WO2016202276A1 - 正极材料及电池 - Google Patents

正极材料及电池 Download PDF

Info

Publication number
WO2016202276A1
WO2016202276A1 PCT/CN2016/086020 CN2016086020W WO2016202276A1 WO 2016202276 A1 WO2016202276 A1 WO 2016202276A1 CN 2016086020 W CN2016086020 W CN 2016086020W WO 2016202276 A1 WO2016202276 A1 WO 2016202276A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
electrolyte
battery
ion
metal ion
Prior art date
Application number
PCT/CN2016/086020
Other languages
English (en)
French (fr)
Inventor
陈璞
刘洋
罗小松
杨秀涛
Original Assignee
苏州宝时得电动工具有限公司
陈璞
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201510341167.9A external-priority patent/CN106328950A/zh
Priority claimed from CN201510431032.1A external-priority patent/CN106374145A/zh
Application filed by 苏州宝时得电动工具有限公司, 陈璞 filed Critical 苏州宝时得电动工具有限公司
Publication of WO2016202276A1 publication Critical patent/WO2016202276A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the field of batteries, and in particular relates to a cathode material.
  • the invention also relates to a battery.
  • the lead-acid battery has been in existence for more than 100 years and has mature battery technology, occupying an absolute market share in the energy storage fields such as automobile starter batteries, electric bicycles and UPS.
  • the lead-acid battery has a low cycle life and a relatively low energy density, it has the advantages of very low price and very high cost performance. Therefore, in recent years, nickel-metal hydride batteries, lithium-ion batteries, sodium-sulfur batteries, etc., have failed to replace lead-acid batteries in the field of energy storage.
  • the positive electrode is based on the elution-embedding reaction of the first metal ion
  • the negative electrode is based on the deposition-dissolution reaction of the second metal ion
  • the electrolyte contains the first metal ion participating in the positive electrode extraction-embedding reaction and participating in the negative electrode deposition- Dissolving the second metal ion of the reaction.
  • the theoretical energy density of this type of battery is 160Wh/Kg, and the actual energy density is expected to be 50-80Wh/Kg.
  • this type of battery is very promising as a next-generation energy storage battery to replace lead-acid batteries, which has great commercial value.
  • the positive electrode of the battery simply uses carbon-based conductive agent to cause corrosion and is consumed. This phenomenon causes self-discharge of the battery on the one hand, and gas generation inside the battery on the other hand, thereby rapidly causing the cycle life of the battery. reduce.
  • the technical problem to be solved by the present invention is to provide a positive electrode material which has good stability and corrosion resistance in a positive electrode material when a water-based battery is charged.
  • the present invention provides a positive electrode material comprising a positive electrode active material capable of reversibly extracting-embeding a first metal ion, and a conductive agent comprising a conductive polymer, the conductive polymer Selected from polyacetylene, polyphenylene sulfide, polyquinoline, polyparaphenylene vinyl, polyparaphenylene, polypyrrole, polyaniline, polythiophene and poly 3,4-ethylenedioxythiophene-polystyrenesulfonic acid At least one of the conductive agents accounts for 6%-15% by mass of the positive electrode material.
  • the conductive agent further comprises a carbon-based material.
  • the mass ratio of the carbon-based material and the conductive polymer ranges from 1:10 to 10:1.
  • the carbon-based material is selected from at least one of graphite, carbon nanotubes, carbon black, and activated carbon.
  • the graphite is flake graphite or spheroidal graphite.
  • the positive electrode active material has a mass percentage in the positive electrode material ranging from 80% to 90%.
  • the positive electrode material further includes a positive electrode binder.
  • the positive electrode binder is selected from the group consisting of polyvinylidene fluoride, polytetrafluoroethylene or a mixture of sodium carboxymethylcellulose and styrene butadiene rubber.
  • the present invention also provides a battery comprising a positive electrode, a negative electrode, and an electrolyte disposed between the positive electrode and the negative electrode, the positive electrode including the positive electrode material as described above.
  • the electrolyte comprises an electrolyte and a solvent water; the electrolyte is capable of at least ionizing the first metal ion and the second metal ion; and the first metal ion is reversibly detachable-embedded in the positive electrode during charge and discharge
  • the second metal ion is reduced in deposition to a second metal during charging, and the second metal is oxidized and dissolved into a second metal ion during discharge.
  • the first metal ion is selected from the group consisting of lithium ion, sodium ion or magnesium ion.
  • the anion of the electrolyte comprises one or more of a sulfate ion, a chloride ion, an acetate ion, a nitrate ion, a formate ion and an alkylsulfonate ion.
  • the alkylsulfonate ion is a methanesulfonate ion.
  • the second metal ion is selected from the group consisting of manganese ions, iron ions, copper ions, zinc ions, chromium ions, nickel ions, tin ions or lead ions.
  • the electrolyte has a pH of from 3 to 7.
  • the conductive agent in the positive electrode material of the invention has good electrical conductivity and stability, thereby avoiding corrosion of the conductive agent, thereby causing increase and decrease of the internal resistance of the positive electrode, reducing self-discharge of the battery, and enhancing the safety of the battery. Performance, while also effectively suppressing battery performance degradation.
  • the technical problem to be solved by the present invention is to provide a colloidal electrolyte having a good water retention and strength, and the colloidal electrolyte requires a certain gelation time, thereby facilitating perfusion into the battery.
  • the present invention provides a colloidal electrolyte comprising: a solvent, the solvent Is water; an electrolyte salt capable of ionizing a cation and an anion in a solvent, the cation comprising a first metal ion and a second metal ion, the first metal ion being reversibly detachable at the positive electrode during charge and discharge - Embedding; the second metal ion is reduced in a negative electrode during charging to a second metal, and the second metal is oxidatively dissolved into a second metal ion during discharge; the anion is selected from a sulfate ion or a chloride ion; a gel of silica, the gelling agent 1-10% by weight of the colloidal electrolyte; an additive selected from the group consisting of sodium polystyrene sulfonate, alkyl sulfonate and boron At least one of the acid salts.
  • the additive accounts for 0.01-10% by weight of the colloidal electrolyte.
  • the first metal ion is selected from the group consisting of lithium ion, sodium ion or magnesium ion.
  • the first metal ion concentration is 0.1-10 mol/L.
  • the second metal ion is selected from the group consisting of manganese ions, iron ions, copper ions, zinc ions, chromium ions, nickel ions, tin ions or lead ions.
  • the second metal ion concentration is 0.5-15 mol/L.
  • the alkyl sulfonate is at least one selected from the group consisting of lithium methanesulfonate and zinc methanesulfonate.
  • the borate is at least one selected from the group consisting of lithium borate, potassium borate, and zinc borate.
  • the present invention also provides a battery comprising a positive electrode, a negative electrode, and a colloidal electrolyte disposed between the positive electrode and the negative electrode, the positive electrode including a positive active material capable of reversibly extracting-embedding a first metal ion,
  • the colloidal electrolyte is as described above.
  • the negative electrode comprises a brass foil and a zinc foil.
  • the positive active material is selected from the group consisting of LiMn 2 O 4 , LiFePO 4 or LiCoO 2 .
  • the colloidal electrolyte of the invention has good water retention and strength, no hydration phenomenon, uniform electrolyte salt distribution, and the colloidal electrolyte is convenient to be poured into the battery, and is suitable for industrial application.
  • the present invention provides a positive electrode material comprising a positive active material and a conductive agent, wherein The polar active substance participates in the positive electrode reaction and is capable of reversibly extracting-embedding the first metal ion.
  • the positive active material has a spinel structure, a layered structure or an olivine structure.
  • the first metal ion is selected from one of lithium ion, sodium ion and magnesium ion, and correspondingly, the positive electrode active material is capable of reversibly de-intercalating - intercalating lithium ion, sodium ion or magnesium ion.
  • the positive electrode active material may be a compound capable of reversible elution-intercalation lithium ion-doped spinel structure conforming to the general formula Li 1+x Mn y M z O k , wherein -1 ⁇ x ⁇ 0.5, 1 ⁇ y ⁇ 2.5,0 ⁇ z ⁇ 0.5, 3 ⁇ k ⁇ 6, M is at least one selected from the group consisting of Na, Li, Co, Mg, Ti, Cr, V, Zn, Zr, Si, Al, and Ni.
  • the positive electrode active material contains LiMn 2 O 4 . More preferably, the positive electrode active material contains doped or coated modified LiMn 2 O 4 .
  • the positive electrode active material may be a compound capable of reversibly deintercalating-intercalating lithium ion in a layered structure conforming to the general formula Li 1+x M y M′ z M′′ c O 2+n , wherein ⁇ 1 ⁇ x ⁇ 0.5, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1, 0 ⁇ c ⁇ 1, -0.2 ⁇ n ⁇ 0.2, M, M', M" are respectively selected from Ni, Mn, Co, Mg, Ti, Cr, V, Zn, Zr At least one of Si, Si or Al.
  • the positive electrode active material contains LiCoO 2 .
  • the positive electrode active material may be a compound capable of reversibly deintercalating-intercalating lithium ion olivine structure conforming to the general formula Li x M 1-y M' y (XO 4 ) n , wherein 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 0.6 , 1 ⁇ n ⁇ 1.5, M is selected from Fe, Mn, V or Co, and M' is at least one selected from the group consisting of Mg, Ti, Cr, V or Al, and X is at least one selected from the group consisting of S, P or Si. .
  • the positive electrode active material contains LiFePO 4 .
  • LiMn 2 O 4 can not represent the general formula of "manganese manganate" which is widely used, but should be of the general formula Li 1+x
  • the Mn y M z O k is broadly included, and variously modified LiMn 2 O 4 positive electrode active materials are widely included.
  • LiFePO 4 and LiCoO 2 should also be broadly understood to include modifications through various doping, cladding, etc., which are in accordance with Li x M 1-y M' y (XO 4 ) n and Li 1+, respectively.
  • a positive electrode active material of x M y M' z M" c O 2+n are in accordance with Li x M 1-y M' y (XO 4 ) n and Li 1+, respectively.
  • the positive electrode active material is a lithium ion elution-embedded compound
  • a compound such as LiMn 2 O 4 , LiFePO 4 , LiCoO 2 , LiMxPO 4 , LiM x SiO y (wherein M is a variable valence metal) may be selected.
  • the NaDCO 4 F a compound capable of eluting-inserting sodium ions
  • MgM x O y where M is a metal, 0.5 ⁇ x ⁇ 3, 2 ⁇ y ⁇ 6
  • M is a metal, 0.5 ⁇ x ⁇ 3, 2 ⁇ y ⁇ 6
  • a compound capable of deintercalating-embeding an ion or a functional group can be used as a positive electrode active material of the battery of the present invention, and therefore, the present invention is not limited to a lithium ion battery.
  • the purpose of using a conductive agent in the positive electrode material is to lower the electrical resistance of the overall positive electrode material while enhancing the conductive path between the positive electrode material particles.
  • the conductive agent comprises a conductive polymer selected from the group consisting of polyacetylene (PA), polyphenylene sulfide (PPS), polyquinoline (PQ), polyparaphenylene vinylene (PPV), and polyparaphenylene (PPP). At least one of polypyrrole (Ppy), polyaniline (PANI), polythiophene (PTH), and poly 3,4-ethylenedioxythiophene-polystyrenesulfonic acid (PEDOT-PSS).
  • PA polyacetylene
  • PPS polyphenylene sulfide
  • PQ polyquinoline
  • PV polyparaphenylene vinylene
  • PPP polyparaphenylene
  • PPP polyparaphenylene
  • PEDOT-PSS is an aqueous solution of a conductive polymer whose structural formula in aqueous solution is:
  • n is a repeating unit, and its value ranges from 5 to 5000.
  • a conductive polymer used as a conductive agent is an intrinsic (structural type) conductive polymer, and the polymer polymer itself has "inherent" conductivity, and a conductive carrier (electron, ion) is provided by the polymer structure. Or hole).
  • a conductive carrier electron, ion
  • at least one of conductive polymers PA, PPS, PQ, PPV, PPP, Ppy, PANI, PTH and PEDOT-PSS is used as a conductive agent.
  • the conductive polymer has good conductivity and improves positive electrode activity.
  • the conductive polymer has good stability and corrosion resistance, so that the positive electrode does not cause side reaction due to the conductive agent under high voltage or water-based electrolyte conditions, the internal resistance of the positive electrode is stable, and the life of the positive electrode is stable. long.
  • the conductive agent includes a carbon-based material in addition to the conductive polymer.
  • Carbon-based materials have higher electrical conductivity relative to conductive polymers, but are less stable in high voltage or aqueous electrolytes.
  • the invention reasonably uses the conductive polymer and the carbon-based material to mix the conductive agent, and the two are matched with each other in a certain ratio, so that the conductive network constructed by the carbon-based material and the conductive polymer has a large contact with the positive active material.
  • the area has good corrosion resistance, greatly reduces the internal resistance of the positive electrode material, improves the float life of the battery, and reduces self-discharge.
  • the carbon-based material is selected from at least one of graphite, carbon nanotubes, carbon black, and activated carbon.
  • the carbon-based material is selected from graphite, the graphite is flake graphite or spheroidal graphite, and exemplified, flake graphite includes SFG6 and SFG15; and spherical graphite includes KS6 and KS15. More preferably, the graphite is flake graphite, and the flake graphite has anisotropy, so that it has good corrosion resistance, thereby improving the self-discharge and floatation performance of the positive electrode.
  • the carbon-based material is selected from the group consisting of carbon nanotubes, carbon black, or activated carbon.
  • carbon black includes acetylene black and super-P.
  • the carbon-based material and the conductive polymer are used as a mixed conductive agent to improve the battery rate performance while improving the self-discharge of the positive electrode.
  • the ratio of the carbon-based material to the conductive polymer determines the performance of the conductive network.
  • the mass ratio of the carbon-based material to the conductive polymer ranges from 1:10 to 10:1.
  • the carbon-based material can be uniformly distributed in the conductive network and filled in the voids between the positive electrode active material particles, and between the conductive agent and the positive electrode active material, and between the conductive polymer and the carbon-based material in the conductive agent s contact.
  • the content of the conductive agent has a turning point, and the positive electrode active material particles in the positive electrode can be sufficiently contacted with the conductive agent, so that the impedance of the interface electrochemical reaction reaches a stable value, and the stability of the positive electrode increases. If the content of the conductive agent is too large, the content of the positive electrode active material in the volume of the positive electrode monomer is small, the density of the positive electrode active material is lowered, and the battery capacity is decreased; if the content of the conductive agent is too small, the electronic conductive channel in the positive electrode active material is small, resulting in utilization of the positive electrode active material. Not high, the positive electrode capacity is reduced, and the cycle performance is also reduced.
  • the conductive agent accounts for 6%-15% of the mass percentage of the positive electrode material
  • the positive electrode active material accounts for 80-90% of the mass percentage of the positive electrode material. Therefore, the positive electrode has a high capacity while ensuring excellent conductivity of the positive electrode material.
  • a binder when preparing the positive electrode, is also added to the positive electrode material as needed, and the binder is favorable for uniformly bonding the positive electrode active material and the conductive agent together to form a positive electrode.
