WO2023157849A1 - イットリウム質保護膜およびその製造方法ならびに部材 - Google Patents

イットリウム質保護膜およびその製造方法ならびに部材 Download PDF

Info

Publication number
WO2023157849A1
WO2023157849A1 PCT/JP2023/005071 JP2023005071W WO2023157849A1 WO 2023157849 A1 WO2023157849 A1 WO 2023157849A1 JP 2023005071 W JP2023005071 W JP 2023005071W WO 2023157849 A1 WO2023157849 A1 WO 2023157849A1
Authority
WO
WIPO (PCT)
Prior art keywords
protective film
yttrium
film
less
based protective
Prior art date
Application number
PCT/JP2023/005071
Other languages
English (en)
French (fr)
Inventor
道夫 石川
径夫 谷村
修平 小川
朝敬 小川
Original Assignee
Agc株式会社
つばさ真空理研株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=83658126&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2023157849(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Agc株式会社, つばさ真空理研株式会社 filed Critical Agc株式会社
Publication of WO2023157849A1 publication Critical patent/WO2023157849A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Definitions

  • the present invention relates to an yttrium-based protective film, its manufacturing method, and members.
  • the surface of a semiconductor substrate is finely processed by dry etching using plasma of a halogen-based gas. Cleaning is performed using gas plasma.
  • the members exposed to the plasma gas in the chamber are corroded, and the corroded parts may fall off in the form of particles from the corroded members. Particles that have fallen off can adhere to the semiconductor substrate and become foreign matter that causes defects in the circuit.
  • Patent Literature 1 discloses a thermal spray coating containing yttrium oxyfluoride (yttrium oxyfluoride) formed by thermal spraying.
  • the conventional yttrium-based protective film may have insufficient plasma resistance (corrosion resistance to plasma).
  • the present invention has been made in view of the above points, and an object of the present invention is to provide an yttrium-based protective film with excellent plasma resistance.
  • the present invention provides the following [1] to [14].
  • [4] The yttrium-based protective film according to any one of [1] to [3] above, which has a thickness of 0.3 ⁇ m or more.
  • [5] The yttrium-based protective film according to any one of [1] to [4] above, wherein the rocking curve of the (151) plane of Y 5 O 4 F 7 has a half width of 40° or less.
  • [6] A member comprising a substrate and the yttrium-based protective film according to any one of [1] to [5] disposed on a film-forming surface, which is the surface of the substrate.
  • the substrate is composed of at least one selected from the group consisting of ceramics and metals, and the ceramics is at least one selected from the group consisting of glass, quartz, aluminum oxide, aluminum nitride and aluminum oxynitride. and the metal is at least one selected from the group consisting of aluminum and alloys containing aluminum.
  • the surface roughness of the film-forming surface is 0.6 ⁇ m or less in arithmetic mean roughness Ra.
  • the underlayers being Al 2 O 3 , SiO 2 , Y 2 O 3 , MgO, ZrO 2 , Any of the above [6] to [9] containing at least one oxide selected from the group consisting of La 2 O 3 , Nd 2 O 3 , Yb 2 O 3 , Eu 2 O 3 and Gd 2 O 3 The member described in kani. [11] The above-described [10], wherein two or more layers of the underlayer are provided between the substrate and the yttrium-based protective film, and the oxides are different between the adjacent underlayers. Element.
  • the substrate has, as the film formation surface, a first film formation surface that defines a maximum length and a second film formation surface that is different from the first film formation surface, and the first The angle formed by the film formation surface and the second film formation surface is 20° to 120°, and the ratio of the area of the second film formation surface to the total area of the film formation surface is 60% or less.
  • the member according to any one of [6] to [12] which is used inside a plasma etching apparatus or a plasma CVD apparatus.
  • an yttrium-based protective film with excellent plasma resistance can be provided.
  • FIG. 1 is a schematic diagram showing an example of a member.
  • FIG. 2 is a schematic diagram showing half of a ring-shaped base material cut away.
  • FIG. 3 is a schematic diagram showing a part of the cross section of another ring-shaped base material.
  • FIG. 4 is a schematic diagram showing a part of the cross section of still another ring-shaped base material.
  • FIG. 5 is a schematic diagram showing an apparatus used for producing the yttrium-based protective film.
  • a numerical range represented using “to” means a range including the numerical values described before and after “to” as lower and upper limits.
  • the yttrium-based protective film of the present embodiment has a Y 5 O 4 F 7 peak intensity ratio of 60% or more in the X-ray diffraction pattern, a porosity of less than 1.5% by volume, and a Vickers hardness of 500 MPa or more. is.
  • the yttrium-based protective film will be simply referred to as “protective film”, and the yttrium-based protective film (protective film) of this embodiment will also be referred to as “main protective film”.
  • the yttrium-based protective film contains yttrium oxyfluoride.
  • Chemical formulas representing yttrium oxyfluoride include YOF and Y 5 O 4 F 7 .
  • YOF is an orthorhombic crystal with low hardness
  • Y 5 O 4 F 7 has a special rhombohedral crystal structure and high hardness.
  • This protective film has a large proportion of Y 5 O 4 F 7 having a rhombohedral crystal structure. That is, the peak intensity ratio of Y 5 O 4 F 7 in the X-ray diffraction pattern is a certain value or more.
  • the present protective film is hard and has a Vickers hardness of at least a certain value.
  • the present protective film is dense and has a small porosity because it is formed by a method (present production method) described later. Such a protective film has excellent plasma resistance.
  • the present protective film will be described in more detail below.
  • Y 5 O 4 F 7 peak intensity ratio The peak intensity ratio of Y 5 O 4 F 7 in the X-ray diffraction pattern of the present protective film (hereinafter also referred to as “Y 5 O 4 F 7 peak intensity ratio”) is 60% or more, preferably 80% or more, 90% or more is more preferred, 95% or more is even more preferred, 98% or more is even more preferred, 99% or more is particularly preferred, and 100% is most preferred.
  • the protective film In order to make the Y 5 O 4 F 7 peak intensity ratio within the above range, it is preferable to manufacture the protective film by the method (this manufacturing method) described later.
  • the Y 5 O 4 F 7 peak intensity ratio is the main peak of Y 5 O 4 F 7 when the total of the main peak intensities of the crystal phases shown below in the X-ray diffraction (XRD) pattern of the protective film is 100. It is the strength ratio (unit: %).
  • the Y 6 O 5 F 8 crystal peak and the Y 7 O 6 F 9 crystal peak appear overlapping, so trace amounts of Y 6 O 5 F 8 and Y 7
  • all peaks at the main peak position of Y 5 O 4 F 7 are treated as Y 5 O 4 F 7 peaks.
  • the XRD pattern of the protective film is obtained by XRD measurement in micro-part 2D (two-dimensional) mode under the following conditions using an X-ray diffractometer (D8 DISCOVER Plus, manufactured by Bruker).
  • ⁇ X-ray source CuK ⁇ ray (output: 45 kV, current: 120 mA)
  • ⁇ Scanning range: 2 ⁇ 10° to 80°
  • ⁇ Scan speed 10°/min
  • Step width 0.02°
  • ⁇ Detector Multimode detector EIGER (2D mode)
  • ⁇ Incident side optical system multilayer film mirror + 1.0 mm ⁇ micro slit + 1.0 mm ⁇ collimator
  • the Vickers hardness of the protective film is 500 MPa or higher, preferably 800 MPa or higher, more preferably 1000 MPa or higher, still more preferably 1100 MPa or higher, and even more preferably 1200 MPa or higher, because the plasma resistance of the protective film is excellent. , 1250 MPa or more is particularly preferred, and 1300 MPa or more is most preferred.
  • the upper limit of the Vickers hardness of the present protective film is not particularly limited, and is, for example, 1500 MPa, preferably 1400 MPa. That is, the Vickers hardness of this protective film is, for example, 500 to 1500 MPa.
  • the Y 5 O 4 F 7 peak intensity ratio of the protective film is preferably within the above range.
  • the Vickers hardness of the protective film is obtained according to JIS R 1610:2003. More specifically, the Vickers hardness (Hv0 .2).
  • the porosity of the protective film is less than 1.5% by volume, preferably 1.0% by volume or less, more preferably 0.5% by volume or less, and more preferably 0.5% by volume or less, because the plasma resistance of the protective film is excellent. 0.3% by volume or less is more preferable, 0.2% by volume or less is particularly preferable, and 0.1% by volume or less is most preferable.
  • the protective film by the method described later (this manufacturing method).
  • the porosity of the protective film is obtained as follows. First, using a focused ion beam (FIB), the protective film and part of the base material described later are subjected to slope processing in the thickness direction at an angle of 52° from the surface of the protective film toward the base material. to expose the cross section. The exposed cross section is observed using a field emission scanning electron microscope (FE-SEM) at a magnification of 20000 times, and the cross section image is taken. Cross-sectional images are taken at a plurality of locations.
  • FIB focused ion beam
  • FE-SEM field emission scanning electron microscope
  • the protective film and the substrate are circular, one point in the center of the surface of the protective film (or the surface of the substrate) and four points located 10 mm away from the outer circumference Photographs are taken at a total of 5 points, and the size of the cross-sectional image is 6 ⁇ m ⁇ 5 ⁇ m.
  • the protective film has a thickness of 5 ⁇ m or more, cross-sectional images are taken at a plurality of photographing locations so that the entire cross section of the protective film can be observed in the thickness direction. Subsequently, the obtained cross-sectional image is analyzed using image analysis software (ImageJ, manufactured by National Institute of Health) to identify the area of the pore portion in the cross-sectional image.
  • image analysis software ImageJ, manufactured by National Institute of Health
  • the ratio of the area of the pore portion to the area of the entire cross section of the protective film is calculated and regarded as the porosity (unit: volume %) of the protective film.
  • the area of pores so fine that they cannot be detected by image analysis software is regarded as zero.
  • this protective film contains yttrium oxyfluoride, it contains yttrium (Y), oxygen (O) and fluorine (F).
  • the Y content of the protective film is preferably 10 to 35 atomic %.
  • the Y content of the protective film is preferably 10 atomic % or more, more preferably 20 atomic % or more, still more preferably 25 atomic % or more, particularly preferably 26 atomic % or more, and most preferably 27 atomic % or more.
