WO2023155562A1 - 一种卤化钙钛矿太阳能电池及其底界面自生长修饰方法 - Google Patents

一种卤化钙钛矿太阳能电池及其底界面自生长修饰方法 Download PDF

Info

Publication number
WO2023155562A1
WO2023155562A1 PCT/CN2022/138197 CN2022138197W WO2023155562A1 WO 2023155562 A1 WO2023155562 A1 WO 2023155562A1 CN 2022138197 W CN2022138197 W CN 2022138197W WO 2023155562 A1 WO2023155562 A1 WO 2023155562A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
precursor
layer
solution
interface
Prior art date
Application number
PCT/CN2022/138197
Other languages
English (en)
French (fr)
Inventor
刘平平
张�杰
郑雪
冯叶
李伟民
杨春雷
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Publication of WO2023155562A1 publication Critical patent/WO2023155562A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/15Deposition of organic active material using liquid deposition, e.g. spin coating characterised by the solvent used
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the invention relates to the technical field of solar cell preparation, in particular to a halide perovskite solar cell and a bottom interface self-growth modification method thereof.
  • metal halide perovskite materials have attracted extensive attention from academia and industry. They have excellent optoelectronic properties such as high light absorption coefficient, long carrier lifetime and high photogenerated carrier mobility. They have been used since 2009. Since the solar cell technology, within a few years, the photoelectric conversion efficiency has rapidly increased from 3.8% to 25.2% with the development of technology, which is close to the highest record of 25.8% for a single monocrystalline silicon solar cell.
  • the chemical structure formula of metal halide perovskite materials is ABX 3 , where A is an organic or inorganic cation such as methylamine (MA), formamidine (FA) or cesium (Cs), and B is lead (Pb) or tin (Sn), etc.
  • Metal cation, X is a halogen ion such as iodine (I), bromine (Br) or thiocyanate (SCN).
  • iodine (I), bromine (Br) or thiocyanate (SCN) a halogen ion such as iodine (I), bromine (Br) or thiocyanate (SCN).
  • SCN thiocyanate
  • metal halide perovskite materials are composed of elements that are relatively abundant and easy to mine in the earth's crust, and they can be produced on a large scale.
  • the metal halide perovskite is an ionic crystal, its own thin film preparation can be achieved by a solution process and a roll-to-roll method to achieve large-scale production, which will effectively reduce the cost of the production process.
  • metal halide perovskite solar cells with p-i-n trans structure have become the most industrialized due to their excellent photovoltaic performance, low material cost, low-cost solution method preparation, and suitable for flexible substrate and stacked cell preparation.
  • metal halide perovskite solar cells with p-i-n trans structure have become the most industrialized due to their excellent photovoltaic performance, low material cost, low-cost solution method preparation, and suitable for flexible substrate and stacked cell preparation.
  • the large-area preparation of high-efficiency metal halide perovskite solar cells is one of the key factors to realize the industrialization of perovskite photovoltaic devices.
  • the current large-area perovskite solar cells generally suffer from insufficient uniformity of film components and interface properties, and difficulty in modifying defect states at the bottom interface. All of these limit the industrial development process of perovskite solar cells.
  • the preparation and interface modification of high-efficiency metal halide perovskite solar cells are usually achieved by spin-coating in a nitrogen glove box.
  • the spin-coating method has high requirements for the device preparation environment and does not It is suitable for the preparation of large-area perovskite solar cells and modules;
  • the interface modification method is mostly the upper interface modification after the perovskite film is crystallized (such as CN105742504A and CN112635679A, etc.), and the growth process of the film cannot be controlled, so it is difficult It is also difficult to control the uniformity of the photoelectric properties of the top interface even if the bottom interface is modified.
  • metal halide perovskite films such as rapid crystallization and low formation energy during the solution preparation process make the final film formation face insufficient uniformity of film components and chemical stability compared with inorganic materials such as silicon, CdTe, GaAs and CIGS.
  • inorganic materials such as silicon, CdTe, GaAs and CIGS.
  • the challenge of low photovoltaic materials has caused problems such as insufficient uniformity of photoelectric properties at the top interface and difficulty in modifying defect states at the bottom interface in large-area perovskite thin films, which in turn affects the performance and industrialization process of large-area perovskite solar cells.
  • the current high-performance p-i-n trans-structure halide perovskite solar cells mostly use poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA) with hydrophobic surface as the spacer of the device.
  • PTAA poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine]
  • Hole transport layer material PTAA is a type of ⁇ -copolymer, its planar molecular structure is amorphous, PTAA can form a uniform and smooth film and has good isotropic carrier transport properties, there is no microscopic ordering during annealing , which can effectively reduce the loss of non-radiative recombination at the interface, and its hydrophobic properties are also beneficial to improve the stability of photovoltaic devices.
  • hydrophilic hole transport layer materials such as CN111223989A
  • hydrophilic hole transport materials are often conducive to the spin coating of organic ammonium salt molecular layer to prepare films, but compared with hydrophobic hole transport materials such as PTAA will produce More perovskite-hole transport layer interface defect recombination sites, thereby reducing the open circuit voltage and performance of the device, so the existing technology is difficult to be compatible with the current high-performance p-i-n trans-structure device system.
  • CN111223989A discloses a perovskite photovoltaic device modified by amphiphilic molecules, using adenosine-5'-disodium triphosphate (ATPS), adenosine-5'-diphosphate disodium (ADPS), adenosine-5' - Amphoteric organic small molecules such as monosodium phosphate (AMPS) passivate the interface layer of the metal halide perovskite film, and passivate the surface defects of the perovskite active layer with the help of amphoteric molecules.
  • AMPS monosodium phosphate
  • the disadvantage is that the passivation modification of the perovskite film interface layer in large-area halide perovskite solar cells is not uniform, so that the efficiency of large-area devices is not improved.
  • the present invention provides a high-efficiency large-area halide perovskite solar cell and its bottom interface self-growth modification method.
  • large-sized alkyl chain ammonium salts are used Molecules realize perovskite self-growth modification on the bottom interface of metal halide perovskite films, so as to achieve bottom interface modification and top interface optoelectronic properties uniformity improvement in the preparation of large-area perovskite films, and improve the large-area preparation of perovskite solar energy.
  • the efficiency of the battery is a high-efficiency large-area halide perovskite solar cell and its bottom interface self-growth modification method.
  • the present invention provides a halide perovskite solar cell, comprising a base electrode, a hole transport layer, an interface modification layer, a perovskite thin film layer, an electron transport layer, a hole blocking layer and a back electrode connected in sequence;
  • the interface modification layer is prepared from the precursor of the interface modification layer material, and the precursor of the interface modification layer is a C 2 ⁇ C 8 alkyl chain iodide ammonium salt.