  • the binder is selected from, but not limited to, a polymer selected from the group consisting of polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), sodium carboxymethyl cellulose (CMC), sodium carboxymethyl cellulose. At least one of a derivative (CMC derivation), a styrene butadiene rubber (SBR), and a styrene-butadiene rubber derivative (SBR derivation).
  • a styrene-butadiene rubber derivative such as a hydrophilic styrene-butadiene rubber (PSBR100) obtained by chemical modification.
  • the positive electrode material provided by the invention has a conductive polymer or a conductive polymer and graphite as a conductive agent, and the conductive agent has good electrical conductivity and corrosion resistance in the positive electrode material, thereby ensuring good electrical conductivity and stability performance of the positive electrode.
  • the present invention provides a battery comprising a positive electrode, a negative electrode, and an electrolyte disposed between the positive electrode and the negative electrode, and the positive electrode includes the positive electrode material as described in Embodiment 1, which will not be described herein.
  • a binder is also added to the positive electrode material as needed, and the binder is favorable for uniformly bonding the positive electrode active material and the conductive agent together to form a positive electrode.
  • the binder is selected from, but not limited to, a polymer selected from the group consisting of polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), sodium carboxymethyl cellulose (CMC), sodium carboxymethyl cellulose.
  • CMC derivation a derivative obtained by chemical modification.
  • SBR styrene butadiene rubber
  • SBR derivation a styrene-butadiene rubber derivative obtained by chemical modification.
  • a styrene-butadiene rubber derivative such as a hydrophilic styrene-butadiene rubber (PSBR100) obtained by chemical modification.
  • the positive electrode binder may also be directly selected from the group consisting of polyethylene oxide, polypropylene oxide, polyacrylonitrile, polyimide, polyester, polyether, fluorinated polymer, polydivinyl polyethylene glycol. , one of polyethylene glycol diacrylate, polyethylene glycol dimethacrylate, or a mixture and derivative of the above polymers.
  • the positive electrode further includes a positive electrode current collector supporting the positive electrode active material, and the positive electrode current collector acts only as a carrier for electron conduction and collection, and does not participate in the electrochemical reaction, that is, the positive electrode current collector can stably exist in the electrolysis in the battery operating voltage range. The liquid phase does not substantially cause side reactions, thereby ensuring stable cycle performance of the battery.
  • the material of the cathode current collector is selected from one of a carbon-based material, a metal, and an alloy.
  • the carbon-based material is selected from the group consisting of glassy carbon, graphite foil, graphite flakes, foamed carbon, carbon felt, carbon cloth, and carbon fiber.
  • the cathode current collector is graphite, such as a commercial graphite pressed foil, wherein the weight ratio of graphite ranges from 90 to 100%.
  • the metal includes one of Ni, Al, Fe, Cu, Pb, Ti, Cr, Mo, Co, Ag or the above-mentioned metal which has been passivated.
  • the alloy includes one of stainless steel, carbon steel, Al alloy, Ni alloy, Ti alloy, Cu alloy, Co alloy, Ti-Pt alloy, Pt-Rh alloy or passivated.
  • Stainless steel includes stainless steel mesh, stainless steel foil, and stainless steel models include, but are not limited to, one of stainless steel 304 or stainless steel 316 or stainless steel 316L.
  • the positive current collector is subjected to a passivation treatment, the main purpose of which is to form a passivated oxide film on the surface of the positive current collector, thereby stably collecting and conducting electrons during charging and discharging of the battery.
  • a passivation treatment the main purpose of which is to form a passivated oxide film on the surface of the positive current collector, thereby stably collecting and conducting electrons during charging and discharging of the battery.
  • the role but will not participate in the battery reaction, to ensure stable battery performance.
  • the positive current collector passivation treatment method includes a chemical passivation treatment or an electrochemical passivation treatment.
  • the chemical passivation treatment includes oxidizing the cathode current collector by an oxidizing agent to form a passivation film on the surface of the cathode current collector.
  • the principle of oxidant selection is that the oxidant can form a passivation film on the surface of the positive current collector without dissolving the positive current collector.
  • the oxidizing agent is selected from, but not limited to, concentrated nitric acid or sorghum sulfate (Ce(SO 4 ) 2 ).
  • the electrochemical passivation treatment comprises electrochemically oxidizing the cathode current collector or charging and discharging the battery containing the cathode current collector to form a passivation film on the surface of the cathode current collector.
  • the positive electrode further includes a composite current collector supporting the positive electrode active material, and the composite current collector includes a positive electrode current collector and a conductive film coated on the positive electrode current collector.
  • the conductive film is bonded to the positive electrode current collector by hot press lamination, vacuuming or spraying.
  • the composite current collector is a conductive PE film coated stainless steel.
  • the electrolyte of the present invention has a variety of options.
  • the electrolyte includes an electrolyte and a solvent.
  • the electrolyte can at least ionize the first metal ion and the second metal ion, the first metal ion can be reversibly extracted-embedded in the positive electrode during charging and discharging, and the second metal ion is reduced and deposited as a second metal in the negative electrode during charging.
  • the dimetal is oxidized and dissolved into a second metal ion during discharge.
  • the purpose of the solvent in the electrolyte is to dissolve the electrolyte and ionize the electrolyte in the solvent, eventually generating cations and anions in the electrolyte.
  • the solvent is an aqueous solution.
  • the first metal ion in the electrolyte can be reversibly extracted-embedded in the positive electrode during charge and discharge. That is, when the battery is discharged, the first metal ion in the electrolyte is embedded in the positive electrode active material; when the battery is charged, the first metal ion is released from the positive electrode active material and enters the electrolyte.
  • the first metal ion is selected from a lithium ion, a sodium ion or a magnesium ion. Specifically, the first metal ion is a lithium ion.
  • the second metal ion in the electrolyte is reduced and deposited as a second metal in the negative electrode during the charging process, and the second metal is oxidized and dissolved into the second metal ion during the discharging process. That is, the second metal ion can be reducedly deposited as a second metal in the negative electrode during charging and the second metal can be reversibly oxidized and dissolved during discharge.
  • the second metal ion is selected from one of manganese ion, iron ion, copper ion, zinc ion, chromium ion, nickel ion, lead ion, and tin ion, and more preferably zinc ion.
  • the first metal ion of the present invention is selected from the group consisting of lithium ions while the second metal
  • the ions are selected from zinc ions, ie the cations in the electrolyte are lithium ions and zinc ions.
  • the electrolyte further includes an anion.
  • the anion in the electrolyte includes one of a sulfate ion, a chloride ion, an acetate ion, a formate ion, and a nitrate ion or Several.
  • the anion in the electrolyte comprises an alkyl sulfonate ion.
  • the alkyl sulfonate ion includes, but is not limited to, an aliphatic sulfonate ion, and is not limited to having a functional group or a substituent on the aliphatic group.
  • it conforms to the following formula:
  • Y means a substituent such as -F, -OH or the like.
  • R may be a branched or unbranched aliphatic group; may be an aliphatic group of 1 to 12 carbon atoms, preferably a fatty group of 1 to 6 carbon atoms, particularly preferably a methyl group or an ethyl group. And n-propyl.
  • R' may be a branched or unbranched aliphatic group; may be an aliphatic group of 2 to 12 carbon atoms, preferably an aliphatic group of 2 to 6 carbon atoms, more preferably unbranched An aliphatic group having 2 to 6 carbon atoms; more preferably, the substituent is not attached to the same carbon atom as the sulfonic acid group.
  • the alkyl sulfonate ion is a methylsulfonate ion, ie R is a methyl group.
  • methylsulfonate ions in the electrolyte has a significant effect on suppressing self-discharge of the battery, thereby ensuring battery capacity and cycle life.
  • the concentration of each ion in the electrolyte can be changed according to different conditions of different electrolytes, solvents, and application fields of the battery.
  • the concentration of the first metal ion in the electrolyte is from 0.1 to 10 mol/L.
  • the concentration of the second metal ion in the electrolyte is from 0.5 to 15 mol/L.
  • the concentration of the alkyl sulfonate ion in the electrolyte is from 0.5 to 12 mol/L.
  • the pH of the electrolyte is preferably in the range of 3-7.
  • the electrolyte comprises a colloidal electrolyte comprising a solvent, an electrolyte salt, a gelling agent, and an additive.
  • the role of the solvent is to dissolve the electrolyte salt and ionize the electrolyte salt in the solvent, eventually generating cations and anions.
  • the solvent is an aqueous solution.
  • the cation includes a first metal ion and a second metal ion, and the first metal ion can be reversibly extracted-embedded in the positive electrode during charging and discharging; the second metal ion is reduced in the negative electrode to a second metal during charging, and the second metal is Oxidation dissolves into a second metal ion during discharge.
  • the first metal ion is selected from a lithium ion, a sodium ion or a magnesium ion.
  • the second metal ion is selected from the group consisting of manganese ions, iron ions, copper ions, zinc ions, chromium ions, nickel ions, tin ions or lead ions.
  • the first metal ion of the present invention is selected from the group consisting of lithium ions
  • the second metal ion is selected from the group consisting of zinc ions
  • the colloidal electrolyte contains two electrolyte salts
  • the two electrolyte salts ionize lithium ions and zinc ions, respectively.
  • the electrolyte salt further includes an anion.
  • the anion in the electrolyte salt is selected from a sulfate ion or a chloride ion.
  • the concentration of each ion in the colloidal electrolyte can be changed according to different conditions of different electrolytes, solvents, and application fields of the battery.
  • the concentration of the first metal ion is from 0.1 to 10 mol/L.
  • the concentration of the second metal ion is from 0.5 to 15 mol/L.
  • the role of the gelling silica is to gel the electrolyte.
  • the silica is added to the electrolyte in the form of nano-silica having a particle size ranging from 1 to 100 nm;
  • the silica may also be added to the electrolyte in the form of a silica sol, that is, the nano silica is added to the solvent water in a certain ratio and process to form a silica sol, which is reserved for use.
  • the gel silica accounts for 1-10% by weight of the colloidal electrolyte.
  • the colloidal electrolyte also includes an additive.
  • the main function of the additive is to slow down the process of electrolyte formation, while ensuring the strength and stability of the colloidal electrolyte, so that the colloidal electrolyte does not hydrate, and it takes a certain time for the electrolyte to gel, thereby facilitating electrolyte perfusion into the battery. in.
  • the additive is selected from at least one of sodium polystyrene sulfonate, an alkyl sulfonate, and a borate.
  • the additive accounts for 0.01-10% by weight of the colloidal electrolyte.
  • the alkyl sulfonate includes, but is not limited to, an aliphatic sulfonate, and is not limited to having a functional group or a substituent on the aliphatic group. Preferably, it conforms to the following formula:
  • Y means a substituent such as -F, -OH or the like;
  • R may be a branched or unbranched aliphatic group; may be a fatty group of 1 to 12 carbon atoms, preferably 1 to 6
  • the aliphatic group of the carbon atom is particularly preferably a methyl group, an ethyl group and a n-propyl group; and Me is a metal.
  • R' may be a branched or unbranched aliphatic group; it may be 2 to 12 carbon atoms
  • the aliphatic group is preferably an aliphatic group having 2 to 6 carbon atoms, more preferably an unbranched aliphatic group having 2 to 6 carbon atoms; more preferably, the substituent is not bonded to the same carbon atom as the sulfonic acid group. on.
  • the alkyl sulfonate is a methyl sulfonate, ie, R is a methyl group. More preferably, the alkylsulfonate is at least one of lithium methanesulfonate and zinc methanesulfonate, that is, Me is at least one of lithium and zinc.
  • the borate is at least one selected from the group consisting of lithium borate, potassium borate, and zinc borate.
  • the addition of borate to the colloidal electrolyte can effectively prolong the time required for the colloidal electrolyte to gel.
  • the order in which the electrolyte, the gelling silica, and the additive are added to the solvent is not critical.
  • the electrolyte may be first dissolved in a solvent. After the electrolyte is completely dissolved, a gelling agent and an additive are added to form a colloidal electrolyte; or the electrolyte, the gelling agent and the additive may be directly added to the solvent to form a colloidal electrolyte.
  • the colloidal electrolyte provided by the invention has good strength, gelation property, stability and water retention property, and the first metal ion and the second metal ion have a good ion migration rate in the colloidal electrolyte.
  • an additive which can appropriately slow down the gelation process of the colloidal electrolyte is added to the colloidal electrolyte, and the colloidal electrolyte is more conveniently poured into the battery while not affecting the performance of the colloidal electrolyte.
  • the colloidal electrolyte provided by the present invention can be applied to industrial applications.
  • the negative electrode of the battery of the present invention will be described and illustrated in detail below.
  • the negative electrode can be in three different forms depending on its structure and function:
  • the negative electrode includes only the negative electrode current collector, and the negative electrode current collector serves only as a carrier for electron conduction and collection, and does not participate in the electrochemical reaction.
  • the anode current collector is a copper foil, a stainless steel mesh, a stainless steel foil or a graphite foil.
  • the negative electrode includes a negative electrode active material supported on the negative electrode current collector in addition to the negative electrode current collector.
  • the negative electrode active material is a second metal, for example, the active ion in the electrolytic solution is Zn 2+ , and the negative electrode active material corresponds to metal Zn.
  • the negative electrode includes a brass foil and a zinc foil, the brass foil serves as a negative electrode current collector, and the zinc foil corresponds to a negative electrode active material, and can participate in a negative electrode reaction.
  • the negative electrode active material exists in the form of a sheet or a powder.
  • the negative electrode active material When the negative electrode active material is in the form of a sheet, the negative electrode active material forms a composite layer with the negative electrode current collector.
  • the anode active material is a powder
  • the second metal powder is slurried, and then the slurry is coated on the anode current collector to form a cathode.
  • the negative electrode conductive agent and the negative electrode binder are added as needed to improve the performance of the negative electrode.
  • the negative electrode includes only the negative electrode active material, and the negative electrode active material simultaneously serves as the negative electrode current collector.
  • the second metal ion is zinc ion and the negative electrode is zinc foil.
  • the zinc foil can participate in the negative electrode reaction.
