WO2023170875A1 - ヒートシール可能な感熱フィルムおよびその製造方法 - Google Patents

ヒートシール可能な感熱フィルムおよびその製造方法 Download PDF

Info

Publication number
WO2023170875A1
WO2023170875A1 PCT/JP2022/010652 JP2022010652W WO2023170875A1 WO 2023170875 A1 WO2023170875 A1 WO 2023170875A1 JP 2022010652 W JP2022010652 W JP 2022010652W WO 2023170875 A1 WO2023170875 A1 WO 2023170875A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
sealable
layer
sensitive recording
recording layer
Prior art date
Application number
PCT/JP2022/010652
Other languages
English (en)
French (fr)
Inventor
寛樹 古澤
美和 盛屋
雅彦 ▲吉▼田
Original Assignee
大阪シーリング印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大阪シーリング印刷株式会社 filed Critical 大阪シーリング印刷株式会社
Priority to PCT/JP2022/010652 priority Critical patent/WO2023170875A1/ja
Priority to CN202280091723.XA priority patent/CN118715296A/zh
Priority to MX2024009695A priority patent/MX2024009695A/es
Priority to AU2022445995A priority patent/AU2022445995A1/en
Priority to KR1020247022292A priority patent/KR20240118828A/ko
Publication of WO2023170875A1 publication Critical patent/WO2023170875A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/14Printing or colouring
    • B32B38/145Printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/35Heat-activated

