WO2023171304A1 - タンパク質食品素材の製造方法及びタンパク質食品素材 - Google Patents

タンパク質食品素材の製造方法及びタンパク質食品素材 Download PDF

Info

Publication number
WO2023171304A1
WO2023171304A1 PCT/JP2023/005563 JP2023005563W WO2023171304A1 WO 2023171304 A1 WO2023171304 A1 WO 2023171304A1 JP 2023005563 W JP2023005563 W JP 2023005563W WO 2023171304 A1 WO2023171304 A1 WO 2023171304A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
food material
protein food
meat
fat
Prior art date
Application number
PCT/JP2023/005563
Other languages
English (en)
French (fr)
Inventor
成彦 青野
勇輔 望月
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2023171304A1 publication Critical patent/WO2023171304A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/14Vegetable proteins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/14Vegetable proteins
    • A23J3/16Vegetable proteins from soybean
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/14Vegetable proteins
    • A23J3/18Vegetable proteins from wheat
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/22Working-up of proteins for foodstuffs by texturising
    • A23J3/26Working-up of proteins for foodstuffs by texturising using extrusion or expansion

Definitions

  • the present disclosure relates to a method for producing a protein food material and a protein food material.
  • Meat is a food item that is largely consumed around the world.
  • attempts are being made to refrain from consuming livestock meat and to consume livestock meat substitutes made from plant-based protein such as soybeans.
  • various processing techniques have been proposed for obtaining meat substitutes using protein raw materials to replace meat.
  • Japanese Patent Application Laid-Open No. 60-221041 discloses that a fibrous protein material is produced from a protein-containing mixture containing oilseed protein, wheat gluten, and water using an extruder with twin screws. Proposed.
  • JP-A No. 64-23856 discloses a method for producing a protein food material having a dense structure by cooling a nozzle installed at the tip of an extruder having twin screws for extruding the above-mentioned protein-containing mixture. Proposed.
  • fleshy appearance refers to an appearance that has a fibrous structure like the muscle fibers of meat, and in which the unevenness of the fibrous structure can be visually confirmed from the surface.
  • the problem to be solved by an embodiment of the present disclosure is to provide a method for producing a protein food material and a protein food material with excellent fleshy appearance.
  • a protein-containing mixture containing vegetable protein and water is kneaded by pressurizing and heating in a twin-screw extruder, and then the kneaded protein-containing mixture is extruded from a discharge die included in the twin-screw extruder.
  • a method for producing a protein food material comprising a step of producing a protein food material, wherein the temperature of a discharge die is 95°C or higher and 120°C or lower.
  • [3] The method for producing a protein food material according to [1] or [2], wherein the length of the discharge die in the extrusion direction is in the range of 90 mm or more and 450 mm or less.
  • [4] The method for producing a protein food material according to any one of [1] to [3], wherein the vegetable protein is at least one selected from the group consisting of defatted soybean protein and wheat gluten.
  • [5] The method for producing a protein food material according to any one of [1] to [4], wherein the protein-containing mixture further contains a coloring agent.
  • the intensity ratio of the peak intensity of the amide I band to the peak intensity of the amide II band measured by irradiating polarized light parallel to the fiber direction of the fibrous region is defined as XA
  • XB the intensity ratio of the peak intensity of the amide I band to the peak intensity of the amide II band measured by irradiating polarized light perpendicular to the fiber direction of the region
  • a protein food material that satisfies 005 ⁇ X A /X B [7] The protein food material according to [6], wherein the physical protein is at least one selected from the group consisting of defatted soybean protein and wheat gluten. [8] The protein food material according to [6] or [7], further comprising a coloring agent.
  • a method for producing a protein food material and a protein food material with excellent fleshy appearance are provided.
  • FIG. 1A is a schematic cross-sectional view showing an example of a twin-screw extruder.
  • FIG. 1B is an enlarged view of the broken line portion indicated by the symbol A in FIG. 1A.
  • FIG. 2A is a photograph of a cross section of the protein food material prepared in Example 2.
  • FIG. 2B is a photograph of a cross section of the protein food material produced in Comparative Example 3.
  • FIG. 3A is a photograph taken of the surface of the protein food material prepared in Example 2.
  • FIG. 3B is a photograph of the surface of the protein food material prepared in Comparative Example 3.
  • FIG. 4 is a diagram showing infrared absorption spectra when s-polarized light is irradiated parallel and perpendicular to the fiber direction of the protein food material 4 produced in Example 4.
  • the method for producing a protein food material according to the present disclosure involves pressurizing a protein-containing mixture containing vegetable protein and water in a twin-screw extruder. and a step (hereinafter also referred to as an extrusion step) of extruding the kneaded protein-containing mixture from a discharge die provided in a twin-screw extruder after heating and kneading, and the temperature of the discharge die is 95 ° C. to 120 ° C. .
  • the protein food material produced by the production method according to the present disclosure has excellent fleshy appearance.
  • the reason is assumed to be as follows.
  • a pressurized and heated protein-containing material is discharged using an extruder or the like, and the mixture is fiberized (i.e., oriented).
  • a die attached to a twin-screw extruder is cooled, and although the die is actually expanded, the expansion (porosity) is suppressed and a dense structure is formed.
  • a protein food material with texture is produced to obtain a meat-like texture.
  • JP-A-60-221041 and JP-A-64-23856 do not focus on the fleshy appearance.
  • the surface has a linear uneven shape reminiscent of muscle fibers.
  • the present inventors focused on the correlation between the temperature of the discharge die and the appearance of the protein food material in the method for producing the protein food material.
  • a protein-containing mixture containing vegetable protein and water is kneaded by pressurizing and heating in a twin-screw extruder, and then the kneaded protein-containing mixture is subjected to twin-screw extrusion. It includes a step of extruding from a discharge die included in the machine, and the temperature of the discharge die is 95°C to 120°C. This ensures a balance between fiberization (orientation) and swelling (porosity) within the discharge die temperature range of 95°C to 120°C, which has not been considered before, and produces protein food materials with excellent fleshy appearance. It is assumed that it is possible.
  • One of the embodiments according to the present disclosure is a protein food material containing vegetable protein, having a fibrous region on at least a part of the surface, and having a porous structure, and the fibrous region is exposed to polarized infrared radiation.
  • ⁇ IR spectrum'' infrared absorption spectrum
  • ⁇ polarized ATR-IR method'' reflection absorption measurement method
  • the intensity ratio of the peak intensity of the amide I band to the peak intensity of the amide II band measured by irradiating parallel polarized light is defined as XA , and the intensity ratio was measured by irradiating polarized light perpendicular to the fiber direction of the fibrous region.
  • It contains a protein food material whose orientation degree X A /X B satisfies 1.005 ⁇ X A /X B , where X B is the intensity ratio of the peak intensity of the amide I band to the peak intensity of the amide II band.
  • the above-mentioned protein food material is one embodiment of the protein food material produced by the production method according to the present disclosure, and has excellent fleshy appearance.
  • the protein food materials produced by the production method according to the present disclosure including the above-mentioned protein food materials, are collectively referred to as the protein food materials according to the present disclosure, as appropriate.
  • extrusion process In the extrusion process, a protein-containing mixture containing vegetable protein and water is kneaded in a twin-screw extruder by applying pressure and heating, and then the kneaded protein-containing mixture is passed through a discharge die equipped with the twin-screw extruder. This is an extrusion process.
  • the extruder used in the extrusion process is a twin-screw extruder, such as a non-intermeshing type counter-rotating twin-screw extruder, an intermeshing-type counter-rotating twin-screw extruder, and an intermeshing-type co-rotating twin-screw extruder.
  • An extruder can be used.
  • FIG. 1A is a schematic cross-sectional view showing an example of a twin-screw extruder. Note that the elements in the drawings are not necessarily to scale, emphasis instead being placed upon clearly illustrating the principles of the present disclosure.
  • vegetable protein which is a raw material for a protein food material
  • water are introduced into a twin-screw extruder 10 from a hopper 12.
  • a raw material for a protein food material it is preferable to contain 1 part by mass or more and 5 parts by mass or less of water per 10 parts by mass of the raw material containing vegetable protein.
  • the "raw material containing vegetable protein” may be the vegetable protein itself, or may be a complex containing the vegetable protein and other components. It is also preferable that the raw material further contains a coloring agent. Examples of complexes containing vegetable protein and other components include defatted soybean flour, which is a complex containing proteins, carbohydrates, and fibers.
  • the input raw materials are kneaded in the twin-screw extruder 10 by heating the barrel 14 and rotating the two screws 16 to form a protein-containing mixture 18.
  • the protein-containing mixture 18 is mixed in the extrusion direction. Pushed out by X.
  • the temperature of the extruder barrel is preferably 40°C or higher and 170°C or lower. Specifically, it is preferable that the temperature upstream of the central part of the barrel in the extrusion direction (the part from the raw material supply section to the center of the barrel) is 40°C or more and 150°C or less; It is preferable that the temperature at the center of the barrel in the axial direction is 130°C or more and 170°C or less, and the temperature downstream from the center of the barrel in the extrusion direction (from the center of the barrel to the tip of the barrel) is 140°C or more and 170°C or less. It is preferable that
  • the twin-screw extruder 10 is equipped with a discharge die 20 at the tip of a barrel 14. It is preferable that the discharge die 20 has a discharge port through which a sheet-like extrudate can be obtained. It is preferable that the discharge die 20 has a slit-shaped flow path. A protein-containing mixture flows through the channel.
  • the gap (lip clearance) between the discharge ports of the discharge die 20 is preferably 1 mm or more and 10 mm or less, and more preferably 1 mm or more and 5 mm or less.
  • the gap (lip clearance) at the discharge port refers to the length of the shortest diameter at the discharge port.
  • the length of the discharge die 20 in the extrusion direction is preferably 90 mm or more and 450 mm or less, and more preferably 150 mm or more and 300 mm or less, from the viewpoint of obtaining a protein food material with excellent fleshy appearance.
  • the discharge die 20 is a cooling die.
  • the cooling die refers to a die that is cooled, for example, by circulation of a cooling liquid (a coolant such as water, glycol, or air).
  • a cooling die makes it easier to control the expansion of the extruded mixture. That is, the mixture, which is subjected to shearing by rubbing against the inner wall surface while flowing through the discharge die, is controlled to expand during discharge and maintains its fibrous quality easily.
  • the protein-containing mixture 18 heated and pressurized and kneaded in the barrel 14 is temperature-controlled when passing through the discharge die 20 and is discharged from the discharge port of the discharge die 20.
  • the temperature of the discharge die 20 is 95°C or more and 120°C or less, and from the viewpoint of obtaining a protein food material with excellent fleshy appearance, it is preferably 100°C or more and 115°C or less, and 100°C or more and 110°C or less. It is more preferable.
  • the discharge die 20 includes a slit-shaped discharge flow path 24 that communicates with the inside of the barrel 14.
  • the slit-shaped discharge channel 24 provided in the discharge die 20 is concentric.
  • the slit shape being "concentric" means that the shape of the discharge channel 24 is defined by the gap formed between two concentric circles of different sizes in a cross-sectional view perpendicular to the extrusion direction X of the protein-containing mixture. It means there is.
  • the slit shape may be concentric, plate-shaped, circular, or the like.
  • the protein-containing mixture passing through the discharge channel 24 in the extrusion direction X is discharged from the discharge port 26 at the tip of the discharge channel 24 in the form of a plate (for example, a sheet or a film).
  • the discharge rate of the protein-containing mixture 18 is preferably 10 kg/hr or more and 100 kg/hr or less, more preferably 20 kg/hr or more and 80 kg/hr or less, from the viewpoint of obtaining a protein food material with excellent fleshy appearance. preferable.
  • FIG. 1B is an enlarged view of the broken line portion indicated by the symbol A in FIG. 1A.
  • the protein-containing mixture 18 extruded from inside the barrel 14 to the discharge die 20 is subjected to shear stress by kneading, and is further brought into contact with the inner wall of the flow path in the downstream discharge die 20.
  • shear stress By being rubbed and subjected to shear stress, the protein becomes oriented during passage through the discharge die 20 and becomes fibrous.
  • the broken line indicated by the reference numeral 22 schematically indicates the oriented and fibrous protein.
  • the protein-containing mixture 18 that has passed through the discharge die 20 is extruded from the discharge port 26 of the discharge die 20 under atmospheric pressure.
  • the protein-containing mixture 18 immediately after kneading is extruded under atmospheric pressure, the protein-containing mixture 18 expands (i.e., becomes porous) due to water vaporization, and the protein food material has a porous structure.
  • the temperature of the discharge die 20 is 95° C. or more and 120° C. or less, so that smaller sized voids (for example, cross-sectional area in the direction perpendicular to the fibers; 0.1 mm 2 or less) are formed. Easy to occur.
  • reference numeral 28 schematically indicates a void formed by the manufacturing method according to the present disclosure. Smaller voids in the porous structure correlate with a surface with a better fleshy appearance.
  • the production method according to the present disclosure uses vegetable protein as a raw material. That is, the protein food material according to the present disclosure contains vegetable protein. Vegetable protein is protein collected from plants. The vegetable protein is not particularly limited as long as it is a protein collected from plants.
  • the sources of vegetable proteins include, for example, grains such as wheat, barley, oats, rice, and corn; legumes such as soybeans, peas, adzuki beans, chickpeas, lentils, fava beans, mung beans, and chihuahua beans; almonds; Seeds such as peanuts, cashews, pistachios, hazelnuts, macadamian nuts, flaxseed, sesame, rapeseed, cottonseed, safflower, and sunflowers; potatoes such as potatoes, sweet potatoes, mountain potatoes, Japanese potatoes, and cassava; asparagus, Vegetables such as artichokes, cauliflower, broccoli, and edamame; Fruits such as bananas, jackfruit, kiwifruit, coconuts, avocados, and olives; Mushrooms such as mushrooms, king mushrooms, shiitake, shimeji, and maitake; chlorella, spirulina, and euglena;
  • the source of vegetable protein is selected from the group consisting of wheat, soybeans, peas, and rice, from the perspective of obtaining a chunk-like substitute meat that has an appearance and texture similar to actual livestock meat. It is preferably at least one selected from the group consisting of soybeans and wheat, and more preferably at least one selected from the group consisting of soybeans and wheat.
  • the vegetable protein is particularly preferably at least one selected from defatted soybean protein and wheat gluten.
  • "chunk meat” refers to uncooked raw meat cut into any size from livestock for meat, or cooked meat, and which is ground after being cut from the livestock. , or meat that has not been cut into small pieces.
  • the vegetable protein may contain one type of vegetable protein, or may contain two or more types of vegetable proteins.
  • their types and blending ratios can be determined as appropriate.
  • the mass ratio of defatted soybeans to wheat gluten is 80%. :20 to 60:40 is preferable.
  • the protein content is preferably 5% by mass or more and 80% by mass or less, more preferably 7% by mass or more and 70% by mass or less, and 10% by mass or more and 60% by mass, based on the entire protein food material. It is more preferable that it is the following.
  • the manufacturing method according to the present disclosure uses water.
  • the content of water in the protein-containing mixture is preferably 20% by mass to 40% by mass, based on the total protein-containing mixture including water.
  • the protein food material according to the present disclosure preferably contains a colorant.
  • a coloring agent it becomes easy to obtain a color similar to that of brown meat after heating.
  • the coloring agent is preferably an edible brown coloring agent.
  • the coloring agent include cacao pigment, moss color, and vegetable charcoal pigment, and among them, cacao pigment is preferable.
  • the protein food material may contain only one type of coloring agent, or may contain two or more types.
  • the content of the coloring agent contained in the protein food material is preferably 0.01% by mass or more and 3% by mass or less, and 0.05% by mass or more and 2% by mass or less, based on the entire protein food material. It is more preferable that the amount is 0.1% by mass or more and not more than 1% by mass.
  • the protein food material may contain other additives in addition to the protein and, if necessary, a coloring agent.
  • additives include water, seasonings, inorganic salts and organic salts, sugars, fats and oils, thickeners, plasticizers, surfactants, flavor components, and the like.
  • the content of other additives can be set depending on the purpose.
  • the mixture (ie, protein food material) extruded in the extrusion process can be used as it is as a meat substitute without any special processing. That is, the extruded mixture (protein food material) can be used as it is as a heated meat substitute.
  • the extruded mixture may be cooked with any seasonings and the like. Further, the extruded mixture can be subjected to desired processing such as molding.
  • the manufacturing method according to the present disclosure may include a molding step after the extrusion step.
  • the shaping step may include cutting the extruded mixture (ie, protein food material) into a desired shape.
  • the cut protein food material can be used as a meat substitute such as thinly sliced meat.
  • the cut protein food material may be cooked with any seasoning or the like.
  • the molding step may include processing the protein food material into a molded object having a shape according to the purpose.
  • the extrusion directions of the raw materials for the extruded lean meat-like parts should be aligned in nearly the same direction. is preferred.
  • the extrusion direction of the protein food material inside may be aligned in the same direction by applying pressure to flatten it, passing it through a tube-shaped space, or the like.
  • the method for producing a protein food material may include steps other than the extrusion step and molding step described above. Other steps may be any steps such as a drying step, a crushing step, a packaging step, etc.
  • the protein food material obtained by the production method according to the present disclosure i.e., the protein food material according to the present disclosure
  • “having a fibrous region on at least a portion of the surface” refers to having streak-like irregularities on at least a portion of the surface of the protein food material in terms of appearance.
  • having a porous structure refers to having an isotropic or anisotropic porous structure in appearance.
  • An anisotropic porous structure refers to a structure in which the shape of the pores that appear on the cut surface of a protein food material at an arbitrary position differs from the approximately elliptical shape depending on the cutting direction.
  • An isotropic porous structure refers to a structure in which the pores that appear on a cut surface of a protein food material at an arbitrary position are approximately elliptical and approximately the same regardless of direction. It is preferable that the protein food material obtained by the production method according to the present disclosure has an anisotropic porous structure. Examples of methods for observing the cut surface include a method of cutting out a section and observing it with a microscope or a method of observing with X-ray CT (Computed Tomography).
  • the protein food material according to the present disclosure has a ratio of the number of voids having a cross-sectional area of 0.1 mm 2 or less in a cross section parallel to a direction perpendicular to the fiber direction (number ratio of voids) to the total voids present in the cross section. It is 50% or more of the number of pieces.
  • the ratio of the number of voids is 50% or more, the protein food material has an excellent fleshy appearance.
  • the number ratio of voids is more preferably 60% or more, and even more preferably 64% or more.
  • the upper limit of the number ratio of voids is not particularly limited, but is preferably 95% or less.
  • the protein food material to be used as a sample for measuring the number ratio of voids is prepared by determining the fiber direction by the method described in "(1) Determination of fiber direction” below, and then using the method described in “(2) Formation of cross section”.
  • a protein food material is used in which a cut surface (cross section for measurement) is formed by the method and then dried under the conditions described in "(3) Drying”.
  • fiber direction means the longitudinal direction of the fibers present in the fibrous region of the protein food material, and is determined by the following method.
  • the “fiber direction” refers to the direction in which the protein food material is torn.
  • the end portion of the protein food material to be measured is grasped and the protein food material is torn in the tearing direction to obtain a sample for measurement.
  • two points 5 mm apart on the tear line are randomly selected, and the direction of the straight line connecting the two points is defined as the fiber direction.
  • the "fiber direction" is based on the longitudinal direction of the fibers present in the fibrous region on the surface of the protein food material. to be determined. Specifically, streak-like protrusions present in the fibrous region on the surface of the protein food material to be measured are randomly selected, and the direction of the straight line along the longitudinal direction of the protrusions is defined as the fiber direction.
  • the number ratio (%) of voids in the protein food material is determined by determining the fiber direction of each of the two measurement samples prepared from the protein food material to be measured using the method described above. The above measurements are carried out, the number ratio (%) of voids is calculated, and the two obtained number ratios (%) are taken as the arithmetic average value.
  • the shape of the voids contained in the protein food material according to the present disclosure is not particularly limited, and may be spherical, ellipsoidal, cylindrical, disc-shaped, or the like. From the viewpoint of improving the fleshy appearance, a cylindrical shape is preferable.