  • the Y content of the protective film is preferably 35 atomic % or less, more preferably 30 atomic % or less, still more preferably 29 atomic % or less, and particularly preferably 28 atomic % or less.
  • the O content of this protective film is preferably 10 to 35 atomic %.
  • the O content of the protective film is preferably 10 atomic % or more, more preferably 15 atomic % or more, still more preferably 20 atomic % or more, particularly preferably 21 atomic % or more, and most preferably 22 atomic % or more.
  • the O content of the present protective film is preferably 35 atomic % or less, more preferably 30 atomic % or less, still more preferably 25 atomic % or less, particularly preferably 24 atomic % or less, most preferably 23.5 atomic % or less. preferable.
  • the F content of this protective film is preferably 35 to 65 atomic %.
  • the F content of the present protective film is preferably 35 atomic % or more, more preferably 40 atomic % or more, still more preferably 44 atomic % or more, particularly preferably 47 atomic % or more, and 49.5 atomic % or more.
  • the F content of the present protective film is preferably 65 atomic % or less, more preferably 60 atomic % or less, still more preferably 55 atomic % or less, even more preferably 52 atomic % or less, and particularly preferably 51 atomic % or less. , 50 atomic % or less.
  • the production conditions such as the amount of the evaporation source are adjusted as appropriate.
  • the contents of Y, O and F (unit: atomic %) in the protective film are measured using an energy dispersive X-ray spectrometer (EX-250SE, manufactured by Horiba, Ltd.).
  • the degree of orientation of the (151) plane of Y 5 O 4 F 7 of the protective film (hereinafter, simply referred to as “degree of orientation” ) is preferably higher.
  • the half width of the rocking curve of the (151) plane of Y 5 O 4 F 7 is used.
  • the rocking curve of the peak of the (151) plane of Y 5 O 4 F 7 obtained using a two-dimensional mode detector is integrated in the 2 ⁇ direction, and the half width is used to evaluate the orientation. do. It can be said that the smaller the half width (unit: °), the higher the degree of orientation.
  • the half width of the rocking curve of the (151) plane of Y 5 O 4 F 7 is preferably 40° or less, more preferably 30° or less, still more preferably 25° or less, even more preferably 20° or less, and 15° or less. is particularly preferred, and 10° or less is most preferred.
  • the crystallite size of the protective film is preferably 30 nm or less, more preferably 25 nm or less, still more preferably 20 nm or less, particularly preferably 15 nm or less, and most preferably 10 nm or less.
  • the lower limit of the crystallite size of the present protective film is not particularly limited, and is, for example, 2 nm, preferably 5 nm. That is, the crystallite size of this protective film is, for example, 2 to 30 nm.
  • the crystallite size in the protective film is obtained using Scherrer's formula based on XRD pattern data obtained by XRD measurement of the mirror-polished protective film.
  • the thickness of the protective film is preferably 0.3 ⁇ m or more, more preferably 1 ⁇ m or more, still more preferably 5 ⁇ m or more, still more preferably 10 ⁇ m or more, particularly preferably 15 ⁇ m or more, and most preferably 20 ⁇ m or more.
  • the upper limit of the thickness of the protective film is not particularly limited, and is, for example, 300 ⁇ m, preferably 200 ⁇ m, more preferably 100 ⁇ m, still more preferably 50 ⁇ m, and particularly preferably 30 ⁇ m. That is, the thickness of this protective film is, for example, 0.3 to 300 ⁇ m.
  • the thickness of the protective film is measured as follows. Using a scanning electron microscope (SEM), the cross section of the protective film is observed, the thickness of the protective film is measured at any five points, and the average value of the five measured points is the thickness of this protective film (unit : ⁇ m).
  • SEM scanning electron microscope
  • the thermal conductivity of the protective film is preferably 5.0 W/(m K) or higher, more preferably 7.0 W/(m K) or higher, and still more preferably 9.0 W/(m K) or higher. 11.0 W/(m ⁇ K) or more is particularly preferable, and 12.5 W/(m ⁇ K) or more is most preferable.
  • the thermal conductivity of the protective film is determined at room temperature (23° C.) by the flash method using xenon lamp light of LFA 447 (Nanoflash) manufactured by NETZSCH.
  • the bulk densities of the substrate and the protective film are determined from the mass and volume, and the specific heat capacities of the substrate and the protective film are determined by the differential scanning calorimetry method specified in JIS R 1672:2006. Furthermore, a multi-layer analysis model is applied to the temperature rise curve obtained by the flash method to determine the thermal diffusivity of the substrate and protective film. Thermal conductivity is determined from the product of bulk density, specific heat capacity and thermal diffusivity.
  • FIG. 1 is a schematic diagram showing an example of the member 6. As shown in FIG. Member 6 has substrate 5 and yttrium-based protective film 4 . Underlying layers (underlying layers 1, 2 and 3) may be disposed between the substrate 5 and the yttrium-based protective film 4, as shown in FIG. However, the number of underlying layers is not limited to three.
  • the member of the present embodiment (hereinafter also referred to as "the present member") has the above-described main protective film as the yttrium-based protective film. Since the surface of the present member is covered with the present protective film, the present member is excellent in plasma resistance similarly to the present protective film.
  • the substrate has at least a surface on which an yttrium-based protective film (or an underlying layer to be described later) is formed. This surface may be hereinafter referred to as a "film formation surface" for convenience.
  • the material of the base material is appropriately selected according to the use of the member.
  • the substrate is composed of, for example, at least one selected from the group consisting of ceramics and metals.
  • the ceramic is, for example, at least one selected from the group consisting of glass (such as soda lime glass), quartz, aluminum oxide (Al 2 O 3 ), aluminum nitride (AlN) and aluminum oxynitride (AlON).
  • the metal is, for example, at least one selected from the group consisting of aluminum and aluminum-containing alloys.
  • shape The shape of the substrate is not particularly limited, and may be, for example, plate-like, ring-like, dome-like, concave or convex, and is appropriately selected according to the use of the member.
  • the surface roughness of the film formation surface of the substrate is preferably 0.6 ⁇ m or less, more preferably 0.3 ⁇ m or less, even more preferably 0.1 ⁇ m or less, and 0.05 ⁇ m as an arithmetic mean roughness Ra.
  • the following are more preferable, 0.01 ⁇ m or less is particularly preferable, and 0.005 ⁇ m or less is most preferable.
  • the surface roughness (arithmetic mean roughness Ra) of the film-forming surface is measured according to JIS B 0601:2001.
  • the area of the film-forming surface of the substrate is not particularly limited, but is, for example, 200 cm 2 or more, preferably 2000 cm 2 or more. Moreover, the upper limit of the area of the film formation surface of the substrate is, for example, 10000 cm 2 , preferably 5000 cm 2 .
  • the maximum length of the film-forming surface of the substrate is preferably 30 mm or longer, more preferably 100 mm or longer, still more preferably 200 mm or longer, even more preferably 300 mm or longer, particularly preferably 500 mm or longer, very preferably 800 mm or longer, and 1000 mm.
  • maximum length means the maximum length which the film-forming surface has. Specifically, for example, if the film formation surface is circular in plan view, it is the diameter, if it is a ring in plan view, it is the outer diameter, and if it is square in plan view, it is the maximum diagonal length. length.
  • the upper limit of the maximum length of the film formation surface is not particularly limited, and is, for example, 2000 mm, preferably 1500 mm. That is, the maximum length of the film formation surface is, for example, 30 to 2000 mm.
  • FIG. 2 is a schematic diagram showing half of the ring-shaped base material 5 cut away.
  • the base material 5 has a film-forming surface 7 , and as shown in FIG. You may have two film-forming surfaces 7b.
  • the ratio of the area of the second film-forming surface 7b to the total area of the film-forming surface 7 is, for example, 60% or less.
  • FIG. 3 is a schematic diagram showing a part of the cross section of another ring-shaped base material 5. As shown in FIG. As shown in FIG. 3, the substrate 5 may have a plurality of second film formation surfaces 7b.
  • FIG. 4 is a schematic diagram showing a part of the cross section of still another ring-shaped base material 5. As shown in FIG. The angle formed by the first film formation surface 7a and the second film formation surface 7b is, for example, 20° to 120°. In the substrate 5 shown in FIG. 4, the angle between the first film formation surface 7a and the second film formation surface 7b connected to the first film formation surface 7a is about 30°.
  • one or more underlayers may be disposed between the substrate and the yttrium-based protective film.
  • the stress of the yttrium-based protective film is relaxed and the adhesion of the yttrium-based protective film to the base material is increased.
  • the upper limit of the number of layers of the underlayer is not particularly limited, it is preferably 5 layers or less, more preferably 4 layers or less, still more preferably 3 layers or less, particularly preferably 2 layers or less, and most preferably 1 layer.
  • the underlying layer is preferably an amorphous film or a microcrystalline film.
  • the underlayer is from the group consisting of Al2O3 , SiO2 , Y2O3 , MgO , ZrO2 , La2O3 , Nd2O3 , Yb2O3 , Eu2O3 and Gd2O3 . It is preferable to contain at least one selected oxide.
  • the oxides of the underlayers are preferably different between the adjacent underlayers.
  • the oxide of the adjacent underlayers are different from each other, for example, the oxide of the underlayer 1 is “SiO 2 ”, the oxide of the underlayer 2 is “Al 2 O 3 +SiO 2 ”, A case where the oxide of the underlying layer 3 is “Al 2 O 3 ” is mentioned.
  • each underlayer is preferably 0.1 ⁇ m or more, more preferably 0.4 ⁇ m or more, and still more preferably 0.8 ⁇ m or more.
  • the thickness of each underlayer is, for example, 15 ⁇ m or less, preferably 10 ⁇ m or less, more preferably 7 ⁇ m or less, and even more preferably 3 ⁇ m or less. That is, the thickness of each underlayer is, for example, 0.1 to 15 ⁇ m.
  • the thickness of the underlayer is measured in the same manner as the thickness of the yttrium-based protective film.
  • This member is used, for example, as a member such as a top plate inside a semiconductor device manufacturing apparatus (plasma etching apparatus, plasma CVD apparatus, etc.). However, the use of this member is not limited to this.