Definitions

  • the present invention relates to a heat-sealable thermosensitive film and a method for producing the same.
  • Patent Document 1 discloses an amorphous film having heat-sealability, a printed area in which a printed layer is formed on at least one surface of the amorphous film, and a non-printed area in which a printed layer is not formed.
  • a heat-sealable thermosensitive film is described.
  • a heat-sensitive film is known as a packaging material for containers of foods and the like, in which a heat-sensitive color-forming composition develops color through a chemical reaction when heated by a thermal head or the like, and a recorded image is obtained (see, for example, Patent Document 2).
  • this heat-sensitive film is used as a heat-sealable heat-sensitive film, it is necessary to prevent the heat-sensitive coloring composition from coloring due to heat during heat-sealing.
  • the present invention has been made in view of the above-mentioned circumstances, and is aimed at preventing the coloring of the heat-sensitive coloring composition due to the heat during heat-sealing when the heat-sensitive film is used as a heat-sealable heat-sensitive film.
  • An object of the present invention is to provide a heat-sealable thermosensitive film and a method for producing the same.
  • the present invention is configured as follows.
  • the heat-sealable heat-sensitive film of the present invention is a heat-sealable heat-sensitive film that has a base material and a heat-sensitive recording layer, and is bonded to a material to be sealed by heat.
  • the heat-sensitive recording layer is not provided at a portion of the substrate that is bonded to the material to be sealed, and the heat-sensitive recording layer is provided at a portion of the base material other than the portion that is bonded to the material to be sealed by the heat.
  • the heat-sealable heat-sensitive film configured as described above avoids coloring of the heat-sensitive recording layer during bonding by heat, and widens the range of selection of the bonding temperature with the material to be heat-sealed and the printing temperature. This increases versatility and gives customers a wider choice of print printers.
  • the heat-sensitive recording layer is provided only in a portion where printing is planned.
  • the transparent portion of the heat-sealable heat-sensitive film can be secured to the maximum extent. Thereby, visibility of the product inside the material to be sealed, such as a container, can be improved.
  • a protective layer is provided on the entire surface of the base material on the side where the heat-sensitive recording layer is provided.
  • the heat-sealable heat-sensitive film configured as described above can protect a thermal printer and a heat-seal bar. This not only withstands high temperature thermal printers, but also protects the heat seal bar.
  • an anchor layer is provided at a portion where the base material and the heat-sensitive recording layer are in contact with each other, and at a portion where the base material and the protective layer are in contact with each other.
  • the heat-sealable heat-sensitive film constructed as described above improves the adhesion strength between the base material and the heat-sensitive recording layer, and between the base material and the protective layer.
  • the protective layer has an anti-diffuse reflection layer made of colloidal silica.
  • the heat-sealable heat-sensitive film configured as described above has improved heat resistance and transparency. This makes it possible to improve the visibility of the product inside the material to be sealed, such as a container, while also providing the heat resistance of a heat-sealable heat-sensitive film.
  • the particle size of the colloidal silica is 1.0 ⁇ m or less.
  • the heat-sealable heat-sensitive film configured as described above has improved transparency. Thereby, visibility of the product inside the material to be sealed, such as a container, can be improved.
  • the haze value (%) of the portion where the heat-sensitive recording layer and the protective layer are provided is 4.6 of the haze value (%) of the base material. It is less than twice that.
  • the heat-sealable heat-sensitive film configured as described above has improved transparency. Thereby, visibility of the product inside the material to be sealed, such as a container, can be improved.
  • the coloring temperature of the heat-sensitive recording layer is higher than the temperature at which it is bonded to the material to be sealed by heat.
  • the heat-sealable heat-sensitive film configured as described above can avoid coloring of the heat-sensitive recording layer when it is bonded to a material to be sealed by heat.
  • the base material is a transparent base material.
  • the heat-sealable heat-sensitive film configured as described above has improved transparency. Thereby, visibility of the product inside the material to be sealed, such as a container, can be improved.
  • thermosensitive film in the heat-sealable thermosensitive film according to claim 10, a printed layer is formed on the base material.
  • the heat-sealable thermosensitive film configured as described above can increase the amount of information.
  • the heat-sensitive recording layer is provided at an appropriate location combined with the printed layer so that a printed part and a printed part are combined to form a single design. .
  • the heat-sealable thermosensitive film configured as described above can increase the amount of information.
  • the method (1) for producing a heat-sealable heat-sensitive film of the present invention is a method for producing a heat-sealable heat-sensitive film according to any one of claims 1 to 11 above, wherein the base material is a material to be sealed by heat.
  • the method includes a heat-sensitive recording layer forming step of forming a heat-sensitive recording layer on a portion other than the location where the heat-sensitive recording layer is bonded to the heat-sensitive recording layer.
  • coloring of the heat-sensitive recording layer during bonding to the material to be sealed due to heat is avoided, and the bonding temperature to the material to be sealed and the printing temperature are controlled by heat. You can now produce heat-sealable thermal films that expand your options, increase versatility, and give your customers a wider choice of printers.
  • the method (2) for producing a heat-sealable heat-sensitive film of the present invention is the method for producing a heat-sealable heat-sensitive film according to claim 2, wherein the base material is bonded to the material to be sealed by heat.
  • the method includes a heat-sensitive recording layer forming step of forming a heat-sensitive recording layer only on a portion other than the portion where printing is planned.
  • the transparent portion of the heat-sealable heat-sensitive film can be secured to the maximum extent, and the visibility of the product inside the material to be sealed such as a container can be improved.
  • a heat-sealable thermosensitive film can be produced.
  • the heat-sensitive recording layer forming step is performed using register marks. According to the method for producing a heat-sealable heat-sensitive film configured as described above, the transparent portion of the heat-sealable heat-sensitive film can be secured to the maximum extent, and the visibility of the product inside the material to be sealed such as a container can be improved. A heat-sealable thermosensitive film can be easily manufactured.
  • the method (3) for producing a heat-sealable thermosensitive film of the present invention is the method for producing a heat-sealable thermosensitive film according to claim 4 or 5, which comprises forming an anchor layer on the entire surface of the base material.
  • the adhesion strength between the base material and the heat-sensitive recording layer and between the base material and the protective layer is high, and the film can not only withstand high-temperature thermal printers but also , it is possible to produce a heat-sealable thermal film that can also protect heat-seal bars.
  • the method (4) for producing a heat-sealable thermosensitive film of the present invention is the method for producing a heat-sealable thermosensitive film according to claim 10, comprising: a printing step of forming a printed layer on a base material; After the printing process, an appropriate portion of the base material other than the portion to be bonded to the material to be sealed by heat, which is combined with the printing layer so that the printed portion and the printed portion form a single design, is It has a heat-sensitive recording layer forming step of forming a heat-sensitive recording layer on the portion.
  • a heat-sealable thermosensitive film with a large amount of information can be produced.
  • the printing step and the thermosensitive recording layer forming step are performed using register marks. According to the method for manufacturing a heat-sealable thermal film configured as described above, a heat-sealable thermal film with a large amount of information can be easily manufactured.
  • the heat-sealable thermosensitive film according to any one of claims 1 to 11 is continuously formed. According to the roll paper configured as described above, coloring of the heat-sensitive recording layer during bonding by heat is avoided, and the range of selection of temperature for bonding with the material to be sealed by heat and printing temperature is widened. This makes it possible to provide a heat-sealable thermal film that increases versatility and gives customers a wider choice of printing printers.
  • the present invention it is possible to avoid coloring of the heat-sensitive recording layer during bonding by heat, and expand the range of selection of temperature for bonding with the material to be sealed by heat and printing temperature, thereby increasing versatility.
  • FIG. 1 is a schematic diagram of an embodiment of a heat-sealable thermosensitive film according to the present invention viewed from above.
  • 2 is a diagram schematically showing a cross section taken along line AA in FIG. 1.
  • FIG. 3 is a diagram schematically showing a cross section of another embodiment of the heat-sealable thermosensitive film according to the present invention.
  • FIG. 3 is a diagram schematically showing a cross section of another embodiment of a heat-sealable thermosensitive film according to the present invention.
  • FIG. 2 is a schematic diagram of still another embodiment of the heat-sealable thermosensitive film according to the present invention, viewed from above.
  • FIG. 6 is a diagram schematically showing a cross section taken along line BB in FIG. 5.
  • FIG. FIG. 3 is a diagram schematically showing a cross section of yet another embodiment of the heat-sealable thermosensitive film according to the present invention.
  • FIG. 3 is a diagram schematically showing a cross section of yet another embodiment of the heat-sealable thermosensitive film according to the present invention.
  • FIG. 2 is an explanatory diagram showing register marks used in a multicolor printing device in an embodiment of the method for producing a heat-sealable thermosensitive film according to the present invention.
  • FIG. 7 is an explanatory diagram showing register marks used in a multicolor printing device in another embodiment of the method for producing a heat-sealable thermosensitive film according to the present invention. It is a graph showing general heat sealing temperature and printing temperature.
  • the heat-sealable heat-sensitive film of the present invention is a heat-sealable heat-sensitive film that is bonded to a material to be sealed by heat, and includes a base material and a heat-sensitive recording layer.
  • the heat-sensitive recording layer is not provided at a portion of the base material that is bonded to the material to be sealed by heat. Then, the heat-sensitive recording layer is provided on a portion of the base material other than the portion that is bonded to the material to be sealed by the heat.
  • bonding a heat-sealable thermosensitive film to a material to be sealed by heat may be referred to as heat sealing.
  • the temperature at which heat sealing is performed is sometimes referred to as heat sealing temperature.
  • the heat-sensitive coloring composition develops color by chemical reaction by heating with a thermal head or the like to obtain a recorded image, which is referred to as printing.
  • the temperature at which printing is performed is referred to as printing temperature.
  • FIG. 11 shows general heat sealing temperatures and printing temperatures. As shown in FIG. 11, generally, the heat sealing temperature and the printing temperature often have overlapping temperature ranges. For this reason, in a heat-sealable heat-sensitive film having a base material and a heat-sensitive recording layer, it is necessary to avoid color development of the heat-sensitive recording layer during heat-sealing.
  • FIG. 1 and FIG. 2 which schematically shows the AA cross section thereof, schematically show an embodiment of the heat-sealable thermosensitive film according to the present invention.
  • 2 is a base material
  • 4 is a heat-sensitive recording layer.
  • Reference numeral 6 denotes a material to be sealed to which the heat-sealable thermosensitive film is bonded by heat, and in FIG. 1, it is present below the heat-sealable thermosensitive film.
  • the base material 2 consists of a layer 21 having heat-sealing properties (here, a film having heat-sealing properties is used).
  • a heat-sealable heat-sensitive film having a base material 2 and a heat-sensitive recording layer 4 is heat-sealed to the material to be sealed 6 at a location 10 where it is bonded to the material to be sealed 6 by heat.
  • the heat-sensitive recording layer 4 is not provided at the location 10 of the base material 2, but the heat-sensitive recording layer 4 is provided at a portion 12 other than the location 10. Therefore, in the heat-sealable heat-sensitive film of Embodiment 1, no heat is applied to the heat-sensitive recording layer 4 during heat-sealing with the heat-seal bar, so the heat-sealing temperature can be freely set regardless of the printing temperature.
  • the heat-sensitive recording layer 4 may be provided on the entire surface of the portion 12 other than the above-mentioned portion 10, or may be provided on a portion thereof.
  • FIG. 3 schematically represents another embodiment of the heat-sealable thermosensitive film according to the present invention.
  • the same reference numerals as in FIGS. 1 and 2 indicate the same things.
  • a protective layer 20 is provided on the entire surface on which the heat-sensitive recording layer 4 is provided. By providing the protective layer 20, it is possible to not only withstand high temperature thermal printers but also protect from heat seal bars. It can also protect thermal printers and heat seal bars.
  • FIG. 4 schematically represents another embodiment of the heat-sealable thermosensitive film according to the present invention.
  • the same reference numerals as in FIGS. 1-3 indicate the same things.
  • An anchor layer 30 is provided in the heat-sealable thermosensitive film of Embodiment 3, in Embodiment 2 shown in FIG.
  • An anchor layer 30 is provided in the heat-sealable thermosensitive film of Embodiment 3, in Embodiment 2 shown in FIG.
  • An anchor layer 30 is provided.
  • both the adhesion strength between the base material 2 and the heat-sensitive recording layer 4 and the adhesion strength between the base material 2 and the protective layer 20 can be improved.
  • the same reference numerals as in FIGS. 1-4 indicate the same things.
  • the heat-sensitive recording layer 14 is provided only in a portion 16 of the portion 12 where printing is planned, other than the portion 10 that is bonded to the material to be sealed 6 by the heat of the base material 2. There is. Therefore, the transparent portion of the heat-sealable heat-sensitive film can be secured to the maximum extent. Thereby, visibility of the product inside the material to be sealed, such as a container, can be improved.
  • an intermediate layer 40 is further provided between the protective layer 20 and the heat-sensitive recording layer 14 and between the protective layer 20 and the anchor layer 30. The intermediate layer 40 can improve barrier properties against water and oil.
  • the base material 2 has a printed layer 22.
  • the printing layer 22 is provided on the surface of the heat-sealable layer 21 (here, a heat-sealable film is used) on the side on which the heat-sensitive recording layer 14 is provided. Since the base material 2 has the printed layer 22, the information content of the heat-sealable thermosensitive film can be increased.
  • the heat-sensitive recording layer 14 may be provided at an appropriate location in combination with the print layer 22 so that the printed portions are combined to form a single design.
  • a film having heat-sealability is used that has heat-sealability on only one side of the film, and the printed layer 22 is formed on the side that does not have heat-sealability. It is preferable to provide one.
  • FIG. 7 schematically represents yet another embodiment of the heat-sealable thermosensitive film according to the present invention.
  • the base material 2 has a multilayer structure consisting of a film 24 that does not have heat-sealability, a layer 21 that has heat-sealability, and an adhesive layer 23.
  • the printed layer 22 is provided on the film 24 that does not have heat sealability, is sandwiched between the film 24 that does not have heat sealability and the adhesive layer 23, and is further covered with the layer 21 that has heat sealability. It has a similar structure.
  • FIG. 8 schematically represents yet another embodiment of the heat-sealable thermosensitive film according to the present invention.
  • the same reference numerals as in FIG. 7 indicate the same things.
  • the base material 2 further has a functional paint layer 25.
  • a functional paint layer By having a functional paint layer, antifogging properties and the effect of suppressing static electricity generation can be obtained.
  • the base material may be any material that has heat-sealability, such as an amorphous film that has heat-sealability.
  • the base material is preferably transparent. By doing so, the visibility inside the packaging container can be further improved.
  • the above-mentioned amorphous film can be made of any suitable resin and typically contains an amorphous component.
  • the amount of amorphous component in the resin constituting the amorphous film is preferably 12 mol% or more, more preferably 13 mol% or more, and even more preferably 14 mol% or more.
  • the upper limit of the amount of amorphous component is preferably 30 mol%, more preferably 29 mol%, and even more preferably 28 mol%. Thereby, heat sealability can be imparted to the amorphous film.
  • polyester resins and the like examples include polyester resins and the like.
  • the polyester resin contains an ethylene terephthalate unit as a main component and one or more monomer components that can be an amorphous component.
  • monomers of the carboxylic acid component that can be an amorphous component include isophthalic acid, 1,4-cyclohexanedicarboxylic acid, and 2,6-naphthalenedicarboxylic acid.
  • diol component monomers that can be amorphous components include neopentyl glycol, 1,4-cyclohexanedimethanol, 2,2-diethyl-1,3-propanediol, and 2-n-butyl-2-ethyl-1.
  • 3-propanediol 2,2-isopropyl-1,3-propanediol, 2,2-di-n-butyl-1,3-propanediol, and hexanediol.
  • isophthalic acid neopentyl glycol, and 1,4-cyclohexanedimethanol are preferred.
