WO2023169022A1 - 一种超薄锂箔材的加工回收方法以及产品 - Google Patents

一种超薄锂箔材的加工回收方法以及产品 Download PDF

Info

Publication number
WO2023169022A1
WO2023169022A1 PCT/CN2022/137856 CN2022137856W WO2023169022A1 WO 2023169022 A1 WO2023169022 A1 WO 2023169022A1 CN 2022137856 W CN2022137856 W CN 2022137856W WO 2023169022 A1 WO2023169022 A1 WO 2023169022A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
foil
ultra
thin
dimethyl ether
Prior art date
Application number
PCT/CN2022/137856
Other languages
English (en)
French (fr)
Inventor
李会巧
胡鸣涛
翟天佑
Original Assignee
华中科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华中科技大学 filed Critical 华中科技大学
Publication of WO2023169022A1 publication Critical patent/WO2023169022A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the invention belongs to the field of lithium-ion batteries, and more specifically, relates to a processing and recycling method of ultra-thin lithium foil materials and products.
  • Lithium metal is regarded as the most important anode material in the future due to its low redox potential (–3.04V versus standard hydrogen electrode) and high theoretical specific capacity (3860mAh g -1 , more than ten times that of existing graphite anodes).
  • existing cathode materials have low specific capacities ( ⁇ 200mAh g -1 ), and when metallic lithium is used as the anode, capacity matching between the positive and negative electrodes becomes a huge challenge.
  • the areal capacity of commercial cathodes is usually 3mAh cm -2 .
  • the performance of the electrode piece will rapidly deteriorate due to the increase in electrode thickness.
  • the thickness of the suitable lithium metal anode at this time is about 15 ⁇ m.
  • the thickness of commercially available lithium foil is usually 50-100 ⁇ m, and the thinner the thickness, the higher the processing cost, which makes the negative electrode often have a serious excess of lithium.
  • Excessive lithium not only leads to a mismatch in the capacity of the positive and negative electrodes and a significant reduction in the utilization rate of the negative electrodes, but also causes an increase in the cost of battery materials and a waste of lithium resources.
  • ultra-thin lithium can also be used in pre-lithiation of electrodes to provide precise lithium compensation capabilities.
  • lithium foil is prepared industrially, usually using roll rolling technology.
  • lithium is difficult to make thin due to its high viscosity and poor machinability.
  • lithium foil with a thickness of more than 30 ⁇ m can only be prepared by rolling.
  • the cost of rolling processing and the accuracy requirements for the rolling control system will rise rapidly.
  • breakage, roller sticking, wrinkles and damage are prone to occur during processing.
  • the roller press needs to be sprayed before and after production, which is costly.
  • the purpose of the present invention is to provide a processing and recycling method and product for ultra-thin lithium foil, which uses a liquid phase thinning agent that reacts in contact with lithium to react with the lithium foil to thin the lithium foil and prepare the thickness.
  • the method of the present invention has high precision and can be adjusted arbitrarily, and the ultra-thin lithium obtained has a smooth surface.
  • the method of the present invention reduces the waste of materials and improves the economy of lithium atoms.
  • a method for processing and recycling ultra-thin lithium foil includes the step of thinning the thicker lithium foil, specifically, combining a liquid phase thinning agent and lithium metal.
  • a contact reaction is carried out, and the liquid phase thinning agent corrodes the metallic lithium to achieve further thinning of the lithium foil, which is used to prepare ultra-thin lithium with a thickness of less than 20 ⁇ m.
  • Thicker lithium foil refers to lithium foil with a thickness greater than 20 ⁇ m, especially lithium foil with a thickness greater than 50 ⁇ m, or even 100 ⁇ m or thicker.
  • the liquid phase thinning agent includes a complexing agent and an organic solvent.
  • the complexing agent is dissolved in the organic solvent.
  • the complexing agent is selected from naphthalene and its derivatives, biphenyl and its derivatives, anthracene and its derivatives. , one or more of phenanthrene and its derivatives, pyrene and its derivatives, tetracene and its derivatives.
  • the organic solvent is selected from one or more of ethylene glycol dimethyl ether, tetrahydrofuran, diethylene glycol dimethyl ether, and tetraethylene glycol dimethyl ether.
  • the concentration of the complexing agent in the organic solvent is 0.01 mol/L to 10 mol/L.
  • the lithium foil material includes one or more of lithium metal foil, lithium composite foil and lithium alloy foil, wherein the lithium composite foil includes lithium/metal composite foil and lithium/non-metal composite foil, wherein lithium
  • the metal composite foil is a lithium/metal M composite foil, where the element M includes one or more of Cu, Bi, Ti, V, Cr, Fe, Co, Ni, Cs, Zr, and Ta, and the lithium/non-metal
  • the composite foil is a lithium/non-metal X composite foil, where the element X includes one or more of B, C and S;
  • the lithium alloy foil is a Li x N alloy foil, where the element N includes Zn, In, Al, One or more of Mg, B, Pb, Pd, Pd, Sn, Si, Ca, Ag, Au, Ga and Ge.
  • the time of the contact reaction, the contact mode (dynamic or static) or the concentration of the liquid thinning agent can be adjusted arbitrarily, so that the thickness of the ultra-thin lithium can be adjusted arbitrarily.
  • the washing liquid obtained after washing can be reused as a thinning agent when the lithium is not saturated, and can be used as a liquid by-product containing active lithium after it is saturated.
  • the lotion also contains a complexing agent, which can further react with lithium when it is unsaturated with lithium.
  • liquid by-product containing active lithium can be used as a prelithiation reagent, a surface cleaning agent or/and a reducing reagent.
  • a product prepared by the ultra-thin lithium foil processing and recycling method as described above includes an ultra-thin lithium foil with a thickness of less than 20 ⁇ m.
  • a product prepared by the ultra-thin lithium foil processing and recycling method as described above includes lithium carbonate, and the lithium carbonate is in powder form.
  • liquid phase thinning is used to prepare ultra-thin lithium foil, which avoids the rolling method used in traditional thinning lithium foil and the problems caused by it that are easy to stick to the roller, easy to break, easy to wrinkle, and easy to be damaged. problem, through simple liquid phase contact reaction thinning, ultra-thin (ultra-thin refers to thickness below 20 ⁇ m) lithium metal foil, lithium composite foil and lithium alloy foil can be obtained. The thickness can be adjusted arbitrarily and the uniformity is good. Lithium The oxide layer on the surface of the foil is removed, making the lithium foil cleaner and smoother.
  • the ultra-thin lithium foil of the present invention can also be used in the lithium replenishment process of other types of negative electrode materials, and the lithium replenishment capacity is accurately controllable.
  • the produced lithium foil can be thinned once or in stages. The method is simple and easy to implement. It does not require sophisticated and expensive production equipment. It is easy for industrial production and has no requirements on the purity of lithium in the original lithium foil. It has broad application prospects. Application prospects.