  • the charging and discharging principle of the battery of the present invention is: when charging, the positive electrode active material desorbs the first metal ion, and the positive electrode active material is oxidized and emits electrons; the electron reaches the battery negative electrode through the external circuit, and the second metal ion in the electrolyte Electrons obtained on the negative electrode were reduced and deposited on the negative electrode. During discharge, the second metal deposited on the negative electrode is oxidized, and the lost electrons are converted into the second metal ions into the electrolyte; the electrons reach the positive electrode through the external circuit, the positive active material accepts the electrons to be reduced, and the first metal ions are embedded in the positive electrode active. In matter.
  • the diaphragm can avoid short circuits caused by the connection of positive and negative electrodes caused by other unexpected factors.
  • the separator is not particularly required as long as it is a separator that allows the electrolyte to pass through and is electrically insulated.
  • Various separators used in organic lithium ion batteries can be applied to the present invention.
  • the separator may also be other materials such as microporous ceramic separators.
  • the present invention also provides a battery comprising a positive electrode, a negative electrode, and a colloidal electrolyte disposed between the positive electrode and the negative electrode.
  • the colloidal electrolyte is as described in the second embodiment, and will not be further described herein.
  • the positive electrode includes a positive electrode active material, the positive electrode active material participates in the positive electrode reaction, and is capable of reversibly extracting-embeding the first metal ion.
  • the positive electrode further includes a positive electrode current collector supporting the positive electrode active material, and the positive electrode active material and the positive electrode current collector are the same as the second embodiment. , will not repeat them here.
  • the positive electrode when preparing the positive electrode, in addition to the positive electrode active material, depending on the actual situation, it may be necessary to add a positive electrode conductive agent and a positive electrode binder to improve the performance of the positive electrode.
  • the positive electrode conductive agent may be directly selected from one or more of a conductive polymer, activated carbon, graphene, carbon black, graphite, carbon fiber, metal fiber, metal powder, and metal flake.
  • the positive electrode conductive agent comprises a conductive polymer selected from the group consisting of polyacetylene, polyphenylene sulfide, polyquinoline, polyparaphenylene vinylene, polyparaphenylene, polypyrrole, polyaniline, polythiophene and poly 3, At least one of 4-ethylenedioxythiophene-polystyrenesulfonic acid, preferably, in addition to the conductive polymer, the conductive agent further includes a carbon-based material as in Embodiment 2, and will not be described herein.
  • Conductive polymer or conductive polymer and graphite as conductive agent the conductive agent has good electrical conductivity and corrosion resistance in the positive electrode material, thereby ensuring good electrical conductivity and stability of the positive electrode.
  • the positive electrode binder and the negative electrode are the same as those in the second embodiment, and are not described herein again.
  • the battery of the invention adopts a colloidal electrolyte, can effectively avoid the uneven distribution of the electrolyte salt and the water loss of the electrolyte, thereby depositing the second metal ion more uniformly on the negative electrode and avoiding the formation of the dendrites of the negative electrode.
  • the battery of the present invention can also avoid battery leakage and improve battery cycle performance and low temperature performance.
  • an additive that delays the gelation process is added to the colloidal electrolyte so that it can be poured into the battery or battery separator before the electrolyte becomes a gel, thereby facilitating industrial assembly of the battery.
  • the positive electrode slurry was coated on a positive electrode current collector graphite foil to form an active material layer, which was then pressed into a pellet having an area of 1 cm 2 .
  • a zinc foil was used as the negative electrode, and an AGM film was used as the separator.
  • a certain amount of zinc sulfate and lithium sulfate were weighed and dissolved in water to prepare an electrolyte having a zinc sulfate concentration of 2 mol/L and a lithium sulfate concentration of 1 mol/L.
  • the positive electrode, the negative electrode, and the separator were assembled into a battery cell, placed in a casing, and then injected with an electrolyte, sealed, and assembled into a button cell having a capacity of 2 mAh to 5 mAh.
  • the remaining composition and preparation method of the battery were the same as those in Example 1-1.
  • the batteries in Examples 1-4 and Comparative Example 1-1 were subjected to a charge and discharge cycle test at a normal temperature of 0.2 C, 1 C, and 2 C at a voltage range of 1.4 V to 2.1 V, respectively.
  • the batteries in Examples 1-4 and Comparative Example 1-1 have substantially the same discharge capacity after the initial 3 cycles of the battery at different magnifications, indicating that the conductive polymer in the present invention can be used as a conductive agent to make the battery capacity function normally. .
  • the batteries in Examples 11-1-1-4 and Comparative Example 1-1 were subjected to constant current charging at 0.2 C, and after charging to 2.1 V, the battery was subjected to constant voltage charging, and the current was limited to 0.2 C until the current was reduced to 0.02 C. After the battery was left at room temperature for one day, the capacity retention rate of the battery was tested.
  • the battery capacity retention rate was 93.9% after one day of self-discharge of the battery, and the battery capacity retention ratios in Examples 1-1 and 1-2 were 94.7% and 95.9%, respectively, Examples 1-3 and implementation
  • the cell capacity retention rates in Examples 1-4 were 97.0% and 97.9%, respectively.
  • the battery in Examples 1-4 was only a few percentage points higher than the battery capacity retention ratio in Comparative Example 1-1, since the battery capacity retention ratio in Comparative Example 1-1 was already greater than 90%, only 1% at this time. Improvements are also a great improvement for battery performance.
  • the positive electrode slurry was coated on a positive electrode current collector graphite foil to form an active material layer having an areal density of 20 mg/cm 2 .
  • a zinc foil was used as the negative electrode, and an AGM film was used as the separator.
  • a certain amount of zinc sulfate and lithium sulfate were weighed and dissolved in water to prepare an electrolyte having a zinc sulfate concentration of 2 mol/L and a lithium sulfate concentration of 1 mol/L.
  • the positive electrode, the negative electrode, and the separator were assembled into a battery cell, placed in a casing, and then an electrolyte was injected, sealed, and assembled into a battery having a capacity of 7 mAh.
  • the positive electrode slurry is coated on the positive electrode current collector graphite foil to form an active material layer.
  • the mass ratio of PTH to KS15 is 1:10.
  • the positive electrode slurry is coated on the positive electrode current collector graphite foil to form an active material layer.
  • the mass ratio of PTH and KS15 is 1:5.
  • the positive electrode slurry is coated on the positive electrode current collector graphite foil to form an active material layer.
  • the mass ratio of PTH and KS15 is 1:1.
  • the batteries in Examples 1-5-1-8 and Comparative Examples 1-2 were subjected to a charge and discharge cycle test at a temperature of 1 C at a voltage of 1.4 V to 2.1 V at 60 °C.
  • the battery capacity retention ratios in Comparative Example 1-2 were 60.6% and 38.1%, respectively, and the battery capacity retention ratios in Examples 1-6 were 61.5% and 39%, respectively.
  • the battery capacity retention rate was the highest in 1-8, and the batteries in Examples 1-7, Examples 1-6, and Examples 1-5 were respectively.
  • the batteries in Examples 1-5-1-8 and Comparative Example 1-2 were subjected to constant current charging at 0.2 C, and after charging to 2.1 V, the battery was subjected to constant voltage charging, and the current was limited to 0.2 C until the current was reduced to 0.02 C.
  • the battery was allowed to stand at 60 ° C for one day, and the battery was tested for capacity loss after the battery was cooled to room temperature; the battery was allowed to stand at 60 ° C for seven days, and the battery was tested for capacity loss after the battery was cooled to room temperature.
  • the battery was left at 60 ° C for 1 day, and the self-discharge was reduced by 4% compared with the self-discharge of the battery in Comparative Example 1-2, and left at 60 ° C for 7 days.
  • the battery in Example 1-6 was compared with the comparative example 1 - 2 was reduced by 7%, and in the batteries provided in Examples 1-5-1-8, the battery self-discharge capacity loss in Examples 1-8 was the lowest, followed by Examples 1-7 and Examples 1-6, respectively. And the batteries in Examples 1-5.
  • the conductive material is used as the positive electrode with respect to only the carbon-based material.
  • the agent, battery self-discharge and cycle performance have been significantly improved.
  • the colloidal electrolyte preparation process comprises: taking a certain amount of electrolyte salt zinc sulfate and lithium sulfate, and dissolving in solvent water to prepare an aqueous electrolyte A1 containing 2 mol/L of zinc sulfate and 1 mol/L of lithium sulfate.
  • Example 2-2 8.67 mL of the aqueous electrolyte A1 was taken, and 1 mL of a silica sol (solid content: 30%) and 0.33 mL of an aqueous solution of an additive polystyrene sulfonate (solid content: 30%) were added to A1.
  • the PSS accounts for about 1% by mass of the colloidal electrolyte.
  • the remaining procedure for the preparation of the colloidal electrolyte was the same as in Example 2-1.
  • Example 2-3 9 mL of aqueous electrolyte A1 was taken, 1 mL of silica sol (solid content 30%), 0.05 mL of an additive sodium polystyrene sulfonate aqueous solution (solid content 30%) was added to A1, PSS The mass percentage of the colloidal electrolyte is about 0.15%. The remaining procedure for the preparation of the colloidal electrolyte was the same as in Example 2-1.
  • Example 2-4 10 mL of aqueous electrolyte A1 was taken, 2 mL of silica sol (solid content 30%), 0.05 mL of an additive sodium polystyrene sulfonate aqueous solution (solid content 30%) was added to A1, PSS The mass percentage of the colloidal electrolyte is about 0.12%. The remaining procedure for the preparation of the colloidal electrolyte was the same as in Example 2-1.
  • Example 2-1 the remainder of the colloidal electrolyte preparation was the same as in Example 2-1 except that no PSS was added.
  • the colloidal electrolyte preparation process comprises: taking a certain amount of an electrolyte salt of zinc chloride and lithium chloride, and dissolving in a solvent water to prepare an aqueous electrolyte A2 containing 2 mol/L of zinc chloride and 1 mol/L of lithium chloride.
  • Example 3-2 8.67 mL of aqueous electrolyte A2 was taken, and 1 mL of silica sol (solid content) was used. Amount of 30%), 0.33 mL of an additive sodium polystyrene sulfonate aqueous solution (solid content 30%) was added to A2, and the PSS accounted for about 1% by mass of the colloidal electrolyte. The remaining procedure for the preparation of the colloidal electrolyte was the same as in Example 3-1.
  • Example 3-3 9 mL of aqueous electrolyte A2 was taken, 1 mL of silica sol (solid content 30%), 0.05 mL of an additive sodium polystyrene sulfonate aqueous solution (solid content 30%) was added to A2, PSS The mass percentage of the colloidal electrolyte is about 0.15%. The remaining procedure for the preparation of the colloidal electrolyte was the same as in Example 3-1.
  • Example 3-4 10 mL of aqueous electrolyte A2 was taken, 2 mL of silica sol (solid content 30%), 0.05 mL of an additive sodium polystyrene sulfonate aqueous solution (solid content 30%) was added to A2, PSS The mass percentage of the colloidal electrolyte is about 0.12%. The remaining procedure for the preparation of the colloidal electrolyte was the same as in Example 3-1.
  • the colloidal electrolyte preparation process comprises: taking a certain amount of electrolyte salt zinc sulfate and lithium sulfate, and dissolving in solvent water to prepare an aqueous electrolyte A1 containing 2 mol/L of zinc sulfate and 1 mol/L of lithium sulfate.
  • Example 4-2 lithium methanesulfonate accounted for 5% by mass of the colloidal electrolyte.
  • the remaining procedure for the preparation of the colloidal electrolyte was the same as in Example 4-1.
  • Example 4-3 lithium methanesulfonate accounted for 1% by mass of the colloidal electrolyte.
  • the remaining procedure for the preparation of the colloidal electrolyte was the same as in Example 4-1.
  • Example 4-2 lithium methanesulfonate accounted for 0.01% by mass of the colloidal electrolyte.
  • the remaining procedure for the preparation of the colloidal electrolyte was the same as in Example 4-1.
  • Example 4-5 the additive was lithium borate, and the lithium borate accounted for 10% by mass of the colloidal electrolyte.
  • the remaining procedure for the preparation of the colloidal electrolyte was the same as in Example 4-1.
  • Example 4-6 the additive was lithium borate, and the lithium borate accounted for 5% by mass of the colloidal electrolyte.
  • the remaining procedure for the preparation of the colloidal electrolyte was the same as in Example 4-1.
  • Example 4-7 the additive was lithium borate, and the lithium borate accounted for 1% by mass of the colloidal electrolyte.
  • the remaining procedure for the preparation of the colloidal electrolyte was the same as in Example 4-1.
  • Example 4-8 the additive was lithium borate, and the lithium borate accounted for 0.01% by mass of the colloidal electrolyte.
  • the remaining procedure for the preparation of the colloidal electrolyte was the same as in Example 4-1.
  • Comparative Example 4-1 the remainder of the preparation of the colloidal electrolyte was the same as in Example 4-1 except that lithium methanesulfonate was not added.
  • the positive electrode slurry was coated on a graphite foil current collector, and dried at 60 ° C to form an active material layer, which was then tableted and cut into a size of 8 ⁇ 10 cm to prepare a positive electrode sheet having a thickness of 0.4. Mm, the surface active density of the positive electrode active material was 750 g/m 2 .
  • the negative electrode included two sheets of 50 ⁇ m thick zinc foil and one 20 ⁇ m thick brass foil, and the brass foil was placed between two zinc foils.
  • the electrolyte is a colloidal electrolyte, including solvent water, and the electrolyte salt includes 2 mol/L of ZnSO 4 and 1 mol/L of Li 2 SO 4 , gel silica and additive methylsulfonate (lithium methanesulfonate and methyl Zinc sulfonate), wherein the silica and methanesulfonate account for 6% and 1% by mass of the colloidal electrolyte, respectively. Adjust the electrolyte pH to 5.
  • the diaphragm is AGM glass fiber.
  • Example 5-1 the electrolyte does not include additives, and the rest of the battery preparation process and composition are the same. Example 5-1.
  • Example 5-1 and Comparative Example 5-1 were subjected to a charge and discharge cycle at a voltage of 1.2 C to 2.1 V at a rate of 0.2 C at room temperature, and the battery capacity was calibrated. The battery was then floated at 1.90 V for 168 h (one week) at 60 ° C, and then discharged to 1.4 V at 0.2 C. Test the discharge capacity of the battery. The battery's floating capacity is reduced by reducing the discharge capacity of the battery to 50%.
  • the high-temperature accelerated float life test is a normal charge life of four months at a room temperature of 60 ° C for one week.
  • Example 5-1 The calibration capacities of the batteries in Example 5-1 and Comparative Example 5-1 were substantially the same, and the 1C and 3C rate performances were also comparable, indicating that the colloidal electrolyte can substantially ensure that the battery performance is not affected.
  • the high-temperature floatation life of the battery was equivalent, which was 10-11 weeks, but the battery float current in Example 5-1 was reduced by 8% compared with the battery in Comparative Example 5-1, and the high-temperature float charge was performed for 11 weeks.
  • Example 5-1 the water loss of the battery was reduced by 10% compared with the battery in Comparative Example 5-1, and the loss of water loss of the battery was beneficial to the improvement of the cycle performance of the battery.
  • Example 5-1 The cycle performance and low temperature capacity of the battery at room temperature and low temperature (-10 ° C and -20 ° C) in Example 5-1 were superior to those in Comparative Example 5-1.