  • other dicarboxylic acid components and/or diol components constituting the polyester resin may be included.
  • Examples of the other dicarboxylic acid components include aromatic dicarboxylic acids such as orthophthalic acid, aliphatic dicarboxylic acids such as adipic acid, azelaic acid, sebacic acid, and decane dicarboxylic acid, and alicyclic dicarboxylic acids.
  • Examples of the diol component include long chain diols such as diethylene glycol and 1,4-butanediol, aliphatic diols such as hexanediol, and aromatic diols such as bisphenol A.
  • the above-mentioned base material may contain various additives in addition to the above-mentioned resin.
  • additives include waxes, antioxidants, antistatic agents, crystal nucleating agents, thinners, heat stabilizers, coloring pigments, coloring inhibitors, and ultraviolet absorbers.
  • fine particles may be added as a lubricant to improve the slipperiness of the film.
  • examples of the above-mentioned fine particles include inorganic fine particles such as silica, alumina, titanium dioxide, calcium carbonate, kaolin, and barium sulfate, and organic fine particles such as acrylic resin particles, melamine resin particles, silicone resin particles, and crosslinked polystyrene particles. can be mentioned.
  • the above-mentioned base material is made by melt-extruding the above-mentioned constituent materials using an extruder to form an unstretched film, and stretching the film under any appropriate stretching conditions (stretching temperature, stretching ratio, stretching direction) as necessary. Can be manufactured.
  • the film may be unstretched, but from the viewpoint of film strength and productivity, a film obtained by biaxial stretching is preferred.
  • An amorphous film containing a polyester resin can be produced by selecting the type and amount of a dicarboxylic acid component and a diol component and polycondensing them so as to contain an appropriate amount of a monomer that can become an amorphous component.
  • the thickness of the base material is preferably, for example, 10 ⁇ m to 200 ⁇ m, more preferably 15 ⁇ m to 100 ⁇ m, and still more preferably 20 ⁇ m to 70 ⁇ m.
  • the base material is also a material (film) that does not have heat sealability and is laminated with a material (film) that has heat sealability using an adhesive layer (for example, a modified alkyd resin). Also good.
  • the material to be laminated may be any material that has heat sealability, such as LDPE (low density polyethylene), HDPE (high density polyethylene), CPP (unoriented polypropylene), OPP (biaxially oriented polypropylene), EVA (ethylene acetic acid).
  • Polyolefin resins such as polyethylene and polypropylene; vinyl acetate resins such as ethylene-vinyl acetate copolymers (olefin-vinyl acetate copolymers, etc.); ethylene-( Acrylic resins such as meth)acrylic acid copolymers and ionomers [olefin-(meth)acrylic acid copolymers, or metal crosslinked products thereof, etc.] may also be used. Alternatively, it may be formed using a known heat-sealing adhesive. Note that in order to improve the visibility of the product inside the material to be sealed, such as a container, it is preferable to use a member that becomes transparent after being formed.
  • the thickness of the material having heat sheet properties is preferably 1 to 50 ⁇ m, more preferably 10 to 30 ⁇ m.
  • a material in which a functional paint layer made of a functional paint for example, a surfactant such as polyglycerin fatty acid ester
  • a surfactant such as polyglycerin fatty acid ester
  • the base material preferably has a three-layer structure in which the above-mentioned non-heat-sealable material is laminated with an adhesive layer and a heat-sealable material layer in this order. It is more preferable to use a 4-layer structure in which the adhesive paint layers are laminated.
  • a protective layer when a protective layer is applied, an increase in haze is suppressed, and a film with excellent transparency can be formed.
  • Haze can be measured using Hazemater NDH 7000 manufactured by Nippon Denshoku Kogyo in accordance with JIS K7361-1, K7136, K7105 and ASTM D1003, ISO13468, IS14782.
  • a base material with a four-layer structure consisting of a material without heat sealability, an adhesive layer A or B, a sealant layer A or B, and a functional paint layer A or B;
  • a base material with a three-layer structure consisting of a non-containing material, an adhesive layer A, and a sealant layer A;
  • a base material consisting of a heat seal film A or B when any of the protective layers A to C is applied and formed, respectively.
  • the heat-sensitive recording layer contains a color-forming material that develops color when heated.
  • the above-mentioned coloring material is not particularly limited as long as it can be colored by heating, and dyes that can be used alone may be used, such as transparent or light-colored dyes (leuco dyes) and this dye that can be colored by heating. It may also be used in combination with a color developer that can.
  • a color-forming material that combines a leuco dye and a color developer is also used in general heat-sensitive recording paper, and is easily available and highly versatile.
  • the color development temperature (printing temperature) of the heat-sensitive recording layer is preferably higher than the temperature at which it is bonded to the material to be sealed by heat (heat-sealing temperature), and more preferably 10° C. or more higher than the heat-sealing temperature.
  • leuco dyes can be used, such as triphenylmethanephthalide, triallylmethane, fluoran, phenotidian, thiofluoran, xanthene, indophthalyl, spiropyran, azaphthalide, and chromenopyrazole.
  • leuco dyes such as leuco dyes, methine series, rhodamine anilinolactam series, rhodamine lactam series, quinazoline series, diazaxanthene series, and bislactone series.
  • one type of leuco dye may be used alone, printing in a desired color can be achieved by using two or more types in combination.
  • an electron acceptor such as an acidic substance can be used.
  • the color developer can be appropriately selected depending on the type of leuco dye, and any known color developer can be used.
  • color developers include organic acids such as benzoic acid, metal salt compounds of organic acids such as zinc salicylate, phenolic compounds such as p-octylphenol, and 4-4'thiobis(6-t-butyl-2-methyl).
  • examples include thiophenol compounds such as phenol), thiourea derivatives such as NN'-diphenylthiourea, and diphenylsulfone compounds such as 3,3'-diallyl-4,4'-dihydroxydiphenylsulfone.
  • the heat-sensitive recording layer may contain other materials such as a filler, a binder, and a lubricant, if necessary. Details of the materials that can be included in the heat-sensitive recording layer are described in, for example, International Publication No. 2015/072411 pamphlet. The pamphlet is incorporated herein by reference in its entirety.
  • Examples of the above-mentioned fillers include kaolin and calcium carbonate, and the particle size thereof is preferably 1.0 ⁇ m or less.
  • binder examples include styrene-butadiene copolymer.
  • Examples of the above lubricant include polyethylene, zinc stearate, paraffin, etc., and the particle size thereof is preferably 0.5 ⁇ m or less.
  • paraffin is a paraffin with a low melting point below the coloring temperature of the heat-sensitive recording layer, preferably below 80°C, more preferably below 50°C. It is preferable that
  • the particle size of this low melting point paraffin is preferably 0.5 ⁇ m or less.
  • the content of this paraffin is preferably, for example, 0.1 to 1.0 g/m 2 in terms of dry weight.
  • paraffin with a low melting point in this way, when the coating liquid for forming the heat-sensitive layer is applied onto the base material and dried, the paraffin melts and creates unevenness on the surface of the particles that make up the heat-sensitive recording layer. The particles penetrate into the gaps between the particles and fill the gaps, thereby suppressing diffused reflection on the particle surface and further improving transparency.
  • the protective layer protects the surface irregularities and hard materials of the base material and the heat-sensitive recording layer, suppresses friction with the thermal head, and suppresses wear of the thermal head.
  • the matching property of the heat-sensitive film to the thermal head is improved so that color development of the heat-sensitive recording layer is performed smoothly.
  • Examples of the resin that is a binder include acrylic resin.
  • Examples of the lubricant include polyethylene and zinc stearate.
  • crosslinking agent examples include zirconium carbonate.
  • fillers examples include colloidal silica, calcium carbonate, polymethyl methacrylate (PMMA), and polystyrene (PS).
  • the particle size of these fillers is preferably 1.0 ⁇ m or less.
  • the protective layer may have an anti-diffuse reflection layer made of colloidal silica.
  • the particle size of the colloidal silica is preferably 1.0 ⁇ m or less.
  • the substance included in the anchor layer can be determined as appropriate depending on what function is to be imparted to the upper or lower layer of the anchor layer.
  • the anchor layer preferably improves both the adhesion strength between the base material and the heat-sensitive recording layer and the adhesion strength between the base material and the protective layer.
  • a styrene-acrylic copolymer resin is preferable.
  • the anchor layer has the role of adhesion to the base material and adhesion to the heat-sensitive recording layer, but it is also important that the adhesion strength does not decrease even if a protective layer is formed.
  • the role of adhesion with the protective layer becomes more important than in normal cases.
  • Providing the anchor layer is preferable because it increases the adhesion strength between the base material and the protective layer. If no anchor layer is provided, even if there is no problem with the adhesion strength between the base material and the heat-sensitive recording layer, the adhesion strength may become low when a protective layer is applied.
  • the printing layer can typically be formed by printing the material constituting the printing layer at an appropriate location on the base material, for example, as shown in Embodiments 4 to 6 above.
  • a printing layer is printed on the surface of a film that has heat-sealability on one side, which is the side that does not have heat-sealability and on which the heat-sensitive recording layer is to be provided.
  • the printing layer is printed on a film that does not have heat sealability. From the viewpoint of preventing printing defects, these printing layers are preferably covered with an intermediate layer, a protective layer, or the like.
  • the materials constituting the printing layer include coating liquids containing dyes, pigments, metals, binder component materials, solvents, and other components.
  • the above-mentioned material may contain metal, and the printing layer may be formed by vapor-depositing the metal on the surface of the base material.
  • the type of metal is not particularly limited, and for example, aluminum, aluminum alloy, copper, copper alloy (copper-nickel alloy, copper-zinc alloy, etc.), silver, silver alloy, etc. can be used.
  • the metal may be in any form such as metal powder, metal flakes, and metal fibers. Printed layers containing these metals have excellent design properties and are also excellent in light shielding properties.
  • Any suitable method can be used to print the above material on the surface of the base material, depending on the use of the heat-sealable thermosensitive film and its compatibility with the base material. For example, gravure printing, offset printing , convex rotary printing, UV printing, silk screen printing, etc.
  • an intermediate layer having barrier properties against water and oil may be provided between the heat-sensitive recording layer and the protective layer.
  • the intermediate layer is mainly formed of resin.
  • the resin for this intermediate layer include emulsions of acrylic resins, water-soluble resins such as polyvinyl alcohol (PVA) resins, and SBR resins.
  • the resin has a water-soluble portion, for example, a polyvinyl alcohol (PVA) resin that has a hydroxyl group as a hydrophilic structural unit, or a hydrophobic core particle.
  • PVA polyvinyl alcohol
  • Water-soluble polyvinyl alcohol (PVA) and core-shell type acrylic resin have good film-forming properties, and when a coating liquid for forming an intermediate layer is applied on the heat-sensitive recording layer and dried, water-soluble Since the resin having the part permeates into the heat-sensitive recording layer to form a smooth intermediate layer, diffused reflection in the heat-sensitive recording layer is suppressed and transparency is further improved.
  • PVA polyvinyl alcohol
  • core-shell type acrylic resin have good film-forming properties, and when a coating liquid for forming an intermediate layer is applied on the heat-sensitive recording layer and dried, water-soluble Since the resin having the part permeates into the heat-sensitive recording layer to form a smooth intermediate layer, diffused reflection in the heat-sensitive recording layer is suppressed and transparency is further improved.
  • Core-shell type resins are conventionally known, and examples of core-shell type acrylic resins include those commercially available under the name Varistar (manufactured by Mitsui Chemicals).
  • the haze value (%) of the portion of the heat-sealable thermosensitive film provided with the heat-sensitive recording layer and the protective layer is preferably 4.6 times or less of the haze value (%) of the base material, More preferably, it is 2.2 times or less. In such a case, it is possible to provide a heat-sealable heat-sensitive film with high visibility of the product inside the material to be sealed, such as a container, without significantly impairing the transparency of the heat-sealable heat-sealable film.
  • the haze value (%) can be increased by preferably providing the heat-sensitive recording layer and the protective layer on the base material. It is possible to suppress this and ensure transparency.
  • the heat sealability of the heat-sealable heat-sensitive film for example, when two top seal films are heat-sealed at a temperature of 160°C, a seal bar pressure of 2 MPa, and a sealing time of 2 seconds, the heat seal strength is 0.5 N/ It is preferable that it is 15 mm or more.
  • the top seal film can more suitably top seal the opening of a container having an opening by heat sealing.
  • the heat seal strength is more preferably 1.0 N/15 mm or more, still more preferably 2.0 N/15 mm, even more preferably 2.5 N/15 mm, and particularly preferably 3.0 N/15 mm. It is 15 mm or more. It is preferable that the heat seal strength is high, but practically it is preferably 2.5 N/15 mm or less.
  • thermo film of the present invention it is possible to avoid color development of the heat-sensitive recording layer during thermal bonding, and to widen the range of selection of thermal bonding temperature with the material to be sealed and printing temperature. This increases versatility and gives customers a wider choice of print printers.
  • the method (1) for producing a heat-sealable thermosensitive film of the present invention includes a heat-sensitive recording layer forming step of forming a heat-sensitive recording layer on a portion of the base material other than the portion to be bonded to the material to be sealed by heat. In the heat-sensitive recording layer forming step, it is preferable to partially apply the heat-sensitive recording layer forming coating material onto the base material to form the heat-sensitive recording layer.
  • the method (1) for producing a heat-sealable thermal film of the present invention coloring of the heat-sensitive recording layer during bonding to the material to be sealed by heat is avoided, and the bonding temperature and printing temperature to the material to be sealed by heat are avoided. This allows for the production of heat-sealable thermal film that increases flexibility and increases versatility, giving customers a wider choice of printing printers.
  • a heat-sensitive recording layer is formed only on the part of the base material other than the part to be bonded to the material to be sealed by heat and where printing is planned. It has a heat-sensitive recording layer forming step. In the heat-sensitive recording layer forming step, it is preferable to form the heat-sensitive recording layer by applying the heat-sensitive recording layer-forming paint to only a portion of the substrate where printing is planned.
  • the method (2) for producing a heat-sealable thermal film of the present invention coloring of the heat-sensitive recording layer during bonding to the material to be sealed by heat is avoided, and the bonding temperature and printing temperature to the material to be sealed by heat are avoided. It is possible to produce a heat-sealable thermal film that expands the range of selection, increases versatility, and allows customers to choose a wide range of printing printers. It is possible to produce a heat-sealable thermosensitive film that can improve the visibility of products inside sealed materials such as containers.
  • the above heat-sensitive recording layer forming step is preferably performed using register marks. Formation of the heat-sensitive recording layer using register marks can be performed using a general-purpose multicolor printing device. Specifically, as shown in FIG. 9, for example, register marks 50a, 50b, which are attached in advance so as to be lined up at a constant distance D in the vertical direction along the feeding direction of the printed circuit board W (arrow direction in FIG. 9), While reading marks 50c and 50d using a registering means (not shown), the register is determined by forming a thermosensitive recording layer at a position a certain distance apart in the width direction from the position between the respective register marks 50a, 50b, 50c, and 50d. Make adjustments. By forming the heat-sensitive recording layer using the register mark in this manner, it is possible to easily produce a heat-sealable heat-sensitive film in which the heat-sensitive recording layer 14 is formed only on the portion 16 where printing is planned.
  • the method (3) for producing a heat-sealable thermosensitive film of the present invention includes: (i) An anchor layer forming step of forming an anchor layer on the entire surface of the base material, (ii) a heat-sensitive recording layer forming step of forming a heat-sensitive recording layer on the surface of the anchor layer opposite to the base material at a portion other than the portion to be bonded to the material to be sealed by heat; (iii) forming a protective layer over the entire surface of the anchor layer on the side on which the thermosensitive recording layer is formed;
  • the anchor layer, heat-sensitive recording layer, and protective layer can be formed by applying an anchor layer-forming paint, a heat-sensitive recording layer-forming paint, and a protective layer-forming paint, respectively.
  • a coating liquid for forming the intermediate layer is applied to the entire surface on which the heat-sensitive recording layer is formed and dried to form the intermediate layer.
  • a protective layer forming paint is applied on the intermediate layer to form a protective layer.
