WO2024101367A1 - イットリウム質保護膜およびその製造方法ならびに部材 - Google Patents

イットリウム質保護膜およびその製造方法ならびに部材 Download PDF

Info

Publication number
WO2024101367A1
WO2024101367A1 PCT/JP2023/040118 JP2023040118W WO2024101367A1 WO 2024101367 A1 WO2024101367 A1 WO 2024101367A1 JP 2023040118 W JP2023040118 W JP 2023040118W WO 2024101367 A1 WO2024101367 A1 WO 2024101367A1
Authority
WO
WIPO (PCT)
Prior art keywords
protective film
yttrium
substrate
less
based protective
Prior art date
Application number
PCT/JP2023/040118
Other languages
English (en)
French (fr)
Inventor
修平 小川
朝敬 小川
道夫 石川
径夫 谷村
岡田 英一
Original Assignee
Agc株式会社
つばさ真空理研株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社, つばさ真空理研株式会社 filed Critical Agc株式会社
Publication of WO2024101367A1 publication Critical patent/WO2024101367A1/ja

Links

Images

Definitions

  • the present invention relates to an yttrium-based protective film, its manufacturing method, and components.
  • the surface of a semiconductor substrate is microfabricated by dry etching using halogen-based gas plasma in a chamber, and the chamber from which the semiconductor substrate is removed after dry etching is cleaned using oxygen gas plasma.
  • the components exposed to the plasma gas in the chamber corrode, and the corroded parts may fall off in the form of particles.
  • the fallen particles can adhere to the semiconductor substrate and become foreign matter that causes defects in the circuit.
  • Patent Document 1 discloses a thermal spray coating containing yttrium oxyfluoride (yttrium oxyfluoride) formed by thermal spraying.
  • the present invention was made in consideration of the above points, and aims to provide an yttrium-based protective film with excellent plasma resistance.
  • the present invention provides the following [1] to [18].
  • the peak intensity ratio of Y 5 O 4 F 7 in the X-ray diffraction pattern is 60% or more;
  • [6] The yttrium-based protective film according to any one of [1] to [5] above, having a thickness of 0.3 ⁇ m or more.
  • [7] The yttrium-based protective film according to any one of the above [1] to [6], wherein the half-width of the rocking curve of the (151) plane of Y 5 O 4 F 7 is 40° or less.
  • [8] A member having a substrate and the yttrium-based protective film according to any one of [1] to [7] above, in this order.
  • [9] The member according to [8] above, wherein the surface roughness of the film-forming surface of the substrate is 0.01 to 1.2 ⁇ m in arithmetic mean roughness Ra.
  • the porosity of the substrate is 2.0 volume % or less.
  • the substrate is composed of at least one material selected from the group consisting of carbon, ceramics, and metals.
  • the ceramic is at least one selected from the group consisting of glass, quartz, aluminum oxide, aluminum nitride, Si-impregnated silicon carbide, and aluminum oxynitride
  • the metal is at least one selected from the group consisting of aluminum and alloys containing aluminum.
  • the substrate has, as a deposition surface, a first deposition surface that defines a maximum length and a second deposition surface different from the first deposition surface, the angle between the first deposition surface and the second deposition surface is 20° to 120°, and the ratio of the area of the second deposition surface to the total area of the deposition surfaces is 60% or less.
  • the present invention provides an yttrium-based protective film with excellent plasma resistance.
  • FIG. 1 is a schematic diagram showing an example of a member.
  • FIG. 2 is a schematic diagram showing a ring-shaped substrate with half cut away.
  • FIG. 3 is a schematic diagram showing a part of a cross section of another ring-shaped substrate.
  • FIG. 4 is a schematic diagram showing a part of a cross section of still another ring-shaped substrate.
  • FIG. 5 is a schematic diagram showing an apparatus used for producing the yttrium-based protective film.
  • the yttrium-based protective film of this embodiment has a Y 5 O 4 F 7 peak intensity ratio of 60% or more in an X-ray diffraction pattern, a porosity of less than 1.5 volume %, and a Vickers hardness of 800 HV or more.
  • the yttrium-based protective film will be referred to simply as the "protective film,” and the yttrium-based protective film (protective film) of this embodiment will be referred to as the "present protective film.”
  • the yttrium-based protective film contains yttrium oxyfluoride.
  • Chemical formulas representing yttrium oxyfluoride include YOF and Y 5 O 4 F 7.
  • YOF is an orthorhombic crystal with low hardness
  • Y 5 O 4 F 7 has a special crystal structure called a rhombohedron and has high hardness.
  • This protective film has a high proportion of Y5O4F7 having a rhombohedral crystal structure. That is, the peak intensity ratio of Y5O4F7 in the X-ray diffraction pattern is a certain value or more.
  • the protective film is formed by the method (the present manufacturing method) described below, it is dense and has a small porosity. Such a protective film has excellent plasma resistance.
  • the protective film will be described in more detail below.
  • Y5O4F7 peak intensity ratio The peak intensity ratio of Y5O4F7 in the X-ray diffraction pattern of this protective film ( hereinafter also referred to as " Y5O4F7 peak intensity ratio") is 60% or more, preferably 80% or more, more preferably 90% or more, even more preferably 95% or more, even more preferably 98% or more, particularly preferably 99% or more, and most preferably 100%.
  • the protective film In order to set the Y 5 O 4 F 7 peak intensity ratio in the above range, it is preferable to produce the protective film by the method (the present production method) described below.
  • the Y 5 O 4 F 7 peak intensity ratio is the ratio (unit: %) of the main peak intensity of Y 5 O 4 F 7 in the X-ray diffraction (XRD) pattern of the protective film, relative to the total main peak intensities of the following crystal phases being 100:
  • the peak of the Y 6 O 5 F 8 crystal and the peak of the Y 7 O 6 F 9 crystal appear overlapping at the main peak position of Y 5 O 4 F 7.
  • the main peak of YF 3 also appears overlapping at the main peak position of Y 5 O 4 F 7 . All peaks at the main peak position of Y 5 O 4 F 7 are treated as Y 5 O 4 F 7 peaks.
  • the intensity of the second main peak of the YF3 crystals, converted by 1.3 is also subtracted from the intensity of the Y5O4F7 peak (peak at the position of the main peak of Y5O4F7 ).
  • the intensity (relative intensity) of the second main peak of the YF3 crystal is " 2.0 " and the intensity (relative intensity) of the peak at the position of the main peak of Y5O4F7 is "6.0"
  • the XRD pattern of the protective film is obtained by XRD measurement in a micro 2D (two-dimensional) mode using an X-ray diffraction device (D8 DISCOVER Plus, manufactured by Bruker Corporation) under the following conditions.
  • Detector Multi-mode detector EIGER (2D mode)
  • ⁇ Input optical system Multilayer mirror + 1.0 mm ⁇ microslit + 1.0 mm ⁇ collimator
  • ⁇ Receiver optical system OPEN
  • the Vickers hardness of the protective film is 800 HV or more, preferably 900 HV or more, more preferably 950 HV or more, even more preferably 1000 HV or more, and particularly preferably 1050 HV or more.
  • the Vickers hardness of the present protective film is preferably 1800 HV or less, more preferably 1600 HV or less, and even more preferably 1400 HV or less.
  • the Vickers hardness of the protective film is determined in accordance with JIS Z 2244 (2009). More specifically, it is the Vickers hardness (HV0.005) determined when a test force of 4.9 mN (0.049 N) is applied using a diamond indenter with a facing angle of 136° using a micro Vickers hardness tester (HM-220, manufactured by Mitutoyo Corporation).
  • the porosity of the protective film is less than 1.5 vol.%, preferably 1.0 vol.% or less, more preferably 0.5 vol.% or less, even more preferably 0.2 vol.% or less, particularly preferably 0.10 vol.% or less, and most preferably 0.05 vol.% or less.
  • the porosity of the protective film is determined as follows. First, a focused ion beam (FIB) is used to perform a slope process in the thickness direction from the surface of the protective film toward the substrate at an angle of 52° on the protective film and a portion of the substrate described below, thereby exposing a cross section. The exposed cross section is observed at a magnification of 20,000 times using a field emission scanning electron microscope (FE-SEM), and an image of the cross section is taken. The cross-sectional image is taken at a plurality of locations.
  • FIB focused ion beam
  • the images are taken at a total of five locations, including one point at the center of the surface of the protective film (or the surface of the substrate) and four points 10 mm away from the outer periphery, and the size of the cross-sectional image is 6 ⁇ m ⁇ 5 ⁇ m.
  • the thickness of the protective film is 5 ⁇ m or more
  • cross-sectional images are taken at a plurality of locations so that the cross-section of the protective film can be observed in the thickness direction.
  • the cross-sectional image obtained is then analyzed using image analysis software (ImageJ, National Institute of Health) to identify the area of the pores in the cross-sectional image.
  • the ratio of the area of the pores to the area of the entire cross section of the protective film is calculated, and this is regarded as the porosity (unit: volume %) of the protective film. Note that the area of pores that are too fine to be detected by the image analysis software (pores with a pore diameter of 20 nm or less) is regarded as 0.
  • This protective film contains yttrium oxyfluoride (Y 5 O 4 F 7 ), and therefore contains yttrium (Y), oxygen (O) and fluorine (F).
  • the Y content of the protective film is preferably 20 atomic % or more, more preferably 25 atomic % or more, further preferably 26 atomic % or more, particularly preferably 27 atomic % or more, and most preferably 27.5 atomic % or more.
  • the Y content of the protective film is preferably 35 atomic % or less, more preferably 30 atomic % or less, further preferably 29 atomic % or less, and particularly preferably 28 atomic % or less.
  • the O content of the protective film is preferably 20 atomic % or more, more preferably 21 atomic % or more, further preferably 22 atomic % or more, particularly preferably 23 atomic % or more, and most preferably 24 atomic % or more.
  • the O content of the protective film is preferably 35 atomic % or less, more preferably 30 atomic % or less, further preferably 28 atomic % or less, particularly preferably 26 atomic % or less, and most preferably 25 atomic % or less.
  • the F content of the protective film is preferably 35 atomic % or more, more preferably 40 atomic % or more, further preferably 44 atomic % or more, particularly preferably 47 atomic % or more, and most preferably 48 atomic % or more.
  • the F content of the protective film is preferably 55 atomic % or less, more preferably 50 atomic % or less, further preferably 49.5 atomic % or less, particularly preferably 49 atomic % or less, and most preferably 48.5 atomic % or less.
  • the manufacturing conditions such as the amount of evaporation source are appropriately adjusted.
  • the Y, O and F contents (unit: atomic %) in the protective film are measured using an energy dispersive X-ray analyzer (EX-250SE, manufactured by Horiba, Ltd.).
  • the F/O ratio which is the ratio of the F content (unit: atomic %) to the O content (unit: atomic %) in the protective film, is preferably less than 2.80, more preferably less than 2.50, and even more preferably less than 2.15.
  • the F/O ratio is preferably greater than 1.50, more preferably greater than 1.70, and even more preferably greater than 1.90.
  • the degree of orientation of the (151) plane of Y 5 O 4 F 7 in the protective film (hereinafter simply referred to as "degree of orientation") is high in order to prevent cracks from occurring in the protective film.
