WO2023134262A1 - 一种非水电解液以及二次电池 - Google Patents

一种非水电解液以及二次电池 Download PDF

Info

Publication number
WO2023134262A1
WO2023134262A1 PCT/CN2022/127703 CN2022127703W WO2023134262A1 WO 2023134262 A1 WO2023134262 A1 WO 2023134262A1 CN 2022127703 W CN2022127703 W CN 2022127703W WO 2023134262 A1 WO2023134262 A1 WO 2023134262A1
Authority
WO
WIPO (PCT)
Prior art keywords
structural formula
carbonate
monofluorine
lithium
electrolytic solution
Prior art date
Application number
PCT/CN2022/127703
Other languages
English (en)
French (fr)
Inventor
张光照
邓永红
钱韫娴
胡时光
王朝阳
常建
Original Assignee
南方科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南方科技大学 filed Critical 南方科技大学
Publication of WO2023134262A1 publication Critical patent/WO2023134262A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of electrochemistry, in particular to a nonaqueous electrolytic solution and a secondary battery.
  • the electrolyte is known as the "blood” in lithium-ion batteries, and it plays a vital role in the capacity of electrode materials in lithium-ion batteries, battery cycle stability, and battery safety.
  • lithium polysulfides can also chemically react with ester electrolytes, traditional ester electrolytes are also difficult to use in lithium-sulfur batteries.
  • ether electrolytes represented by ethylene glycol dimethyl ether (DME) and 1,3-cyclopentane (DOL) react slowly with lithium metal and show good stability to lithium metal, so they are widely used by many scholars. For research on lithium metal batteries.
  • lithium polysulfide has good solubility in ether electrolyte and does not react with solvents, so ether electrolyte is also commonly used in lithium-sulfur batteries.
  • the classic formula is 1M bistrifluoromethylsulfonimide Lithium (LiTFSI) was dissolved in DME/DOL (1:1v/v), and 1-2% LiNO3 was added as an additive.
  • the ether electrolyte system has good stability to lithium metal and can alleviate the growth of lithium dendrites, its oxidation decomposition potential is low, and it is difficult to meet the needs of high-voltage cathode materials (such as ternary cathode materials NCM, sharp Spar lithium nickel manganese oxide and other positive electrode materials).
  • the ether electrolyte like the ester electrolyte, is flammable, which brings a series of safety hazards to lithium-ion battery packs.
  • sulfone compound additives such as sulfonamide compounds or sulfonate compounds
  • electrochemical performance of the battery can be improved to a small extent by adding sulfone compounds in the electrolyte, but the existing The sulfone compound additives have no good effect on improving the oxidation resistance of the electrolyte.
  • the present invention provides a non-aqueous electrolyte and a secondary battery.
  • a non-aqueous electrolyte By adding terminal monofluorine-substituted ethers, hydrocarbons, and sulfonate compounds into the non-aqueous electrolyte, due to the terminal monofluorine Substituted ethers, hydrocarbons, and sulfonate compounds have high oxidation potential and low flammability, so they have good solubility in lithium salts as electrolytes, and can form stable electrolyte systems with lithium salts for use in Optimize and improve the cycle performance of lithium-ion batteries to the greatest extent.
  • the first aspect of the present invention provides a non-aqueous electrolytic solution, including a non-aqueous organic solvent, lithium salt and additives, the additives include at least one of the terminal monofluorine-substituted compounds shown in structural formula 1 to structural formula 3 A sort of:
  • R is selected from C1-C5 alkyl, C1-C5 fluoroalkyl, C1-C5 fluoroalkoxy or C1-C5 fluoroalkenyl;
  • R is selected from C1-C6 alkyl, C1-C6 fluoroalkyl or C1-C6 fluoroalkenyl;
  • R 3 is selected from C1-C6 alkyl, C1-C6 fluoroalkyl, C1-C6 fluoroalkoxy or C1-C6 fluoroalkenyl.
  • terminal monofluorine substituted ethers, hydrocarbons, and sulfonate compounds into the non-aqueous electrolyte, it can effectively reduce the direct contact between the highly reactive solvent molecules and the positive/negative electrode interface, so as to reduce the Side reactions that are unfavorable to the electrochemical cycle in the secondary battery; at the same time, due to the high oxidation potential and low flammability of terminal monofluorinated ethers, hydrocarbons, and sulfonate compounds, they are good for lithium salts as electrolytes.
  • It can form a stable electrolyte system with lithium salt, and can also decompose with other components in the non-aqueous electrolyte on the electrode surface, participate in the formation of passivation film on the electrode surface, and form a metal fluoride-rich SEI on the electrode surface /CEI film can effectively inhibit the growth of lithium dendrites and the shuttle effect of polysulfides, and can improve the oxidation resistance potential of non-aqueous electrolytes, thereby improving the cycle performance of secondary batteries.
  • the fluorinated group of R 1 , R 2 or R 3 group can be perfluorinated or partially fluorinated, and at the same time, R 1 , R 2 or R 3
  • the degree of fluorine substitution of the group and the length of the carbon chain are related to its polarity.
  • the higher the degree of fluorine substitution of the fluorine group, the longer the length of the carbon chain and the lower the polarity, and the solubility of the lithium salt The worse, and the longer the carbon chain of the R 1 , R 2 or R 3 group will help improve the oxidation resistance and flame retardancy of the non-aqueous electrolyte, but the carbon chain length of the group should not be too long, because R 1.
  • the carbon chain length of the R 2 or R 3 group is too long, the polarity of the solvent molecule will decrease, which will reduce the solvent’s ability to dissolve the lithium salt, which is not conducive to the improvement of the conductivity of the non-aqueous electrolyte, while R 1 , R
