WO2023145563A1 - 鉄筋継手用充填材 - Google Patents

鉄筋継手用充填材 Download PDF

Info

Publication number
WO2023145563A1
WO2023145563A1 PCT/JP2023/001300 JP2023001300W WO2023145563A1 WO 2023145563 A1 WO2023145563 A1 WO 2023145563A1 JP 2023001300 W JP2023001300 W JP 2023001300W WO 2023145563 A1 WO2023145563 A1 WO 2023145563A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
parts
filler
aggregate
reinforcing bar
Prior art date
Application number
PCT/JP2023/001300
Other languages
English (en)
French (fr)
Inventor
聡史 高木
真大 虻川
洋徳 濱田
Original Assignee
デンカ株式会社
日本スプライススリーブ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社, 日本スプライススリーブ株式会社 filed Critical デンカ株式会社
Publication of WO2023145563A1 publication Critical patent/WO2023145563A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/02Elements
    • C04B22/04Metals, e.g. aluminium used as blowing agent
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/14Acids or salts thereof containing sulfur in the anion, e.g. sulfides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention relates to fillers for reinforcing bar joints.
  • the mortar material used in civil engineering and construction work has generally been made by adding a water reducing agent to cement.
  • a calcium sulfoaluminate expansion agent or lime expansion agent, or a foaming agent such as aluminum powder is added to make a non-shrinking material, and river sand, silica sand, or the like is blended with these to be used as a paste or mortar.
  • it is widely used for filling fine gaps in concrete structures, gaps in the reverse casting method, repair and reinforcement of structures, under the base plate of machinery, and under the track slab.
  • Grout includes PC grout, prepacked concrete grout, backfill grout for tunnels and shields, precast grout, and repair/reinforcement grout for structures. , rebar joint grout, grout under bridge bearings, grout under pavement slabs, grout under track slabs, and grout under nuclear power plant containment vessels.
  • the mortar that fills the joints that connect the reinforcing bars in structures such as reinforced concrete and precast concrete is becoming more and more popular as the strength of concrete increases due to the increase in size of reinforced concrete structures and the improvement of earthquake resistance. It is also necessary to improve the yield strength of the mortar, and high fluidity, high strength development, and low shrinkage are desired.
  • Patent Document 1 describes, for example, a cement-based grout composition as a steel joint grout. That is, in a composition consisting of cement, fine aggregate, water reducing agent, expansive material, inorganic fine powder and foaming substance, the amount of water reducing agent is 0.05 to 4 parts by mass per 100 parts by mass of cement, and the water reducing 10 to 30 parts by mass of melamine sulfonate water reducing agent, 55 to 85 parts by mass of naphthalene sulfonate water reducing agent, and 5 to 20 parts by mass of lignin sulfonate water reducing agent in 100 parts by mass of the agent. is described. It is also described that the expansive material preferably contains free lime, calcium aluminoferrite and anhydrous gypsum as main components.
  • Patent Document 2 describes a cement composition that can also be used as a filler for joints. It comprises high belite-based cement, silica fume, a cement dispersant mainly composed of a polycarboxylic acid-based polymer compound having a polyalkylene glycol chain, a lime-based admixture or an organic shrinkage reducing agent, and the high beelite-based cement. Containing a substance that generates pressure against shrinkage force caused by hydration reaction of light cement, and fine aggregate having a specific gravity of 3.4 or more and a water absorption rate of 0.5 to 1.5%. is described. Further, it is described that it is preferable to use a lime-based expanding material or a pulverized mixture of clinker containing CaO crystals and gypsum as the expanding material.
  • Patent Literature 3 describes a filler for reinforcing bar joints and a reinforcing bar joint filling construction method using the same.
  • the filler for reinforcing bar joints contains cement, an expansive agent, a pozzolana fine powder, a water reducing agent and a fine aggregate, the expansive agent is a calcium aluminoferrite expansive agent, and the pozzolan fine powder is silicon dioxide (SiO 2 ). It is described that it is a siliceous fine powder having a content of 90% or more and a hydrogen ion concentration in the acidic range, and that the water reducing agent is a polycarboxylic acid water reducing agent.
  • the present invention provides a filler for reinforcing bar joints that has a mortar with high fluidity, a hardened body with dimensional stability and high strength, and a low bleeding rate that can prevent cracks. The challenge is to
  • the present inventors have conducted intensive research in order to solve the above problems, and found that in addition to the expanding material used, silica fume, water reducing agent, particle size distribution of fine aggregate, and abrasion by Los Angeles tester By focusing on weight loss, it was found that the mortar has high fluidity, the hardened body has dimensional stability and high strength, and it is possible to obtain a filler for reinforcing bar joints that is suitable for preventing the mortar surface from sinking. , completed the present invention.
  • Abrasion weight loss using a 09 mm sieve is 3% or less, and the content of 0.3 to 2 mm particle size in 100% by mass of fine aggregate is 60 to 90% by mass, and the particle size is less than 0.3 mm.
  • the mortar of the filler for reinforcing bar joints has high fluidity
  • the hardened body has dimensional stability and high strength
  • crack prevention can be achieved.
  • the filler for reinforcing bar joints of the present invention contains cement, expansive material, silica fume, water reducing agent, and fine aggregate.
  • the filler for reinforcing bar joints of the present invention may further contain a foaming agent and an antifoaming agent.
  • a cement composition contains cement, an expansive agent, silica fume, and a water reducing agent.
  • the fine aggregate used in the present invention is preferably a heavy weight aggregate, and is not particularly limited as long as strength development, fluidity retention, etc. are obtained. Examples include ferronickel slag, ferrochrome slag, and olivine. , magnetite, hematite, copper slag, electric furnace oxide slag, etc., and in the present invention, it is possible to use one or more of these in combination.
  • the density of fine aggregate is preferably 2.6 g/cm 3 or more, more preferably 2.9 g/cm 3 or more. When the fine aggregate is a heavy aggregate having a density of 2.6 g/cm 3 or more, the mortar has good fluidity and is difficult to separate.
  • the density of fine aggregate can be measured according to the method specified in JIS A 1109:2006 "Determination of density and water absorption rate of fine aggregate”.
  • the fine aggregate was subjected to an aggregate abrasion test using a Los Angeles tester, and although it was on a 0.09 mm sieve, the abrasion weight loss was set to 3% or less.
  • the weight loss due to abrasion is more preferably 2.5% or less, more preferably 2.0% or less.