  • an anchor layer is formed between the base material and the heat-sensitive recording layer, and between the base material and the protective layer. Therefore, by appropriately selecting the material of the anchor layer, the adhesion strength between the base material and the heat-sensitive recording layer and between the base material and the protective layer is high, and it can not only withstand high temperature thermal printers but also protect the heat seal bar. A heat-sealable thermosensitive film can be produced.
  • the method (4) for producing a heat-sealable thermosensitive film of the present invention includes a printing step of forming a printed layer on a substrate, and after the printing step, a portion of the substrate other than the portion to be bonded to the material to be sealed by heat. and a heat-sensitive recording layer forming step of forming a heat-sensitive recording layer on an appropriate part combined with the printed layer so that the printed part and the printed part are combined to form one design. According to the method (4) for producing a heat-sealable thermosensitive film of the present invention, a heat-sealable thermosensitive film with a large amount of information can be produced.
  • the printing step and the heat-sensitive recording layer forming step are preferably performed using register marks. Formation of the heat-sensitive recording layer using register marks can be performed using a general-purpose multicolor printing device. Specifically, as shown in FIG. 10, for example, register marks 50a, 50b, 50c are attached to be aligned vertically at a constant distance D along the feeding direction of the printed circuit board W (arrow direction in FIG. 10), 50d is read by a registration means (not shown), registration is performed by forming a heat-sensitive recording layer at a position a certain distance apart in the width direction from the position between each of the registration marks 50a, 50b, 50c, and 50d. conduct.
  • the heat-sensitive recording layer is applied to the appropriate part combined with the printing layer 22 so that the printed part and the printed part are combined to form one design.
  • a heat-sealable thermosensitive film on which the recording layer 14 is formed can be easily produced.
  • thermosensitive film of the present invention is continuously formed. This roll paper avoids coloring of the heat-sensitive recording layer during heat bonding and expands the range of selection of heat bonding temperature with the material to be sealed and printing temperature, increasing versatility and providing customer support. The choice of printing printers will be wider.
  • Example 1 As the base material, transparent amorphous film #30 (thickness: 30 ⁇ m) having heat sealability was used. On this base material, a coating liquid for forming a heat-sensitive recording layer containing a color forming agent, a color developer, a filler, a binder, a lubricant, etc. that develops color when heated is applied to the base material as shown in FIG. 2 above. , A heat-sensitive recording layer is formed by applying and drying the coating amount to a dry weight of 4.0 g/m 2 on the parts other than the part (10) to be bonded to the material to be sealed by heat, and heat-sealing is possible. A thermosensitive film 1 was obtained. The heat-sensitive recording layer was formed using a register mark using a general-purpose multicolor printing device.
  • thermosensitive film 1 When this heat-sealable thermosensitive film 1 was bonded to a material to be sealed by heat, coloring of the heat-sensitive recording layer during bonding by heat was avoided.
  • the coloring temperature of the heat-sensitive recording layer was 130°C
  • the heat-sealing temperature was 150°C.
  • Example 2 A heat-sealable heat-sensitive film 2 was obtained in the same manner as in Example 1, except that the heat-sensitive recording layer in Example 1 was formed only in a part where printing was planned, which was narrower than in Example 1. .
  • this heat-sealable thermal film 2 was printed with a thermal printer, it showed durability against high-temperature thermal printers. Furthermore, when this heat-sealable thermosensitive film 2 was bonded to a material to be sealed by heat, color development of the heat-sensitive recording layer during bonding by heat was avoided.
  • Example 3 11 parts of polyethylene, 4 parts of zinc stearate, 46 parts of acrylic, A coating for forming a protective layer consisting of 6 parts of Zr carbonate and 43 parts of colloidal silica (particle size: 1.0 ⁇ m or less) was applied so that the coating amount was 4.0 g/m 2 in terms of dry weight, and then dried. A protective layer was formed thereon to obtain a heat-sealable thermosensitive film 3. An anti-diffuse reflection layer made of colloidal silica with a particle size of 1.0 ⁇ m or less was formed on the protective layer.
  • thermosensitive film 3 When the obtained heat-sealable thermosensitive film 3 was printed with a thermal printer, it showed durability against high-temperature thermal printers. Furthermore, when this heat-sealable thermosensitive film 3 was bonded to a material to be sealed by heat, coloring of the heat-sensitive recording layer during bonding by heat was avoided, and the heat-seal bar was also protected.
  • the haze value (%) of the portion of the heat-sealable thermosensitive film 3 in which the heat-sensitive recording layer and the protective layer were provided on the base material was about 4 times the haze value (%) of the base material.
  • HAZE was measured using Hazemater NDH 7000 manufactured by Nippon Denshoku Kogyo in accordance with JIS K7361-1, K7136, K7105 and ASTM D1003, ISO13468, IS14782.
  • Example 4 A protective layer was formed in the same manner as in Example 3 on the entire surface of the heat-sensitive recording layer of the heat-sealable heat-sensitive film 2 obtained in Example 2 and on the base layer on which the heat-sensitive recording layer was not formed. A sealable heat-sensitive film 4 was obtained. An anti-diffuse reflection layer made of colloidal silica with a particle size of 1.0 ⁇ m or less was formed on the protective layer.
  • thermosensitive film 4 When the obtained heat-sealable thermosensitive film 4 was printed with a thermal printer, it showed durability against high-temperature thermal printers. Furthermore, when this heat-sealable thermosensitive film 4 was bonded to a material to be sealed by heat, coloring of the heat-sensitive recording layer during bonding by heat was avoided, and the heat-seal bar was also protected.
  • Example 5 The same base material as used in Example 1 was used, and a coating material for forming an anchor layer made of acrylic acid resin was applied to the entire surface of the base material in an amount of 2.5% by dry weight. After coating to a concentration of 0 g/m 2 , drying was performed to form an anchor layer on the base material. A heat-sensitive recording layer was formed on the anchor layer in the same manner as in Example 1.
  • a protective layer was formed on the entire surface of the above heat-sensitive recording layer and the anchor layer on which no heat-sensitive recording layer was formed in the same manner as in Example 3 to obtain a heat-sealable heat-sealable heat-sensitive film 5.
  • An anti-diffuse reflection layer made of colloidal silica with a particle size of 1.0 ⁇ m or less was formed on the protective layer.
  • thermosensitive film 5 When the obtained heat-sealable thermosensitive film 5 was printed with a thermal printer, it showed durability against high-temperature thermal printers. Furthermore, when this heat-sealable thermosensitive film 5 was bonded to a material to be sealed by heat, coloring of the heat-sensitive recording layer during bonding by heat was avoided, and the heat-seal bar was also protected.
  • thermosensitive film 5 when the haze value (%) of the portion where the anchor layer, thermosensitive recording layer, and protective layer were provided on the base material was measured in the same manner as in Example 3, it was found that the anchor layer was attached to the base material.
  • the haze value (%) of the portion provided with the layer, the heat-sensitive recording layer, and the protective layer was about 4 times the haze value (%) of the base material.
  • Example 6 The same base material as that used in Example 2 was used, and an anchor layer was formed on the entire surface of the base material in the same manner as in Example 5. A heat-sensitive recording layer was formed on the anchor layer in the same manner as in Example 2.
  • a protective layer was formed on the entire surface of the above heat-sensitive recording layer and the anchor layer on which no heat-sensitive recording layer was formed, in the same manner as in Example 3, to obtain a heat-sealable heat-sealable heat-sensitive film 6.
  • An anti-diffuse reflection layer made of colloidal silica with a particle size of 1.0 ⁇ m or less was formed on the protective layer.
  • thermosensitive film 6 When the obtained heat-sealable thermosensitive film 6 was printed with a thermal printer, it showed durability against high-temperature thermal printers. Further, when this heat-sealable thermosensitive film 6 was bonded to a material to be sealed by heat, coloring of the heat-sensitive recording layer during bonding by heat was avoided, and the heat-seal bar was also protected.
  • the haze value (%) of the heat-sealable thermosensitive film 6 was measured in the same manner as in Example 3 at the portion where the anchor layer, the thermosensitive recording layer, and the protective layer were provided on the base material, it was found that the anchor layer was attached to the base material.
  • the haze value (%) of the portion provided with the layer, the heat-sensitive recording layer, and the protective layer was about 4 times the haze value (%) of the base material.
  • Example 7 As a base material, a four-layer structure consisting of PET #12 (thickness 12 ⁇ m) / adhesive layer / sealant layer #30 (layer with heat sealability, thickness 30 ⁇ m) / functional paint layer was used, and the above PET film was An anchor layer, a heat-sensitive recording layer, and a protective layer were provided on the entire surface of the side on which other layers were not formed in the same manner as in Example 5, to obtain a heat-sealable heat-sensitive film 7.
  • the adhesive layer was made of a modified alkyd resin
  • the heat-sealable layer was made of polypropylene film
  • the functional paint layer was made of polyglycerin fatty acid ester.
  • An anti-diffuse reflection layer made of colloidal silica with a particle size of 1.0 ⁇ m or less was formed on the protective layer.
  • thermosensitive film 7 When the obtained heat-sealable thermosensitive film 7 was printed with a thermal printer, it showed durability against high-temperature thermal printers. Further, when this heat-sealable thermosensitive film 7 was bonded to a material to be sealed by heat, coloring of the heat-sensitive recording layer during bonding by heat was avoided, and the heat-seal bar was also protected. The coloring temperature of the heat-sensitive recording layer was 170°C, and the heat-sealing temperature was 165°C.
  • the haze value (%) of the portion of the heat-sealable thermosensitive film 7 in which the anchor layer, the heat-sensitive recording layer, and the protective layer are provided on the base material is 2.2 times or less of the haze value (%) of the base material. Met. Note that HAZE was measured in the same manner as in Example 3.
  • Example 8 As the base material, a four-layer structure consisting of PET #12 (thickness 12 ⁇ m) / adhesive layer / sealant layer #30 (layer with heat sealability, thickness 30 ⁇ m) / functional paint layer was used as in Example 7. A heat-sealable thermosensitive film 8 was obtained in the same manner as in Example 6 except that
  • thermosensitive film 8 When the obtained heat-sealable thermosensitive film 8 was printed with a thermal printer, it showed durability against high-temperature thermal printers. Furthermore, when this heat-sealable thermosensitive film 8 was bonded to a material to be sealed by heat, coloring of the heat-sensitive recording layer during bonding by heat was avoided, and the heat-seal bar was also protected. The coloring temperature of the heat-sensitive recording layer was 130°C, and the heat-sealing temperature was 165°C.
  • the haze value (%) of the portion of the heat-sealable thermosensitive film 8 in which the anchor layer, the heat-sensitive recording layer, and the protective layer are provided on the base material is 4.6 times or less than the haze value (%) of the base material. Met. Note that HAZE was measured in the same manner as in Example 3.
  • Example 9 A heat-sealable film having heat-sealable properties on one side was used as a base material, and a printed layer was formed on the surface that did not have heat-sealable properties.
  • An anchor layer was formed in the same manner as in Example 6 on the entire surface of the surface on which the printing layer was formed of the above substrate, and a thermosensitive recording layer was formed on the above anchor layer in the same manner as in Example 2.
  • An intermediate layer made of an acrylic resin emulsion or the like is formed on the entire surface of the above heat-sensitive recording layer and the anchor layer on which the heat-sensitive recording layer is not formed, and a protective layer is formed on the entire surface of the intermediate layer in the same manner as in Example 4.
  • a heat-sealable heat-sensitive film 9 was obtained.
  • An anti-diffuse reflection layer made of colloidal silica was formed on the protective layer.
  • a heat-sensitive recording layer was provided at an appropriate location in combination with the above-mentioned printed layer so that the printed portions were combined to form a single design.
  • the formation of the above-mentioned printing layer and the formation of the heat-sensitive recording layer were each carried out using a register mark using a general-purpose multicolor printing device.
  • thermosensitive film 9 When the obtained heat-sealable thermosensitive film 9 was printed with a thermal printer, it showed durability against high-temperature thermal printers. Furthermore, when this heat-sealable thermosensitive film 9 was bonded to a material to be sealed by heat, coloring of the heat-sensitive recording layer during bonding by heat was avoided. With the heat-sealable thermosensitive film 9, a heat-sealable thermosensitive film with a particularly large amount of information could be easily produced.
  • the haze value (%) of the portion of the heat-sealable heat-sensitive film 9 in which the heat-sensitive recording layer, intermediate layer, and protective layer are provided on the base material is 4.6 times or less than the haze value (%) of the base material. Met. Note that HAZE was measured in the same manner as in Example 3.
  • Example 10 Manufacture of base material with three-layer structure having a printed layer
  • a printing layer was printed on a part of one side of a 12 ⁇ m thick PET film.
  • An adhesive layer made of a modified alkyd resin was formed on the entire surface of the PET film on which the printed layer was formed.
  • a polypropylene film was adhered to the entire surface of the adhesive layer to form a layer having heat-sealability, thereby producing a three-layer base material having a printed layer.
  • thermosensitive film 10 Manufacture of heat-sealable thermosensitive film using three-layer base material
  • an anchor layer, a heat-sensitive recording layer, an intermediate layer, and a protective layer were formed on the side of the base material with the three-layer structure obtained above on which no other layer of PET film was formed.
  • a heat-sealable thermosensitive film 10 was obtained.
  • a thermosensitive recording layer was provided at an appropriate location in combination with the above-mentioned printed layer so that a printed part and a printed part were combined to form a single design.
  • the formation of the above-mentioned printing layer and the formation of the heat-sensitive recording layer were each carried out using a register mark using a general-purpose multicolor printing device.
  • thermosensitive film 10 When the obtained heat-sealable thermosensitive film 10 was printed with a thermal printer, it showed durability against high-temperature thermal printers. Furthermore, when this heat-sealable thermosensitive film 10 was bonded to a material to be sealed by heat, coloring of the heat-sensitive recording layer during bonding by heat was avoided. With the heat-sealable thermal film 10, a heat-sealable thermal film with a particularly large amount of information could be easily produced.
  • the haze value (%) of the portion of the heat-sealable thermosensitive film 10 in which the anchor layer, the heat-sensitive recording layer, the intermediate layer, and the protective layer are provided on the base material is 4.0% of the haze value (%) of the base material. It was less than 6 times. Note that HAZE was measured in the same manner as in Example 3.
  • Example 11 Manufacture of base material with four-layer structure having a printed layer
  • a functional coating layer composed of polyglycerin fatty acid ester was formed on the entire surface of the heat-sealable layer of the three-layer base material having a printed layer produced in Example 10, and a four-layer structure having a printed layer was obtained.
  • a base material was manufactured.
  • thermosensitive film 11 was obtained.
  • a thermosensitive recording layer was provided at an appropriate location in combination with the above-mentioned printed layer so that a printed part and a printed part were combined to form a single design.
  • the formation of the above-mentioned printing layer and the formation of the heat-sensitive recording layer were each carried out using a register mark using a general-purpose multicolor printing device.
  • thermosensitive film 11 When the obtained heat-sealable thermosensitive film 11 was printed with a thermal printer, it showed durability against high-temperature thermal printers. Further, when this heat-sealable thermosensitive film 11 was bonded to a material to be sealed by heat, coloring of the heat-sensitive recording layer during bonding by heat was avoided. With the heat-sealable thermosensitive film 11, a heat-sealable thermosensitive film with a particularly large amount of information could be easily produced.
  • the haze value (%) of the portion of the heat-sealable thermosensitive film 11 in which the anchor layer, the heat-sensitive recording layer, the intermediate layer, and the protective layer are provided on the base material is 4.0% of the haze value (%) of the base material. It was less than 6 times.
  • HAZE was measured in the same manner as in Example 3.
  • the protective layer in the heat-sealable thermosensitive film can be appropriately modified in various ways and is not essential.
  • the heat-sealable thermal film of the present invention avoids color development of the heat-sensitive recording layer during bonding by heat, and expands the range of selection of bonding temperature with the material to be sealed by heat and printing temperature, increasing versatility. Available as a heat-sealable thermal film for a wide selection of customer printing printers.
  • Base material 21 Layer with heat-sealability 22: Print layer 23: Adhesive layer 24: Layer without heat-sealability 25: Functional coating layer 4, 14: Heat-sensitive recording layer 6: Sealing material 10: A portion of the base material that is bonded to the material to be sealed by heat 12: A portion of the base material other than the portion that is bonded to the material to be sealed by heat 16: A portion where printing is planned 20: Protective layer 30: Anchor layer 40: Intermediate layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Laminated Bodies (AREA)
  • Heat Sensitive Colour Forming Recording (AREA)