Abstract

一种正极材料,包括正极活性物质和导电剂,所述正极活性物质能够可逆脱出-嵌入第一金属离子,所述导电剂包括导电聚合物,所述导电聚合物选自聚乙炔、聚苯硫醚、聚喹啉、聚对苯撑乙烯、聚对苯、聚吡咯、聚苯胺、聚噻吩和聚3,4-乙烯二氧噻吩-聚苯乙烯磺酸中的至少一种,所述导电剂占所述正极材料的质量百分含量范围为6%-15%。一种电池,包括正极、负极以及电解液,所述正极包括所述正极材料。采用导电聚合物作为正极导电剂,导电聚合物具有良好的稳定性和导电性,降低了电池正极的内阻,提高了电池寿命。

Description

正极材料及电池 技术领域
本发明属于电池领域,具体涉及一种正极材料。
本发明还涉及一种电池。
背景技术
铅酸电池,其出现已超百年,拥有着成熟的电池技术,占据着汽车启动电瓶、电动自行车、UPS等储能领域的绝对市场份额。铅酸电池虽然循环使用寿命较低,能量密度也相对较低,但却拥有价格非常低廉,性价比非常高的优点。因此,近些年来,镍氢电池、锂离子电池、钠硫电池等,均无法在储能领域取代铅酸电池。
目前,出现一种基于内部离子交换的电池。该电池的工作原理为,正极基于第一金属离子的脱出-嵌入反应,负极基于第二金属离子的沉积-溶解反应,电解液含参与正极脱出-嵌入反应的第一金属离子和参与负极沉积-溶解反应的第二金属离子。该类型电池的理论能量密度为160Wh/Kg,预计实际能量密度可达50-80Wh/Kg。综上所述,该类型电池非常有希望成为替代铅酸电池的下一代储能电池,具有极大的商业价值。
但是,目前该电池在充电时,电池正极单纯使用碳基导电剂会发生腐蚀从而被消耗,这一现象一方面导致电池自放电,另一方面造成电池内部产生气体,进而使电池的循环寿命迅速降低。
发明内容
本发明所要解决的技术问题是提供一种正极材料,在水系电池充电时正极材料中导电剂具有良好的稳定性和抗腐蚀性。
本发明提供了一种正极材料,所述正极材料包括正极活性物质和导电剂,所述正极活性物质能够可逆脱出-嵌入第一金属离子,所述导电剂包括导电聚合物,所述导电聚合物选自聚乙炔、聚苯硫醚、聚喹啉、聚对苯撑乙烯、聚对苯、聚吡咯、聚苯胺、聚噻吩和聚3,4-乙烯二氧噻吩-聚苯乙烯磺酸中的至少一种,所述导电剂占所述正极材料的质量百分含量范围为6%-15%。
优选的,所述导电剂还包括碳基材料。
优选的,所述碳基材料和所述导电聚合物的质量比范围为1:10-10:1。
优选的,所述碳基材料选自石墨,碳纳米管、碳黑和活性炭中的至少一种。
优选的,所述石墨为片状石墨或球状石墨。
优选的,所述正极活性物质在所述正极材料的质量百分含量范围为80%-90%。
优选的,所述正极材料还包括正极粘结剂。
优选的,所述正极粘结剂选自聚偏氟乙烯、聚四氟乙烯或羧甲基纤维素钠和丁苯橡胶的混合物。
本发明还提供了一种电池,所述电池包括正极、负极以及设置在所述正极和负极之间的电解液,所述正极包括如上所述的正极材料。
优选的,所述电解液包括电解质以及溶剂水;所述电解质至少能够电离出第一金属离子和第二金属离子;所述第一金属离子在充放电过程中在所述正极能够可逆脱出-嵌入;所述第二金属离子在充电过程中在所述负极还原沉积为第二金属,所述第二金属在放电过程中氧化溶解为第二金属离子。
优选的,所述第一金属离子选自锂离子、钠离子或镁离子。
优选的,所述电解质的阴离子包括硫酸根离子、氯离子、醋酸根离子、硝酸根离子,甲酸根离子和烷基磺酸根离子中的一种或几种。
优选的,所述烷基磺酸根离子为甲基磺酸根离子。
优选的,所述第二金属离子选自锰离子、铁离子、铜离子、锌离子、铬离子、镍离子、锡离子或铅离子。
优选的,所述电解液的pH为3-7。
与现有技术相比,本发明的正极材料中导电剂具有很好的导电性和稳定性,从而避免了导电剂腐蚀从而造成正极内阻增减,减少了电池自放电,增强了电池的安全性能,同时也有效抑制了电池性能衰减。
本发明所要解决的技术问题是提供一种胶体电解质,胶体电解质具有很好的保水性和强度,胶体电解质需要一定的成胶时间,从而方便灌注到电池中。
本发明提供了一种胶体电解质,所述胶体电解质包括:溶剂,所述溶剂 为水;电解质盐,所述电解质盐在溶剂中能够电离阳离子和阴离子,所述阳离子包括第一金属离子和第二金属离子,所述第一金属离子在充放电过程中在正极能够可逆脱出-嵌入;所述第二金属离子在充电过程中在负极还原沉积为第二金属,所述第二金属在放电过程中氧化溶解为第二金属离子;所述阴离子选自硫酸根离子或氯离子;凝胶剂二氧化硅,所述凝胶剂二氧化硅占所述胶体电解质的重量百分比为1-10%;添加剂,所述添加剂选自聚苯乙烯磺酸钠、烷基磺酸盐和硼酸盐中的至少一种。
优选的,所述添加剂占所述胶体电解质的重量百分比为0.01-10%。
优选的,所述第一金属离子选自锂离子、钠离子或镁离子。
优选的,所述第一金属离子浓度为0.1-10mol/L。
优选的,所述第二金属离子选自锰离子、铁离子、铜离子、锌离子、铬离子、镍离子、锡离子或铅离子。
优选的,所述第二金属离子浓度为0.5-15mol/L。
优选的,所述烷基磺酸盐选自甲基磺酸锂和甲基磺酸锌中的至少一种。
优选的,所述硼酸盐选自硼酸锂、硼酸钾和硼酸锌中的至少一种。
本发明还提供了一种电池,所述电池包括正极、负极以及设置在所述正极和负极之间的胶体电解质,所述正极包括能够可逆脱出-嵌入第一金属离子的正极活性物质,所述胶体电解质如上所述。
优选的,所述负极包括黄铜箔和锌箔。
优选的,所述正极活性物质选自LiMn2O4、LiFePO4或LiCoO2
与现有技术相比,本发明的胶体电解质具有很好的保水性和强度,没有水化现象,电解质盐分布均一,胶体电解质方便灌注到电池中,适于工业化应用。
具体实施方式
为了使本发明所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施方式一
本发明提供了一种正极材料,其包括正极活性物质和导电剂,其中,正 极活性物质参与正极反应,并且能够可逆脱出-嵌入第一金属离子。
优选的,正极活性物质具有尖晶石结构、层状结构或橄榄石结构。
优选的,第一金属离子选自锂离子、钠离子和镁离子中的一种,对应的,正极活性物质能够可逆脱出-嵌入锂离子、钠离子或镁离子。
正极活性物质可以是符合通式Li1+xMnyMzOk的能够可逆脱出-嵌入锂离子的尖晶石结构的化合物,其中,-1≤x≤0.5,1≤y≤2.5,0≤z≤0.5,3≤k≤6,M选自Na、Li、Co、Mg、Ti、Cr、V、Zn、Zr、Si、Al、Ni中的至少一种。优选的,正极活性物质含有LiMn2O4。更优选的,正极活性物质含有经过掺杂或包覆改性的LiMn2O4
正极活性物质可以是符合通式Li1+xMyM′zM″cO2+n的能够可逆脱出-嵌入锂离子的层状结构的化合物,其中,-1<x≤0.5,0≤y≤1,0≤z≤1,0≤c≤1,-0.2≤n≤0.2,M,M′,M″分别选自Ni、Mn、Co、Mg、Ti、Cr、V、Zn、Zr、Si或Al的中至少一种。优选的,正极活性物质含有LiCoO2
正极活性物质可以是符合通式LixM1-yM′y(XO4)n的能够可逆脱出-嵌入锂离子的橄榄石结构的化合物,其中,0<x≤2,0≤y≤0.6,1≤n≤1.5,M选自Fe、Mn、V或Co,M′选自Mg、Ti、Cr、V或Al的中至少一种,X选自S、P或Si中的至少一种。优选的,正极活性物质含有LiFePO4
目前锂电池工业中,几乎所有正极活性物质都会经过掺杂、包覆等改性处理。但掺杂,包覆改性等手段造成材料的化学通式表达复杂,如LiMn2O4已经不能够代表目前广泛使用的“锰酸锂”的通式,而应该以通式Li1+xMnyMzOk为准,广泛地包括经过各种改性的LiMn2O4正极活性物质。同样的,LiFePO4以及LiCoO2也应广泛地理解为包括经过各种掺杂、包覆等改性的,通式分别符合LixM1-yM′y(XO4)n和Li1+xMyM′zM″cO2+n的正极活性物质。
正极活性物质为锂离子脱出-嵌入化合物时,可以选用如LiMn2O4、LiFePO4、LiCoO2、LiMxPO4、LiMxSiOy(其中M为一种变价金属)等化合物。
此外,可脱出-嵌入钠离子的化合物NaVPO4F,可脱出-嵌入镁离子的化合物MgMxOy(其中M为一种金属,0.5<x<3,2<y<6)以及具有类似功能,能够脱出-嵌入离子或官能团的化合物都可以作为本发明电池的正极活性物质,因此,本发明并不局限于锂离子电池。
在正极材料中使用导电剂的目的是降低整体正极材料的电阻,同时加强正极材料颗粒之间的导电通路。
具体的,导电剂包括导电聚合物,导电聚合物选自聚乙炔(PA)、聚苯硫醚(PPS)、聚喹啉(PQ)、聚对苯撑乙烯(PPV)、聚对苯(PPP)、聚吡咯(Ppy)、聚苯胺(PANI)、聚噻吩(PTH)和聚3,4-乙烯二氧噻吩-聚苯乙烯磺酸(PEDOT-PSS)中的至少一种。
PEDOT-PSS为一种导电聚合物的水溶液,其在水溶液中的结构式为:
Figure PCTCN2016086020-appb-000001
其中,n为重复单元,其取值范围为5-5000。
本发明中,作为导电剂使用的导电聚合物为本征型(结构型)导电聚合物,聚合物高分子本身具有“固有”的导电性,由聚合物结构提供导电载流子(电子、离子或空穴)。本发明中,采用导电聚合物PA、PPS、PQ、PPV、PPP、Ppy、PANI、PTH和PEDOT-PSS中至少一种作为导电剂,一方面,导电聚合物具有良好的导电性,提高正极活性物质的导电性,另一方面,导电聚合物具有很好的稳定性和抗腐蚀性能,使得正极在高电压或水系电解液条件下不会因导电剂产生副反应,正极内阻稳定,正极寿命长。
更优选的,除导电聚合物之外,导电剂还包括碳基材料。碳基材料相对于导电聚合物具有较高的导电性,但是在高电压或水系电解液中稳定性欠佳。本发明合理的使用导电聚合物和碳基材料混合导电剂,两者以一定的配比相互配合,使碳基材料和导电聚合物构筑的导电网络与正极活性物质之间既具有较大的接触面积,又具有良好的抗腐蚀能力,大大降低了正极材料的内阻,提高了电池的浮充寿命,减少了自放电。
具体的,碳基材料选自石墨,碳纳米管、碳黑和活性炭中的至少一种。
在一个优选的实施例中,碳基材料选自石墨,石墨为片状石墨或球状石墨,示例的,片状石墨包括SFG6和SFG15;球状石墨包括KS6和KS15。更优选的,石墨为片状石墨,片状石墨具有各向异性,因此具有良好的抗腐蚀能力,从而改善正极自放电和浮充性能。
在另一个优选的实施例中,碳基材料选自碳纳米管、碳黑或活性炭,示例的,碳黑包括乙炔黑和super-P。碳基材料和导电聚合物作为混合导电剂使用,从而在改善正极自放电的同时提高电池倍率性能。
在导电剂中,碳基材料和导电聚合物的比例决定导电网络的性能,优选的,碳基材料和导电聚合物的质量比范围为1:10-10:1。此时,碳基材料可均匀的分布在导电网络中,并填充在正极活性物质颗粒间的空隙,导电剂与正极活性物质之间、导电剂中导电聚合物与碳基材料之间有了有效的接触。
导电剂的含量有一个转折点,正极中的正极活性物质颗粒才能和导电剂充分接触,使界面电化学反应阻抗达到一个稳定值,正极的稳定性增加。导电剂含量太多会造成正极单体体积中正极活性物质含量少,正极活性物质密度降低,使得电池容量下降;导电剂含量太少则正极活性物质中电子导电通道少,导致正极活性物质利用率不高,正极容量降低,循环性能也随之下降。具体的,导电剂占正极材料的质量百分含量范围为6%-15%,正极活性物质占正极材料的质量百分含量范围为80-90%。因此,在保证正极材料具有优异的导电性能的同时,使正极具有较高的容量。
在具体的实施方式中,在制备正极时根据需要,还会在正极材料中添加粘结剂,粘结剂有利于使正极活性物质和导电剂均匀的粘结在一起,从而加工形成正极。具体的,粘结剂选自但不仅限于聚合物,聚合物选自聚四氟乙烯(PTFE)、聚偏氟乙烯(PVDF)、羧甲基纤维素钠(CMC)、羧甲基纤维素钠衍生物(CMC derivation)、丁苯橡胶(SBR)、丁苯橡胶衍生物(SBR derivation)中的至少一种。丁苯橡胶衍生物如通过化学修饰获得的具有亲水性的丁苯橡胶(PSBR100)。
本发明提供的正极材料,其中以导电聚合物或导电聚合物和石墨作为导电剂,导电剂在正极材料中具有良好的导电性能和抗腐蚀性能,从而保证正极具有良好的导电性能和稳定性能。
实施方式二
本发明提供了一种电池,电池包括正极、负极以及设置在正极和负极之间的电解液,正极包括如实施方式一所述的正极材料,在此不再赘述。在具体的实施方式中,在制备正极时根据需要,还会在正极材料中添加粘结剂,粘结剂有利于使正极活性物质和导电剂均匀的粘结在一起,从而加工形成正极。具体的,粘结剂选自但不仅限于聚合物,聚合物选自聚四氟乙烯(PTFE)、聚偏氟乙烯(PVDF)、羧甲基纤维素钠(CMC)、羧甲基纤维素钠衍生物(CMC derivation)、丁苯橡胶(SBR)、丁苯橡胶衍生物(SBR derivation)中的至少一种。丁苯橡胶衍生物如通过化学修饰获得的具有亲水性的丁苯橡胶(PSBR100)。