  • the content ratio of particle size 0.3 to 2 mm is preferably 60 to 90% by mass, more preferably 70 to 85% by mass, and the content ratio of less than 0.3 mm is 10 to 40%. % by mass is preferable, and 15 to 30% by mass is more preferable.
  • the filler for reinforcing bar joints when using this fine aggregate has high fluidity in the mortar, and dimensional stability in the hardened body. It has high strength and can prevent cracks.
  • the content ratio of the particle size of 0.3 to 2 mm and the content ratio of less than 0.3 mm are separated into two particles of 0.3 to 2 mm and less than 0.3 mm using a 0.3 mm sieve. It was obtained by measuring the mass of
  • the amount of fine aggregate used is preferably 50 parts by mass or more and 300 parts by mass or less, more preferably 50 parts by mass or more and 200 parts by mass or less, relative to 100 parts by mass of cement.
  • the amount of fine aggregate used is 50 to 300 parts by mass with respect to 100 parts by mass of cement, the amount of shrinkage is small and strength and fluidity are high.
  • Examples of the expanding material of the present invention include calcium sulfoaluminate-based expanding materials, calcium aluminoferrite-based expanding materials, lime-based expanding materials, and gypsum-based expanding materials. wood is preferred.
  • calcium sulfoaluminate-based expansive material it has an excellent effect of preventing bleeding, and can provide an effect of preventing subsidence of the mortar surface. can.
  • Calcium sulfoaluminate expansion material is prepared by blending CaO raw material, Al 2 O 3 raw material, Fe 2 O 3 raw material, and CaSO 4 raw material in a predetermined ratio, and using an electric furnace or a rotary kiln, generally Generally, it is manufactured by heat treatment at 1,100 to 1,600°C. When the heat treatment temperature is 1,100 to 1,600° C., the expansion performance of the resulting expanding material is sufficient, and when it exceeds 1,600° C., the anhydrite may decompose.
  • CaO raw materials include limestone and slaked lime
  • Al 2 O 3 raw materials include bauxite and aluminum residue ash
  • Fe 2 O 3 raw materials include copper sludge and commercially available iron oxide
  • CaSO 4 raw materials include two Examples include hydrogypsum, hemihydrate gypsum, and anhydrous gypsum.
  • the fineness of the expanding material is preferably 4,000 cm 2 /g or more and 9,000 cm 2 /g or less, more preferably 5,000 cm 2 /g or more and 8,000 cm 2 /g or less, in Blaine value.
  • the content of the expansive agent is preferably 3 parts by mass or more and 20 parts by mass or less, more preferably 5 parts by mass or more and 15 parts by mass or less with respect to 100 parts by mass of cement. At this time, the occurrence of bleeding can be suppressed.
  • the silica fume used in the present invention is used for good fluidity, prevention of bleeding, and development of strength, especially at low water ratios. Although the primary particle size is relatively large, it is difficult to aggregate. From these points, the content of silicon dioxide (SiO 2 ) in silica fume is preferably 85% or more, more preferably 90% or more. It is preferable that the hydrogen ion concentration is in the acidic region.
  • the hydrogen ion concentration here is a value obtained by adding 20 g of silica fume to 100 g of pure water, stirring the mixture with a magnetic stirrer for 5 minutes, and then measuring the hydrogen ion concentration in the suspension with a pH meter.
  • the method for producing silica fume is, for example, a method of oxidizing metal silicon fine powder in a flame or a method of melting siliceous raw material fine powder in a high-temperature flame by adjusting the heat treatment conditions of the raw material and raising the collection temperature to 550 ° C. or higher. It can be manufactured by In addition, there is also a product produced by classifying after collecting with a cyclone or the like when zircon sand is electrofused in an electric furnace.
  • the preferred specific surface area of the zirconia-derived silica fume is preferably 5 to 13 m 2 /g, more preferably 8 to 12 m 2 /g, in terms of BET specific surface area, from the viewpoint of fluidity and strength development.
  • the average particle size of zirconia-derived silica fume is 0.1 to 0.3 ⁇ m, which is larger than that of silica fume collected from the exhaust gas generated during the production of conventional metallic silicon and ferro-silicon in an arc furnace, and about 1 ⁇ m or less. preferable.
  • the amount of silica fume used is preferably 3 parts by mass or more and 20 parts by mass or less, more preferably 5 parts by mass or more and 15 parts by mass or less, relative to 100 parts by mass of cement.
  • the water reducing agent used in the present invention is a general term for those having a dispersing action and an air entrainment action on cement, improving fluidity and increasing strength.
  • naphthalenesulfonic acid water reducing agents and melamine sulfonic acid water reducing agents agents, ligninsulfonic acid-based water reducing agents, polycarboxylic acid-based water reducing agents, etc., and polycarboxylic acid-based water reducing agents are preferred in the present invention. Fluidity retention is improved by using a polycarboxylic acid-based water reducing agent.
  • the water reducing agent can be used in either powder or liquid form, but powder is preferred when used as a premix product. Part or more and 5 mass parts or less are preferable, and 0.1 mass part or more and 2 mass parts or less are more preferable.
  • a high fluidity is obtained when the content of the water reducing agent is 0.05 to 5 parts by mass with respect to 100 parts by mass of cement. Moreover, a melamine sulfonic acid-based water reducing agent and a ligninsulfonic acid-based water reducing agent can be used in combination within a range that does not impair the effects of the present invention.
  • a foaming agent that generates gas when kneaded with water can be used in combination.
  • the foaming agent is not particularly limited, and examples thereof include metal powders and peroxides.
  • metal powders and peroxides include aluminum powders and peroxides.
  • aluminum powder is preferable from the aspect of addition amount and effect, but the surface of aluminum powder is easily oxidized, and when it is covered with an oxide film, the reactivity decreases, so the surface is treated with vegetable oil, mineral oil, or stearic acid.
  • Aluminum powder is preferred.
  • the amount of the foaming agent used is preferably 0.0001 to 0.003 parts by mass, more preferably 0.0002 to 0.003 parts by mass, and 0.001 part by mass with respect to 100 parts by mass of cement. Part or more and 0.002 part by mass or less is more preferable. When it is 0.0001 part or more, it is possible to effectively prevent the mortar surface from sinking.
  • an antifoaming agent In the present invention, it is preferred to use an antifoaming agent.
  • the antifoaming agent is not particularly limited, but may be a mixture of a special nonionic surfactant and silica.
  • the amount used is preferably 0.3 parts by mass or less, more preferably 0.1 parts by mass or less based on 100 parts by mass of cement. If the content is 0.3 parts by mass or less, a large amount of defoamed foam does not rise to the cement mortar surface.
  • the cement used in the present invention includes various Portland cements such as ordinary, high early strength, ultra early strength, low heat, and moderate heat, and various types of Portland cement mixed with blast furnace slag, fly ash, silica, or limestone fine powder.