  • the interface modification layer is prepared from a large alkyl chain iodide ammonium salt C 2 ⁇ C 8 alkyl chain iodide ammonium salt, specifically phenethyl ammonium iodide (PEAI) , 1,8-octanediamine hydroiodide (ODADI) and butanediamine iodine (BDADI), etc.
  • PEAI phenethyl ammonium iodide
  • ODADI 1,8-octanediamine hydroiodide
  • BDADI butanediamine iodine
  • the base electrode is selected from any one of indium tin oxide (ITO) conductive glass and fluorine-doped tin oxide (FTO) conductive glass;
  • ITO indium tin oxide
  • FTO fluorine-doped tin oxide
  • the hole transport layer is prepared from the precursor of the hole transport layer material; in the technical solution of the present invention, the function of the hole transport layer in the halide perovskite solar cell is to accelerate the photogenerated electron-hole pair Separation of holes in the hole;
  • the precursor of the hole transport layer material is selected from conductive polymers: poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA), poly 3,4-Ethylenedioxythiophene: polystyrene sulfonate (PEDOT:PSS), etc.; inorganic P-type semiconductors: any of Cu 2 O, NiO x , graphene oxide, etc.; preferably poly[bis (4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA);
  • the precursor is preferably a solution;
  • the solvent of the solution is preferably chlorobenzene (CB) and toluene (TOL) Any one of them or in combination; the concentration of
  • the precursor of the interface modification layer material is a solution
  • the solvent of the solution is preferably N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), ⁇ -butyrolactone ( GBL), ethylene glycol monomethyl ether (2-ME), isopropanol (IPA), ethanol (EtOH) and acetonitrile (ACN) or a combination of several
  • the concentration of the solution is preferably 15 ⁇ 20 mg/mL, more preferably 15 mg/mL;
  • the perovskite thin film layer is prepared from the precursor of the perovskite thin film;
  • the electron transport layer is prepared from the precursor of the electron transport layer material; in the technical solution of the present invention, in order to match the energy levels of the electron transport layer with the perovskite and the counter electrode in the large-area flexible device, promote Separation and transport of electrons; and in order to ensure that halide perovskite solar cells can absorb enough light, it needs to have high transparency, the precursor of the electron transport layer material is fullerene (C60) and its derivatives (PCBM) etc., such as [6,6]-phenyl C61 butyric acid methyl ester (PCBM) or C60 or C71-butyric acid methyl ester (PC71BM); the precursor is preferably a solution; the solvent of the solution is preferably chlorobenzene (CB); the concentration of the precursor solution is preferably 20-25 mg/mL;
  • the hole blocking layer is prepared from the precursor of the hole blocking layer material; in the technical solution of the present invention, the hole blocking layer can strengthen the ohmic contact between the electron transport layer and the metal electrode, eliminating The local structural defect of the electron transport layer prevents the transport of holes and prevents the precipitation of iodine in the perovskite solar cell to prevent contamination of the electrode.
  • the precursor of the hole blocking layer material is preferably 2,9-dimethyl-4, 7-biphenyl-1,10-phenanthroline (BCP); the precursor is preferably a solution; the solvent of the solution is preferably isopropanol (IPA); the concentration of the precursor solution is preferably 1 ⁇ 1.5 mg/mL;
  • the back electrode is a simple conductive metal, and in terms of performance and commercial price, the back electrode is preferably Ag, Cu or Au.
  • the thickness of the base electrode is 10-300 nm
  • the thickness of the hole transport layer is 1-100 nm
  • the thickness of the interface modification layer is 1-30 nm;
  • the thickness of the perovskite film layer is 300 ⁇ 2000 nm;
  • the thickness of the electron transport layer is 1-100 nm
  • the hole blocking layer has a thickness of 1 to 50 nm;
  • the thickness of the back electrode is 90-300 nm.
  • the present invention provides a self-growth modification method for the bottom interface of the above halide perovskite solar cell, comprising the following steps:
  • step (3) Coating the precursor of the perovskite thin film layer on the interface modification layer in step (2) to prepare the perovskite thin film layer;
  • step (6) Coating a back electrode material on the hole blocking layer in step (5) to prepare a back electrode.
  • the coating is at least one selected from spin coating, evaporation, slit coating, blade coating and screen printing, preferably blade coating;
  • the speed of scraping is 2 ⁇ 4 cm/s;
  • the step (1) further includes post-coating annealing treatment; the temperature of the annealing treatment is 100-120° C.; the time of the annealing treatment is 10-20 min.
  • the base electrode needs to be washed and dried before use; specifically: use transparent glass cleaning solution, deionized water, acetone, and isopropanol to wash and dry the base electrode in sequence. Ultrasonic cleaning of the base electrode for 30 to 40 minutes, and then placed in an oven to dry at 80 to 100 ° C, cooled, and then treated with an ultraviolet ozone cleaner or plasma cleaner for 15 to 20 minutes before use.
  • the coating is at least one selected from spin coating, vapor deposition, slit coating, blade coating and screen printing, preferably blade coating;
  • the speed of scraping is 1.8 ⁇ 100 cm/s;
  • the step (2) further includes post-coating annealing treatment; the temperature of the annealing treatment is 100-120° C.; the time of the annealing treatment is 10-15 min.
  • the coating is at least one selected from spin coating, vapor deposition, slit coating, blade coating and screen printing, preferably blade coating;
  • the speed of scraping is 1.5 ⁇ 20 cm/s;
  • the step (3) further includes post-coating annealing treatment; the temperature of the annealing treatment is 90-100° C.; the time of the annealing treatment is 30-40 min.
  • the coating is at least one selected from spin coating, evaporation, slit coating, blade coating and screen printing, preferably blade coating;
  • the speed of scraping is 1.8 ⁇ 20 cm/s.
  • the coating is at least one selected from spin coating, vapor deposition, slit coating, blade coating and screen printing, preferably blade coating;
  • the speed of scraping is 1.8 ⁇ 20 cm/s.
  • the step (5) further includes post-coating annealing treatment; the temperature of the annealing treatment is 70-75°C; the time of the annealing treatment is 10-15 min.
  • the coating is at least one selected from spin coating, vapor deposition, slit coating, blade coating and screen printing; preferably vapor deposition.
  • the invention provides a self-growth modification method for the bottom interface of a p-i-n trans-structure large-area metal halide perovskite solar cell prepared by a solution method.
  • a hole transport layer, an interface modification layer, and a metal halide are sequentially prepared on the base electrode.
  • Perovskite layer, electron transport layer, hole blocking layer and back electrode, and the interface modification layer is prepared with large alkyl chain ammonium salt, and the bottom interface is modified by the interface modification layer to meet the preparation of p-i-n trans structure large-area calcium by thin film solution method
  • the requirements for the uniformity of the top interface components of the film in titanium and the modification requirements for the defect state of the bottom interface do not damage the film quality of the perovskite film and the charge collection efficiency of the final device.
  • the invention reduces the difficulty of preparing large-area perovskite solar cells with a p-i-n trans-structure, and improves the performance of corresponding photovoltaic devices.
