:20%或75%:25%),再按照Mn:Na:Li摩尔比=(0.5~0.6):1.1:0.25称取步骤(2)的前驱体、Na源和第一Li源混合均匀,并在400℃~600℃的温度下预烧1h~5h,然后在800℃~1000℃的温度下煅烧12h~30h,得到含Na中间产物;
(4)将步骤(3)的含Na中间产物与第二Li源按摩尔比Li:Na=(2~5):1混合, 在250℃~300℃的温度下煅烧1h~4h,然后将产物过滤、洗涤和干燥,得到所述正极材料。
根据本公开的实施方式,步骤(1)中,所述含M元素的盐可以选自硫酸盐、硝酸盐或氯化物中的至少一种,且所述含M元素的盐是按所述正极材料化学式中的化学计量比配比的;步骤(2)中,含TM元素的盐可以选自硫酸盐、硝酸盐或氯化物中的至少一种,且含TM元素的盐是按所述正极材料化学式中的化学计量比配比的。
根据本公开的实施方式,步骤(1)和步骤(2)中,所述第一沉淀剂和所述第二沉淀剂各自独立地选自碳酸钠、氢氧化钠和碳酸氢钠中的至少一种。
根据本公开的实施方式,步骤(1)和步骤(2)中,所述第一络合剂和所述第二络合剂选自氨水。
根据本公开的实施方式,步骤(3)中,所述Na源选自碳酸钠、氢氧化钠和氯化钠中的至少一种。
根据本公开的实施方式,步骤(3)和步骤(4)中,所述第一Li源和所述第二Li源各自独立地选自碳酸锂、氢氧化锂、氯化锂和硝酸锂中的至少一种。
本公开还提供一种正极片,所述正极片包括上述正极材料。
根据本公开的实施方式,所述正极片包括正极集流体和设置在所述正极集流体至少一侧表面的正极活性物质层,所述正极活性物质层包括上述正极材料。
根据本公开的实施方式,所述正极活性物质层还包括导电剂和粘结剂。
根据本公开的实施方式,所述正极活性物质层中各组分的质量百分含量为:70wt%-99wt%(示例性地,70wt%、75wt%、80wt%、85wt%、90wt%、95wt%或99wt%)的正极材料、0.5wt%-15wt%(示例性地,15wt%、12.5wt%、10wt%、7.5wt%、5wt%、2.5wt%或0.5wt%)的导电剂以及0.5wt%-15wt%(示例性地,15wt%、12.5wt%、10wt%、7.5wt%、5wt%、2.5wt%或0.5wt%)的粘结剂。
优选地,所述正极活性物质层中各组分的质量百分含量为:80wt%-98wt%的正极材料、1wt%-10wt%的导电剂以及1wt%-10wt%的粘结剂。
还优选地,所述正极活性物质层中各组分的质量百分含量为:90wt%-96wt%的正极材料、2wt%-5wt%的导电剂以及2wt%-5wt%的粘结剂。
本公开还提供一种电池,所述电池包括上述正极材料和/或上述正极片。
根据本公开的实施方式,所述电池的充电截止电压大于等于4.6V。
根据本公开的实施方式,所述正极材料在不低于4.6V充电截止电压下的克容量不低于255mAh/g。
有益效果:
本公开提供了一种正极材料及包括该正极材料的正极片和电池。所述正极材 料为基于富锂锰基改性的正极材料,所述正极材料具有O2相堆积结构,所述正极材料具有较高的克容量和首次库伦效率以及优异的倍率性能,能够改善富锂锰基正极材料的缺点,可以在不降低克容量的前提下,极大程度地提高富锂锰基材料的首次库伦效率和倍率性能。
附图说明
图1实施例1中正极材料的XRD图谱,其中,圆圈部分为所述正极材料的第二衍射峰。
图2实施例1中正极材料的SEM镜图。
图3含有实施例1中正极材料的正极片截面图(SEM镜图)。
图4对比例1中正极材料的XRD图谱。