  • lithium in the produced liquid by-product containing active lithium, lithium provides electrons to the complexing agent to form a complex.
  • the delocalized free electrons make the liquid by-product containing active lithium have strong reducing ability, and can Used as prelithiation, reduction reagent, surface cleaning agent and other industrial treatment reagents.
  • the lithium in the liquid by-product loses electrons and becomes waste liquid containing lithium ions.
  • the lithium ions contained in the waste liquid can be recovered to obtain the highly valuable by-product lithium carbonate finished product, which can be recycled and the treatment process can be Conducted in the air, it reduces the environmental requirements during storage and transportation and is highly safe.
  • Figure 1 is a process flow chart for preparing ultra-thin lithium foil according to one embodiment of the present invention
  • Figure 2 is a schematic diagram of a device for preparing ultra-thin lithium foil according to an embodiment of the present invention
  • Figure 3 is a schematic diagram of preparing ultra-thin lithium foil and recycling waste liquid according to one embodiment of the present invention
  • Figure 4 is an electron microscope photograph of a cross-section of an ultra-thin lithium metal foil according to an embodiment of the present invention.
  • the invention provides a method and product for processing and recycling ultra-thin lithium foils.
  • a liquid phase thinning agent that reacts with lithium is used to thin the lithium foil, and an ultra-thin lithium foil with a thickness of less than 20 ⁇ m is prepared.
  • the thickness of lithium foil has high precision and can be adjusted arbitrarily.
  • the surface is flat. When used as a negative electrode, it can increase the energy density of the battery, improve the utilization rate of lithium, and reduce the battery cost. Its flat surface can effectively reduce the surface charge transfer impedance.
  • the ultra-thin lithium sheet of the present invention can also accurately provide lithium replenishment capacity when used for pre-lithiation of electrode sheets of other types of materials.
  • the present invention provides a reuse and recovery method for the by-products obtained during the operation, reducing the waste of materials and improving the economy of lithium atoms.
  • Figure 1 is a process flow chart for preparing ultra-thin lithium foil according to one embodiment of the present invention.
  • Figure 2 is a schematic diagram of a device for preparing ultra-thin lithium foil according to one embodiment of the present invention.
  • Figure 3 is a process flow chart for preparing ultra-thin lithium foil according to one embodiment of the present invention. Schematic diagram of thin lithium foil and recycling waste liquid.
  • the components represented by each number are: thick lithium foil unwinding roller 1, thinning agent spray device 2, cleaning device 3, ultra-thin lithium foil retractor Roller 4 is a set of assembly line devices that can be successfully used in laboratory or pilot processes.
  • Combining Figures 1, 2 and 3, it can be seen that the present invention provides a method for preparing ultra-thin lithium foil, which includes the following steps:
  • the present invention also provides a way for the liquid by-product containing active lithium obtained during the thinning process of the liquid phase thinning agent to be further used as an industrial treatment reagent.
  • the liquid containing active lithium can be used as, but are not limited to, prelithiation reagents, surface cleaning agents, and reducing reagents.
  • the method for recycling and reusing the lithium-ion-containing waste liquid obtained after applying active lithium-containing liquid by-products includes the following steps:
  • step (1) Add a carbonate solution to the lithium ion-containing waste liquid obtained after applying the active lithium-containing liquid by-product to obtain lithium carbonate precipitation; in step (1), the carbonate solution is composed of a solute and a solvent.
  • the solute is a carbonate having a solubility difference with lithium carbonate in a solvent, including but not limited to sodium carbonate.
  • step (2) Wash the lithium carbonate precipitate obtained in step (1) and dry it to obtain the recovered lithium carbonate product.
  • the lithium foil material may be one or more of lithium metal foil, lithium composite foil, and lithium alloy foil.
  • lithium composite foil includes lithium-metal composite foil and lithium-non-metal composite foil.
  • the element M includes Cu, Bi, Ti, V, Cr, Fe, Co, Ni, Cs, One or more of Zr, and Ta.
  • the lithium/non-metal X composite foil the element X includes one or more of B, C and S; the lithium alloy foil is Li x N alloy foil, where the element N includes one or more of Zn, In, Al, Mg, B, Pb, Pd, Pd, Sn, Si, Ca, Ag, Au, Ga and Ge.
  • the liquid thinning agent is prepared from a complexing agent and an organic solvent.
  • the complexing agent is selected from naphthalene and its derivatives, biphenyl and its derivatives, anthracene and its derivatives, phenanthrene and its derivatives. , pyrene and its derivatives, tetracene and its derivatives, one or more of them.
  • the organic solvent is selected from organic solvents that can dissolve naphthalene and its derivatives, biphenyl and its derivatives, anthracene and its derivatives, phenanthrene and its derivatives, pyrene and its derivatives, tetracene and its derivatives, including but Not limited to one or more of ethylene glycol dimethyl ether, tetrahydrofuran, diethylene glycol dimethyl ether, and tetraethylene glycol dimethyl ether.
  • the complexing agent is not limited to the above. It can be used as a complexing agent as long as it meets the following conditions: (1) a polycyclic aromatic hydrocarbon; (2) it can accept electrons from lithium to form a stable free radical anion.
  • the organic solvent is not limited to the above. It can also be used as an organic solvent as long as it meets the following conditions: the solvent can dissolve the complexing agent and does not react with lithium.
  • naphthalene weigh a certain amount of naphthalene, dissolve it evenly in a certain amount of ethylene glycol dimethyl ether, and prepare a naphthalene/ethylene glycol dimethyl ether organic solution with a concentration of 0.01 mol/L.
  • a lithium-copper composite tape roll with a lithium foil thickness of 100 ⁇ m and a copper foil thickness of 10 ⁇ m is unrolled and completely spread in the track, with the lithium foil side facing up.
  • naphthalene weigh a certain amount of naphthalene, dissolve it evenly in a certain amount of ethylene glycol dimethyl ether, and prepare a naphthalene/ethylene glycol dimethyl ether organic solution with a concentration of 0.1 mol/L.
  • a lithium-copper composite tape roll with a lithium foil thickness of 100 ⁇ m and a copper foil thickness of 10 ⁇ m is unrolled and completely spread in the track, with the lithium foil side facing up.
  • naphthalene dissolve it evenly in a certain amount of ethylene glycol dimethyl ether, and prepare a naphthalene/ethylene glycol dimethyl ether organic solution with a concentration of 1 mol/L.
  • a lithium-copper composite tape roll with a lithium foil thickness of 100 ⁇ m and a copper foil thickness of 10 ⁇ m is unrolled and completely spread in the track, with the lithium foil side facing up.
  • Use a nozzle to evenly spray 1 mol/L naphthalene/ethylene glycol dimethyl ether organic solution on the lithium foil side of the lithium-copper composite strip to fully react with the lithium foil, and immerse the lithium-copper composite strip foil in pure ethyl alcohol.