  • this manufacturing method is also a method for manufacturing the present member described above.
  • This manufacturing method is a so-called ion-assisted deposition (IAD) method.
  • IAD ion-assisted deposition
  • the yttrium-based protective film can be formed very densely. That is, the obtained yttrium-based protective film has a small porosity. Also, the crystallite size is small.
  • the yttrium-based protective film is more likely to crack as its thickness increases.
  • the yttrium-based protective film formed on the film formation surface is also enlarged. Even in that case, the yttrium-based protective film is likely to crack.
  • a dense and hard yttrium-based protective film can be obtained. Furthermore, when forming the underlying layer, the stress of the yttrium-based protective film is relaxed. Therefore, the yttrium-based protective film obtained by this manufacturing method is less likely to crack even when the thickness is increased or the area is increased.
  • the surface roughness (arithmetic mean roughness Ra) of the film-forming surface of the substrate is preferably within the range described above.
  • the formed yttrium-based protective film is denser, harder, and less likely to crack.
  • a sputtering method as a method different from the IAD method.
  • the sputtering method for example, plasma of argon and oxygen collides with a YO x F y sputtering target in vacuum to form a film on the substrate.
  • the fluorine content is likely to change, and it is also difficult to stably form an yttrium-based protective film with a large proportion of Y 5 O 4 F 7 having a rhombohedral crystal structure.
  • FIG. 5 is a schematic diagram showing an apparatus used for producing the yttrium-based protective film.
  • the device shown in FIG. 5 has a chamber 11 .
  • the interior of the chamber 11 can be evacuated by driving a vacuum pump (not shown) to evacuate.
  • a crucible 12 and a crucible 13 and an ion gun 14 are arranged inside the chamber 11, and a holder 17 is arranged above them.
  • the holder 17 is integrated with the support shaft 16 and rotates as the support shaft 16 rotates.
  • a heater 15 is arranged around the holder 17 .
  • the substrate 5 described above is held by the holder 17 with its film-forming surface facing downward.
  • the substrate 5 held by the holder 17 rotates as the holder 17 rotates while being heated by the heater 15 .
  • a quartz film thickness monitor 18 and a quartz film thickness monitor 19 are attached to the chamber 11 .
  • ⁇ Formation of yttrium protective film> A case of forming an yttrium protective film (not shown in FIG. 5) on the substrate 5 in the apparatus shown in FIG. 5 will be described.
  • one crucible 12 is filled with the evaporation source Y 2 O 3 and the other crucible 13 is filled with the evaporation source YF 3 .
  • the inside of the chamber 11 is evacuated to a vacuum.
  • the pressure inside the chamber 11 is preferably 8 ⁇ 10 ⁇ 2 Pa or less.
  • the holder 17 is rotated. Thereby, the substrate 5 is rotated while being heated.
  • ion-assisted vapor deposition is performed to form a film on the substrate 5 . That is, while irradiating ions (ion beam) from the ion gun 14, the evaporation source Y 2 O 3 of the crucible 12 and the evaporation source YF 3 of the crucible 13 are evaporated in parallel.
  • the ions irradiated by the ion gun 14 are preferably ions of at least one element selected from the group consisting of oxygen, argon, neon, krypton and xenon.
  • the evaporation source is melted and evaporated by irradiation with an electron beam (not shown). In this way, the evaporated evaporation source adheres to the film-forming surface of the substrate 5 to form an yttrium-based protective film.
  • the pressure inside the chamber 11 is preferably 8 ⁇ 10 ⁇ 2 Pa or less, more preferably 6 ⁇ 10 ⁇ 2 Pa or less, and 5 ⁇ 10 ⁇ 2 Pa. The following is more preferable, and 3 ⁇ 10 ⁇ 2 Pa or less is particularly preferable.
  • the lower limit is preferably 0.5 ⁇ 10 ⁇ 2 Pa. That is, the pressure inside the chamber 11 is preferably 0.5 ⁇ 10 ⁇ 2 Pa to 8 ⁇ 10 ⁇ 2 Pa.
  • the temperature of the substrate 5 heated by the heater 15 is preferably 200° C. or higher, more preferably 250° C. or higher.
  • this temperature is preferably 400° C. or lower, more preferably 350° C. or lower. That is, the temperature of the substrate 5 is preferably 200-400.degree.
  • the quartz film thickness monitor 18 is used to monitor the speed at which the evaporation source of the crucible 12 evaporates to form a film (film formation speed).
  • the quartz film thickness monitor 19 is used to monitor in advance the speed at which the evaporation source of the crucible 13 evaporates and the film is formed (film formation speed).
  • the film forming speed is adjusted by controlling the conditions of the electron beam irradiated to the evaporation source and the conditions of the ion beam of the ion gun 14 (current value, current density, etc.).
  • the deposition rate (unit: nm/min) of each evaporation source is adjusted to a desired value.
  • the film formation speed ratio (Y 2 O 3 /YF 3 ) between the film formation speed (unit : nm/min) of the evaporation source Y 2 O 3 and the film formation speed (unit: nm/min) of the evaporation source YF 3 is , 1/9.5 to 1/1.1.
  • the film formation speed ratio (Y 2 O 3 /YF 3 ) is preferably 1/9.5 or more, more preferably 1/8.0 or more, further preferably 1/6.0 or more, and 1/ 4.5 or more is particularly preferred.
  • the film formation speed ratio (Y 2 O 3 /YF 3 ) is preferably 1/1.1 or less, more preferably 1/1.3 or less, further preferably 1/1.8 or less, and 1/2 0.5 or less is particularly preferred.
  • the total film formation speed of the evaporation source Y 2 O 3 and the film formation speed of the evaporation source YF 3 is preferably 5 to 50 nm/min.
  • the total speed is preferably 5 nm/min or more, more preferably 8 nm/min or more, and even more preferably 10 nm/min or more.
  • the total speed is preferably 50 nm/min or less, more preferably 35 nm/min or less, and even more preferably 20 nm/min or less.
  • the distance between the ion gun 14 and the substrate 5 is preferably 700-1500 mm.
  • the distance between the ion gun 14 and the substrate 5 is preferably 700 mm or more, more preferably 900 mm or more.
  • this distance is preferably 1500 mm or less, more preferably 1300 mm or less.
  • the ion beam current value is preferably 1000 to 3000 mA.
  • the ion beam current value is preferably 1000 mA or more, more preferably 1500 mA or more.
  • the ion beam current value is preferably 3000 mA or less, more preferably 2500 mA or less.
  • the ion beam current density is preferably 40-140 ⁇ A/cm 2 .
  • the ion beam current value is preferably 40 ⁇ A/cm 2 or more, more preferably 65 ⁇ A/cm 2 or more, even more preferably 75 ⁇ A/cm 2 or more, and particularly preferably 85 ⁇ A/cm 2 or more.
  • the ion beam current density is preferably 140 ⁇ A/cm 2 or less, more preferably 120 ⁇ A/cm 2 or less.
  • the underlayer is formed by ion-assisted vapor deposition in the same manner as the yttrium-based protective film.
  • the crucible 12 and/or the crucible 13 is filled with Al 2 O 3 as an evaporation source, and the ion gun 14 irradiates the evaporation source with ions (ion beam). is evaporated and adhered to the film-forming surface of the substrate 5 .
  • the conditions for forming the underlayer conform to the conditions for forming the yttrium-based protective film.
  • Examples 1 to 20 are examples
  • Examples 21 to 27 are comparative examples
  • Examples 28 to 30 are reference examples.
  • Examples 1 to 27 A yttrium-based protective film (protective film) was produced using the apparatus described with reference to FIG. More specifically, the base layer and protective film shown in Tables 1 to 3 below were formed on the film-forming surface of the substrate under the manufacturing conditions shown in Tables 1 to 3 below. A circular substrate (thickness: 10 mm) having a film-forming surface with a diameter (maximum length) of 200 mm was used as the substrate.
  • the composition of the protective film is a composition determined from the content of each element (Y, O, F, etc.).
  • oxygen (O) ions were irradiated from an ion gun, the distance between the ion gun and the substrate was 1100 mm, and the current value of the ion beam was 2000 mA.
  • Example 12 a commercially available soda-lime glass was used as the base material (glass).
  • Example 14 the base layer made of Al 2 O 3 was formed by alumite-treating one side of the base material made of aluminum. This underlayer is described as "alumite” in Table 2 below.
  • Example 28 sapphire was used as the overcoat.
  • metallic aluminum was used as the protective film.
  • quartz was used as the protective film. The protective film thickness, Vickers hardness, and presence or absence of cracks in Examples 28 to 30 have not yet been evaluated.
  • the amount of etching was obtained to evaluate the plasma resistance. Specifically, a 10 mm ⁇ 5 mm surface of the protective film was mirror-finished. A part of the mirror-finished surface was masked with Kapton tape and etched with plasma gas. After that, using a stylus surface profiler (Dectak 150, manufactured by ULVAC), the amount of etching was determined by measuring the difference in level between the etched portion and the non-etched portion. EXAM (manufactured by Shinko Seiki Co., Ltd., model: POEM type) was used as a plasma etching apparatus.
  • EXAM manufactured by Shinko Seiki Co., Ltd., model: POEM type
  • RIE mode reactive ion etching mode
  • a mixed gas of CF 4 gas flow rate: 100 sccm
  • O 2 gas flow rate: 10 sccm
  • etching was performed for 180 minutes using CF 4 gas (flow rate: 100 sccm).
  • etching was performed for 180 minutes using a mixture of CF 4 gas (flow rate: 100 sccm) and O 2 gas (flow rate: 10 sccm)
  • etching was performed using CF 4 gas (flow rate: 100 sccm) for 180 minutes. did. It can be evaluated that the smaller the etching amount (unit: nm), the better the plasma resistance. Specifically, when the etching amount was 200 nm or less, the plasma resistance was evaluated to be excellent.
  • the F content of the protective film was measured, and the amount of change in the F content (unit: atomic %) was obtained based on the following formula.
  • Change in F content ⁇ (F content before etching)-(F content after etching) ⁇ /(F content before etching) It can be evaluated that the smaller the value of the F content change amount, the more stable the protective film has excellent plasma resistance.
  • the change in F content is preferably 10 atomic % or less, more preferably 5 atomic % or less, and even more preferably 3 atomic % or less.
  • Base layer 4 Yttrium-based protective film 5: Base material 6: Member 7: Film formation surface 7a: First film formation surface 7b: Second film formation surface 11: Chambers 12, 13: Crucible 14: Ion gun 15: Heater 16: Support shaft 17: Holder 18, 19: Quartz film thickness monitor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)
  • Materials For Photolithography (AREA)
  • Measurement Of Radiation (AREA)