Abstract

本発明のヒートシール可能な感熱フィルムでは、基材と感熱記録層とを有し、熱により被シール材に接合するヒートシール可能な感熱フィルムであって、該基材の、熱により被シール材に接合する箇所には該感熱記録層を設けず、該基材の、該熱により被シール材に接合する箇所以外の部分に該感熱記録層を設ける。

Description

ヒートシール可能な感熱フィルムおよびその製造方法
 本発明は、ヒートシール可能な感熱フィルムおよびその製造方法に関する。
 従来、樹脂フィルムを用いて、食品等の容器をヒートシールする包装材が知られている。特許文献1には、ヒートシール性を有する非結晶フィルムと、前記非結晶フィルムの少なくとも一方の面に、印刷層が形成された印刷領域と、印刷層が形成されていない非印刷領域とを有する、ヒートシール可能な感熱フィルムが記載されている。
 一方、食品等の容器用の包装材として、サーマルヘッド等の加熱によって感熱発色組成物が化学反応により発色し、記録画像が得られる感熱フィルムが知られている(例えば特許文献2参照)。この感熱フィルムをヒートシール可能な感熱フィルムとして用いる場合には、ヒートシール時の熱による上記感熱発色組成物の発色を防止することが必要になる。
特開2019-172276号公報 特開2002-362027号公報
 本発明は、このような実情に着目してなされたものであって、感熱フィルムをヒートシール可能な感熱フィルムとして用いる場合に、ヒートシール時の熱による上記感熱発色組成物の発色が防止されたヒートシール可能な感熱フィルムおよびその製造方法を提供することを目的とする。
 上記目的を達成するために、本発明では次のように構成している。
 本発明のヒートシール可能な感熱フィルムは、基材と感熱記録層とを有し、熱により被シール材に接合するヒートシール可能な感熱フィルムであって、該基材の、熱により被シール材に接合する箇所には該感熱記録層を設けず、該基材の、該熱により被シール材に接合する箇所以外の部分に該感熱記録層を設ける。
 以上のように構成されたヒートシール可能な感熱フィルムは、熱による接合時の感熱記録層の発色を回避し、熱による被シール材との接合温度と印字温度の選択の幅を広げる。これにより、汎用性が増加し、顧客の印字プリンターの選択の幅が広くなる。
 また、請求項2に記載のヒートシール可能な感熱フィルムは、前記感熱記録層を、印字を予定する一部分のみに設ける。
 以上のように構成されたヒートシール可能な感熱フィルムでは、ヒートシール可能な感熱フィルムの透明部分を最大限確保できる。これにより、容器等の被シール材内部の商品の視認性を向上できる。
 また、請求項3に記載のヒートシール可能な感熱フィルムは、前記基材の、前記感熱記録層を設けた側の表面の全面に、保護層を設ける。
 以上のように構成されたヒートシール可能な感熱フィルムでは、サーマルプリンターとヒートシールバーを保護できる。これにより、高温のサーマルプリンターに耐えるのみならず、ヒートシールバーも保護できる。
 また、請求項4に記載のヒートシール可能な感熱フィルムは、前記基材と前記感熱記録層とが接する部分、及び前記基材と前記保護層とが接する部分に、アンカー層を設ける。
 以上のように構成されたヒートシール可能な感熱フィルムは、基材と前記感熱記録層、基材と前記保護層との密着強度を向上する。
 また、請求項5に記載のヒートシール可能な感熱フィルムでは、前記保護層は、コロイダルシリカから成る乱反射防止層を有する。
 以上のように構成されたヒートシール可能な感熱フィルムでは、耐熱性と透明度が向上する。これにより、ヒートシール可能な感熱フィルムの耐熱性も具備させながら、容器等の被シール材内部の商品の視認性を向上できる。
 また、請求項6に記載のヒートシール可能な感熱フィルムでは、前記コロイダルシリカの粒径が、1.0μm以下である。
 以上のように構成されたヒートシール可能な感熱フィルムは、透明度がより向上する。これにより、容器等の被シール材内部の商品の視認性を向上できる。
 また、請求項7に記載のヒートシール可能な感熱フィルムでは、前記感熱記録層と前記保護層とを設けた部分のヘーズ値(%)が、前記基材のヘーズ値(%)の4.6倍以下である。
 以上のように構成されたヒートシール可能な感熱フィルムは、透明度がより向上する。これにより、容器等の被シール材内部の商品の視認性を向上できる。
 また、請求項8に記載のヒートシール可能な感熱フィルムでは、前記感熱記録層の発色温度が、熱により被シール材に接合する温度よりも高い。
 以上のように構成されたヒートシール可能な感熱フィルムは、熱による被シール材への接合時の、感熱記録層の発色を回避できる。
 また、請求項9に記載のヒートシール可能な感熱フィルムでは、前記基材が透明基材である。
 以上のように構成されたヒートシール可能な感熱フィルムは、透明度がより向上する。これにより、容器等の被シール材内部の商品の視認性を向上できる。
 また、請求項10に記載のヒートシール可能な感熱フィルムでは、前記基材に印刷層が形成されている。
 以上のように構成されたヒートシール可能な感熱フィルムは、情報量を増大出来る。
 また、請求項11に記載のヒートシール可能な感熱フィルムでは、印刷部分と印字部分とを組み合わせて一意匠を構成するように、前記感熱記録層を、前記印刷層と組み合わせた適宜の箇所に設ける。
 以上のように構成されたヒートシール可能な感熱フィルムは、情報量を増大出来る。
 また、本発明のヒートシール可能な感熱フィルムの製造方法(1)は、上記請求項1~11に記載のヒートシール可能な感熱フィルムの製造方法であって、基材の、熱により被シール材に接合する箇所以外の部分に感熱記録層を形成する感熱記録層形成工程を有する。
 以上のように構成されたヒートシール可能な感熱フィルムの製造方法では、熱による被シール材への接合時の感熱記録層の発色を回避し、熱による被シール材への接合温度と印字温度の選択の幅を広げ、汎用性が増加し、顧客の印字プリンターの選択の幅が広い、ヒートシール可能な感熱フィルムを製造できる。
 また、本発明のヒートシール可能な感熱フィルムの製造方法(2)は、請求項2に記載のヒートシール可能な感熱フィルムの製造方法であって、基材の、熱により被シール材に接合する箇所以外の部分であって、印字を予定する一部分のみに感熱記録層を形成する感熱記録層形成工程を有する。
 以上のように構成されたヒートシール可能な感熱フィルムの製造方法によれば、ヒートシール可能な感熱フィルムの透明部分を最大限確保でき、容器等の被シール材内部の商品の視認性を向上できるヒートシール可能な感熱フィルムを製造できる。
 また、請求項14に記載のヒートシール可能な感熱フィルムの製造方法では、前記感熱記録層形成工程を、見当マークを用いて行う。
 以上のように構成されたヒートシール可能な感熱フィルムの製造方法によれば、ヒートシール可能な感熱フィルムの透明部分を最大限確保でき、容器等の被シール材内部の商品の視認性を向上できるヒートシール可能な感熱フィルムを簡易に製造できる。
 また、本発明のヒートシール可能な感熱フィルムの製造方法(3)は、請求項4又は5に記載のヒートシール可能な感熱フィルムの製造方法であって、基材の全面にアンカー層を形成するアンカー層形成工程と、該アンカー層の基材との反対側の表面の、熱により被シール材へ接合する箇所以外の部分に感熱記録層を形成する感熱記録層形成工程と、該アンカー層の、該感熱記録層を形成した側の表面の全面に、保護層を形成する保護層形成工程とを有する。
 以上のように構成されたヒートシール可能な感熱フィルムの製造方法によれば、基材と前記感熱記録層、基材と前記保護層との密着強度が高く、高温のサーマルプリンターに耐えるのみならず、ヒートシールバーも保護できる、ヒートシール可能な感熱フィルムを製造できる。
 また、本発明のヒートシール可能な感熱フィルムの製造方法(4)は、請求項10に記載のヒートシール可能な感熱フィルムの製造方法であって、基材に印刷層を形成する印刷工程と、該印刷工程後に、該基材の、熱により被シール材に接合する箇所以外の部分であって、印刷部分と印字部分とを組み合わせて一意匠を構成するように該印刷層と組み合わせた適宜の部分に感熱記録層を形成する感熱記録層形成工程を有する。
 以上のように構成されたヒートシール可能な感熱フィルムの製造方法によれば、情報量の多いヒートシール可能な感熱フィルムを製造できる。
 また、請求項17に記載のヒートシール可能な感熱フィルムの製造方法では、前記印刷工程と前記感熱記録層形成工程とを、見当マークを用いて行う。
 以上のように構成されたヒートシール可能な感熱フィルムの製造方法によれば、情報量の多いヒートシール可能な感熱フィルムを簡易に製造できる。
 また、本発明のロール紙では、上記請求項1~11の何れかに記載のヒートシール可能な感熱フィルムが連続して形成されている。
 以上のように構成されたロール紙によれば、熱による接合時の感熱記録層の発色を回避し、熱による被シール材との接合温度と印字温度の選択の幅を広げる。これにより、汎用性が増加し、顧客の印字プリンターの選択の幅が広くなるヒートシール可能な感熱フィルムを提供できる。
 本発明によれば、熱による接合時の感熱記録層の発色を回避し、熱による被シール材との接合温度と印字温度の選択の幅を広げることが可能となり、これにより、汎用性が増加し、顧客の印字プリンターの選択の幅が広いヒートシール可能な感熱フィルム、およびその製造方法を提供できる。
本発明に係るヒートシール可能な感熱フィルムの一実施形態を上から見た状態の模式図である。 図1のA-A断面を模式的に表す図である。 本発明に係るヒートシール可能な感熱フィルムの、他の一実施形態の断面を模式的に表す図である。 本発明に係るヒートシール可能な感熱フィルムの、別の一実施形態の断面を模式的に表す図である。 本発明に係るヒートシール可能な感熱フィルムの、さらに別の一実施形態を上から見た状態の模式図である。 図5のB-B断面を模式的に表す図である。 本発明に係るヒートシール可能な感熱フィルムの、さらに別の一実施形態の断面を模式的に表す図である。 本発明に係るヒートシール可能な感熱フィルムの、さらに別の一実施形態の断面を模式的に表す図である。 本発明に係るヒートシール可能な感熱フィルムの製造方法の一実施形態における、多色刷り印刷装置で用いる見当マークを示す説明図である。 本発明に係るヒートシール可能な感熱フィルムの製造方法の他の一実施形態における、多色刷り印刷装置で用いる見当マークを示す説明図である。 一般的なヒートシール温度と印字温度とを示すグラフである。
 以下、本発明の実施形態を図面に基づいて詳細に説明する。
[ヒートシール可能な感熱フィルム]
 本発明のヒートシール可能な感熱フィルムは、熱により被シール材に接合するヒートシール可能な感熱フィルムであって、基材と感熱記録層とを有する。該基材の、熱により被シール材に接合する箇所には該感熱記録層を設けない。そして、該基材の、該熱により被シール材に接合する箇所以外の部分に該感熱記録層を設ける。本明細書では、ヒートシール可能な感熱フィルムを熱により被シール材に接合することを、ヒートシールと記載することがある。そして、ヒートシールする温度を、ヒートシール温度と記載することがある。また、感熱記録層において、サーマルヘッド等の加熱によって感熱発色組成物が化学反応により発色し、記録画像を得ることを、印字と記載する。そして、印字する温度を、印字温度と記載する。
 図11に、一般的なヒートシール温度と印字温度とを示す。図11に示すように、一般的に、ヒートシール温度と印字温度とは、重なりあう温度範囲がある場合が多い。このため、基材と感熱記録層とを有するヒートシール可能な感熱フィルムでは、ヒートシール時の感熱記録層の発色を回避する必要がある。
実施形態1
 図1と、そのA-A断面を模式的に表す図2に、本発明に係るヒートシール可能な感熱フィルムの一実施形態を模式的に示す。2は基材であり、4は感熱記録層である。6は、ヒートシール可能な感熱フィルムが熱により接合する被シール材であり、図1ではヒートシール可能な感熱フィルムの下部に存在している。基材2は、ヒートシール性を有する層21(ここではヒートシール性を有するフィルムを使用)からなる。基材2と感熱記録層4とを有するヒートシール可能な感熱フィルムは、熱により被シール材6に接合する箇所10において、被シール材6にヒートシールされる。該基材2の、該箇所10には該感熱記録層4を設けず、該箇所10以外の部分12に該感熱記録層4を設ける。このため、実施形態1のヒートシール可能な感熱フィルムでは、ヒートシールバーによるヒートシール時に感熱記録層4に熱が加わらないため、ヒートシール温度を印字温度と関係なく自由に設定できる。そして、印字温度がヒートシール温度よりも低い場合であっても、感熱記録層4の発色を回避できる。これにより、汎用性が増加し、顧客の印字プリンターの選択の幅を広くできる。感熱記録層4は、上記箇所10以外の部分12の全面に設けても良く、一部に設けても良い。
実施形態2
 図3に、本発明に係るヒートシール可能な感熱フィルムの他の一実施形態を模式的に表す。図1、2と同じ参照符号は、同じものを示す。実施形態2のヒートシール可能な感熱フィルムでは、感熱記録層4を設けた側の表面の全面に、保護層20が設けられている。保護層20を設けることにより、高温のサーマルプリンターに耐えるのみならず、ヒートシールバーからも保護できる。また、サーマルプリンターとヒートシールバーを保護できる。
実施形態3
 図4に、本発明に係るヒートシール可能な感熱フィルムの別の一実施形態を模式的に表す。図1~3と同じ参照符号は、同じものを示す。実施形態3のヒートシール可能な感熱フィルムでは、図3に示す実施形態2において、基材2と感熱記録層4とが接する部分、及び基材2と保護層20とが接する部分の間に、アンカー層30が設けられている。アンカー層30を設けることにより、基材2と感熱記録層4との密着強度、及び基材2と保護層20との密着強度を共に向上できる。
実施形態4
 図5と、そのB-B断面を模式的に表す図6に、本発明に係るヒートシール可能な感熱フィルムのさらに別の一実施形態を模式的に表す。図1~4と同じ参照符号は、同じものを示す。実施形態4のヒートシール可能な感熱フィルムでは、感熱記録層14が、基材2の熱により被シール材6に接合する箇所10以外の部分12の、印字を予定する一部分16のみに設けられている。このため、ヒートシール可能な感熱フィルムの透明部分を最大限確保できる。これにより、容器等の被シール材内部の商品の視認性を向上できる。実施形態4のヒートシール可能な感熱フィルムでは、保護層20と感熱記録層14との間、及び、保護層20とアンカー層30との間に、さらに中間層40が設けられている。中間層40により、水や油に対するバリアー性を向上できる。
 また、実施形態4のヒートシール可能な感熱フィルムでは、基材2は印刷層22を有している。印刷層22は、ヒートシール性を有する層21(ここではヒートシール性を有するフィルムを使用)の、感熱記録層14が設けられている方の表面に設けられている。基材2が印刷層22を有していることにより、ヒートシール可能な感熱フィルムの情報量を増大できる。感熱記録層14は、印刷部分と印字部分とを組み合わせて一意匠を構成するように、印刷層22と組み合わせた適宜の箇所に設けられていてもよい。なお、実施形態4のヒートシール可能な感熱フィルムでは、ヒートシール性を有するフィルムは、フィルム片面のみにヒートシール性があるものを使用し、印刷層22は、ヒートシール性がない方の面に設けることが好ましい。
実施形態5
 図7に、本発明に係るヒートシール可能な感熱フィルムのさらに別の一実施形態を模式的に表す。図5、6と同じ参照符号は、同じものを示す。実施形態5のヒートシール可能な感熱フィルムでは、基材2は、ヒートシール性を有しないフィルム24とヒートシール性を有する層21、及び接着層23とからなる複層構造である。この場合、印刷層22は、ヒートシール性を有しないフィルム24に設け、ヒートシール性を有しないフィルム24と、接着剤層23との間に挟まれ、さらにヒートシール性を有する層21に覆われた構造である。
実施形態6
 図8に、本発明に係るヒートシール可能な感熱フィルムのさらに別の一実施形態を模式的に表す。図7と同じ参照符号は、同じものを示す。実施形態6のヒートシール可能な感熱フィルムでは、基材2は、さらに機能性塗料層25を有している。機能性塗料層を有することにより、防曇性と静電気発生を抑制する効果が得られる。
<基材>
 上記基材としては、ヒートシール性を有する素材であればよく、例えば、ヒートシール性を有する非結晶フィルムが挙げられる。上記基材は、透明であることが好ましい。このようにすることにより、包装する容器内の視認性をより高めることができる。
 上記非結晶フィルムは、任意の適切な樹脂で構成でき、代表的には非晶質成分を含む。非結晶フィルムを構成する樹脂中の非晶質成分量は、好ましくは12モル%以上であり、より好ましくは13モル%以上であり、さらに好ましくは14モル%以上である。非晶質成分量の上限は、好ましくは30モル%であり、より好ましくは29モル%であり、さらに好ましくは28モル% である。これにより、非結晶フィルムにヒートシール性が付与され得る。