  • glycol dimethyl ether solution ultra-thin lithium-copper composite tape was obtained after washing.
  • naphthalene dissolve it evenly in a certain amount of ethylene glycol dimethyl ether, and prepare a naphthalene/ethylene glycol dimethyl ether organic solution with a concentration of 2 mol/L.
  • a lithium-copper composite tape roll with a lithium foil thickness of 100 ⁇ m and a copper foil thickness of 10 ⁇ m is unrolled and completely spread in the track, with the lithium foil side facing up.
  • Use a nozzle to evenly spray 2mol/L naphthalene/ethylene glycol dimethyl ether organic solution on the lithium foil side of the lithium-copper composite strip to fully react with the lithium foil, and immerse the lithium-copper composite strip foil in pure ethyl alcohol.
  • glycol dimethyl ether solution ultra-thin lithium-copper composite tape was obtained after washing.
  • naphthalene dissolve it evenly in a certain amount of ethylene glycol dimethyl ether, and prepare a naphthalene/ethylene glycol dimethyl ether organic solution with a concentration of 3 mol/L.
  • a lithium-copper composite tape roll with a lithium foil thickness of 100 ⁇ m and a copper foil thickness of 10 ⁇ m is unrolled and spread completely in the track, with the lithium foil side facing up.
  • Use a nozzle to evenly spray 3mol/L naphthalene/ethylene glycol dimethyl ether organic solution on the lithium foil side of the lithium-copper composite strip to fully react with the lithium foil, and immerse the lithium-copper composite strip foil in pure ethyl alcohol.
  • glycol dimethyl ether solution ultra-thin lithium-copper composite tape was obtained after washing.
  • naphthalene dissolve it evenly in a certain amount of ethylene glycol dimethyl ether, and prepare a naphthalene/ethylene glycol dimethyl ether organic solution with a concentration of 4 mol/L.
  • a lithium-copper composite tape roll with a lithium foil thickness of 100 ⁇ m and a copper foil thickness of 10 ⁇ m is unrolled and completely spread in the track, with the lithium foil side facing up.
  • Use a nozzle to evenly spray 4mol/L naphthalene/ethylene glycol dimethyl ether organic solution on the lithium foil side of the lithium-copper composite strip to fully react with the lithium foil, and immerse the lithium-copper composite strip foil in pure ethyl alcohol.
  • glycol dimethyl ether solution ultra-thin lithium-copper composite tape was obtained after washing.
  • naphthalene dissolve it evenly in a certain amount of ethylene glycol dimethyl ether, and prepare a naphthalene/ethylene glycol dimethyl ether organic solution with a concentration of 5 mol/L.
  • a lithium-copper composite tape roll with a lithium foil thickness of 100 ⁇ m and a copper foil thickness of 10 ⁇ m is unrolled and completely spread in the track, with the lithium foil side facing up.
  • Use a nozzle to evenly spray 5mol/L naphthalene/ethylene glycol dimethyl ether organic solution on the lithium foil side of the lithium-copper composite strip to allow it to fully react with the lithium foil.
  • naphthalene dissolve it evenly in a certain amount of ethylene glycol dimethyl ether, and prepare a naphthalene/ethylene glycol dimethyl ether organic solution with a concentration of 10 mol/L.
  • a lithium-copper composite tape roll with a lithium foil thickness of 100 ⁇ m and a copper foil thickness of 10 ⁇ m is unrolled and completely spread in the track, with the lithium foil side facing up.
  • Use a nozzle to evenly spray 10mol/L naphthalene/ethylene glycol dimethyl ether organic solution on the lithium foil side of the lithium-copper composite strip to fully react with the lithium foil, and immerse the lithium-copper composite strip foil in pure ethyl alcohol.
  • glycol dimethyl ether solution ultra-thin lithium-copper composite tape was obtained after washing.
  • naphthalene dissolve it evenly in a certain amount of ethylene glycol dimethyl ether, and prepare a naphthalene/ethylene glycol dimethyl ether organic solution with a concentration of 10 mol/L.
  • a lithium-copper composite tape roll with a lithium foil thickness of 100 ⁇ m and a copper foil thickness of 10 ⁇ m is unrolled and completely spread in the track, with the lithium foil side facing up. Soak the lithium-copper composite strip in a 10 mol/L naphthalene/ethylene glycol dimethyl ether organic solution to fully react with the lithium foil. Immerse the lithium-copper composite strip and foil into the pure ethylene glycol dimethyl ether solution. After washing, an ultrathin lithium-copper composite tape is obtained.
  • the way in which the liquid phase thinning agent contacts and reacts with the thicker lithium foil in Table 1 is dynamic or static. This refers to whether the liquid phase thinning agent is flowing or static when it contacts and reacts with lithium.
  • spraying is a Dynamic reaction method
  • soaking is a static reaction method.
  • the above embodiments can be carried out under a protective atmosphere or a dry environment, and are not limited to a protective atmosphere.
  • the operating environment of metallic lithium only needs to reduce the water content. It can be safely operated in a drying room with pure oxygen. Oxygen does not easily react with metallic lithium under dry conditions.
  • the lithium-ion-containing waste liquid obtained after applying the active lithium-containing by-product is the lithium naphthalene/ethylene glycol dimethyl ether solution containing lithium ions.
  • the lithium carbonate precipitate is washed with hot water at 40°C and dried in a drying oven at 300°C to obtain the recovered lithium carbonate product.
  • the present invention uses a liquid phase thinning agent to prepare ultra-thin lithium, and obtains a lithium foil material with a lithium foil thickness of less than 20 ⁇ m.
  • the thickness can be adjusted arbitrarily, and the surface is clean and smooth, which is in line with the lithium supplementation process of metallic lithium negative electrodes in lithium batteries and other types of negative electrode materials.
  • the use requirements are met, and the lithium-containing by-products generated during the thinning process can be reused and recycled. It is green and environmentally friendly, and the method is simple and easy to implement. It does not require sophisticated and expensive production equipment, and has broad application prospects.
  • tetracene dissolve it evenly in a certain amount of tetraethylene glycol dimethyl ether, and prepare a tetracene/tetraethylene glycol dimethyl ether organic solution with a concentration of 0.5 mol/L.
  • the Li/Ge alloy lithium foil with a thickness of 100 ⁇ m is unrolled and spread in the track until it is completely spread.
  • Use a nozzle to evenly spray 0.9 mol/L tetracene/tetraethylene glycol dimethyl ether organic solution to one side of the Li/Ge alloy lithium foil strip, so that it can fully react with the Li/Ge alloy lithium foil.
  • the Li/Ge alloy lithium foil strip is immersed in pure ethylene glycol dimethyl ether solution and washed to obtain an ultra-thin lithium foil strip with a thickness of 18 ⁇ m.
  • Figure 4 is an electron microscope photograph of a cross-section of an ultra-thin lithium metal foil according to one embodiment of the present invention. It can be seen from the figure that the thickness of the obtained ultra-thin lithium foil is 10 microns.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种超薄锂箔材的加工回收方法以及产品,属于锂离子电池领域。本发明采用液相减薄剂与锂金属进行接触反应,制备的超薄锂箔材厚度在20μm以下,表面平整,厚度可任意调控且均一性好。本发明方法还能将制备过程中所产生的含锂副产品进行回收再利用。本发明制备的超薄金属锂箔材作为锂电池金属锂负极使用时可提高电池的能量密度,降低电池制造成本,也可以用于其他类型电极材料的补锂,具有广阔的应用前景。