Abstract

本発明は、X線回折パターンにおけるYのピーク強度比が60%以上であり、気孔率が1.5体積%未満であり、ビッカース硬さが500MPa以上である、イットリウム質保護膜に関する。

Description

イットリウム質保護膜およびその製造方法ならびに部材
 本発明は、イットリウム質保護膜およびその製造方法ならびに部材に関する。
 半導体デバイスを製造する際、例えば、チャンバ内において、ハロゲン系ガスのプラズマを用いたドライエッチングによって半導体基板(シリコンウェハ)の表面を微細加工したり、ドライエッチング後に半導体基板を取り出したチャンバ内を酸素ガスのプラズマを用いてクリーニングしたりする。
 このとき、チャンバ内においてプラズマガスに曝された部材は腐食し、腐食した部材から腐食部分が粒子状に脱落する場合がある。脱落した粒子(パーティクル)は、半導体基板に付着して、回路に欠陥をもたらす異物となり得る。
 そこで、従来、プラズマに曝される部材を保護する保護膜として、酸フッ化イットリウムを含有する保護膜(イットリウム質保護膜)が知られている。
 特許文献1には、溶射によって形成される、酸フッ化イットリウム(イットリウムオキシフッ化物)を含有する溶射皮膜が開示されている。
日本国特開2018-76546号公報
 本発明者らが検討したところ、従来のイットリウム質保護膜は、耐プラズマ性(プラズマに対する耐食性)が不十分な場合があることが分かった。
 本発明は、以上の点を鑑みてなされたものであり、耐プラズマ性に優れるイットリウム質保護膜を提供することを目的とする。
 本発明者らは、鋭意検討した結果、下記構成を採用することにより、上記目的が達成されることを見出し、本発明を完成させた。
 すなわち、本発明は、以下の[1]~[14]を提供する。
[1]X線回折パターンにおけるYのピーク強度比が60%以上であり、気孔率が1.5体積%未満であり、ビッカース硬さが500MPa以上である、イットリウム質保護膜。
[2]フッ素の含有量が35~60原子%である、上記[1]に記載のイットリウム質保護膜。
[3]結晶子サイズが30nm以下である、上記[1]または[2]記載のイットリウム質保護膜。
[4]厚さが0.3μm以上である、上記[1]~[3]のいずれかに記載のイットリウム質保護膜。
[5]Yの(151)面のロッキングカーブの半値幅が40°以下である、上記[1]~[4]のいずれかに記載のイットリウム質保護膜。
[6]基材と、上記基材の表面である成膜面に配置された、上記[1]~[5]のいずれかに記載のイットリウム質保護膜と、を有する部材。
[7]上記基材が、セラミックスおよび金属からなる群から選ばれる少なくとも1種で構成され、上記セラミックスが、ガラス、石英、酸化アルミニウム、窒化アルミニウムおよび酸窒化アルミニウムからなる群から選ばれる少なくとも1種であり、上記金属が、アルミニウムおよびアルミニウムを含有する合金からなる群から選ばれる少なくとも1種である、上記[6]に記載の部材。
[8]上記成膜面の表面粗さが、算術平均粗さRaで、0.6μm以下である、上記[6]または[7]に記載の部材。
[9]上記成膜面の最大長さが30mm以上である、上記[6]~[8]のいずれかに記載の部材。
[10]上記基材と上記イットリウム質保護膜との間に、1層以上の下地層を有し、上記下地層は、Al、SiO、Y、MgO、ZrO、La、Nd、Yb、EuおよびGdからなる群から選ばれる少なくとも1種の酸化物を含有する、上記[6]~[9]のいずれかに記載の部材。
[11]上記基材と上記イットリウム質保護膜との間に、2層以上の上記下地層を有し、上記酸化物は、隣接する上記下地層同士で互いに異なる、上記[10]に記載の部材。
[12]上記基材が、上記成膜面として、最大長さを規定する第一成膜面と、上記第一成膜面とは異なる第二成膜面と、を有し、上記第一成膜面と上記第二成膜面とのなす角が、20°~120°であり、上記成膜面の全面積に対する上記第二成膜面の面積の割合が、60%以下である、上記[6]~[11]のいずれかに記載の部材。
[13]プラズマエッチング装置またはプラズマCVD装置の内部で使用される、上記[6]~[12]のいずれかに記載の部材。
[14]上記[1]~[5]のいずれかに記載のイットリウム質保護膜を製造する方法であって、真空中において、酸素、アルゴン、ネオン、クリプトンおよびキセノンからなる群から選ばれる少なくとも1種の元素のイオンを照射しながら、蒸発源を蒸発させて基材に付着させ、上記蒸発源として、YおよびYFを用いる、イットリウム質保護膜の製造方法。
 本発明によれば、耐プラズマ性に優れるイットリウム質保護膜を提供できる。
図1は、部材の一例を示す模式図である。 図2は、リング状の基材の半分を切り欠いて示す模式図である。 図3は、別のリング状の基材の断面の一部を示す模式図である。 図4は、更に別のリング状の基材の断面の一部を示す模式図である。 図5は、イットリウム質保護膜の製造に用いる装置を示す模式図である。
 本発明における用語の意味は、以下のとおりである。
 「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
[イットリウム質保護膜]
 本実施形態のイットリウム質保護膜は、X線回折パターンにおけるYのピーク強度比が60%以上であり、気孔率が1.5体積%未満であり、ビッカース硬さが500MPa以上である。
 以下、イットリウム質保護膜を単に「保護膜」ともいい、本実施形態のイットリウム質保護膜(保護膜)を「本保護膜」ともいう。
 イットリウム質保護膜は、酸フッ化イットリウムを含有する。
 酸フッ化イットリウムを表す化学式としては、YOF、Yなどが挙げられる。YOFは硬度の低い斜方晶であるのに対して、Yは菱面体という特殊な結晶構造であり、硬度が高い。
 本保護膜は、菱面体結晶構造を有するYの割合が多い。すなわち、X線回折パターンにおけるYのピーク強度比が一定値以上である。これにより、本保護膜は、硬く、ビッカース硬さが一定値以上を示す。
 更に、本保護膜は、後述する方法(本製造方法)により形成されることで、緻密であり、気孔率が小さい。
 このような本保護膜は、耐プラズマ性に優れる。
 以下、本保護膜について、より詳細に説明する。
 〈ピーク強度比〉
 本保護膜のX線回折パターンにおけるYのピーク強度比(以下、「Yピーク強度比」ともいう)は、60%以上であり、80%以上が好ましく、90%以上がより好ましく、95%以上が更に好ましく、98%以上がより更に好ましく、99%以上が特に好ましく、100%が最も好ましい。
 Yピーク強度比を上記範囲にするためには、後述する方法(本製造方法)により保護膜を製造することが好ましい。
 Yピーク強度比は、保護膜のX線回折(XRD)パターンにおいて、以下に示す結晶相のメインピーク強度の合計を100とした場合における、Yのメインピーク強度の割合(単位:%)である。
 Yのメインピーク位置には、Y結晶のピークとY結晶のピークとが重なって現れるため、微量のYおよびYが生成している可能性も排除できないが、Yのメインピーク位置にあるピークは、全てYのピークとして扱う。
 各結晶相のメインピークは、Yは2θ=29.2°付近、YOFは2θ=28.1°付近、Yは2θ=28.1°付近に現れる。
 YFは、メインピークがYと重なることから、YF結晶が存在する場合には、YF結晶の第二メインピークである2θ=24.5°付近のピークの強度を1.3倍にしてメインピーク相当に換算し、これを、YFのメインピーク強度とする。
 保護膜のXRDパターンは、X線回折装置(D8 DISCOVER Plus、Bruker社製)を用いて、下記条件にて、微小部2D(2次元)モードで、XRD測定することにより得られる。
 ・X線源:CuKα線(出力:45kV、電流:120mA)
 ・走査範囲:2θ=10°~80°
 ・ステップ時間:0.2s/step
 ・スキャンスピード:10°/min
 ・ステップ幅:0.02°
 ・検出器:マルチモード検出器EIGER(2Dモード)
 ・入射側光学系:多層膜ミラー+1.0mmφマイクロスリット+1.0mmφコリメータ
 ・受光側光学系:OPEN
 〈ビッカース硬さ〉
 本保護膜の耐プラズマ性が優れるという理由から、本保護膜のビッカース硬さは、500MPa以上であり、800MPa以上が好ましく、1000MPa以上がより好ましく、1100MPa以上が更に好ましく、1200MPa以上がより更に好ましく、1250MPa以上が特に好ましく、1300MPa以上が最も好ましい。
 本保護膜のビッカース硬さの上限は、特に限定されず、例えば、1500MPaであり、1400MPaが好ましい。すなわち、本保護膜のビッカース硬さは、例えば、500~1500MPaである。