  • degree of orientation the degree of orientation of the (151) plane of Y 5 O 4 F 7 in the protective film
  • the half-width of the rocking curve of the ( 151 ) plane of Y5O4F7 is used as an index of the degree of orientation.
  • the rocking curve of the peak of the (151) plane of Y5O4F7 obtained using a two-dimensional mode detector is integrated in the 2 ⁇ direction, and the half-width is used to evaluate the orientation. The smaller this half-width (unit: °), the higher the degree of orientation.
  • the half width of the rocking curve of the (151) plane of Y 5 O 4 F 7 is preferably 40° or less, more preferably 30° or less, even more preferably 25° or less, even more preferably 20° or less, particularly preferably 15° or less, and most preferably 10° or less.
  • the crystallite size of the present protective film is preferably 30 nm or less, more preferably 20 nm or less, even more preferably 17 nm or less, even more preferably 15 nm or less, and particularly preferably 13 nm or less.
  • the crystallite size of the present protective film is preferably 2 nm or more, more preferably 5 nm or more, even more preferably 6 nm or more, particularly preferably 8 nm or more, and most preferably 10 nm or more.
  • the crystallite size in the protective film is determined using the Scherrer equation based on the XRD pattern data obtained by XRD measurement of the mirror-polished protective film.
  • the thickness of the protective film is preferably 0.3 ⁇ m or more, more preferably 1 ⁇ m or more, even more preferably 5 ⁇ m or more, even more preferably 10 ⁇ m or more, particularly preferably 15 ⁇ m or more, and most preferably 20 ⁇ m or more.
  • the upper limit of the thickness of the protective film is not particularly limited, and is preferably 300 ⁇ m or less, more preferably 200 ⁇ m or less, even more preferably 100 ⁇ m or less, particularly preferably 50 ⁇ m or less, and most preferably 30 ⁇ m or less.
  • the thickness of the protective film is measured as follows. A cross section of the protective film is observed using a scanning electron microscope (SEM), the thickness of the protective film is measured at any five points, and the average value of the five measured points is regarded as the thickness (unit: ⁇ m) of the protective film.
  • SEM scanning electron microscope
  • the stress (internal stress, residual stress) of the protective film is preferably compressive stress rather than tensile stress.
  • the compressive stress of the present protective film is preferably 1000 MPa or more, more preferably 1100 MPa or more, even more preferably 1200 MPa or more, even more preferably 1250 MPa or more, particularly preferably 1300 MPa or more, and most preferably 1350 MPa or more.
  • the compressive stress of the present protective film is preferably 1700 MPa or less, more preferably 1600 MPa or less, even more preferably 1500 MPa or less, and particularly preferably 1400 MPa or less.
  • the compressive stress of the protective film is determined as follows. A protective film is formed on a quartz glass substrate, and the surface shape of the formed protective film is measured using a surface shape measuring device (Surfcom NEX 241 SD2-13, manufactured by Tokyo Seimitsu Co., Ltd.), and the compressive stress (film stress ⁇ ) of the protective film is calculated using Stoney's formula (the following formula).
  • is the film stress
  • Y is the Young's modulus of the substrate
  • d is the thickness of the substrate
  • is the Poisson's ratio of the substrate
  • t is the thickness of the protective film
  • c is the radius of curvature.
  • FIG. 1 is a schematic diagram showing an example of the member 6 .
  • the member 6 has a substrate 5 and an yttrium-based protective film 4 .
  • 1, underlayers (underlayer 1, underlayer 2, and underlayer 3) may be disposed between the substrate 5 and the yttrium-based protective film 4.
  • the number of underlayers is not limited to three.
  • the member of this embodiment (hereinafter also referred to as the "present member") has the above-mentioned present protective film as the yttrium-based protective film. Since the surface of the present member is covered with the present protective film, the present member has excellent plasma resistance, similar to the present protective film.
  • the substrate has at least a surface on which the yttrium-based protective film (or the undercoat layer described below) is formed.
  • this surface may be referred to as the "film formation surface" for convenience.
  • the material of the substrate is appropriately selected depending on the application of the member.
  • the substrate is made of, for example, at least one material selected from the group consisting of carbon (C), ceramics, and metals.
  • the ceramic is, for example, at least one selected from the group consisting of glass (soda-lime glass, etc.), quartz, aluminum oxide (Al 2 O 3 ), aluminum nitride (AlN), cordierite, yttrium oxide, silicon carbide (SiC), Si-impregnated silicon carbide, silicon nitride (SiN), sialon, and aluminum oxynitride (AlON).
  • the ceramic is preferably at least one selected from the group consisting of glass, quartz, aluminum oxide, aluminum nitride, Si-impregnated silicon carbide, and aluminum oxynitride.
  • the Si-impregnated silicon carbide can be obtained by heating and melting elemental Si and impregnating it into silicon carbide (SiC).
  • the metal is, for example, at least one selected from the group consisting of aluminum (Al) and an alloy containing aluminum (Al).
  • the porosity of the substrate is preferably 2.0 vol. % or less, more preferably 1.2 vol. % or less, even more preferably 0.7 vol. % or less, even more preferably 0.5 vol. % or less, particularly preferably 0.3 vol. % or less, and most preferably 0.1 vol. % or less.
  • the porosity of the substrate is determined by Archimedes' method.
  • shape The shape of the substrate is not particularly limited and may be, for example, a flat plate, a ring, a dome, a concave or a convex shape, and may be appropriately selected depending on the application of the member.
  • the surface roughness of the film-forming surface of the substrate is preferably 1.2 ⁇ m or less, more preferably 1.0 ⁇ m or less, even more preferably 0.8 ⁇ m or less, and particularly preferably 0.5 ⁇ m or less, in terms of arithmetic mean roughness Ra.
  • the surface roughness of the substrate on which the film is to be formed is preferably 0.01 ⁇ m or more, more preferably 0.03 ⁇ m or more, even more preferably 0.05 ⁇ m or more, and particularly preferably 0.10 ⁇ m or more, in terms of arithmetic mean roughness Ra.
  • the surface roughness (arithmetic mean roughness Ra) of the coating surface is measured in accordance with JIS B 0601:2001.
  • the maximum length of the film-forming surface of the substrate is preferably 30 mm or more, more preferably 100 mm or more, even more preferably 200 mm or more, even more preferably 300 mm or more, particularly preferably 500 mm or more, very preferably 800 mm or more, and most preferably 1000 mm or more.
  • maximum length means the maximum length of the deposition surface. Specifically, for example, if the deposition surface is a circle in plan view, it is the diameter of the circle, if the deposition surface is a ring in plan view, it is the outer diameter of the circle, and if the deposition surface is a rectangle in plan view, it is the length of the maximum diagonal line.
  • the upper limit of the maximum length of the film-forming surface is not particularly limited, but is preferably 2000 mm or less, and more preferably 1500 mm or less.
  • FIG. 2 is a schematic diagram showing a ring-shaped substrate 5 with one half cut away.
  • the substrate 5 shown in FIG. 2 for example, when the outer diameter D1 is 100 mm, the inner diameter D2 is 90 mm, and the thickness t is 5 mm, the maximum length is 100 mm.
  • the substrate 5 has a film formation surface 7, which may have a first film formation surface 7a that defines the maximum length (outer diameter D 1 ) and a second film formation surface 7b that is different from the first film formation surface 7a, as shown in FIG. 2 .
  • the ratio of the area of the second film-forming surface 7b to the total area of the film-forming surface 7 is preferably 60% or less.
  • FIG. 3 is a schematic diagram showing a part of a cross section of another ring-shaped substrate 5. As shown in FIG. As shown in FIG. 3, the substrate 5 may have a plurality of second film formation surfaces 7b.
  • FIG. 4 is a schematic diagram showing a part of a cross section of still another ring-shaped substrate 5.
  • the angle between the first film forming surface 7a and the second film forming surface 7b is, for example, 20° to 120°.
  • the angle between the first film forming surface 7a and the second film forming surface 7b connected to the first film forming surface 7a is about 30°.
  • one or more underlayers may be disposed between the substrate and the yttrium-based protective coating.
  • the stress of the yttrium-based protective film is alleviated and the adhesion of the yttrium-based protective film to the substrate is increased.
  • the number of undercoat layers is not particularly limited, but 5 layers or less is preferable, 4 layers or less is more preferable, 3 layers or less is even more preferable, 2 layers or less is particularly preferable, and 1 layer is most preferable.
  • the underlayer is preferably an amorphous film or a microcrystalline film.
  • the underlayer preferably contains at least one oxide selected from the group consisting of Al2O3 , SiO2 , Y2O3 , MgO , CaO , SrO, BaO, B2O3 , SnO2 , P2O5 , Li2O , Na2O , K2O , ZrO2 , La2O3 , Nd2O3 , Yb2O3 , Eu2O3 and Gd2O3 .
  • the oxides of the underlayers are preferably different from each other between adjacent underlayers.
  • a specific example of a case in which the oxides of adjacent underlayers are different from each other is a case in which the oxide of underlayer 1 is "SiO 2 ", the oxide of underlayer 2 is "Al 2 O 3 +SiO 2 ", and the oxide of underlayer 3 is "Al 2 O 3 ".
  • the thickness of the underlayer is preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more, even more preferably 1.0 ⁇ m or more, even more preferably 1.5 ⁇ m or more, particularly preferably 2.0 ⁇ m or more, very preferably 2.5 ⁇ m or more, and most preferably 3.0 ⁇ m or more.
  • the thickness of the underlayer is preferably 15 ⁇ m or less, more preferably 10 ⁇ m or less, further preferably 7 ⁇ m or less, and particularly preferably 4 ⁇ m or less.
  • the thickness of the undercoat layer is measured in the same manner as the thickness of the yttrium-based protective film.
  • This member is used, for example, as a member such as a top plate inside semiconductor device manufacturing equipment (plasma etching equipment, plasma CVD equipment, etc.). However, the use of this member is not limited to this.
  • This manufacturing method is a so-called ion-assisted deposition (IAD) method.
  • IAD ion-assisted deposition
  • an yttrium -based protective film having a high ratio of Y5O4F7 is formed by evaporating evaporation sources ( Y2O3 and YF3 ) and depositing them on a substrate while irradiating the substrate with ions in a vacuum.
  • This manufacturing method allows the formation of a very dense yttrium-based protective film.
  • the resulting yttrium-based protective film has a low porosity and a small crystallite size.
  • the thicker the yttrium protective film the more likely it is to crack. Furthermore, as the area of the deposition surface increases, the area of the yttrium-based protective film formed on the deposition surface also increases, and in this case too, the yttrium-based protective film is prone to cracking.