  • the protein food material according to the present disclosure has an IR spectrum obtained by measuring the polarized ATR-IR method, with respect to the peak intensity of the amide II band measured by irradiating polarized light parallel to the fiber direction of the fibrous region.
  • X B the degree of orientation X A /X B satisfies 1.005 ⁇ X A /X B.
  • the degree of orientation X A /X B of the fibrous region satisfies 1.005 ⁇ X A /X B means that the degree of orientation X A /X B of the fibrous region satisfies 1.005 ⁇ X A / It means highly oriented.
  • a fibrous region on the surface of the protein food material to be measured is thinly scraped off using a cutting means (razor, etc.) to obtain a cut piece. If contamination is found on the outermost surface, the exposed surface may be scraped off and used for measurement.
  • the thickness of the cut piece is 100 ⁇ m to 5000 ⁇ m. The size of the cut piece should fit within a square with sides of 0.5 cm to 3 cm. The obtained cut piece is used as a measurement sample.
  • ⁇ Measuring device and measurement conditions > - Measuring device IR device (Bruker, Vertex70) or equivalent device. ⁇ Measurement conditions Wave number range 650cm -1 ⁇ 4000cm -1 ATR unit: Specac Goldengate (Ge crystal, incident angle 45°, one reflection) Measurement area: approximately 5mm ⁇ , measurement depth: approximately 1 ⁇ m deep from the measurement surface
  • a measurement sample is fixed on a measurement table of a measurement device so that the cut surface becomes the irradiation surface of irradiation light (s-polarized light), and measurement is performed.
  • the measurement is carried out as follows using the above measuring device and measurement conditions.
  • the evaluation sample is irradiated with s-polarized light, and an IR spectrum is obtained when the incident s-polarized light and the fiber direction of the evaluation sample are parallel.
  • the evaluation sample is rotated by 90 degrees, and the IR spectrum is measured when the incident s-polarized light and the fiber direction of the evaluation sample are perpendicular.
  • the peak intensity of the amide I band and the peak intensity of the amide II band are determined for the case where the incident s-polarized light and the fiber direction of the valence sample are parallel. Similarly, when the incident s-polarized light and the fiber direction of the sample are perpendicular, the peak intensity of the amide I band and the peak intensity of the amide II band are determined.
  • the amide II band mainly shows the NH bending vibration and CN stretching vibration of -CO-NH- in the trans type.
  • the amide I band peak is observed at 1590 cm -1 to 1700 cm -1 and the amide II band peak is observed at 1490 cm -1 to 1590 cm -1 .
  • the intensity ratio X A , the intensity ratio X B and the degree of orientation X A /X B are calculated from the peak intensity determined from the area of the amide I band specified above and the peak intensity determined from the area of the amide II band.
  • Protein food material B according to the present disclosure satisfies 1.005 ⁇ X A /X B , and more preferably 1.0745 ⁇ X A /X B ⁇ 1.102.
  • the upper limit of the degree of orientation X A /X B is, for example, 1.5.
  • Measurement is performed at three randomly selected locations, and the measured value is the arithmetic average of the obtained values and the value rounded to the first decimal place.
  • the protein food material according to the present disclosure preferably has a surface appearance with many streak-like irregularities on the surface.
  • the protein food material obtained by the production method according to the present disclosure may be used as it is or as a mixture with desired additive components, or may be used to produce processed products such as substitute molded meat. It may be used as one of the materials for
  • additive components to be mixed with the protein food material include oils and fats, binders, enzymes, and other additives.
  • the fat or oil is a vegetable oil. Since vegetable oil is derived from plants, it is easy to use when it is necessary to avoid or limit the intake of animal foods for reasons such as health, animal welfare, religion, allergies, and food crises due to population growth.
  • the content of fats and oils is preferably 0% by mass or more and 50% by mass or less, more preferably 1% by mass or more and 40% by mass or less, based on the entire mixture containing the protein food material and fats and oils. More preferably, the content is 3% by mass or more and 30% by mass or less.
  • the fat does not have an appearance similar to the fat in chunks of meat, and may be contained in a highly uniform state throughout the mixture containing the protein food material and the fat.
  • the protein food material is mixed with at least one member selected from the group consisting of a binder and an enzyme that hardens proteins, if necessary.
  • the protein food material is mixed with at least one member selected from the group consisting of a binder and an enzyme that hardens proteins, if necessary.
  • the binder is not particularly limited as long as it is edible and can maintain the shape of the protein food material.
  • examples of the binder include protein, polysaccharide thickener, starch, and the like.
  • the binder one type may be contained alone, or two or more types may be contained.
  • the protein used as a binder may be the same as or different from the protein contained in the protein food material.
  • proteins used as binders include vegetable proteins and animal proteins.
  • examples of vegetable proteins used as binders include proteins derived from wheat, soybeans, rice, and the like.
  • examples of the animal protein used as a binder include milk protein and egg white.
  • transglutaminase as the enzyme that hardens proteins.
  • Commercially available transglutaminase can be used, such as the Activa (registered trademark) series manufactured by Ajinomoto Co., Inc.
  • thickening polysaccharides examples include agar, carrageenan ( ⁇ -carrageenan, ⁇ -carrageenan), alginic acid, alginate, agarose, farcellan, gellan gum, glucono delta lactone, azotobacter vineland gum, xanthan gum, pectin, and guar gum.
  • locust bean gum tara gum, cassia gum, glucomannan, tragacanth gum, karaya gum, pullulan, gum arabic, arabinogalactan, dextran, carboxymethylcellulose sodium salt, methylcellulose, psyllium sheet gum, starch, chitin, chitosan, curdlan, tamarind seed gum , soybean polysaccharide, gelatin, psyllium, hydroxypropylmethylcellulose, hydroxyethylcellulose, carboxymethylcellulose, dextrin, and the like.
  • the polysaccharide thickener may be used as a gelling agent or may be gelled.
  • the gelling agent is preferably used together with a gelling promoter.
  • a gelation promoter is a compound that promotes gelation upon contact with a gelling agent, and its function is exhibited by a specific combination with a gelling agent.
  • Preferred combinations of gelling agents and gelling promoters are as follows. 1) Polyvalent metal ions (specifically, alkali metal ions such as potassium, or alkaline earth metal ions such as calcium and magnesium) as a gelling agent, and carrageenan, alginate, gellan gum, and azo as a gelling agent. A combination of tobacter vineland gum, pectin, carboxymethylcellulose sodium salt, etc. 2) A combination of boric acid or other boron compounds as a gelling promoter and guar gum, locust bean gum, tara gum, cassia gum, etc. as a gelling agent.
  • a water-soluble polysaccharide that reacts with a gelling agent to form a gel is used as a gelling promoter.
  • examples include a combination in which xanthan gum is used as a gelling agent and cassia gum is used as a gelling promoter, and a combination in which carrageenan is used as a gelling agent and locust bean gum is used as a gelling promoter.
  • a gelling agent and a gelling promoter is as follows: (metal ions or alkaline earth metal ions such as calcium, magnesium, etc.) and a gelling agent such as carrageenan, alginate, gellan gum, Azotobacter vineland gum, pectin, carboxymethyl cellulose sodium salt, etc. preferable.
  • the thickening polysaccharide used as a binder may be a thermoirreversible gel-forming polysaccharide or a thermoreversible gel-forming polysaccharide.
  • a thermoirreversible gel is a gel that, once formed, maintains its gel state even when heated.
  • a thermoirreversible gel-forming polysaccharide is a polysaccharide that forms a thermoirreversible gel.
  • the thermoirreversible gel-forming polysaccharide is preferably a polysaccharide that crosslinks by reaction with a cation. Examples of the cation include the cations exemplified in the explanation of the fat mass composition described below.
  • thermoirreversible gel-forming polysaccharides examples include alginic acid, curdlan, pectin (low methoxyl (LM) pectin, high methoxyl (HM) pectin, etc.), deacylated (LA) gellan gum, and the like.
  • a thermoreversible gel-forming polysaccharide is a polysaccharide that forms a thermoreversible gel.
  • thermoreversible gel-forming polysaccharides include gelatin, agar, carrageenan, farcellan, native gellan gum, locust bean gum, xanthan gum, guar gum, psyllium seed gum, glucomannan, tara gum, tamarind seed gum, and the like.
  • the binder may further contain a gel retarder.
  • a gelation retardant is a compound that has the function of suppressing gelation of a thermoirreversible gel-forming polysaccharide or a thermoreversible gel-forming polysaccharide.
  • the chelating agent is preferably a chelating agent. As the chelating agent, known chelating agents can be suitably used.
  • the chelating agent examples include oxycarboxylic acids such as tartaric acid, citric acid, and gluconic acid; aminocarboxylic acids such as iminodiacetic acid (IDA), nitrilotriacetic acid (NTA), and ethylenediaminetetraacetic acid (EDTA); pyrophosphoric acid, Condensed phosphoric acids such as tripolyphosphoric acid; salts thereof; and the like.
  • IDA iminodiacetic acid
  • NTA nitrilotriacetic acid
  • EDTA ethylenediaminetetraacetic acid
  • pyrophosphoric acid Condensed phosphoric acids such as tripolyphosphoric acid; salts thereof; and the like.
  • starch examples include wheat starch, cassava starch, rice starch, glutinous rice starch, corn starch, waxy corn starch, sago starch, potato starch, arrowroot starch, lotus root starch, mung bean starch, sweet potato starch, waxy potato starch, waxy cassava starch, Examples include waxy wheat starch.
  • the total content of the binder and the enzyme that hardens the protein contained in the protein food material is preferably 0.1% by mass or more and 30% by mass or less based on the entire protein food material, It is more preferably 0.5% by mass or more and 25% by mass or less, and even more preferably 1% by mass or more and 20% by mass or less.
  • the protein food material may be mixed with other additives as necessary.
  • Other additives include, for example, water, seasonings, acidulants, bittering agents, spices, sweeteners, antioxidants, coloring agents, fragrances, stabilizers, preservatives, and the like.
  • the content of other additives is preferably 0% by mass or more and 20% by mass or less based on the entire mixture containing the protein food material and additives.
  • One of the preferred applications of the protein food material obtained by the production method according to the present disclosure is an alternative molded meat containing the protein food material.
  • the alternative molded meat has an excellent meaty appearance.
  • the substitute molded meat is preferably a substitute molded meat for chunk meat (hereinafter also referred to as "substitute meat for chunks"). Since the protein food material obtained by the production method according to the present disclosure has an excellent meaty appearance, the meat substitute for chunk meat according to the present disclosure can have an appearance similar to "choice meat" of livestock meat.
  • the chunk of meat has a lean-like part with a color close to red and a fat-like part with a color close to white on its surface.
  • the fat on the surface of a chunk of meat has a certain area (for example, in a chunk of meat from a portion of meat with little fat, such as beef fillet, the area of fat on the surface of the chunk of meat is about 3%).
  • fat On the surface of chunks of meat, fat often has an elongated shape.
  • the alternative molded meat preferably contains a protein food material and fats and oils, and more preferably contains a protein food material, fats and oils, and a polysaccharide.
  • the fat and oil contained in the protein food material may be a granular body containing fat and oil.
  • the granular material containing fats and oils may be in the form of, for example, capsule-shaped fats and oils, fats and oils encapsulated in a gel, and the like.
  • the average particle diameter of the granules may be 10 ⁇ m or more and 500 ⁇ m or less.
  • the average particle diameter of the granules is a value measured by observation using a transmission optical microscope.
  • the polysaccharide can function as a binder between the protein food material and the granules containing fat and oil.
  • examples of polysaccharides include the thickening polysaccharides described above as binders that may be included in protein food materials.
  • a meat substitute for lump meat which is one of the application forms of the protein food material obtained by the production method according to the present disclosure, will be explained using a meat substitute for chunk meat as an example.
  • the lean meat-like portion refers to a portion of the chunk meat-like meat substitute that corresponds to a portion that appears lean.
  • the lean-like portion has an appearance similar to lean meat in chunks. It is preferable that the lean meat-like portion contains a protein food material obtained by the production method according to the present disclosure, and contains fats and oils, a binder, and other additives as necessary. The details of the oil and fat, the binder, and other additives are as described above, and their explanation will be omitted here.
  • the red meat-like portion may be colored red using a coloring agent.
  • the coloring agent used for coloring the red meat-like parts is preferably an edible and red coloring agent.
  • the edible and red coloring agent preferably has the property of discoloring when heated, from the viewpoint that the red meat-like portion exhibits a red color before heating and a color close to brown after heating.
  • the red coloring agent include natural beet red pigment, cochineal pigment, gardenia red pigment, etc. Among them, natural beet red pigment is preferred.
  • the lean meat-like portion may contain a protein food material and fats and oils from the viewpoint of improving the taste and texture of the meat substitute.
  • the fat or oil contained in the protein food material may be a capsule-shaped fat or oil.
  • the polysaccharide can function as a binder between the protein food material and the capsule-shaped fat and oil.
  • capsule-shaped fats and oils examples include microcapsules encapsulating edible fats and oils.
  • Microcapsules encapsulating edible oils and fats include, for example, a core portion containing edible oils and fats, and a shell portion encapsulating the core portion and containing an edible ionic crosslinkable polymer crosslinked with polyvalent cations. Examples include edible oil-encapsulating microcapsules.
  • the edible fat or oil contained in the core portion is preferably an edible fat or oil with a melting point of 30° C. or lower, and may be either a natural oil or a synthetic oil, or a mixture thereof.
  • the edible fats and oils are preferably saturated fatty acids or unsaturated fatty acids, more preferably saturated fatty acids having 12 to 30 carbon atoms or unsaturated fatty acids having 12 to 30 carbon atoms, and 16 to 30 carbon atoms. More preferably, it is an unsaturated fatty acid having 24 carbon atoms.
  • Unsaturated fatty acids with a melting point of 30°C or lower include triglycerides of medium-chain fatty acids with 6 to 12 carbon atoms (medium-chain fatty acid triglycerides) such as caproic acid, caprylic acid, capric acid, and lauric acid; coconut oil, sesame oil, olive oil, Examples include vegetable oils and fats such as corn oil, rapeseed oil, safflower oil, soybean oil, sunflower oil, nut oil, grapeseed oil, and linseed oil, and vitamin E.
  • the core portion may contain other components other than water and the above-mentioned edible oil or fat, if necessary. Other components include amino acids, stabilizers, excipients, fragrances, and the like.
  • the shell part encloses the core part and contains an edible ionically crosslinkable polymer crosslinked with polyvalent cations.
  • an edible ionically crosslinkable polymer crosslinked with polyvalent cations known ionically crosslinkable polymers crosslinkable with polyvalent cations can be used.
  • the ionic crosslinkable polymer is not particularly limited as long as it can be used in foods, and examples thereof include pectin or its derivatives, alginic acid or its salts, gellan gum, carrageenan, polygalacturonic acid, and mixtures thereof.
  • the shell portion may contain components other than the ionic crosslinkable polymer, such as gellan gum, a polysaccharide thickener other than carrageenan and pectin, and a polysaccharide thickener for imparting flexibility in a dry state.
  • plasticizers and the like can be mentioned.
  • the microcapsules encapsulating edible fats and oils may have a number average particle diameter of 10 ⁇ m or more and 300 ⁇ m or less. Further, it is also preferable that the coefficient of variation (CV value) of the number average particle diameter is 30% or less.
  • Edible oil-encapsulating microcapsules are produced by using, for example, an aqueous phase containing an edible ionic crosslinkable polymer and a polyvalent cation chelate compound, and an oil phase containing an edible fat or oil with a melting point of 30°C or less to form oil droplets in water.
  • a step of obtaining a dispersion mixing the oil-in-water dispersion prepared in step A above and edible oil to obtain an oil-in-water dispersion in which oil-in-water droplets are dispersed in the edible oil. It can be produced by a production method including Step B and Step C of obtaining a mixed solution of the dispersion of oil-in-water droplets prepared in Step B above and edible fat and oil containing a pH lowering agent.
  • the fat-like portion refers to a portion that has an appearance similar to the fat of a chunk of meat (generally referred to as fat).
  • the fat-like portion preferably contains oil and fat, and if necessary contains gel.
  • fats and oils examples include vegetable oils and animal fats.
  • vegetable oils include rapeseed oil, soybean oil, palm oil, olive oil, rice oil, corn oil, and coconut oil.
  • vegetable oil refers to oil and fat obtained from plants.
  • animal fats and oils include beef tallow, pork fat, whale fat, and fish oil. Note that animal fats and oils refer to fats and oils obtained from animals.
  • the melting point range of the fat or oil is not particularly limited, but may be, for example, 300°C or lower.
  • the melting point of fats and oils is a value measured by a thermal analysis measuring device.
  • a thermal analysis measuring device for example, SSC5000DSC200 manufactured by Seiko Electronics Industries, Ltd. can be used.
  • the melting point of fats and oils is measured by adding 3 mg of a sample to the apparatus and measuring at a heating rate of 3° C./min.
  • the oil or fat is contained in the fat-like portion in the form of an emulsion.
  • emulsion refers to an emulsion that contains oil, fat, and water and is in an emulsified state such as an oil-in-water emulsion or a water-in-oil emulsion.
  • oils and fats contained in the emulsion include those mentioned above.
  • the content of oil and fat in the emulsion is preferably 5% by mass or more and less than 90% by mass, more preferably 10% by mass or more and 80% by mass or less, and 15% by mass or more, based on the entire emulsion. More preferably, it is 70% by mass or less.
  • the water contained in the emulsion is not particularly limited as long as it can be used for food.
  • the content of water in the emulsion is preferably 10% by mass or more and 95% by mass or less, more preferably 20% by mass or more and 90% by mass or less, and 30% by mass or more, based on the entire emulsion. More preferably, it is 85% by mass or less.
  • the emulsion contains a thickening polysaccharide.
  • a thickening polysaccharide By containing the thickening polysaccharide, the water retention property of the emulsion can be improved.
  • the polysaccharide thickener is not particularly limited, but the ones mentioned above are applicable.
  • the content of polysaccharide thickener in the emulsion is preferably 0.1% by mass or more and 5% by mass or less, and preferably 0.5% by mass or more and 3% by mass or less, based on the entire emulsion. More preferred.
  • the emulsion contains protein.
  • the adhesion between the lean meat-like part and the fat-like part increases.
  • the protein is not particularly limited, but those mentioned above are applicable.
  • the content of protein in the emulsion is preferably 0.1% by mass or more and 10% by mass or less, and more preferably 0.5% by mass or more and 5% by mass or less, based on the entire emulsion.
  • the emulsion may also include a surfactant.
  • the surfactant contained in the emulsion includes edible surfactants.
  • examples of the edible surfactant include glycerin fatty acid ester, polyglycerin fatty acid ester, organic acid monoglyceride, sorbitan fatty acid ester, propylene glycol fatty acid ester, sucrose fatty acid ester, polyglycerin condensed ricinoleic acid ester, lecithin, and the like.
  • the glycerin fatty acid ester preferably contains monoglyceride as a main component.
  • the monoglyceride is preferably a monoester of glycerin and a saturated or unsaturated fatty acid having 2 to 24 carbon atoms. Examples of fatty acids include behenic acid, stearic acid, palmitic acid, and the like.
  • the glycerin fatty acid ester may contain diglyceride.
  • the diglyceride is preferably a diester of glycerin and a saturated or unsaturated fatty acid having 2 to 24 carbon atoms.
  • the polyglycerin fatty acid ester is preferably an esterified product of a saturated or unsaturated fatty acid having 2 to 24 carbon atoms and polyglycerin.
  • the polyglycerin fatty acid esters include polyglyceryl monomyristate, polyglyceryl dimyristate, polyglyceryl trimyristate, polyglyceryl monopalmitate, polyglyceryl dipalmitate, polyglyceryl tripalmitate, polyglyceryl monostearate, and polyglyceryl distearate.
  • polyglyceryl tristearate polyglyceryl monoisostearate, polyglyceryl diisostearate, polyglyceryl triisostearate, polyglyceryl monooleate, polyglyceryl dimonooleate, polyglyceryl trimonooleate, and the like.
  • Organic acid monoglyceride is obtained by further esterifying the glycerin-derived hydroxyl group of monoglyceride using an organic acid.
  • organic acids include citric acid, succinic acid, acetic acid, and lactic acid, with citric acid and succinic acid being preferred, and citric acid being more preferred.
  • Sorbitan fatty acid ester refers to an esterified product of sorbitan and fatty acid.
  • the sorbitan fatty acid ester is preferably an esterified product of sorbitan and a saturated or unsaturated fatty acid having 2 or more and 18 or less carbon atoms.
  • sorbitan fatty acid esters include sorbitan monocaprate, sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan distearate, sorbitan sesquistearate, sorbitan tristearate, sorbitan trioleate, and sorbitan monostearate. Examples include sorbitan isostearate, sorbitan sesquiisostearate, sorbitan monooleate, sorbitan sesquioleate, and coconut oil fatty acid sorbitan.
  • Propylene glycol fatty acid ester is an esterified product of fatty acid and propylene glycol.
  • the fatty acid used in the synthesis of propylene glycol fatty acid ester is preferably a saturated or unsaturated fatty acid having 2 to 24 carbon atoms.
  • Specific examples of the propylene glycol fatty acid ester include propylene glycol palmitate, propylene glycol stearate, and propylene glycol behenate.
  • Sucrose fatty acid ester is an esterified product of sucrose and fatty acid.
  • the fatty acid used in the synthesis of sucrose fatty acid ester is preferably a saturated or unsaturated fatty acid having 2 or more and 24 or less carbon atoms.
  • the sucrose fatty acid ester is one or more selected from the group consisting of caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, palmitoleic acid, stearic acid, oleic acid, arachidic acid, and behenic acid.