优选地,正极粘结剂还可以直接选自聚乙烯氧化物、聚丙烯氧化物,聚丙烯腈、聚酰亚胺、聚酯、聚醚、氟化聚合物、聚二乙烯基聚乙二醇、聚乙二醇二丙烯酸酯、聚乙二醇二甲基丙烯酸中的一种、或上述聚合物的混合物及衍生物。具体的,正极还包括负载正极活性物质的正极集流体,正极集流体仅作为电子传导和收集的载体,不参与电化学反应,即在电池工作电压范围内,正极集流体能够稳定的存在于电解液中而基本不发生副反应,从而保证电池具有稳定的循环性能。
正极集流体的材料选自碳基材料、金属和合金中的一种。
碳基材料选自玻璃碳、石墨箔、石墨片、泡沫碳、碳毡、碳布、碳纤维中的一种。在具体的实施方式中,正极集流体为石墨,如商业化的石墨压制的箔,其中石墨所占的重量比例范围为90-100%。
金属包括Ni、Al、Fe、Cu、Pb、Ti、Cr、Mo、Co、Ag或经过钝化处理的上述金属中的一种。
合金包括不锈钢、碳钢、Al合金、Ni合金、Ti合金、Cu合金、Co合金、Ti-Pt合金、Pt-Rh合金或经过钝化处理的上述金属中的一种。
不锈钢包括不锈钢网、不锈钢箔,不锈钢的型号包括但不仅限于不锈钢304或者不锈钢316或者不锈钢316L中的一种。
优选地,对正极集流体进行钝化处理,其的主要目的是,使正极集流体的表面形成一层钝化的氧化膜,从而在电池充放电过程中,能起到稳定的收集和传导电子的作用,而不会参与电池反应,保证电池性能稳定。正极集流体钝化处理方法包括化学钝化处理或电化学钝化处理。
化学钝化处理包括通过氧化剂氧化正极集流体,使正极集流体表面形成钝化膜。氧化剂选择的原则为氧化剂能使正极集流体表面形成一层钝化膜而不会溶解正极集流体。氧化剂选自但不仅限于浓硝酸或硫酸高铈(Ce(SO4)2)。
电化学钝化处理包括对正极集流体进行电化学氧化或对含有正极集流体的电池进行充放电处理,使正极集流体表面形成钝化膜。
更加优选的,正极还包括负载正极活性物质的复合集流体,复合集流体包括正极集流体和包覆在正极集流体上导电膜。导电膜通过热压复合、抽真空或喷涂方式结合到正极集流体上。
在一个具体的实施例中,复合集流体为导电PE膜包覆的不锈钢。
以下,对本发明的电解液做详细的描述和说明。
本发明的电解液有多种选择。
选择一
电解液包括电解质以及溶剂。电解质至少能够电离出第一金属离子和第二金属离子,第一金属离子在充放电过程中在正极能够可逆脱出-嵌入,第二金属离子在充电过程中在负极还原沉积为第二金属,第二金属在放电过程中氧化溶解为第二金属离子。
其中,电解液中溶剂的目的是溶解电解质,并使电解质在溶剂中电离,最终在电解液中生成阳离子和阴离子。
具体的,溶剂为水溶液。
其中,电解液中的第一金属离子,在充放电过程中在正极能够可逆脱出-嵌入。即在电池放电时,电解液中的第一金属离子嵌入正极活性物质中;在电池充电时,第一金属离子从正极活性物质中脱出,进入电解液。
第一金属离子选自锂离子、钠离子或镁离子,具体的,第一金属离子为锂离子。
其中,电解液中的第二金属离子,第二金属离子在充电过程中在负极还原沉积为第二金属,第二金属在放电过程中氧化溶解为第二金属离子。即,第二金属离子在充电过程中在负极能够还原沉积为第二金属且第二金属在放电过程中能可逆氧化溶解。
具体的,第二金属离子选自锰离子、铁离子、铜离子、锌离子、铬离子、镍离子、铅离子和锡离子中的一种,更优选为锌离子。
在一优选实施例下,本发明的第一金属离子选自锂离子,同时第二金属 离子选自锌离子,即电解质中阳离子为锂离子和锌离子。
当然,除了阳离子第一金属离子和第二金属离子,电解质中还包括阴离子,具体的,电解质中阴离子包括硫酸根离子、氯离子、醋酸根离子、甲酸根离子和硝酸根离子中的一种或几种。
优选地,电解质中阴离子包括烷基磺酸根离子。烷基磺酸根离子包含但不限于脂肪族磺酸根离子,且不限于在脂肪族基团上带有官能团或者取代基。优选符合以下通式:
R-SO3 -或Y-R’-SO3 -
在上述通式中,Y指取代基,例如-F、-OH等。在上述通式中,R可以是支化或未支化的脂肪基;可以是1~12个碳原子的脂肪基,优选为1~6个碳原子的脂肪基,特别优选甲基、乙基和正丙基。
在上述通式中,R’可以是支化或未支化的脂肪基;可以是2~12个碳原子的脂肪基,优选为2~6个碳原子的脂肪基,更优选为未支化、含2~6个碳原子的脂肪基;更优选地,取代基与磺酸基不连接在同一碳原子上。
特别优选地,烷基磺酸根离子为甲基磺酸根离子,即R为甲基。
电解液中采用甲基磺酸根离子,在抑制电池自放电上有明显的作用,从而保证电池容量和循环寿命。
电解液中各离子的浓度,可以根据不同电解质、溶剂、以及电池的应用领域等不同情况而进行改变调配。
优选地,在电解液中,第一金属离子的浓度为0.1-10mol/L。
优选地,在电解液中,第二金属离子的浓度为0.5-15mol/L。
优选地,在电解液中,烷基磺酸根离子的浓度为0.5-12mol/L。
为了使电池性能更加优化,电解液的pH值范围优选为3-7。
选择二
优选地,电解质包括一种胶体电解质,包括溶剂、电解质盐、凝胶剂以及添加剂。
其中,溶剂的作用是溶解电解质盐,并使电解质盐在溶剂中电离,最终在生成阳离子和阴离子。具体的,溶剂为水溶液。
阳离子包括第一金属离子和第二金属离子,第一金属离子在充放电过程中在正极能够可逆脱出-嵌入;第二金属离子在充电过程中在负极还原沉积为第二金属,第二金属在放电过程中氧化溶解为第二金属离子。
具体的,第一金属离子选自锂离子、钠离子或镁离子。第二金属离子选自锰离子、铁离子、铜离子、锌离子、铬离子、镍离子、锡离子或铅离子。
在一优选实施例下,本发明的第一金属离子选自锂离子,第二金属离子选自锌离子,即胶体电解质含有两种电解质盐,两种电解质盐分别电离出锂离子和锌离子。
当然,除了阳离子第一金属离子和第二金属离子,电解质盐中还包括阴离子,具体的,电解质盐中阴离子选自硫酸根离子或氯离子。
胶体电解质中各离子的浓度,可以根据不同电解质、溶剂、以及电池的应用领域等不同情况而进行改变调配。
优选的,在胶体电解质中,第一金属离子的浓度为0.1-10mol/L。
优选的,在胶体电解质中,第二金属离子的浓度为0.5-15mol/L。
凝胶剂二氧化硅的作用是使电解质凝胶化,示例但不限制的,二氧化硅以纳米二氧化硅的形式添加到电解质中,纳米二氧化硅的粒径范围为1-100nm;除此之外,二氧化硅还可以是以硅溶胶的形式添加到电解质中,即将纳米二氧化硅以一定比例和工艺添加到溶剂水中形成硅溶胶,留作备用。
为了形成稳定的胶状电解质,需要合理控制二氧化硅的添加量,优选的,凝胶剂二氧化硅占胶体电解质的重量百分比为1-10%。
胶体电解质还包括添加剂,添加剂的主要作用是减缓电解质成胶的过程,同时保证增强胶体电解质的强度和稳定性,使胶体电解质不水化,使电解质成胶需要一定时间,从而方便电解质灌注到电池中。
具体的,添加剂选自聚苯乙烯磺酸钠、烷基磺酸盐和硼酸盐中的至少一种。添加剂占胶体电解质的重量百分比为0.01-10%。
烷基磺酸盐包含但不限于脂肪族磺酸盐,且不限于在脂肪族基团上带有官能团或者取代基。优选符合以下通式:
R-SO3-Me或Y-R’-SO3-Me
在上述通式中,Y指取代基,例如-F、-OH等;R可以是支化或未支化的脂肪基;可以是1~12个碳原子的脂肪基,优选为1~6个碳原子的脂肪基,特别优选甲基、乙基和正丙基;Me为金属。
在上述通式中,R’可以是支化或未支化的脂肪基;可以是2~12个碳原子 的脂肪基,优选为2~6个碳原子的脂肪基,更优选为未支化、含2~6个碳原子的脂肪基;更优选的,取代基与磺酸基不连接在同一碳原子上。
优选的,烷基磺酸盐为甲基磺酸盐,即R为甲基。更优选的,烷基磺酸盐为甲基磺酸锂和甲基磺酸锌中的至少一种,即Me为锂和锌中的至少一种。
优选的,硼酸盐选自硼酸锂、硼酸钾和硼酸锌中的至少一种。胶体电解质中添加硼酸盐,可以有效的延长胶体电解质成胶所需的时间。
在胶体电解质中,电解质、凝胶剂二氧化硅和添加剂加入到溶剂中的顺序没有严格限制。具体的,可以先将电解质溶解在溶剂中,待电解质完全溶解后,加入凝胶剂和添加剂,形成胶体电解质;也可以直接将电解质、凝胶剂和添加剂一起加入到溶剂中,形成胶体电解质。
本发明提供的胶体电解质,具有很好的强度、成胶性、稳定性和保水性能,同时第一金属离子和第二金属离子在胶体电解质中具有很好的离子迁移速率。另外,胶体电解质中添加有可以适当减缓胶体电解质成胶过程的添加剂,在不影响胶体电解质性能的同时,更加方便胶体电解质灌注到电池中。本发明提供的胶体电解质可以适用于产业化应用。
以下对本发明电池的负极,做详细的描述和说明。
负极根据其结构以及作用的不同,可以为以下三种不同的形式:
负极仅包括负极集流体,并且负极集流体仅作为电子传导和收集的载体,不参与电化学反应。
示例的,负极集流体为铜箔、不锈钢网、不锈钢箔或石墨箔。
负极除了负极集流体,还包括负载在负极集流体上的负极活性物质。负极活性物质为第二金属,如电解液中活性离子为Zn2+,负极活性物质对应为金属Zn。示例的,负极包括黄铜箔和锌箔,黄铜箔作为负极集流体,锌箔对应负极活性物质,可参与负极反应。
负极活性物质以片状或者粉末状存在。
当负极活性物质为片状时,负极活性物质与负极集流体形成复合层。
当负极活性物质为粉末时,将第二金属粉末制成浆料,然后将浆料涂覆在负极集流体上制成负极。在具体的实施方式中,制备负极时,除了负极活性物质第二金属粉末之外,根据实际情况,还根据需要添加负极导电剂和负极粘结剂来提升负极的性能。
负极仅包括负极活性物质,负极活性物质同时作为负极集流体。示例的,第二金属离子为锌离子,负极为锌箔。锌箔可参与负极反应。
本发明电池的充放电原理为:充电时,正极活性物质脱出第一金属离子,同时伴随正极活性物质被氧化,并放出电子;电子经由外电路到达电池负极,同时电解液中的第二金属离子在负极上得到电子被还原,并沉积在负极上。放电时,沉积在负极上的第二金属被氧化,失去电子转变为第二金属离子进入电解液中;电子经外电路到达正极,正极活性物质接受电子被还原,同时第一金属离子嵌入正极活性物质中。
当然,为了提供更好的安全性能,优选在电解液中位于正极与负极之间还设有隔膜。隔膜可以避免其他意外因素造成的正负极相连而造成的短路。
隔膜没有特殊要求,只要是允许电解液通过且电子绝缘的隔膜即可。有机系锂离子电池采用的各种隔膜,均可以适用于本发明。隔膜还可以是微孔陶瓷隔板等其他材料。
实施方式三
本发明还提供了一种电池,电池包括正极、负极以及设置在正极和负极之间的胶体电解质。
胶体电解质如实施方式二所述,这里就不再一一赘述。
正极包括正极活性物质,正极活性物质参与正极反应,并且能够可逆脱出-嵌入第一金属离子,具体的,正极还包括负载正极活性物质的正极集流体,正极活性物质和正极集流体同实施方式二,在此不再赘述。
在具体的实施方式中,制备正极时,除了正极活性物质之外,根据实际情况,可能还需添加正极导电剂和正极粘结剂来提升正极的性能。
正极导电剂可以直接选自导电聚合物、活性碳、石墨烯、碳黑、石墨、碳纤维、金属纤维、金属粉末、以及金属薄片中的一种或多种。
优选地,正极导电剂包括导电聚合物,导电聚合物选自聚乙炔、聚苯硫醚、聚喹啉、聚对苯撑乙烯、聚对苯、聚吡咯、聚苯胺、聚噻吩和聚3,4-乙烯二氧噻吩-聚苯乙烯磺酸中的至少一种,优选地,除导电聚合物之外,导电剂还包括碳基材料同实施方式二,这里就不再赘述。以导电聚合物或导电聚合物和石墨作为导电剂,导电剂在正极材料中具有良好的导电性能和抗腐蚀性能,从而保证正极具有良好的导电性能和稳定性能。
正极粘结剂、负极同实施方式二,在此不再赘述。
本发明的电池,采用胶体电解质,可以有效避免电解质盐的不均匀分布和电解质失水,从而使第二金属离子在负极上更加均匀的沉积,避免负极枝晶的形成。另外本发明的电池还可以避免电池漏液,提高电池循环性能和低温性能。除了对电池性能的提升作用之外,胶体电解质中添加有延缓成胶过程的添加剂,这样,可以在电解质变成胶体之前灌注到电池或电池隔膜中,从而方便电池工业化组装。
以下结合具体的实施例对本发明进行进一步的阐述和说明。
实施例1-1
将正极活性物质锰酸锂、导电剂导电聚合物聚3,4-乙烯二氧噻吩-聚苯乙烯磺酸(PEDOT-PSS,Baytron P)、粘结剂CMC和SBR按照质量比LMO:PEDOT-PSS:CMC:SBR=86.5:10:1:2.5在水中混合,形成均匀的正极浆料。将正极浆料涂覆在正极集流体石墨箔上形成活性物质层,随后将其压制成面积为1cm2的圆片。
采用锌箔作为负极,AGM薄膜作为隔膜。
称取一定质量的硫酸锌、硫酸锂,加入水中溶解,配置成硫酸锌浓度为2mol/L、硫酸锂浓度为1mol/L的电解液。
将正极、负极以及隔膜组装成电芯,装入壳体内,然后注入电解液,封口,组装成容量在2mAh~5mAh的扣式电池。
实施例1-2
将正极活性物质锰酸锂、导电剂PEDOT-PSS和石墨KS6、粘结剂CMC和SBR按照质量比LMO:导电剂:CMC:SBR=86.5:10:1:2.5在水中混合,形成均匀的正极浆料,其中,PEDOT-PSS和KS6的质量比为1:9。电池其余组成和制备方法同实施例1-1。
实施例1-3
将正极活性物质锰酸锂、导电剂PEDOT-PSS和石墨KS6、粘结剂CMC和SBR按照质量比LMO:导电剂:CMC:SBR=86.5:10:1:2.5在水中混合,形成均匀的正极浆料,其中,PEDOT-PSS和KS6的质量比为1:5。