  • Portland cements such as ordinary, high early strength, ultra early strength, low heat, and moderate heat
  • various types of Portland cement mixed with blast furnace slag, fly ash, silica, or limestone fine powder can be mentioned, among which normal or high-early-strength cement is preferred in terms of kneadability and strength development.
  • the Blaine value of cement is preferably 2,500 to 7,000 cm 2 /g, more preferably 3,000 to 4,500 cm 2 /g.
  • the Blaine value is determined in accordance with JIS R 5201:2015 "Physical Test Methods for Cement".
  • the filler for reinforcing-bar joints of the present invention is used in a method of adding water to the filler for reinforcing-bar joints and kneading them. Specifically, first, water is blended with the filler for reinforcing bar joints to prepare mortar. Mixing of the mortar is not particularly limited, but it is preferable to use a hand mixer with a rotation speed of 900 rpm or more, a normal high-speed grout mixer, and a twin-screw forced mixer.
  • kneading with a hand mixer or high-speed grout mixer put a predetermined amount of water in a kneading container such as a pail or a mixer in advance, and then add the pre-mixed filler for reinforcing bar joints while rotating the mixer. , knead for 2 minutes or longer. Further, kneading with a forced mixer is carried out by putting the pre-mixed material into the mixer, adding a predetermined amount of water while rotating the mixer, and kneading for at least 2 minutes or more. When the kneading time is 2 minutes or more, a mortar having appropriate fluidity can be easily obtained.
  • the mixed mortar is usually filled into the joint with a diaphragm-type manual pump or a squeeze-type mortar pump. After that, the mortar hardens and the reinforcing bars are firmly fixed by joints.
  • the amount of water used for kneading in the present invention is not particularly limited, the amount of water is preferably 10 to 30 parts by mass, more preferably 10 to 20 parts by mass, per 100 parts by mass of the reinforcement joint filler. Within this range, fluidity is high and strength is high.
  • Example 1 Cement and 100 parts by mass of cement were mixed with the amounts of expansive agent, silica fume, water reducing agent, fine aggregate, foaming agent, and antifoaming agent shown in Table 2 to prepare fillers for reinforcing bar joints. .
  • a mortar was prepared by adding 15 parts by mass of water to 100 parts by mass of the cement composition. The flow, bleeding rate, expansion/shrinkage rate, compressive strength, and length change rate of the prepared mortar were measured at a temperature of 20°C.
  • Fine aggregate A ferronickel slag aggregate, density 3.11 g/cm 3 , maximum aggregate diameter 2.0 mm, aggregate wear loss by Los Angeles testing machine (using 0.09 mm sieve) 1.2 %, 80% by mass content of particle size 0.3 to 2 mm, 20% by mass content of particle size less than 0.3 mm, commercial product (e-2) fine aggregate B: ferrochrome slag aggregate, density 3.12 g /cm 3 , maximum aggregate diameter 2.0 mm, aggregate abrasion weight loss by Los Angeles tester (using 0.09 mm sieve) 1.4%, particle size 0.3 to 2 mm content ratio 80% by mass, particle size 0.3 to 2 mm.
  • fine aggregate C olivine aggregate, density: 3.00 g/cm 3 , maximum aggregate diameter: 2.0 mm, aggregate abrasion weight loss by Los Angeles testing machine (Using a 0.09 mm sieve) 0.9%, 80 mass% content of particle size 0.3 to 2 mm, 20 mass% content of particle size less than 0.3 mm, commercial product (e-4) fine aggregate D : Ferronickel slag aggregate, density 3.11 g/cm 3 , maximum aggregate diameter 2.0 mm, aggregate abrasion weight loss by Los Angeles testing machine (using 0.09 mm sieve) 1.2%, particle size 0.3 to 2 mm 20 mass% content, 80 mass% content of grain size less than 0.3 mm, commercial product (e-5) fine aggregate E: ferronickel slag aggregate, density 2.95 g/cm 3 , maximum aggregate diameter 2.0 mm, 3.9% aggregate abrasion weight loss (using a 0.09 mm sieve) by Los Angeles tester, 80% by mass content content
  • Flow Measured according to JASS 15 M-103 "Quality Standards for Self-Leveling Materials".
  • a vinyl chloride resin pipe of ⁇ 50 ⁇ 100 mm was used as the flow container.
  • the mortar was filled into the pipe and the pipe was pulled up. After the spread of the mortar stopped, the diameters in two perpendicular directions were measured, and the average value was taken as the value of the flow.
  • Bleeding rate In accordance with JSCE-F 542-1999, 3 hours after collecting the mortar prepared in each example and comparative example in a container, bleeding water was collected, and the amount of bleeding water relative to the volume of the sample. was taken as the bleeding rate.
  • Expansion and contraction rate In accordance with JSCE-F 542-1999, the depth from the upper surface of the bridge to the glass plate was measured 24 hours after the mortar prepared in each example and comparative example was collected in the mold. , and the expansion/contraction rate was determined from the difference from the base length.
  • Compressive strength Measured according to JSCE-G 505-1999. The specimen had a size of ⁇ 50 mm ⁇ 100 mm, was removed from the mold in one day, was cured in water, and was tested for its 28-day age to determine its compressive strength.
  • Length change rate Measured in accordance with JIS A 6202: 2017 Appendix A "Expandable mortar test method for expansive material". The test piece was cured in water after 1 day of age, and the length change rate was obtained from the length of the test piece at 7 days of age. Table 2 shows the results.
  • Example 2 Per 100 parts by mass of cement, 10 parts by mass of expanding material, 10 parts by mass of silica fume, 0.5 parts by mass of water reducing agent, 0.001 part by mass of foaming agent, 0.1 part by mass of defoaming agent, and the types shown in Table 3 A filler for reinforcing bar joints consisting of fine aggregate was prepared. A mortar was prepared by adding 15 parts by mass of water to 100 parts by mass of the cement composition. The material used for the mortar is the same as in Experimental Example 1.
  • the flow, bleeding rate, expansion/shrinkage rate, compressive strength, and length change rate were measured at a temperature of 20°C.
  • a post-grouting method was adopted, and after inserting the rebar into the joint, the kneaded mortar was filled from the inlet of the joint with a diaphragm-type manual pump, and the mortar was discharged from the air outlet of the joint. After that, the filling of the mortar was finished to prepare a reinforcing bar joint test piece.
  • ⁇ Rebar joint performance criteria> A unidirectional tensile test, a unidirectional cyclic test, an elastic region positive/negative cyclic test, and a plastic region cyclic positive/negative test were performed on a reinforcing bar joint test piece to obtain tensile strength, stiffness reduction rate, slip amount, and toughness. It was confirmed whether the reinforcing bar joint performance criteria (Class A) were satisfied.
  • 1c E and 20c E are the secant stiffnesses of the joining reinforcing bars at a stress of 0.95 ⁇ y0 at the 1st and 20th loadings, respectively, and 20c ⁇ s and 4c ⁇ s are the 20th loadings, respectively.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