  • the large alkyl chain ammonium salt used in the present invention can replace the A-position cation in the three-dimensional ABX 3 structure to form a two-dimensional metal halide perovskite material, and the large alkyl chain ammonium salt used in the present invention can be dissolved in the metal halide perovskite
  • organic solvents used in ore precursor solutions it can be used in the same solution method preparation process (such as scrape coating method and slit coating method, etc.)
  • PTAA and other high-performance pin trans-structure devices are commonly used as hole transport layers, which are compatible with large-area perovskite solar cells and module preparation processes.
  • the large alkyl chain ammonium salt layer used in the present invention is prepared before the three-dimensional ABX 3 structure metal halide perovskite film, so the growth process of the film can be regulated, thereby affecting the uniformity of the photoelectric properties of the top interface while modifying the defect states of the bottom interface sex.
  • the process of the modification method provided by the invention is simpler and more efficient, and requires less equipment.
  • FIG. 1 is a structural diagram of a halide perovskite solar cell in Examples 1-3 of the present invention.
  • FIG. 2 is a structural diagram of a halide perovskite solar cell in Comparative Example 1 of the present invention.
  • FIG. 3 is the J-V curves of the halide perovskite solar cell device (dashed line) in Example 1 of the present invention and the perovskite solar cell device (solid line) in Comparative Example 1 under sunlight.
  • FIG. 4 is the J-V curves of the halide perovskite solar cell device (dashed line) in Example 2 of the present invention and the perovskite solar cell device (solid line) in Comparative Example 1 under sunlight.
  • Example 5 is the J-V curves of the halide perovskite solar cell device (dotted line) in Example 3 of the present invention and the perovskite solar cell device (solid line) in Comparative Example 1 under sunlight.
  • the present invention aims at large-area trans metal halide perovskite solar cells, using large alkyl chain ammonium salts on the bottom interface Modifications are carried out to reduce the non-radiative recombination rate in the perovskite film to improve the efficiency of the device, and affect the growth process of the perovskite film to improve the uniformity of the photoelectric properties of the top interface of the film.
  • the self-growth modification method of the bottom interface of halide perovskite solar cells the process is as follows:
  • Precursor solution of hole transport layer material Dissolve poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA) in chlorobenzene (CB) or toluene (TOL) to form a solution with a concentration of 3 mg/mL, stir and dissolve at room temperature for 12 hours before use;
  • BDADI Dissolve butanediamine iodine
  • DMF N, N-dimethylformamide
  • ITO indium tin oxide
  • step (6) The sample obtained in step (6) was placed in a vacuum thermal evaporation device, and a silver electrode with a thickness of 100 nm was vacuum evaporated to obtain a trans-structure metal halide perovskite solar cell.
  • FIG. 1 The structure of the battery prepared by the above method is shown in Figure 1, which includes the base electrode ITO, the hole transport layer PTAA, the interface modification layer BDADI, the perovskite film layer PVK, the electron transport layer PCBM, and the hole blocking layer from bottom to top. Layer BCP and back electrode Ag.
  • a halide perovskite solar cell device that does not contain an interface modification layer is prepared.
  • the preparation method is the same as the above-mentioned preparation method, except that step (3) is not performed, and the operation of the above-mentioned step (4) is replaced by To: keep the distance between the scraper and the hole transport layer film at 250 ⁇ m, which can affect the thickness of the final perovskite layer and the quality of the film, and take 120 ⁇ L of the precursor solution of the above-prepared perovskite film with a pipette gun.
  • the structure of the halide perovskite solar cell device prepared in this comparative example is shown in Figure 2: from bottom to top, it includes the base electrode ITO (thickness 130 nm), hole transport layer PTAA (thickness 10 nm), perovskite Thin film layer PVK (700 nm), electron transport layer PCBM (50 nm), hole blocking layer BCP (8 nm) and back electrode Ag (100 nm).
  • the concentration of the precursor solution of the interface modification layer material is 15 mg/mL;
  • the structure of the halide perovskite solar cell device is: the thickness of the base electrode is 130 nm, the thickness of the hole transport layer is 10 nm, The thickness of the interface modification layer is 5 nm, the thickness of the perovskite film layer is 700 nm, the thickness of the electron transport layer is 50 nm, the thickness of the hole blocking layer is 8 nm, and the thickness of the back electrode is 100 nm.
  • Figure 2 is the J-V curve (dotted line) of the halogenated perovskite solar cell device with the interface modification layer prepared by 15 mg/mL BDADI in this example under sunlight (dotted line), compared with the perovskite without the interface modification layer in Comparative Example 1 It can be seen from the J-V curve (solid line) of the mineral solar cell device that the conversion efficiency of the solar cell device provided by this embodiment is significantly improved compared with the device without the interface modification layer.
  • the concentration of the precursor solution of the interface modification layer material is 18 mg/mL;
  • the structure of the halide perovskite solar cell device is: the thickness of the base electrode is 130 nm, the thickness of the hole transport layer is 10 nm, The thickness of the interface modification layer is 7 nm, the thickness of the perovskite film layer is 700 nm), the thickness of the electron transport layer is 50 nm), the thickness of the hole blocking layer is 8 nm, and the thickness of the back electrode is 100 nm.
  • Figure 3 is the J-V curve (dotted line) of the halogenated perovskite solar cell device with the interface modification layer prepared by 18 mg/mL BDADI in this example under sunlight (dotted line), compared with the perovskite without the interface modification layer in Comparative Example 1 It can be seen from the J-V curve (solid line) of the mineral solar cell device that the conversion efficiency of the solar cell device provided by this embodiment is significantly improved compared with the device without the interface modification layer.
  • the concentration of the precursor solution of the interface modification layer material is 20 mg/mL;
  • the structure of the halide perovskite solar cell device is: the thickness of the base electrode is 130 nm, the thickness of the hole transport layer is 10 nm, The thickness of the interface modification layer is 9 nm, the thickness of the perovskite film layer is 700 nm, the thickness of the electron transport layer is 50 nm, the thickness of the hole blocking layer is 8 nm, and the thickness of the back electrode is 100 nm.
  • Figure 4 is the J-V curve (dotted line) of the halogenated perovskite solar cell device with the interface modification layer prepared by 20 mg/mL BDADI in this example under sunlight (dotted line), compared with the perovskite without the interface modification layer in Comparative Example 1 It can be seen from the J-V curve (solid line) of the mineral solar cell device that the conversion efficiency of the solar cell device provided by this embodiment is significantly improved compared with the device without the interface modification layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Materials Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种卤化钙钛矿太阳能电池及其底界面自生长修饰方法。本发明提供的卤化钙钛矿太阳能电池包括依次相连的基底电极、空穴传输层、界面修饰层、钙钛矿薄膜层、电子传输层、空穴阻挡层和背电极;所述界面修饰层由界面修饰层材料的前驱体制备得到,所述界面修饰层的前驱体为C2~C8烷基链碘代铵盐。本发明通过界面修饰层对底界面的修饰满足薄膜溶液法制备p-i-n反式结构大面积钙钛矿中的薄膜顶界面组分均一性需求和底界面缺陷态修饰需求,并且不损伤钙钛矿薄膜的成膜质量以及最终器件的电荷收集效率。本发明减小了p-i-n反式结构大面积钙钛矿太阳能电池的制备难度,且提升相应光伏器件的性能。