电池其余组成和制备方法同实施例1-1。
实施例1-4
将正极活性物质锰酸锂、导电剂PEDOT-PSS和石墨KS6、粘结剂CMC和SBR按照质量比LMO:导电剂:CMC:SBR=86.5:10:1:2.5在水中混合,形成均匀的正极浆料,其中,PEDOT-PSS和KS6的质量比为1:1。
电池其余组成和制备方法同实施例1-1。
对比例1-1
将正极活性物质锰酸锂、导电剂石墨KS6、粘结剂CMC和SBR按照质量比LMO:KS6:CMC:SBR=86.5:10:1:2.5在水中混合,形成均匀的正极浆料。
电池其余组成和制备方法同实施例1-1。
循环性能测试
将实施例1-4和对比例1-1中电池在常温下,分别以0.2C、1C和2C倍率在1.4V~2.1V电压范围内进行充放电循环测试。
实施例1-4和对比例1-1中的电池在不同倍率下,电池经过初始3次循环后稳定的放电容量基本相同,说明本发明中的导电聚合物作为导电剂可以使电池容量正常发挥。
自放电测试
以0.2C对实施例1-1-1-4和对比例1-1中电池进行恒流充电,充至2.1V后对电池进行恒压充电,限流0.2C至电流减少到0.02C为止。将电池在常温下搁置一天后,测试电池的容量保持率。
对比例1-1中电池自放电1天后电池容量保持率为93.9%,实施例1-1和实施例1-2中电池容量保持率分别为94.7%和95.9%,实施例1-3和实施例1-4中电池容量保持率分别为97.0%和97.9%。虽然实施例1-4中电池相对于对比例1-1中电池容量保持率提升只有几个百分点,但是由于对比例1-1中电池容量保持率已经大于90%,因此此时仅1%的提高对于电池性能来说也是很大的改善。
实施例1-5
将正极活性物质锰酸锂、导电剂聚噻吩(PTH)、粘结剂CMC和SBR按照质量比LMO:PTH:CMC:SBR=84.5:12:1:2.5在水中混合,形成均匀的正极浆料。将正极浆料涂覆在正极集流体石墨箔上形成活性物质层,正极活性物质 的面密度为20mg/cm2
采用锌箔作为负极,AGM薄膜作为隔膜。
称取一定质量的硫酸锌、硫酸锂,加入水中溶解,配置成硫酸锌浓度为2mol/L、硫酸锂浓度为1mol/L的电解液。
将正极、负极以及隔膜组装成电芯,装入壳体内,然后注入电解液,封口,组装成容量为7mAh电池。
实施例1-6
将正极活性物质锰酸锂、导电剂聚噻吩(PTH)和石墨KS15、粘结剂CMC和SBR按照质量比LMO:导电剂:CMC:SBR=84.5:12:1:2.5在水中混合,形成均匀的正极浆料,将正极浆料涂覆在正极集流体石墨箔上形成活性物质层。其中,PTH和KS15的质量比为1:10。
电池其余组成和制备方法同实施例5。
实施例1-7
将正极活性物质锰酸锂、导电剂聚噻吩(PTH)和石墨KS15、粘结剂CMC和SBR按照质量比LMO:导电剂:CMC:SBR=84.5:12:1:2.5在水中混合,形成均匀的正极浆料,将正极浆料涂覆在正极集流体石墨箔上形成活性物质层。其中,PTH和KS15的质量比为1:5。
电池其余组成和制备方法同实施例5。
实施例1-8
将正极活性物质锰酸锂、导电剂聚噻吩(PTH)和石墨KS15、粘结剂CMC和SBR按照质量比LMO:导电剂:CMC:SBR=84.5:12:1:2.5在水中混合,形成均匀的正极浆料,将正极浆料涂覆在正极集流体石墨箔上形成活性物质层。其中,PTH和KS15的质量比为1:1。
电池其余组成和制备方法同实施例5。
对比例1-2
将正极活性物质锰酸锂、导电剂石墨KS15、粘结剂CMC和SBR按照质量比LMO:导电剂:CMC:SBR=84.5:12:1:2.5在水中混合,形成均匀的正极浆料,将正极浆料涂覆在正极集流体石墨箔上形成活性物质层。
电池其余组成和制备方法同实施例5。
循环性能测试
将实施例1-5-1-8和对比例1-2中电池在60℃下,以1C倍率在1.4V~2.1V电压范围内进行充放电循环测试。
电池充放电循环50次和100次后,对比例1-2中电池容量保持率分别为60.6%和38.1%,实施例1-6中电池容量保持率分别为61.5%和39%,而实施例1-8中电池容量保持率最高,其次分别为实施例1-7、实施例1-6和实施例1-5中电池。
虽然实施例1-6中电池循环性能相对于对比例1-2中电池仅提高了1%,但是电池循环性能测试是在高温60℃下进行,如果电池循环性能在常温下进行,这一差距将非常明显。
自放电测试
以0.2C对实施例1-5-1-8和对比例1-2中电池进行恒流充电,充至2.1V后对电池进行恒压充电,限流0.2C至电流减少到0.02C为止。将电池在60℃下搁置一天,待电池冷却至室温,测试电池的容量损失;将电池在60℃下搁置七天,待电池冷却至室温,测试电池的容量损失。
实施例1-6中电池60℃搁置1天自放电相对于对比例1-2中电池自放电减少了4%,60℃搁置7天自放电实施例1-6中电池相对于对比例1-2中减少了7%,而在实施例1-5-1-8提供的电池中,实施例1-8中电池自放电容量损失最低,其次分别为实施例1-7、实施例1-6和实施例1-5中电池。
在采用聚乙炔、聚苯硫醚、聚喹啉、聚对苯撑乙烯、聚对苯、聚吡咯或聚苯胺作为电池正极导电剂的具体实施例中,相对于仅采用碳基材料作为正极导电剂,电池自放电和循环性能均得到了明显的改善。
实施例2-1
胶体电解质制备过程包括:取一定量的电解质盐硫酸锌和硫酸锂,溶解在溶剂水中,制成含有2mol/L硫酸锌和1mol/L硫酸锂的水系电解质A1。
取8mL的水系电解质A1,将1mL的硅溶胶(固含量30%),1mL的添加剂聚苯乙烯磺酸钠水溶液(PSS,固含量30%)添加到A1中,PSS占胶体电解质的质量百分比为3%。
记录由水系电解质变成胶体电解质的时间T1-1
实施例2-2
在实施例2-2中,取8.67mL的水系电解质A1,将1mL的硅溶胶(固含量30%),0.33mL的添加剂聚苯乙烯磺酸钠水溶液(固含量30%)添加到A1中,PSS占胶体电解质的质量百分比约为1%。胶体电解质制备其余过程同实施例2-1。
记录由水系电解质变成胶体电解质的时间T1-2
实施例2-3
在实施例2-3中,取9mL的水系电解质A1,将1mL的硅溶胶(固含量30%),0.05mL的添加剂聚苯乙烯磺酸钠水溶液(固含量30%)添加到A1中,PSS占胶体电解质的质量百分比约为0.15%。胶体电解质制备其余过程同实施例2-1。
记录由水系电解质变成胶体电解质的时间T1-3
实施例2-4
在实施例2-4中,取10mL的水系电解质A1,将2mL的硅溶胶(固含量30%),0.05mL的添加剂聚苯乙烯磺酸钠水溶液(固含量30%)添加到A1中,PSS占胶体电解质的质量百分比约为0.12%。胶体电解质制备其余过程同实施例2-1。
记录由水系电解质变成胶体电解质的时间T1-4
对比例2-1
在对比例2-1中,除了没有添加PSS之外,胶体电解质制备其余过程同实施例2-1。记录由水系电解质变成胶体电解质的时间D1-1
实施例3-1
胶体电解质制备过程包括:取一定量的电解质盐氯化锌和氯化锂,溶解在溶剂水中,制成含有2mol/L氯化锌和1mol/L氯化锂的水系电解质A2。
取8mL的水系电解质A2,将1mL的硅溶胶(固含量30%),1mL的添加剂聚苯乙烯磺酸钠水溶液(PSS,固含量30%)添加到A2中,PSS占胶体电解质的质量百分比为3%。
记录由水系电解质变成胶体电解质的时间T2-1
实施例3-2
在实施例3-2中,取8.67mL的水系电解质A2,将1mL的硅溶胶(固含 量30%),0.33mL的添加剂聚苯乙烯磺酸钠水溶液(固含量30%)添加到A2中,PSS占胶体电解质的质量百分比约为1%。胶体电解质制备其余过程同实施例3-1。
记录由水系电解质变成胶体电解质的时间T2-2
实施例3-3
在实施例3-3中,取9mL的水系电解质A2,将1mL的硅溶胶(固含量30%),0.05mL的添加剂聚苯乙烯磺酸钠水溶液(固含量30%)添加到A2中,PSS占胶体电解质的质量百分比约为0.15%。胶体电解质制备其余过程同实施例3-1。
记录由水系电解质变成胶体电解质的时间T2-3
实施例3-4
在实施例3-4中,取10mL的水系电解质A2,将2mL的硅溶胶(固含量30%),0.05mL的添加剂聚苯乙烯磺酸钠水溶液(固含量30%)添加到A2中,PSS占胶体电解质的质量百分比约为0.12%。胶体电解质制备其余过程同实施例3-1。
记录由水系电解质变成胶体电解质的时间T2-4
对比例3-1
在对比例3-1中,除了没有添加PSS之外,胶体电解质制备其余过程同实施例3-1。
记录由水系电解质变成胶体电解质的时间D2-1
实施例4-1
胶体电解质制备过程包括:取一定量的电解质盐硫酸锌和硫酸锂,溶解在溶剂水中,制成含有2mol/L硫酸锌和1mol/L硫酸锂的水系电解质A1。
取8mL的水系电解质A1,将2mL的硅溶胶(固含量30%),添加剂甲基磺酸锂添加到A1中,甲基磺酸锂占胶体电解质的质量百分比为10%。
记录由水系电解质变成胶体电解质的时间T3-1
实施例4-2
在实施例4-2中,甲基磺酸锂占胶体电解质的质量百分比为5%。胶体电解质制备其余过程同实施例4-1。
记录由水系电解质变成胶体电解质的时间T3-2
实施例4-3
在实施例4-3中,甲基磺酸锂占胶体电解质的质量百分比为1%。胶体电解质制备其余过程同实施例4-1。
记录由水系电解质变成胶体电解质的时间T3-3
实施例4-4
在实施例4-2中,甲基磺酸锂占胶体电解质的质量百分比为0.01%。胶体电解质制备其余过程同实施例4-1。
记录由水系电解质变成胶体电解质的时间T3-4
实施例4-5
在实施例4-5中,添加剂为硼酸锂,硼酸锂占胶体电解质的质量百分比为10%。胶体电解质制备其余过程同实施例4-1。
记录由水系电解质变成胶体电解质的时间T3-5
实施例4-6
在实施例4-6中,添加剂为硼酸锂,硼酸锂占胶体电解质的质量百分比为5%。胶体电解质制备其余过程同实施例4-1。
记录由水系电解质变成胶体电解质的时间T3-6
实施例4-7
在实施例4-7中,添加剂为硼酸锂,硼酸锂占胶体电解质的质量百分比为1%。胶体电解质制备其余过程同实施例4-1。
记录由水系电解质变成胶体电解质的时间T3-7
实施例4-8
在实施例4-8中,添加剂为硼酸锂,硼酸锂占胶体电解质的质量百分比为0.01%。胶体电解质制备其余过程同实施例4-1。
记录由水系电解质变成胶体电解质的时间T3-8
对比例4-1
在对比例4-1中,除了没有添加甲基磺酸锂之外,胶体电解质制备其余过程同实施例4-1。
记录由水系电解质变成胶体电解质的时间D3-1
测试结果如表一所示。
表一
Figure PCTCN2016086020-appb-000002
从表一结果可以看出,胶体电解质中加入添加剂PSS、甲基磺酸盐或硼酸盐,可以有效的延缓胶体电解质成胶过程,并且可以根据实际工艺需要,通过改变添加剂的种类和用量,来控制胶体电解质成胶时间从几十分钟到数天不等。
实施例5-1
制备正极:将锰酸锂LMO、导电剂石墨KS15,粘结剂丁苯橡胶(SBR)和羧甲基纤维素钠(CMC)按照质量比LMO:CMC:SBR:石墨=84.5:1:2.5:12在水中混合,形成均匀的正极浆料。将正极浆料涂覆在石墨箔集流体上,在60℃下进行干燥处理,形成活性物质层,随后将其进行压片,剪裁成8×10cm大小,制成正极片,正极片厚度为0.4mm,正极活性物质面密度为750g/m2
负极包括2片50μm厚的锌箔和1片20μm厚的黄铜箔,黄铜箔置于2片锌箔中间。
电解质为胶体电解质,包括溶剂水,电解质盐包括2mol/L的ZnSO4和1mol/L的Li2SO4,凝胶剂二氧化硅和添加剂甲基磺酸盐(甲基磺酸锂和甲基磺酸锌),其中,二氧化硅和甲基磺酸盐占胶体电解质的质量百分比分别为6%和1%。调节电解质pH为5。
隔膜为AGM玻璃纤维。
将5片正极和6片负极交错排列,正、负极之间以隔膜隔开,将胶体电解质灌注到隔膜中,组成一个电池,理论容量约5Ah。
对比例5-1
在对比例5-1中,电解质不包括添加剂,电池其余制备过程和组成同实 施例5-1。
高温加速浮充寿命试验
室温下,将实施例5-1和对比例5-1中电池以0.2C倍率在1.4V~2.1V电压范围内进行充放电循环,标定电池容量。再将电池在60℃下、1.95V浮充168h(一周),然后以0.2C放电至1.4V。测试电池的放电容量。以电池的放电容量降至50%作为电池的浮充寿命。
高温加速浮充寿命试验是以环境温度60℃下一周的一个充放电试验折合室温四个月的正常使用寿命。
实施例5-1与对比例5-1中电池标定容量基本相同,1C和3C倍率性能也相当,说明胶体电解质可以基本保证电池性能不受影响。另外,电池高温浮充寿命相当,同为10-11周,但实施例5-1中电池浮充电流相对于对比例5-1中电池降低了8%,同时高温浮充11周后,实施例5-1中电池失水比对比例5-1中电池失水减少了10%,电池失水减少有利于电池循环性能的提高。
实施例5-1中电池常温、低温(-10℃和-20℃)循环性能和低温容量均优于对比例5-1中电池。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (11)