Description

一种超薄锂箔材的加工回收方法以及产品 【技术领域】
本发明属于锂离子电池领域,更具体地,涉及一种超薄锂箔材的加工回收方法以及产品。
【背景技术】
随着智能设备、新能源汽车的普及以及大规模储能设施的建设,提高锂离子电池能量密度、降低其成本是当今市场的迫切需求。金属锂因其低的氧化还原电位(–3.04V versus标准氢电极)和高的理论比容量(3860mAh g -1,现有石墨负极的十倍以上),而被视为未来最重要的负极材料。然而,现有的正极材料比容量较低(<200mAh g -1),当使用金属锂作为负极时,正负极的容量匹配成为一个巨大的挑战。
目前,商业正极的面容量通常在3mAh cm -2,一旦提高其面容量,由于电极厚度的增加,极片的性能将会迅速劣化。基于容量匹配的原则,此时合适的金属锂负极的厚度约为15μm。然而,现实中商业可获得的锂箔厚度通常在50-100μm,并且厚度越薄其加工成本越高,这使得负极的锂往往是严重过量的。过量的锂不仅导致了正负极容量不匹配、负极利用率的大幅降低,同时也造成电池材料成本上升以及锂资源的浪费。除了作为负极进行使用以外,超薄锂还可以应用于电极的预锂化,以提供精确的锂补偿能力。
目前,工业上制备锂箔,通常使用辊压轧制技术。但是,由于锂本身的高粘度以及机械加工能力差的特性,导致很难将其制薄。通过轧制充其量只能制备厚度为30μm以上的锂箔,且随着锂箔厚度的减小,轧制加工成本及对轧制控制系统精度要求将迅速上升。并且在加工过程中易出现断裂、粘辊、起皱和破损的现象,生产前后需对辊压机进行喷涂处理等,成本较高。
鉴于此,需要开发一种简单且可推广的工艺来获得锂箔厚度小于20μm的 新型减薄锂技术,对于将其应用于高能量密度电池负极材料,使其满足工业化生产和实际应用需求有着重要的意义。
【发明内容】
针对现有技术的缺陷,本发明的目的在于提供一种超薄锂箔材的加工回收方法以及产品,采用与锂接触反应的液相减薄剂与锂箔反应以减薄锂箔,制备厚度在20μm以下的超薄锂箔材,本发明方法精度高且可任意调控,获得的超薄锂表面平整,此外,本发明方法减少了材料的浪费,提升了锂原子的经济性。
为实现上述目的,按照本发明的一个方面,提供一种超薄锂箔材的加工回收方法,其包括将较厚锂箔材进行减薄步骤,具体为,将液相减薄剂与锂金属进行接触反应,通过液相减薄剂对金属锂的腐蚀,实现对锂箔材的进一步减薄,用于制备厚度小于20μm超薄锂。较厚的锂箔材是指厚度大于20μm的锂箔材,尤其指厚度大于50μm,甚至是100μm或者更厚的锂箔材。
进一步的,所述液相减薄剂包括络合剂和有机溶剂,络合剂溶解在有机溶剂中,络合剂选自萘及其衍生物、联苯及其衍生物、蒽及其衍生物、菲及其衍生物、芘及其衍生物、并四苯及其衍生物中的一种或多种。
进一步的,所述有机溶剂选自乙二醇二甲醚、四氢呋喃、二乙二醇二甲醚、四乙二醇二甲醚中的一种或多种。
进一步的,络合剂在有机溶剂中的浓度为0.01mol/L~10mol/L。
进一步的,所述锂箔材包括锂金属箔、锂复合箔和锂合金箔中的一种或多种,其中,锂复合箔包括锂/金属复合箔和锂/非金属复合箔,其中,锂金属复合箔为锂/金属M复合箔,其中,元素M包括Cu、Bi、Ti、V、Cr、Fe、Co、Ni、Cs、Zr、和Ta中的一种或多种,锂/非金属复合箔为锂/非金属X复合箔,其中,元素X包括B、C和S中的一种或多种;锂合金箔为Li xN合金箔,其 中,元素N包括Zn、In、Al、Mg、B、Pb、Pd、Pd、Sn、Si、Ca、Ag、Au、Ga和Ge中的一种或多种。
进一步的,根据最终超薄锂的厚度要求,能够任意调节接触反应的时间、接触方式(动态或静态)或者液相减薄剂的浓度,实现超薄锂的厚度任意调节。
进一步的,洗涤过后得到的洗液在其中锂未饱和状态下可以作为减薄剂再次利用,饱和后即作为含活性锂的液体副产品进行应用。这是因为,洗液中也是含有络合剂的,在锂不饱和的情况下,其还可以进一步和锂进行反应。
进一步的,含活性锂的液体副产品可以用作预锂化试剂、表面清洗剂或/和还原试剂。
进一步的,在含活性锂的液体副产品应用完后,获得含锂离子的废液,向废液中加入碳酸盐溶液,获得碳酸锂沉淀。
按照本发明的第二个方面,还提供一种如上所述的超薄锂箔材的加工回收方法制备获得的产品,该产品包括超薄锂箔材,厚度小于20μm。
按照本发明的第三个方面,还提供一种如上所述的超薄锂箔材的加工回收方法制备获得的产品,该产品包括碳酸锂,碳酸锂为粉末状。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,本发明的方法和产品具有极高的工程应用价值,具体具有以下有益效果:
(1)在本发明中,使用液相减薄制备超薄锂箔,避免了传统减薄锂箔材采用的轧制方法以及其带来的易粘辊、易断裂、易起皱、易破损的问题,通过简单的液相接触反应减薄,能够获得超薄(超薄是指厚度在20μm以下)的锂金属箔、锂复合箔以及锂合金箔,厚度可任意调控且均一性好,锂箔表面氧化层被去除,使得锂箔更为洁净平整,使用时,其表面电荷转移阻抗减小,可作为锂电池中的高安全性金属锂负极使用,以提高电池的能量密度,降低电池制造成本,提升锂的利用率,本发明的超薄锂箔也可以用于其他类型负极材料补锂工艺,补锂容量精确可控。可对生产的锂箔进行一次性减薄处理或分次减薄 处理,方法简单易行,不需要精密昂贵的生产设备,易于工业化生产,且对原始锂箔中锂纯度无要求,具有广阔的应用前景。