Description

一种卤化钙钛矿太阳能电池及其底界面自生长修饰方法 技术领域
本发明涉及太阳能电池制备技术领域,尤其涉及一种卤化钙钛矿太阳能电池及其底界面自生长修饰方法。
背景技术
近年来,金属卤化钙钛矿材料广泛受到学术界和工业界的关注,其具有高吸光系数、长载流子寿命和高光生载流子迁移率等优异的光电性质,自2009年被应用于太阳能电池技术以来,数年内,光电转换效率随着技术的发展由3.8%快速攀升至25.2%,已接近单节单晶硅太阳能电池25.8 %的最高记录。金属卤化钙钛矿材料的化学结构式为ABX 3,其中A为甲胺(MA)、甲脒(FA)或铯(Cs)等有机或无机阳离子,B为铅(Pb)或锡(Sn)等金属阳离子,X为碘(I)、溴(Br)或硫氰根(SCN)等卤素离子。这意味着金属卤化钙钛矿材料的组成成分均为地壳中较为富集和易开采的元素,其本身可大规模生产。此外,由于金属卤化钙钛矿是离子晶体,所以其本身的薄膜制备可以采用溶液法工艺并以卷对卷的方式实现大规模生产,这将有效降低生产工艺成本。这些优势使得金属卤化钙钛矿太阳能电池有望降低太阳能电池的发电成本并缩短投资回报周期,从而增加光伏发电在能源供应结构中的占比。
其中,具有p-i-n反式结构的金属卤化钙钛矿太阳能电池因其光伏性能优异、材料成本低廉、低成本溶液法制备、以及适用于柔性基底和叠层电池制备等优势,而成为目前最具产业化前景的下一代薄膜光伏技术之一。高效率金属卤化钙钛矿太阳能电池的大面积制备是实现钙钛矿光伏器件产业化的关键因素之一。然而,当前的大面积钙钛矿太阳能电池普遍存在薄膜组分和界面性质均一性不足以及底界面缺陷态修饰困难等问题。这些都限制了钙钛矿太阳能电池的产业化发展进程。
现有技术中,高效率金属卤化钙钛矿太阳能电池的制备以及界面修饰通常是在氮气手套箱中通过旋涂工艺来实现的,然而,旋涂法对于器件制备环境的要求较高,且不适用制备大面积的钙钛矿太阳能电池及模组;而界面修饰方法多为钙钛矿薄膜结晶成膜之后的上界面修饰(如CN105742504A和CN112635679A等),且无法调控薄膜的生长过程,因此难以实现对于底界面的修饰,也难以调控顶界面的光电性质均一性。金属卤化钙钛矿薄膜在溶液法制备过程中的快速结晶与低形成能等物理化学特性,使得最终成膜面临着薄膜组分均一性不足以及化学稳定性较硅、CdTe、GaAs和CIGS等无机光伏材料不高等挑战,造成了大面积钙钛矿薄膜中的顶界面光电性质均一性不足以及底界面缺陷态修饰困难等问题,进而影响了大面积钙钛矿太阳能电池的性能及产业化进程。
目前的高性能p-i-n反式结构卤化钙钛矿太阳能电池多采用表面疏水的聚[双(4-苯基)(2,4,6-三甲基苯基)胺](PTAA)作为器件的空穴传输层材料,PTAA是一类Π-共聚合物,其平面分子结构是无定形的,PTAA能够形成均匀光滑的薄膜并且具有良好的各向同性载流子传输性能,在退火时没有微观排序,这可以有效降低界面处的非辐射复合的损失,其疏水性能也有利于改善光伏器件的稳定性。而采用亲水性空穴传输层材料(如CN111223989A),亲水性空穴传输材料往往利于有机铵盐分子层的旋涂制备成膜,但是相较于PTAA等疏水性空穴传输材料会产生更多的钙钛矿-空穴传输层界面缺陷复合位点,从而降低器件的开路电压和性能,因此现有技术难以兼容于当前的高性能p-i-n反式结构器件体系。
CN111223989A中公开了一种两性分子修饰的钙钛矿光伏器件,使用腺苷-5’-三磷酸二钠(ATPS)、腺苷-5’-二磷酸二钠(ADPS)、腺苷-5’-单磷酸二钠(AMPS)等两性有机小分子对金属卤化钙钛矿薄膜界面层实施钝化修饰,借助两性分子,钝化钙钛矿活性层的表面缺陷。其缺点是运用在在大面积卤化钙钛矿太阳能电池中对于其钙钛矿薄膜界面层实施钝化修饰具有不均一性,使得大面积器件的效率并没有提高。
技术问题
针对上述技术问题,本发明提供一种高效率大面积卤化钙钛矿太阳能电池及其底界面自生长修饰方法,在溶液法制备金属卤化钙钛矿太阳能电池中,使用大尺寸烷基链铵盐分子对金属卤化钙钛矿薄膜底界面实现钙钛矿自生长修饰,以达到大面积钙钛矿薄膜制备过程中的底界面修饰和顶界面光电性质均一性改善,提高大面积制备钙钛矿太阳能电池的效率。
技术解决方案
为实现上述目的,本发明采取的技术方案为:
一方面,本发明提供一种卤化钙钛矿太阳能电池,包括依次相连的基底电极、空穴传输层、界面修饰层、钙钛矿薄膜层、电子传输层、空穴阻挡层和背电极;所述界面修饰层由界面修饰层材料的前驱体制备得到,所述界面修饰层的前驱体为C 2~C 8烷基链碘代铵盐。
在本发明的技术方案中,所述界面修饰层由大烷基链碘代铵盐C 2~C 8烷基链碘代铵盐制备得到,具体可列举出苯乙基碘化胺(PEAI)、1, 8-辛二胺氢碘酸盐(ODADI)和丁二胺碘(BDADI)等。
作为优选地实施方式,所述基底电极选自氧化铟锡(ITO)导电玻璃、掺氟氧化锡(FTO)导电玻璃中的任一种;
优选地,所述空穴传输层由空穴传输层材料的前驱体制备得到;在本发明的技术方案中,空穴传输层在卤化钙钛矿太阳能电池中的作用是加速光生电子空穴对中空穴的分离;所述空穴传输层材料的前驱体选自导电聚合物:聚[双(4-苯基)(2,4,6-三甲基苯基)胺](PTAA)、聚3,4-乙撑二氧噻吩:聚苯乙烯磺酸盐(PEDOT:PSS)等;无机P型半导体:Cu 2O、NiO x、氧化石墨烯等中的任一种;优选为聚[双(4-苯基)(2,4,6-三甲基苯基)胺](PTAA);所述前驱体优选为溶液;所述溶液的溶剂优选为氯苯(CB)和甲苯(TOL)中的任意一种或混合使用;所述溶液的浓度为2~3 mg/mL;
优选地,所述界面修饰层材料的前驱体为溶液;所述溶液的溶剂优选为N,N-二甲基甲酰胺(DMF)、二甲基亚砜(DMSO)、γ-丁内酯(GBL)、乙二醇单甲醚(2-ME)、异丙醇(IPA)、乙醇(EtOH)和乙腈(ACN)中的任意一种或几种混合使用;所述溶液的浓度优选为15~20 mg/mL,进一步优选为15 mg/mL;
优选地,所述钙钛矿薄膜层由钙钛矿薄膜的前驱体制备得到;所述钙钛矿薄膜的前驱体选自碘化铅(PbI 2)、溴化铅(PbBr 2)、甲基碘化胺(MAI)、甲基溴化胺(MABr)、碘化铯(CsI)和甲脒氢碘酸盐(FAI)中的任意一种或几种混合使用;在某些具体的实施方式中,所述前驱体的混合摩尔比为:PbI 2:MAI = 1:0.95~1;或PbI 2:PbBr 2:FAI:CsI:MABr = 0.85~0.95:0.05~0.15:0.05~0.85:0.05:0.05~0.15;所述前驱体优选为溶液;所述溶液的溶剂优选为N, N-二甲基甲酰胺(DMF)、乙腈(ACN)和二甲基亚砜(DMSO)中的任意一种或几种混合使用;所述前驱体溶液的浓度优选为1~2 mmol/mL;