セメントと、膨張材と、シリカフュームと、減水剤と、細骨材とを含有する鉄筋継手用充填材であって、細骨材が、ロサンゼルス試験機による骨材すりへり試験の0.09mmふるいを用いてのすりへり減量が3%以下であり、細骨材100質量%中に、粒径0.3~2mmの含有割合が60~90質量%であり、粒径0.3mm未満の含有割合が10~40質量%である鉄筋継手用充填材である。

Description

鉄筋継手用充填材
 本発明は、鉄筋継手用充填材に関する。
 従来、土木・建築工事に使用されるモルタル材料としては、セメントに減水剤を加えたものが一般的である。さらに、カルシウムサルフォアルミネート系膨張材又は石灰系膨張材や、アルミ粉等の発泡剤を添加し無収縮材料とし、これらに川砂や珪砂等を配合し、ペーストやモルタルとして使用されている。特に、コンクリート構造物の細かい空隙、逆打ち工法での空隙、構造物の補修や補強、機械装置のベースプレート下、及び軌道床版下等へ充填する工法等に広く使用されている。
 一般に土木・建築工事において充填施工されるモルタル材料はグラウトといわれるが、グラウトには、PCグラウト、プレパックドコンクリート用グラウト、トンネルやシールドの裏込めグラウト、プレキャスト用グラウト、構造物の補修・補強グラウト、鉄筋継手グラウト、橋梁の支承下グラウト、舗装床版下グラウト、軌道床版下グラウト、及び原子力発電所格納容器下グラウトなどがある。
 近年、土木・建築構造物に使われるコンクリートの品質が高性能化し、グラウトとして使用されるモルタル材料に要求される性能も用途によっては高強度、高流動、低収縮等が要求されている。
 中でも、鉄筋コンクリート、プレキャストコンクリート等の構造物において鉄筋を接続させる継手に充填するモルタルには、鉄筋コンクリート構造物の大型化、耐震性向上によるコンクリートの高強度化に伴い、継手の高強度化等、継手の耐力の向上も必要となり、モルタルの高流動性、高い強度発現性、低収縮性が望まれている。
 特許文献1には、例えば鋼材継手グラウトとしてのセメント系グラウト組成物が記載されている。それは、セメント、細骨材、減水剤、膨張材、無機質微粉末及び発泡物質からなる組成物において、減水剤の配合量がセメント100質量部に対し0.05~4質量部であり、該減水剤100質量部中のメラミンスルホン酸塩系減水剤が10~30質量部、ナフタレンスルホン酸塩系減水剤が55~85質量部、リグニンスルホン酸塩系減水剤が5~20質量部であることが記載されている。そして、膨張材が遊離石灰、カルシウムアルミノフェライト及び無水セッコウを主成分とするものが好ましいことが記載されている。
 特許文献2には、継手用の充填材としても使用できるセメント組成物が記載されている。それは、高ビーライト系セメントと、シリカフュームと、ポリアルキレングリコール鎖を有するポリカルボン酸系高分子化合物を主成分とするセメント分散剤と、石灰系混和材又は有機系収縮低減剤と、該高ビーライト系セメントの水和反応に起因する収縮力に対抗する圧力を発生させる物質と、比重が3.4以上で吸水率が0.5~1.5%である細骨材とを含有することが記載されている。そして、膨張材として、石灰系膨張材や、CaO結晶を含有するクリンカーと石膏との混合粉砕物を用いることが好ましいと記載されている。
 特許文献3には、鉄筋継手用充填材及びそれを用いた鉄筋継手充填施工方法が記載されている。鉄筋継手用充填材は、セメント、膨張材、ポゾラン微粉末、減水剤及び細骨材を含有し、膨張材が、カルシウムアルミノフェライト系膨張材であり、ポゾラン微粉末が、二酸化珪素(SiO)含有率が90%以上で水素イオン濃度が酸性領域にあるシリカ質微粉末であり、及び、減水剤がポリカルボン酸系減水剤であることが記載されている。
特開2003-171162号公報 特開2003-286064号公報 特開2008-94674号公報
 超高層ビルの建築等が多くなされている現状においては、鉄筋継手の更なる性能向上が求められている状況である。特に、特許文献3の技術に加えて、引張強さ以外の高い鉄筋継手性能も満たし、低ブリーディング率によるモルタル面の沈下防止効果を付与することが必要である。このような状況の下、本発明は、モルタルが高流動性を持ち、硬化体が寸法安定性、高強度を持ち、さらに、低ブリーディング率によるひび割れ防止が実現できる鉄筋継手用充填材を提供することを課題とする。
 本発明者らは、上記課題の解決のために、鋭意研究を進めたところ、使用する膨張材に加えて、シリカフュームと、減水剤と、細骨材の粒径分布と、ロサンゼルス試験機によるすりへり減量に着目することで、モルタルが高流動性を持ち、硬化体が寸法安定性と高強度を持ち、モルタル面の沈下防止を実現するのに好適な鉄筋継手用充填材が得られることを見出し、本発明を完成させた。
 すなわち、本発明は以下の通りである。
[1]セメントと、膨張材と、シリカフュームと、減水剤と、細骨材とを含有する鉄筋継手用充填材であって、前記細骨材が、ロサンゼルス試験機による骨材すりへり試験の0.09mmふるいを用いてのすりへり減量が3%以下であり、細骨材100質量%中に、粒径0.3~2mmの含有割合が60~90質量%であり、粒径0.3mm未満の含有割合が10~40質量%である鉄筋継手用充填材。
[2]前記膨張材の含有量は、前記セメント100質量部に対して、3質量部以上20質量部以下である[1]に記載の鉄筋継手用充填材。
[3]前記シリカフュームの含有量は、前記セメント100質量部に対して、3質量部以上20質量部以下である[1]又は[2]に記載の鉄筋継手用充填材。
[4]前記減水剤の含有量は、前記セメント100質量部に対して、0.05質量部以上5質量部以下である[1]~[3]のいずれかに記載の鉄筋継手用充填材。
[5]前記細骨材の含有量は、前記セメント100質量部に対して、50質量部以上300質量部以下である[1]~[4]のいずれかに記載の鉄筋継手用充填材。
[6]前記細骨材が、密度2.6g/cm以上の重量骨材である[1]~[5]のいずれかに記載の鉄筋継手用充填材。
[7]発泡剤を含有する[1]~[6]のいずれかに記載の鉄筋継手用充填材。
[8]消泡剤を含有する[1]~[7]のいずれかに記載の鉄筋継手用充填材。
 本発明により、鉄筋継手用充填材は、モルタルが高流動性を持ち、硬化体が寸法安定性、高強度を持ち、ひび割れ防止を実現できる。
 以下、本発明を詳細に説明する。以下に示す具体的な形態はあくまでも例であって、本発明はこれらに限定されるものではない。
[鉄筋継手用充填材]