 ビッカース硬さを上記範囲にするためには、保護膜のYピーク強度比を上述した範囲にすることが好ましい。
 保護膜のビッカース硬さは、JIS R 1610:2003に準拠して、求める。
 より詳細には、硬微小硬度測定器(HMV-1、島津製作所社製)を用いて、対面角136°のダイヤモンド圧子によって、試験力1.96Nを負荷したときに求められるビッカース硬さ(Hv0.2)である。
 〈気孔率〉
 本保護膜の耐プラズマ性が優れるという理由から、本保護膜の気孔率は、1.5体積%未満であり、1.0体積%以下が好ましく、0.5体積%以下がより好ましく、0.3体積%以下が更に好ましく、0.2体積%以下が特に好ましく、0.1体積%以下が最も好ましい。
 気孔率を上記範囲にするためには、後述する方法(本製造方法)により保護膜を製造することが好ましい。
 保護膜の気孔率は、次のように求める。
 まず、収束イオンビーム(FIB)を用いて、保護膜および後述する基材の一部に対して、保護膜の表面から基材に向けて、52°の角度で厚さ方向にスロープ加工を実施して、断面を露出させる。露出した断面を、電界放出形走査電子顕微鏡(FE-SEM)を用いて、20000倍の倍率で観察し、その断面画像を撮影する。
 断面画像は、複数の箇所において撮影する。具体的には、例えば、保護膜および基材が円形状である場合は、保護膜の表面(または基材の表面)の中央の1点と、外周から10mm離れた位置にある4点との計5点において撮影し、断面画像の大きさは、6μm×5μmとする。保護膜の厚さが5μm以上である場合には、保護膜の断面を厚さ方向に全て観察できるように、複数の撮影箇所において、それぞれ、断面画像を撮影する。
 続いて、得られた断面画像を、画像解析ソフトウェア(ImageJ、National Institute of Health社製)を用いて解析することにより、断面画像中の気孔部分の面積を特定する。保護膜の全断面の面積に対する気孔部分の面積の割合を算出し、これを、保護膜の気孔率(単位:体積%)とみなす。なお、画像解析ソフトによって検出できないほど微細な気孔(孔径が20nm以下である気孔)については、その面積を0とみなす。
 〈組成〉
 本保護膜は、酸フッ化イットリウムを含有するから、イットリウム(Y)、酸素(O)およびフッ素(F)を含有する。
 《Y含有量》
 本保護膜のY含有量は、10~35原子%であることが好ましい。
 ここで、本保護膜のY含有量は、10原子%以上が好ましく、20原子%以上がより好ましく、25原子%以上が更に好ましく、26原子%以上が特に好ましく、27原子%以上が最も好ましい。
 一方、本保護膜のY含有量は、35原子%以下が好ましく、30原子%以下がより好ましく、29原子%以下が更に好ましく、28原子%以下が特に好ましい。
 《O含有量》
 本保護膜のO含有量は、10~35原子%であることが好ましい。
 ここで、本保護膜のO含有量は、10原子%以上が好ましく、15原子%以上がより好ましく、20原子%以上が更に好ましく、21原子%以上が特に好ましく、22原子%以上が最も好ましい。
 一方、本保護膜のO含有量は、35原子%以下が好ましく、30原子%以下がより好ましく、25原子%以下が更に好ましく、24原子%以下が特に好ましく、23.5原子%以下が最も好ましい。
 《F含有量》
 本保護膜のF含有量は、35~65原子%であることが好ましい。
 ここで、本保護膜のF含有量は、35原子%以上が好ましく、40原子%以上がより好ましく、44原子%以上が更に好ましく、47原子%以上が特に好ましく、49.5原子%以上が最も好ましい。
 一方、本保護膜のF含有量は、65原子%以下が好ましく、60原子%以下がより好ましく、55原子%以下が更に好ましく、52原子%以下がより更に好ましく、51原子%以下が特に好ましく、50原子%以下が最も好ましい。
 各元素の含有量を上記範囲にするためには、例えば、後述する方法(本製造方法)において、蒸発源の量などの製造条件を適宜調整する。
 保護膜におけるY、OおよびFの含有量(単位:原子%)は、エネルギー分散型X線分析装置(EX-250SE、堀場製作所社製)を用いて測定する。
 〈配向度(ロッキングカーブの半値幅)〉
 保護膜を大面積化する場合、保護膜中にクラックが発生することを抑制する観点から、保護膜のYの(151)面の配向度(以下、単に「配向度」ともいう)は、高い方が好ましい。
 配向度の指標として、Yの(151)面のロッキングカーブの半値幅を用いる。具体的には、2次元モードの検出器を用いて得られるYの(151)面のピークのロッキングカーブを2θ方向に積分し、その半値幅を用いて、配向性を評価する。この半値幅(単位:°)が小さいほど、配向度が高いと言える。
 Yの(151)面のロッキングカーブの半値幅は、40°以下が好ましく、30°以下がより好ましく、25°以下が更に好ましく、20°以下がより更に好ましく、15°以下が特に好ましく、10°以下が最も好ましい。
 配向度を上記範囲にするためには、後述する方法(本製造方法)により保護膜を製造することが好ましい。
 〈結晶子サイズ〉
 上述したように、例えば、プラズマガスに曝された部材から脱落した粒子(パーティクル)は、半導体基板に付着して、回路に欠陥をもたらす異物となり得る。
 このとき、パーティクルのサイズが小さいほど、欠陥の発生を抑制できる。
 したがって、本保護膜の結晶子サイズは、30nm以下が好ましく、25nm以下がより好ましく、20nm以下が更に好ましく、15nm以下が特に好ましく、10nm以下が最も好ましい。
 一方、本保護膜の結晶子サイズの下限は、特に限定されず、例えば、2nmであり、5nmが好ましい。すなわち、本保護膜の結晶子サイズは、例えば、2~30nmである。
 結晶子サイズを上記範囲にするためには、後述する方法(本製造方法)により保護膜を製造することが好ましい。
 保護膜における結晶子サイズは、鏡面研磨した保護膜のXRD測定により得られるXRDパターンのデータに基づいて、シェラーの式を用いて求める。
 〈厚さ〉
 本保護膜の厚さは、0.3μm以上が好ましく、1μm以上がより好ましく、5μm以上が更に好ましく、10μm以上がより更に好ましく、15μm以上が特に好ましく、20μm以上が最も好ましい。
 一方、本保護膜の厚さの上限は、特に限定されず、例えば、300μmであり、200μmが好ましく、100μmがより好ましく、50μmが更に好ましく、30μmが特に好ましい。すなわち、本保護膜の厚さは、例えば、0.3~300μmである。
 保護膜の厚さは、次のように測定する。
 走査型電子顕微鏡(SEM)を用いて、保護膜の断面を観察し、保護膜の厚さを任意の5点で測定し、測定した5点の平均値を、この保護膜の厚さ(単位:μm)とみなす。
 〈熱伝導率〉
 本保護膜の熱伝導率は、5.0W/(m・K)以上が好ましく、7.0W/(m・K)以上がより好ましく、9.0W/(m・K)以上が更に好ましく、11.0W/(m・K)以上が特に好ましく、12.5W/(m・K)以上が最も好ましい。
 保護膜の熱伝導率は、NETZSCH社製のLFA 447(Nanoflash)のキセノンランプ光を用いたフラッシュ法によって室温(23℃)で求める。
 具体的には、基材および保護膜のかさ密度を質量および体積から求め、JIS R 1672:2006に規定される示差走査熱量法によって、基材および保護膜の比熱容量を求める。更に、フラッシュ法によって得られる温度上昇曲線に、多層解析モデルを適用して、基材および保護膜の熱拡散率を求める。かさ密度、比熱容量および熱拡散率の積から、熱伝導率を求める。
[部材]
 図1は、部材6の一例を示す模式図である。
 部材6は、基材5およびイットリウム質保護膜4を有する。
 基材5とイットリウム質保護膜4との間には、図1に示すように、下地層(下地層1、下地層2および下地層3)が配置されていてもよい。ただし、下地層は、3層に限定されない。
 本実施形態の部材(以下、「本部材」ともいう)は、イットリウム質保護膜として、上述した本保護膜を有する。
 本部材は、その表面が本保護膜で覆われているため、本保護膜と同様に、耐プラズマ性に優れる。
 以下、本部材が備える各部について、詳細に説明する。
 〈基材〉
 基材は、少なくとも、イットリウム質保護膜(または、後述する下地層)が形成される表面を有する。この表面を、以下、便宜的に「成膜面」と呼ぶ場合がある。
 《材質》
 基材の材質は、部材の用途等に応じて、適宜選択される。
 基材は、例えば、セラミックスおよび金属からなる群から選ばれる少なくとも1種で構成される。