  • An esterified product of fatty acid and sucrose is preferred.
  • Polyglycerin condensed ricinoleic acid ester is an esterified product of polyglycerin fatty acid ester and ricinoleic acid condensate.
  • Specific examples of the polyglycerin condensed ricinoleic acid ester include esterification products of the compounds described as specific examples of the polyglycerin fatty acid ester described above and ricinoleic acid condensates.
  • Lecithin refers to phosphatidylcholine itself or a mixture containing at least phosphatidylcholine.
  • a mixture containing at least phosphatidylcholine generally includes, in addition to phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine, phosphatidylinositol, N-acylphosphatidylethanolamine, phosphatidylglycerol, phosphatidic acid, lysophosphatidylcholine, lysophosphatidic acid, sphingomyelin, It is a mixture that may contain sphingoethanolamine and the like.
  • enzymatically decomposed lecithin As the lecithin, enzymatically decomposed lecithin (so-called lysolecithin) can be used.
  • Enzymatically decomposed lecithin is a composition containing lysophosphatidylcholine in which one fatty acid of the phosphatidylcholine molecule has been lost by an enzyme such as phospholipase.
  • enzymatically decomposed lecithin includes so-called hydrogenated enzymatically decomposed lecithin, which has been hydrogenated to improve oxidative stability by converting bound fatty acids to saturated fatty acids.
  • the HLB value of the surfactant is, for example, preferably 8 or more, more preferably 10 or more, and even more preferably 12 or more, from the viewpoint of emulsifying and dispersing properties.
  • the upper limit of the HLB value of the emulsifier is not particularly limited, but is generally 20 or less, preferably 18 or less.
  • HLB means hydrophilic-hydrophobic balance, commonly used in the surfactant field.
  • the HLB value is calculated using the Kawakami formula shown below.
  • the commercial catalog data is preferentially adopted.
  • Mw represents the formula weight of the hydrophilic group that the surfactant has
  • Mo represents the formula weight of the hydrophobic group that the surfactant has.
  • the hydrophobic group that a surfactant has is an atomic group that has a low affinity for water. Examples of the hydrophobic group include an alkyl group, an alkenyl group, an alkylsilyl group, a perfluoroalkyl group, and the like.
  • the surfactant is the above-mentioned "glycerin fatty acid ester, polyglycerin fatty acid ester, organic acid monoglyceride, sorbitan fatty acid ester, propylene glycol fatty acid ester, sucrose fatty acid ester, polyglycerin condensed ricinoleic acid ester, or lecithin".
  • it refers to alkyl groups and alkenyl groups derived from fatty acids.
  • the hydrophilic group that a surfactant has is an atomic group that has a high affinity for water. Specifically, it refers to atomic groups other than hydrophobic groups in the structure of a surfactant.
  • the fat-like portion preferably contains gel.
  • gel refers to a gel that contains at least water and behaves as an elastic solid.
  • Elasticity refers to the property of an object that is deformed by an external force and tends to return to its original shape after the external force is removed.
  • the gel contains an edible gelling agent.
  • Edible gelling agents include polysaccharide thickeners.
  • specific examples of the thickening polysaccharide include agar, carrageenan ( ⁇ -carrageenan, ⁇ -carrageenan), alginic acid, alginate, agarose, farcellan, gellan gum, glucono delta-lactone, azotobacter vinelandigum, xanthan gum, Pectin, guar gum, locust bean gum, tara gum, cassia gum, glucomannan, tragacanth gum, karaya gum, pullulan, gum arabic, arabinogalactan, dextran, carboxymethylcellulose sodium salt, methylcellulose, psyllium sheet gum, starch, chitin, chitosan, curdlan, Examples include tamarind seed gum, soybean polysaccharide, gelatin, psyllium, hydroxypropylmethylcellulose, hydroxyethylcellulose, carboxymethylcellulose,
  • the gelling agent is preferably used together with a gelling promoter.
  • a gelation promoter is a compound that promotes gelation upon contact with a gelling agent, and its function is exhibited by a specific combination with a gelling agent. Preferred combinations of gelling agents and gelling promoters are as follows.
  • Polyvalent metal ions specifically, alkali metal ions such as potassium, or alkaline earth metal ions such as calcium and magnesium
  • alkali metal ions such as potassium, or alkaline earth metal ions such as calcium and magnesium
  • carrageenan alginate, gellan gum, and azo as a gelling agent.
  • alkali metal ions such as potassium, or alkaline earth metal ions such as calcium and magnesium
  • a water-soluble polysaccharide that reacts with a gelling agent to form a gel is used as a gelling promoter.
  • examples include a combination in which xanthan gum is used as a gelling agent and cassia gum is used as a gelling promoter, and a combination in which carrageenan is used as a gelling agent and locust bean gum is used as a gelling promoter.
  • the combination of a gelling agent and a gelling promoter is as follows: 1) polyvalent metal ions (specifically (Alkali metal ions such as potassium, or alkaline earth metal ions such as calcium and magnesium) and gelling agents such as carrageenan, alginate, gellan gum, Azotobacter vinegar gum, pectin, carboxymethyl cellulose sodium salt, etc. combination.” is preferable.
  • the fat-like portion has one of the following component aspects.
  • the fat-like portion contains fats and oils as a main component.
  • the fat-like portion contains an emulsion as a main component.
  • the fat-like portion contains oil and gel.
  • the term "main component" as used herein means that the corresponding component is contained in an amount of 90% by mass or more based on the entire fat-like portion.
  • fat-like part example (1) When the fat-like part contains oil as a main component (hereinafter referred to as fat-like part example (1))
  • the content of oil and fat contained in the fat-like part is preferably 90% by mass or more, and 92% by mass or more, based on the entire fat-like part. More preferably, it is 95% by mass or more.
  • the upper limit of the content of oil and fat contained in the fat-like part is determined based on the total fat-like part, taking into account additives contained in the fat and oil. The content may be 99% by mass or less, or 98% by mass or less.
  • the fat-like part is “Example (1) of fat-like part”
  • an oil or fat that becomes cloudy when coagulated from the viewpoint of obtaining a chunk meat-like substitute meat having an appearance similar to livestock meat.
  • preferred oils and fats used when the fat-like portion is “Example (1) of fat-like portion” include coconut oil, palm oil, shea butter, and cocoa butter.
  • fat-like part example (2) When the fat-like part contains an emulsion as a main component (hereinafter referred to as fat-like part example (2)) Since emulsions often have a white color, if the fat-like portion contains the emulsion as a main component, the fat-like portion also tends to be white. Therefore, by making the fat-like part into the form of fat-like part example (2), a chunk meat-like substitute meat having an appearance closer to livestock meat can be obtained.
  • the emulsion may be an oil-in-water type emulsion or a water-in-oil type emulsion.
  • the content of the emulsion is preferably 90% by mass or more, and preferably 92% by mass or more, based on the entire fat-like part. More preferably, it is 95% by mass or more.
  • the upper limit of the content of emulsion contained in the fat-like part is based on the entire fat-like part, taking into account the addition of additives etc. It may be 99% by mass or less, or 98% by mass or less.
  • the content of oil and fat contained in the emulsion is preferably 5% by mass or more and less than 90% by mass, more preferably 10% by mass or more and 80% by mass or less, based on the entire emulsion. It is more preferable that the amount is from % by mass to 70% by mass.
  • the content of water contained in the emulsion is preferably 10% by mass or more and 95% by mass or less, more preferably 20% by mass or more and 90% by mass or less, and 30% by mass or less, based on the entire emulsion. It is more preferable that the amount is from % by mass to 85% by mass.
  • the content of the surfactant contained in the emulsion is preferably 0.01% by mass or more and 5% by mass or less, and 0.05% by mass or more and 4% by mass or less, based on the entire emulsion. It is more preferably 0.1% by mass or more and 3% by mass or less.
  • fat-like part example (3) When the fat-like part contains oil and gel (hereinafter referred to as fat-like part example (3)) When the fat-like part contains fat and oil, the gel tends to retain the fat and oil contained in the fat-like part even when a temperature change occurs. Therefore, even if a temperature change occurs, fats and oils are less likely to flow out from the fat-like portion, and the appearance resembling chunks of meat is more likely to be maintained. In addition, even when raw meat-like lump meat-like substitute meat is cooked, oils and fats are easily retained by the gel, and when eating the cooked raw meat-like lump meat-like substitute meat, it is contained in the fat-like parts. The fat and oil will overflow, making it easier to obtain a texture more similar to chunks of meat after cooking.
  • the fats and oils are preferably encapsulated in a gel.
  • the fats and oils are dispersed in large numbers in the gel in the form of granular bodies containing fats and oils, specifically, in a nearly spherical state (hereinafter referred to as "oil droplets"). It is preferable to do so.
  • the particle size of the oil droplets is preferably 20 ⁇ m or more and 500 ⁇ m or less, more preferably 30 ⁇ m or more and 400 ⁇ m or less, and even more preferably 50 ⁇ m or more and 300 ⁇ m or less.
  • fats and oils are encapsulated in the gel, even after forming a raw meat-like lump meat-like substitute meat, even if the raw meat-like lump meat-like substitute meat is heat sterilized, the fats and oils contained in the fat-like part will dissolve and the fat will remain. This prevents the liquid from flowing down from the side part. Therefore, even when heat-sterilizing raw meat-like lump meat-like substitute meat, the fat-like portion can be retained, and the sanitary storage stability of the lump-like meat substitute meat can be improved.
  • the particle size of the oil droplets is measured by observing the fat-like part using a transmission optical microscope.
  • An example of a transmission microscope is an inverted microscope Axio Observer manufactured by Zeiss. Z1 etc. can be used.
  • the procedure for measuring the particle size of oil droplets will be explained below.
  • the oil is solidified at a temperature below the melting point of the oil and the gel is dissolved with 3% sodium carbonate to collect oil droplets from the fat-like portion and placed on a 60 mm diameter polystyrene petri dish. At this time, make sure that the collected oil droplets do not overlap in the depth direction of the petri dish.
  • the oil droplets collected in the petri dish are then observed using a transmission optical microscope and photographed at a 5x objective magnification.
  • the fat-like portion contains fats and oils encapsulated in a gel
  • the fat contained in chunks of meat is nearly white when unheated, but becomes more transparent when cooked. Therefore, by making the chunk meat-like substitute according to the present embodiment have this configuration, when the raw meat-like chunk meat-like substitute meat is cooked, it tends to have an appearance similar to livestock meat.
  • Whether or not the transparency of the fat-like part is improved by heating is determined by the following procedure.
  • the transparency of the fat-like part of the raw meat-like lump meat-like substitute meat is measured using Konica Minolta's color reader CR-10Plus at three arbitrary points, and the arithmetic mean value of the obtained values is the measured value. Let it be A. Place the raw meat-like chunk meat-like meat substitute on a hot plate with a surface temperature of 160° C. with the side with the measurement part facing down, and heat it by leaving it for 2 minutes.
  • the heated raw meat-like lump-like substitute meat is taken out from the hot plate, and after heating, the transparency of the measurement part is measured in the same procedure as measurement value A, and the arithmetic mean value of the obtained values is taken as measurement B. If measurement value B shows higher transparency than measurement value A, it is determined that the transparency of the fat-like portion has improved due to heating.
  • the content of oil and fat is preferably 10% by mass or more and 70% by mass or less, and 15% by mass or more and 60% by mass or less, based on the entire fat-like part. It is more preferably at most 20% by mass and at most 50% by mass.
  • the gel content is preferably 30% by mass or more and 90% by mass or less, and 40% by mass or more and 85% by mass or less, based on the entire fat-like part. It is more preferably at most 50% by mass and at most 80% by mass.
  • the fat-like part is "Example (3) of fat-like part"
  • the fat-like part is a fat mass composition containing granules containing fat and oil and an edible ionic crosslinkable polymer crosslinked with cations. It may be an aspect including.
  • the average particle size of the granules may be 50 ⁇ m or more and 500 ⁇ m or less.
  • the average particle size of the granules is a value measured by observing the fat mass composition using a transmission optical microscope.
  • the fat mass composition comprises an edible, ionically crosslinked polymer that is cationically crosslinked.
  • edible means a property that does not adversely affect the health condition when ingested orally by humans.
  • Ionically crosslinkable polymer means a polymer that crosslinks by reaction with ions.
  • examples of edible ionic crosslinkable polymers include alginic acid, carrageenan, LM pectin, HM pectin, LA gellan gum, and the like.
  • the edible ionically crosslinkable polymer is preferably at least one selected from the group consisting of alginic acid, LM pectin, and LA gellan gum.
  • the cations are preferably metal ions with an ionic valence of two or more.
  • metal ions include divalent metal ions such as calcium ions, magnesium ions, iron ions (II), copper ions (II), zinc ions, and manganese ions; trivalent metals such as aluminum ions and iron ions (III). Examples include ions.
  • the metal ion is preferably at least one selected from calcium ions, magnesium ions, and zinc ions, and more preferably calcium ions.
  • Crosslinking of the edible ionically crosslinkable polymer can be carried out, for example, by mixing a solution containing the ionically crosslinkable polymer, a surfactant, and water (ionically crosslinkable polymer solution) with an aqueous solution containing a cation.
  • the fat mass composition can be produced, for example, according to the embodiments described in the Examples below.
  • the raw meat-like chunk-like meat substitute may contain granular bodies containing fat and oil (oil and fat encapsulated in a gel or capsule-shaped fat and oil).
  • "internal” means that it is not present on the surface of the lump meat-like meat substitute.
  • the raw meat-like chunk meat-like meat substitute contains oil encapsulated in a gel or capsule-shaped oil and fat, the oil and fat tend to remain in the chunk meat-like meat substitute. This makes it easier to obtain raw meat-like chunk meat-like substitute meat that maintains a texture closer to that of livestock meat.
  • the granules containing fats and oils contained inside the raw meat-like lump meat-like substitute meat include those similar to the above-mentioned gel-encapsulated fats and oils or capsule-shaped fats and oils, and here, The explanation will be omitted.
  • the alternative molded meat manufacturing method according to the present disclosure is not particularly limited, but for example, after molding a red-colored lean meat-like part and forming grooves on the surface of the molded lean-like part, or after forming a red-colored red meat-like part, A method that includes forming grooves on the surface of the lean meat-like part while shaping the lean meat-like part (lean-like part forming step), and then applying oil and fat to the grooves to form a fat-like part (fat-like part forming step). are preferred.
  • the method for producing the alternative molded meat according to the present disclosure is not particularly limited.
  • the method for producing alternative molded meat according to the present disclosure for example, after molding a red-colored lean meat-like part and forming grooves on the surface of the molded lean-meat-like part, or after forming a red-colored lean meat-like part, The method includes forming grooves on the surface of the lean meat-like part while forming the lean meat-like part (lean-like part formation step), and then attaching oil and fat to the grooves to form a fat-like part (fat-like part formation step). Can be mentioned.
  • Another aspect of the method for producing alternative molded meat according to the present disclosure includes a first step of mixing the protein food material according to the present disclosure and a binder (for example, a polysaccharide) to obtain a mixture. , a second step of stretching the mixture to obtain a stretched mixture in which the fiber direction of the protein food material is oriented in one direction; Examples include methods including:
  • the method of mixing the protein food material according to the present disclosure and the binder is not particularly limited, and examples thereof include a method of mixing by hand, a method of using a known mixer, etc. .
  • the mixer include a mixer. Before mixing the protein food material and the binder, it is preferable to break the protein food material by hand or the like to adjust the size of the protein food material. Furthermore, when the alternative molded meat to be produced contains oil or fat, the above-described fat mass composition, other additives, etc., it is preferable to mix them together with the protein food material and the binder in the first step.
  • the method of stretching the mixture obtained in the first step is such that a stretched mixture in which the fiber direction of the protein food material is oriented in one direction is obtained.
  • first step mixture a stretched mixture in which the fiber direction of the protein food material is oriented in one direction is obtained.
  • the surface of the molded object is The method may include a step of forming a pattern resembling fat (marbled pattern) (hereinafter also referred to as a fat-like portion forming step).
  • the fat-like portion forming step is a step of forming grooves with a depth of, for example, 100 ⁇ m or more on the surface of the molded object, and depositing oil and fat in the formed grooves to form fat-like portions.
  • Examples of methods for forming grooves on the surface of the molded body include a method of digging the surface with a knife and a method of forming grooves with a mold, and a method of forming grooves with a mold is preferred.
  • oil and fat are applied to the grooves formed on the surface of the molded body, filling the grooves to form a pattern resembling fat.
  • the oil or fat may be in a liquid state, a semi-solid state in which a liquid and a solid are mixed, or a solid state. Preferably, it is in a liquid or semi-solid state.
  • the oils and fats may be applied in the form of an emulsion.
  • an emulsion containing a gelling agent, fats and oils, and water (referred to as a "gelling emulsifier") is applied to the grooves formed on the surface of the molded body, and then the grooves are It is preferable to gel the gelling emulsion adhering to the gelling emulsion.
  • the gelling emulsion is preferably an oil-in-water emulsion.
  • the oil droplet diameter of the oil in the gelling emulsion is preferably 20 ⁇ m or more and 500 ⁇ m or less, more preferably 30 ⁇ m or more and 400 ⁇ m or less, and even more preferably 50 ⁇ m or more and 300 ⁇ m or less.
  • a method for gelling the gelling emulsion attached to the grooves for example, a method of gelling the molded body with the gelling emulsion attached to the grooves is placed in an aqueous solution containing a gelling promoter. can be mentioned.
  • Example 1 Defatted soybean flour (Showa Fresh RF, manufactured by Showa Sangyo Co., Ltd.; written as defatted soy protein in Table 1) was used as the protein, and wheat gluten (PRO-Glu 65, manufactured by Torigoe Seifun Co., Ltd.) was used as the protein in the amounts shown in Table 1. (mass ratio) to obtain mixed powder 1.
  • the defatted soybean flour used contains 54.7% by weight of protein.
  • a twin-screw extruder twin-screw extruder, manufactured by Kowa Kogyo Co., Ltd., product name: KEI-45-25 was prepared.
  • the twin screw extruder has a cross section schematically shown in FIG. 1A.
  • a cooling die with a length of 300 mm in the extrusion direction (slit shape: concentric circle type (inner circle diameter : 29 mm, outer circle diameter: 35 mm), lip clearance: 3 mm; a discharge die) was installed, and the outlet temperature of the cooling die was stabilized at 120°C.
  • Mixed powder 1 was introduced into the twin-screw extruder at 530 g/min, and while adding water in a mass having a mass ratio shown in Table 1 to the extruder, the protein-containing mixture was kneaded by pressurizing and heating, It was discharged from the discharge port of the cooling die at a screw rotation speed of 250 rpm (revolutions per minute) and a discharge rate of 45 kg/hr. In this way, protein food material 1 was obtained.
  • Example 1 protein food materials 2 to 3 of Examples and protein food materials C1 to C3 of Comparative Examples were prepared in the same manner as in Example 1, except that the outlet temperature of the cooling die was changed to the temperature listed in Table 1. I got it.
  • Example 4 In Example 1, the mass of the raw materials containing protein (defatted soybean flour and wheat gluten) was changed to the mass ratio shown in Table 1, and the colorant (KC-Brown SP-3, brown, manufactured by Kobe Kasei Co., Ltd.) was changed to the mass ratio shown in Table 1. Protein food material 4 of Example 1 was obtained in the same manner as in Example 1, except that the ingredients were added at the mass ratio shown in Table 1 and the outlet temperature of the cooling die was changed to the temperature shown in Table 1.
  • the colorant KC-Brown SP-3, brown, manufactured by Kobe Kasei Co., Ltd.
  • Example 5 Protein food material 5 of Example 1 was obtained in the same manner as in Example 1, except that the length of the cooling die in the extrusion direction was changed as shown in Table 1.
  • FIG. 2A shows a photograph of a cross section of protein food material 2 of Example 2
  • FIG. 2B shows a photograph of a cross section of protein food material C3 of Comparative Example 3.
  • FIGS. 2A and 2B are photographs showing the edges of the voids with borders.
  • the ratio (%) of the number of voids having a cross-sectional area of 0.1 mm 2 or less to the total number of voids present in the cross-section was calculated.
  • the measurement of the number ratio (%) of voids was performed twice for each of protein food materials 1 to 5 and C2 to C3, and the average value of the number ratio (%) of voids obtained for each protein food material was It was expressed as the number ratio (%) of voids in the protein food material.
  • the results are shown in Table 1. It should be noted that the protein food material C1 of Comparative Example 1 had scorch, making it difficult to measure the voids, so it was indicated as "-" in Table 1.
  • FIG. 4 shows IR spectra when s-polarized light was irradiated parallel and perpendicular to the fiber direction of the protein food material 4 obtained in Example 4.
  • a fibrous appearance can be clearly seen over the entire surface, and a good meat texture can be felt.
  • 4 points A fibrous appearance can be seen on the surface, and a fleshy texture can be felt.
  • 3 points A fibrous appearance can be seen on a part of the surface, and a slight fleshy texture can be felt.
  • 2 points Slight fibrous appearance and almost no meaty texture.
  • 1 point No fibrous appearance and no meat texture, or charred and no meat texture.
  • the protein food materials of Examples obtained by the production method of the present disclosure had excellent fleshy appearance. Furthermore, the protein food materials of Examples had good fleshy color and no burnt appearance.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Meat, Egg Or Seafood Products (AREA)