 本発明の鉄筋継手用充填材は、セメントと、膨張材と、シリカフュームと、減水剤と、細骨材とを含有する。本発明の鉄筋継手用充填材は、さらに、発泡剤と消泡剤とを含有してもよい。以下で、セメント組成物とは、セメントと、膨張材と、シリカフュームと、減水剤とを含有するものである。
<細骨材>
 本発明で使用する細骨材としては、重量骨材が好ましく、強度発現性、流動性の保持等が得られれば特に限定されるものではないが、例えば、フェロニッケルスラグ、フェロクロムスラグ、橄欖石、磁鉄鉱石、赤鉄鉱石、銅スラグ、電気炉酸化スラグ等が挙げられるが、本発明では、これらのうち一種または二種以上を併用することが可能である。細骨材の密度は2.6g/cm以上であることが好ましく、2.9g/cm以上であることがより好ましい。細骨材が、密度2.6g/cm以上の重量骨材であるとき、モルタルの流動性が良く、材料分離がし難い。プレミックス製品として使用する際には各々を乾燥した乾燥砂が好ましく、その粒度は流動性の面から最大粒径が2.0mmであることが好ましい。なお、細骨材の密度は、JIS A 1109:2006「細骨材の密度及び吸水率試験方法」に規定された方法に準拠して計測できる。
 また、細骨材は、ロサンゼルス試験機を用いての骨材すりへり試験による、0.09mmふるい上のものの、すりへり減量は3%以下とした。すりへり減量は、2.5%以下がより好ましく、2.0%以下がさらに好ましい。さらに、細骨材100質量%中に、粒径0.3~2mmの含有割合が60~90質量%が好ましく、70~85質量%がより好ましく、0.3mm未満の含有割合が10~40質量%が好ましく、15~30質量%がより好ましい。このとき、細骨材が適度な硬度と適切な粒径を持つため、この細骨材を用いたときの鉄筋継手用充填材は、モルタルが高流動性を持ち、硬化体が寸法安定性、高強度を持ち、ひび割れ防止を実現できる。なお、粒径0.3~2mmの含有割合と0.3mm未満の含有割合は、0.3mm篩を用いて粒径0.3~2mmと0.3mm未満との2つに分離し、それぞれの質量を計測することにより求めた。
 なお、ロサンゼルス試験機を用いての骨材すりへり試験の0.09mmふるいを用いてのすりへり減量は、下記式により、JIS A 1121:2007「ロサンゼルス試験機による粗骨材のすりへり試験方法」に準拠して測定される。
すりへり減量(%)=(m-m)/m×100
:試験前の試料の全質量(g)
:試験後、0.09mmふるいにとどまった試料の質量(g)
 細骨材の使用量は、セメント100質量部に対して、50質量部以上300質量部以下が好ましく、50質量部以上200質量部以下がより好ましい。細骨材の使用量が、セメント100質量部に対して、50~300質量部だと、収縮量が少なく、強度や流動性が高い。
<膨張材>
 本発明の膨張材とは、カルシウムサルフォアルミネート系膨張材、カルシウムアルミノフェライト系膨張材、石灰系膨張材、およびセッコウ系膨張材等が挙げられるが、その中でも、カルシウムサルフォアルミネート系膨張材が好ましい。カルシウムサルフォアルミネート系膨張材を使用することで、ブリーディング抑止効果に優れ、モルタル面の沈下防止効果を付与でき、寸法安定性を持たせることができるので、硬化体のひび割れを効率的に防止できる。
 カルシウムサルフォアルミネート系膨張材は、CaO原料、Al原料、Fe原料、およびCaSO原料を所定の割合になるように配合し、電気炉やロータリーキルンなどを用いて、一般的には、1,100~1,600℃で熱処理をして製造される。熱処理温度が1,100~1,600℃では、得られた膨張材の膨張性能が十分であり、1,600℃を超えると無水石膏が分解する場合がある。
 CaO原料としては、石灰石や消石灰等が、Al原料としてはボーキサイトやアルミ残灰等が、Fe原料としては銅カラミや市販の酸化鉄等が、そしてCaSO原料としては二水石膏、半水石膏、および無水石膏等が挙げられる。
 膨張材の粉末度は、ブレーン値で4,000cm/g以上9,000cm/g以下が好ましく、5,000cm/g以上8,000cm/g以下がより好ましい。膨張材の含有量は、セメント100質量部に対して、3質量部以上20質量部以下が好ましく、5質量部以上15質量部以下がより好ましい。このとき、ブリーディングの発生が抑止できる。
<シリカフューム>
 本発明で使用するシリカフュームは、特に低水比での良好な流動性およびブリーディング防止、強度発現に使用するもので、ジルコニアの製造工程において副生するシリカフュームとして得られ、従来の一般的なシリカフュームと比較して一次粒子径は大きいが、凝集しにくい。これらの点で、シリカフュームの二酸化珪素(SiO)の含有率は85%以上が好ましく、90%以上がより好ましい。水素イオン濃度が酸性領域にあることが好ましい。ここでいう水素イオン濃度とは、シリカフューム20gを純水100gに入れ、マグネティックスターラーにて5分間撹拌した後、懸濁液中の水素イオン濃度をpHメータにより計測した値である。
 シリカフュームの製造方法は、例えば、金属シリコン微粉末を火炎中で酸化させる方法や高温火炎中でシリカ質原料微粉末を溶融する方法において原料の熱処理条件を調整し、捕集温度を550℃以上にすることによって製造することができる。また、電気炉においてジルコンサンドを電融した際にサイクロンなどで捕集した後分級して製造されるものもある。
 ジルコニア起源シリカフュームの好ましい比表面積は、流動性や強度発現性の観点から、BET比表面積で5~13m/gであることが好ましく、8~12m/gであることがより好ましい。
 ジルコニア起源シリカフュームの平均粒子径は、0.1~0.3μmの従来の金属シリコンやフェロシリコンをアーク炉で製造する際に発生する排ガスから捕集されるシリカフュームより粒が大きく、1μm程度以下が好ましい。
 シリカフュームの使用量は、セメント100質量部に対して、3質量部以上20質量部以下が好ましく、5質量部以上15質量部以下がより好ましい。シリカフュームの使用量を、セメント100質量部に対して、3~20質量部とすることで、強度発現が十分であり、ボールベアリング効果があって練り混ぜ時の負荷が小さく済み、所定の水量で優れた流動性が得られる。
<減水剤>
 本発明で使用する減水剤は、セメントに対する分散作用や空気連行作用を有し、流動性改善や強度増進するものの総称であり、具体的には、ナフタレンスルホン酸系減水剤、メラミンスルホン酸系減水剤、リグニンスルホン酸系減水剤、及びポリカルボン酸系減水剤などが挙げられるが、本発明では、ポリカルボン酸系減水剤が好ましい。ポリカルボン酸系減水剤を使用することにより流動性の保持が良好となる。