 上記ヒートシール性を有する非結晶フィルムに使用される樹脂としては、ポリエステル系樹脂等が挙げられる。ポリエステル系樹脂は、主成分としてのエチレンテレフタレートユニットと、非晶質成分となりうる1種以上のモノマー成分と、を含む。非晶質成分となりうるカルボン酸成分のモノマーとしては、例えばイソフタル酸、1,4-シクロヘキサンジカルボン酸、2,6-ナフタレンジカルボン酸が挙げられる。非晶質成分となりうるジオール成分のモノマーとしては、例えばネオペンチルグリコール、1,4-シクロヘキサンジメタノール、2,2-ジエチル-1,3-プロパンジオール、2-n-ブチル-2-エチル-1,3-プロパンジオール、2,2-イソプロピル-1,3-プロパンジオール、2,2-ジ-n-ブチル-1,3-プロパンジオール、ヘキサンジオールが挙げられる。なかでも、イソフタル酸、ネオペンチルグリコール、1,4-シクロヘキサンジメタノールが好ましい。また、ポリエステル系樹脂を構成する他のジカルボン酸成分および/またはジオール成分が含まれていてもよい。上記他のジカルボン酸成分としては、オルトフタル酸等の芳香族ジカルボン酸、アジピン酸、アゼライン酸、セバシン酸、デカンジカルボン酸等の脂肪族ジカルボン酸、および脂環式ジカルボン酸等が挙げられ、上記他のジオール成分としては、ジエチレングリコールや1,4-ブタンジオール等の長鎖ジオール、ヘキサンジオール等の脂肪族ジオール、ビスフェノールA等の芳香族系ジオール等が挙げられる。
 上記基材は、上記の樹脂に加えて、各種の添加剤を含んでいても良い。添加剤としては、例えば、ワックス類、酸化防止剤、帯電防止剤、結晶核剤、減粘剤、熱安定剤、着色用顔料、着色防止剤、紫外線吸収剤などが挙げられる。また、フィルムのすべり性を良好にする滑剤として微粒子を添加してもよい。上記微粒子としては、例えば、シリカ、アルミナ、二酸化チタン、炭酸カルシウム、カオリン、硫酸バリウムなどの無機系微粒子、および、アクリル系樹脂粒子、メラミン樹脂粒子、シリコーン樹脂粒子、架橋ポリスチレン粒子などの有機系微粒子が挙げられる。
 上記基材は、上述の構成材料を押出機により溶融押し出しして未延伸のフィルムを形成し、必要に応じて、任意の適切な延伸条件(延伸温度、延伸倍率、延伸方向)で延伸して製造できる。フィルムは無延伸であってもよいが、フィルム強度や生産性の観点からは二軸延伸により得られたフィルムが好ましい。ポリエステル系樹脂を含んで構成される非結晶フィルムは、非晶質成分となり得るモノマーを適量含有するように、ジカルボン酸成分とジオール成分の種類と量を選定して重縮合させることで製造できる。
 上記基材の厚みは、例えば10μm~200μmであることが好ましく、より好ましくは15μm~100μm、さらに好ましくは20μm~70μmである。
 上記基材は、また、上記ヒートシール性を有しない素材(フィルム)に、接着剤層(例えば、変性アルキド樹脂)を使用してヒートシール性を有する素材(フィルム)を積層したものであっても良い。積層する素材はヒートシール性を有する物質であれば良く、例えば、LDPE(低密度ポリエチレン)、HDPE(高密度ポリエチレン)、CPP(無延伸ポリプロピレン)、OPP(二軸延伸ポリプロピレン)、EVA(エチレン酢酸ビニル共重合体)等のフィルムが好適に用いられるが、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂;エチレン-酢酸ビニル共重合体などの酢酸ビニル系樹脂(オレフィン-酢酸ビニル共重合体など);エチレン-(メタ)アクリル酸共重合体、アイオノマーなどのアクリル系樹脂[オレフィン-(メタ)アクリル酸共重合体、またはその金属架橋物など]などを用いても良い。また、公知のヒートシール性接着剤を用いて形成してもよい。なお、容器等の被シール材内部の商品の視認性を向上させるため、形成後に透明となる部材を用いることが好ましい。また、透明性やシール強度などの観点から、上記ヒートシート性を有する素材の厚みは、好ましくは1~50μm、より好ましくは10~30μmとすることができる。さらに、上記ヒートシート性を有する素材の上に機能性塗料(例えば、ポリグリセリン脂肪酸エステルなどの界面活性剤)からなる機能性塗料層を積層したものも好適に使用できる。
 基材としては、上記ヒートシール性を有しない素材に、接着剤層、ヒートシール性を有する素材層がこの順に積層された3層構造のものが好ましく、さらにヒートシール性を有する素材上に機能性塗料層が積層された4層構造のものがより好ましい。これらの基材では、保護層を塗布形成した場合にヘーズ(HAZE)の増加が抑制され、透明性に優れたフィルムを形成できる。ヘーズは、JIS K7361-1,K7136,K7105およびASTM D1003,ISO13468,IS14782に準拠し、日本電色工業製Haze mater NDH 7000を使用して測定できる。
 以下の表1に示すように、ヒートシール性を有しない素材、接着層AまたはB、シーラント層AまたはB、及び機能性塗料層AまたはBからなる4層構造の基材;ヒートシール性を有しない素材、接着層A、及びシーラント層Aからなる3層構造の基材;及び、ヒートシールフィルムAまたはBからなる基材について、保護層A~Cの何れかをそれぞれ塗布形成した場合の、ヘーズの増加の抑制、及び、視認性について確認した。この結果、以下の表1に示すように良好な結果が得られた。なお、ヘーズについては上記方法で測定し、視認性については以下の評価基準による官能試験により評価した。
  ◎:問題なく視認できる。
  ○:視認できるが少し曇って見える。
  △:視認できるが曇って見える。
Figure JPOXMLDOC01-appb-T000001
<感熱記録層>
 上記感熱記録層は加熱により発色する発色材料を含む。上記発色材料としては、加熱により発色可能である限り特に制限されず、単独で発色可能な染料を使用してもよく、透明または淡色の染料(ロイコ染料)と、この染料を加熱により発色させることができる顕色剤とを組み合わせて使用してもよい。ロイコ染料と顕色剤とを組み合わせた発色材料は、一般的な感熱記録紙などでも使用されており、入手し易く、汎用性が高い。上記感熱記録層の発色温度(印字温度)は、熱により被シール材に接合する温度(ヒートシール温度)よりも高いことが好ましく、上記ヒートシール温度よりも10℃以上高いことがより好ましい。
 ロイコ染料としては、公知のものが使用でき、例えば、トリフェニルメタンフタリド系、トリアリルメタン系、フルオラン系、フェノチジアン系、チオフルオラン系、キサンテン系、インドフタリル系、スピロピラン系、アザフタリド系、クロメノピラゾール系、メチン系、ローダミンアニリノラクタム系、ローダミンラクタム系、キナゾリン系、ジアザキサンテン系、ビスラクトン系などの各種のロイコ染料が挙げられる。ロイコ染料は、一種を単独で使用してもよいが、二種以上を組み合わせて使用することで、所望の色の印字を行うことができる。
 顕色剤としては、酸性物質などの電子受容体が使用できる。顕色剤は、ロイコ染料の種類に応じて、適宜選択でき、公知のものが使用できる。顕色剤としては、例えば、安息香酸等の有機酸、サリチル酸亜鉛等の有機酸の金属塩系化合物、p-オクチルフェノール等のフェノール系、4-4’チオビス(6-t-ブチル-2-メチルフェノール)等のチオフェノール系化合物、N-N’-ジフェニルチオ尿素等のチオ尿素誘導体、3,3’-ジアリル-4,4’-ジヒドロキシジフェニルスルホン等のジフェニルスルホン系化合物が例示できる。これらの顕色剤は、一種を単独でまたは二種以上を組み合わせて使用できる。
 さらに、感熱記録層は、必要に応じて、充填剤、結着剤、及び滑剤などの他の材料を含んでいてもよい。感熱記録層に含まれ得る材料の詳細は、例えば、国際公開第2015/072411号パンフレットに記載されている。当該パンフレットは、その全体の記載が本明細書に参考として援用される。
 上記の充填剤としては、例えば、カオリン、炭酸カルシウムなどを挙げることができ、それらの粒子径は、1.0μm以下であるのが好ましい。
 上記の結着剤としては、例えば、スチレン-ブタジエン共重合体などを挙げることができる。
 上記の滑剤としては、ポリエチレン、ステアリン酸亜鉛、パラフィンなどを挙げることができ、それらの粒子径は、0.5μm以下であるのが好ましい。
 透明性を向上させるためには、パラフィンを含有させるのが特に有効であり、このパラフィンは、感熱記録層の発色温度未満、好ましくは80℃未満、より好ましくは、50℃未満の低融点のパラフィンであるのが好ましい。
 この低融点のパラフィンの粒子径は、0.5μm以下であるのが好ましい。このパラフィンの含有量は、乾燥重量で、例えば、0.1~1.0g/mであるのが好ましい。
 このように低融点のパラフィンを含有させることによって、感熱層形成用の塗液を、基材上に塗布し、乾燥する際に、パラフィンが溶融し、感熱記録層を構成する粒子の表面の凹凸等の隙間に入り込んで、隙間を埋めることになり、これによって、粒子表面の乱反射を抑制して透明性をより向上させることができる。
<保護層>
 保護層は、上記基材や感熱記録層の表面の凹凸や硬度の高い材料を保護してサーマルヘッドとの摩擦を抑制し、サーマルヘッドの摩耗を抑制する。また、好ましくは、サーマルヘッドに対する感熱フィルムのマッチング性を向上させて、感熱記録層の発色が順調に行われるようにする。保護層には、結着剤中に充填剤、滑剤、架橋剤などを添加することが好ましい。
 結着剤である樹脂としては、例えば、アクリル樹脂、などが挙げられる。
 滑剤としては、例えば、ポリエチレン、ステアリン酸亜鉛などが挙げられる。
 架橋剤としては、例えば、炭酸ジルコニウムなどが挙げられる。
 充填剤としては、コロイダルシリカ、炭酸カルシウム、ポリメチルメタクリレート(PMMA)、ポリスチレン(PS)などが挙げられる。
 これら充填剤の粒子径は、1.0μm以下であるのが好ましい。
 保護層は、コロイダルシリカから成る乱反射防止層を有していてもよい。該コロイダルシリカの粒径は、1.0μm以下であることが好ましい。このように構成することで、ヒートシール可能な感熱フィルムの耐熱性と共に透明度を向上できる。これにより、ヒートシール可能な感熱フィルムの耐熱性も具備させながら、容器等の被シール材内部の商品の視認性を向上できる。
<アンカー層>
 上記アンカー層に内包される物質は、アンカー層の上層または下層にどのような機能を持たせるかにより、適宜、決定できる。上記アンカー層は、基材と感熱記録層との密着強度、及び基材と保護層との密着強度を共に向上させるものであるのが好ましい。この場合、例えば、スチレン-アクリル共重合樹脂であるのが好ましい。
 通常、アンカー層は基材との密着と感熱記録層との密着という役割があるが、保護層を形成しても密着強度が低下しないことも重要となる。特に、感熱記録層を、印字を予定する一部分のみに設けるパターン塗工で形成する場合には、通常時と比較して、保護層との密着の役割がより重要になる。アンカー層を設けることにより、基材と保護層の密着強度がより高くなるため、好ましい。アンカー層を設けない場合には、基材と感熱記録層との密着強度に問題が無くても、保護層を塗工した時に密着強度が低くなる場合がある。本願発明では、基材、感熱記録層、保護層の3層と密着するアンカー層を設けることが好ましい。
<印刷層>
 上記印刷層は、代表的には、印刷層を構成する材料を、例えば上記実施形態4~6で示した、基材の適宜の場所に印刷することにより形成できる。具体的には、上記実施形態4では、フィルム片面にヒートシール性を有するフィルムの、ヒートシール性を有しない方であって感熱記録層を設ける側の表面に、印刷層を印刷する。また、上記実施形態5、6では、ヒートシール性を有しないフィルム上に印刷層を印刷する。そして、これらの印刷層は印字不良発生防止の観点から、中間層や保護層等で覆うことが好ましい。
 上記印刷層を構成する材料としては、例えば、染料、顔料、金属、バインダー成分の材料、溶媒、他の成分などを含む塗工液が挙げられる。また、上記材料は金属を含んでいてもよく、金属を基材の表面に蒸着することにより印刷層を形成してもよい。金属の種類も特に限定されず、例えば、アルミニウム、アルミニウム合金、銅、銅合金(銅-ニッケル合金、銅-亜鉛合金など)、銀、銀合金などを使用することができる。金属の形態は、金属粉末、金属フレーク、および金属繊維などいずれの形態であっても良い。これらの金属を含有する印刷層は、意匠性に優れるとともに、遮光性にも優れている。
 上記材料を基材の表面に印刷する方法は、ヒートシール可能な感熱フィルムの用途や基材との相性に応じて、任意の適切な方法を採用することができ、例えば、グラビア印刷、オフセット印刷、凸輪転印刷、UV印刷、シルクスクリーン印刷等が挙げられる。
<中間層>
 本発明のヒートシール可能な感熱フィルムにおいて、上記感熱記録層と上記保護層との間に、水や油に対するバリアー性を有する中間層を設けてもよい。
 中間層は、主に、樹脂によって形成されている。この中間層の樹脂としては、例えば、アクリル樹脂のエマルション、ポリビニルアルコール(PVA)樹脂等の水溶性樹脂、SBR樹脂などが挙げられる。
 透明性を向上させるためには、上記樹脂は、水溶性部分を有する樹脂、例えば、親水性構造単位としてヒドロキシ基を有する樹脂であるポリビニルアルコール(PVA)樹脂、あるいは、疎水性のコア粒子を、水溶性のシェルポリマーでコーティングしたコア-シェル構造の樹脂、例えば、コア-シェル型アクリル樹脂などが好ましい。
 水溶性のポリビニルアルコール(PVA)やコア-シェル型のアクリル樹脂は、成膜性が良好であり、感熱記録層上に、中間層形成用の塗液を塗布して乾燥する際に、水溶性部分を有する樹脂が、感熱記録層へ染み込んで平滑な中間層が形成されるので、感熱記録層での乱反射が抑制されて透明性がより向上する。
 コア-シェル型の樹脂は、従来公知であり、例えば、コア-シェル型アクリル樹脂として、バリアスター(三井化学社製)の名称で市販されているものなどを挙げることができる。
<ヘーズ値(%)>
 上記ヒートシール可能な感熱フィルムの上記感熱記録層と上記保護層とを設けた部分のヘーズ値(%)は、上記基材のヘーズ値(%)の4.6倍以下であることが好ましく、2.2倍以下であることがより好ましい。このような場合に、ヒートシール可能な感熱フィルムの透明度を大きく損なうことなく、容器等の被シール材内部の商品の視認性が高いヒートシール可能な感熱フィルムを提供できる。従来の感熱記録層では透明度が低い場合が多いが、本発明のヒートシール可能な感熱フィルムでは、好ましくは、基材に上記感熱記録層と上記保護層を設けることによりヘーズ値(%)の上昇を抑え、透明性を担保できる。
<ヒートシール性>
 上記ヒートシール可能な感熱フィルムのヒートシール性としては、例えば、2枚のトップシールフィルムを温度160℃、シールバー圧力2MPa、シール時間2秒でヒートシールした際のヒートシール強度が0.5N/15mm以上であることが好ましい。このようなヒートシール強度を有することにより、トップシールフィルムは、より好適に、開口部を有する容器の開口部を、ヒートシールによりトップシールできる。上記ヒートシール強度は、より好ましくは1.0N/15mm以上であり、さらに好ましくは2.0N/15mm以上であり、よりさらに好ましくは2.5N/15mm以上であり、特に好ましくは3.0N/15mm以上である。上記ヒートシール強度は大きいことが好ましいが、実用的には、2.5N/15mm以下であることが好ましい。
 本発明のヒートシール可能な感熱フィルムによれば、熱による接合時の感熱記録層の発色を回避し、熱による被シール材との接合温度と印字温度の選択の幅を広げることができる。これにより、汎用性が増加し、顧客の印字プリンターの選択の幅が広くなる。
[ヒートシール可能な感熱フィルムの製造方法]
・ヒートシール可能な感熱フィルムの製造方法(1)
 本発明のヒートシール可能な感熱フィルムの製造方法(1)では、基材の、熱により被シール材に接合する箇所以外の部分に感熱記録層を形成する感熱記録層形成工程を有する。上記感熱記録層形成工程においては、上記基材上に、上記感熱記録層形成用塗料を部分的に塗布して、上記感熱記録層を形成することが好ましい。本発明のヒートシール可能な感熱フィルムの製造方法(1)によれば、熱による被シール材への接合時の感熱記録層の発色を回避し、熱による被シール材への接合温度と印字温度の選択の幅を広げ、汎用性が増加し、顧客の印字プリンターの選択の幅が広い、ヒートシール可能な感熱フィルムを製造できる。
・ヒートシール可能な感熱フィルムの製造方法(2)
 本発明のヒートシール可能な感熱フィルムの製造方法(2)は、基材の、熱により被シール材に接合する箇所以外の部分であって、印字を予定する一部分のみに感熱記録層を形成する感熱記録層形成工程を有する。上記感熱記録層形成工程においては、上記基材上に、上記感熱記録層形成用塗料を、印字を予定する一部分のみに塗布して、上記感熱記録層を形成することが好ましい。本発明のヒートシール可能な感熱フィルムの製造方法(2)によれば、熱による被シール材への接合時の感熱記録層の発色を回避し、熱による被シール材への接合温度と印字温度の選択の幅を広げ、汎用性が増加し、顧客の印字プリンターの選択の幅が広い、ヒートシール可能な感熱フィルムを製造できると共に、ヒートシール可能な感熱フィルムの透明部分を最大限確保でき、容器等の被シール材内部の商品の視認性を向上できるヒートシール可能な感熱フィルムを製造できる。
 上記感熱記録層形成工程は、見当マークを用いて行うことが好ましい。見当マークを用いた感熱記録層の形成は、汎用の多色刷り印刷装置にて行うことができる。具体的には例えば図9に示すように、事前に印刷基板Wの送り方向(図9の矢印方向)に沿って縦方向に一定の距離Dで並ぶように付けられた見当マーク50a、50b、50c、50dを、不図示の見当合わせ手段で読みながら、それぞれの見当マーク50a、50b、50c、50d間の位置から巾方向に一定の距離が離れた位置に感熱記録層を形成することで見当合わせを行う。このように、見当マークを用いて感熱記録層の形成を行うことにより、印字を予定する一部分16のみに感熱記録層14を形成したヒートシール可能な感熱フィルムを、簡易に製造できる。