Abstract

植物性タンパク質と、水と、を含むタンパク質含有混合物を、二軸押出機内において加圧及び加熱して混練した後、混練後のタンパク質含有混合物を二軸押出機が備える吐出ダイから押し出す工程を含み、吐出ダイの温度が95℃以上120℃以下である、タンパク質食品素材の製造方法、及びタンパク質食品素材。

Description

タンパク質食品素材の製造方法及びタンパク質食品素材
 本開示は、タンパク質食品素材の製造方法及びタンパク質食品素材に関する。
 畜肉は世界中で大きく消費されている食材である。しかし、健康維持の観点から、畜肉の摂取を控え、大豆等の植物由来の植物性タンパク質を原料とする畜肉代替物を摂取する試みがなされている。それに伴い、畜肉に代替するタンパク質原料に用いて畜肉代替物を得るための加工技術が種々提案されている。
 例えば、特開昭60-221041号公報には、2軸のスクリューを有する押出機を用いて、油糧種子蛋白、小麦グルテン及び水を含む蛋白含有混合物から繊維状の蛋白素材を製造することが提案されている。特開昭64-23856号公報には、上記の蛋白含有混合物を押し出す2軸のスクリューを有する押出機の先端に設けられた口金の冷却により、緻密な組織を持つ蛋白食品素材を製造する方法が提案されている。
 畜肉代替物には、肉質的外観が求められる傾向がある。ここで、「肉質的外観」とは、肉の筋繊維のような繊維状構造を有し、かつ繊維状構造の凹凸感が表面から目視で確認できる外観を意味する。
 本開示の一実施形態が解決しようとする課題は、肉質的外観に優れるタンパク質食品素材の製造方法、及び、タンパク質食品素材を提供することである。
 本開示は、以下の実施態様を含む。
[1] 植物性タンパク質と、水と、を含むタンパク質含有混合物を、二軸押出機内において加圧及び加熱して混練した後、混練後のタンパク質含有混合物を二軸押出機が備える吐出ダイから押し出す工程を含み、吐出ダイの温度が95℃以上120℃以下である、タンパク質食品素材の製造方法。
[2] 吐出ダイは、スリット形状の流路を有する、[1]に記載のタンパク質食品素材の製造方法。
[3] 吐出ダイの押出方向における長さが、90mm以上450mm以下の範囲である、[1]又は[2]に記載のタンパク質食品素材の製造方法。
[4] 植物性タンパク質が、脱脂大豆タンパク及び小麦グルテンからなる群から選択される少なくとも1種である、[1]~[3]のいずれか1つ項に記載のタンパク質食品素材の製造方法。
[5] タンパク質含有混合物が、更に、着色剤を含む、[1]~[4]のいずれか1つに記載のタンパク質食品素材の製造方法。
[6] 植物性タンパク質を含み、表面の少なくとも一部に繊維状領域を有し、かつ多孔質構造を有するタンパク質食品素材であり、繊維状領域を偏光赤外全反射吸収測定法により測定して得た赤外吸収スペクトルにおいて、繊維状領域の繊維方向に対して平行に偏光を照射して測定されたアミドIIバンドのピーク強度に対するアミドIバンドのピーク強度の強度比をXとし、繊維状領域の繊維方向に対して垂直に偏光を照射して測定されたアミドIIバンドのピーク強度に対するアミドIバンドのピーク強度の強度比をXとしたとき、配向度X/Xが1.005≦X/Xを満たす、タンパク質食品素材。
[7] 物性タンパク質が、脱脂大豆タンパク及び小麦グルテンからなる群から選択される少なくとも1種である、[6]に記載のタンパク質食品素材。
[8] 更に、着色剤を含む、[6]又は[7]に記載のタンパク質食品素材。
 本開示の一実施形態によれば、肉質的外観に優れる、タンパク質食品素材の製造方法、及び、タンパク質食品素材が提供される。
図1Aは、二軸押出機の一例を示す断面模式図である。 図1Bは、図1Aにおいて符号Aで示す破線部の拡大図である。 図2Aは、実施例2で作製したタンパク質食品素材の断面を撮影した写真である 図2Bは、比較例3で作製したタンパク質食品素材の断面を撮影した写真である。 図3Aは、実施例2で作製したタンパク質食品素材の表面を撮影した写真である 図3Bは、比較例3で作製したタンパク質食品素材の表面を撮影した写真である。 図4は、実施例4で作製したタンパク質食品素材4の繊維方向に対して、平行及び垂直にs偏光を照射した場合の赤外吸収スペクトルを示す図である。
 以下、本開示に係る一例である実施形態について説明する。これらの説明及び実施例は、実施形態を例示するものであり、発明の範囲を制限するものではない。
 本明細書中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 各成分は該当する物質を複数種含んでいてもよい。
 組成物中の各成分の量について言及する場合、組成物中に各成分に該当する物質が複数種存在する場合には、特に断らない限り、組成物中に存在する当該複数種の物質の合計量を意味する。
 「工程」とは、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、本用語に含まれる。
 本明細書において、2以上の好ましい態様の組み合わせは、より好ましい態様である。
<タンパク質食品素材の製造方法>
 本開示に係るタンパク質食品素材の製造方法(以下、単に「本開示に係る製造方法」とも称する。)は、植物性タンパク質と、水と、を含むタンパク質含有混合物を、二軸押出機内において加圧及び加熱して混練した後、混練後のタンパク質含有混合物を二軸押出機が備える吐出ダイから押し出す工程(以下、押出工程とも称する。)を含み、吐出ダイの温度が95℃~120℃である。
 本開示に係る製造方法により製造されるタンパク質食品素材は、肉質的外観に優れる。その理由は、次の通り推測される。
 特開昭60-221041号公報及び特開昭64-23856号公報に記載されるように、押出機等を用いて、加圧及び加熱した蛋白質含有物を吐出し、混合物を繊維化(即ち配向化)及び膨化(即ち多孔質化)させることにより、タンパク質食品素材を得る方法が知られている。例えば、特開昭64-23856号公報に記載の技術では、二軸押出機に取り付けた口金を冷却して、実質的には膨化しているが、膨化(多孔質化)を抑えて緻密な組織を持つ蛋白食品素材を製造して肉的食感を得ている。しかしながら、特開昭60-221041号公報及び特開昭64-23856号公報には肉質的外観についての着目はない。
 一方、畜肉に近づけた代替物が肉質的外観を有するためには、表面に筋繊維を彷彿とさせる筋状の凹凸形状を有することが好ましい。本発明者らは、肉質的外観の観点から、タンパク質食品素材の製造方法における吐出ダイの温度とタンパク質食品素材の外観との相関に着目した。そして、本開示に係る製造方法は、植物性タンパク質と、水と、を含むタンパク質含有混合物を、二軸押出機内において加圧及び加熱して混練した後、混練後のタンパク質含有混合物を二軸押出機が備える吐出ダイから押し出す工程を含み、吐出ダイの温度が95℃~120℃とする。これにより、従来着目のない95℃~120℃なる吐出ダイの温度範囲において、繊維化(配向化)及び膨化(多孔質化)のバランスが確保され、肉質的外観に優れたタンパク質食品素材が製造できるものと推測される。
 本開示に係る実施態様の一つは、植物性タンパク質を含み、表面の少なくとも一部に繊維状領域を有し、かつ多孔質構造を有するタンパク質食品素材であり、繊維状領域を偏光赤外全反射吸収測定法(以下、「偏光ATR-IR法」とも称する。)により測定して得た赤外吸収スペクトル(以下、「IRスペクトル」とも称する。)において、繊維状領域の繊維方向に対して平行に偏光を照射して測定されたアミドIIバンドのピーク強度に対するアミドIバンドのピーク強度の強度比をXとし、繊維状領域の繊維方向に対して垂直に偏光を照射して測定されたアミドIIバンドのピーク強度に対するアミドIバンドのピーク強度の強度比をXとしたとき、配向度X/Xが1.005≦X/Xを満たす、タンパク質食品素材を含む。
 上記のタンパク質食品素材は、本開示に係る製造方法により製造されるタンパク質食品素材の一態様であり、肉質的外観に優れる。
 なお、以下では、上記のタンパク質食品素材を含む本開示に係る製造方法により製造されるタンパク質食品素材を、適宜、本開示に係るタンパク質食品素材と総称する。
 以下、本開示に係る製造方法が含む各工程について説明する。
[押出工程]
 押出工程は、植物性タンパク質と、水と、を含むタンパク質含有混合物を、二軸押出機内において加圧及び加熱して混練した後、混練後のタンパク質含有混合物を二軸押出機が備える吐出ダイから押し出す工程である。
 押出工程に用いる押出機は、二軸押出機であり、例えば、非噛み合い型異方向回転二軸スクリュー押出機、噛み合い型異方向回転二軸スクリュー押出機、及び、噛み合い型同方向回転二軸スクリュー押出機を用いることができる。
 図1A及び図1Bを用いて、押出工程を説明する。図1Aは、二軸押出機の一例を示す断面模式図である。なお、図面における各要素は必ずしも正確な縮尺ではなく、本開示の原理を明確に示すことに主眼が置かれており、強調がなされている箇所もある。
 図1に示すように、押出工程では、ホッパー12から、タンパク質食品素材の原料である、植物性タンパク質と、水とを、二軸押出機10内に投入する。タンパク質食品素材の原料としては、植物性タンパク質を含む原料10質量部に対して水を1質量部以上5質量部以下含有することが好ましい。「植物性タンパク質を含む原料」とは、植物性タンパク質自体であってもよいし、植物性タンパク質と他の成分とを含む複合体であってもよい。
 原料は、更に、着色剤を含むことも好ましい。植物性タンパク質と他の成分とを含む複合体としては、例えば、タンパク質、糖質、及び繊維質を含む複合体である脱脂大豆粉、等が挙げられる。
 投入された原料は、二軸押出機10内において、バレル14を加熱し、かつ、2つのスクリュー16を回転させることにより混練され、タンパク質含有混合物18が形成され、タンパク質含有混合物18は、押出方向Xに押し出される。
 押出機のバレルの温度は、40℃以上170℃以下にすることが好ましい。具体的には、バレルの押出方向中央部より上流側(原料供給部からバレル中央までの部分)の温度を40℃以上150℃以下とすることが好ましく、バレル14の押出方向中央部(バレルの軸方向長さ中央)の温度を130℃以上170℃以下とすることが好ましく、バレルの押出方向中央部より下流側(バレル中央からバレルの先端までの部分)の温度を140℃以上170℃以下とすることが好ましい。
 二軸押出機10は、バレル14の先端に吐出ダイ20を装着している。
 吐出ダイ20はシート状の押出物が得られる吐出口を有することが好ましい。
 吐出ダイ20は、スリット形状の流路を有することが好ましい。流路には、タンパク質含有混合物が流通する。
 吐出ダイ20の吐出口の隙間(リップクリアランス)は1mm以上10mm以下であることが好ましく、1mm以上5mm以下であることがより好ましい。吐出口の隙間(リップクリアランス)とは、吐出口における最短径の長さを指す。
 吐出ダイ20の押出方向における長さは、肉質的外観に優れたタンパク質食品素材を得る観点から、90mm以上450mm以下であることが好ましく、150mm以上300mm以下であることがより好ましい。
 吐出ダイ20は、冷却ダイであることが好ましい。ここで、冷却ダイとは、例えば冷却液(水、グリコール、空気等の冷媒)の循環により冷却されるダイをいう。
 冷却ダイを用いることで、押し出された混合物の膨化を制御しやすくなる。即ち、吐出ダイを流通しながら内壁面と接して擦れて剪断を受けた混合物は、吐出時の膨化が制御され、繊維質を維持しやすい。
 バレル14内で加熱及び加圧して混練されたタンパク質含有混合物18は、吐出ダイ20を通過する際に温度制御され、吐出ダイ20の吐出口から吐出される。
 吐出ダイ20の温度は、95℃以上120℃以下であり、肉質的外観に優れたタンパク質食品素材を得る観点から、100℃以上115℃以下であることが好ましく、100℃以上110℃以下であることがより好ましい。
 吐出ダイ20は、図1Aに示すように、バレル14の内部と連通して設けられたスリット形状の吐出流路24を備えている。吐出ダイ20が備えるスリット形状の吐出流路24は同心円型である。スリット形状が「同心円型」であるとは、タンパク質含有混合物の押出方向Xに直交する断面視において、大きさの異なる2つの同心円間に形成される隙間により吐出流路24の形状が画定されていることを意味する。
 スリット形状としては、同心円型の他、板状、円状等であってもよい。
 吐出流路24を押出方向Xに通過するタンパク質含有混合物は、吐出流路24の先端である吐出口26から板状(例えば、シート状又はフィルム状)に吐出されるようになっている。
 タンパク質含有混合物18の吐出量は、肉質的外観に優れたタンパク質食品素材を得る観点から、10kg/hr以上100kg/hr以下であることが好ましく、20kg/hr以上80kg/hr以下であることがより好ましい。
 図1Bは、図1Aにおいて符号Aで示す破線部の拡大図である。
 図1A及び図1Bに示すように、バレル14内から吐出ダイ20に押し出されたタンパク質含有混合物18は、混練により剪断応力が加えられ、更に下流の吐出ダイ20において流路の内壁と接触して擦られて剪断応力を受けることにより、吐出ダイ20を通過中にタンパク質が配向し、繊維化する。図1B中、符号22で示す破線は、配向して繊維化したタンパク質を模式的に示している。
 吐出ダイ20を通過したタンパク質含有混合物18は、吐出ダイ20の吐出口26から大気圧下に押し出される。混練直後のタンパク質含有混合物18が、大気圧下に押し出されると、タンパク質含有混合物18は、水分の水蒸気化により膨化(即ち、多孔質化)し、タンパク質食品素材は多孔質構造を有するものとなる。本開示に係る製造方法では、吐出ダイ20の温度は、95℃以上120℃以下であることにより、より小さいサイズの空隙(例えば、繊維に垂直な方向の断面積;0.1mm以下)が生じ易い。図1Bにおいて符号28は、本開示に係る製造方法により形成される空隙を模式的に示す。多孔質構造における空隙が小さいと、肉質的外観により優れた表面と相関する。
 次に、植物性タンパク質、着色剤等、タンパク質食品素材の原料として用いる成分について説明する。
-植物性タンパク質-
 本開示に係る製造方法は、原料として植物性タンパク質を用いる。即ち、本開示に係るタンパク質食品素材は、植物性タンパク質を含む、
 植物性タンパク質とは、植物から採取されるタンパク質である。
 植物性タンパク質としては、植物から採取されるタンパク質であれば特に限定されない。植物性タンパク質の由来としては、例えば、小麦、大麦、オーツ麦、米、トウモロコシ等の穀類;大豆、えんどう豆、小豆、ひよこ豆、レンズ豆、そら豆、緑豆、ハウチワ豆等の豆類;アーモンド、落花生、カシューナッツ、ピスタチオ、ヘーゼルナッツ、マカデミアンナッツ、アマニ、ゴマ、菜種、綿実、サフラワー、向日葵等の種実類;じゃがいも、さつまいも、山のいも、きくいも、キャッサバ等のいも類;アスパラガス、アーティチョーク、カリフラワー、ブロッコリー、枝豆等の野菜類;バナナ、ジャックフルーツ、キウイフルーツ、ココナッツ、アボカド、オリーブ等の果実類;マッシュルーム、エリンギ、しいたけ、しめじ、まいたけ等のきのこ類;クロレラ、スピルリナ、ユーグレナ、のり、こんぶ、わかめ、ひじき、てんぐさ、もずく等の藻類等が挙げられる。これらの中でも、実際の畜肉に似た外観及び食感を有するかたまり肉様の代替肉を得る観点から、植物性タンパク質の由来としては、小麦、大豆、えんどう豆、及び米からなる群から選択される少なくとも1種であることが好ましく、大豆及び小麦からなる群から選択される少なくとも1種であることがより好ましい。植物性タンパク質としては、脱脂大豆タンパク及び小麦グルテンから選択される少なくとも1種であることが特に好ましい。
 ここで、本開示において「かたまり肉」とは、食肉用の家畜から任意の大きさに切り出された未調理の生の畜肉又はそれを調理した畜肉であり、かつ、家畜から切り出された後にすり潰し、又は細切れにされていない畜肉を指す。
 植物性タンパク質は、1種の植物性タンパク質を含有してもよいし、2種以上の植物性タンパク質を含有してもよい。2種以上の植物性タンパク質を用いる場合には、その種類及び配合比率は適宜決定することができる。
 例えば、植物性タンパク質を含む原料として、脱脂大豆タンパクを含む脱脂大豆と小麦グルテンとを用いる場合であれば、良好な肉質的外観を得る観点から、脱脂大豆:小麦グルテンが、質量比で、80:20~60:40にすることが好ましい。
 タンパク質の含有量は、タンパク質食品素材全体に対して、5質量%以上80質量%以下であることが好ましく、7質量%以上70質量%以下であることがより好ましく、10質量%以上60質量%以下であることが更に好ましい。
-水-
 本開示に係る製造方法は、水を用いる。
 タンパク質含有混合物における水の含有量は、水を含めたタンパク質含有混合物の全体に対して、20質量%~40質量%であることが好ましい。
-着色剤-
 本開示に係るタンパク質食品素材は、着色剤を含有することが好ましい。タンパク質食品素材が、着色剤を含有することにより、加熱後の褐色の食肉が呈する色味と同様の色味にすることが容易になる。
 着色剤としては、可食性かつ褐色の着色剤であることが好ましい。
 着色剤としては、例えば、カカオ色素、ベニコウジ色素、及び、植物炭末色素が挙げられ、中でも、カカオ色素であることが好ましい。
 タンパク質食品素材が含有する着色剤は、1種のみであってもよいし、2種以上であってもよい。
 タンパク質食品素材に含有される着色剤の含有量は、タンパク質食品素材の全体に対して、0.01質量%以上3質量%以下であることが好ましく、0.05質量%以上2質量
%以下であることがより好ましく、0.1質量%以上1質量%以下であることが更に好ましい。
 タンパク質食品素材は、タンパク質、必要により含有する着色剤に加え、その他の添加剤を含有してもよい。その他の添加剤としては、例えば、水、調味料、無機塩や有機塩、糖、油脂、増粘剤、可塑剤、界面活性剤、香味成分等が挙げられる。その他の添加剤の含有量は、目的に応じて設定することができる。
 押出工程において押出された混合物(即ち、タンパク質食品素材)は、特段の加工を行わず、そのまま代替肉として用いることができる。すなわち、押出された混合物(タンパク質食品素材)は、加熱済みの代替肉として、そのまま用いることができる。押出された混合物の状態のまま、混合物を任意の調味料等で調理してもよい。
 また、押出された混合物は、成形等の所望の加工を施すことができる。
[成形工程]
 本開示に係る製造方法は、押出工程の後、成形工程を含んでいてもよい。
 成形工程は、押し出された混合物(即ち、タンパク質食品素材)を、目的に応じた形状に切断することを含んでいてもよい。例えば、切断したタンパク質食品素材は、薄切り肉様の代替肉として用いることができる。切断したタンパク質食品素材を、任意の調味料等で調理してもよい。
 成形工程は、タンパク質食品素材を用いて、目的に応じた形状の成形体に加工することを含んでいてもよい。