 減水剤の使用形態は粉体、液体のいずれでも使用できるがプレミックス製品として使用する際には粉体が好ましく、セメント100質量部に対する減水剤の含有量は、粉体で、0.05質量部以上5質量部以下が好ましく、0.1質量部以上2質量部以下がより好ましい。
 セメント100質量部に対する減水剤の含有量が0.05~5質量部のとき、高流動性が得られる。また、本発明の効果を阻害しない範囲でメラミンスルホン酸系減水剤、リグニンスルホン酸系減水剤を併用することができる。
<発泡剤>
 本発明では、練り混ぜ後のモルタルの初期膨張を得るため、水と練り混ぜた際にガスを発生する発泡剤を併用することができる。発泡剤としては特に限定されるものではなく、例えば、金属粉末や過酸化物等が挙げられる。なかでも添加量と効果の面からアルミニウム粉末が好ましいが、アルミニウム粉末の表面は酸化されやすく、酸化皮膜で覆われると反応性が低下するため、植物油、鉱物油、又はステアリン酸等で表面処理したアルミニウム粉末が好ましい。
 発泡剤の使用量は、セメント100質量部に対して、0.0001質量部以上0.003質量部以下が好ましく、0.0002質量部以上0.003質量部以下がより好ましく、0.001質量部以上0.002質量部以下がさらに好ましい。0.0001部以上であることで、モルタル面の沈下を有効に防ぐことでき、0.003部以下であることで発泡が過剰とならず、強度が低下を防ぐことができる。
<消泡剤>
 本発明では、消泡剤を使用することが好ましい。消泡剤としては特に限定されるものではないが、特殊非イオン界面活性剤とシリカとの混合物があげられる。その使用量はセメント100質量部に対して0.3質量部以下が好ましく、0.1質量部以下がより好ましい。0.3質量部以下だと、消泡された泡がセメントモルタル表面に多量にあがってくることがない。
<セメント>
 本発明で使用するセメントとしては、普通、早強、超早強、低熱、及び中庸熱等の各種ポルトランドセメント、これらポルトランドセメントに、高炉スラグ、フライアッシュ、シリカ、又は石灰石微粉等を混合した各種混合セメント、並びに、廃棄物利用型セメント、いわゆるエコセメントなどが挙げられ、そのうち練り混ぜ性および強度発現の面から普通または早強セメントが好ましい。
 製造コストや強度発現性の観点から、セメントのブレーン値は、2,500~7,000cm/gであることが好ましく、3,000~4,500cm/gであることがより好ましい。ブレーン値は、JIS R 5201:2015「セメントの物理試験方法」に準拠して求められる。
[鉄筋継手充填施工方法]
 本発明の鉄筋継手用充填材は、鉄筋継手用充填材に水を加えて練り混ぜ施工する方法で用いる。具体的には、まず、鉄筋継手用充填材に水を配合し、モルタルを作製する。モルタルの練り混ぜは、特に限定されるものではないが、回転数が900rpm以上のハンドミキサ、通常の高速グラウトミキサ、および二軸型の強制ミキサを使用することが好ましい。
 ハンドミキサ又は高速グラウトミキサでの練り混ぜは、ペール缶等の練り容器又はミキサに予め所定の量の水を入れ、その後、ミキサを回転させながら鉄筋継手用充填材を予め混合したものを投入し、2分以上練り混ぜる。また、強制ミキサでの練り混ぜは、予め混合したものをミキサに投入し、ミキサを回転させながら所定の水を投入し、少なくとも2分以上練り混ぜる。練り混ぜ時間が2分以上であると、適切な流動性を有するモルタルが得られやすい。
 継手に鉄筋を差し込まれた後、練り混ぜられたモルタルは、通常、ダイヤフラム式手動ポンプ、あるいは、スクイズ式等モルタルポンプにより継手に充填施工される。その後、モルタルは硬化体となり、鉄筋は継手により強固に固定される。
 本発明で使用する練り混ぜ水量は特に限定されるものではないが、鉄筋継手充填材100質量部に対して水は10~30質量部が好ましく、10~20質量部がより好ましい。この範囲内では、流動性が高く、強度が高い。
[実験例1]
 セメントと、セメント100質量部に対して、表2に示す量の膨張材、シリカフューム、減水剤、細骨材、発泡剤、消泡剤を混合してこれらからなる鉄筋継手用充填材を調製した。セメント組成物100質量部に対して、水を15質量部の割合で加え、モルタルを作製した。作製したモルタルについて、温度20℃において、フロー、ブリーディング率、膨張収縮率、圧縮強度、長さ変化率を測定した。
<使用材料>
(a)セメント:普通ポルトランドセメント、ブレーン値3,300cm/g、市販品
(b)膨張材:カルシウムサルフォアルミネート系、ブレーン値6,000cm/g、市販品
(c)シリカフューム:酸化ジルコニウムを含有するシリカヒューム、酸化ジルコニウムの含有率5%、BET比表面積12m/g、pH3.0、市販品
(d)減水剤:ポリカルボン酸系減水剤、市販品
(e)細骨材
 以下に示される細骨材の含有割合は四捨五入をして10質量%単位に丸めた値である。
(e-1)細骨材A:フェロニッケルスラグ骨材、密度3.11g/cm、最大骨材径2.0mm、ロサンゼルス試験機による骨材すりへり減量(0.09mmふるい使用)1.2%、粒径0.3~2mmの含有割合80質量%、粒径0.3mm未満の含有割合20質量%、市販品
(e-2)細骨材B:フェロクロムスラグ骨材、密度3.12g/cm、最大骨材径2.0mm、ロサンゼルス試験機による骨材すりへり減量(0.09mmふるい使用)1.4%、粒径0.3~2mmの含有割合80質量%、粒径0.3mm未満の含有割合20質量%、市販品
(e-3)細骨材C:橄欖石骨材、密度3.00g/cm、最大骨材径2.0mm、ロサンゼルス試験機による骨材すりへり減量(0.09mmふるい使用)0.9%、粒径0.3~2mmの含有割合80質量%、粒径0.3mm未満の含有割合20質量%、市販品
(e-4)細骨材D:フェロニッケルスラグ骨材、密度3.11g/cm、最大骨材径2.0mm、ロサンゼルス試験機による骨材すりへり減量(0.09mmふるい使用)1.2%、粒径0.3~2mmの含有割合20質量%、粒径0.3mm未満の含有割合80質量%、市販品
(e-5)細骨材E:フェロニッケルスラグ骨材、密度2.95g/cm、最大骨材径2.0mm、ロサンゼルス試験機による骨材すりへり減量(0.09mmふるい使用)3.9%、粒径0.3~2mmの含有割合80質量%、粒径0.3mm未満の含有割合20質量%、市販品
(e-6)細骨材F:製鋼スラグ骨材、密度3.61g/cm、最大骨材径2.0mm、ロサンゼルス試験機による骨材すりへり減量(0.09mmふるい使用)2.5%、粒径0.3~2mmの含有割合80質量%、粒径0.3mm未満の含有割合20質量%、市販品