 ここで、セラミックスは、例えば、ガラス(ソーダライムガラスなど)、石英、酸化アルミニウム(Al)、窒化アルミニウム(AlN)および酸窒化アルミニウム(AlON)からなる群から選ばれる少なくとも1種である。
 金属は、例えば、アルミニウムおよびアルミニウムを含有する合金からなる群から選ばれる少なくとも1種である。
 《形状》
 基材の形状としては、特に限定されず、例えば、平板状、リング状、ドーム状、凹状または凸状が挙げられ、部材の用途等に応じて、適宜選択される。
 《成膜面の表面粗さ》
 基材の成膜面の表面粗さは、後述する理由から、算術平均粗さRaとして、0.6μm以下が好ましく、0.3μm以下がより好ましく、0.1μm以下が更に好ましく、0.05μm以下がより更に好ましく、0.01μm以下が特に好ましく、0.005μm以下が最も好ましい。
 成膜面の表面粗さ(算術平均粗さRa)は、JIS B 0601:2001に準拠して測定する。
 《成膜面の面積》
 基材の成膜面の面積は特に限定されないが、例えば、200cm以上であり、2000cm以上が好ましい。また、基材の成膜面の面積の上限は、例えば、10000cmであり、5000cmが好ましい。
 《成膜面の最大長さ》
 基材の成膜面の最大長さは、30mm以上が好ましく、100mm以上がより好ましく、200mm以上が更に好ましく、300mm以上がより更に好ましく、500mm以上が特に好ましく、800mm以上が非常に好ましく、1000mm以上が最も好ましい。
 なお、「最大長さ」とは、成膜面が有する最大の長さを意味する。具体的には、例えば、成膜面が平面視で円である場合はその直径であり、平面視でリングである場合はその外径であり、平面視で四角形である場合は最大の対角線の長さである。
 成膜面の最大長さの上限は、特に限定されず、例えば、2000mmであり、1500mmが好ましい。すなわち、成膜面の最大長さは、例えば、30~2000mmである。
 図2は、リング状の基材5の半分を切り欠いて示す模式図である。
 図2に示す基材5について、例えば、外径Dが100mm、内径Dが90mm、厚さtが5mmである場合、その最大長さは100mmである。
 基材5は、成膜面7を有するが、図2に示すように、最大長さ(外径D)を規定する第一成膜面7aと、第一成膜面7aとは異なる第二成膜面7bと、を有していてもよい。
 成膜面7の全面積に対する、第二成膜面7bの面積の割合は、例えば、60%以下である。
 図3は、別のリング状の基材5の断面の一部を示す模式図である。
 図3に示すように、基材5は、複数の第二成膜面7bを有していてもよい。
 図4は、更に別のリング状の基材5の断面の一部を示す模式図である。
 第一成膜面7aと第二成膜面7bとのなす角は、例えば、20°~120°である。図4に示す基材5において、第一成膜面7aと、第一成膜面7aに接続する第二成膜面7bとのなす角は、約30°である。
 〈下地層〉
 上述したように、基材とイットリウム質保護膜との間には、1層以上の下地層が配置されていてもよい。
 下地層を形成することにより、イットリウム質保護膜の応力が緩和されたり、イットリウム質保護膜の基材に対する密着性が増したりする。
 下地層の層数は、上限は特に限定されないが、5層以下が好ましく、4層以下がより好ましく、3層以下が更に好ましく、2層以下が特に好ましく、1層が最も好ましい。
 下地層は、アモルファス膜または微結晶膜であることが好ましい。
 下地層は、Al、SiO、Y、MgO、ZrO、La、Nd、Yb、EuおよびGdからなる群から選ばれる少なくとも1種の酸化物を含有することが好ましい。
 基材とイットリウム質保護膜との間に、2層以上の下地層が配置される場合、下地層の酸化物は、隣接する下地層同士で、互いに異なることが好ましい。
 隣接する下地層同士で酸化物が互いに異なる場合とは、具体的には、例えば、下地層1の酸化物が「SiO」、下地層2の酸化物が「Al+SiO」、下地層3の酸化物が「Al」である場合が挙げられる。
 下地層の厚さは、それぞれ、0.1μm以上が好ましく、0.4μm以上がより好ましく、0.8μm以上が更に好ましい。
 一方、下地層の厚さは、それぞれ、例えば15μm以下であり、10μm以下が好ましく、7μm以下がより好ましく、3μm以下が更に好ましい。すなわち、下地層の厚さは、それぞれ、例えば0.1~15μmである。
 下地層の厚さは、イットリウム質保護膜の厚さと同様に測定する。
 〈部材の用途〉
 本部材は、例えば、半導体デバイス製造装置(プラズマエッチング装置、プラズマCVD装置など)の内部において、天板などの部材として使用される。
 ただし、本部材の用途はこれに限定されない。
[イットリウム質保護膜および部材の製造方法]
 次に、本実施形態のイットリウム質保護膜を製造する方法(以下、「本製造方法」ともいう)を説明する。本製造方法は、上述した本部材を製造する方法でもある。
 本製造方法は、いわゆる、イオンアシスト蒸着(IAD)法である。
 概略的には、真空中において、イオンを照射しながら、蒸発源(YおよびYF)を蒸発させて基材に付着させることにより、Yの割合が多いイットリウム質保護膜を形成する。
 本製造方法によれば、イットリウム質保護膜を、非常に緻密に形成できる。すなわち、得られるイットリウム質保護膜は、気孔率が小さい。また、結晶子サイズも小さい。
 ところで、イットリウム質保護膜は、厚さが増すほど、クラックが入りやすい。
 また、成膜面が大面積化することにより、その成膜面に形成されるイットリウム質保護膜も大面積化する。その場合も、イットリウム質保護膜にはクラックが入りやすい。
 しかし、本製造方法によれば、緻密で硬いイットリウム質保護膜が得られる。
 更に、下地層を形成する場合は、イットリウム質保護膜の応力が緩和される。
 このため、本製造方法により得られるイットリウム質保護膜は、厚さが増したり大面積化したりしても、クラックが入りにくい。
 また、基材の成膜面の表面粗さ(算術平均粗さRa)は、上述した範囲が好ましい。これにより、形成されるイットリウム質保護膜は、より緻密で硬くなり、かつ、クラックが入りにくい。
 なお、溶射法、エアロゾルデポジション(AD)法などの方法では、得られるイットリウム質保護膜に気孔が多く残存しやすい。
 また、これらの方法では、得られるイットリウム質保護膜のフッ素含有量の制御が難しく、所望する組成を安定的に得ることが難しい場合がある。
 ほかにも、IAD法とは異なる方法として、スパッタ法がある。スパッタ法では、例えば、真空中で、YOのスパッタターゲットに、アルゴンおよび酸素のプラズマを衝突させて、基材に成膜する。
 しかし、この方法では、フッ素含有量が変化しやすく、やはり、菱面体結晶構造を有するYの割合が多いイットリウム質保護膜を安定的に形成することは困難である。
 〈装置構成〉
 本製造方法を、図5に基づいて、より詳細に説明する。
 図5は、イットリウム質保護膜の製造に用いる装置を示す模式図である。
 図5に示す装置は、チャンバ11を有する。チャンバ11の内部は、真空ポンプ(図示せず)を駆動して排気することにより、真空にできる。
 チャンバ11の内部には、るつぼ12およびるつぼ13と、イオンガン14とが配置され、これらの上方には、ホルダ17が配置されている。
 ホルダ17は、支持軸16と一体化しており、支持軸16の回転に伴い回転する。ホルダ17の周囲には、ヒータ15が配置されている。
 ホルダ17には、上述した基材5が、その成膜面を下方に向けた状態で保持されている。ホルダ17に保持された基材5は、ヒータ15によって加熱されながら、ホルダ17の回転に伴い、回転する。
 更に、チャンバ11には、水晶式膜厚モニタ18および水晶式膜厚モニタ19が取り付けられている。
 〈イットリウム質保護膜の形成〉
 図5に示す装置において、基材5にイットリウム質保護膜(図5には図示せず)を形成する場合について説明する。
 まず、一方のるつぼ12に蒸発源Yを充填し、他方のるつぼ13に蒸発源YFを充填する。
 ホルダ17に基材5を保持させてから、チャンバ11の内部を排気して真空にする。具体的には、チャンバ11の内部の圧力は、8×10-2Pa以下が好ましい。
 次いで、ヒータ15を駆動させながら、ホルダ17を回転させる。これにより、基材5を加熱しながら回転させる。
 この状態において、イオンアシスト蒸着を実施して、基材5に成膜する。
 すなわち、イオンガン14からイオン(イオンビーム)を照射しながら、るつぼ12の蒸発源Yと、るつぼ13の蒸発源YFとを並行して蒸発させる。
 イオンガン14が照射するイオンは、酸素、アルゴン、ネオン、クリプトンおよびキセノンからなる群から選ばれる少なくとも1種の元素のイオンが好ましい。
 蒸発源は、電子ビーム(図示せず)を照射することにより、溶融および蒸発させる。