 例えば、タンパク質食品素材を塊状に集めて、かたまり肉の形状に似た形状に成形することで、かたまり肉様の代替成形肉の赤身様部分を製造することができる。かたまり肉により近い食感を有する代替成形肉を得る観点から、押し出された赤身様部分の原料を塊状に集める際、押し出された赤身様部分の原料の押出方向をそれぞれ同一に近い方向にそろえることが好ましい。
 または、タンパク質食品素材を塊状に集めた後、圧力をかけて扁平させる方法、チューブ状の空間を通す方法などで内部のタンパク質食品素材の押出方向を同一方法にそろえてもよい。
[その他の工程]
 タンパク質食品素材の製造方法は、上記した押出工程、成型工程の以外の他の工程を含んでいてもよい。他の工程としては、乾燥工程、解砕工程、包装工程等の任意の工程であってよい。
(タンパク質食品素材の形態)
 本開示に係る製造方法により得られるタンパク質食品素材(即ち、本開示に係るタンパク質食品素材)は、表面の少なくとも一部に繊維状領域を有し、かつ多孔質構造を有することが好ましい。
 ここで、「表面の少なくとも一部に繊維状領域を有する」とは、外観上、タンパク質食品素材の表面の少なくとも一部に、筋状の凹凸を有することを指す。
 また、多孔質構造を有するとは、外観上、等方的又は異方的な多孔構造を有することを指す。異方的な多孔構造とは、タンパク質食品素材を任意の位置で切断した切断面に現れる孔形状が、切断方向によって略楕円形状と異なる構造を示す。等方的な多孔構造とは、タンパク質食品素材を任意の位置で切断した切断面に現れる孔形状が、略楕円形状で方向によらず略同一である構造を示す。本開示に係る製造方法により得られるタンパク質食品素材は、異方的な多孔構造を有することが好ましい。
 切断面を観察する方法としては、切片を切り出し顕微鏡で観察する方法又はX線CT(Computed Tomography)で観察する方法が挙げられる。
 本開示に係るタンパク質食品素材は、繊維方向に直交する方向に平行な断面において0.1mm以下の断面積を有する空隙の個数の割合(空隙の個数割合)が、断面に存在する全空隙の個数に対して50%以上である。空隙個数の割合が、50%以上であることで、タンパク質食品素材は、肉質的外観に優れる。空隙の個数割合は、肉質的外観の観点から、60%以上がより好ましく、64%以上が更に好ましい。空隙の個数割合の上限値は、特に限定されないが、95%以下とすることが好ましい。
 以下、空隙の個数割合の測定方法について説明する。
<測定用サンプルの準備>
 空隙の個数割合の測定用サンプルとするタンパク質食品素材としては、下記の「(1)繊維方向の決定」に記載の方法により繊維方向を決定した後、「(2)断面の形成」に記載の方法により切断面(測定用断面)を形成し、次いで「(3)乾燥」に記載の条件により乾燥させたタンパク質食品素材を用いる。
(1)繊維方向の決定
 本開示において「繊維方向」は、タンパク質食品素材の繊維状領域に存在する繊維の長手方向を意味し、下記の方法により決定する。
 測定対象とするタンパク質食品素材が、引き裂き手段(例えば、手)により裂くことが可能な大きさを有する場合、「繊維方向」は、タンパク質食品素材が裂ける方向を指す。具体的には、測定対象とするタンパク質食品素材の端部を把持して、裂ける方向にタンパク質食品素材を引き裂いて測定用サンプルを得る。得られた測定用サンプルを上面視し、引き裂き線上において5mm離れた2点を無作為に選択し、当該2点を結ぶ直線の方向を繊維方向とする。
 測定対象とするタンパク質食品素材が、引き裂き手段により裂くことが不可能又は困難である場合には、「繊維方向」は、タンパク質食品素材が表面に有する繊維状領域に存在する繊維の長手方向に基づいて決定する。具体的には、測定対象とするタンパク質食品素材表面の繊維状領域に存在する筋状の凸部を無作為に選択し、凸部の長手方向に沿った直線の方向を繊維方向とする。
(2)断面の形成
 繊維方向を決定したタンパク質食品素材を、切断手段を用いて繊維方向と直交する方向に平行に切断して切断面(測定用断面)を形成する。切断手段としては、ナイフ、片刃カミソリ等の公知の切断手段を用いればよい。
(3)乾燥
 真空ポンプ(製品名:GCD-051XF、ULVAC社製)を接続した真空オーブン(製品名:VOS-201SD、EYELA社製)中に、切断面(測定用断面)を形成したタンパク質食品素材を静置し、真空ポンプにて真空状態にして、60℃の条件下で17時間の乾燥を実施する。
 上記乾燥後のタンパク質食品素材(測定用サンプル)を用いて、下記に示す空隙の個数割合の測定を行う。
<空隙の個数割合の測定>
 ズームレンズ(製品名:VH-ZST、KEYENCE社製)を取り付けた光学顕微鏡(製品名:VHX-5000、KEYENCE社製)を用いて、測定用サンプルに形成された切断面(測定用断面)を対物レンズ(製品名:ZS-20、KEYENCE社製)、レンズ倍率:30倍で観察する。
 観察した切断面に存在する全空隙に対し、光学顕微鏡:VHX-5000の面積計測機能を用いて、空隙の縁を多角形モードで縁取りし、空隙のサイズを検出し、各空隙の断面積(mm)を算出する。
 得られた断面積に基づき、切断面に存在する空隙の全個数に対する0.1mm以下の断面積を有する空隙の個数の割合(%)を算出する。
 タンパク質食品素材における空隙の個数割合(%)は、測定対象とするタンパク質食品素材から調製した2個の測定用サンプルの各々について、上記の方法により繊維方向を決定した上で、各測定用サンプルについて上記の測定を実施して、空隙の個数割合(%)を算出し、得られた2つの個数割合(%)を算術平均した値とする。
 本開示に係るタンパク質食品素材が含む空隙の形状としては、特に制限はなく、球体状、楕円体状、円柱体状、ディスク体状、等のいずれであってもよい。肉質的外観を向上させる観点からは、円柱体状であることが好ましい。
(繊維状領域の配向度X/X
 本開示に係るタンパク質食品素材は、偏光ATR-IR法により測定して得たIRスペクトルにおいて、繊維状領域の繊維方向に対して平行に偏光を照射して測定されたアミドIIバンドのピーク強度に対するアミドIバンドのピーク強度の強度比をXとし、繊維状領域の繊維方向に対して垂直に偏光を照射して測定されたアミドIIバンドのピーク強度に対するアミドIバンドのピーク強度の強度比をXとしたとき、配向度X/Xが1.005≦X/Xを満たす。
 本開示において、繊維状領域の配向度X/Xが、1.005≦X/Xを満たすことは、繊維状領域が含む植物性タンパク質の(即ち、植物性タンパク質の繊維)が高度に配向していることを意味する。
 以下、タンパク質食品素材が有する繊維状領域における配向度X/Xの測定方法について説明する。
<測定用サンプルの準備>
 測定対象とするタンパク質食品素材表面の繊維状領域を、切削手段(カミソリ等)を用いて薄く削り取り、切削片を得る。最表面に汚染が見られる場合、削ぎ取って露出した面を測定に用いてもよい。切削片の厚みは100μm~5000μmとする。切削片の大きさは一辺が0.5cm~3cmの正方形に内に入る形とする。得られた切削片を測定用サンプルとして用いる。
<測定装置及び測定条件>
・測定装置
 IR装置(Bruker社製、Bertex70)又はこれと同等の装置。
・測定条件
 波数範囲650cm-1~4000cm-1
 ATRユニット:Specac社製Goldengate(Ge結晶、入射角45°、一回反射)
 測定面積:5mmΦ程度、測定深さ:測定面から深さ1μm程度
<測定>
 測定装置の測定台に、切削面が照射光(s偏光)の照射面となるように測定用サンプルを固定し、測定を行う。測定は、上記の測定装置及び測定条件により、以下のとおり実施する。
 評価用サンプルに、s偏光を照射し、入射したs偏光と評価用サンプルの繊維方向とが平行である場合のIRスペクトルを得る。次いで、評価用サンプルを90°回転させて、入射したs偏光と評価用サンプルの繊維方向とが垂直である場合のIRスペクトルを測定する。
 得られたIRスペクトルから、入射したs偏光と価用サンプルの繊維方向とが平行である場合について、アミドIバンドのピーク強度及びアミドIIバンドのピーク強度を特定する。
 同様に、入射したs偏光と価用サンプルの繊維方向とが垂直である場合について、アミドIバンドのピーク強度及びアミドIIバンドのピーク強度を特定する。
 なお、アミドIバンドは、主として二級アミドのC=O伸縮振動を示し、アミドIIバンドは、主としてトランス型の-CO-NH-のN-H変角振動及びC-N伸縮振動を示す。本開示における測定では、アミドIバンドのピークは、1590cm-1~1700cm-1に観察され、アミドIIバンドのピークは、1490cm-1~1590cm-1に観察される。
<強度比X、強度比X、配向度X/X
 上記により特定したアミドIバンドの面積より求めたピーク強度と、アミドIIバンドの面積より求めたピーク強度とから、強度比X、強度比X及び配向度X/Xを算出する。
 本開示に係るタンパク質食品素材Bは、1.005≦X/Xを満たし、1.0745≦X/X≦1.102がより好ましい。配向度X/Xの上限値は、例えば、1.5である。
 測定は不作為に選択した3箇所について行い、得られた値を算術平均して小数点以下第一位を四捨五入した値を測定値とする。
 本開示に係るタンパク質食品素材は、表面において筋状の凹凸が多い表面外観を有するものが好ましい。
(タンパク質食品素材の用途)
 本開示に係る製造方法により得られたタンパク質食品素材は、タンパク質食品素材自体をそのままで、又は、所望の添加成分と混合した混合物として用いてもよいし、代替成形肉などの加工品を製造するための材料の一つとして用いてもよい。
 タンパク質食品素材と混合する添加成分としては、例えば、油脂、結着剤、酵素、及び、その他の添加剤が挙げられる。
-油脂-
 畜肉に含まれる赤身様部分は、脂肪様部分と比較して油脂の含有量は少ないが、一定量の油脂を含有することがある。このため、タンパク質食品素材と油脂とを組み合わせることで、より畜肉の赤身が有する組成に似た状態となりやすく、より畜肉に近い食感が得られ易い。
 油脂は植物油であることが好ましい。
 植物油は、植物由来であるため、健康、動物愛護、宗教、アレルギー、人口増加による食料危機等の理由で、動物性食品の摂取を避けたり、制限したりする必要がある場合においても用い易い。
 油脂の含有量は、タンパク質食品素材と油脂とを含む混合物の全体に対して、0質量%以上50質量%以下であることが好ましく、1質量%以上40質量%以下であることがより好ましく、3質量%以上30質量%以下であることが更に好ましい。
 油脂は、畜肉における脂肪様部分と異なり、かたまり肉の脂肪に似た外観を有さず、タンパク質食品素材と油脂とを含む混合物の全体に均一性が高い状態で含有されてもよい。
-結着剤及び酵素-
 タンパク質食品素材は、必要に応じて、結着剤、及びタンパク質を硬化させる酵素からなる群から選択される少なくとも1種と混合することも好ましい。
 タンパク質食品素材と結着剤及びタンパク質を硬化させる酵素からなる群から選択される少なくとも1種とを含むことで、タンパク質食品素材を一つのまとまった形状に維持しやすくなる。
 結着剤としては、可食性であり、かつタンパク質食品素材の形状を維持できるものであれば特に限定されない。
 結着剤としては、例えば、タンパク質、増粘多糖類、澱粉等が挙げられる。結着剤としては、1種単独で含有してもよいし、2種以上を含有してもよい。
 結着剤として用いられるタンパク質は、タンパク質食品素材に含有されるタンパク質と同一であってもよいし、異なっていてもよい。
 結着剤として用いられるタンパク質としては、例えば、植物性タンパク質、動物性タンパク質などが挙げられる。
 結着剤として用いられる植物性タンパク質としては、例えば、小麦、大豆、米などを由来とするタンパク質が挙げられる。
 結着剤として用いられる動物性タンパク質としては、例えば、乳タンパク質、卵白などが挙げられる。
 ここで、タンパク質を硬化させる酵素としては、トランスグルタミナーゼを用いることが好ましい。
 トランスグルタミナーゼは市販品を用いることができ、例えば、味の素株式会社製 アクティバ(登録商標)シリーズが挙げられる。
 増粘多糖類としては、例えば、寒天、カラギナン(κ-カラギナン、ι-カラギナン)、アルギン酸、アルギン酸塩、アガロース、ファーセレラン、ジェランガム、グルコノデルタラクトン、アゾトバクタービネランジガム、キサンタンガム、ペクチン、グアーガム、ローカストビーンガム、タラガム、カシアガム、グルコマンナン、トラガントガム、カラヤガム、プルラン、アラビアガム、アラビノガラクタン、デキストラン、カルボキシメチルセルロースナトリウム塩、メチルセルロース、サイリュームシートガム、デンプン、キチン、キトサン、カードラン、タマリンドシードガム、大豆多糖類、ゼラチン、サイリウム、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース、デキストリン等が挙げられる。
 増粘多糖類は、ゲル化剤として用いてもよく、ゲル化していてもよい。
 ゲル化剤は、ゲル化促進剤とともに用いることが好ましい。
 ゲル化促進剤は、ゲル化剤との接触によりゲル化が促進する化合物であり、ゲル化剤との特異的な組合せによってその機能が発揮される。
 ゲル化剤とゲル化促進剤の好ましい組み合わせとして、以下のとおりである。
 1)ゲル化促進剤として多価金属イオン(具体的には、カリウム等のアルカリ金属イオン、又はカルシウム、マグネシウム等のアルカリ土類金属イオン)と、ゲル化剤としてカラギナン、アルギン酸塩、ジェランガム、アゾトバクタービネランジガム、ペクチン、カルボキシメチルセルロースナトリウム塩等の組み合わせ。
 2)ゲル化促進剤として硼酸その他の硼素化合物と、ゲル化剤としてグアーガム、ローカストビーンガム、タラガム、カシアガム等の組み合わせ。
 3)ゲル化促進剤として酸又はアルカリと、ゲル化剤としてアルギン酸塩、グルコマンナン、ペクチン、キチン、キトサン、カードラン等の組み合わせ。
 4)ゲル化剤と反応してゲルを形成する水溶性多糖類をゲル化促進剤として用いる。具体的には、ゲル化剤にキサンタンガムを用い、ゲル化促進剤にカシアガムを用いる組合せ、ゲル化剤にカラギナンを用い、ゲル化促進剤にローカストビーンガムを用いる組合せ等を例示することができる。
 畜肉に似た外観及び食感を得る観点から、ゲル化剤とゲル化促進剤との組み合わせとしては、上記「1)ゲル化促進剤として多価金属イオン(具体的には、カリウム等のアルカリ金属イオン、又はカルシウム、マグネシウム等のアルカリ土類金属イオン)と、ゲル化剤としてカラギナン、アルギン酸塩、ジェランガム、アゾトバクタービネランジガム、ペクチン、カルボキシメチルセルロースナトリウム塩等の組み合わせ。」であることが好ましい。
 結着剤として用いられる増粘多糖類は、熱非可逆性ゲル形成多糖類又は熱可逆性ゲル形成多糖類であってもよい。
 熱非可逆性ゲルとは、一度ゲルを形成すると、加熱してもゲルの状態を維持するゲルである。熱非可逆性ゲル形成多糖類とは、熱非可逆性ゲルを形成する多糖類である。
 熱非可逆性ゲル形成多糖類としては、陽イオンとの反応により架橋する多糖類であることが好ましい。陽イオンの例としては、後述する脂肪塊組成物の説明にて例示する陽イオンが挙げられる。熱非可逆性ゲル形成多糖類としては、例えば、アルギン酸、カードラン、ペクチン(低メトキシル(LM)ペクチン、高メトキシル(HM)ペクチン等)、脱アシル(LA)ジェランガム等が挙げられる。
 熱可逆性ゲル形成多糖類とは、熱可逆性ゲルを形成する多糖類である。熱可逆性ゲル形成多糖類としては、ゼラチン、寒天、カラギナン、ファーセレラン、ネイティブジェランガム、ローカストビーンガム、キサンタンガム、グアーガム、サイリウムシードガム、グルコマンナン、タラガム、タマリンドシードガム等が挙げられる。
 結着剤が、熱非可逆性ゲル形成多糖類又は熱可逆性ゲル形成多糖類を含む場合、結着剤は、更にゲル化遅延剤を含んでいてもよい。ゲル化遅延剤とは、熱非可逆性ゲル形成多糖類、又は熱可逆性ゲル形成多糖類のゲル化を抑制する働きを有する化合物である。ル化遅延剤としては、キレート剤であることが好ましい。
 キレート剤としては、公知のキレート剤を好適に用いることができる。キレート剤としては、例えば、酒石酸、クエン酸、グルコン酸等のオキシカルボン酸;イミノ二酸酢(IDA)、ニトリロ三酢酸(NTA)、エチレンジアミン四酢酸(EDTA)等のアミノカルボン酸;ピロリン酸、トリポリリン酸等の縮合リン酸;これらの塩;などが挙げられる。
 澱粉としては、例えば、小麦澱粉、キャッサバ澱粉、米澱粉、もち米澱粉、コーンスターチ、ワキシーコーンスターチ、サゴ澱粉、馬鈴薯澱粉、葛澱粉、蓮根澱粉、緑豆澱粉、甘藷澱粉、ワキシー馬鈴薯澱粉、ワキシーキャッサバ澱粉、ワキシー小麦澱粉等が挙げられる。
 タンパク質食品素材に含有される、結着剤、及びタンパク質を硬化させる酵素の合計の含有量は、タンパク質食品素材の全体に対して、0.1質量%以上30質量%以下であることが好ましく、0.5質量%以上25質量%以下であることがより好ましく、1質量%以上20質量%以下であることが更に好ましい。
-その他の添加剤-
 タンパク質食品素材は、必要に応じて、その他の添加剤と混合してもよい。
 その他の添加剤としては、例えば、水、調味料、酸味料、苦味料、香辛料、甘味料、酸化防止剤、発色料、香料、安定剤、保存料等が挙げられる。
 その他の添加剤の含有量としては、タンパク質食品素材と添加剤とを含む混合物の全体に対して、0質量%以上20質量%以下であることが好ましい。
<代替成形肉>
 本開示に係る製造方法により得られるタンパク質食品素材の好適な応用形態の一つとしては、タンパク質食品素材を含む代替成形肉が挙げられる。本開示のタンパク質食品素材を含むことにより、代替成形肉は肉質的外観に優れる。代替成形肉は、かたまり肉用の代替成形肉(以下、「かたまり肉用代替肉」とも称する。)であることが好ましい。本開示に係る製造方法により得られたタンパク質食品素材は肉質的外観に優れることから、本開示に係るかたまり肉用代替肉は、畜肉の「かたまり肉」に似た外観とすることができる。
 かたまり肉は、その表面において赤色に近い色を有する赤身様部分と、白色に近い色を有する脂肪様部分とを有することが好ましい。また、かたまり肉の表面における脂肪は一定の面積を有する(例えば牛フィレ肉等の、脂肪が少ない部位のかたまり肉においては、かたまり肉の表面における脂肪の面積は3%程度)。そして、かたまり肉の表面において、脂肪は細長い形状を有していることが多い。
 代替成形肉の食味及び食感を向上させる観点から、代替成形肉は、タンパク質食品素材と、油脂を含むことが好ましく、タンパク質食品素材と、油脂と、多糖類と、を含むことがより好ましい。ある態様において、タンパク質食品素材が含む油脂は、油脂を含有する粒状体であってよい。油脂を含有する粒状体としては、例えば、カプセル状油脂、ゲルに内包された油脂、等の形態であってもよい。
 粒状体の平均粒径は10μm以上500μm以下であってもよい。粒状体の平均粒径は、透過型光学顕微鏡により観測することで測定される値である。