优选地,所述电子传输层由电子传输层材料的前驱体制备得到;在本发明的技术方案中,为了使大面积柔性器件中电子传输层与钙钛矿和对电极的能级匹配,促进电子的分离和传输;且为了保证卤化钙钛矿太阳能电池能够吸收足够的光其需具有高透明性,所述电子传输层材料的前驱体为富勒烯(C60)及其衍生物(PCBM)等,例如[6,6]-苯基C61丁酸甲酯(PCBM)或C60或C71-丁酸甲基酯(PC71BM);所述前驱体优选为溶液;所述溶液的溶剂优选为氯苯(CB);所述前驱体溶液的浓度优选为20~25 mg/mL;
优选地,所述空穴阻挡层由空穴阻挡层材料的前驱体制备得到;在本发明的技术方案中,所述空穴阻挡层可以加强电子传输层与金属电极之间的欧姆接触,消除电子传输层的局部结构缺陷,阻挡空穴的传输以及阻挡钙钛矿太阳能电池中碘的析出防止污染电极,所述空穴阻挡层材料的前驱体优选为2,9-二甲基-4,7-联苯-1,10-菲罗啉(BCP);所述前驱体优选为溶液;所述溶液的溶剂优选为异丙醇(IPA);所述前驱体溶液的浓度优选为1~1.5 mg/mL;
优选地,所述背电极为导电性金属单质,根据性能和商业价格而言,所述背电极优选为Ag、Cu或Au。
作为优选地实施方式,所述基底电极的厚度为10~300 nm;
优选地,所述空穴传输层的厚度为1~100 nm;
优选地,所述界面修饰层的厚度为1~30 nm;
优选地,所述钙钛矿薄膜层的厚度为300~2000 nm;
优选地,所述电子传输层的厚度为1~100 nm;
优选地,所述空穴阻挡层的厚度为1~50 nm;
优选地,所述背电极的厚度为90~300 nm。
又一方面,本发明提供上述卤化钙钛矿太阳能电池的底界面自生长修饰方法,包括以下步骤:
(1)在基底电极上涂覆空穴传输层材料的前驱体,制备得到空穴传输层;
(2)在步骤(1)的空穴传输层上涂覆界面修饰层材料的前驱体,制备得到界面修饰层;
(3)在步骤(2)的界面修饰层上涂覆钙钛矿薄膜层的前驱体,制备得到钙钛矿薄膜层;
(4)在步骤(3)的钙钛矿薄膜层上涂覆电子传输层材料的前驱体,制备得到电子传输层;
(5)在步骤(4)的电子传输层上涂覆空穴阻挡层材料的前驱体,制备得到空穴阻挡层;
(6)在步骤(5)的空穴阻挡层上涂覆背电极材料,制备得到背电极。
作为优选地实施方式,所述步骤(1)中,所述涂覆选自旋涂、蒸镀、狭缝涂布、刮涂和丝网印刷中的至少一种,优选为刮涂;所述刮涂的速率为2~4 cm/s;
优选地,所述步骤(1)还包括涂覆后退火处理;所述退火处理的温度为100~120℃;所述退火处理的时间为10~20 min。
在某些具体的实施方式中,所述步骤(1)中,所述基底电极使用之前需进行洗涤烘干;具体为:用透明玻璃清洗液、去离子水、丙酮、异丙醇依次对所述基底电极超声清洗30~40分钟,然后置于烘箱80~100℃烘干后,冷却,再用紫外臭氧清洗机或等离子清洗仪处理15~20分钟待用。
作为优选地实施方式,所述步骤(2)中,所述涂覆选自旋涂、蒸镀、狭缝涂布、刮涂和丝网印刷中的至少一种,优选为刮涂;所述刮涂的速率为1.8~100 cm/s;
优选地,所述步骤(2)还包括涂覆后退火处理;所述退火处理的温度为100~120℃;所述退火处理的时间为10~15 min。
作为优选地实施方式,所述步骤(3)中,所述涂覆选自旋涂、蒸镀、狭缝涂布、刮涂和丝网印刷中的至少一种,优选为刮涂;所述刮涂的速率为1.5~20 cm/s;
优选地,所述步骤(3)还包括涂覆后退火处理;所述退火处理的温度为90~100℃;所述退火处理的时间为30~40 min。
作为优选地实施方式,所述步骤(4)中,所述涂覆选自旋涂、蒸镀、狭缝涂布、刮涂和丝网印刷中的至少一种,优选为刮涂;所述刮涂的速率为1.8~20 cm/s。
作为优选地实施方式,所述步骤(5)中,所述涂覆选自旋涂、蒸镀、狭缝涂布、刮涂和丝网印刷中的至少一种,优选为刮涂;所述刮涂的速率为1.8~20 cm/s。
优选地,所述步骤(5)还包括涂覆后退火处理;所述退火处理的温度为70~75℃;所述退火处理的时间为10~15 min。
作为优选地实施方式,所述步骤(6)中,所述涂覆选自旋涂、蒸镀、狭缝涂布、刮涂和丝网印刷中的至少一种;优选为蒸镀。
上述技术方案具有如下优点或者有益效果:
本发明提供了一种针对溶液法制备的p-i-n反式结构大面积金属卤化钙钛矿太阳能电池的底界面自生长修饰方法,在基底电极上依次制备出空穴传输层、界面修饰层、金属卤化钙钛矿层、电子传输层、空穴阻挡层和背电极,并以大烷基链铵盐制备界面修饰层,通过界面修饰层对底界面的修饰满足薄膜溶液法制备p-i-n反式结构大面积钙钛矿中的薄膜顶界面组分均一性需求和底界面缺陷态修饰需求,并且不损伤钙钛矿薄膜的成膜质量以及最终器件的电荷收集效率。本发明减小了p-i-n反式结构大面积钙钛矿太阳能电池的制备难度,且提升相应光伏器件的性能。
本发明采用的大烷基链铵盐可替代三维ABX 3结构中的A位阳离子以形成二维金属卤化钙钛矿材料,本发明所使用的大烷基链铵盐可溶解于金属卤化钙钛矿前驱体溶液所使用的多种有机溶剂中,因此可用于金属卤化钙钛矿薄膜相同的溶液法制备工艺(如刮涂法和狭缝涂布法等)中,大面积涂布于表面疏水的PTAA等高性能p-i-n反式结构器件常用空穴传输层,兼容大面积的钙钛矿太阳能电池及模组制备工艺。
有益效果
本发明所使用的大烷基链铵盐层制备于三维ABX 3结构金属卤化钙钛矿薄膜之前,因此可以调控薄膜的生长过程,从而在修饰底界面缺陷态的同时影响顶界面的光电性质均一性。
本发明提供的修饰方法过程更为简单高效,且对设备要求较低。
附图说明
图1是本发明实施例1-3中的卤化钙钛矿太阳能电池结构图。
图2是本发明对比例1中的卤化钙钛矿太阳能电池结构图。
图3是本发明实施例1中的卤化钙钛矿太阳能电池器件(虚线)以及对比例1中的钙钛矿太阳能电池器件(实线)在太阳光下的J-V曲线。
图4是本发明实施例2中的卤化钙钛矿太阳能电池器件(虚线)以及对比例1中的钙钛矿太阳能电池器件(实线)在太阳光下的J-V曲线。
图5是本发明实施例3中的卤化钙钛矿太阳能电池器件(虚线)以及对比例1中的钙钛矿太阳能电池器件(实线)在太阳光下的J-V曲线。
本发明的实施方式
下述实施例仅仅是本发明的一部分实施例,而不是全部的实施例。因此,以下提供的本发明实施例中的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明的实施例,本领域技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本发明的保护范围。