(2)在本发明中,所产生的含活性锂的液体副产品中,锂向络合剂提供电子形成络合物,该离域自由电子使得含活性锂的液体副产品具有强的还原能力,可以作为预锂化、还原试剂、表面清洗剂等工业处理试剂进行应用。经使用过后,液体副产品中锂失去电子变成含锂离子的废液,废液中所含有的锂离子可以回收,获得价值极高的副产品碳酸锂成品,从而能进行循环利用,且处理过程可在空气中进行,降低了储存和运输过程中对环境的要求,安全性高。
【附图说明】
图1是本发明一个实施例提供的制备超薄锂箔的工艺流程图;
图2是本发明一个实施例提供的制备超薄锂箔装置的示意图;
图3是本发明一个实施例的制备超薄锂箔并对废液进行回收的示意图;
图4为本发明一个实施例的超薄金属锂箔截面的电子显微镜照片。
【具体实施方式】
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明提供一种超薄锂箔材的加工回收方法以及产品,采用与锂接触反应的液相减薄剂减薄锂箔,制备厚度在20μm以下的超薄锂箔材,采用本发明方法,锂箔厚度精度高且可任意调控,表面平整,用作负极时可以提升电池能量密度,提升锂的利用率,降低电池成本,其平整的表面可以有效降低表面电荷转移阻抗。本发明的超薄锂片用作对其他类型材料的电极极片进行预锂化时也可以精确提供补锂容量,这是因为使用超薄锂进行预锂化时可以通过 载锂量的调节来控制补锂的反应程度和均匀度,从而不会导致局部补锂过量。此外,在本发明中,为操作过程中得到的副产品提供了再利用以及回收的方法,减少了材料的浪费,提升了锂原子的经济性。
图1是本发明一个实施例提供的制备超薄锂箔的工艺流程图,图2是本发明一个实施例提供的制备超薄锂箔装置的示意图,图3是本发明一个实施例的制备超薄锂箔并对废液进行回收的示意图,其中图2中,各个标号表示的部件分别为:厚锂箔放卷辊1,减薄剂喷淋装置2,清洗装置3,超薄锂箔收卷辊4,其为流水线式的一套装置,能成功应用于实验室或者中试过程。结合图1、图2和图3可知,本发明提供了一种制备超薄锂箔的方法,包括以下步骤:
(1)将锂箔材与液相减薄剂进行接触反应;
(2)将反应过后的锂箔用洗涤剂洗涤,得到超薄锂箔。
进一步结合图1、图2和图3可知,本发明还提供了液相减薄剂进行减薄过程中得到的含活性锂的液体副产品作为工业处理试剂进行进一步应用的途径,含活性锂的液体副产品可用作但不限于预锂化试剂、表面清洗剂和还原试剂。具体的,将含活性锂的液体副产品应用过后得到的含锂离子的废液进行回收再利用的方法,包括以下步骤:
(1)将含活性锂的液体副产品应用过后得到的含锂离子的废液中加入碳酸盐溶液,获得碳酸锂沉淀;步骤(1)中,所述碳酸盐溶液由溶质和溶剂共同构成,所述溶质为与碳酸锂在溶剂中具有溶解度差异的碳酸盐,包括但不限于碳酸钠。
(2)将步骤(1)中得到的碳酸锂沉淀洗涤,干燥得到回收物碳酸锂成品。
以上方法中,所述锂箔材可以是锂金属箔、锂复合箔、锂合金箔中的一种或多种。其中,锂复合箔包括锂-金属复合箔、锂-非金属复合箔,其中,锂/金属M复合箔中,元素M包括Cu、Bi、Ti、V、Cr、Fe、Co、Ni、Cs、Zr、和 Ta中的一种或多种,锂/非金属X复合箔中,元素X包括B、C和S中的一种或多种;锂合金箔为Li xN合金箔,其中,元素N包括Zn、In、Al、Mg、B、Pb、Pd、Pd、Sn、Si、Ca、Ag、Au、Ga和Ge中的一种或多种。
以上方法中,液相减薄剂由络合剂和有机溶剂共同制备而成,络合剂选自萘及其衍生物、联苯及其衍生物、蒽及其衍生物、菲及其衍生物、芘及其衍生物、并四苯及其衍生物中的一种或多种。有机溶剂选自可以溶解萘及其衍生物、联苯及其衍生物、蒽及其衍生物、菲及其衍生物、芘及其衍生物、并四苯及其衍生物的有机溶剂,包括但不限于乙二醇二甲醚、四氢呋喃、二乙二醇二甲醚、四乙二醇二甲醚中的一种或多种。
实际上,络合剂也不限于以上几种,只要满足以下条件都能用作络合剂:(1)一种多环芳烃;(2)可以接收锂的电子形成稳定的自由基阴离子。有机溶剂也不限于以上几种,只要满足以下条件也可以作为有机溶剂:溶剂可以溶解络合剂且不会与锂发生反应。
为了更详细的说明本发明方法,下面结合具体实施例进一步详细阐述。
实施例1
称量一定量的萘,将其均匀地溶于一定量的乙二醇二甲醚中,配制浓度为0.01mol/L的萘/乙二醇二甲醚有机溶液。在保护性气氛中,将锂箔厚度为100μm,铜箔厚度为10μm的锂铜复合带卷材通过放卷,在轨道内铺展完全铺展开,其中锂箔一侧朝上。使用喷嘴向锂铜复合带材的锂箔一侧均匀地喷淋0.01mol/L的萘/乙二醇二甲醚有机溶液,使其与锂箔充分反应,将锂铜复合带箔材浸入纯乙二醇二甲醚溶液中,洗涤后得到超薄锂铜复合带。
实施例2
称量一定量的萘,将其均匀地溶于一定量的乙二醇二甲醚中,配制浓度为0.1mol/L的萘/乙二醇二甲醚有机溶液。在保护性气氛中,将锂箔厚度为100 μm,铜箔厚度为10μm的锂铜复合带卷材通过放卷,在轨道内铺展完全铺展开,其中锂箔一侧朝上。使用喷嘴向锂铜复合带材的锂箔一侧均匀地喷淋0.1mol/L的萘/乙二醇二甲醚有机溶液,使其与锂箔充分反应,将锂铜复合带箔材浸入纯乙二醇二甲醚溶液中,洗涤后得到超薄锂铜复合带。
