CN106784996A - 一种高功率密度锂离子电池 - Google Patents

一种高功率密度锂离子电池 Download PDF

Info

Publication number
CN106784996A
CN106784996A CN201710029580.0A CN201710029580A CN106784996A CN 106784996 A CN106784996 A CN 106784996A CN 201710029580 A CN201710029580 A CN 201710029580A CN 106784996 A CN106784996 A CN 106784996A
Authority
CN
China
Prior art keywords
copper foil
lithium ion
aluminium foil
conducting film
power density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710029580.0A
Other languages
English (en)
Inventor
李庆余
崔李三
张晓辉
吴强
赖飞燕
梁沁沁
彭继明
耿斌
王红强
黄有国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Giti Battery Co
Original Assignee
Anhui Giti Battery Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Giti Battery Co filed Critical Anhui Giti Battery Co
Priority to CN201710029580.0A priority Critical patent/CN106784996A/zh
Publication of CN106784996A publication Critical patent/CN106784996A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明提供一种高功率密度锂离子电池,属于锂离子电池技术领域。所述锂离子电池包括正极片和负极片,正极片包括铝箔、正极导电剂和正极粘结剂;所述负极片包括铜箔和负极导电剂;所述正极粘结剂为PVDF,且分子量为30~70万;所述铜箔和所述铝箔在制作极片前先进行表面处理,然后在铝箔和铜箔表面附着一层导电膜,所述导电膜的厚度为1~5μm。本发明通过对铜箔和铝箔的处理和增加导电膜,提高了极片的导电率,进而提升了电池的倍率性能;同时使用低分子量的正极粘结剂PVDF,使正负极片的厚度反弹更小,降低了极片厚度对离子传递产生的阻碍,减小了电池内阻,进一步提高了电池容量的发挥,促进了电池功率密度的提升。