图5对比例2中正极材料的XRD图谱。
具体实施方式
下文将结合具体实施例对本公开做更进一步的详细说明。应当理解,下列实施例仅为示例性地说明和解释本公开,而不应被解释为对本公开保护范围的限制。凡基于本公开上述内容所实现的技术均涵盖在本公开旨在保护的范围内。
下述实施例中所使用的实验方法如无特殊说明,均为常规方法;下述实施例中所用的试剂、材料等,如无特殊说明,均可从商业途径得到。
实验将采用CR2032型纽扣电池研究本公开的正极材料的电化学性能。
正极片采用N-甲基吡咯烷酮NMP作为溶剂,按照质量比94:3:3,将正极活性物质(实施例和对比例制备的正极材料)、导电剂Super P和粘结剂聚偏氟乙烯PVDF,配制成固含量为70%的正极浆料,并将该正极浆料均匀涂覆在铝箔表面,置于100℃真空烘箱烘烤12h,然后辊压、裁切,得到正极片。
电解液为1mol/L的LiPF6溶液,溶剂为碳酸乙烯酯EC、碳酸甲乙酯EMC和碳酸二乙酯DEC的混合溶液,体积比为1:1:1。
纽扣电池的负极使用Li片,正极使用本公开所述的正极片,在氩气保护的手套箱将正极片、隔膜、电解液、Li片和电池壳组装成纽扣电池。纽扣电池的性能测试过程如下;
测试温度为室温(25℃),在充放电电压区间2.0V~4.8V的条件下,先进行倍率性能测试,其中充电倍率为0.1C(1C=250mAh/g),放电倍率依次为0.1C、0.5C、1C和2C,倍率性能测试如表1所示。然后在充放电倍率为0.5C,电压区间2.0V~4.6V 的条件下进行循环性能测试,循环100圈,循环100圈后的容量保持率(%)=第104圈循环的放电容量/第5圈的放电容量×100%。
SEM测试:
通过扫描电镜可以对正极材料的粉料的形貌结构进行测试分析。
通过SEM-EDS(扫描电镜-能谱)可以对正极材料的粉料的元素分布进行测试分析。
元素组成测试:
对正极材料的粉料采用ICP检测仪进行元素含量测试;对于含有正极材料的正极片,可采用NMP溶解正极片,然后过滤洗涤烘干得到粉料,再采用ICP检测仪进行元素含量测试分析。
X射线测试:
采用Bruker D8 Advance获取正极材料的XRD射线图谱和XRD精修数据。
表面残锂测试:
表面残锂测试通过酸碱中和滴定的方法进行残锂含量测试分析。
压实密度测试:
粉末材料的压实密度通过压实密度仪进行测试分析。
中值粒径测试:
采用激光粒度仪可以对正极材料的粉料的中值粒径进行测试分析。
实施例1
本实施例中的正极材料的化学式为:
0.9Li1.14Ni0.13Co0.13Mn0.54O2·0.1Li0.95Na0.025Co0.97Al0.03O2,所述正极材料的XRD图谱如图1所示,其SEM形貌如图2所示,其制备步骤如下所示:
(1)将硫酸钴和硫酸铝按照Co:Al摩尔比为0.97:0.03加入到去离子水中,按1.2mol/L的浓度加入沉淀剂氢氧化钠和络合剂氨水,其中络合剂和沉淀剂的摩尔比为0.5,调节pH为7.5,在60℃的温度下水域加热,进行共沉淀,共沉淀的时间为12h,然后将沉淀物进行洗涤、烘干、研磨得到碳酸盐前驱体Co0.97Al0.03CO3
(2)按摩尔比Ni:Co:Mn的摩尔比为0.13:0.13:0.54称取硫酸镍、硫酸钴和硫酸锰溶解在去离子水中,搅拌均匀为盐溶液;按2mol/L的浓度加入沉淀剂碳酸钠和络合剂氨水配制成碱溶液,其中络合剂和沉淀剂的摩尔比为2;然后向去离子水中滴加碱溶液和盐溶液,维持pH在7.5~8之间,并在60℃的温度下水域加热,进行共沉淀反应,共沉淀的时间为12h,再将得到的沉淀物进行洗涤、烘干和研磨得到碳酸盐前驱体Ni0.13Mn0.54Co0.13(CO3)0.8