实施例3
称量一定量的萘,将其均匀地溶于一定量的乙二醇二甲醚中,配制浓度为1mol/L的萘/乙二醇二甲醚有机溶液。在保护性气氛中,将锂箔厚度为100μm,铜箔厚度为10μm的锂铜复合带卷材通过放卷,在轨道内铺展完全铺展开,其中锂箔一侧朝上。使用喷嘴向锂铜复合带材的锂箔一侧均匀地喷淋1mol/L的萘/乙二醇二甲醚有机溶液,使其与锂箔充分反应,将锂铜复合带箔材浸入纯乙二醇二甲醚溶液中,洗涤后得到超薄锂铜复合带。
实施例4
称量一定量的萘,将其均匀地溶于一定量的乙二醇二甲醚中,配制浓度为2mol/L的萘/乙二醇二甲醚有机溶液。在保护性气氛中,将锂箔厚度为100μm,铜箔厚度为10μm的锂铜复合带卷材通过放卷,在轨道内铺展完全铺展开,其中锂箔一侧朝上。使用喷嘴向锂铜复合带材的锂箔一侧均匀地喷淋2mol/L的萘/乙二醇二甲醚有机溶液,使其与锂箔充分反应,将锂铜复合带箔材浸入纯乙二醇二甲醚溶液中,洗涤后得到超薄锂铜复合带。
实施例5
称量一定量的萘,将其均匀地溶于一定量的乙二醇二甲醚中,配制浓度为3mol/L的萘/乙二醇二甲醚有机溶液。在保护性气氛中,将锂箔厚度为100μm,铜箔厚度为10μm的锂铜复合带卷材通过放卷,在轨道内铺展完全铺展开,其中锂箔一侧朝上。使用喷嘴向锂铜复合带材的锂箔一侧均匀地喷淋3mol/L的萘/乙二醇二甲醚有机溶液,使其与锂箔充分反应,将锂铜复合带箔材浸入纯乙二醇二甲醚溶液中,洗涤后得到超薄锂铜复合带。
实施例6
称量一定量的萘,将其均匀地溶于一定量的乙二醇二甲醚中,配制浓度为4mol/L的萘/乙二醇二甲醚有机溶液。在保护性气氛中,将锂箔厚度为100μm,铜箔厚度为10μm的锂铜复合带卷材通过放卷,在轨道内铺展完全铺展开,其中锂箔一侧朝上。使用喷嘴向锂铜复合带材的锂箔一侧均匀地喷淋4mol/L的萘/乙二醇二甲醚有机溶液,使其与锂箔充分反应,将锂铜复合带箔材浸入纯乙二醇二甲醚溶液中,洗涤后得到超薄锂铜复合带。
实施例7
称量一定量的萘,将其均匀地溶于一定量的乙二醇二甲醚中,配制浓度为5mol/L的萘/乙二醇二甲醚有机溶液。在保护性气氛中,将锂箔厚度为100μm,铜箔厚度为10μm的锂铜复合带卷材通过放卷,在轨道内铺展完全铺展开,其中锂箔一侧朝上。使用喷嘴向锂铜复合带材的锂箔一侧均匀地喷淋5mol/L的萘/乙二醇二甲醚有机溶液,使其与锂箔充分反应,将锂铜复合带箔材浸入纯乙二醇二甲醚溶液中,洗涤后得到超薄锂铜复合带。
实施例8
称量一定量的萘,将其均匀地溶于一定量的乙二醇二甲醚中,配制浓度为10mol/L的萘/乙二醇二甲醚有机溶液。在保护性气氛中,将锂箔厚度为100μm,铜箔厚度为10μm的锂铜复合带卷材通过放卷,在轨道内铺展完全铺展开,其中锂箔一侧朝上。使用喷嘴向锂铜复合带材的锂箔一侧均匀地喷淋10mol/L的萘/乙二醇二甲醚有机溶液,使其与锂箔充分反应,将锂铜复合带箔材浸入纯乙二醇二甲醚溶液中,洗涤后得到超薄锂铜复合带。
实施例9
称量一定量的萘,将其均匀地溶于一定量的乙二醇二甲醚中,配制浓度为10mol/L的萘/乙二醇二甲醚有机溶液。在干燥气氛中,将锂箔厚度为100μm,铜箔厚度为10μm的锂铜复合带卷材通过放卷,在轨道内铺展完全铺展开, 其中锂箔一侧朝上。将锂铜复合带材浸泡于10mol/L的萘/乙二醇二甲醚有机溶液中,使其与锂箔充分反应,将锂铜复合带箔材浸入纯乙二醇二甲醚溶液中,洗涤后得到超薄锂铜复合带。
表1实施例中不同浓度有机溶液减薄得到锂箔详细数据
Figure PCTCN2022137856-appb-000001
其中,表1中液相减薄剂与较厚的锂箔接触反应的方式为动态或者静态是指液相减薄剂在与锂接触反应时是流动的还是静态的,比如喷淋是一种动态反应方式,浸泡是一种静态反应方式。
以上实施例可以在保护气氛下进行,也可以在干燥环境下进行,而不局限于保护气氛下,其实金属锂的操作环境只要将水含量降下去即可,在干燥房能够安全操作,纯氧和干燥条件下的氧与金属锂不易发生反应。
实施例10
称取一定量的碳酸钠,将其均匀地溶于一定量的水中,配制室温下浓度为300g/L的饱和碳酸钠溶液。将含活性锂的副产品应用过后得到的含锂离子的废液,即含有锂离子的锂萘/乙二醇二甲醚溶液,将饱和碳酸钠溶液加入锂萘 /乙二醇二甲醚废液中,充分反应10min后得到碳酸锂沉淀,将碳酸锂沉淀置于40℃的热水洗涤,并在300℃的干燥箱中进行干燥,得到回收物碳酸锂成品。
本发明使用液相减薄剂制备超薄锂,获得了锂箔厚度在20μm以下的锂箔材,厚度可任意调控,表面洁净平整,符合锂电池中金属锂负极以及其他类型负极材料补锂工艺的使用需求,且减薄过程产生的含锂副产品可进行再利用以及回收处理,绿色环保,且方法简单易行,不需要精密昂贵的生产设备,具有广阔的应用前景。
实施例11
称量一定量的联苯,将其均匀地溶于一定量的四氢呋喃中,配制浓度为2.8mol/L的联苯/四氢呋喃有机溶液。在保护性气氛中,将厚度为80μm的Li/Zn合金的锂箔通过放卷,在轨道内铺展完全铺展开,其中一侧朝上。使用喷嘴向锂箔一侧均匀地喷淋2.8mol/L的萘/乙二醇二甲醚有机溶液,使其与锂箔充分反应,将Li/Zn合金的锂箔浸入纯乙二醇二甲醚溶液中,洗涤后得到超薄Li/Zn合金的锂箔带,其厚度为14μm。
实施例12