  • the present manufacturing method makes it possible to obtain a dense and hard yttrium-based protective film. Furthermore, when an underlayer is formed, the stress of the yttrium protective film is relieved. Therefore, the yttrium-based protective film obtained by this manufacturing method is less susceptible to cracking even when its thickness or area is increased.
  • the surface roughness (arithmetic mean roughness Ra) of the substrate's coating surface is preferably in the range described above. This makes the yttrium protective film that is formed denser and harder, and less prone to cracking.
  • the resulting yttrium-based protective film is likely to have many residual pores. Furthermore, with these methods, it is difficult to control the fluorine content in the resulting yttrium-based protective film, and it may be difficult to stably obtain a desired composition.
  • Another method different from the IAD method is the sputtering method, in which, for example, a sputtering target of YO x F y is bombarded with plasma of argon and oxygen in a vacuum to form a film on a substrate.
  • a sputtering target of YO x F y is bombarded with plasma of argon and oxygen in a vacuum to form a film on a substrate.
  • the fluorine content is prone to change, and it is still difficult to stably form an yttrium-based protective film that has a high proportion of Y 5 O 4 F 7 having a rhombohedral crystal structure.
  • FIG. 5 is a schematic diagram showing an apparatus used for producing the yttrium-based protective film.
  • 5 includes a chamber 11.
  • the inside of the chamber 11 can be evacuated to a vacuum by driving a vacuum pump (not shown).
  • crucibles 12 and 13 and an ion gun 14 are arranged, and above these, a holder 17 is arranged.
  • the holder 17 is integrated with the support shaft 16 and rotates with the rotation of the support shaft 16.
  • a heater 15 is disposed.
  • the substrate 5 described above is held in a state where its film forming surface faces downward on the holder 17.
  • the substrate 5 held by the holder 17 rotates in accordance with the rotation of the holder 17 while being heated by the heater 15.
  • the chamber 11 is equipped with quartz crystal film thickness monitors 18 and 19 .
  • ⁇ Formation of yttrium-based protective film> The case of forming an yttrium-based protective film (not shown in FIG. 5) on the substrate 5 in the apparatus shown in FIG. 5 will be described.
  • one crucible 12 is filled with the evaporation source Y 2 O 3
  • the other crucible 13 is filled with the evaporation source YF 3 .
  • the inside of the chamber 11 is evacuated to a vacuum.
  • the pressure inside the chamber 11 is preferably 5 ⁇ 10 ⁇ 4 Pa or less.
  • the holder 17 is rotated. This causes the substrate 5 to rotate while being heated.
  • ion-assisted deposition is carried out to form a film on the substrate 5 . That is, while ions (ion beam) are irradiated from the ion gun 14, the evaporation source Y 2 O 3 in the crucible 12 and the evaporation source YF 3 in the crucible 13 are evaporated in parallel. The evaporation source is melted and evaporated by irradiating it with an electron beam (not shown). In this manner, the evaporated evaporation source adheres to the substrate 5 (the film formation surface) and a protective yttrium film is formed.
  • the ions irradiated by the ion gun 14 are preferably ions of at least one element selected from the group consisting of oxygen, argon, neon, krypton, and xenon. It is more preferable to use ions of at least two elements selected from the group consisting of oxygen, argon, neon, krypton and xenon as the ions irradiated by the ion gun 14, and it is even more preferable to use oxygen and argon ions in combination. This improves the Vickers hardness of the yttrium-based protective film that is formed.
  • the film formation is carried out in a vacuum, and specifically, the pressure inside the chamber 11 is preferably 8 ⁇ 10 ⁇ 2 Pa or less, more preferably 6 ⁇ 10 ⁇ 2 Pa or less, further preferably 5 ⁇ 10 ⁇ 2 Pa or less, and particularly preferably 3 ⁇ 10 ⁇ 2 Pa or less.
  • the pressure inside the chamber 11 is preferably 0.5 ⁇ 10 ⁇ 2 Pa or more, and more preferably 0.5 ⁇ 10 ⁇ 2 Pa or more.
  • the temperature of the substrate 5 heated by the heater 15 is preferably 200° C. or higher, and more preferably 250° C. or higher. On the other hand, this temperature is preferably 400° C. or lower, and more preferably 350° C. or lower.
  • the film formation rate is adjusted by controlling the conditions of the electron beam irradiated onto the evaporation source and the conditions of the ion beam of the ion gun 14 (current value, current density, etc.). During the formation of the yttrium protective film, the film formation rate (unit: nm/min) of each evaporation source is adjusted to a desired value.
  • the film formation rate ratio (Y 2 O 3 / YF 3 ) of the film formation rate (unit: nm/min) of the evaporation source Y 2 O 3 to the film formation rate (unit: nm/min) of the evaporation source YF 3 is preferably 1/9.5 or more, more preferably 1/8.0 or more, even more preferably 1/6.0 or more, and particularly preferably 1/4.5 or more.
  • the film formation rate ratio (Y 2 O 3 /YF 3 ) is preferably 1/1.1 or less, more preferably 1/1.3 or less, further preferably 1/1.8 or less, and particularly preferably 1/2.5 or less.
  • the total rate of the deposition rate of the evaporation source Y2O3 and the deposition rate of the evaporation source YF3 is preferably 5 nm/min or more, more preferably 8 nm/min or more, and even more preferably 10 nm/min or more. On the other hand, this total rate is preferably 50 nm/min or less, more preferably 35 nm/min or less, and even more preferably 20 nm/min or less.
  • the distance between the ion gun 14 and the substrate 5 is preferably 700 mm or more, and more preferably 900 mm or more, while the distance is preferably 1500 mm or less, and more preferably 1300 mm or less.
  • the current value of the ion beam is preferably 1000 mA or more, and more preferably 1500 mA or more.
  • the ion beam current value is preferably 3000 mA or less, and more preferably 2500 mA or less.
  • the ion beam current density is preferably 40 ⁇ A/cm 2 or more, more preferably 65 ⁇ A/cm 2 or more, further preferably 75 ⁇ A/cm 2 or more, and particularly preferably 85 ⁇ A/cm 2 or more.
  • the ion beam current density is preferably 140 ⁇ A/cm 2 or less, and more preferably 120 ⁇ A/cm 2 or less.
  • Ar/O ratio As described above, it is preferable to use a combination of argon ions and oxygen ions as the ions irradiated from the ion gun 14 .
  • the Ar/O ratio which is the ratio of argon (Ar) ions to oxygen (O) ions, is preferably 1/50 or more, more preferably 1.5/50 or more, and even more preferably 2/50 or more, while the Ar/O ratio is preferably 4/50 or less, more preferably 3.5/50 or less, and even more preferably 3/50 or less.
  • the Ar/O ratio is the ratio between the amount of argon (Ar) ions per unit time (unit: W/ m2 ) irradiated from the ion gun 14 toward the substrate 5 and the amount of oxygen (O) ions per unit time (unit: W/ m2 ) irradiated from the ion gun 14 toward the substrate 5.
  • W/ m2 is a unit indicating the kinetic energy (ion energy flux) crossing a unit area in a unit time.
  • the underlayer is formed by ion-assisted deposition in the same manner as the yttrium-based protective film.
  • the crucible 12 and/or the crucible 13 is filled with Al 2 O 3 as an evaporation source, and the evaporation source is evaporated while ions (ion beam) are irradiated from the ion gun 14, and adhered to the film formation surface of the substrate 5.
  • the conditions for forming the underlayer are similar to those for forming the yttrium-based protective film.
  • Example 1 Using the apparatus described with reference to FIG. 5, an yttrium-based protective film (protective film) was produced. More specifically, underlayers and protective films shown in Tables 1 to 3 were formed on the deposition surface of the substrate under the manufacturing conditions shown in Tables 1 to 3. A circular substrate (thickness: 10 mm) having a deposition surface with a diameter (maximum length) of 200 mm was used as the substrate. The composition of the protective film was determined from the content of each element (Y, O, F, etc.). When forming the protective film, argon (Ar) ions and oxygen (O) ions were irradiated from an ion gun toward the substrate at the Ar/O ratios shown in Tables 1 to 3 below. As manufacturing conditions not shown in Tables 1 to 3 below, the distance between the ion gun and the substrate was 1100 mm, and the current value of the ion beam was 2000 mA.
  • Ar argon
  • O oxygen
  • Example 2 to Example 26 In Examples 2 to 26, one or more conditions were changed from those in Examples 1 to Table 3. Otherwise, the underlayer and the yttrium-based protective film were formed in this order in the same manner as in Example 1. When no undercoat layer was formed, "-" is entered in the corresponding column in Tables 1 to 3 below.
  • Example 2 the deposition rate was changed. In Example 3, no undercoat layer was formed. In Example 4, the deposition rate was changed. In Example 5, the deposition rate was changed, and no underlayer was formed. In Examples 6 to 8, the Ra of the film-forming surface of the substrate was changed. In Examples 9 to 14, the material of the substrate was changed. In Example 10, one side of the substrate made of aluminum (Al) was anodized to form a base layer made of Al 2 O 3. This base layer is described as "anodized” in the following Tables 1 to 3. In Example 13, commercially available soda lime glass was used as the substrate (glass). In Example 15, the area of the film formation surface was changed (increased).
  • Example 16 and 17 the thickness of the protective film formed was changed by adjusting the film formation time (not shown in Tables 1 to 3 below).
  • Example 18 a highly porous substrate was used.
  • Example 19 the ion beam current density was changed.
  • Example 20 the ion beam current density was changed and the Ar/O ratio was changed (only oxygen ions were irradiated).
  • Example 21 the Ar/O ratio was changed (only oxygen ions were irradiated).
  • Example 22 the deposition rate was changed.
  • Examples 23 to 25 the Ar/O ratio was changed (only oxygen ions were irradiated).
  • Example 26 the deposition rate was changed.
  • Etching Amount The etching amount of the protective film of each example was determined, and the plasma resistance was evaluated. Specifically, a 10 mm x 5 mm surface of the protective film was mirror-finished. A part of the mirror-finished surface was masked with Kapton tape and etched with plasma gas. Then, a stylus-type surface profiler (Dectak150, manufactured by ULVAC, Inc.) was used to measure the step between the etched and non-etched parts to determine the amount of etching. EXAM (manufactured by Shinko Seiki Co., Ltd., model: POEM type) was used as the plasma etching device.
  • EXAM manufactured by Shinko Seiki Co., Ltd., model: POEM type
  • etching In RIE mode (reactive ion etching mode), first, under a pressure of 10 Pa and an output of 350 W, etching was performed for 180 minutes using a gas obtained by mixing CF 4 gas (flow rate: 100 sccm) with O 2 gas (flow rate: 10 sccm). Next, etching was performed for 180 minutes using CF 4 gas (flow rate: 100 sccm). After that, etching was performed for 180 minutes using a gas obtained by mixing CF 4 gas (flow rate: 100 sccm) with O 2 gas (flow rate: 10 sccm), and finally, etching was performed for 180 minutes using CF 4 gas (flow rate: 100 sccm). The smaller the etching amount (unit: nm), the better the plasma resistance can be evaluated. Specifically, if the etching amount was 150 nm or less, the plasma resistance was evaluated as excellent.
  • F content change amount ⁇ (F content before etching) ⁇ (F content after etching) ⁇ /(F content before etching)
  • the change in F content is preferably 10 atomic % or less, more preferably 5 atomic % or less, and even more preferably 3 atomic % or less.
  • Examples 1 to 18 were excellent in plasma resistance.