在本发明中,若非特指,所有的设备和原料等均可从市场购得或是本行业常用的。下述实施例中的方法,如无特别说明,均为本领域的常规方法。
为了满足未来钙钛矿器件商业化所要求的大面积、高质量以及低成本制备的需求,本发明针对大面积反式金属卤化钙钛矿太阳能电池,利用大烷基链铵盐对其底界面进行修饰,降低钙钛矿薄膜中非辐射复合速率来提升器件的效率,并影响钙钛矿薄膜生长过程以改善薄膜顶界面光电性质均一性。
下述实施例中,卤化钙钛矿太阳能电池底界面的自生长修饰方法,过程如下:
1、溶液前驱体准备:
(1)空穴传输层材料的前驱体溶液:将聚[双(4-苯基)(2,4,6-三甲基苯基)胺](PTAA)溶解于氯苯(CB)或甲苯(TOL)中形成浓度为3 mg/mL的溶液,室温下搅拌溶解12个小时后待用;
(2)界面修饰层材料的前驱体溶液:将丁二胺碘(BDADI)溶解于N, N-二甲基甲酰胺(DMF)中形成浓度为15~20 mg/mL的溶液,室温下搅拌至完全溶解待用;
(3)钙钛矿薄膜的前驱体溶液:将碘化铅(PbI 2)与甲基碘化胺(MAI)粉末按摩尔比1:1混合溶于N, N-二甲基甲酰胺(DMF):二甲基亚砜(DMSO)=4:1的混合溶剂中,室温下搅拌过夜至完全溶解后形成浓度为1 mmol/mL的钙钛矿前驱体溶液,待用;
(4)电子传输层材料的前驱体溶液:将[6,6]-苯基C61丁酸甲酯(PCBM)溶解于氯苯(CB)中,形成浓度为20 mg/mL的溶液,完全溶解后用聚四氟乙烯(PTFE)过滤头过滤待用;
(5)空穴阻挡层材料的前驱体溶液:将2,9-二甲基-4,7-联苯-1,10-菲罗啉(BCP)置于异丙醇(IPA)溶剂中,完全溶解后形成浓度为1 mg/mL的前驱体溶液待用。
2、自生长修饰:
(1)选取10 cm×10 cm尺寸的氧化铟锡(ITO)导电玻璃为基底电极,分别用玻璃洗洁精、去离子水、丙酮、异丙醇超声清洗30 min,然后置于烘箱80℃烘干后,冷却到室温,再利用紫外臭氧机或等离子清洗仪处理15 min待用;
(2)将准备好的ITO基底电极置于刮涂平台的凹槽处,调节金属刮刀与ITO基底电极的间距为90 μm(该间距可影响最终空穴传输层的厚度),刮涂平台处于加热状态,温度为60 ℃,ITO基底电极加热约10分钟后,取上述配制的PTAA的前驱体溶液100 μL滴于ITO基底上,立即使用刮刀以2 cm/s的速率均匀刮涂前驱体溶液至衬底边缘,使溶液均匀分布在ITO基底电极的表面,然后转移至热台上,100℃退火10 min得到空穴传输层薄膜;
(3)保持刮刀至空穴传输层薄膜的间距为90 μm(刮涂平台处于加热状态,温度为60℃),该间距可影响最终界面修饰层的厚度,移取上述配制的100 μL的BDADI溶液滴于空穴传输层薄膜上,立即用刮刀以1.8 cm/s的速率均匀刮涂,使溶液均匀分布在空穴传输层薄膜的表面,然后转移到热台上,100℃退火10 min得到界面修饰层薄膜;
(4)保持刮刀与界面修饰层薄膜的间距为250 μm,该间距可影响最终钙钛矿层厚度及成膜质量,用移液枪取120 μL上述配制好的钙钛矿薄膜的前驱体溶液滴于界面修饰层薄膜上,立即使用刮刀以1.5 cm/s的速率均匀刮涂前驱体溶液至基底边缘,使溶液均匀分布在表面,接着转移到热台上100℃退火30min,使薄膜进一步结晶完全;
(5)待钙钛矿薄膜的温度自然冷却至室温后,移取60 μL上述配制的PCBM溶液滴于钙钛矿薄膜上,保持刮刀与界面修饰层薄膜的间距为90 μm,该间距可影响最终PCBM层厚度,立即用刮刀以1.8 cm/s的速率室温下刮涂均匀,并在室温下静置10 min即可得到电子传输层薄膜;
(6)保持刮刀至电子传输层薄膜的间距为80 μm,该间距可影响最终BCP层厚度,移取100 μL上述配制的的BCP溶液滴于薄膜上,以1.8 cm/s的速率刮涂均匀后立即转移到热台上70℃退火10 min;
(7)将步骤(6)得到的样品置于真空热蒸发设备中,真空蒸镀100 nm厚的银电极,即得到反式结构金属卤化钙钛矿太阳能电池。
通过上述方法制备得到的电池结构见图1所示,由底至顶依次包括基底电极ITO、空穴传输层PTAA、界面修饰层BDADI、钙钛矿薄膜层PVK、电子传输层PCBM、空穴阻挡层BCP和背电极Ag。
对比例1:
本对比例中制备了不包含界面修饰层的卤化钙钛矿太阳能电池器件,其制备方法同上述制备方法,不同之处在于,没有进行步骤(3),并将上述步骤(4)的操作替换为:保持刮刀与空穴传输层薄膜的间距为250 μm,该间距可影响最终钙钛矿层厚度及成膜质量,用移液枪取120 μL上述配制好的钙钛矿薄膜的前驱体溶液滴于空穴传输层薄膜上,立即使用刮刀以1.5 cm/s的速率均匀刮涂前驱体溶液至基底边缘,使溶液均匀分布在表面,接着转移到热台上100℃退火30min,使薄膜进一步结晶完全。
本对比例中制备的卤化钙钛矿太阳能电池器件的结构如图2所示:由底至顶依次包括基底电极ITO(厚度130 nm)、空穴传输层PTAA(厚度10 nm)、钙钛矿薄膜层PVK(700 nm)、电子传输层PCBM(50 nm)、空穴阻挡层BCP(8 nm)和背电极Ag(100 nm)。
实施例1:
本实施例中,界面修饰层材料的前驱体溶液的浓度为15 mg/mL;卤化钙钛矿太阳能电池器件的结构为:基底电极的厚度为130 nm、空穴传输层的厚度为10 nm、界面修饰层的厚度为5 nm、钙钛矿薄膜层的厚度为700 nm、电子传输层的厚度为50 nm、空穴阻挡层的厚度为8 nm、背电极的厚度为100 nm。
图2为本实施例中由15 mg/mL的BDADI制备的界面修饰层的卤化钙钛矿太阳能电池器件在太阳光下的J-V曲线(虚线),与对比例1中没有界面修饰层的钙钛矿太阳能电池器件的J-V曲线(实线),从图中可以看出,本实施例提供的太阳能电池器件的转化效率相对于没有界面修饰层的器件明显提升。
实施例2:
本实施例中,界面修饰层材料的前驱体溶液的浓度为18 mg/mL;卤化钙钛矿太阳能电池器件的结构为:基底电极的厚度为130 nm、空穴传输层的厚度为10 nm、界面修饰层的厚度为7 nm、钙钛矿薄膜层的厚度为700 nm)、电子传输层的厚度为50 nm)、空穴阻挡层的厚度为8 nm、背电极的厚度为100 nm。
图3为本实施例中由18 mg/mL的BDADI制备的界面修饰层的卤化钙钛矿太阳能电池器件在太阳光下的J-V曲线(虚线),与对比例1中没有界面修饰层的钙钛矿太阳能电池器件的J-V曲线(实线),从图中可以看出,本实施例提供的太阳能电池器件的转化效率相对于没有界面修饰层的器件明显提升。
实施例3:
本实施例中,界面修饰层材料的前驱体溶液的浓度为20 mg/mL;卤化钙钛矿太阳能电池器件的结构为:基底电极的厚度为130 nm、空穴传输层的厚度为10 nm、界面修饰层的厚度为9 nm、钙钛矿薄膜层的厚度为700 nm、电子传输层的厚度为50 nm、空穴阻挡层的厚度为8 nm、背电极的厚度为100 nm。
图4为本实施例中由20 mg/mL的BDADI制备的界面修饰层的卤化钙钛矿太阳能电池器件在太阳光下的J-V曲线(虚线),与对比例1中没有界面修饰层的钙钛矿太阳能电池器件的J-V曲线(实线),从图中可以看出,本实施例提供的太阳能电池器件的转化效率相对于没有界面修饰层的器件明显提升。
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种卤化钙钛矿太阳能电池,其特征在于,包括依次相连的基底电极、空穴传输层、界面修饰层、钙钛矿薄膜层、电子传输层、空穴阻挡层和背电极;所述界面修饰层由界面修饰层材料的前驱体制备得到,所述界面修饰层的前驱体为C 2~C 8烷基链碘代铵盐。
  2. 根据权利要求1所述的卤化钙钛矿太阳能电池,其特征在于,所述基底电极选自氧化铟锡导电玻璃、掺氟氧化锡导电玻璃中的任一种;
    优选地,所述空穴传输层由空穴传输层材料的前驱体制备得到;所述空穴传输层材料的前驱体选自导电聚合物、无机P型半导体中的任一种;优选为聚[双(4-苯基)(2,4,6-三甲基苯基)胺];所述前驱体优选为溶液;所述溶液的溶剂优选为氯苯和甲苯中的任意一种或混合使用;所述溶液的浓度为2~3 mg/mL;
    优选地,所述界面修饰层材料的前驱体为溶液;所述溶液的溶剂优选为N,N-二甲基甲酰胺、二甲基亚砜、γ-丁内酯、乙二醇单甲醚、异丙醇、乙醇和乙腈中的任意一种或几种混合使用;所述溶液的浓度优选为15~20 mg/mL,进一步优选为15 mg/mL;
    优选地,所述钙钛矿薄膜层由钙钛矿薄膜的前驱体制备得到;所述钙钛矿薄膜的前驱体选自碘化铅、溴化铅、甲基碘化胺、甲基溴化胺、碘化铯和甲脒氢碘酸盐中的任意一种或几种混合使用;所述前驱体优选为溶液;所述溶液的溶剂优选为N, N-二甲基甲酰胺、乙腈和二甲基亚砜中的任意一种或几种混合使用;所述前驱体溶液的浓度优选为1~2 mmol/mL;
    优选地,所述电子传输层由电子传输层材料的前驱体制备得到;所述电子传输层材料的前驱体选自富勒烯及其衍生物中的任一种;所述前驱体优选为溶液;所述溶液的溶剂优选为氯苯、甲苯或其任意混合;所述前驱体溶液的浓度优选为20~25 mg/mL;
    优选地,所述空穴阻挡层由空穴阻挡层材料的前驱体制备得到;所述空穴阻挡层材料的前驱体优选为2,9-二甲基-4,7-联苯-1,10-菲罗啉;所述前驱体优选为溶液;所述溶液的溶剂优选为异丙醇;所述前驱体溶液的浓度优选为1~1.5 mg/mL;
    优选地,所述背电极为导电性金属单质。
  3. 根据权利要求1所述的卤化钙钛矿太阳能电池,其特征在于,所述基底电极的厚度为10~300 nm;
    优选地,所述空穴传输层的厚度为1~100 nm;
    优选地,所述界面修饰层的厚度为1~30 nm;
    优选地,所述钙钛矿薄膜层的厚度为300~2000 nm;
    优选地,所述电子传输层的厚度为1~100 nm;
    优选地,所述空穴阻挡层的厚度为1~50 nm;
    优选地,所述背电极的厚度为90~300 nm。
  4. 权利要求1-3任一所述的卤化钙钛矿太阳能电池的底界面自生长修饰方法,其特征在于,包括以下步骤:
    (1)在基底电极上涂覆空穴传输层材料的前驱体,制备得到空穴传输层;
    (2)在步骤(1)的空穴传输层上涂覆界面修饰层材料的前驱体,制备得到界面修饰层;
    (3)在步骤(2)的界面修饰层上涂覆钙钛矿薄膜层的前驱体,制备得到钙钛矿薄膜层;
    (4)在步骤(3)的钙钛矿薄膜层上涂覆电子传输层材料的前驱体,制备得到电子传输层;
    (5)在步骤(4)的电子传输层上涂覆空穴阻挡层材料的前驱体,制备得到空穴阻挡层;
    (6)在步骤(5)的空穴阻挡层上涂覆背电极材料,制备得到背电极。
  5. 根据权利要求4所述的底界面自生长修饰方法,其特征在于,所述步骤(1)中,所述涂覆选自旋涂、蒸镀、狭缝涂布、刮涂和丝网印刷中的至少一种,优选为刮涂;所述刮涂的速率为2~4 cm/s;
    优选地,所述步骤(1)还包括涂覆后退火处理;所述退火处理的温度为100~120℃;所述退火处理的时间为10~20 min;
    优选地,所述步骤(1)中,所述基底电极使用之前需进行洗涤烘干。
  6. 根据权利要求4所述的底界面自生长修饰方法,其特征在于,所述步骤(2)中,所述涂覆选自旋涂、蒸镀、狭缝涂布、刮涂和丝网印刷中的至少一种,优选为刮涂;所述刮涂的速率为1.8~100 cm/s;
    优选地,所述步骤(2)还包括涂覆后退火处理;所述退火处理的温度为100~120℃;所述退火处理的时间为10~15 min。
  7. 根据权利要求4所述的底界面自生长修饰方法,其特征在于,所述步骤(3)中,所述涂覆选自旋涂、蒸镀、狭缝涂布、刮涂和丝网印刷中的至少一种,优选为刮涂;所述刮涂的速率为1.5~20 cm/s;
    优选地,所述步骤(3)还包括涂覆后退火处理;所述退火处理的温度为90~100℃;所述退火处理的时间为30~40 min。
  8. 根据权利要求4所述的底界面自生长修饰方法,其特征在于,所述步骤(4)中,所述涂覆选自旋涂、蒸镀、狭缝涂布、刮涂和丝网印刷中的至少一种,优选为刮涂;所述刮涂的速率为1.8~20 cm/s。
  9. 根据权利要求4所述的底界面自生长修饰方法,其特征在于,所述步骤(5)中,所述涂覆选自旋涂、蒸镀、狭缝涂布、刮涂和丝网印刷中的至少一种,优选为刮涂;所述刮涂的速率为1.8~20 cm/s;
    优选地,所述步骤(5)还包括涂覆后退火处理;所述退火处理的温度为70~75℃;所述退火处理的时间为10~15 min。
  10. 根据权利要求4所述的底界面自生长修饰方法,其特征在于,所述步骤(6)中,所述涂覆选自旋涂、蒸镀、狭缝涂布、刮涂和丝网印刷中的至少一种;优选为蒸镀。
PCT/CN2022/138197 2022-02-16 2022-12-09 一种卤化钙钛矿太阳能电池及其底界面自生长修饰方法 WO2023155562A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210143216.8 2022-02-16
CN202210143216.8A CN114665026A (zh) 2022-02-16 2022-02-16 一种卤化钙钛矿太阳能电池及其底界面自生长修饰方法