 多糖類は、タンパク質食品素材と、油脂を含有する粒状体との結着剤として機能しうる。多糖類としては、タンパク質食品素材が含んでもよい結着剤として上述した増粘多糖類が挙げられる。
 以下、かたまり肉用代替肉を例に、本開示に係る製造方法により得られるタンパク質食品素材の応用形態の一つである代替肉を説明する。
(赤身様部分)
 赤身様部分とは、かたまり肉様代替肉中の、赤身に見える部分に相当する部分を指す。
 赤身様部分は、かたまり肉の赤身に似た外観を有する。
 赤身様部分は、本開示に係る製造方法により得られるタンパク質食品素材を含み、必要に応じて、油脂、結着剤、及びその他の添加剤を含有することが好ましい。
 油脂、結着剤、及びその他の添加剤の詳細は、既述のとおりであり、ここでは説明を省略する。
 赤身様部分は、着色剤を用いて赤く着色してもよい。
 赤身様部分の着色に用いる着色剤としては、可食性かつ赤色の着色剤であることが好ましい。加熱調理前は赤身様部分が赤色を呈し、加熱調理後は茶色に近い色見を呈する観点からは、可食性かつ赤色の着色剤は、加熱により退色する性質を有することが好ましい。赤色の着色剤としては、例えば、天然ビーツ赤色色素、コチニール色素、クチナシ赤色素等が挙げられ、中でも、天然ビーツ赤色色素であることが好ましい。
 赤身様部分は、代替肉の食味及び食感を向上させる観点から、タンパク質食品素材と、油脂と、を含んでもよい。ある態様において、タンパク質食品素材が含む油脂は、カプセル状油脂であってもよい。多糖類は、タンパク質食品素材と、カプセル状油脂との結着剤として機能しうる。
 カプセル状油脂としては、食用油脂を内包したマイクロカプセルが挙げられる。
 食用油脂を内包したマイクロカプセルとしては、例えば、食用油脂を含むコア部と、上記コア部を内包し、多価陽イオンで架橋された可食性のイオン架橋性ポリマーを含むシェル部と、を有する食用油内包マイクロカプセル挙げられる。
 コア部が含む食用油脂としては、融点が30℃以下の食用油脂であることが好ましく、天然油若しくは合成油のいずれであってもよいし、又はこれらの混合物でもあってもよい。食用油脂としては、飽和脂肪酸又は不飽和脂肪酸であることが好ましく、炭素数12~炭素数30の飽和脂肪酸又は炭素数12~炭素数30の不飽和脂肪酸であることがより好ましく、炭素数16~炭素数24の不飽和脂肪酸であることが更に好ましい。融点が30℃以下の不飽和脂肪酸としては、カプロン酸、カプリル酸、カプリン酸、ラウリン酸等、炭素数6~12の中鎖脂肪酸のトリグリセリド(中鎖脂肪酸トリグリセリド);ココナッツ油、ゴマ油、オリーブ油、コーン油、菜種油、紅花油、大豆油、ひまわり油、ナッツ油、グレープシード油、アマニ油等の植物油脂、ビタミンE等が挙げられる。
 コア部は、必要に応じて、水、上記食用油脂以外のその他の成分を含んでいてもよい。その他の成分としては、アミノ酸、安定化剤、賦形剤、香料等が挙げられる。
 シェル部は、コア部を内包し、多価陽イオンで架橋された可食性のイオン架橋性ポリマーを含むことが好ましい。
 多価陽イオンで架橋された可食性のイオン架橋性ポリマーとしては、公知の多価陽イオンで架橋可能なイオン架橋性ポリマーを用いることができる。イオン架橋性ポリマーとしては、食品に用いることができれば特に制限はなく、例えば、ペクチン又はその誘導体、アルギン酸又はその塩、ジェランガム、カラギナン、ポリガラクツロン酸及びそれらの混合物等が挙げられる。
 シェル部は、イオン架橋性ポリマー以外の成分を含んでいてもよく、その他の成分としては、例えば、ジェランガム等、カラギナン及びペクチン以外の多糖類の増粘剤、乾燥状態で柔軟性を付与するための可塑剤等が挙げられる。
 食用油脂を内包したマイクロカプセルは、数平均粒子径が10μm以上300μm以下であってもよい。また、上記数平均粒子径の変動係数(CV値)は、30%以下であることも好ましい。
 食用油内包マイクロカプセルは、例えば、可食性のイオン架橋性ポリマー及び多価陽イオンのキレート化合物を含む水相と、融点が30℃以下の食用油脂を含む油相と、を用いて水中油滴分散液を得る工程と、上記工程Aで調製された水中油滴分散液と、食用油脂と、を混合して、上記食用油脂中に水中油滴が分散した油中水中油滴分散液を得る工程Bと、上記工程Bで調製された油中水中油滴の分散液と、pH低下剤を含む食用油脂と、の混合液を得る工程Cとを、含む製造方法により製造することができる。
(脂肪様部分)
 脂肪様部分は、かたまり肉の脂肪(一般的に、脂身とも称される部位である)に似た外観を有する部分を指す。
 脂肪様部分は、油脂を含有し、必要に応じてゲルを含有することが好ましい。
-油脂-
 油脂としては、植物性油脂、動物性油脂などが挙げられる。
 植物性油脂としては、例えば、ナタネ油、大豆油、パーム油、オリーブ油、米油、コーン油、ココナッツ油などが挙げられる。なお、植物性油脂は、植物から得られる油脂のことを指す。
 動物性油脂としては、例えば、牛脂、豚脂、鯨脂、魚油などが挙げられる。なお、動物性油脂は、動物から得られる油脂のことを指す。
 油脂の融点の範囲は特に限定されないが、例えば、300℃以下であってもよい。
 油脂の融点は、熱分析測定装置によって測定される値である。
 熱分析測定装置としては、例えば、セイコー電子工業社製SSC5000DSC200が使用可能である。
 油脂の融点の測定は、試料3mgを装置に加え、昇温速度3℃/minにて測定する。
-乳化物-
 油脂は、乳化物の状態で脂肪様部分に含有されることも好ましい。
 ここで、本明細書において、「乳化物」は、油脂、及び水を含有し、かつ水中油型乳化物、油中水型乳化物などの乳化状態にあるものをいう。
 乳化物に含有される油脂としては、上述と同一のものが挙げられる。
 乳化物中における油脂の含有量は、乳化物全体に対して、5質量%以上90質量%未満であることが好ましく、10質量%以上80質量%以下であることがより好ましく、15質量%以上70質量%以下であることが更に好ましい。
 乳化物に含有される水としては、食品に利用可能な水であればよく、特に限定はない。
 乳化物中における水の含有量は、乳化物全体に対して、10質量%以上95質量%以下であることが好ましく、20質量%以上90質量%以下であることがより好ましく、30質量%以上85質量%以下であることが更に好ましい。
 乳化物は増粘多糖類を含有することが好ましい。増粘多糖類を含有することにより、乳化物の保水性を向上させることができる。
 増粘多糖類としては、特に限定されるものではないが、既述のものが適用可能である。
 乳化物中における増粘多糖類の含有量は、乳化物全体に対して、0.1質量%以上5質量%以下であることが好ましく、0.5質量%以上3質量%以下であることがより好ましい。
 乳化物はタンパク質を含有することが好ましい。乳化物がタンパク質を含有することにより、赤身様部分と、脂肪様部分との密着性が増す。
 タンパク質としては、特に限定されるものではないが、既述のものが適用可能である。
 乳化物中におけるタンパク質の含有量は、乳化物全体に対して、0.1質量%以上10質量%以下であることが好ましく、0.5質量%以上5質量%以下であることがより好ましい。
 乳化物は、界面活性剤を含んでもよい。
 乳化物に含有される界面活性剤としては、可食性の界面活性剤が挙げられる。
 可食性の界面活性剤としては、グリセリン脂肪酸エステル、ポリグリセリン脂肪酸エステル、有機酸モノグリセリド、ソルビタン脂肪酸エステル、プロピレングリコール脂肪酸エステル、ショ糖脂肪酸エステル、ポリグリセリン縮合リシノレイン酸エステル、レシチン等が挙げられる。
 グリセリン脂肪酸エステルとしては、モノグリセリドを主成分として含有することが好ましい。
 モノグリセリドとしては、炭素数2以上24以下の飽和又は不飽和の脂肪酸とグリセリンとのモノエステル化物であることが好ましい。
 脂肪酸としては、ベヘン酸、ステアリン酸、パルミチン酸等が挙げられる。
 グリセリン脂肪酸エステルは、ジグリセリドを含有してもよい。
 ジグリセリドとしては、炭素数2以上24以下の飽和又は不飽和の脂肪酸とグリセリンとのジエステル化物であることが好ましい。
 ポリグリセリン脂肪酸エステルとしては、炭素数2以上24以下の飽和又は不飽和の脂肪酸とポリグリセリンとのエステル化物であることが好ましい。
 ポリグリセリン脂肪酸エステルとしては、具体的には、モノミリスチン酸ポリグリセリル、ジミリスチン酸ポリグリセリル、トリミリスチン酸ポリグリセリル、モノパルミチン酸ポリグリセリル、ジパルミチン酸ポリグリセリル、トリパルミチン酸ポリグリセリル、モノステアリン酸ポリグリセリル、ジステアリン酸ポリグリセリル、トリステアリン酸ポリグリセリル、モノイソステアリン酸ポリグリセリル、ジイソステアリン酸ポリグリセリル、トリイソステアリン酸ポリグリセリル、モノオレイン酸ポリグリセリル、ジモノオレイン酸ポリグリセリル、トリモノオレイン酸ポリグリセリル等が挙げられる。
 有機酸モノグリセリドとは、モノグリセリドのグリセリン由来の水酸基を、さらに有機酸を用いてエステル化したものである。
 有機酸としては、クエン酸、コハク酸、酢酸、乳酸などが挙げられ、クエン酸及びコハク酸が好ましく、クエン酸がより好ましい。
 ソルビタン脂肪酸エステルとは、ソルビタンと脂肪酸とのエステル化物をいう。
 ソルビタン脂肪酸エステルとしては、ソルビタンと、炭素数2以上18以下の飽和又は不飽和の脂肪酸と、のエステル化物であることが好ましい。
 ソルビタン脂肪酸エステルとしては、具体的には、モノカプリン酸ソルビタン、モノラウリン酸ソルビタン、モノパルミチン酸ソルビタン、モノステアリン酸ソルビタン、ジステアリン酸ソルビタン、セスキステアリン酸ソルビタン、トリステアリン酸ソルビタン、トリオレイン酸ソルビタン、モノイソステアリン酸ソルビタン、セスキイソステアリン酸ソルビタン、モノオレイン酸ソルビタン、セスキオレイン酸ソルビタン、ヤシ油脂肪酸ソルビタンなどが挙げられる。
 プロピレングリコール脂肪酸エステルとは、脂肪酸とプロピレングリコールとのエステル化物である。
 プロピレングリコール脂肪酸エステルの合成に用いられる脂肪酸としては、炭素数2以上24以下の飽和又は不飽和の脂肪酸が好ましい。
 プロピレングリコール脂肪酸エステルとしては、具体的には、例えば、プロピレングリコールパルミチン酸エステル、プロピレングリコールステアリン酸エステル、及びプロピレングリコールベヘン酸エステルが挙げられる。
 ショ糖脂肪酸エステルとは、ショ糖と脂肪酸とのエステル化物である。
 ショ糖脂肪酸エステルの合成に用いられる脂肪酸としては、炭素数2以上24以下の飽和又は不飽和の脂肪酸が好ましい。
 ショ糖脂肪酸エステルとしては、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、パルミトレイン酸、ステアリン酸、オレイン酸、アラキジン酸、及びベヘン酸からなる群から選択される1種又は2種以上の脂肪酸と、ショ糖とのエステル化物が好ましい。
 ポリグリセリン縮合リシノレイン酸エステルとは、ポリグリセリン脂肪酸エステルとリシノレイン酸縮合物とのエステル化物である。
 ポリグリセリン縮合リシノレイン酸エステルとしては、具体的には、既述のポリグリセリン脂肪酸エステルの具体例として記載した化合物と、リシノレイン酸縮合物とのエステル化物が挙げられる。
 レシチンとは、ホスファチジルコリン自体、又は、少なくともホスファチジルコリンを含む混合物を指す。
 少なくともホスファチジルコリンを含む混合物とは、一般的に、ホスファチジルコリンの他に、ホスファチジルセリン、ホスファチジルエタノールアミン、ホスファチジルイノシトール、N-アシルホスファチジルエタノールアミン、ホスファチジルグリセロール、ホスファチジン酸、リゾホスファチジルコリン、リゾホスファチジン酸、スフィンゴミエリン、スフィンゴエタノールアミン等を含み得る混合物である。
 レシチンとしては、酵素分解レシチン(所謂、リゾレシチン)を用いることができる。
 酵素分解レシチンは、ホスホリパーゼ等の酵素により、ホスファチジルコリン分子が持つ1つの脂肪酸が失われたリゾホスファチジルコリンを含む組成物である。なお、本開示において、酵素分解レシチンは、水素添加処理を行い、結合脂肪酸を飽和脂肪酸にすることで酸化安定性を向上させた、いわゆる水素添加された酵素分解レシチンを含む。
 界面活性剤のHLB値は、例えば、乳化分散性の観点から、8以上であることが好ましく、10以上であることがより好ましく、12以上であることが更に好ましい。
 乳化剤のHLB値の上限は、特に制限されないが、一般的には、20以下であり、18以下であることが好ましい。
 HLBは、通常、界面活性剤の分野で使用される親水性-疎水性のバランスを意味する。HLB値は、以下に示す川上式を用いて計算する。なお、界面活性剤として、市販品を使用する場合には、市販のカタログデータを優先して採用する。
 HLB=7+11.7log(Mw/Mo)
 ここで、Mwは界面活性剤が有する親水基の式量、Moは界面活性剤が有する疎水基の式量を示す。
 界面活性剤が有する疎水基とは、水に対する親和性が低い原子団である。疎水基としては、アルキル基、アルケニル基、アルキルシリル基、パーフルオロアルキル基等が挙げられる。具体的には、界面活性剤が上述の「グリセリン脂肪酸エステル、ポリグリセリン脂肪酸エステル、有機酸モノグリセリド、ソルビタン脂肪酸エステル、プロピレングリコール脂肪酸エステル、ショ糖脂肪酸エステル、ポリグリセリン縮合リシノレイン酸エステル、又はレシチン」である場合、脂肪酸由来のアルキル基、及びアルケニル基を指す。
 界面活性剤が有する親水基とは、水に対する親和性が高い原子団である。具体的には、界面活性剤の構造のうち、疎水基以外の原子団を指す。
-ゲル-
 温度変化などが生じた場合であっても、脂身様部分に含まれる油脂が流出せずかたまり肉に似た外観をより維持する観点、及び、かたまり肉に似た食感が得られやすい観点から、脂肪様部分はゲルを含有することが好ましい。
 本開示において、ゲルとは、少なくとも、水を含有し、弾性固体としての挙動を示すものを指す。
 弾性とは、外力を受けて変形した物体が、外力が除かれた後にもとの形に戻ろうとする性質をいう。
 ゲルは、可食性のゲル化剤を含有することが好ましい。
 可食性のゲル化剤としては、増粘多糖類が挙げられる。
 増粘多糖類としては、具体的には、寒天、カラギナン(κ-カラギナン、ι-カラギナン)、アルギン酸、アルギン酸塩、アガロース、ファーセレラン、ジェランガム、グルコノデルタラクトン、アゾトバクタービネランジガム、キサンタンガム、ペクチン、グアーガム、ローカストビーンガム、タラガム、カシアガム、グルコマンナン、トラガントガム、カラヤガム、プルラン、アラビアガム、アラビノガラクタン、デキストラン、カルボキシメチルセルロースナトリウム塩、メチルセルロース、サイリュームシートガム、デンプン、キチン、キトサン、カードラン、タマリンドシードガム、大豆多糖類、ゼラチン、サイリウム、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース、デキストリンなどが挙げられる。
 ゲル化剤は、ゲル化促進剤とともに用いることが好ましい。
 ゲル化促進剤は、ゲル化剤との接触によりゲル化を促進させる化合物であり、ゲル化剤との特異的な組合せによってその機能が発揮される。
 ゲル化剤とゲル化促進剤の好ましい組み合わせとしては、以下のとおりである。
 1)ゲル化促進剤として多価金属イオン(具体的には、カリウム等のアルカリ金属イオ
ン、又はカルシウム、マグネシウム等のアルカリ土類金属イオン)と、ゲル化剤としてカラギナン、アルギン酸塩、ジェランガム、アゾトバクタービネランジガム、ペクチン、カルボキシメチルセルロースナトリウム塩等の組み合わせ。
 2)ゲル化促進剤として硼酸その他の硼素化合物と、ゲル化剤としてグアーガム、ローカストビーンガム、タラガム、カシアガム等の組み合わせ。
 3)ゲル化促進剤として酸又はアルカリと、ゲル化剤としてアルギン酸塩、グルコマンナン、ペクチン、キチン、キトサン、カードラン等の組み合わせ。
 4)ゲル化剤と反応してゲルを形成する水溶性多糖類をゲル化促進剤として用いる。具体的には、ゲル化剤にキサンタンガムを用い、ゲル化促進剤にカシアガムを用いる組合せ、ゲル化剤にカラギナンを用い、ゲル化促進剤にローカストビーンガムを用いる組合せ等を例示することができる。
 畜肉に似た外観及び食感を有するかたまり肉様代替肉を得る観点から、ゲル化剤とゲル化促進剤との組み合わせとしては、上記「1)ゲル化促進剤として多価金属イオン(具体的には、カリウム等のアルカリ金属イオン、又はカルシウム、マグネシウム等のアルカリ土類金属イオン)と、ゲル化剤としてカラギナン、アルギン酸塩、ジェランガム、アゾトバクタービネランジガム、ペクチン、カルボキシメチルセルロースナトリウム塩等の組み合わせ。」であることが好ましい。
-脂肪様部分に含有される成分態様-
 脂肪様部分は、下記いずれかの成分態様であることが好ましい。
(1)脂肪様部分が油脂を主成分として含む。
(2)脂肪様部分が乳化物を主成分として含む。
(3)脂肪様部分が油脂とゲルとを含む。
 ここで「主成分」とは、該当する成分を脂肪様部分全体に対して90質量%以上含有することをいう。
(1)脂肪様部分が油脂を主成分として含む場合(以下、脂肪様部分例(1))
 脂肪様部分が「脂肪様部分例(1)」の場合、脂肪様部分に含まれる油脂の含有量は、脂肪様部分全体に対して、90質量%以上であることが好ましく、92質量%以上であることがより好ましく、95質量%以上であることが更に好ましい。
 なお、脂肪様部分が「脂肪様部分例(1)」の場合、脂肪様部分に含まれる油脂の含有量の上限は、油脂に含有される添加剤などを考慮し、脂肪様部分全体に対して、99質量%以下であってもよく、98質量%以下であってもよい。
 脂肪様部分が「脂肪様部分例(1)」の場合、畜肉に似た外観を有するかたまり肉様代替肉を得る観点から、凝固した場合に白濁する油脂を用いることが好ましい。
 脂肪様部分が「脂肪様部分例(1)」の場合に用いられる油脂としては、具体的には、ココナッツ油、パーム油、シアバター、ココアバター等が好ましい。
(2)脂肪様部分が乳化物を主成分として含む場合(以下、脂肪様部分例(2))
 乳化物は白色を呈することが多いため、脂肪様部分が乳化物を主成分として含むことで、脂肪様部分も白色となりやすい。そのため、脂肪様部分を、脂肪様部分例(2)の態様とすることで、畜肉により近い外観を有するかたまり肉様代替肉となる。
 なお、乳化物は、水中油型の乳化物であってもよいし、油中水型の乳化物であってもよい。
 脂肪様部分が「脂肪様部分例(2)」の場合、乳化物の含有量としては、脂肪様部分全体に対して、90質量%以上であることが好ましく、92質量%以上であることがより好ましく、95質量%以上であることが更に好ましい。
 なお、脂肪様部分が「脂肪様部分例(2)」の場合、脂肪様部分に含まれる乳化物の含有量の上限は、添加剤などの添加を考慮し、脂肪様部分全体に対して、99質量%以下であってもよく、98質量%以下であってもよい。