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

本発明は、X線回折パターンにおけるY5O4F7のピーク強度比が60%以上であり、気孔率が1.5体積%未満であり、ビッカース硬さが800HV以上であるイットリウム質保護膜に関し、また、基材および当該イットリウム質保護膜をこの順に有する部材に関する。

Description

イットリウム質保護膜およびその製造方法ならびに部材
 本発明は、イットリウム質保護膜およびその製造方法ならびに部材に関する。
 半導体デバイスを製造する際、例えば、チャンバ内において、ハロゲン系ガスのプラズマを用いたドライエッチングによって半導体基板(シリコンウェハ)の表面を微細加工したり、ドライエッチング後に半導体基板を取り出したチャンバ内を酸素ガスのプラズマを用いてクリーニングしたりする。
 このとき、チャンバ内においてプラズマガスに曝された部材は腐食し、腐食した部材から腐食部分が粒子状に脱落する場合がある。脱落した粒子(パーティクル)は、半導体基板に付着して、回路に欠陥をもたらす異物となり得る。
 そこで、従来、プラズマに曝される部材を保護する保護膜として、酸フッ化イットリウムを含有する保護膜(イットリウム質保護膜)が知られている。
 特許文献1には、溶射によって形成される、酸フッ化イットリウム(イットリウムオキシフッ化物)を含有する溶射皮膜が開示されている。
日本国特開2018-76546号公報
 本発明者らが検討したところ、従来のイットリウム質保護膜は、耐プラズマ性(プラズマに対する耐食性)が不十分な場合があることが分かった。
 本発明は、以上の点を鑑みてなされたものであり、耐プラズマ性に優れるイットリウム質保護膜を提供することを目的とする。
 本発明者らは、鋭意検討した結果、下記構成を採用することにより、上記目的が達成されることを見出し、本発明を完成させた。
 すなわち、本発明は、以下の[1]~[18]を提供する。
 [1]X線回折パターンにおけるYのピーク強度比が60%以上であり、
 気孔率が1.5体積%未満であり、ビッカース硬さが800HV以上である、イットリウム質保護膜。
 [2]フッ素の含有量が35~55原子%である、上記[1]に記載のイットリウム質保護膜。
 [3]フッ素の含有量と酸素の含有量との比であるF/O比が、2.80未満である、上記[1]または[2]に記載のイットリウム質保護膜。ただし、フッ素の含有量および酸素の含有量の単位は、どちらも、原子%である。
 [4]結晶子サイズが5~30nmである、上記[1]~[3]のいずれかのイットリウム質保護膜。
 [5]圧縮応力が1000~1700MPaである、上記[1]~[4]のいずれかに記載のイットリウム質保護膜。
 [6]厚さが0.3μm以上である、上記[1]~[5]のいずれかに記載のイットリウム質保護膜。
 [7]Yの(151)面のロッキングカーブの半値幅が40°以下である、上記[1]~[6]のいずれかに記載のイットリウム質保護膜。
 [8]基材と、上記[1]~[7]のいずれかに記載のイットリウム質保護膜と、をこの順に有する部材。
 [9]上記基材の成膜面の表面粗さが、算術平均粗さRaで、0.01~1.2μmである、上記[8]に記載の部材。
 [10]上記基材の気孔率が2.0体積%以下である、上記[8]または[9]に記載の部材。
 [11]上記基材が、カーボン、セラミックスおよび金属からなる群から選ばれる少なくとも1種で構成される、上記[8]~[10]のいずれかに記載の部材。
 [12]上記セラミックスが、ガラス、石英、酸化アルミニウム、窒化アルミニウム、Si含浸炭化ケイ素および酸窒化アルミニウムからなる群から選ばれる少なくとも1種であり、上記金属が、アルミニウムおよびアルミニウムを含有する合金からなる群から選ばれる少なくとも1種である、上記[11]に記載の部材。
 [13]上記基材の成膜面の最大長さが30mm以上である、上記[8]~[12]のいずれかに記載の部材。
 [14]上記基材と上記イットリウム質保護膜との間に、1層以上の下地層を有し、上記下地層は、Al、SiO、Y、MgO、CaO、SrO、BaO、B、SnO、P、LiO、NaO、KO、ZrO、La、Nd、Yb、EuおよびGdからなる群から選ばれる少なくとも1種の酸化物を含有する、上記[8]~[13]のいずれかに記載の部材。
 [15]上記基材と上記イットリウム質保護膜との間に、2層以上の上記下地層を有し、上記酸化物は、隣接する上記下地層どうしで互いに異なる、上記[14]に記載の部材。
 [16]上記基材が、成膜面として、最大長さを規定する第一成膜面と、上記第一成膜面とは異なる第二成膜面と、を有し、上記第一成膜面と上記第二成膜面とのなす角が、20°~120°であり、上記成膜面の全面積に対する上記第二成膜面の面積の割合が、60%以下である、上記[8]~[15]のいずれかに記載の部材。
 [17]プラズマエッチング装置またはプラズマCVD装置の内部で使用される、上記[8]~[16]のいずれかに記載の部材。
 [18]上記[1]~[7]のいずれかに記載のイットリウム質保護膜を製造する方法であって、真空中において、酸素、アルゴン、ネオン、クリプトンおよびキセノンからなる群から選ばれる少なくとも1種の元素のイオンを照射しながら、蒸発源を蒸発させて基材に付着させ、上記蒸発源として、YおよびYFを用いる、イットリウム質保護膜の製造方法。
 本発明によれば、耐プラズマ性に優れるイットリウム質保護膜を提供できる。
図1は、部材の一例を示す模式図である。 図2は、リング状の基材の半分を切り欠いて示す模式図である。 図3は、別のリング状の基材の断面の一部を示す模式図である。 図4は、更に別のリング状の基材の断面の一部を示す模式図である。 図5は、イットリウム質保護膜の製造に用いる装置を示す模式図である。
 本発明における用語の意味は、以下のとおりである。
 「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
[イットリウム質保護膜]
 本実施形態のイットリウム質保護膜は、X線回折パターンにおけるYのピーク強度比が60%以上であり、気孔率が1.5体積%未満であり、ビッカース硬さが800HV以上である。
 以下、イットリウム質保護膜を単に「保護膜」ともいい、本実施形態のイットリウム質保護膜(保護膜)を「本保護膜」ともいう。
 イットリウム質保護膜は、酸フッ化イットリウムを含有する。
 酸フッ化イットリウムを表す化学式としては、YOF、Yなどが挙げられる。YOFは硬度の低い斜方晶であるのに対して、Yは菱面体という特殊な結晶構造であり、硬度が高い。
 本保護膜は、菱面体結晶構造を有するYの割合が多い。すなわち、X線回折パターンにおけるYのピーク強度比が一定値以上である。これにより、本保護膜は、硬く、ビッカース硬さが一定値以上を示す。
 更に、本保護膜は、後述する方法(本製造方法)により形成されることで、緻密であり、気孔率が小さい。
 このような本保護膜は、耐プラズマ性に優れる。
 以下、本保護膜について、より詳細に説明する。
 〈ピーク強度比〉
 本保護膜のX線回折パターンにおけるYのピーク強度比(以下、「Yピーク強度比」ともいう)は、60%以上であり、80%以上が好ましく、90%以上がより好ましく、95%以上が更に好ましく、98%以上がより更に好ましく、99%以上が特に好ましく、100%が最も好ましい。
 Yピーク強度比を上記範囲にするためには、後述する方法(本製造方法)により保護膜を製造することが好ましい。
 Yピーク強度比は、保護膜のX線回折(XRD)パターンにおいて、以下に示す結晶相のメインピーク強度の合計を100とした場合における、Yのメインピーク強度の割合(単位:%)である。
 各結晶相のメインピークは、Yは2θ=28.1°付近、Yは2θ=29.2°付近、YOFは2θ=29.2°付近に表れる。
 Yのメインピーク位置には、Y結晶のピークとY結晶のピークとが重なって表れる。更に、YFのメインピークも、Yのメインピーク位置に重なって表れる。
 Yのメインピーク位置にあるピークは、全てYのピークとして扱う。
 YF結晶が存在する場合には、YF結晶の第二メインピークである2θ=24.5°付近のピークの強度を1.3倍にしてメインピーク相当に換算し、これを、YFのメインピーク強度とする。このとき、併せて、Yのピーク(Yのメインピーク位置にあるピーク)の強度から、1.3倍に換算されたYF結晶の第二メインピークの強度を減算する。仮に、YF結晶の第二メインピークの強度(相対強度)が「2.0」であり、Yのメインピーク位置にあるピークの強度(相対強度)が「6.0」である場合、YF結晶の第二メインピークの強度は「2.6」(=2.0×1.3)に換算されるから、Yのメインピーク位置にあるピークの強度は、換算後のYF結晶の第二メインピークの強度の分だけ減算されて「3.4」(=6.0-2.6)となる。
 保護膜のXRDパターンは、X線回折装置(D8 DISCOVER Plus、Bruker社製)を用いて、下記条件にて、微小部2D(2次元)モードで、XRD測定することにより得られる。
 ・X線源:CuKα線(出力:45kV、電流:120mA)
 ・走査範囲:2θ=10°~80°
 ・ステップ時間:0.2s/step
 ・スキャンスピード:10°/min
 ・ステップ幅:0.02°
 ・検出器:マルチモード検出器EIGER(2Dモード)
 ・入射側光学系:多層膜ミラー+1.0mmφマイクロスリット+1.0mmφコリメータ
 ・受光側光学系:OPEN
 〈ビッカース硬さ〉
 本保護膜の耐プラズマ性が優れるという理由から、本保護膜のビッカース硬さは、800HV以上であり、900HV以上が好ましく、950HV以上がより好ましく、1000HV以上が更に好ましく、1050HV以上が特に好ましい。