Publications (1)

Publication Number Publication Date
WO2023155562A1 true WO2023155562A1 (zh) 2023-08-24

Family

ID=82027003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/138197 WO2023155562A1 (zh) 2022-02-16 2022-12-09 一种卤化钙钛矿太阳能电池及其底界面自生长修饰方法

Country Status (2)

Country Link
CN (1) CN114665026A (zh)
WO (1) WO2023155562A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114665026A (zh) * 2022-02-16 2022-06-24 深圳先进技术研究院 一种卤化钙钛矿太阳能电池及其底界面自生长修饰方法
CN115353767B (zh) * 2022-07-28 2024-02-09 仁烁光能(苏州)有限公司 一种用于钙钛矿光伏规模化量产的电子传输层墨水
CN116507139B (zh) * 2023-06-30 2023-10-20 长江三峡集团实业发展(北京)有限公司 长支链烷基铵修饰的甲脒钙钛矿太阳能电池及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200020820A1 (en) * 2018-07-10 2020-01-16 Panasonic Intellectual Property Management Co., Ltd. Solar cell
CN110993798A (zh) * 2019-12-20 2020-04-10 北京大学 基于多种铵盐协同后处理的钙钛矿型太阳能电池及其制备方法
CN111180587A (zh) * 2019-12-30 2020-05-19 电子科技大学 一种特殊掺杂的钙钛矿太阳能电池及其制备方法
CN111370583A (zh) * 2020-03-25 2020-07-03 中国科学院半导体研究所 聚乙烯吡咯烷酮掺杂的钙钛矿太阳能电池及其制备方法和应用
CN112117379A (zh) * 2019-06-21 2020-12-22 北京宏泰创新科技有限公司 一种双钝化层钙钛矿太阳能电池
CN114665026A (zh) * 2022-02-16 2022-06-24 深圳先进技术研究院 一种卤化钙钛矿太阳能电池及其底界面自生长修饰方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112864327A (zh) * 2021-02-23 2021-05-28 无锡极电光能科技有限公司 钙钛矿太阳能电池及其制备方法
CN112802965B (zh) * 2021-04-01 2022-04-22 太原理工大学 基于界面修饰的钙钛矿太阳能电池的制备方法
CN113363389B (zh) * 2021-06-23 2022-11-25 南开大学 一种钙钛矿太阳能电池p/i界面的修饰方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200020820A1 (en) * 2018-07-10 2020-01-16 Panasonic Intellectual Property Management Co., Ltd. Solar cell
CN112117379A (zh) * 2019-06-21 2020-12-22 北京宏泰创新科技有限公司 一种双钝化层钙钛矿太阳能电池
CN110993798A (zh) * 2019-12-20 2020-04-10 北京大学 基于多种铵盐协同后处理的钙钛矿型太阳能电池及其制备方法
CN111180587A (zh) * 2019-12-30 2020-05-19 电子科技大学 一种特殊掺杂的钙钛矿太阳能电池及其制备方法
CN111370583A (zh) * 2020-03-25 2020-07-03 中国科学院半导体研究所 聚乙烯吡咯烷酮掺杂的钙钛矿太阳能电池及其制备方法和应用
CN114665026A (zh) * 2022-02-16 2022-06-24 深圳先进技术研究院 一种卤化钙钛矿太阳能电池及其底界面自生长修饰方法

Also Published As

Publication number Publication date
CN114665026A (zh) 2022-06-24

Similar Documents

Publication Publication Date Title
CN108365102B (zh) 一种稳定高效二维层状钙钛矿太阳能电池及其制备方法
CN108598268B (zh) 环境条件下印刷制备平面异质结钙钛矿太阳电池的方法
CN109904318B (zh) 一种基于反溶液浴的钙钛矿薄膜制备方法及太阳能电池
WO2023155562A1 (zh) 一种卤化钙钛矿太阳能电池及其底界面自生长修饰方法
KR101571528B1 (ko) 광전변환효율이 향상된 페로브스카이트 태양전지 및 페로브스카이트 태양전지의 제조방법
CN105006522A (zh) 一种基于钙钛矿的倒置薄膜太阳能电池及其制备方法
CN108281552B (zh) 一种具有能带梯度的钙钛矿太阳能电池及其制备方法
CN113437222B (zh) 一种无铅锡基钙钛矿薄膜、无铅锡基钙钛矿太阳能电池及其制备方法
CN110335945B (zh) 一种双电子传输层无机钙钛矿太阳能电池及其制法和应用
Li et al. Boosting efficiency of planar heterojunction perovskite solar cells to 21.2% by a facile two-step deposition strategy
Shahiduzzaman et al. Enhanced photovoltaic performance of perovskite solar cells via modification of surface characteristics using a fullerene interlayer
CN110416361A (zh) 一种全无机钙钛矿太阳能电池的制备方法
CN112018242A (zh) 一种钙钛矿太阳能电池及其制备方法
CN116801652A (zh) 一种晶硅钙钛矿叠层太阳能电池及制备方法
CN109096244B (zh) 基于噻吩类添加剂提升有机太能电池性能和稳定性的方法
CN112018243A (zh) 一种钙钛矿太阳能电池及其制备方法
CN111063806A (zh) 一种钙钛矿太阳能电池及其制备方法
CN116056469A (zh) 基于离子液体界面修饰的钙钛矿太阳能电池
CN108822076A (zh) 基于茚并噻吩为核心的n-型有机小分子半导体及其制备方法与应用
CN114583061A (zh) 三维结构的无铅锡基钙钛矿薄膜及其太阳能电池的制备方法
CN110190192B (zh) 一种反式有机无机杂化钙钛矿太阳能电池的制备方法
CN111092156B (zh) 一种钙钛矿太阳能电池及其制备方法
CN115843205B (zh) 一种钙钛矿膜层的制备方法及钙钛矿太阳能电池
CN116847704B (zh) 一种钙钛矿薄膜制备方法及叠层太阳能电池
CN112635677B (zh) 基于bcf修饰的双层阳极缓冲层聚合物太阳能电池及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22926865

Country of ref document: EP

Kind code of ref document: A1