Description

一种高功率密度锂离子电池
【技术领域】
本发明锂离子电池技术领域,具体涉及一种高功率密度锂离子电池。
【背景技术】
目前锂离子电池以高能量密度、循环寿命长、自放电小、无记忆效应、环境友好等优点,迅速成为多数电子类产品不可或缺的一部分。如,手机,笔记本,数码相机等。但锂离子电池的功率密度较低,大倍率电流放电正极材料克容量发挥低,同时循环性能差。限制了锂离子电池在很多方面的应用,如新能源汽车、太阳能、风能等领域。人们为了解决上述问题,提高了正极中导电剂的质量百分比,但这种方法会降低锂离子电池的能量密度。因此,寻找其他的解决途径,在不降低能量密度的前提下,提高了锂离子电池的功率密度非常有必要。
目前,锂离子电池行业提高功率的主要方法:(1)通过正极材料掺杂金属元素或颗粒表面改性等达到提高正极材料的导电率,公开号CN103296249A公开了“掺杂改性锂镍钴锰、制备方法及锂离子电池”,通过掺杂改性锂镍钴锰的二次颗粒由一次颗粒组成,二次颗粒为球状或类球状,一次颗粒的表面非均匀掺杂有纳米金属氧化物层;制备方法是在锂镍钴锰的前驱体合成阶段对其掺杂纳米金属氧化物而进行掺杂改性。采用本发明掺杂改性锂镍钴锰作为正极活性材料的锂离子电池,在充放电条件下,具有良好的循环性和热稳定性,可以有效满足锂离子电池的高能量密度、高功率密度;(2)提高负极材料导电率,公开号CN103178243A公开了“锂离子电池用石墨烯/金属复合负极材料及其制备方法”,通过化学刻蚀制备得到光栅结构的金属电极及氧化还原化学法制备得到石墨烯/二氧化钛复合粒子,并采用电化学沉积法在光栅结构的金属电极上沉积石墨烯/二氧化钛复合粒子,进一步热处理获得石墨烯/金属复合负极材料。本发明利用纳米二氧化钛粒子用作石墨烯堆叠的改性,金属光栅结构作为石墨烯载体,使之垂直于集流体排成阵列,这种结构既减小了锂离子在石墨烯片层之间的扩散距离,同时也使锂离子在石墨烯片层间的嵌入、脱出更加快速,因而所得复合材料作为锂离子电池负极时,具有高的比容量,优异的循环稳定性和倍率性能,有望用于高能量密度、高功率密度的锂离子电池负极材料;
实际正负极材料本身容量问题很小,也有能达到实际的功率效果潜力,但生产或制作电池的过程中,却往往材料的后处理及工艺工序确实人们最容易忽略的,其对材料容量发挥的影响也是非常大的,因此会造成本身材料性能良好,而在实际电池生产制作过程中容量发挥不正常,进而影响电池的整体性能,造成电池容量低,内阻大,功率密度低等情况。
【发明内容】
本发明的发明目的在于:为解决上述存在的问题,本发明的目的在于提供一种高功率密度锂离子电池,通过正负极片对应的铜箔和铝箔的处理和增加导电膜,提高了锂离子电池的导电率,进而提升了电池的大倍率放电性能,同时使用低分子量的正极粘结剂PVDF,使正负极片的厚度反弹更小,降低了极片厚度对离子传递产生的阻碍,减小了电池内阻,进一步提高了电池容量的发挥,促进了电池功率密度的提升。
为了实现上述目的,本发明采用的技术方案如下:
本发明一种高功率密度锂离子电池,包括正极片和负极片;所述正极片包括铝箔、正极导电剂和正极粘结剂;所述负极片包括铜箔和负极导电剂;所述正极粘结剂为PVDF,且分子量为30~70万;所述铜箔和所述铝箔在制作极片前先进行表面处理,然后在铝箔和铜箔表面附着一层导电膜,所述导电膜的厚度为1~5μm。
正极粘结剂目前市面上使用的PVDF的分子量均为70万分子量以上的,正极材料涂布成正极片再经过滚压,PVDF固化后,极片厚度反弹较大,而且PVDF的分子量越大,极片厚度滚压后和充放电后反弹值也越大,;而使用低分子量的PVDF,可以有效地减小正极片滚压后的反弹,也能减小电池充放电后极片的厚度反弹,从而减小极片厚度对锂离子迁移或电子传递的距离,较好的降低了电池的内阻,也减少了电池的发热量,提高了电池能量的利用率。
本发明的正极片在涂布正负极极片前,先在铝箔或铜箔上附着一层导电膜,该导电膜可以由重量比95~98:2~5的石墨烯和所述PVDF组成,且用静电喷涂货丝网印刷在铝箔上;也可以由石墨烯组成,且导电膜利用气相沉积法附着在铝箔上。因石墨烯的导电能力非常强,使用石墨烯作为导电膜,可以增加正极片的电导率,降低内阻,提高正极材料容量的发挥,进而达到提升电池容量的效果。