・ヒートシール可能な感熱フィルムの製造方法(3)
 本発明のヒートシール可能な感熱フィルムの製造方法(3)は、
(i)基材の全面にアンカー層を形成するアンカー層形成工程と、
(ii)該アンカー層の基材との反対側の表面の、熱により被シール材へ接合する箇所以外の部分に感熱記録層を形成する感熱記録層形成工程と、
(iii)該アンカー層の、該感熱記録層を形成した側の表面の全面に、保護層を形成する保護層形成工程とを有する。
 アンカー層、感熱記録層、及び保護層の形成は、それぞれアンカー層形成用塗料、感熱記録層形成用塗料、及び保護層形成用塗料を塗布して形成できる。
 感熱記録層上に中間層を設ける場合には、上記感熱記録層形成工程後に、該感熱記録層を形成した側の表面の全面に中間層形成用の塗液を塗布して乾燥して中間層を形成した後、保護層形成工程において、中間層上に、保護層形成用塗料を塗布して保護層を形成する。
 本発明のヒートシール可能な感熱フィルムの製造方法(3)では、基材と前記感熱記録層、基材と前記保護層との間にアンカー層が形成される。このため、アンカー層の材質を適宜選択することにより、基材と感熱記録層、基材と保護層との密着強度が高く、高温のサーマルプリンターに耐えるのみならず、ヒートシールバーも保護できる、ヒートシール可能な感熱フィルムを製造できる。
・ヒートシール可能な感熱フィルムの製造方法(4)
 本発明のヒートシール可能な感熱フィルムの製造方法(4)は、基材に印刷層を形成する印刷工程と、該印刷工程後に、該基材の、熱により被シール材に接合する箇所以外の部分であって、印刷部分と印字部分とを組み合わせて一意匠を構成するように該印刷層と組み合わせた適宜の部分に感熱記録層を形成する感熱記録層形成工程とを有する。本発明のヒートシール可能な感熱フィルムの製造方法(4)によれば、情報量の多いヒートシール可能な感熱フィルムを製造できる。
 上記印刷工程と上記感熱記録層形成工程は、見当マークを用いて行うことが好ましい。見当マークを用いた感熱記録層の形成は、汎用の多色刷り印刷装置にて行うことができる。具体的には例えば図10に示すように、印刷基板Wの送り方向(図10の矢印方向)に沿って一定の距離Dで縦方向に並ぶように付けられた見当マーク50a、50b、50c、50dを、不図示の見当合わせ手段で読みながら、それぞれの見当マーク50a、50b、50c、50d間の位置から巾方向に一定の距離が離れた位置に感熱記録層を形成することで見当合わせを行う。このように、見当マークを用いて印刷層と感熱記録層の形成を行うことにより、印刷部分と印字部分とを組み合わせて一意匠を構成するように該印刷層22と組み合わせた適宜の部分に感熱記録層14を形成したヒートシール可能な感熱フィルムを、簡易に製造できる。
[ロール紙]
 本発明のロール紙は、本発明のヒートシール可能な感熱フィルムが連続して形成されている。このロール紙によれば、熱による接合時の感熱記録層の発色を回避し、熱による被シール材との接合温度と印字温度の選択の幅を広げることにより、汎用性が増加し、顧客の印字プリンターの選択の幅が広くなる。
 以下に、実施例に基づいて、本発明について、更に詳細に説明する。なお、以下において、部は質量部を意味する。
実施例1
 基材として、ヒートシール性を有する透明の非結晶フィルム#30(厚さ30μm)を使用した。この基材上に、加熱により発色する発色剤、顕色剤、充填剤、結着剤、及び滑剤などを含む感熱記録層形成用の塗液を、上記図2で示すように、基材の、熱により被シール材に接合する箇所(10)以外の部分に、塗布量が乾燥重量で4.0g/mとなるように塗布・乾燥を行って感熱記録層を形成し、ヒートシール可能な感熱フィルム1を得た。感熱記録層の形成は、汎用の多色刷り印刷装置にて見当マークを用いて行った。
 このヒートシール可能な感熱フィルム1を、熱により被シール材に接合したところ、熱による接合時の感熱記録層の発色は回避されていた。感熱記録層の発色温度は130℃、ヒートシール温度は150℃であった。
実施例2
 実施例1における感熱記録層の形成を、実施例1よりも狭い範囲の、印字を予定する一部分のみに行った以外は、実施例1と同様にして、ヒートシール可能な感熱フィルム2を得た。このヒートシール可能な感熱フィルム2にサーマルプリンターで印字したところ、高温のサーマルプリンターに耐久性を示した。さらに、このヒートシール可能な感熱フィルム2を、熱により被シール材に接合したところ、熱による接合時の感熱記録層の発色は回避されていた。
実施例3
 実施例1で得られたヒートシール可能な感熱フィルム1の感熱記録層上ならびに感熱記録層が形成されていない基材層上の全面に、ポリエチレン11部、ステアリン酸亜鉛4部、アクリル46部、炭酸Zr6部、コロイダルシリカ(粒径:1.0μm以下)43部からなる保護層形成用の塗料を、塗布量が乾燥重量で4.0g/mとなるように塗布した後、乾燥を行って保護層を形成し、ヒートシール可能な感熱フィルム3を得た。保護層には、粒径1.0μm以下のコロイダルシリカから成る乱反射防止層が形成されていた。
 得られたヒートシール可能な感熱フィルム3にサーマルプリンターで印字したところ、高温のサーマルプリンターに耐久性を示した。さらに、このヒートシール可能な感熱フィルム3を、熱により被シール材に接合したところ、熱による接合時の感熱記録層の発色は回避されており、また、ヒートシールバーも保護されていた。
 また、ヒートシール可能な感熱フィルム3の、基材に感熱記録層と保護層とを設けた部分のヘーズ値(%)は、基材のヘーズ値(%)の約4倍であった。なお、HAZEは、JIS K7361-1,K7136,K7105およびASTM D1003,ISO13468,IS14782に準拠し、日本電色工業製Haze mater NDH 7000を使用して測定した。
実施例4
 実施例2で得られたヒートシール可能な感熱フィルム2の感熱記録層上ならびに感熱記録層が形成されていない基材層上の全面に、実施例3と同様にして保護層を形成し、ヒートシール可能な感熱フィルム4を得た。保護層には、粒径1.0μm以下のコロイダルシリカから成る乱反射防止層が形成されていた。
 得られたヒートシール可能な感熱フィルム4にサーマルプリンターで印字したところ、高温のサーマルプリンターに耐久性を示した。さらに、このヒートシール可能な感熱フィルム4を、熱により被シール材に接合したところ、熱による接合時の感熱記録層の発色は回避されており、また、ヒートシールバーも保護されていた。
 また、ヒートシール可能な感熱フィルム4について、基材に感熱記録層と保護層とを設けた部分のヘーズ値(%)を、実施例3と同様に測定したところ、基材に感熱記録層と保護層とを設けた部分のヘーズ値(%)は、基材のヘーズ値(%)の約4倍であった。
実施例5
 基材として、実施例1で用いたのと同じものを使用し、上記基材上の全面に、アクリル酸樹脂で構成されたアンカー層形成用の塗料を、塗布量が、乾燥重量で2.0g/mとなるように塗布した後、乾燥を行って、基材上にアンカー層を形成した。上記アンカー層上に、実施例1と同様にして感熱記録層を形成した。
 上記感熱記録層上ならびに感熱記録層が形成されていないアンカー層上の全面に、実施例3と同様にして保護層を形成し、ヒートシール可能な感熱フィルム5を得た。保護層には、粒径1.0μm以下のコロイダルシリカから成る乱反射防止層が形成されていた。
 得られたヒートシール可能な感熱フィルム5にサーマルプリンターで印字したところ、高温のサーマルプリンターに耐久性を示した。さらに、このヒートシール可能な感熱フィルム5を、熱により被シール材に接合したところ、熱による接合時の感熱記録層の発色は回避されており、また、ヒートシールバーも保護されていた。
 また、ヒートシール可能な感熱フィルム5について、基材にアンカー層と感熱記録層と保護層とを設けた部分のヘーズ値(%)を、実施例3と同様に測定したところ、基材にアンカー層と感熱記録層と保護層とを設けた部分のヘーズ値(%)は、基材のヘーズ値(%)の約4倍であった。
実施例6
 基材として、実施例2で用いたのと同じものを使用し、上記基材上の全面に、実施例5と同様にアンカー層を形成した。上記アンカー層上に、実施例2と同様にして感熱記録層を形成した。
 上記感熱記録層上ならびに感熱記録層が形成されていないアンカー層上の全面に、実施例3と同様にして保護層を形成し、ヒートシール可能な感熱フィルム6を得た。保護層には、粒径1.0μm以下のコロイダルシリカから成る乱反射防止層が形成されていた。
 得られたヒートシール可能な感熱フィルム6にサーマルプリンターで印字したところ、高温のサーマルプリンターに耐久性を示した。さらに、このヒートシール可能な感熱フィルム6を、熱により被シール材に接合したところ、熱による接合時の感熱記録層の発色は回避されており、また、ヒートシールバーも保護されていた。
 また、ヒートシール可能な感熱フィルム6について、基材にアンカー層と感熱記録層と保護層とを設けた部分のヘーズ値(%)を、実施例3と同様に測定したところ、基材にアンカー層と感熱記録層と保護層とを設けた部分のヘーズ値(%)は、基材のヘーズ値(%)の約4倍であった。
 実施例3~6で得られたヒートシール可能な感熱フィルム3~6について、各層間の密着性を、セロハンテープ(登録商標)を貼り付けて剥がした時の剥がれ度合いで、以下の基準でそれぞれ評価した。結果を表2に示す。
  ◎:剥がれ無し
  ○:剥がれほとんど無し
  △:剥がれ少しあり
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、実施例5、6で得られたヒートシール可能な感熱フィルム5、6では、アンカー層を設けることにより、ヒートシール可能な感熱フィルムにおける各層間の密着強度がより高くなった。
実施例7
 基材として、PET#12(厚み12μm)/接着剤層/シーラント層#30(ヒートシール性を有する層、厚み30μm)/機能性塗料層からなる4層構造のものを用い、上記PETフィルムの他層を形成していない側の全面に、実施例5と同様にしてアンカー層と感熱記録層と保護層とを設け、ヒートシール可能な感熱フィルム7を得た。なお、接着剤層は変性アルキド樹脂、ヒートシール性を有する層はポリプロピレンフィルム、機能性塗料層はポリグリセリン脂肪酸エステルで構成した。保護層には、粒径1.0μm以下のコロイダルシリカから成る乱反射防止層が形成されていた。
 得られたヒートシール可能な感熱フィルム7にサーマルプリンターで印字したところ、高温のサーマルプリンターに耐久性を示した。さらに、このヒートシール可能な感熱フィルム7を、熱により被シール材に接合したところ、熱による接合時の感熱記録層の発色は回避されており、また、ヒートシールバーも保護されていた。感熱記録層の発色温度は170℃、ヒートシール温度は165℃であった。
 また、ヒートシール可能な感熱フィルム7の、基材にアンカー層と感熱記録層と保護層とを設けた部分のヘーズ値(%)は、基材のヘーズ値(%)の2.2倍以下であった。なお、HAZEは、実施例3と同様に測定した。
実施例8
 基材として、実施例7と同じPET#12(厚み12μm)/接着剤層/シーラント層#30(ヒートシール性を有する層、厚み30μm)/機能性塗料層からなる4層構造のものを用いた以外は実施例6と同様にして、ヒートシール可能な感熱フィルム8を得た。
 得られたヒートシール可能な感熱フィルム8にサーマルプリンターで印字したところ、高温のサーマルプリンターに耐久性を示した。さらに、このヒートシール可能な感熱フィルム8を、熱により被シール材に接合したところ、熱による接合時の感熱記録層の発色は回避されており、また、ヒートシールバーも保護されていた。感熱記録層の発色温度は130℃、ヒートシール温度は165℃であった。
 また、ヒートシール可能な感熱フィルム8の、基材にアンカー層と感熱記録層と保護層とを設けた部分のヘーズ値(%)は、基材のヘーズ値(%)の4.6倍以下であった。なお、HAZEは、実施例3と同様に測定した。
実施例9
 基材として片面にヒートシール性を有するヒートシールフィルムを使用し、ヒートシール性を有しない方の表面に印刷層を形成した。上記基材の印刷層を形成した方の面の全面に、実施例6と同様にアンカー層を形成し、上記アンカー層上に、実施例2と同様にして感熱記録層を形成した。
 上記感熱記録層上ならびに感熱記録層が形成されていないアンカー層上の全面に、アクリル樹脂のエマルションなどからなる中間層を形成し、該中間層上の全面に実施例4と同様にして保護層を形成し、ヒートシール可能な感熱フィルム9を得た。保護層には、コロイダルシリカから成る乱反射防止層が形成されていた。ヒートシール可能な感熱フィルム9では、印刷部分と印字部分とを組み合わせて一意匠を構成するように、感熱記録層を、上記印刷層と組み合わせた適宜の箇所に設けた。上記印刷層の形成と感熱記録層の形成は、それぞれ汎用の多色刷り印刷装置にて見当マークを用いて行った。
 得られたヒートシール可能な感熱フィルム9にサーマルプリンターで印字したところ、高温のサーマルプリンターに耐久性を示した。さらに、このヒートシール可能な感熱フィルム9を、熱により被シール材に接合したところ、熱による接合時の感熱記録層の発色は回避されていた。ヒートシール可能な感熱フィルム9では、特に情報量の多いヒートシール可能な感熱フィルムを簡易に製造できた。
 また、ヒートシール可能な感熱フィルム9の、基材に感熱記録層と中間層と保護層とを設けた部分のヘーズ値(%)は、基材のヘーズ値(%)の4.6倍以下であった。なお、HAZEは、実施例3と同様に測定した。
実施例10
(印刷層を有する3層構造の基材の製造)
 厚み12μmのPETフィルムの片面の一部に印刷層を印刷した。該PETフィルムの、印刷層を形成した方の面の全面に、変性アルキド樹脂から成る接着剤層を形成した。該接着剤層の全面に、ポリプロピレンフィルムを接着してヒートシール性を有する層を形成し、印刷層を有する3層構造の基材を製造した。
(3層構造の基材を用いたヒートシール可能な感熱フィルムの製造)
 上記で得られた3層構造の基材の、PETフィルムの他層を形成していない側の面に、実施例9と同様に、アンカー層・感熱記録層・中間層・保護層を形成し、ヒートシール可能な感熱フィルム10を得た。なお、ヒートシール可能な感熱フィルム10では、印刷部分と印字部分とを組み合わせて一意匠を構成するように、感熱記録層を、上記印刷層と組み合わせた適宜の箇所に設けた。上記印刷層の形成と感熱記録層の形成は、それぞれ汎用の多色刷り印刷装置にて見当マークを用いて行った。
 得られたヒートシール可能な感熱フィルム10にサーマルプリンターで印字したところ、高温のサーマルプリンターに耐久性を示した。さらに、このヒートシール可能な感熱フィルム10を、熱により被シール材に接合したところ、熱による接合時の感熱記録層の発色は回避されていた。ヒートシール可能な感熱フィルム10では、特に情報量の多いヒートシール可能な感熱フィルムを簡易に製造できた。
 また、ヒートシール可能な感熱フィルム10の、基材にアンカー層と感熱記録層と中間層と保護層とを設けた部分のヘーズ値(%)は、基材のヘーズ値(%)の4.6倍以下であった。なお、HAZEは、実施例3と同様に測定した。
実施例11
(印刷層を有する4層構造の基材の製造)
 実施例10で製造した印刷層を有する3層構造の基材の、ヒートシール性を有する層の全面に、ポリグリセリン脂肪酸エステルで構成した機能性塗料層を形成し、印刷層を有する4層構造の基材を製造した。
(4層構造の基材を用いたヒートシール可能な感熱フィルムの製造)
 上記で得られた4層構造の基材の、PETフィルムの他層を形成していない側の面に、実施例9と同様に、アンカー層・感熱記録層・中間層・保護層を形成し、ヒートシール可能な感熱フィルム11を得た。なお、ヒートシール可能な感熱フィルム11では、印刷部分と印字部分とを組み合わせて一意匠を構成するように、感熱記録層を、上記印刷層と組み合わせた適宜の箇所に設けた。上記印刷層の形成と感熱記録層の形成は、それぞれ汎用の多色刷り印刷装置にて見当マークを用いて行った。
 得られたヒートシール可能な感熱フィルム11にサーマルプリンターで印字したところ、高温のサーマルプリンターに耐久性を示した。さらに、このヒートシール可能な感熱フィルム11を、熱により被シール材に接合したところ、熱による接合時の感熱記録層の発色は回避されていた。ヒートシール可能な感熱フィルム11では、特に情報量の多いヒートシール可能な感熱フィルムを簡易に製造できた。
 また、ヒートシール可能な感熱フィルム11の、基材にアンカー層と感熱記録層と中間層と保護層とを設けた部分のヘーズ値(%)は、基材のヘーズ値(%)の4.6倍以下であった。なお、HAZEは、実施例3と同様に測定した。なお、ヒートシール可能な感熱フィルムにおける保護層については、適宜、種々の変更が可能であり必須ではない。
 本発明のヒートシール可能な感熱フィルムは、熱による接合時の感熱記録層の発色を回避し、熱による被シール材との接合温度と印字温度の選択の幅を広げるため、汎用性が増加し、顧客の印字プリンターの選択の幅が広いヒートシール可能な感熱フィルムとして利用できる。
2:基材
 21:ヒートシール性を有する層
 22:印刷層
 23:接着剤層
 24:ヒートシール性を有しない層
 25:機能性塗料層
4、14:感熱記録層
6:被シール材
10:基材の、熱により被シール材に接合する箇所
12:基材の、熱により被シール材に接合する箇所以外の部分
16:印字を予定する一部分
20:保護層
30:アンカー層
40:中間層