称量一定量的蒽,将其均匀地溶于一定量的二乙二醇二甲醚中,配制浓度为3.8mol/L的蒽/二乙二醇二甲醚有机溶液。在保护性气氛中,将厚度为90μm的Li/C复合锂箔通过放卷,在轨道内铺展直到完全铺展开,其中有Li的一侧朝上。使用喷嘴向Li/C复合锂箔复合带材的锂箔一侧均匀地喷淋3.8mol/L的蒽/二乙二醇二甲醚有机溶液,使其与锂箔充分反应,将Li/C复合锂箔浸入纯乙二醇二甲醚溶液中,洗涤后得到超薄锂箔带,其厚度为10μm。
实施例13
称量一定量的菲,将其均匀地溶于一定量的四乙二醇二甲醚中,配制浓度 为1.8mol/L的菲/四乙二醇二甲醚有机溶液。在保护性气氛中,将厚度为100μm的Li/Al合金锂箔通过放卷,在轨道内铺展直到完全铺展开。使用喷嘴向Li/Al合金锂箔带材的一侧均匀地喷淋1.8mol/L的菲/四乙二醇二甲醚有机溶液,使其与锂箔充分反应,将Li/Al合金锂箔带材浸入纯乙二醇二甲醚溶液中,洗涤后得到超薄锂箔带,其厚度为13μm。
实施例14
称量一定量的芘,将其均匀地溶于一定量的四乙二醇二甲醚中,配制浓度为0.9mol/L的芘/四乙二醇二甲醚有机溶液。在保护性气氛中,将厚度为100μm的Li/Mg合金锂箔通过放卷,在轨道内铺展直到完全铺展开。使用喷嘴向Li/Mg合金锂箔带材的一侧均匀地喷淋0.9mol/L的芘/四乙二醇二甲醚有机溶液,使其与Li/Mg合金锂箔充分反应,将Li/Mg合金锂箔带材浸入纯乙二醇二甲醚溶液中,洗涤后得到超薄锂箔带,其厚度为13μm。
实施例15
称量一定量的并四苯,将其均匀地溶于一定量的四乙二醇二甲醚中,配制浓度为0.5mol/L的并四苯/四乙二醇二甲醚有机溶液。在保护性气氛中,将厚度为100μm的Li/Ge合金锂箔通过放卷,在轨道内铺展直到完全铺展开。使用喷嘴向Li/Ge合金锂箔带材的一侧均匀地喷淋0.9mol/L的并四苯/四乙二醇二甲醚有机溶液,使其与Li/Ge合金锂箔充分反应,将Li/Ge合金锂箔带材浸入纯乙二醇二甲醚溶液中,洗涤后得到超薄锂箔带,其厚度为18μm。
图4为本发明一个实施例的超薄金属锂箔截面的电子显微镜照片,由图可知,得到的超薄锂箔材的厚度为10微米。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种超薄锂箔材的加工回收方法,其特征在于,其包括将较厚的锂箔材进行减薄步骤,具体为,将液相减薄剂与锂金属进行接触反应,通过液相减薄剂对金属锂的腐蚀,实现对锂箔材的进一步减薄,用于制备厚度小于20μm超薄锂。
  2. 如权利要求1所述的超薄锂箔材的加工回收方法,其特征在于,所述液相减薄剂包括络合剂和有机溶剂,络合剂溶解在有机溶剂中,络合剂选自萘及其衍生物、联苯及其衍生物、蒽及其衍生物、菲及其衍生物、芘及其衍生物、并四苯及其衍生物中的一种或多种。
  3. 如权利要求2所述的超薄锂箔材的加工回收方法,其特征在于,所述有机溶剂选自乙二醇二甲醚、四氢呋喃、二乙二醇二甲醚、四乙二醇二甲醚中的一种或多种。
  4. 如权利要求2所述的超薄锂箔材的加工回收方法,其特征在于,络合剂在有机溶剂中的浓度为0.01mol/L~10mol/L。
  5. 如权利要求2所述的超薄锂箔材的加工回收方法,其特征在于,与减薄剂接触反应后的锂箔材经过洗涤剂洗涤除去表面残余的减薄剂,得到超薄锂箔材,其中,洗涤剂选自乙二醇二甲醚、四氢呋喃、二乙二醇二甲醚、四乙二醇二甲醚中的一种或多种。
  6. 如权利要求1所述的超薄锂箔材的加工回收方法,其特征在于,所述较厚的锂箔材包括锂金属箔、锂复合箔和锂合金箔中的一种或多种,其中,锂复合箔包括锂/金属M复合箔,其中,元素M包括Cu、Bi、Ti、V、Cr、Fe、Co、Ni、Cs、Zr、和Ta中的一种或多种,以及锂/非金属X复合箔,其中,元素X包括B、C和S中的一种或多种;锂合金箔为Li xN合金箔,其中,元素N包括Zn、In、Al、Mg、B、Pb、Pd、Pd、Sn、Si、Ca、Ag、Au、Ga和Ge中的一种或多种。
  7. 如权利要求1-6之一所述的一种超薄锂箔材的加工回收方法,其特征在于,根据最终超薄锂的厚度要求,能够任意调节接触反应的时间,接触方式或者液相减薄剂的浓度,实现超薄锂的厚度任意调节。
  8. 如权利要求7所述的一种超薄锂箔材的加工回收方法,其特征在于,将液相减薄剂对金属锂进行腐蚀,洗涤后得到含活性锂的洗液,洗液可以作为含活性锂的液体副产品应用,用作预锂化试剂、表面清洗剂或/和还原试剂。
  9. 如权利要求8所述的一种超薄锂箔材的加工回收方法,其特征在于,在含活性锂的液体副产品应用完后,获得含锂离子的废液,向废液中加入碳酸盐溶液,获得碳酸锂沉淀,实现溶解在液相中的锂源的回收。
  10. 如权利要求1-9之一所述的超薄锂箔材的加工回收方法制备获得的产品,其特征在于,其产品包括超薄锂箔材,厚度小于20μm。
PCT/CN2022/137856 2022-03-07 2022-12-09 一种超薄锂箔材的加工回收方法以及产品 WO2023169022A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210224380.1A CN114583312B (zh) 2022-03-07 2022-03-07 一种超薄锂箔材的加工回收方法以及产品
CN202210224380.1 2022-03-07