在附着导电膜之前,本发明对铜箔和铝箔的表面处理,处理方法包括以下步骤:
(1)除油:将铝箔或铜箔先放入0.5~2mol/L的碱溶液中浸泡10~30min,然后用去离子水冲洗;
(2)除锈:将除油水洗后的铝箔或铜箔放入1.0~5.0mol/L酸溶液中浸泡3~10min,然后用去离子水冲洗;
本发明所述碱溶液中的碱为氢氧化钠、氢氧化钾、氢氧化钙或碳酸氢钠一种或几种的混合物;而酸溶液中的酸为硫酸、盐酸或硝酸中的一种或几种混合物;铜箔或铝箔使用碱溶液和酸溶液进行处理,可以快速达到出去表面油渍和氧化物的目的,可以使铜箔或铝箔中的铜或铝充分与导电剂接触,降低了接触电阻,提高了极片的导电率。
综上所述,由于采用了上述技术方案,本发明的有益效果是:本发明采用用低分子量的PVDF作为正极粘结剂减小正极片厚度的反弹率,从而减小极片厚度对锂离子迁移或电子传递的距离,较好的降低了电池的内阻,也减少了电池的发热量,提高了电池能量的利用率;同时,通过正负极片对应的铜箔和铝箔的处理和增加导电膜,提高了锂离子电池的导电率,进而提升了电池的大倍率放电性能,同时使用低分子量的正极粘结剂PVDF,使正负极片的厚度反弹更小,降低了极片厚度对离子传递产生的阻碍,减小了电池内阻,进一步提高了电池容量的发挥,促进了电池功率密度的提升。
【附图说明】
图1是本发明实施例1的电池铜箔和铝箔未进行处理的不同电流的放电比容量曲线。
图2是本发明对照组1的电池铜箔和铝箔已进行处理的不同电流的放电比容量曲线。
【具体实施方式】
以下通过具体实施例及附图及数据表对本发明作进一步详述。
实施例1
一种高功率密度锂离子电池,包括正极片和负极片;所述正极片包括铝箔、正极导电剂和正极粘结剂;所述负极片包括铜箔和负极导电剂;所述正极粘结剂为PVDF,且分子量为30~50万;所述铜箔和所述铝箔在制作极片前先进行表面处理,然后在铝箔和铜箔表面附着一层导电膜,所述导电膜的厚度为1μm。
正极片在涂布正负极极片前,先在铝箔或铜箔上附着一层导电膜,该导电膜可以由重量比95:5的石墨烯和所述PVDF组成,且用静电喷涂货丝网印刷在铝箔上;也可以由石墨烯组成,且导电膜利用气相沉积法附着在铝箔上。因石墨烯的导电能力非常强,使用石墨烯作为导电膜,可以增加正极片的电导率,降低内阻,提高正极材料容量的发挥,进而达到提升电池容量的效果。
在附着导电膜之前,本发明对铜箔和铝箔的表面处理,处理方法包括以下步骤:
(1)除油:将铝箔或铜箔先放入0.5mol/L的碱溶液中浸泡10min,然后用去离子水冲洗;
(2)除锈:将除油水洗后的铝箔或铜箔放入1.0mol/L酸溶液中浸泡3min,然后用去离子水冲洗;
其中,碱溶液中的碱为氢氧化钠;而酸溶液中的酸为硫酸。
实施例2
一种高功率密度锂离子电池,包括正极片和负极片;所述正极片包括铝箔、正极导电剂和正极粘结剂;所述负极片包括铜箔和负极导电剂;所述正极粘结剂为PVDF,且分子量为50~70万;所述铜箔和所述铝箔在制作极片前先进行表面处理,然后在铝箔和铜箔表面附着一层导电膜,所述导电膜的厚度为5μm。
正极片在涂布正负极极片前,先在铝箔或铜箔上附着一层导电膜,该导电膜可以由重量比98:2的石墨烯和所述PVDF组成,且用静电喷涂货丝网印刷在铝箔上;也可以由石墨烯组成,且导电膜利用气相沉积法附着在铝箔上。因石墨烯的导电能力非常强,使用石墨烯作为导电膜,可以增加正极片的电导率,降低内阻,提高正极材料容量的发挥,进而达到提升电池容量的效果。
在附着导电膜之前,本发明对铜箔和铝箔的表面处理,处理方法包括以下步骤:
(1)除油:将铝箔或铜箔先放入2mol/L的碱溶液中浸泡30min,然后用去离子水冲洗;
(2)除锈:将除油水洗后的铝箔或铜箔放入5.0mol/L酸溶液中浸泡10min,然后用去离子水冲洗;
其中,碱溶液中的碱为氢氧化钾;而酸溶液中的酸为盐酸。
实施例3
一种高功率密度锂离子电池,包括正极片和负极片;所述正极片包括铝箔、正极导电剂和正极粘结剂;所述负极片包括铜箔和负极导电剂;所述正极粘结剂为PVDF,且分子量为50~70万;所述铜箔和所述铝箔在制作极片前先进行表面处理,然后在铝箔和铜箔表面附着一层导电膜,所述导电膜的厚度为3μm。