  1. 一种正极材料,所述正极材料包括正极活性物质和导电剂,所述正极活性物质能够可逆脱出-嵌入第一金属离子,所述导电剂包括导电聚合物,所述导电聚合物选自聚乙炔、聚苯硫醚、聚喹啉、聚对苯撑乙烯、聚对苯、聚吡咯、聚苯胺、聚噻吩和聚3,4-乙烯二氧噻吩-聚苯乙烯磺酸中的至少一种,所述导电剂占所述正极材料的质量百分含量范围为6%-15%。
  2. 根据权利要求1所述的正极材料,其特征在于:所述导电剂还包括碳基材料。
  3. 根据权利要求2所述的正极材料,其特征在于:所述碳基材料和所述导电聚合物的质量比范围为1:10-10:1。
  4. 根据权利要求3所述的正极材料,其特征在于:所述碳基材料选自石墨、碳纳米管、碳黑和活性炭中的至少一种。
  5. 根据权利要求4所述的正极材料,其特征在于:所述石墨为片状石墨或球状石墨。
  6. 根据权利要求1所述的正极材料,其特征在于:所述正极活性物质在所述正极材料的质量百分含量范围为80%-90%。
  7. 一种电池,所述电池包括正极、负极以及设置在所述正极和负极之间的电解液,所述正极包括如权利要求1-6中任意一项所述的正极材料。
  8. 根据权利要求7所述的电池,其特征在于:所述第一金属离子选自锂离子、钠离子或镁离子。
  9. 根据权利要求7所述的电池,其特征在于:所述电解液包括电解质以及溶剂水;所述电解质至少能够电离出第一金属离子和第二金属离子;所述第一金属离子在充放电过程中在所述正极能够可逆脱出-嵌入;所述第二金属离子在充电过程中在所述负极还原沉积为第二金属,所述第二金属在放电过程中氧化溶解为第二金属离子。
  10. 根据权利要求9所述的电池,其特征在于:所述电解质的阴离子包括硫酸根离子、氯离子、醋酸根离子、硝酸根离子,甲酸根离子和烷基磺酸根离子中的一种或几种。
  11. 根据权利要求9所述的电池,其特征在于:所述第二金属离子选自锰离子、铁离子、铜离子、锌离子、铬离子、镍离子、锡离子或铅离子。
PCT/CN2016/086020 2015-06-18 2016-06-16 正极材料及电池 WO2016202276A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201510341167.9 2015-06-18
CN201510341167.9A CN106328950A (zh) 2015-06-18 2015-06-18 正极材料及电池
CN201510431032.1 2015-07-21
CN201510431032.1A CN106374145A (zh) 2015-07-21 2015-07-21 胶体电解质、含有胶体电解质的电池