Claims (18)

  1.  基材と感熱記録層とを有し、熱により被シール材に接合するヒートシール可能な感熱フィルムであって、
     該基材の、熱により被シール材に接合する箇所には該感熱記録層を設けず、
     該基材の、該熱により被シール材に接合する箇所以外の部分に該感熱記録層を設けた、
    ヒートシール可能な感熱フィルム。
  2.  前記感熱記録層を、印字を予定する一部分のみに設けた、
    請求項1に記載のヒートシール可能な感熱フィルム。
  3.  前記基材の、前記感熱記録層を設けた側の表面の全面に、保護層を設けた、
    請求項1又は2に記載のヒートシール可能な感熱フィルム。
  4.  前記基材と前記感熱記録層とが接する部分、及び前記基材と前記保護層とが接する部分に、アンカー層を設けた、
    請求項3に記載のヒートシール可能な感熱フィルム。
  5.  前記保護層は、コロイダルシリカから成る乱反射防止層を有する、
    請求項3~4の何れか1項に記載のヒートシール可能な感熱フィルム。
  6.  前記コロイダルシリカの粒径が、1.0μm以下である、
    請求項5に記載のヒートシール可能な感熱フィルム。
  7.  前記感熱記録層と前記保護層とを設けた部分のヘーズ値(%)が、前記基材のヘーズ値(%)の4.6倍以下である、
    請求項3~6の何れか1項に記載のヒートシール可能な感熱フィルム。
  8.  前記感熱記録層の発色温度が、熱により被シール材に接合する温度よりも高い
    請求項1~7の何れか1項に記載のヒートシール可能な感熱フィルム。
  9.  前記基材が透明基材である
    請求項1~8の何れか1項に記載のヒートシール可能な感熱フィルム。
  10.  前記基材に印刷層が形成された
    請求項1~9の何れか1項に記載のヒートシール可能な感熱フィルム。
  11.  印刷部分と印字部分とを組み合わせて一意匠を構成するように、前記感熱記録層を、前記印刷層と組み合わせた適宜の箇所に設けた請求項10に記載のヒートシール可能な感熱フィルム。
  12.  請求項1~11に記載のヒートシール可能な感熱フィルムの製造方法であって、
    基材の、熱により被シール材に接合する箇所以外の部分に感熱記録層を形成する感熱記録層形成工程を有する
    ヒートシール可能な感熱フィルムの製造方法。
  13.  請求項2に記載のヒートシール可能な感熱フィルムの製造方法であって、
    基材の、熱により被シール材に接合する箇所以外の部分であって、印字を予定する一部分のみに感熱記録層を形成する感熱記録層形成工程を有する、
    ヒートシール可能な感熱フィルムの製造方法。
  14.  前記感熱記録層形成工程を、見当マークを用いて行う
    請求項13に記載のヒートシール可能な感熱フィルムの製造方法。
  15. 請求項4又は5に記載のヒートシール可能な感熱フィルムの製造方法であって、
    基材の全面にアンカー層を形成するアンカー層形成工程と、
    該アンカー層の基材との反対側の表面の、熱により被シール材へ接合する箇所以外の部分に感熱記録層を形成する感熱記録層形成工程と、
    該アンカー層の、該感熱記録層を形成した側の表面の全面に、保護層を形成する保護層形成工程と
    を有する
    ヒートシール可能な感熱フィルムの製造方法。
  16.  請求項10に記載のヒートシール可能な感熱フィルムの製造方法であって、
    基材に印刷層を形成する印刷工程と、
    該印刷工程後に、該基材の、熱により被シール材に接合する箇所以外の部分であって、印刷部分と印字部分とを組み合わせて一意匠を構成するように該印刷層と組み合わせた適宜の部分に感熱記録層を形成する感熱記録層形成工程を有する
    ヒートシール可能な感熱フィルムの製造方法。
  17.  前記印刷工程と前記感熱記録層形成工程とを、見当マークを用いて行う
    請求項16に記載のヒートシール可能な感熱フィルムの製造方法。
  18.  請求項1~11の何れか1項に記載のヒートシール可能な感熱フィルムが連続して形成されたロール紙。
PCT/JP2022/010652 2022-03-10 2022-03-10 ヒートシール可能な感熱フィルムおよびその製造方法 WO2023170875A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2022/010652 WO2023170875A1 (ja) 2022-03-10 2022-03-10 ヒートシール可能な感熱フィルムおよびその製造方法
CN202280091723.XA CN118715296A (zh) 2022-03-10 2022-03-10 可热密封的热敏膜及其制造方法
MX2024009695A MX2024009695A (es) 2022-03-10 2022-03-10 Pelicula termosellable sensible al calor y metodo para su produccion.
AU2022445995A AU2022445995A1 (en) 2022-03-10 2022-03-10 Heat-sealable heat-sensitive film and method for producing same
KR1020247022292A KR20240118828A (ko) 2022-03-10 2022-03-10 히트 실링 가능한 감열 필름 및 그 제조 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/010652 WO2023170875A1 (ja) 2022-03-10 2022-03-10 ヒートシール可能な感熱フィルムおよびその製造方法

Publications (1)

Publication Number Publication Date
WO2023170875A1 true WO2023170875A1 (ja) 2023-09-14

Family

ID=87936351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010652 WO2023170875A1 (ja) 2022-03-10 2022-03-10 ヒートシール可能な感熱フィルムおよびその製造方法

Country Status (5)

Country Link
KR (1) KR20240118828A (ja)
CN (1) CN118715296A (ja)
AU (1) AU2022445995A1 (ja)
MX (1) MX2024009695A (ja)
WO (1) WO2023170875A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH106652A (ja) * 1996-06-25 1998-01-13 Osaka Sealing Insatsu Kk 感熱記録シート
JPH11334221A (ja) * 1998-05-28 1999-12-07 Dainippon Printing Co Ltd 反復印字記録媒体の製造方法
JP2005324842A (ja) * 2004-05-17 2005-11-24 Shin Etsu Polymer Co Ltd 包装用部材及びその包装体
WO2015072411A1 (ja) 2013-11-15 2015-05-21 大阪シーリング印刷株式会社 感熱記録シート
JP2016061929A (ja) * 2014-09-18 2016-04-25 リンテック株式会社 擬似接着ラベル及び擬似接着ラベルの製造方法
JP2019126910A (ja) * 2018-01-22 2019-08-01 大阪シーリング印刷株式会社 ヒートシールフィルム、包装材、および包装材の製造方法
WO2019151378A1 (ja) * 2018-01-31 2019-08-08 大日本印刷株式会社 熱転写シート及び熱転写シートと中間転写媒体との組合せ
JP2020037444A (ja) * 2018-09-06 2020-03-12 大阪シーリング印刷株式会社 包装システム
JP2020093447A (ja) * 2018-12-12 2020-06-18 大阪シーリング印刷株式会社 ヒートシール用フィルム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002362027A (ja) 2001-06-07 2002-12-18 Oji Paper Co Ltd 感熱記録ラベル
JP7539205B2 (ja) 2018-03-27 2024-08-23 大阪シーリング印刷株式会社 ヒートシールフィルム、包装材、および包装材の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH106652A (ja) * 1996-06-25 1998-01-13 Osaka Sealing Insatsu Kk 感熱記録シート
JPH11334221A (ja) * 1998-05-28 1999-12-07 Dainippon Printing Co Ltd 反復印字記録媒体の製造方法
JP2005324842A (ja) * 2004-05-17 2005-11-24 Shin Etsu Polymer Co Ltd 包装用部材及びその包装体
WO2015072411A1 (ja) 2013-11-15 2015-05-21 大阪シーリング印刷株式会社 感熱記録シート
JP2016061929A (ja) * 2014-09-18 2016-04-25 リンテック株式会社 擬似接着ラベル及び擬似接着ラベルの製造方法
JP2019126910A (ja) * 2018-01-22 2019-08-01 大阪シーリング印刷株式会社 ヒートシールフィルム、包装材、および包装材の製造方法
WO2019151378A1 (ja) * 2018-01-31 2019-08-08 大日本印刷株式会社 熱転写シート及び熱転写シートと中間転写媒体との組合せ
JP2020037444A (ja) * 2018-09-06 2020-03-12 大阪シーリング印刷株式会社 包装システム
JP2020093447A (ja) * 2018-12-12 2020-06-18 大阪シーリング印刷株式会社 ヒートシール用フィルム

Also Published As

Publication number Publication date
MX2024009695A (es) 2024-08-19
CN118715296A (zh) 2024-09-27
KR20240118828A (ko) 2024-08-05
AU2022445995A1 (en) 2024-07-25

Similar Documents

Publication Publication Date Title
JP6975510B2 (ja) ヒートシール用フィルム
JP2005145068A (ja) 共押出二軸延伸ポリエステルフィルム及びその製造方法ならびにそれから成る包装材およびトレー用蓋材
WO2015012386A1 (ja) 透明粘着シート
KR20130099208A (ko) 잉크젯 기록 매체, 인쇄물, 그것들의 제조 방법 및 포장재
JP2010076180A (ja) 積層フィルムおよびそれを用いた包装用フィルム
JP2015127110A (ja) 包装用積層スティック材及びそれを用いた包装用スティック並びに包装用スティックレーザー印字体
JP2019025754A (ja) レーザ発色性シート、および、カード
WO2023170875A1 (ja) ヒートシール可能な感熱フィルムおよびその製造方法
JP2016068395A (ja) 印字方法
JP6361281B2 (ja) 印字方法
JP7539205B2 (ja) ヒートシールフィルム、包装材、および包装材の製造方法
JP3860581B2 (ja) 感熱記録可能な製袋用改ざん防止包装材料
JP6489241B2 (ja) 印字方法
JP7557250B2 (ja) トップシールフィルムおよび包装品
JP5413889B2 (ja) ヒートシール用帯ラベル
EP3170675B1 (en) Thermosensitive recording body
JP6255844B2 (ja) 包装用積層小袋材及びそれを用いた小袋並びに包装用積層小袋レーザー印字体
JP2021045972A (ja) 感熱フィルム
JP2006082854A (ja) 合成樹脂製容器
JP7413070B2 (ja) 剥離可能積層体及び記録票
JP3576287B2 (ja) 紙製カップ用蓋材
JP2005070066A (ja) ラベル、ラベル表示方法、及び両面画像形成方法
JP2003251918A (ja) インクジェット記録用シートおよびラベル
JP2023149326A (ja) 積層体および積層体の製造方法
JP2016212143A (ja) 画像形成体及び画像形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22930856

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247022292

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: AU2022445995

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2022445995

Country of ref document: AU

Date of ref document: 20220310

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2401005030

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: MX/A/2024/009695

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2024505769

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022930856

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022930856

Country of ref document: EP

Effective date: 20241010