 乳化物に含有される油脂の含有量としては、乳化物全体に対して、5質量%以上90質量%未満であることが好ましく、10質量%以上80質量%以下であることがより好ましく、15質量%以上70質量%以下であることが更に好ましい。
 乳化物に含有される水の含有量としては、乳化物全体に対して、10質量%以上95質量%以下であることが好ましく、20質量%以上90質量%以下であることがより好ましく、30質量%以上85質量%以下であることが更に好ましい。
 乳化物に含有される界面活性剤の含有量としては、乳化物全体に対して、0.01質量%以上5質量%以下であることが好ましく、0.05質量%以上4質量%以下であることがより好ましく、0.1質量%以上3質量%以下であることが更に好ましい。
(3)脂肪様部分が油脂とゲルとを含む場合(以下、脂肪様部分例(3))
 脂肪様部分が油脂とゲルとを含む場合、温度変化などが生じた場合であっても、脂身様部分に含まれる油脂がゲルによって保持されやすい。そのため、温度変化が生じた場合であっても油脂が脂肪様部分から流出しにくくなり、かたまり肉に似た外観がより維持されやすい。また、生肉様のかたまり肉様代替肉を加熱調理した場合においても、油脂がゲルによって保持されやすくなり、調理後の生肉様のかたまり肉様代替肉を食した際に、脂身様部分に含有される油脂があふれ出し、より調理後のかたまり肉に似た食感が得られやすい。
 より油脂が脂身様部分から流出しにくくなる観点から、脂肪様部分が脂肪様部分例(3)の態様である場合、油脂はゲルに内包されていることが好ましい。
 油脂がゲルに内包されている場合、油脂は、油脂を含有する粒状体の状態、具体的には、球状に近い状態(以下、「油滴」と称する)でゲル中に多数分散して存在することが好ましい。
 油滴の粒径は、20μm以上500μm以下であることが好ましく、30μm以上400μm以下であることがより好ましく、50μm以上300μm以下であることが更に好ましい。
 油脂がゲルに内包されていることにより、生肉様のかたまり肉様代替肉の形成後、生肉様のかたまり肉様代替肉を加熱殺菌しても、脂肪様部分に含まれる油脂が溶解して脂肪様部分から流れ落ちることが抑制される。そのため、生肉様のかたまり肉様代替肉を加熱殺菌しても、脂肪様部分を保持でき、かたまり肉様代替肉の衛生面における保存性を高めることができる。
 油滴の粒径は、脂肪様部分を透過型光学顕微鏡により観測することで測定される。
 透過型顕微鏡としては例えば、ツァイス社製、製品名:倒立顕微鏡Axio Observer.Z1等が使用できる。
 以下、油滴の粒径の測定手順について説明する。
 油脂の融点以下の温度で油脂を固形化した状態で3%の炭酸ナトリウムなどでゲルを溶解することで脂肪様部分から油滴を回収し、60mmφのポリスチレン製シャーレにのせる。この時、回収した油滴がシャーレの深さ方向に重ならないようにする。そして、シャ
ーレに回収した油滴を透過型光学顕微鏡で観測し、対物倍率5倍で撮影する。撮影して得られた画面に含まれる油滴の画像を200個以上選択し、画像処理ソフトウェア(例えばImageJ)にて各油滴の円相当径(油滴の画像の面積に相当する真円の直径)を算出する。算出した各油滴の円相当径の算術平均値を算出し、その算術平均値を油滴の粒径とする。
 脂肪様部分がゲルに内包された油脂を含有する場合、加熱により脂肪様部分の透明度が向上することが好ましい。
 かたまり肉に含まれる脂肪は、非加熱の状態では白色に近い状態であるが、加熱調理を行うと透明度が高くなる。そのため、本実施形態に係るかたまり肉様代替を、当該構成とすることで、生肉様のかたまり肉様代替肉を加熱調理した際に、畜肉に近い外観を有しやすい。
 加熱により脂肪様部分の透明度が向上するか否かは次の通りの手順で判断される。
 生肉様のかたまり肉様代替肉の脂肪様部分の透明度をコニカミノルタ社製カラーリーダーCR-10Plusを使用して任意に3点場所を変えて測定し、得られた値の算術平均値を測定値Aとする。表面の温度が160℃のホットプレートの上に測定部位のある面を下に、生肉様のかたまり肉様代替肉を置き、2分間静置することで加熱する。加熱した生肉様のかたまり肉様代替肉をホットプレートから取り出し、加熱後に測定部分の透明度を、測定値Aと同様の手順にて測定し、得られた値の算術平均値を測定Bとする。測定値Aと比較して測定値Bの方が、透明度が高い結果を示した場合、脂肪様部分が加熱により透明度が向上したと判断する。
 脂肪様部分が「脂肪様部分例(3)」の場合、油脂の含有量としては、脂肪様部分全体に対して、10質量%以上70質量%以下であることが好ましく、15質量%以上60質量%以下であることがより好ましく、20質量%以上50質量%以下であることが更に好ましい。
 脂肪様部分が「脂肪様部分例(3)」の場合、ゲルの含有量としては、脂肪様部分全体に対して、30質量%以上90質量%以下であることが好ましく、40質量%以上85質量%以下であることがより好ましく、50質量%以上80質量%以下であることが更に好ましい。
 脂肪様部分が「脂肪様部分例(3)」の場合、脂肪様部分は、油脂を含有する粒状体と、陽イオンで架橋された可食性のイオン架橋性ポリマーと、を含む脂肪塊組成物を含む態様であってもよい。
 ここで脂肪塊組成物に含まれる油脂としては、既述の油脂と同一のものが使用可能である。
 粒状体の平均粒径は50μm以上500μm以下であってもよい。
 粒状体の平均粒径は、脂肪塊組成物を透過型光学顕微鏡により観測することで測定される値である。
 脂肪塊組成物は、陽イオンで架橋された可食性のイオン架橋性ポリマーを含むことが好ましい。ここで、「可食性」とは、ヒトが経口摂取した際に健康状態に対して悪影響を及ぼさない性質を意味する。
 「イオン架橋性ポリマー」とは、イオンとの反応により架橋するポリマーを意味する。
 可食性のイオン架橋性ポリマーとしては、例えば、アルギン酸、カラギナン、LMペクチン、HMペクチン、LAジェランガム等が挙げられる。
 脂肪塊組成物の耐熱性向上の観点から、可食性のイオン架橋性ポリマーとしては、アル
ギン酸、LMペクチン、及びLAジェランガムからなる群から選択される少なくとも1種であることが好ましい。
 陽イオンとしては、イオン価数が2価以上の金属イオンであることが好ましい。
 金属イオンとしては、例えば、カルシウムイオン、マグネシウムイオン、鉄イオン(II)、銅イオン(II)、亜鉛イオン、マンガンイオン等の2価金属イオン;アルミニウムイオン、鉄イオン(III)等の3価金属イオンが挙げられる。
 安定した架橋構造を得る観点から、金属イオンとしてはカルシウムイオン、マグネシウムイオン、及び亜鉛イオンから選択される少なくとも1種であることが好ましく、カルシウムイオンであることがより好ましい。
 可食性のイオン架橋性ポリマーの架橋は、例えば、イオン架橋性ポリマー、界面活性剤及び水を含む溶液(イオン架橋性ポリマー溶液)と陽イオンを含む水溶液との混合により行うことができる。
 脂肪塊組成物は、例えば、後述する実施例に記載の態様により製造することができる。
 生肉様のかたまり様代替肉は、油脂を含有する粒状体(ゲルに内包された油脂又はカプセル状油脂)を内部に含有してもよい。
 ここで、「内部」とは、かたまり肉様代替肉の表面に存在していないことを意味する。
 生肉様のかたまり肉様代替肉がゲルに内包された油脂又はカプセル状油脂を内部に含有することで、油脂がかたまり肉様代替肉中に留まりやすくなる。そうすると、より畜肉に近い食感が維持される生肉様のかたまり肉様代替肉が得られやすくなる。
 ここで、生肉様のかたまり肉様代替肉の内部に含有される、油脂を含有する粒状体としては、上記した、ゲルに内包された油脂又はカプセル状油脂と同様のものが挙げられ、ここでは説明を省略する。
<代替成形肉の製造方法>
 本開示に係る代替成形肉の製造方法は、特に制限されないが、例えば、赤い着色のある赤身様部分を成形し、成形された赤身様部分の表面に溝を形成した後、又は赤い着色のある赤身様部分を成形しながら赤身様部分の表面に溝を形成した後(赤身様部分形成工程)、溝に油脂を付着して脂肪様部分を形成する(脂肪様部分形成工程)ことを含む方法が好ましく挙げられる。
<代替成形肉の製造方法>
 本開示に係る代替成形肉の製造方法は、特に制限されない。
 本開示に係る代替成形肉の製造方法のある態様としては、例えば、赤い着色のある赤身様部分を成形し、成形された赤身様部分の表面に溝を形成した後、又は赤い着色のある赤身様部分を成形しながら赤身様部分の表面に溝を形成した後(赤身様部分形成工程)、溝に油脂を付着して脂肪様部分を形成する(脂肪様部分形成工程)ことを含む方法が挙げられる。
 また、本開示に係る代替成形肉の製造方法の別の態様としては、本開示に係るタンパク質食品素材と、結着剤(例えば、多糖類)と、を混合して混合物を得る第1工程と、
 混合物を延伸し、タンパク質食品素材の繊維方向が一方向に向いて配向している延伸後混合物を得る第2工程と、
 を含む方法が挙げられる。
 上記の第1工程において、本開示に係るタンパク質食品素材と、結着剤と、を混合する方法は、特に限定されず、手で混合する方法、公知の混合機を使用する方法などが挙げられる。混合機としては、ミキサーなどが挙げられる。
 タンパク質食品素材と結着剤とを混合する前に、タンパク質食品素材を手などで割いて、タンパク質食品素材の大きさを調整することが好ましい。
 また、製造する代替成形肉が、油脂、上記した脂肪塊組成物、その他の添加剤などを含有する場合、第1工程において、タンパク質食品素材及び結着剤と共に混合することが好ましい。
 上記の第2工程において、第1工程で得られる混合物(以下、「第1工程混合物」とも称する)を延伸する方法は、タンパク質食品素材の繊維方向が一方向に向いた延伸後混合物が得られれば特に限定されない。
 第2工程後に、延伸後混合物を成形して成形体を得た後、成形体を加熱して硬化させる第3工程を含むことが好ましい。
 成形体を加熱することで、例えば、結合剤として熱非可逆性ゲル形成多糖類を含む場合において、熱非可逆性ゲル形成多糖類を含むゲルの形成が促進される。それにより、成形体が硬化し、代替成形肉の形状がより維持されやすくなる。
 第3工程は、延伸後混合物を成形して成形体を得た後、代替成形肉(具体的には、かたまり肉様代替肉)の外観をより畜肉の外観に近づける目的で、成形体の表面に脂身に似た模様(霜降り模様)を形成する工程(以下、脂肪様部分形成工程とも称する)を含んでもよい。
 脂肪様部分形成工程は、成形体の表面に、例えば、100μm以上の深さの溝を形成し、形成した溝に油脂を付着して脂肪様部分を形成する工程であることが好ましい。
 成形体の表面に溝を形成する方法としては、例えば、刃物で表面を掘る方法、型により溝を形成する方法が挙げられ、型により溝を形成する方法が好ましい。
 続いて、油脂を成形体の表面に形成された溝に付着させ、溝を埋めることで脂身に似た模様を形成する。
 成形体の表面に形成された溝に対して、油脂を付着させる際、油脂の性状は液体の状態、液体及び固体が混合した半固体の状態又は固体の状態のいずれであってもよいが、液体の状態又は半固体の状態であることが好ましい。
 成形体の表面に形成された溝に対して、油脂を付着させる際、油脂は乳化物の状態で付着させてもよい。
 油脂を乳化物の状態で付着させる場合、ゲル化剤、油脂、及び水を含有する乳化物(「ゲル化用乳化剤」と称する)を成形体の表面に形成された溝に付着させ、その後溝に付着したゲル化用乳化物をゲル化することが好ましい。
 ゲル化用乳化物は、水中油型の乳化物とすることが好ましい。
 ゲル化用乳化物中の油脂の油滴径は、20μm以上500μm以下であることが好ましく30μm以上400μm以下であることがより好ましく、50μm以上300μm以下であることが更に好ましい。
 溝に付着したゲル化用乳化物をゲル化する方法としては、例えば、溝にゲル化用乳化物を付着させた成形体を、ゲル化促進剤を含有する水溶液中に入れてゲル化する方法が挙げられる。
 以下に実施例について説明するが、本開示はこれらの実施例に何ら限定されるものではない。
[実施例1]
 タンパク質として脱脂大豆粉(昭和フレッシュRF、昭和産業社製;表1中、脱脂大豆タンパクと表記)と、タンパク質として小麦グルテン(PRO-グル65、鳥越製粉社製)とを、表1に示す量(質量比)で混ぜ合わせ、混合粉末1を得た。
 使用した脱脂大豆粉は、54.7質量%のタンパク質を含む。
 次いで、2軸エクストルーダー(二軸押出機、幸和工業(株)製、製品名:KEI-45-25)を用意した。二軸押出機は図1Aに模式的に示す断面を有する。
 スクリュー長が1100mmでスクリュー先端部の最高温度が155℃になるよう設定した上記2軸エクストルーダーの吐出部に、押出方向における長さが300mmの冷却ダイ(スリット形状:同心円型(内円の直径:29mm、外円の直径:35mm)、リップクリアランス:3mm;吐出ダイ)を取り付け、冷却ダイの出口温度を120℃で安定化した。混合粉末1を530g/minで上記2軸エクストルーダーに導入し、表1に示す質量比となる質量の水を該エクストルーダーに加えながら、タンパク質含有混合物を加圧及び加熱することで混練し、スクリュー回転数250rpm(revolutions per minute)で吐出量45kg/hrにて冷却ダイの吐出口から吐出した。このようにして、タンパク質食品素材1を得た。
[実施例2~3、比較例1~3]
 実施例1において、冷却ダイの出口温度を表1に記載の温度に変更した以外は、実施例1と同様にして、実施例のタンパク質食品素材2~3及び比較例のタンパク質食品素材C1~C3を得た。
[実施例4]
 実施例1において、タンパク質を含む原料(脱脂大豆粉及び小麦グルテン)の質量を表1に示す質量比に変更し、着色剤(神戸化成株式会社製、KC-ブラウン SP―3、褐色)を表1に示す質量比で加え、かつ、冷却ダイの出口温度を表1に記載の温度に変更した以外は、実施例1と同様にして、実施例のタンパク質食品素材4を得た。
[実施例5]
 実施例1において、冷却ダイの押出方向の長さを、表1に示すように変更した以外は、実施例1と同様にして、実施例のタンパク質食品素材5を得た。
[測定及び評価]
<空隙の個数割合>
-断面の形成-
 実施例及び比較例で得られたタンパク質食品素材1~5及びC1~C3のそれぞれについて、端部を両手で把持し、引き裂ける方向にタンパク質食品素材を引き裂いて引き裂き片を得た。得られた引き裂き片から、既述の方法により繊維方向を決定した。
-乾燥処理-
 繊維方向を決定したタンパク質食品素材1~5及びC1~C3を、真空ポンプ(製品名:GCD-051XF、ULVAC社製)を接続した真空オーブン(製品名:VOS-201SD、EYELA社製)中に静置し、真空ポンプにて真空状態にして、60℃の条件下で17時間乾燥させた。
-空隙の個数割合の測定-
 繊維方向を決定し、かつ乾燥処理後のタンパク質食品素材1~5及びC1~C3を、切断手段を用いて繊維方向と直交する方向に片刃カミソリを用いて切断して切断面を形成し、測定用サンプルを得た。
 ズームレンズ(製品名:VH-ZST、KEYENCE社製)を取り付けた光学顕微鏡
(製品名:VHX-5000、KEYENCE社製)を用いて、得られた断面を対物レンズ(製品名:ZS-20、KEYENCE社製)、レンズ倍率:30倍で観察した。
 観察した切断面から検出した全空隙に対し、光学顕微鏡:VHX-5000の面積計測機能を用いて、空隙の縁を多角形モードで縁取りし、空隙のサイズを検出し、各空隙の断面積(mm)を算出した。図2Aに、実施例2のタンパク質食品素材2の断面を撮影した写真を示し、図2Bに比較例3のタンパク質食品素材C3の断面を撮影した写真を示す。図2A及び図2Bは、空隙の縁を縁取りして示した写真である。
 得られた断面積に基づき、断面に存在する空隙の全個数に対する0.1mm以下の断面積を有する空隙の個数の割合(%)を算出した。
 空隙の個数割合(%)の測定は、タンパク質食品素材1~5及びC2~C3の各々について、2回ずつ行い、タンパク質食品素材毎に得られた空隙の個数割合(%)の平均値を、タンパク質食品素材の空隙の個数割合(%)とした。結果を表1に示す。
 なお、比較例1のタンパク質食品素材C1には、焦げが発生しており、空隙測定が困難であったことから、表1中は「-」と表示した。
<繊維状領域の配向度X/X
 実施例及び比較例で得られたタンパク質食品素材1~5及びC2~C3のそれぞれについて、既述の測定方法により3箇所の偏光ATR-IR測定を行い、得られたピーク強度の測定結果の平均値から、強度比X及びXを算出した。次いで、強度比X及びXの値から繊維状領域の配向度X/Xを算出した。結果を表1に示す。
 表2に、タンパク質食品素材1~5及びC2~C3のアミドIバンド及びアミドバンドIIのピーク強度、並びに、強度比X及び強度比Xを示す。
 なお、比較例1のタンパク質食品素材1には、焦げが発生しており、配向度X/Xの測定が困難であったことから、表1中は「-」と表示した。
 図4に、実施例4で得られたタンパク質食品素材4の繊維方向に対して、平行及び垂直にs偏光を照射した場合のIRスペクトルを示す。
<評価>
(肉質的外観)
 上記乾燥処理前のタンパク質食品素材1~5及びC1~C3の肉質的外観を、評価者10名による目視により評価した。評価は、各タンパク質食品素材の表面における繊維状外観を確認することにより行った。評価点を以下に示す。評価結果は、評価者10名の評価点を平均し、小数点第1位を四捨五入した値とした。図3Aに、実施例2のタンパク質食品素材2の表面を撮影した写真を示し、図3Bに比較例3のタンパク質食品素材C3の断面を撮影した写真を示す。評価点「4」以上を肉質的外観が良好であると評価し、最も優れる評価点は「5」である。結果を表1に示す。
-評価点-
 5点:繊維状外観が表面全体に亘って明瞭に確認でき、良好な肉質感が感じられる。
 4点:繊維状外観が表面に確認でき、肉質感が感じられる。
 3点:表面の一部に繊維状外観が確認でき、わずかに肉質感が感じられる。
 2点:繊維状外観がわずかであり、ほぼ肉質感が感じられない。
 1点:繊維状の外観が確認できず、肉質感が無い、又は、焦げがあり、肉質感がない。
(肉質的色味)
 上記乾燥処理前のタンパク質食品素材1~5及びC1~C3を、5cm×5cmに裁断して、評価用サンプルを調製した。肉質的色味の評価は、評価者10名が目視により観察することにより行った。評価点を以下に示す。評価結果は、評価者10名の評価点を平均し、小数点第1位を四捨五入した値とした。
 評価点「2」以上を肉質的色味が良好であると評価し、最も優れる評価点は「3」である。結果を表1に示す。
-評価点-
 3点:加熱した肉の色味(褐色)と同様の色味であった。
 2点:加熱した肉の色味(褐色)に近い色味であった。
 1点:加熱した肉の色味とは異なる色味であった。
(焦げ)
 2軸エクストルーダーに装着した冷却ダイから吐出された直後のタンパク質食品素材1~5及びC1~C3(押出物)を目視で確認し、焦げの有無を評価した。
 結果を表1に示す。