 一方、本保護膜のビッカース硬さは、1800HV以下が好ましく、1600HV以下がより好ましく、1400HV以下がさらに好ましい。
 ビッカース硬さを上記範囲にするためには、保護膜のYピーク強度比を上述した範囲にすることが好ましい。
 保護膜のビッカース硬さは、JIS Z 2244(2009年)に準拠して、求める。
 より詳細には、マイクロビッカース硬さ試験機(HM-220、ミツトヨ社製)を用いて、対面角136°のダイヤモンド圧子によって、試験力4.9mN(0.049N)を負荷したときに求められるビッカース硬さ(HV0.005)である。
 〈気孔率〉
 本保護膜の耐プラズマ性が優れるという理由から、本保護膜の気孔率は、1.5体積%未満であり、1.0体積%以下が好ましく、0.5体積%以下がより好ましく、0.2体積%以下が更に好ましく、0.10体積%以下が特に好ましく、0.05体積%以下が最も好ましい。
 気孔率を上記範囲にするためには、後述する方法(本製造方法)により保護膜を製造することが好ましい。
 保護膜の気孔率は、次のように求める。
 まず、収束イオンビーム(FIB)を用いて、保護膜および後述する基材の一部に対して、保護膜の表面から基材に向けて、52°の角度で厚さ方向にスロープ加工を実施して、断面を露出させる。露出した断面を、電界放出形走査電子顕微鏡(FE-SEM)を用いて、20000倍の倍率で観察し、その断面画像を撮影する。
 断面画像は、複数の箇所において撮影する。具体的には、例えば、保護膜および基材が円形状である場合は、保護膜の表面(または基材の表面)の中央の1点と、外周から10mm離れた位置にある4点との計5点において撮影し、断面画像の大きさは、6μm×5μmとする。保護膜の厚さが5μm以上である場合には、保護膜の断面を厚さ方向に全て観察できるように、複数の撮影箇所において、それぞれ、断面画像を撮影する。
 続いて、得られた断面画像を、画像解析ソフトウェア(ImageJ、National Institute of Health社製)を用いて解析することにより、断面画像中の気孔部分の面積を特定する。保護膜の全断面の面積に対する気孔部分の面積の割合を算出し、これを、保護膜の気孔率(単位:体積%)とみなす。なお、画像解析ソフトによって検出できないほど微細な気孔(孔径が20nm以下である気孔)については、その面積を0とみなす。
 〈組成〉
 本保護膜は、酸フッ化イットリウム(Y)を含有するから、イットリウム(Y)、酸素(O)およびフッ素(F)を含有する。
 《Y含有量》
 本保護膜のY含有量は、20原子%以上が好ましく、25原子%以上がより好ましく、26原子%以上が更に好ましく、27原子%以上が特に好ましく、27.5原子%以上が最も好ましい。
 一方、本保護膜のY含有量は、35原子%以下が好ましく、30原子%以下がより好ましく、29原子%以下が更に好ましく、28原子%以下が特に好ましい。
 《O含有量》
 本保護膜のO含有量は、20原子%以上が好ましく、21原子%以上がより好ましく、22原子%以上が更に好ましく、23原子%以上が特に好ましく、24原子%以上が最も好ましくい。
 一方、本保護膜のO含有量は、35原子%以下が好ましく、30原子%以下がより好ましく、28原子%以下が更に好ましく、26原子%以下が特に好ましく、25原子%以下が最も好ましい。
 《F含有量》
 本保護膜のF含有量は、35原子%以上が好ましく、40原子%以上がより好ましく、44原子%以上が更に好ましく、47原子%以上が特に好ましく、48原子%以上が最も好ましい。
 一方、本保護膜のF含有量は、55原子%以下が好ましく、50原子%以下がより好ましく、49.5原子%以下が更に好ましく、49原子%以下が特に好ましく、48.5原子%以下が最も好ましい。
 各元素の含有量を上記範囲にするためには、例えば、後述する方法(本製造方法)において、蒸発源の量などの製造条件を適宜調整する。
 保護膜におけるY、OおよびFの含有量(単位:原子%)は、エネルギー分散型X線分析装置(EX-250SE、堀場製作所社製)を用いて測定する。
 《F/O比》
 本保護膜におけるF含有量(単位:原子%)とO含有量(単位:原子%)との比であるF/O比は、2.80未満が好ましく、2.50未満がより好ましく、2.15未満が更に好ましい。
 一方、このF/O比は、1.50超が好ましく、1.70超がより好ましく、1.90超が更に好ましい。
 〈配向度(ロッキングカーブの半値幅)〉
 保護膜を大面積化する場合、保護膜中にクラックが発生することを抑制する観点から、保護膜のYの(151)面の配向度(以下、単に「配向度」ともいう)は、高い方が好ましい。
 配向度の指標として、Yの(151)面のロッキングカーブの半値幅を用いる。具体的には、2次元モードの検出器を用いて得られるYの(151)面のピークのロッキングカーブを2θ方向に積分し、その半値幅を用いて、配向性を評価する。この半値幅(単位:°)が小さいほど、配向度が高いと言える。
 Yの(151)面のロッキングカーブの半値幅は、40°以下が好ましく、30°以下がより好ましく、25°以下が更に好ましく、20°以下がより更に好ましく、15°以下が特に好ましく、10°以下が最も好ましい。
 配向度を上記範囲にするためには、後述する方法(本製造方法)により保護膜を製造することが好ましい。
 〈結晶子サイズ〉
 上述したように、例えば、プラズマガスに曝された部材から脱落した粒子(パーティクル)は、半導体基板に付着して、回路に欠陥をもたらす異物となり得る。
 このとき、パーティクルのサイズが小さいほど、欠陥の発生を抑制できる。
 したがって、本保護膜の結晶子サイズは、30nm以下が好ましく、20nm以下がより好ましく、17nm以下が更に好ましく、15nm以下がより更に好ましく、13nm以下が特に好ましい。
 一方、本保護膜の結晶子サイズは、2nm以上が好ましく、5nm以上がより好ましく、6nm以上がさらに好ましく、8nm以上が特に好ましく、10nm以上が最も好ましい。
 結晶子サイズを上記範囲にするためには、後述する方法(本製造方法)により保護膜を製造することが好ましい。
 保護膜における結晶子サイズは、鏡面研磨した保護膜のXRD測定により得られるXRDパターンのデータに基づいて、シェラーの式を用いて求める。
 〈厚さ〉
 本保護膜の厚さは、0.3μm以上が好ましく、1μm以上がより好ましく、5μm以上が更に好ましく、10μm以上がより更に好ましく、15μm以上が特に好ましく、20μm以上が最も好ましい。
 一方、本保護膜の厚さの上限は、特に限定されず、300μm以下が好ましく、200μm以下がより好ましく、100μm以下がさらに好ましく、50μm以下が特に好ましく、30μm以下が最も好ましい。
 保護膜の厚さは、次のように測定する。
 走査型電子顕微鏡(SEM)を用いて、保護膜の断面を観察し、保護膜の厚さを任意の5点で測定し、測定した5点の平均値を、この保護膜の厚さ(単位:μm)とみなす。
 〈圧縮応力〉
 本保護膜の応力(膜内応力、残留応力)は、引張応力ではなく、圧縮応力が好ましい。
 本保護膜の圧縮応力は、1000MPa以上が好ましく、1100MPa以上がより好ましく、1200MPa以上が更に好ましく、1250MPa以上がより更に好ましく、1300MPa以上が特に好ましく、1350MPa以上が最も好ましい。
 一方、本保護膜の圧縮応力は、1700MPa以下が好ましく、1600MPa以下がより好ましく、1500MPa以下が更に好ましく、1400MPa以下が特に好ましい。
 保護膜の圧縮応力は、次のように求める。
 石英ガラス製の基板に、保護膜を形成し、形成した保護膜の表面形状を表面形状測定装置(サーフコム NEX 241 SD2-13、東京精密社製)を用いて測定し、Stoneyの式(下記式)から、保護膜の圧縮応力(膜応力σ)を求める。
 Stoneyの式は、以下のように表される。
 σ=Yd/(6c(1-ν)t)
 上記式中、σ:膜応力、Y:基板のヤング率、d:基板の厚さ、ν:基板のポアソン比、t:保護膜厚さ、c:曲率半径、である。
[部材]
 図1は、部材6の一例を示す模式図である。
 部材6は、基材5およびイットリウム質保護膜4を有する。
 基材5とイットリウム質保護膜4との間には、図1に示すように、下地層(下地層1、下地層2および下地層3)が配置されていてもよい。ただし、下地層は、3層に限定されない。
 本実施形態の部材(以下、「本部材」ともいう)は、イットリウム質保護膜として、上述した本保護膜を有する。
 本部材は、その表面が本保護膜で覆われているため、本保護膜と同様に、耐プラズマ性に優れる。
 以下、本部材が備える各部について、詳細に説明する。
 〈基材〉
 基材は、少なくとも、イットリウム質保護膜(または、後述する下地層)が形成される表面を有する。この表面を、以下、便宜的に「成膜面」と呼ぶ場合がある。
 《材質》
 基材の材質は、部材の用途等に応じて、適宜選択される。
 基材は、例えば、カーボン(C)、セラミックスおよび金属からなる群から選ばれる少なくとも1種で構成される。
 ここで、セラミックスは、例えば、ガラス(ソーダライムガラスなど)、石英、酸化アルミニウム(Al)、窒化アルミニウム(AlN)、コージェライト、酸化イットリウム、炭化ケイ素(SiC)、Si含浸炭化ケイ素、窒化ケイ素(SiN)、サイアロンおよび酸窒化アルミニウム(AlON)からなる群から選ばれる少なくとも1種である。セラミックスとしては、ガラス、石英、酸化アルミニウム、窒化アルミニウム、Si含浸炭化ケイ素および酸窒化アルミニウムからなる群から選ばれる少なくとも1種であることが好ましい。
 Si含浸炭化ケイ素は、Si単体を、加熱して溶融させ、炭化ケイ素(SiC)に含浸させることにより得られる。