(e-7)細骨材G:珪砂、密度2.60g/cm、最大骨材径2.0mm、ロサンゼルス試験機による骨材すりへり減量(0.09mmふるい使用)4.8%、粒径0.3~2mmの含有割合80質量%、粒径0.3mm未満の含有割合20質量%、市販品
(e-8)細骨材H:石灰石骨材、密度2.60g/cm、最大骨材径2.0mm、ロサンゼルス試験機による骨材すりへり減量(0.09mmふるい使用)4.0%、粒径0.3~2mmの含有割合80質量%、粒径0.3mm未満の含有割合20質量%、市販品
(e-9)細骨材I:フェロクロムスラグ骨材、密度3.10g/cm、最大骨材径2.0mm、ロサンゼルス試験機による骨材すりへり減量(0.09mmふるい使用)4.0%、粒径0.3~2mmの含有割合20質量%、粒径0.3mm未満の含有割合80質量%、市販品
(e-10)細骨材J:フェロニッケルスラグ骨材、密度3.11g/cm、最大骨材径2.0mm、ロサンゼルス試験機による骨材すりへり減量(0.09mmふるい使用)1.2%、粒径0.3~2mmの含有割合60質量%、粒径0.3mm未満の含有割合40質量%、市販品
(e-11)細骨材K:フェロニッケルスラグ骨材、密度3.11g/cm、最大骨材径2.0mm、ロサンゼルス試験機による骨材すりへり減量(0.09mmふるい使用)1.2%、粒径0.3~2mmの含有割合90質量%、粒径0.3mm未満の含有割合10質量%、市販品
(e-12)細骨材L:フェロニッケルスラグ骨材、密度3.05g/cm、最大骨材径2.0mm、ロサンゼルス試験機による骨材すりへり減量(0.09mmふるい使用)3.0%、粒径0.3~2mmの含有割合80質量%、粒径0.3mm未満の含有割合20質量%、市販品
(e-13)細骨材M:フェロニッケルスラグ骨材、密度3.11g/cm、最大骨材径2.0mm、ロサンゼルス試験機による骨材すりへり減量(0.09mmふるい使用)1.2%、粒径0.3~2mmの含有割合100質量%、粒径0.3mm未満の含有割合0質量%、市販品
(f)発泡剤:アルミニウム粉末(表面処理品)、市販品
(g)消泡剤:特殊非イオン界面活性剤とシリカの混合物、市販品
(h)水:水道水
 表1に細骨材A~Mについて示す。
Figure JPOXMLDOC01-appb-T000001
<評価方法>
(1)フロー:JASS 15 M-103「セルフレベリング材の品質基準」に準じて測定した。フロー容器は、Φ50×100mmの塩化ビニル樹脂製のパイプを用いた。モルタルをパイプに充填し、パイプを引き上げた。モルタルの広がりが静止した後、直角2方向の直径を測定し、その平均値をフローの値とした。
(2)ブリーディング率:JSCE-F 542-1999に準拠し、容器に各実施例及び比較例で調製したモルタルを採取してから3時間後にブリーディング水を採取し、試料の体積に対するブリーディング水の水量の割合をブリーディング率とした。
(3)膨張収縮率:JSCE-F 542-1999に準拠し、型枠に各実施例及び比較例で調製したモルタルを採取してから24時間後にブリッジ上面からガラス板までの深さを計測し、基長との差から膨張収縮率を求めた。
(4)圧縮強度:JSCE-G 505-1999に準拠して測定した。供試体のサイズは、φ50mm×100mmであり、1日で脱型後水中養生し、材齢28日の供試体に対して試験し、圧縮強度を求めた。
(5)長さ変化率:JIS A 6202:2017付属書A「膨張材のモルタルによる膨張性試験方法」に準拠して測定した。供試体は材齢1日後に水中養生し、材齢7日の供試体の長さから長さ変化率を求めた。
 結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2より、実施例に用いた鉄筋継手用充填材は、フローが比較的高いことからモルタルが高流動性を持ち、ブリーディング率が比較的低いことからモルタル面の沈下防止を実現でき、膨張収縮率が比較的低く長さ変化率が比較的低いことから硬化体が寸法安定性を持ち、硬化体のひび割れを防止でき、圧縮強度が比較的高いことから硬化体が高強度を持つことが分かった。このような実施例に示される条件などを参考にして、以下に示す実験例2を行った。
[実験例2]
 セメント100質量部に対して、膨張材10質量部、シリカフューム10質量部、減水剤0.5質量部、発泡剤0.001質量部、消泡剤0.1質量部、および表3に示す種類と量の細骨材からなる鉄筋継手用充填材を調製した。セメント組成物100質量部に対して、水を15質量部の割合で加え、モルタルを作製した。モルタルの使用材料は実験例1と同様である。
 作製したモルタルについて、実験例1と同様に、温度20℃において、フロー、ブリーディング率、膨張収縮率、圧縮強度、長さ変化率を測定した。
 次に、鉄筋には、JIS G 3112:2010「鉄筋コンクリート用棒鋼」で規定された、種類の記号がSD490であって、呼び名がD32であるものを使用し、継手には、S10U/IIを使用して、ポストグラウト方式を採用し、継手に鉄筋を挿入後、練上げたモルタルをダイヤフラム式手動ポンプで継手の注入口から充填し、継手の空気排出口からモルタルが排出されるのを確認した後、モルタルの充填を終了することで、鉄筋継手試験体を作製した。
 作製した鉄筋継手試験体を、20℃恒温室で所定の材齢(28日)まで養生後、「2007年版 建築物の構造関係技術基準解説書」に記載された「鉄筋継手性能判定基準」に定められた方法により試験を行った。評価は、20℃養生における鉄筋継手用充填材が「鉄筋継手性能判定基準」に定められたA級性能に適合するかどうかで行った。
<鉄筋継手性能判定基準>
 鉄筋継手試験体に対して、一方向引張り試験、一方向繰返し試験、弾性域正負繰返し試験、塑性域正負繰返し試験を行い、引張強さ、剛性低下率、すべり量、じん性を求め、それぞれが鉄筋継手性能判定基準(A級)を満たしているかどうかを確かめた。ここで、1cE、20cEは、それぞれ、1回目、20回目の加力時の0.95δy0の応力における接合鉄筋の割線剛性であり、20cδ4cδは、それぞれ、20回目、4回目の加力における接合鉄筋のすべり変形であり、εは、接合鉄筋の終局ひずみであり、εは、接合鉄筋の降伏ひずみである。
 結果を鉄筋継手性能判定基準(A級)と共に表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3より、実施例の鉄筋継手試験体は、鉄筋継手性能判定基準(A級)を満たすことが分かった。このことから、本発明の鉄筋継手用充填材は、高い鉄筋継手性能を実現でき、継手により鉄筋を十分強固に接続できると判断できる。