 

 
 表1に示すとおり、本開示の製造方法により得られた実施例のタンパク質食品素材は、肉質的外観に優れていた。また、実施例のタンパク質食品素材は、肉質的色味も良好であり、焦げの発生もなかった。
(符号の説明)
 10 二軸押出機
 12 ホッパー
 14 バレル
 16 スクリュー
 18 タンパク質含有混合物
 20 吐出ダイ
 22 繊維化したタンパク質
 24 吐出流路
 26 吐出口
 28 空隙
 A  拡大部分
 X  押出方向
 2022年3月11日に出願された日本国特許出願2022-038604号、及び、2022年10月6日に出願された日本国特許出願2022-161912号の開示は、その全体が参照により本明細書に取り込まれる。また、本明細書に記載された全ての文献、特許出願および技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (8)

  1.  植物性タンパク質と、水と、を含むタンパク質含有混合物を、二軸押出機内において加圧及び加熱して混練した後、混練後の前記タンパク質含有混合物を前記二軸押出機が備える吐出ダイから押し出す工程を含み、前記吐出ダイの温度が95℃以上120℃以下である、タンパク質食品素材の製造方法。
  2.  前記吐出ダイは、前記タンパク質含有混合物が流通するスリット形状の流路を有する、請求項1に記載のタンパク質食品素材の製造方法。
  3.  前記吐出ダイの押出方向における長さが、90mm以上450mm以下の範囲である、請求項1又は請求項2に記載のタンパク質食品素材の製造方法。
  4.  前記植物性タンパク質が、脱脂大豆タンパク及び小麦グルテンからなる群から選択される少なくとも1種である、請求項1又は請求項2に記載のタンパク質食品素材の製造方法。
  5.  前記タンパク質含有混合物が、更に、着色剤を含む、請求項1又は請求項2に記載のタンパク質食品素材の製造方法。
  6.  植物性タンパク質を含み、表面の少なくとも一部に繊維状領域を有し、かつ多孔質構造を有するタンパク質食品素材であり、
     前記繊維状領域を偏光赤外全反射吸収測定法により得た赤外吸収スペクトルにおいて、前記繊維状領域の繊維方向に対して平行に偏光を照射して測定されたアミドIIバンドのピーク強度に対するアミドIバンドのピーク強度の強度比をXとし、前記繊維状領域の繊維方向に対して垂直に偏光を照射して測定されたアミドIIバンドのピーク強度に対するアミドIバンドのピーク強度の強度比をXとしたとき、配向度X/Xが1.005≦X/Xを満たす、
     タンパク質食品素材。
  7.  前記植物性タンパク質が、脱脂大豆タンパク及び小麦グルテンからなる群から選択される少なくとも1種である、請求項6に記載のタンパク質食品素材。
  8.  更に、着色剤を含む、請求項6又は請求項7に記載のタンパク質食品素材。
PCT/JP2023/005563 2022-03-11 2023-02-16 タンパク質食品素材の製造方法及びタンパク質食品素材 WO2023171304A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-038604 2022-03-11
JP2022038604 2022-03-11
JP2022-161912 2022-10-06
JP2022161912 2022-10-06

Publications (1)

Publication Number Publication Date
WO2023171304A1 true WO2023171304A1 (ja) 2023-09-14

Family

ID=87936808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/005563 WO2023171304A1 (ja) 2022-03-11 2023-02-16 タンパク質食品素材の製造方法及びタンパク質食品素材

Country Status (1)

Country Link
WO (1) WO2023171304A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6423856A (en) * 1987-07-20 1989-01-26 Fuji Oil Co Ltd Production of protein food material
WO2017169207A1 (ja) * 2016-03-28 2017-10-05 日清食品ホールディングス株式会社 組織状蛋白素材の製造方法
WO2017169205A1 (ja) * 2016-03-28 2017-10-05 日清食品ホールディングス株式会社 肉様乾燥蛋白加工食品の製造方法
JP2020018279A (ja) * 2018-06-04 2020-02-06 ベルソ フード オサケユキチュアVerso Food Oy 食品の製造方法
JP2021078478A (ja) * 2019-11-22 2021-05-27 イビデン株式会社 畜肉様食品の製造方法
JP2021087414A (ja) * 2019-11-22 2021-06-10 イビデン株式会社 畜肉様食品の原料および畜肉様食品
JP2022032496A (ja) * 2020-08-12 2022-02-25 イビデン株式会社 魚・鶏肉様食品
JP2022032493A (ja) * 2020-08-12 2022-02-25 イビデン株式会社 植物性蛋白素材及び食品
JP2022032492A (ja) * 2020-08-12 2022-02-25 イビデン株式会社 植物性蛋白素材及び食品
JP2022032495A (ja) * 2020-08-12 2022-02-25 イビデン株式会社 牛・豚肉様食品

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6423856A (en) * 1987-07-20 1989-01-26 Fuji Oil Co Ltd Production of protein food material
WO2017169207A1 (ja) * 2016-03-28 2017-10-05 日清食品ホールディングス株式会社 組織状蛋白素材の製造方法
WO2017169205A1 (ja) * 2016-03-28 2017-10-05 日清食品ホールディングス株式会社 肉様乾燥蛋白加工食品の製造方法
JP2020018279A (ja) * 2018-06-04 2020-02-06 ベルソ フード オサケユキチュアVerso Food Oy 食品の製造方法
JP2021078478A (ja) * 2019-11-22 2021-05-27 イビデン株式会社 畜肉様食品の製造方法
JP2021087414A (ja) * 2019-11-22 2021-06-10 イビデン株式会社 畜肉様食品の原料および畜肉様食品
JP2022032496A (ja) * 2020-08-12 2022-02-25 イビデン株式会社 魚・鶏肉様食品
JP2022032493A (ja) * 2020-08-12 2022-02-25 イビデン株式会社 植物性蛋白素材及び食品
JP2022032492A (ja) * 2020-08-12 2022-02-25 イビデン株式会社 植物性蛋白素材及び食品
JP2022032495A (ja) * 2020-08-12 2022-02-25 イビデン株式会社 牛・豚肉様食品

Similar Documents

Publication Publication Date Title
US20220125072A1 (en) Meat analogues and methods of producing the same
CA2673115C (en) Meat emulsion products and methods of making same
MXPA02004868A (es) Producto de emulsion de carne.
WO2006054802A1 (ja) 焼き菓子類
JP4357288B2 (ja) 油脂加工澱粉の製造方法
JP2022527797A (ja) 不溶性粒子を含有する質感付与食品製品及びそのような食品製品を製造する方法
JP4298696B2 (ja) 焼き菓子類
JP4223434B2 (ja) 食肉加工食品用品質改良剤
JP2008167713A (ja) 中華まん類
JP2000279118A (ja) 食品用改質デンプン
WO2023171304A1 (ja) タンパク質食品素材の製造方法及びタンパク質食品素材
WO2023171303A1 (ja) タンパク質食品素材及び代替成形肉
WO2023176742A1 (ja) かたまり肉様代替肉の製造方法及びかたまり肉様代替肉
JP2021087414A (ja) 畜肉様食品の原料および畜肉様食品
JP7446529B2 (ja) 脂肪塊組成物、及び代替肉
WO2024070327A1 (ja) 脂肪模擬組成物、及び代替肉
WO2024004476A1 (ja) 脂肪塊組成物、脂肪塊混合物、代替肉及び脂肪塊組成物の製造方法
JP4975681B2 (ja) 麺用品質改良剤
WO2023074879A1 (ja) 生肉様代替肉、及び生肉様代替肉の製造方法
JP2005192566A (ja) パン粉類似品およびそれを用いた食品
CN117500382A (zh) 脂肪块组合物及肉类替代品
KR101393271B1 (ko) 사과부산물을 이용한 사과스낵의 제조방법
WO2023176743A1 (ja) 植物性タンパク質結着剤、かたまり肉様代替肉、及びかたまり肉様代替肉の製造方法
CN118159142A (zh) 生肉样替代肉、及生肉样替代肉的制造方法
JPS6112254A (ja) 加工食品の製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23766484

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)