 金属は、例えば、アルミニウム(Al)およびアルミニウム(Al)を含有する合金からなる群から選ばれる少なくとも1種である。
 《気孔率》
 基材の気孔率は、2.0体積%以下が好ましく、1.2体積%以下がより好ましく、0.7体積%以下が更に好ましく、0.5体積%以下がより更に好ましく、0.3体積%以下が特に好ましく、0.1体積%以下が最も好ましい。
 基材の気孔率は、アルキメデス法によって求める。
 《形状》
 基材の形状としては、特に限定されず、例えば、平板状、リング状、ドーム状、凹状または凸状が挙げられ、部材の用途等に応じて、適宜選択される。
 《成膜面の表面粗さ》
 基材の成膜面の表面粗さは、後述する理由から、算術平均粗さRaとして、1.2μm以下が好ましく、1.0μm以下がより好ましく、0.8μm以下が更に好ましく、0.5μm以下が特に好ましい。
 一方、基材の成膜面の表面粗さは、算術平均粗さRaとして、0.01μm以上が好ましく、0.03μm以上がより好ましく、0.05μm以上が更に好ましく、0.10μ以上が特に好ましい。
 成膜面の表面粗さ(算術平均粗さRa)は、JIS B 0601:2001に準拠して測定する。
 《成膜面の最大長さ》
 基材の成膜面の最大長さは、30mm以上が好ましく、100mm以上がより好ましく、200mm以上が更に好ましく、300mm以上がより更に好ましく、500mm以上が特に好ましく、800mm以上が非常に好ましく、1000mm以上が最も好ましい。
 なお、「最大長さ」とは、成膜面が有する最大の長さを意味する。具体的には、例えば、成膜面が平面視で円である場合はその直径であり、平面視でリングである場合はその外径であり、平面視で四角形である場合は最大の対角線の長さである。
 成膜面の最大長さの上限は、特に限定されず、2000mm以下が好ましく、1500mm以下がより好ましい。
 図2は、リング状の基材5の半分を切り欠いて示す模式図である。
 図2に示す基材5について、例えば、外径Dが100mm、内径Dが90mm、厚さtが5mmである場合、その最大長さは100mmである。
 基材5は、成膜面7を有するが、図2に示すように、最大長さ(外径D)を規定する第一成膜面7aと、第一成膜面7aとは異なる第二成膜面7bと、を有していてもよい。
 成膜面7の全面積に対する、第二成膜面7bの面積の割合は、好ましくは60%以下である。
 図3は、別のリング状の基材5の断面の一部を示す模式図である。
 図3に示すように、基材5は、複数の第二成膜面7bを有していてもよい。
 図4は、更に別のリング状の基材5の断面の一部を示す模式図である。
 第一成膜面7aと第二成膜面7bとのなす角は、例えば、20°~120°である。図4に示す基材5において、第一成膜面7aと、第一成膜面7aに接続する第二成膜面7bとのなす角は、約30°である。
 〈下地層〉
 上述したように、基材とイットリウム質保護膜との間には、1層以上の下地層が配置されていてもよい。
 下地層を形成することにより、イットリウム質保護膜の応力が緩和されたり、イットリウム質保護膜の基材に対する密着性が増したりする。
 下地層の層数は、上限は特に限定されないが、5層以下が好ましく、4層以下がより好ましく、3層以下が更に好ましく、2層以下が特に好ましく、1層が最も好ましい。
 下地層は、アモルファス膜または微結晶膜であることが好ましい。
 下地層は、Al、SiO、Y、MgO、CaO、SrO、BaO、B、SnO、P、LiO、NaO、KO、ZrO、La、Nd、Yb、EuおよびGdからなる群から選ばれる少なくとも1種の酸化物を含有することが好ましい。
 基材とイットリウム質保護膜との間に、2層以上の下地層が配置される場合、下地層の酸化物は、隣接する下地層どうしで、互いに異なることが好ましい。
 隣接する下地層どうしで酸化物が互いに異なる場合とは、具体的には、例えば、下地層1の酸化物が「SiO」、下地層2の酸化物が「Al+SiO」、下地層3の酸化物が「Al」である場合が挙げられる。
 下地層の厚さは、それぞれ、0.1μm以上が好ましく、0.5μm以上がより好ましく、1.0μm以上が更に好ましく、1.5μm以上がより更に好ましく、2.0μm以上が特に好ましく、2.5μm以上が非常に好ましく、3.0μm以上が最も好ましい。
 一方、下地層の厚さは、それぞれ、15μm以下が好ましく、10μm以下がより好ましく、7μm以下がさらに好ましく、4μm以下が特に好ましい。
 下地層の厚さは、イットリウム質保護膜の厚さと同様に測定する。
 〈部材の用途〉
 本部材は、例えば、半導体デバイス製造装置(プラズマエッチング装置、プラズマCVD装置など)の内部において、天板などの部材として使用される。
 ただし、本部材の用途はこれに限定されない。
[イットリウム質保護膜および部材の製造方法]
 次に、本実施形態のイットリウム質保護膜を製造する方法(以下、「本製造方法」ともいう)を説明する。本製造方法は、上述した本部材を製造する方法でもある。
 本製造方法は、いわゆる、イオンアシスト蒸着(IAD)法である。
 概略的には、真空中において、イオンを照射しながら、蒸発源(YおよびYF)を蒸発させて基材に付着させることにより、Yの割合が多いイットリウム質保護膜を形成する。
 本製造方法によれば、イットリウム質保護膜を、非常に緻密に形成できる。すなわち、得られるイットリウム質保護膜は、気孔率が小さい。また、結晶子サイズも小さい。
 ところで、イットリウム質保護膜は、厚さが増すほど、クラックが入りやすい。
 また、成膜面が大面積化することにより、その成膜面に形成されるイットリウム質保護膜も大面積化する。その場合も、イットリウム質保護膜にはクラックが入りやすい。
 しかし、本製造方法によれば、緻密で硬いイットリウム質保護膜が得られる。
 更に、下地層を形成する場合は、イットリウム質保護膜の応力が緩和される。
 このため、本製造方法により得られるイットリウム質保護膜は、厚さが増したり大面積化したりしても、クラックが入りにくい。
 また、基材の成膜面の表面粗さ(算術平均粗さRa)は、上述した範囲が好ましい。これにより、形成されるイットリウム質保護膜は、より緻密で硬くなり、かつ、クラックが入りにくい。
 なお、溶射法、エアロゾルデポジション(AD)法などの方法では、得られるイットリウム質保護膜に気孔が多く残存しやすい。
 また、これらの方法では、得られるイットリウム質保護膜のフッ素含有量の制御が難しく、所望する組成を安定的に得ることが難しい場合がある。
 ほかにも、IAD法とは異なる方法として、スパッタ法がある。スパッタ法では、例えば、真空中で、YOのスパッタターゲットに、アルゴンおよび酸素のプラズマを衝突させて、基材に成膜する。
 しかし、この方法では、フッ素含有量が変化しやすく、やはり、菱面体結晶構造を有するYの割合が多いイットリウム質保護膜を安定的に形成することは困難である。
 〈装置構成〉
 本製造方法を、図5に基づいて、より詳細に説明する。
 図5は、イットリウム質保護膜の製造に用いる装置を示す模式図である。
 図5に示す装置は、チャンバ11を有する。チャンバ11の内部は、真空ポンプ(図示せず)を駆動して排気することにより、真空にできる。
 チャンバ11の内部には、るつぼ12および13と、イオンガン14とが配置され、これらの上方には、ホルダ17が配置されている。
 ホルダ17は、支持軸16と一体化しており、支持軸16の回転に伴い回転する。ホルダ17の周囲には、ヒータ15が配置されている。
 ホルダ17には、上述した基材5が、その成膜面を下方に向けた状態で保持されている。ホルダ17に保持された基材5は、ヒータ15によって加熱されながら、ホルダ17の回転に伴い、回転する。
 更に、チャンバ11には、水晶式膜厚モニタ18および19が取り付けられている。
 〈イットリウム質保護膜の形成〉
 図5に示す装置において、基材5にイットリウム質保護膜(図5には図示せず)を形成する場合について説明する。
 まず、一方のるつぼ12に蒸発源Yを充填し、他方のるつぼ13に蒸発源YFを充填する。
 ホルダ17に基材5を保持させてから、チャンバ11の内部を排気して真空にする。具体的には、チャンバ11の内部の圧力は、5×10-4Pa以下が好ましい。
 次いで、ヒータ15を駆動させながら、ホルダ17を回転させる。これにより、基材5を加熱しながら回転させる。
 この状態において、イオンアシスト蒸着を実施して、基材5に成膜する。
 すなわち、イオンガン14からイオン(イオンビーム)を照射しながら、るつぼ12の蒸発源Yと、るつぼ13の蒸発源YFとを並行して蒸発させる。
 蒸発源は、電子ビーム(図示せず)を照射することにより、溶融および蒸発させる。
 こうして、基材5(の成膜面)に、蒸発した蒸発源が付着し、イットリウム質保護膜が形成される。
 イオンガン14が照射するイオンは、酸素、アルゴン、ネオン、クリプトンおよびキセノンからなる群から選ばれる少なくとも1種の元素のイオンが好ましい。
 イオンガン14が照射するイオンとしては、酸素、アルゴン、ネオン、クリプトンおよびキセノンからなる群から選ばれる少なくとも2種の元素のイオンを用いることがより好ましく、酸素およびアルゴンのイオンを併用することが更に好ましい。
 これにより、形成されるイットリウム質保護膜のビッカース硬さが、より向上する。その理由は明らかではないが、例えば、酸素(O)のイオンのみを照射するよりも、運動エネルギーの高いアルゴン(Ar)を併用して照射する方が、基材5に対して、蒸発した蒸発源が打ち込まれる強さが大きくなるためと推測される。
 《チャンバ内圧力》
 成膜は真空中で実施するが、具体的には、チャンバ11の内部の圧力は、8×10-2Pa以下が好ましく、6×10-2Pa以下がより好ましく、5×10-2Pa以下が更に好ましく、3×10-2Pa以下が特に好ましい。