Publications (1)

Publication Number Publication Date
WO2016202276A1 true WO2016202276A1 (zh) 2016-12-22

Family

ID=57544906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/086020 WO2016202276A1 (zh) 2015-06-18 2016-06-16 正极材料及电池

Country Status (1)

Country Link
WO (1) WO2016202276A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111755671A (zh) * 2019-03-29 2020-10-09 宁德新能源科技有限公司 正极材料和锂离子二次电池
CN114050227A (zh) * 2021-10-29 2022-02-15 北京理工大学 一种高容量锂电池正极片和锂电池
CN117691116A (zh) * 2024-02-04 2024-03-12 中自环保科技股份有限公司 一种钠离子电池负极导电剂及钠离子电池
CN117691116B (zh) * 2024-02-04 2024-04-26 中自环保科技股份有限公司 一种钠离子电池负极导电剂及钠离子电池

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1330417A (zh) * 2000-06-16 2002-01-09 三星Sdi株式会社 制备锂蓄电池用的正极活性物质的方法
CN102272986A (zh) * 2009-01-06 2011-12-07 株式会社Lg化学 锂二次电池用正极活性材料
CN103682476A (zh) * 2012-08-28 2014-03-26 苏州宝时得电动工具有限公司 电池
CN104253283A (zh) * 2013-06-28 2014-12-31 苏州宝时得电动工具有限公司 电池
CN104733787A (zh) * 2013-12-20 2015-06-24 苏州宝时得电动工具有限公司 电池
CN104733774A (zh) * 2013-12-20 2015-06-24 苏州宝时得电动工具有限公司 电池
CN104882637A (zh) * 2014-02-28 2015-09-02 苏州宝时得电动工具有限公司 电解液和电化学储能装置
CN105336956A (zh) * 2014-06-06 2016-02-17 苏州宝时得电动工具有限公司 电池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1330417A (zh) * 2000-06-16 2002-01-09 三星Sdi株式会社 制备锂蓄电池用的正极活性物质的方法
CN102272986A (zh) * 2009-01-06 2011-12-07 株式会社Lg化学 锂二次电池用正极活性材料
CN103682476A (zh) * 2012-08-28 2014-03-26 苏州宝时得电动工具有限公司 电池
CN104253283A (zh) * 2013-06-28 2014-12-31 苏州宝时得电动工具有限公司 电池
CN104733787A (zh) * 2013-12-20 2015-06-24 苏州宝时得电动工具有限公司 电池
CN104733774A (zh) * 2013-12-20 2015-06-24 苏州宝时得电动工具有限公司 电池
CN104882637A (zh) * 2014-02-28 2015-09-02 苏州宝时得电动工具有限公司 电解液和电化学储能装置
CN105336956A (zh) * 2014-06-06 2016-02-17 苏州宝时得电动工具有限公司 电池

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111755671A (zh) * 2019-03-29 2020-10-09 宁德新能源科技有限公司 正极材料和锂离子二次电池
CN111755671B (zh) * 2019-03-29 2022-10-11 宁德新能源科技有限公司 正极材料和锂离子二次电池
CN114050227A (zh) * 2021-10-29 2022-02-15 北京理工大学 一种高容量锂电池正极片和锂电池
CN117691116A (zh) * 2024-02-04 2024-03-12 中自环保科技股份有限公司 一种钠离子电池负极导电剂及钠离子电池
CN117691116B (zh) * 2024-02-04 2024-04-26 中自环保科技股份有限公司 一种钠离子电池负极导电剂及钠离子电池

Similar Documents

Publication Publication Date Title
US10727491B2 (en) Battery
WO2017020860A1 (zh) 电池、电池组以及不间断电源
WO2011079482A1 (zh) 一种电池
US11211635B2 (en) Battery, battery pack, and uninterruptible power supply
CN101764253A (zh) 二次铝电池及其制备方法
CN104766994B (zh) 电池
CN105336993A (zh) 电解液和电池
CN104882637B (zh) 电解液和电化学储能装置
CN106328950A (zh) 正极材料及电池
CN104733785A (zh) 电池
CN105742637A (zh) 正极材料、含有该正极材料的电池
CN106207242A (zh) 水系电解液和电池
CN104766971A (zh) 正极材料,含有正极材料的水系电池
WO2016045622A1 (zh) 电池、电池组和不间断电源
CN114141981A (zh) 一种正极极片及其制备方法和应用
CN104282952B (zh) 电解液及电池
CN109119635B (zh) 电池
CN104733787B (zh) 电池
WO2017177960A1 (zh) 电解液、电池和电池组
CN105449294A (zh) 电池
WO2016202276A1 (zh) 正极材料及电池
WO2024066086A1 (zh) 二次电池及电池包
CN104934634B (zh) 电池
CN105336956A (zh) 电池
CN103427119A (zh) 电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16811017

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16811017

Country of ref document: EP

Kind code of ref document: A1