正极片在涂布正负极极片前,先在铝箔或铜箔上附着一层导电膜,该导电膜可以由重量比96:4的石墨烯和所述PVDF组成,且用静电喷涂货丝网印刷在铝箔上;也可以由石墨烯组成,且导电膜利用气相沉积法附着在铝箔上。因石墨烯的导电能力非常强,使用石墨烯作为导电膜,可以增加正极片的电导率,降低内阻,提高正极材料容量的发挥,进而达到提升电池容量的效果。
在附着导电膜之前,本发明对铜箔和铝箔的表面处理,处理方法包括以下步骤:
(1)除油:将铝箔或铜箔先放入1.2mol/L的碱溶液中浸泡20min,然后用去离子水冲洗;
(2)除锈:将除油水洗后的铝箔或铜箔放入3.5mol/L酸溶液中浸泡7min,然后用去离子水冲洗;
其中,碱溶液中的碱为氢氧化钙和碳酸氢钠1:1的混合物;而酸溶液中的酸为硝酸。
效果验证:
以容量为3700mAh的856068型号锂离子电池为例。电池电芯的标准尺寸为厚度7.6mm,宽度50.0mm,长度68.0mm,本发明用磷酸锰铁锂的正极材料对应电池的标准体积能量密度为426.7Wh/L。
实验组:实验组采用实施例1~3的材料及其组成进行组装电池进行试验,电池的组装工艺如下:
(1)正极的制备:钴酸锂为正极活性物质,超级导电碳黑(SP)为导电剂,聚偏氟乙烯(PVDF)为粘结剂,N-二甲基吡咯烷酮(NMP)为溶剂。制备浆料粘度控制为2000~8500mPa·s。本实施例所用质量百分比为钴酸锂:SP:PVDF=97:1.4:1.6。首先将PVDF充分溶于NMP中制成胶液,继续添加SP搅拌均匀,最后加入钴酸锂持续搅拌均匀后抽真空,除去浆料中的气泡。最后将所得浆料双面均匀的涂敷在12μm厚度的铝箔上。经干燥,辊压,裁片后进行极耳焊接,极耳厚度为0.1mm。完成正极片制作。
(2)负极的制备:以石墨为负极活性物质,导电剂为高电导率的乙炔黑,粘结剂为水性丁苯橡胶乳SBR和羧甲基纤维素钠CMC的组合物,水为溶剂。制备浆料粘度控制为1000~4500mPa·s。本实施例所用质量百分比为石墨:AB:CMC:SBR=96.5:1:1:1.5。首先将CMC充分溶于水中制成胶液,继续添加AB搅拌均匀,在加入石墨持续搅拌均匀后加入SBR搅拌1.5h,抽真空,除去浆料中的气泡。最后将所得浆料双面均匀的涂敷在8μm厚度铜箔上。经干燥,辊压,裁片后进行极耳焊接,极耳厚度为0.1mm。完成负极片制作。
(3)电池组装:隔膜采用厚度为12μm的微孔聚乙烯膜。铝塑膜厚度为113μm。将制备好的正、负极片和隔膜卷绕成卷芯,进行一次封装、注液并进行封装,在经化成、二次封装完成电池制作。
对照组:以与实验组同型号的电池进行组装测试。对照组的材料为与实验组相同的钴酸锂和石墨,正极片制作时,正极粘结剂的分子量分别为70~100万和100~120万的PVDF,材料的配比及用量与实验组相同,而且铝箔不先附着任何导电膜按常规工艺直接涂布正极材料,并按照实验组进行电池的组装。
为方便对比,对照组的其他参数均与实验组相同,具体结果见表1和2所示:
表1正极片滚压后的厚度与极片卷绕前反弹的厚度
滚压后正极极片厚度/mm 卷绕前正极片厚度/mm 正极片反弹率
实施例1 0.194 0.201 3.61%
实施例2 0.195 0.205 5.13%
实施例3 0.194 0.203 4.64%
对照组1 0.195 0.210 7.69%
对照组2 0.195 0.223 14.36%
表2对照组和实验组的电池参数对比
从表1和表2可以看出:正极粘结剂PVDF的分子量越大,正极片的反弹率更大,导致极片更厚,影响电池的整体厚度,进而降低了电池的体积能量密度;而负极片的厚度也随着高锰酸钾与石墨化中间相碳微球的重量比的增加而减小。使用纳米碳片/石墨化中间相碳微球复合材料比使用石墨化中间相碳微球制得的电池体积能量密度更高,而且需要的负极材料更好,负极极片厚度更薄;另外,铝箔上增加导电膜,可以降低电池内阻。
再选择实施例1和对照组2所制作的电池用不同倍率的电流进行放电,具体见附图1和附图2所示。从附图1和2中可以看出:随着放电电流的增大,铜箔和铝箔进行处理且增加了导电膜的电池放电性能比铜箔和铝箔未进行处理且无导电膜倍率性能更好,说明本发明通过铜箔铝箔的除油去氧化层,以及在铜箔铝箔上附着导电膜可以较好的提高电池的放电倍率性能,提高电池的功率密度。