 こうして、基材5の成膜面に、蒸発した蒸発源が付着し、イットリウム質保護膜が形成される。
 《チャンバ内圧力》
 成膜は真空中で実施するが、具体的には、チャンバ11の内部の圧力は、8×10-2Pa以下が好ましく、6×10-2Pa以下がより好ましく、5×10-2Pa以下が更に好ましく、3×10-2Pa以下が特に好ましい。
 下限は、0.5×10-2Paが好ましい。すなわち、チャンバ11の内部の圧力は、0.5×10-2Pa~8×10-2Paであることが好ましい。
 《基材の温度》
 成膜中、ヒータ15によって加熱される基材5の温度は、200℃以上が好ましく、250℃以上がより好ましい。一方、この温度は、400℃以下が好ましく、350℃以下がより好ましい。すなわち、基材5の温度は、200~400℃が好ましい。
 《成膜速度》
 あらかじめ、るつぼ12の蒸発源が蒸発して膜が形成される速度(成膜速度)を、水晶式膜厚モニタ18を用いてモニタリングする。
 これとは別に、あらかじめ、るつぼ13の蒸発源が蒸発して膜が形成される速度(成膜速度)を、水晶式膜厚モニタ19を用いてモニタリングする。
 成膜速度は、蒸発源に照射する電子ビームの条件や、イオンガン14のイオンビームの条件(電流値、電流密度など)を制御することによって、調整される。
 イットリウム質保護膜の成膜中は、各蒸発源の成膜速度(単位:nm/min)を、所望の値に調整する。
 蒸発源Yの成膜速度(単位:nm/min)と、蒸発源YFの成膜速度(単位:nm/min)との成膜速度比(Y/YF)は、1/9.5~1/1.1であることが好ましい。
 ここで、この成膜速度比(Y/YF)は、1/9.5以上が好ましく、1/8.0以上がより好ましく、1/6.0以上が更に好ましく、1/4.5以上が特に好ましい。
 一方、この成膜速度比(Y/YF)は、1/1.1以下が好ましく、1/1.3以下がより好ましく、1/1.8以下が更に好ましく、1/2.5以下が特に好ましい。
 蒸発源Yの成膜速度と、蒸発源YFの成膜速度との合計速度は、5~50nm/minであることが好ましい。
 ここで、この合計速度は、5nm/min以上が好ましく、8nm/min以上がより好ましく、10nm/min以上が更に好ましい。一方、この合計速度は、50nm/min以下が好ましく、35nm/min以下がより好ましく、20nm/min以下が更に好ましい。
 《イオン照射の条件》
 イオンガン14と基材5との距離は、700~1500mmであることが好ましい。
 ここで、イオンガン14と基材5との距離は、700mm以上が好ましく、900mm以上がより好ましい。一方、この距離は、1500mm以下が好ましく、1300mm以下がより好ましい。
 イオンビームの電流値は、1000~3000mAであることが好ましい。
 ここで、イオンビーム電流値は、1000mA以上が好ましく、1500mA以上がより好ましい。
 一方、イオンビーム電流値は、3000mA以下が好ましく、2500mA以下がより好ましい。
 イオンビーム電流密度は、40~140μA/cmであることが好ましい。
 ここで、イオンビーム電流値は、40μA/cm以上が好ましく、65μA/cm以上がより好ましく、75μA/cm以上が更に好ましく、85μA/cm以上が特に好ましい。
 一方、イオンビーム電流密度は、140μA/cm以下が好ましく、120μA/cm以下がより好ましい。
 〈下地層の形成〉
 イットリウム質保護膜を形成する前に、基材5の成膜面に、上述した下地層(例えば、下地層1、下地層2および下地層3)を形成することが好ましい。
 下地層は、イットリウム質保護膜と同様に、イオンアシスト蒸着を実施して形成する。
 例えば、Alからなる下地層を形成する場合は、るつぼ12および/またはるつぼ13に蒸発源としてAlを充填し、イオンガン14からイオン(イオンビーム)を照射しながら、蒸発源を蒸発させて、基材5の成膜面に付着させる。
 下地層を形成する際の条件は、イットリウム質保護膜を形成する際の条件に準ずる。
 以下に、実施例を挙げて本発明を具体的に説明する。ただし、本発明は、以下に説明する実施例に限定されない。
 以下、例1~例20が実施例であり、例21~例27が比較例であり、例28~例30が参考例である。
 〈例1~例27〉
 図5に基づいて説明した装置を用いて、イットリウム質保護膜(保護膜)を製造した。
 より詳細には、下記表1~表3に示す製造条件にて、基材の成膜面に、下記表1~表3に示す下地層および保護膜を形成した。
 基材としては、直径(最大長さ)が200mmの成膜面を有する円形状の基材(厚さ:10mm)を用いた。保護膜の組成は、各元素(Y、O、Fなど)の含有量から求まる組成である。
 下記表1~表3に記載しない製造条件として、イオンガンから酸素(O)イオンを照射し、イオンガンと基材との距離は1100mm、イオンビームの電流値は2000mAとした。
 例12では、基材(ガラス)として、市販品のソーダライムガラスを使用した。
 例14では、アルミニウム製の基材の一面側を、アルマイト処理することにより、Alからなる下地層とした。この下地層を、下記表2では「アルマイト」と記載した。
 〈例28~例30〉
 例28では、サファイアを保護膜とした。
 例29では、金属アルミニウムを保護膜とした。
 例30では、石英を保護膜とした。
 例28~例30の保護膜の厚さ、ビッカース硬さ、クラックの有無については未評価である。
 〈エッチング量〉
 各例の保護膜について、エッチング量を求めて、耐プラズマ性を評価した。
 具体的には、保護膜における10mm×5mmの面を鏡面加工した。鏡面加工した面の一部にカプトンテープを貼ってマスキングして、プラズマガスでエッチングした。その後、触針式表面形状測定機(アルバック社製、Dectak150)を用いて、エッチング部と非エッチング部とに生じた段差を測定することにより、エッチング量を求めた。
 プラズマエッチング装置としては、EXAM(神港精機社製、型式:POEM型)を用いた。RIEモード(リアクティブ・イオン・エッチングモード)にて、まず、10Paの圧力、350Wの出力のもと、CFガス(流量:100sccm)にOガス(流量:10sccm)を混合したガスを用いて、180分エッチングした。次いで、CFガス(流量:100sccm)を用いて、180分エッチングした。その後、CFガス(流量:100sccm)にOガス(流量:10sccm)を混合したガスを用いて、180分エッチングした、最後に、CFガス(流量:100sccm)を用いて、180分エッチングした。
 エッチング量(単位:nm)が小さいほど、耐プラズマ性に優れると評価できる。
 具体的には、エッチング量が200nm以下であれば、耐プラズマ性に優れると評価した。
 〈F含有量変化量〉
 エッチング後、保護膜のF含有量を測定し、下記式に基づいて、F含有量変化量(単位:原子%)を求めた。
 F含有量変化量={(エッチング前のF含有量)-(エッチング後のF含有量)}/(エッチング前のF含有量)
 F含有量変化量の値が小さいほど、耐プラズマ性に優れる安定化した保護膜であると評価できる。具体的には、F含有量変化量は10原子%以下が好ましく、5原子%以下がより好ましく、3原子%以下が更に好ましい。
 〈クラックの有無〉
 保護膜の形成後、保護膜に目視で視認できるクラックが入っているか否かを確認した。クラックが入っていなかった場合は「無し」を、クラックが入っていた場合は「有り」を下記表1~表3に記載した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 〈評価結果まとめ〉
 上記表1~表3に示すように、例1~例20のイットリウム質保護膜は、耐プラズマ性に優れることが分かった。これに対して、例21~例27のイットリウム質保護膜は、耐プラズマ性が不十分であった。
 以上、本発明の実施形態を説明したが、この実施形態の内容により実施形態が限定されるものではない。また、前述した構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、前述した構成要素は適宜組み合わせることが可能である。さらに、前述した実施形態の要旨を逸脱しない範囲で構成要素の種々の省略、置換又は変更を行うことができる。
 本出願は2022年2月18日出願の日本特許出願(特願2022-024103)に基づくものであり、その内容はここに参照として取り込まれる。
1、2、3:下地層
4:イットリウム質保護膜
5:基材
6:部材
7:成膜面
7a:第一成膜面
7b:第二成膜面
11:チャンバ
12、13:るつぼ
14:イオンガン
15:ヒータ
16:支持軸
17:ホルダ
18、19:水晶式膜厚モニタ