Publications (1)

Publication Number Publication Date
WO2023169022A1 true WO2023169022A1 (zh) 2023-09-14

Family

ID=81779381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/137856 WO2023169022A1 (zh) 2022-03-07 2022-12-09 一种超薄锂箔材的加工回收方法以及产品

Country Status (2)

Country Link
CN (1) CN114583312B (zh)
WO (1) WO2023169022A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114583312B (zh) * 2022-03-07 2023-08-29 华中科技大学 一种超薄锂箔材的加工回收方法以及产品
WO2024007236A1 (zh) * 2022-07-07 2024-01-11 宁德时代新能源科技股份有限公司 活泼金属处理装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107954455A (zh) * 2017-12-06 2018-04-24 天齐锂业股份有限公司 一种利用含锂废液制备电池级碳酸锂的方法
CN110212166A (zh) * 2019-06-12 2019-09-06 苏州大学 一种在锂金属负极表面构建双层保护界面的方法
CN112142077A (zh) * 2020-09-08 2020-12-29 北京科技大学 磷酸铁锂正极废料回收制备电池级碳酸锂和磷酸铁的方法
CN113013373A (zh) * 2021-02-23 2021-06-22 溧阳聚阳智能科技有限公司 一种极片预锂化工艺
CN113097451A (zh) * 2021-04-01 2021-07-09 昆山宝创新能源科技有限公司 一种预锂化方法、预锂化负极片和锂离子电池
CN114583312A (zh) * 2022-03-07 2022-06-03 华中科技大学 一种超薄锂箔材的加工回收方法以及产品

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100542213B1 (ko) * 2003-10-31 2006-01-10 삼성에스디아이 주식회사 리튬 금속 전지용 음극 및 이를 포함하는 리튬 금속 전지
JP2007305548A (ja) * 2006-05-15 2007-11-22 Matsushita Electric Ind Co Ltd リチウム薄膜の製造方法及び非水電解質電池の製造方法
JP2016058191A (ja) * 2014-09-08 2016-04-21 三井化学株式会社 リチウム含有活物質、リチウムイオン二次電池用電極、リチウムイオン二次電池、およびリチウム含有活物質の製造方法
CN105489841A (zh) * 2015-12-22 2016-04-13 中天储能科技有限公司 一种用于锂离子电池电极片预掺杂锂的方法
JP2017195028A (ja) * 2016-04-18 2017-10-26 日立マクセル株式会社 非水電解液電池およびその製造方法
CN207265160U (zh) * 2017-09-13 2018-04-20 中国科学院青岛生物能源与过程研究所 一种连续制备超薄复合锂带的装置
CN109873122B (zh) * 2017-12-04 2021-08-03 北京壹金新能源科技有限公司 一种超薄金属锂复合体及其制备方法和用途
CN111725496A (zh) * 2019-03-18 2020-09-29 天津中能锂业有限公司 超薄锂箔材及其制备方法
CN209822779U (zh) * 2019-03-18 2019-12-20 天津中能锂业有限公司 超薄锂箔材及制备超薄锂箔材的装置
CN111785933A (zh) * 2019-04-04 2020-10-16 武汉大学 一种锂合金薄膜材料的工业化生产方法
CN110212152A (zh) * 2019-05-28 2019-09-06 合肥国轩高科动力能源有限公司 一种锂离子电池极片卷对卷预锂化方法及装置
CN112928247B (zh) * 2019-12-06 2022-12-02 北京航空航天大学 超薄金属锂材、金属锂复合材料及其制备方法
CN111755693A (zh) * 2020-05-29 2020-10-09 湖南立方新能源科技有限责任公司 一种复合金属锂负极及其制备方法、锂离子电池
CN113066972B (zh) * 2021-03-19 2022-06-17 厦门高容新能源科技有限公司 一种补锂硅材料及其制备方法、包含补锂硅材料的电极及电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107954455A (zh) * 2017-12-06 2018-04-24 天齐锂业股份有限公司 一种利用含锂废液制备电池级碳酸锂的方法
CN110212166A (zh) * 2019-06-12 2019-09-06 苏州大学 一种在锂金属负极表面构建双层保护界面的方法
CN112142077A (zh) * 2020-09-08 2020-12-29 北京科技大学 磷酸铁锂正极废料回收制备电池级碳酸锂和磷酸铁的方法
CN113013373A (zh) * 2021-02-23 2021-06-22 溧阳聚阳智能科技有限公司 一种极片预锂化工艺
CN113097451A (zh) * 2021-04-01 2021-07-09 昆山宝创新能源科技有限公司 一种预锂化方法、预锂化负极片和锂离子电池
CN114583312A (zh) * 2022-03-07 2022-06-03 华中科技大学 一种超薄锂箔材的加工回收方法以及产品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TANG WEI, YIN XUESONG, CHEN ZHONGXIN, FU WEI, LOH KIAN PING, ZHENG GUANGYUAN WESLEY: "Chemically polished lithium metal anode for high energy lithium metal batteries", ENERGY STORAGE MATERIALS, vol. 14, 1 September 2018 (2018-09-01), pages 289 - 296, XP093090931, ISSN: 2405-8297, DOI: 10.1016/j.ensm.2018.05.009 *

Also Published As

Publication number Publication date
CN114583312B (zh) 2023-08-29
CN114583312A (zh) 2022-06-03

Similar Documents

Publication Publication Date Title
WO2023169022A1 (zh) 一种超薄锂箔材的加工回收方法以及产品
JP2839520B2 (ja) 薄いフィルム状の電気化学的リチウム電池の構成要素の組立方法
WO2018103563A1 (zh) 一种锂电池的金属锂负极
CN105633360B (zh) 无定形态四氧化三铁/石墨烯气凝胶复合材料、制备方法及其应用
CN108807842B (zh) 硅@碳-石墨烯基柔性复合材料及其制备方法、锂电池
CN111755699B (zh) 一种高稳定长寿命金属锂负极材料及其制备方法与应用
CN113451544B (zh) 一种预锂化极片及制备方法、及生产系统、及锂离子电池
CN102694152A (zh) 一种负极活性材料及其制备方法和一种锂离子电池
CN107634228A (zh) 一种锂离子电池用电解铜箔无铬防氧化技术
WO2020258842A1 (zh) 超薄锂膜预制件及其制备方法
CN106784996A (zh) 一种高功率密度锂离子电池
CN113745476A (zh) 一种锰基锌离子电池正极材料及其制备方法和应用
CN112786885A (zh) 一种长寿命、无枝晶的锂电池用金属锂负极及其制备方法与应用
CN108251827A (zh) 一种锂离子电池用电解铜箔的无铬防氧化液及防氧化工艺
CN115764007B (zh) 一种大面积制备锌@氧化钒复合薄膜的方法及其在水系锌电池中的应用
WO2024001591A1 (zh) 一种基于干法制备电极膜的钠离子电池负极预钠化方法
WO2023231448A1 (zh) 一种正、负极材料的制备方法及锂离子电池
CN116404143A (zh) 一种钠离子电池正极材料及其制备方法与用途
CN109888183B (zh) 一种有机无机杂化薄膜的制备方法及应用
CN116826303A (zh) 一种隔膜补锂并稳定锂化层的方法
WO2023184879A1 (zh) 一种集流体刻蚀箔材及其制备方法、电极、锂电池
CN207624803U (zh) 一种锂离子电池正极结构和锂离子电池
CN107146881B (zh) 改性镍锰酸锂正极复合材料及制备方法、锂离子电池
CN113707885B (zh) 一种无负极碱金属离子电池中负极集流体的改性方法
WO2022246598A1 (zh) 用于金属镍镀层的电解液及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22930644

Country of ref document: EP

Kind code of ref document: A1