 チャンバ11の内部の圧力はまた、0.5×10-2Pa以上が好ましく、0.5×10-2Pa以上がより好ましい。
 《基材の温度》
 成膜中、ヒータ15によって加熱される基材5の温度は、200℃以上が好ましく、250℃以上がより好ましい。一方、この温度は、400℃以下が好ましく、350℃以下がより好ましい。
 《成膜速度》
 あらかじめ、るつぼ12の蒸発源が蒸発して膜が形成される速度(成膜速度)を、水晶式膜厚モニタ18を用いてモニタリングする。
 これとは別に、あらかじめ、るつぼ13の蒸発源が蒸発して膜が形成される速度(成膜速度)を、水晶式膜厚モニタ19を用いてモニタリングする。
 成膜速度は、蒸発源に照射する電子ビームの条件や、イオンガン14のイオンビームの条件(電流値、電流密度など)を制御することによって、調整される。
 イットリウム質保護膜の成膜中は、各蒸発源の成膜速度(単位:nm/min)を、所望の値に調整する。
 蒸発源Yの成膜速度(単位:nm/min)と、蒸発源YFの成膜速度(単位:nm/min)との成膜速度比(Y/YF)は、1/9.5以上が好ましく、1/8.0以上がより好ましく、1/6.0以上が更に好ましく、1/4.5以上が特に好ましい。
 一方、この成膜速度比(Y/YF)は、1/1.1以下が好ましく、1/1.3以下がより好ましく、1/1.8以下が更に好ましく、1/2.5以下が特に好ましい。
 蒸発源Yの成膜速度と、蒸発源YFの成膜速度との合計速度は、5nm/min以上が好ましく、8nm/min以上がより好ましく、10nm/min以上が更に好ましい。一方、この合計速度は、50nm/min以下が好ましく、35nm/min以下がより好ましく、20nm/min以下が更に好ましい。
 《イオン照射の条件》
 イオンガン14と基材5との距離は、700mm以上が好ましく、900mm以上がより好ましい。一方、この距離は、1500mm以下が好ましく、1300mm以下がより好ましい。
 イオンビームの電流値は、1000mA以上が好ましく、1500mA以上がより好ましい。
 一方、イオンビーム電流値は、3000mA以下が好ましく、2500mA以下がより好ましい。
 イオンビーム電流密度は、40μA/cm以上が好ましく、65μA/cm以上がより好ましく、75μA/cm以上が更に好ましく、85μA/cm以上が特に好ましい。
 一方、イオンビーム電流密度は、140μA/cm以下が好ましく、120μA/cm以下がより好ましい。
 《Ar/O比》
 上述したように、イオンガン14から照射されるイオンとして、アルゴンのイオンと酸素のイオンとを併用すること好ましい。
 このとき、アルゴン(Ar)のイオンと酸素(O)のイオンとの比であるAr/O比は、1/50以上が好ましく、1.5/50以上が好ましく、2/50以上が更に好ましい。一方、Ar/O比は、4/50以下が好ましく、3.5/50以下がより好ましく、3/50以下が更に好ましい。
 Ar/O比は、より詳細には、イオンガン14から基材5に向けて照射されるアルゴン(Ar)のイオンの単位時間あたりの量(単位:W/m)と、同じくイオンガン14から基材5に向けて照射される酸素(O)のイオンの単位時間あたりの量(単位:W/m)との比である。ここで、「W/m」は、単位時間に単位面積を横切る運動エネルギー(イオンエネルギー流束)を示す単位である。
 〈下地層の形成〉
 イットリウム質保護膜を形成する前に、基材5の成膜面に、上述した下地層(例えば、下地層1、下地層2および下地層3)を形成することが好ましい。
 下地層は、イットリウム質保護膜と同様に、イオンアシスト蒸着を実施して形成する。
 例えば、Alからなる下地層を形成する場合は、るつぼ12および/またはるつぼ13に蒸発源としてAlを充填し、イオンガン14からイオン(イオンビーム)を照射しながら、蒸発源を蒸発させて、基材5の成膜面に付着させる。
 下地層を形成する際の条件は、イットリウム質保護膜を形成する際の条件に準ずる。
 以下に、実施例を挙げて本発明を具体的に説明する。ただし、本発明は、以下に説明する実施例に限定されない。
 以下、例1~例18が実施例であり、例19~例26が比較例である。
 〈例1〉
 図5に基づいて説明した装置を用いて、イットリウム質保護膜(保護膜)を製造した。
 より詳細には、下記表1~表3に示す製造条件にて、基材の成膜面に、下記表1~表3に示す下地層および保護膜を形成した。基材としては、直径(最大長さ)が200mmの成膜面を有する円形状の基材(厚さ:10mm)を用いた。保護膜の組成は、各元素(Y、O、Fなど)の含有量から求まる組成である。
 保護膜を形成する際には、イオンガンから、アルゴン(Ar)のイオンと酸素(O)のイオンとを、下記表1~表3に示すAr/O比で、基材に向けて照射した。
 下記表1~表3に記載しない製造条件として、イオンガンと基材との距離は1100mm、イオンビームの電流値は2000mAとした。
 〈例2~例26〉
 例2~例26では、例1~表3から1つまたは2つ以上の条件を変更した。それ以外は、例1と同様にして、下地層およびイットリウム質保護膜を、この順に、形成した。
 下地層を形成しなかった場合は、下記表1~表3に該当する欄に「-」を記載した。
 概略的には、以下のとおりである。主に例1からの変更点を概説する。
 例2では、成膜速度を変更した。
 例3では、下地層を形成しなかった。
 例4では、成膜速度を変更した。
 例5では、成膜速度を変更した。また、下地層を形成しなかった。
 例6~例8では、基材の成膜面のRaを変更した。
 例9~例14では、基材の材質を変更した。なお、例10では、アルミニウム(Al)製の基材の一面側を、アルマイト処理することにより、Alからなる下地層とした。この下地層を、下記表1~表3では「アルマイト」と記載した。また、例13では、基材(ガラス)として、市販品のソーダライムガラスを使用した。
 例15では、成膜面の面積を変更した(大面積化した)。
 例16~例17では、成膜の時間(下記表1~表3には記載せず)を調整することにより、形成される保護膜の厚さを変更した。
 例18では、気孔率が大きい基材を使用した。
 例19では、イオンビーム電流密度を変更した。
 例20では、イオンビーム電流密度を変更し、かつ、Ar/O比を変更した(酸素のイオンのみを照射した)。
 例21では、Ar/O比を変更した(酸素のイオンのみを照射した)。
 例22では、成膜速度を変更した。
 例23~例25では、Ar/O比を変更した(酸素のイオンのみを照射した)。
 例26では、成膜速度を変更した。
 〈保護膜の物性〉
 各例の保護膜について、上述した方法に基づいて、Yピーク強度比、ビッカース硬さ、結晶子サイズ、気孔率、ロッキングカーブ半値幅、厚さ、および圧縮応力を求めた。いずれも結果を下記表1~表3に示す。なお、圧縮応力については、数値をマイナスで記載している。
 〈エッチング量〉
 各例の保護膜について、エッチング量を求めて、耐プラズマ性を評価した。
 具体的には、保護膜における10mm×5mmの面を鏡面加工した。鏡面加工した面の一部にカプトンテープを貼ってマスキングして、プラズマガスでエッチングした。その後、触針式表面形状測定機(アルバック社製、Dectak150)を用いて、エッチング部と非エッチング部とに生じた段差を測定することにより、エッチング量を求めた。
 プラズマエッチング装置としては、EXAM(神港精機社製、型式:POEM型)を用いた。RIEモード(リアクティブ・イオン・エッチングモード)にて、まず、10Paの圧力、350Wの出力のもと、CFガス(流量:100sccm)にOガス(流量:10sccm)を混合したガスを用いて、180分エッチングした。次いで、CFガス(流量:100sccm)を用いて、180分エッチングした。その後、CFガス(流量:100sccm)にOガス(流量:10sccm)を混合したガスを用いて、180分エッチングした、最後に、CFガス(流量:100sccm)を用いて、180分エッチングした。
 エッチング量(単位:nm)が小さいほど、耐プラズマ性に優れると評価できる。
 具体的には、エッチング量が150nm以下であれば、耐プラズマ性に優れると評価した。
 〈F含有量変化量〉
 エッチング後、保護膜のF含有量を測定し、下記式に基づいて、F含有量変化量(単位:原子%)を求めた。
 F含有量変化量={(エッチング前のF含有量)-(エッチング後のF含有量)}/(エッチング前のF含有量)
 F含有量変化量の値が小さいほど、耐プラズマ性に優れる安定化した保護膜であると評価できる。具体的には、F含有量変化量は10原子%以下が好ましく、5原子%以下がより好ましく、3原子%以下が更に好ましい。
 〈クラックの有無〉
 保護膜の形成後、保護膜に目視で視認できるクラックが入っているか否かを確認した。クラックが入っていなかった場合は「無し」を、クラックが入っていた場合は「有り」を下記表1~表3に記載した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 〈評価結果まとめ〉
 上記表1~表3に示すように、例1~例18は、耐プラズマ性に優れることが分かった。
 これに対して、ビッカース硬さが800HV未満である例19~例26は、耐プラズマ性が不十分であった。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2022年11月11日出願の日本特許出願(特願2022-181113)に基づくものであり、その内容はここに参照として取り込まれる。
1、2、3:下地層
4:イットリウム質保護膜
5:基材
6:部材
7:成膜面
7a:第一成膜面
7b:第二成膜面
11:チャンバ
12、13:るつぼ
14:イオンガン
15:ヒータ
16:支持軸
17:ホルダ
18、19:水晶式膜厚モニタ