Claims (8)

  1.  セメントと、膨張材と、シリカフュームと、減水剤と、細骨材とを含有する鉄筋継手用充填材であって、前記細骨材が、ロサンゼルス試験機による骨材すりへり試験の0.09mmふるいを用いてのすりへり減量が3%以下であり、細骨材100質量%中に、粒径0.3~2mmの含有割合が60~90質量%であり、粒径0.3mm未満の含有割合が10~40質量%である鉄筋継手用充填材。
  2.  前記膨張材の含有量は、前記セメント100質量部に対して、3質量部以上20質量部以下である請求項1に記載の鉄筋継手用充填材。
  3.  前記シリカフュームの含有量は、前記セメント100質量部に対して、3質量部以上20質量部以下である請求項1又は2に記載の鉄筋継手用充填材。
  4.  前記減水剤の含有量は、前記セメント100質量部に対して、0.05質量部以上5質量部以下である請求項1~3のいずれか1項に記載の鉄筋継手用充填材。
  5.  前記細骨材の含有量は、前記セメント100質量部に対して、50質量部以上300質量部以下である請求項1~4のいずれか1項に記載の鉄筋継手用充填材。
  6.  前記細骨材が、密度2.6g/cm以上の重量骨材である請求項1~5のいずれか1項に記載の鉄筋継手用充填材。
  7.  発泡剤を含有する請求項1~6のいずれか1項に記載の鉄筋継手用充填材。
  8.  消泡剤を含有する請求項1~7のいずれか1項に記載の鉄筋継手用充填材。
PCT/JP2023/001300 2022-01-26 2023-01-18 鉄筋継手用充填材 WO2023145563A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022009914 2022-01-26
JP2022-009914 2022-01-26

Publications (1)

Publication Number Publication Date
WO2023145563A1 true WO2023145563A1 (ja) 2023-08-03

Family

ID=87471723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001300 WO2023145563A1 (ja) 2022-01-26 2023-01-18 鉄筋継手用充填材

Country Status (1)

Country Link
WO (1) WO2023145563A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001240447A (ja) * 2000-02-28 2001-09-04 Taiheiyo Cement Corp 鉄筋継手用充填材
JP2007284308A (ja) * 2006-04-19 2007-11-01 Ube Ind Ltd 水硬性組成物
JP2008094674A (ja) * 2006-10-13 2008-04-24 Denki Kagaku Kogyo Kk 鉄筋継手用充填材及びそれを用いた鉄筋継手充填施工方法
JP2012144404A (ja) * 2011-01-14 2012-08-02 Ohbayashi Corp 高じん性・高強度モルタル組成物
JP2019085304A (ja) * 2017-11-07 2019-06-06 株式会社Seric Japan 無収縮グラウト組成物、及び無収縮グラウト材
JP2020050538A (ja) * 2018-09-26 2020-04-02 太平洋セメント株式会社 セメント組成物、およびセメント質硬化体の製造方法
JP2020158372A (ja) * 2019-03-27 2020-10-01 太平洋マテリアル株式会社 高耐久性グラウト組成物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001240447A (ja) * 2000-02-28 2001-09-04 Taiheiyo Cement Corp 鉄筋継手用充填材
JP2007284308A (ja) * 2006-04-19 2007-11-01 Ube Ind Ltd 水硬性組成物
JP2008094674A (ja) * 2006-10-13 2008-04-24 Denki Kagaku Kogyo Kk 鉄筋継手用充填材及びそれを用いた鉄筋継手充填施工方法
JP2012144404A (ja) * 2011-01-14 2012-08-02 Ohbayashi Corp 高じん性・高強度モルタル組成物
JP2019085304A (ja) * 2017-11-07 2019-06-06 株式会社Seric Japan 無収縮グラウト組成物、及び無収縮グラウト材
JP2020050538A (ja) * 2018-09-26 2020-04-02 太平洋セメント株式会社 セメント組成物、およびセメント質硬化体の製造方法
JP2020158372A (ja) * 2019-03-27 2020-10-01 太平洋マテリアル株式会社 高耐久性グラウト組成物

Similar Documents

Publication Publication Date Title
JP5165873B2 (ja) 鉄筋継手用充填材を用いた鉄筋継手充填施工方法
Nazari et al. Influence of Al2O3 nanoparticles on the compressive strength and workability of blended concrete
CN101258115B (zh) 灌浆用水泥组合物及使用该组合物的灌浆材料
JP4834574B2 (ja) 高流動性コンクリート用セメント組成物および高流動性コンクリート組成物
EP1876153A1 (en) Ultrahigh-strength fiber-reinforced cement composition, ultrahigh-strength fiber-reinforced mortar or concrete, and ultrahigh-strength cement admixture
EP3647295B1 (en) Concrete composition and production method therefor
JPH11209159A (ja) セメントコンクリート製品およびその製造方法
JP5588613B2 (ja) セメントモルタル
JP2004203733A (ja) モルタル・コンクリートの製造方法、及びモルタル・コンクリートの製造に用いられるセメント
TWI778211B (zh) 高強度灌漿材料組成物和使用其的高強度灌漿砂漿、以及高強度灌漿砂漿的製造方法
JPH0680456A (ja) 流動性水硬性組成物
JP2581803B2 (ja) セメント混和材及びセメント組成物
JP2002003249A (ja) セメント混和材、セメント組成物、及び高流動セメントコンクリート
JP5160762B2 (ja) グラウト用セメントモルタル組成物
JP3672518B2 (ja) セメント混和材、セメント組成物及びそれを用いたコンクリート
JP5588612B2 (ja) 鉄筋継手用充填材組成物、それを用いた鉄筋継手用充填材、及びその鉄筋継手充填施工方法
Dordi et al. Microfine gound granulated blast furnace slag for high performance concrete
JP4464102B2 (ja) 高強度モルタル組成物
WO2023145563A1 (ja) 鉄筋継手用充填材
JP2020001954A (ja) セメント組成物
JPH03193649A (ja) 遮塩性に優れた高流動・高耐久性繊維補強充填モルタル
JP5160763B2 (ja) セメントモルタル組成物
JP5592807B2 (ja) 高じん性・高強度モルタル組成物
JP5383045B2 (ja) グラウト用セメント組成物およびそれを用いたグラウト材料
JP7510379B2 (ja) 湿式吹付けコンクリート

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23746777

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023576824

Country of ref document: JP

Kind code of ref document: A