(3)将碳酸盐前驱体Co0.97Al0.03CO3和Ni0.13Mn0.54Co0.13(CO3)0.8按重量比10:90混合均匀,再按照Mn:Na:Li摩尔比为0.54:1.1:0.25称取碳酸盐前驱体 Ni0.13Mn0.54Co0.13(CO3)0.8、碳酸钠和碳酸锂混合均匀,置于空气氛围的烧结炉中,在500℃预烧3h,800℃煅烧16h,煅烧结束后研磨过筛得到含钠中间产物;
(4)将含钠中间产物与2.5倍摩尔量的硝酸锂在280℃煅烧1h,然后将烧结后的样品用去离子水多次洗涤并烘干,得到具有O2相堆积的正极材料,其压实密度为3.1g/cm3
实施例2
本实施例中的正极材料的化学式为:
0.85Li1.14Ni0.13Co0.13Mn0.54O2·0.15Li0.95Na0.025Co0.97Al0.03O2
所述正极材料的制备过程同实施例1,不同之处在于步骤(3)中Co0.97Al0.03CO3和Ni0.13Mn0.54Co0.13(CO3)0.8的重量比为15:85,其压实密度为3.2g/cm3
实施例3
本实施例中的正极材料的化学式为:
0.8Li1.14Ni0.13Co0.13Mn0.54O2·0.2Li0.95Na0.025Co0.97Al0.03O2
所述正极材料的制备过程同实施例1,不同之处在于步骤(3)中Co0.97Al0.03CO3和Ni0.13Mn0.54Co0.13(CO3)0.8的重量比为20:80,其压实密度为3.3g/cm3
对比例1
本对比例中正极材料的化学式为:Li1.14Ni0.13Co0.13Mn0.54O2,制备过程同实施例1,不同的地方在于步骤(3)中Co0.97Al0.03CO3的含量为0,其压实密度为2.8g/cm3。正极材料的XRD图谱如图4所示。
对比例2
本对比例中的正极材料的化学式为:
0.5Li1.14Ni0.13Co0.13Mn0.54O2·0.5Li0.95Na0.025Co0.97Al0.03O2
所述正极材料的制备过程同实施例1,不同之处在于步骤(3)中Co0.97Al0.03CO3和Ni0.13Mn0.54Co0.13(CO3)0.8的重量比为50:50。正极材料的XRD图谱如图5所示。
对比例3
本对比例中的正极材料的化学式为:Li0.95Na0.025Co0.97Al0.03O2,制备过程同实施例1,不同的地方在于步骤(3)中Ni0.13Mn0.54Co0.13(CO3)0.8的含量为0。
表1实施例和对比例中正极材料的电化学性能测试结果
从表1电化学性能测试结果可知,本公开的正极材料可以有效弥补富锂锰基正极材料的缺点,在不降低克容量的前提下,极大程度的提高富锂锰基正极材料的首次库伦效率和倍率性能。
从图3可以看出,本公开的正极材料的内部是密实的结构,说明本公开的正极材料的颗粒包括具有密实结构的颗粒,正是因为所述正极材料的颗粒包括具有密实结构的颗粒,使得所述正极材料的压实密度达到3.0g/cm3~4.0g/cm3,而常规的富锂锰基正极材料的内部含有很多空洞,无法达到本申请的高压实密度。由此说明本公开的正极材料的使用能够增加正极片的压实密度,从而增加电池的能量密度。
以上,对本公开的实施方式进行了说明。但是,本公开不限定于上述实施方式。凡在本公开的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (15)