Claims (18)

  1.  X線回折パターンにおけるYのピーク強度比が60%以上であり、
     気孔率が1.5体積%未満であり、
     ビッカース硬さが800HV以上である、イットリウム質保護膜。
  2.  フッ素の含有量が35~55原子%である、請求項1に記載のイットリウム質保護膜。
  3.  フッ素の含有量と酸素の含有量との比であるF/O比が、2.80未満である、請求項1に記載のイットリウム質保護膜。
     ただし、フッ素の含有量および酸素の含有量の単位は、どちらも、原子%である。
  4.  結晶子サイズが5~30nmである、請求項1に記載のイットリウム質保護膜。
  5.  圧縮応力が1000~1700MPaである、請求項1に記載のイットリウム質保護膜。
  6.  厚さが0.3μm以上である、請求項1に記載のイットリウム質保護膜。
  7.  Yの(151)面のロッキングカーブの半値幅が40°以下である、請求項1に記載のイットリウム質保護膜。
  8.  基材と、請求項1~7のいずれか1項に記載のイットリウム質保護膜と、をこの順に有する部材。
  9.  前記基材の成膜面の表面粗さが、算術平均粗さRaで、0.01~1.2μmである、請求項8に記載の部材。
  10.  前記基材の気孔率が2.0体積%以下である、請求項8に記載の部材。
  11.  前記基材が、カーボン、セラミックスおよび金属からなる群から選ばれる少なくとも1種で構成される、請求項8に記載の部材。
  12.  前記セラミックスが、ガラス、石英、酸化アルミニウム、窒化アルミニウム、Si含浸炭化ケイ素および酸窒化アルミニウムからなる群から選ばれる少なくとも1種であり、
     前記金属が、アルミニウムおよびアルミニウムを含有する合金からなる群から選ばれる少なくとも1種である、請求項11に記載の部材。
  13.  前記基材の成膜面の最大長さが30mm以上である、請求項8に記載の部材。
  14.  前記基材と前記イットリウム質保護膜との間に、1層以上の下地層を有し、
     前記下地層は、Al、SiO、Y、MgO、CaO、SrO、BaO、B、SnO、P、LiO、NaO、KO、ZrO、La、Nd、Yb、EuおよびGdからなる群から選ばれる少なくとも1種の酸化物を含有する、請求項8に記載の部材。
  15.  前記基材と前記イットリウム質保護膜との間に、2層以上の前記下地層を有し、
     前記酸化物は、隣接する前記下地層どうしで互いに異なる、請求項14に記載の部材。
  16.  前記基材が、成膜面として、最大長さを規定する第一成膜面と、前記第一成膜面とは異なる第二成膜面と、を有し、
     前記第一成膜面と前記第二成膜面とのなす角が、20°~120°であり、
     前記成膜面の全面積に対する前記第二成膜面の面積の割合が、60%以下である、請求項8に記載の部材。
  17.  プラズマエッチング装置またはプラズマCVD装置の内部で使用される、請求項8に記載の部材。
  18.  請求項1~7のいずれか1項に記載のイットリウム質保護膜を製造する方法であって、
     真空中において、酸素、アルゴン、ネオン、クリプトンおよびキセノンからなる群から選ばれる少なくとも1種の元素のイオンを照射しながら、蒸発源を蒸発させて基材に付着させ、
     前記蒸発源として、YおよびYFを用いる、イットリウム質保護膜の製造方法。
PCT/JP2023/040118 2022-11-11 2023-11-07 イットリウム質保護膜およびその製造方法ならびに部材 WO2024101367A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-181113 2022-11-11
JP2022181113 2022-11-11

Publications (1)

Publication Number Publication Date
WO2024101367A1 true WO2024101367A1 (ja) 2024-05-16

Family

ID=91032544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/040118 WO2024101367A1 (ja) 2022-11-11 2023-11-07 イットリウム質保護膜およびその製造方法ならびに部材

Country Status (1)

Country Link
WO (1) WO2024101367A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010121203A (ja) * 2008-07-14 2010-06-03 Toto Ltd 複合構造物及びその作製方法
JP2016211072A (ja) * 2015-05-08 2016-12-15 東京エレクトロン株式会社 溶射用材料、溶射皮膜および溶射皮膜付部材
JP2020525640A (ja) * 2017-05-26 2020-08-27 イオンズ カンパニー リミテッド フッ化イットリウムオキシドコーティング膜の形成方法およびこれによるフッ化イットリウムオキシドコーティング膜
JP2021185267A (ja) * 2013-07-20 2021-12-09 アプライド マテリアルズ インコーポレイテッドApplied Materials, Incorporated 蓋及びノズル上の希土類酸化物系コーティング用イオンアシスト蒸着
JP7154517B1 (ja) * 2022-02-18 2022-10-18 Agc株式会社 イットリウム質保護膜およびその製造方法ならびに部材
JP2023084911A (ja) * 2021-12-08 2023-06-20 三星電子株式会社 焼結体、焼結体の製造方法、プラズマ装置用部材、半導体製造装置用部材の製造方法、半導体製造装置、及び半導体製造装置の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010121203A (ja) * 2008-07-14 2010-06-03 Toto Ltd 複合構造物及びその作製方法
JP2021185267A (ja) * 2013-07-20 2021-12-09 アプライド マテリアルズ インコーポレイテッドApplied Materials, Incorporated 蓋及びノズル上の希土類酸化物系コーティング用イオンアシスト蒸着
JP2016211072A (ja) * 2015-05-08 2016-12-15 東京エレクトロン株式会社 溶射用材料、溶射皮膜および溶射皮膜付部材
JP2020525640A (ja) * 2017-05-26 2020-08-27 イオンズ カンパニー リミテッド フッ化イットリウムオキシドコーティング膜の形成方法およびこれによるフッ化イットリウムオキシドコーティング膜
JP2023084911A (ja) * 2021-12-08 2023-06-20 三星電子株式会社 焼結体、焼結体の製造方法、プラズマ装置用部材、半導体製造装置用部材の製造方法、半導体製造装置、及び半導体製造装置の製造方法
JP7154517B1 (ja) * 2022-02-18 2022-10-18 Agc株式会社 イットリウム質保護膜およびその製造方法ならびに部材

Similar Documents

Publication Publication Date Title
WO2023157849A1 (ja) イットリウム質保護膜およびその製造方法ならびに部材
JP5324029B2 (ja) 半導体加工装置用セラミック被覆部材
US6902814B2 (en) Quartz glass parts, ceramic parts and process of producing those
US7462407B2 (en) Fluoride-containing coating and coated member
JP4643478B2 (ja) 半導体加工装置用セラミック被覆部材の製造方法
TW201126600A (en) Methods of coating substrate with plasma resistant coatings and related coated substrates
JPH04305037A (ja) 炭素被膜付撥水ガラス
JP2006118053A (ja) 半導体製造装置用部材
JP4663927B2 (ja) 希土類含有酸化物部材
JP2005256098A (ja) 熱放射性および耐損傷性に優れるy2o3溶射皮膜被覆部材およびその製造方法
JP7089707B2 (ja) 半導体製造装置用部材および半導体製造装置用部材を備えた半導体製造装置並びにディスプレイ製造装置
JP2005158933A (ja) 半導体または液晶製造装置部材およびその製造方法
TW201527243A (zh) 石英玻璃元件及石英玻璃元件之製造方法
US11312637B1 (en) Yittrium granular powder for thermal spray and thermal spray coating produced using the same
WO2024101367A1 (ja) イットリウム質保護膜およびその製造方法ならびに部材
JP2021077900A (ja) 半導体製造装置用部材および半導体製造装置用部材を備えた半導体製造装置並びにディスプレイ製造装置
WO2024101102A1 (ja) 部材およびその製造方法
JP7165748B2 (ja) プラズマ処理装置用部材およびこれを備えるプラズマ処理装置
JP5031259B2 (ja) 耐食性部材とその製造方法およびこれを用いた半導体・液晶製造装置
KR102582528B1 (ko) 복합 구조물 및 복합 구조물을 구비한 반도체 제조 장치
JP7189371B2 (ja) プラズマ処理装置用部材およびこれを備えるプラズマ処理装置
JP7290716B2 (ja) プラズマ処理装置用部材およびプラズマ処理装置
WO2024038674A1 (ja) イットリウム質保護膜およびその製造方法ならびに部材
JP5849083B2 (ja) 多孔質構造体の製造方法及び多孔質自立膜
TW202409316A (zh) 釔質保護膜及其製造方法以及構件