Claims (7)

1.一种高功率密度锂离子电池,包括正极片和负极片;所述正极片包括铝箔、正极导电剂和正极粘结剂;所述负极片包括铜箔和负极导电剂;其特征在于,所述正极粘结剂为PVDF,且分子量为30~70万;所述铜箔和所述铝箔在制作极片前先进行表面处理,然后在铝箔和铜箔表面附着一层导电膜,所述导电膜的厚度为1~5μm。
2.根据权利要求1所述一种高功率密度锂离子电池,其特征在于,所述铜箔和铝箔的表面处理方法包括以下步骤:
(1)除油:将铝箔或铜箔先放入0.5~2mol/L的碱溶液中浸泡10~30min,然后用去离子水冲洗;
(2)除锈:将除油水洗后的铝箔或铜箔放入1.0~5.0mol/L酸溶液中浸泡3~10min,然后用去离子水冲洗。
3.根据权利要求1所述一种高功率密度锂离子电池,其特征在于,所述导电膜由重量比96~98:2~4的石墨烯和所述PVDF组成,且用静电喷涂在铝箔或铜箔上。
4.根据权利要求1所述一种高功率密度锂离子电池,其特征在于,所述导电膜由石墨烯组成,且导电膜利用气相沉积法附着在铝箔或铜箔上。
5.根据权利要求2所述一种高功率密度锂离子电池,其特征在于,所述碱溶液中的碱为氢氧化钠、氢氧化钾、氢氧化钙或碳酸氢钠一种或几种的混合物。
6.根据权利要求2所述一种高功率密度锂离子电池,其特征在于,酸溶液中的酸为硫酸、盐酸或硝酸中的一种或几种混合物。
7.根据权利要求3所述一种高功率密度锂离子电池,其特征在于,所述导电膜用丝网印刷附着在铝箔或铜箔上。
CN201710029580.0A 2017-01-16 2017-01-16 一种高功率密度锂离子电池 Pending CN106784996A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710029580.0A CN106784996A (zh) 2017-01-16 2017-01-16 一种高功率密度锂离子电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710029580.0A CN106784996A (zh) 2017-01-16 2017-01-16 一种高功率密度锂离子电池

Publications (1)

Publication Number Publication Date
CN106784996A true CN106784996A (zh) 2017-05-31

Family

ID=58945706

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710029580.0A Pending CN106784996A (zh) 2017-01-16 2017-01-16 一种高功率密度锂离子电池

Country Status (1)