  1. 一种正极材料,其特征在于,所述正极材料的化学式为:
    a[xLi2MnO3·(1-x)LiTMO2]·bLix1Nay1Co1-z1Mz1O2,其中,0<x<1,TM选自Ni、Co和Mn中的一种或多种,a>b,且a+b=1,0.8<x1<1,0<y1<0.05,0<z1<0.05,M为Al、Mg、Ti、Mn、Zr、P、Ni和Fe中的至少一种。
  2. 根据权利要求1所述的正极材料,其特征在于,0.75≤a≤0.95,0.05≤b≤0.25。
  3. 根据权利要求1或2所述的正极材料,其特征在于,所述正极材料具有层状O2相结构。
  4. 根据权利要求1-3任一项所述的正极材料,其特征在于,所述正极材料的X射线衍射图的2θ衍射角在18°~19°范围内存在第一衍射峰;所述正极材料的X射线衍射图的2θ衍射角在20.65°~20.75°范围内存在第二衍射峰。
  5. 根据权利要求1-4任一项所述的正极材料,其特征在于,所述正极材料的X射线衍射图的2θ衍射角在44°~47°范围内存在所述正极材料的103晶面特征衍射峰和104晶面特征衍射峰。
  6. 根据权利要求1-5任一项所述的正极材料,其特征在于,所述正极材料满足:
    2<I104/I103<3;
    其中,I103为所述正极材料的103晶面特征衍射峰的峰强度;I104为所述正极材料的104晶面特征衍射峰的峰强度。
  7. 根据权利要求1-6任一项所述的正极材料,其特征在于,所述正极材料的中值粒径为7μm~15μm。
  8. 根据权利要求1-7任一项所述的正极材料,其特征在于,所述正极材料的压实密度为3g/cm3~4g/cm3
  9. 根据权利要求1-8任一项所述的正极材料,其特征在于,所述正极材料表面的残锂中Li2CO3的含量小于3000ppm;和/或;所述正极材料表面的残锂中LiOH的含量小于1000ppm。
  10. 一种正极片,其特征在于,所述正极片包括权利要求1-9任一项所述的正极材料。
  11. 根据权利要求10所述的正极片,其特征在于,所述正极片包括正极集流 体和设置在所述正极集流体至少一侧表面的正极活性物质层,所述正极活性物质层包括所述正极材料。
  12. 根据权利要求11所述的正极片,其特征在于,所述正极活性物质层还包括导电剂和粘结剂;
    优选地,所述正极活性物质层中各组分的质量百分含量为:70wt%-99wt%的所述正极材料、0.5wt%-15wt%的所述导电剂以及0.5wt%-15wt%的所述粘结剂。
  13. 一种电池,其特征在于,所述电池包括权利要求1-9任一项所述的正极材料和/或权利要求10-12任一项所述的正极片。
  14. 根据权利要求13所述的电池,其特征在于,所述电池的充电截止电压大于等于4.6V。
  15. 根据权利要求13或14所述的电池,其特征在于,所述正极材料在充电截止电压大于等于4.6V的情况下,0.1C的放电克容量超过255mAh/g。
PCT/CN2023/119698 2022-11-15 2023-09-19 一种正极材料及包括该正极材料的正极片和电池 WO2024103956A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211430958.5A CN115763732A (zh) 2022-11-15 2022-11-15 一种正极材料及包括该正极材料的正极片和电池
CN202211430958.5 2022-11-15