Claims (14)

  1.  X線回折パターンにおけるYのピーク強度比が80%以上であり、
     気孔率が1.5体積%未満であり、
     ビッカース硬さが500MPa以上である、イットリウム質保護膜。
  2.  フッ素の含有量が35~60原子%である、請求項1に記載のイットリウム質保護膜。
  3.  結晶子サイズが30nm以下である、請求項1または2に記載のイットリウム質保護膜。
  4.  厚さが0.3μm以上である、請求項1~3のいずれか1項に記載のイットリウム質保護膜。
  5.  Yの(151)面のロッキングカーブの半値幅が40°以下である、請求項1~4のいずれか1項に記載のイットリウム質保護膜。
  6.  基材と、
     前記基材の表面である成膜面に配置された、請求項1~5のいずれか1項に記載のイットリウム質保護膜と、を有する部材。
  7.  前記基材が、セラミックスおよび金属からなる群から選ばれる少なくとも1種で構成され、
     前記セラミックスが、ガラス、石英、酸化アルミニウム、窒化アルミニウムおよび酸窒化アルミニウムからなる群から選ばれる少なくとも1種であり、
     前記金属が、アルミニウムおよびアルミニウムを含有する合金からなる群から選ばれる少なくとも1種である、請求項6に記載の部材。
  8.  前記成膜面の表面粗さが、算術平均粗さRaで、0.6μm以下である、請求項6または7に記載の部材。
  9.  前記成膜面の最大長さが30mm以上である、請求項6~8のいずれか1項に記載の部材。
  10.  前記基材と前記イットリウム質保護膜との間に、1層以上の下地層を有し、
     前記下地層は、Al、SiO、Y、MgO、ZrO、La、Nd、Yb、EuおよびGdからなる群から選ばれる少なくとも1種の酸化物を含有する、請求項6~9のいずれか1項に記載の部材。
  11.  前記基材と前記イットリウム質保護膜との間に、2層以上の前記下地層を有し、
     前記酸化物は、隣接する前記下地層同士で互いに異なる、請求項10に記載の部材。
  12.  前記基材が、前記成膜面として、最大長さを規定する第一成膜面と、前記第一成膜面とは異なる第二成膜面と、を有し、
     前記第一成膜面と前記第二成膜面とのなす角が、
    20°~120°であり、
     前記成膜面の全面積に対する前記第二成膜面の面積の割合が、60%以下である、請求項6~11のいずれか1項に記載の部材。
  13.  プラズマエッチング装置またはプラズマCVD装置の内部で使用される、請求項6~12のいずれか1項に記載の部材。
  14.  請求項1~5のいずれか1項に記載のイットリウム質保護膜を製造する方法であって、
     真空中において、酸素、アルゴン、ネオン、クリプトンおよびキセノンからなる群から選ばれる少なくとも1種の元素のイオンを照射しながら、蒸発源を蒸発させて基材に付着させ、
     前記蒸発源として、YおよびYFを用いる、イットリウム質保護膜の製造方法。
PCT/JP2023/005071 2022-02-18 2023-02-14 イットリウム質保護膜およびその製造方法ならびに部材 WO2023157849A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022024103A JP7154517B1 (ja) 2022-02-18 2022-02-18 イットリウム質保護膜およびその製造方法ならびに部材
JP2022-024103 2022-02-18

Publications (1)

Publication Number Publication Date
WO2023157849A1 true WO2023157849A1 (ja) 2023-08-24

Family

ID=83658126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/005071 WO2023157849A1 (ja) 2022-02-18 2023-02-14 イットリウム質保護膜およびその製造方法ならびに部材

Country Status (3)

Country Link
JP (1) JP7154517B1 (ja)
TW (1) TW202340496A (ja)
WO (1) WO2023157849A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024101367A1 (ja) * 2022-11-11 2024-05-16 Agc株式会社 イットリウム質保護膜およびその製造方法ならびに部材
WO2024101102A1 (ja) * 2022-11-11 2024-05-16 Agc株式会社 部材およびその製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017115662A1 (ja) * 2015-12-28 2017-07-06 日本イットリウム株式会社 成膜用材料
WO2018083854A1 (ja) * 2016-11-02 2018-05-11 日本イットリウム株式会社 成膜用材料及び皮膜
JP2018190983A (ja) * 2017-05-10 2018-11-29 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated チャンバコンポーネント用多層プラズマ腐食防護
JP2019019413A (ja) * 2018-10-16 2019-02-07 信越化学工業株式会社 イットリウム系フッ化物溶射皮膜、該溶射皮膜を形成するための溶射材料、該溶射皮膜の形成方法、及び該溶射皮膜を含む耐食性皮膜
JP2019147995A (ja) * 2018-02-28 2019-09-05 学校法人 芝浦工業大学 膜付き部材及びその製造方法
JP3224084U (ja) * 2018-07-18 2019-11-21 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 原子層堆積法で堆積させた耐浸食性金属フッ化物コーティング
JP2020525640A (ja) * 2017-05-26 2020-08-27 イオンズ カンパニー リミテッド フッ化イットリウムオキシドコーティング膜の形成方法およびこれによるフッ化イットリウムオキシドコーティング膜
JP2021077899A (ja) * 2019-02-27 2021-05-20 Toto株式会社 半導体製造装置用部材および半導体製造装置用部材を備えた半導体製造装置並びにディスプレイ製造装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017115662A1 (ja) * 2015-12-28 2017-07-06 日本イットリウム株式会社 成膜用材料
WO2018083854A1 (ja) * 2016-11-02 2018-05-11 日本イットリウム株式会社 成膜用材料及び皮膜
JP2018190983A (ja) * 2017-05-10 2018-11-29 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated チャンバコンポーネント用多層プラズマ腐食防護
JP2020525640A (ja) * 2017-05-26 2020-08-27 イオンズ カンパニー リミテッド フッ化イットリウムオキシドコーティング膜の形成方法およびこれによるフッ化イットリウムオキシドコーティング膜
JP2019147995A (ja) * 2018-02-28 2019-09-05 学校法人 芝浦工業大学 膜付き部材及びその製造方法
JP3224084U (ja) * 2018-07-18 2019-11-21 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 原子層堆積法で堆積させた耐浸食性金属フッ化物コーティング
JP2019019413A (ja) * 2018-10-16 2019-02-07 信越化学工業株式会社 イットリウム系フッ化物溶射皮膜、該溶射皮膜を形成するための溶射材料、該溶射皮膜の形成方法、及び該溶射皮膜を含む耐食性皮膜
JP2021077899A (ja) * 2019-02-27 2021-05-20 Toto株式会社 半導体製造装置用部材および半導体製造装置用部材を備えた半導体製造装置並びにディスプレイ製造装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LEE JAEHOO, LEE SEUNGJUN, HAN HEUNG NAM, KIM WOONGSIK, HWANG NONG-MOON: "Yttrium Oxyfluoride Coatings Deposited by Suspension Plasma Spraying Using Coaxial Feeding", COATINGS, vol. 10, no. 5, 16 May 2020 (2020-05-16), pages 481, XP093084819, DOI: 10.3390/coatings10050481 *
LEE SEUNGJUN, LEE JAEHOO, HWANG NONGMOON: "Effect of the Dispersion State in Y5O4F7 Suspension on YOF Coating Deposited by Suspension Plasma Spray", COATINGS, vol. 11, no. 7, 9 July 2021 (2021-07-09), pages 831, XP093084816, DOI: 10.3390/coatings11070831 *

Also Published As

Publication number Publication date
TW202340496A (zh) 2023-10-16
JP2023120943A (ja) 2023-08-30
JP7154517B1 (ja) 2022-10-18

Similar Documents

Publication Publication Date Title
WO2023157849A1 (ja) イットリウム質保護膜およびその製造方法ならびに部材
JP5782019B2 (ja) 切削工具
TWI724797B (zh) 半導體製造裝置用構件及具備半導體製造裝置用構件之半導體製造裝置以及顯示器製造裝置
JP6388188B1 (ja) 成膜用材料及び皮膜
JP2010070854A (ja) 耐食性部材およびこれを用いた半導体製造装置
TW201833060A (zh) 用於半導體腔室應用之陶瓷塗層之溶液前驅物電漿噴塗
JP6597922B1 (ja) 複合構造物および複合構造物を備えた半導体製造装置並びにディスプレイ製造装置
US6524731B1 (en) Corrosion-resistant member and method of producing the same
JP2021077900A (ja) 半導体製造装置用部材および半導体製造装置用部材を備えた半導体製造装置並びにディスプレイ製造装置
JP5031259B2 (ja) 耐食性部材とその製造方法およびこれを用いた半導体・液晶製造装置
WO2024101367A1 (ja) イットリウム質保護膜およびその製造方法ならびに部材
WO2024038674A1 (ja) イットリウム質保護膜およびその製造方法ならびに部材
KR102582528B1 (ko) 복합 구조물 및 복합 구조물을 구비한 반도체 제조 장치
JP7189371B2 (ja) プラズマ処理装置用部材およびこれを備えるプラズマ処理装置
WO2024101102A1 (ja) 部材およびその製造方法
US20200273675A1 (en) Semiconductor manufacturing apparatus member, and display manufacturing apparatus and semiconductor manufacturing apparatus comprising semiconductor manufacturing apparatus member
TWI778587B (zh) 複合結構物及具備複合結構物之半導體製造裝置
TWI777504B (zh) 複合結構物及具備複合結構物之半導體製造裝置
TW202419646A (zh) 構件及其製造方法
Manova et al. Filtered arc deposition and implantation of aluminium nitride
JP7140222B2 (ja) 複合構造物および複合構造物を備えた半導体製造装置
US11142829B2 (en) Semiconductor manufacturing apparatus member, and display manufacturing apparatus and semiconductor manufacturing apparatus comprising semiconductor manufacturing apparatus member
TW202238998A (zh) 複合結構物及具備複合結構物之半導體製造裝置
TW202237397A (zh) 複合結構物及具備複合結構物之半導體製造裝置
TW202346240A (zh) 複合結構物及具備複合結構物之半導體製造裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23756374

Country of ref document: EP

Kind code of ref document: A1