Country Link
CN (1) CN106784996A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107579253A (zh) * 2017-09-13 2018-01-12 江西理工大学 一种高倍率锂离子电池
CN109524708A (zh) * 2018-09-11 2019-03-26 湖南立方新能源科技有限责任公司 一种高能量密度软包装金属锂电池
CN110745016A (zh) * 2018-07-20 2020-02-04 瑞莱国际开发股份有限公司 环保高效率油电混合车
WO2023123354A1 (zh) * 2021-12-31 2023-07-06 东莞新能源科技有限公司 电化学装置和电子装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003217665A (ja) * 2002-01-23 2003-07-31 Yuasa Corp 固体電解質電池の製造方法
US20080070116A1 (en) * 2002-05-18 2008-03-20 Samsung Sdi Co., Ltd. Lithium secondary battery with suppressed decomposition of electrolytic solution and preparation method thereof
CN102332542A (zh) * 2011-07-30 2012-01-25 珠海锂源动力科技有限公司 一种大容量高功率软包装锂离子动力电池及其制备方法
CN103606703A (zh) * 2013-11-15 2014-02-26 江苏天鹏电源有限公司 一种电流密度均匀且稳定的锂离子电池
CN105322178A (zh) * 2015-10-16 2016-02-10 广东烛光新能源科技有限公司 一种电化学电池电极、含有该电极的电化学电池及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003217665A (ja) * 2002-01-23 2003-07-31 Yuasa Corp 固体電解質電池の製造方法
US20080070116A1 (en) * 2002-05-18 2008-03-20 Samsung Sdi Co., Ltd. Lithium secondary battery with suppressed decomposition of electrolytic solution and preparation method thereof
CN102332542A (zh) * 2011-07-30 2012-01-25 珠海锂源动力科技有限公司 一种大容量高功率软包装锂离子动力电池及其制备方法
CN103606703A (zh) * 2013-11-15 2014-02-26 江苏天鹏电源有限公司 一种电流密度均匀且稳定的锂离子电池
CN105322178A (zh) * 2015-10-16 2016-02-10 广东烛光新能源科技有限公司 一种电化学电池电极、含有该电极的电化学电池及其制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107579253A (zh) * 2017-09-13 2018-01-12 江西理工大学 一种高倍率锂离子电池
CN110745016A (zh) * 2018-07-20 2020-02-04 瑞莱国际开发股份有限公司 环保高效率油电混合车
CN109524708A (zh) * 2018-09-11 2019-03-26 湖南立方新能源科技有限责任公司 一种高能量密度软包装金属锂电池
WO2023123354A1 (zh) * 2021-12-31 2023-07-06 东莞新能源科技有限公司 电化学装置和电子装置

Similar Documents

Publication Publication Date Title
CN110176591B (zh) 一种水系锌离子二次电池及其基于有机电极材料的正极的制备方法
CN110224182B (zh) 一种锂离子电池预锂化的方法
CN105958008A (zh) 一种锂离子电池用复合正极片、制备方法及锂离子电池
EP3758126A1 (en) Battery
TW201125183A (en) Lithium secondary battery
CN110571413B (zh) 一种具有复合层结构的电极和锂电池
CN106784789B (zh) 一种富锂锰基材料锂离子电池正极及包含该正极的锂离子电池
CN104538584A (zh) 一种多层负极片、负极片的制作方法以及锂离子电池
CN103000390B (zh) 一种负极集流体制备方法及使用该集流体的超级电容器
CN106784996A (zh) 一种高功率密度锂离子电池
CN102332558A (zh) 锂离子电池及其正极极片
CN102117931A (zh) 正极采用改性锰酸锂的高倍率圆柱形锂离子电池
CN113270585A (zh) 一种电极材料及其制备方法和应用
CN109119632A (zh) 正极浆料、正极片及锂离子电池
CN115295767A (zh) 一种正极片和锂离子电池
WO2023197615A1 (zh) 一种具有造孔功能涂层的集流体、极片以及电池
CN103474621A (zh) 锂离子电池用极片以及叠片电芯体
CN110911724A (zh) 二次电池及其制备方法
CN112615057B (zh) 固态锂离子电池的制备方法及其固态锂离子电池
CN102122725B (zh) 一种锂-二硫化铁电池
CN109599550A (zh) 一种全固态锂离子电池的制作工艺
CN106374083B (zh) 硅基负电极及其制备方法和锂离子电池
WO2016202276A1 (zh) 正极材料及电池
CN105489900A (zh) 一种锂离子电池集流体的制备方法
CN111509189A (zh) 一种正极极片及锂离子电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170531