Publications (1)

Publication Number Publication Date
WO2024103956A1 true WO2024103956A1 (zh) 2024-05-23

Family

ID=85371477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/119698 WO2024103956A1 (zh) 2022-11-15 2023-09-19 一种正极材料及包括该正极材料的正极片和电池

Country Status (2)

Country Link
CN (1) CN115763732A (zh)
WO (1) WO2024103956A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115763732A (zh) * 2022-11-15 2023-03-07 珠海冠宇电池股份有限公司 一种正极材料及包括该正极材料的正极片和电池

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102208674A (zh) * 2010-03-31 2011-10-05 三洋电机株式会社 非水电解质二次电池
CN103119761A (zh) * 2010-09-22 2013-05-22 株式会社杰士汤浅国际 锂二次电池用活性物质、锂二次电池用电极及锂二次电池
JP2015118898A (ja) * 2013-12-20 2015-06-25 日立マクセル株式会社 非水電解質二次電池用正極材料およびその製造方法、非水電解質二次電池
CN110797527A (zh) * 2019-10-23 2020-02-14 昆明理工大学 一种改性富锂锰基氧化物正极材料及其制备方法
CN112670492A (zh) * 2020-12-23 2021-04-16 宁德新能源科技有限公司 正极材料及其制备方法以及电化学装置
CN113839012A (zh) * 2020-06-08 2021-12-24 宁德新能源科技有限公司 一种正极活性材料及包含其的电化学装置
CN114744186A (zh) * 2022-04-26 2022-07-12 广州大学 一种层状富锂锰基复合正极材料、制备方法及电池
CN115763732A (zh) * 2022-11-15 2023-03-07 珠海冠宇电池股份有限公司 一种正极材料及包括该正极材料的正极片和电池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102208674A (zh) * 2010-03-31 2011-10-05 三洋电机株式会社 非水电解质二次电池
CN103119761A (zh) * 2010-09-22 2013-05-22 株式会社杰士汤浅国际 锂二次电池用活性物质、锂二次电池用电极及锂二次电池
JP2015118898A (ja) * 2013-12-20 2015-06-25 日立マクセル株式会社 非水電解質二次電池用正極材料およびその製造方法、非水電解質二次電池
CN110797527A (zh) * 2019-10-23 2020-02-14 昆明理工大学 一种改性富锂锰基氧化物正极材料及其制备方法
CN113839012A (zh) * 2020-06-08 2021-12-24 宁德新能源科技有限公司 一种正极活性材料及包含其的电化学装置
CN112670492A (zh) * 2020-12-23 2021-04-16 宁德新能源科技有限公司 正极材料及其制备方法以及电化学装置
CN114744186A (zh) * 2022-04-26 2022-07-12 广州大学 一种层状富锂锰基复合正极材料、制备方法及电池
CN115763732A (zh) * 2022-11-15 2023-03-07 珠海冠宇电池股份有限公司 一种正极材料及包括该正极材料的正极片和电池

Also Published As

Publication number Publication date
CN115763732A (zh) 2023-03-07

Similar Documents

Publication Publication Date Title
JP7228773B2 (ja) 正極活物質、および、電池
CN110380024B (zh) P3结构的钠过渡金属氧化物及其制备方法和钠离子电池
KR102477330B1 (ko) 리튬 망간 리치 재료, 이의 제조 방법 및 응용
TWI423508B (zh) A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery
TWI549343B (zh) A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery
TWI423507B (zh) A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery
JP7228772B2 (ja) 正極活物質、および、電池
US20150118563A1 (en) Lithium-rich positive electrode material, lithium battery positive electrode, and lithium battery
TWI452758B (zh) 鋰離子電池正極材料及其製備方法以及鋰離子電池
KR101458676B1 (ko) 리튬이차전지용 양극 활물질, 이의 제조방법 및 이를 이용한 리튬이차전지
CN108878794B (zh) 具有复合包覆层的尖晶石结构锂离子电池正极材料及其制法
JPH11204110A (ja) リチウムイオン電池用陽極材料の製造方法
CN103904311A (zh) 一种表面包覆复合的富锂锰基正极材料及其制备方法
CN110459764B (zh) 一种锂离子电池正极材料及其制备方法与应用
CN115295789A (zh) 一种正极活性材料及其应用
WO2024139426A1 (zh) 一种正极材料及包括该正极材料的正极片和电池
WO2024103956A1 (zh) 一种正极材料及包括该正极材料的正极片和电池
CN114744186B (zh) 一种层状富锂锰基复合正极材料、制备方法及电池
WO2024087387A1 (zh) 二次电池及用电设备
WO2024093679A1 (zh) 一种正极材料及包括该正极材料的正极片和电池
WO2023109194A1 (zh) 高峰强比的正极材料及其制备方法和应用
CN115036474A (zh) 一种正极材料及包括该正极材料的正极片和电池
WO2024146611A1 (zh) 一种锂离子电池
WO2024169731A1 (zh) 一种正极片和电池
WO2005081338A1 (en) Positive active electrode material with improved cycling stability

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23890393

Country of ref document: EP

Kind code of ref document: A1