  • the carbon chain length of the 2 or R 3 group is relatively short, which can increase the ratio of the polar functional group -CH 2 F in the entire molecule in the terminal monofluorine-substituted compound, which is beneficial to the dissociation of lithium ions, thereby providing a more High ionic conductivity.
  • the alkyl when R is selected from alkyl, fluoroalkyl, fluoroalkoxy or fluoroalkenyl, the alkyl can be a straight chain alkyl or a branched chain alkyl, and the alkyl can be Oxygen can be straight-chain alkoxyl or branched-chain alkoxyl, and described alkenyl can be straight-chain alkenyl or branched-chain alkenyl; R Be selected from alkyl, fluoroalkyl or fluoroalkenyl situation Under, described alkyl can be straight-chain alkyl or branched-chain alkyl, and described alkenyl can be straight-chain alkenyl or branched-chain alkenyl; At R3 is selected from alkyl, fluoroalkyl, fluoroalkane In the case of an oxy group or a fluoroalkenyl group, the alkyl group may be a straight chain alkyl group or a branched chain
  • the monofluoro-terminated compound represented by the structural formula 1 is selected from one or more of the following compounds:
  • the terminal monofluorine-substituted compound represented by the structural formula 2 is selected from one or more of the following compounds:
  • the terminal monofluorine-substituted compound represented by the structural formula 3 is selected from one or more of the following compounds:
  • the monofluoro-terminated compound of the present invention includes a monofluoro-terminated substituent group mainly composed of -CH 2 F. Since the unique monofluoroalkyl chain in this group can dissociate lithium salt, it exhibits Lithium salts have good solubility, thus providing high ionic conductivity.
  • the inventors also found that while the terminal monofluorine-substituted compound provides good ionic conductivity, the substitution of fluorine can effectively improve the oxidation resistance potential of solvent molecules, so that the obtained non-aqueous electrolyte can show the stability of the high-voltage positive electrode. properties, which is conducive to the stable cycle of high-voltage batteries. Moreover, on the anode side, the groups of the selected compounds (including ethers, alkanes, and sulfonate esters) all exhibit good chemical stability toward Li metal with fewer side reactions, which is conducive to the highly reversible deposition of Li metal.
  • the substituted monofluorine functional group can be preferentially reduced and decomposed at the lithium metal negative electrode to form a solid electrolyte membrane (SEI film) rich in fluoride, which is beneficial to prevent further reaction between the electrolyte and lithium metal, thus benefiting the lithium metal.
  • SEI film solid electrolyte membrane
  • Deposition and stripping to improve the Coulombic efficiency of lithium metal Since the solvent containing the terminal monofluorine-substituted compound has a weaker relay ability to the lithium salt than a strong interaction solvent, the lithium ion in the solvated structure formed by it is easier to detach from the electrode surface, thereby inhibiting the solvent molecules from forming in the graphite.
  • the intercalation reaction between the sheets improves the stability of the electrolyte to the graphite negative electrode.
  • the non-aqueous electrolyte of the present invention forms a thin and stable fluoride SEI/CEI protective layer on the surface of the positive/negative electrode, thereby enabling a stable cycle of negative electrodes such as lithium metal, graphite, silicon oxygen, and high-voltage positive electrodes.
  • the mass percentage of the terminal monofluorine-substituted compound is 10%-100%; more preferably 80%.
  • the terminal monofluorine substituted compound has higher oxidation resistance potential and flame retardancy, therefore, in the nonaqueous electrolyte, adding an appropriate amount of the terminal monofluorine substituted compound of the present invention can reduce the nonaqueous electrolyte Flammability improves its safety.
  • volume ratio of the solvent to the terminal monofluorine-substituted compound is 0:100-90:10; more preferably 20:80.
  • the solvent includes one or more of ether solvents, nitrile solvents, carbonate solvents and carboxylate solvents.
  • the ether solvent is selected from ethylene glycol dimethyl ether, methyl nonafluoro-n-butyl ether, 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropane At least one of base ether, ethylene glycol bispropionitrile ether.
  • the nitrile solvent is selected from at least one of succinonitrile, glutaronitrile, hexanetrinitrile, adiponitrile, pimelonitrile, suberonitrile and azelanitrile.
  • the carbonate solvent is at least one selected from ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate.
  • the carboxylic acid ester solvent is selected from at least one of ethyl acetate, propyl acetate, and acetic acid propionate.
  • the lithium salt is at least one selected from LiTFSI, LiPF 6 , LiBOB, LiDFOB, LiPO 2 F 2 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiN(SO 2 F) 2 , and LiBETI.
  • the non-aqueous electrolytic solution also includes an additive selected from the group consisting of biphenyl, fluorobenzene, vinylene carbonate, trifluoromethylethylene carbonate, ethylene carbonate, 1,3-propanesulfonic acid Lactone, 1,4-butane sultone, vinyl sulfate, vinyl sulfite, methylene methanedisulfonate, succinonitrile, adiponitrile, 1,2-bis(2-cyanoethoxy ) at least one of ethane and 1,3,6-hexanetrinitrile.
  • an additive selected from the group consisting of biphenyl, fluorobenzene, vinylene carbonate, trifluoromethylethylene carbonate, ethylene carbonate, 1,3-propanesulfonic acid Lactone, 1,4-butane sultone, vinyl sulfate, vinyl sulfite, methylene methanedisulfonate, succinonitrile, adipon
  • the present invention also provides a secondary battery, comprising a positive electrode sheet, a negative electrode sheet, a separator, and the non-aqueous electrolyte solution described in any of the above paragraphs;
  • the positive electrode sheet includes a positive electrode collector and is coated on the positive electrode collector.
  • the positive electrode film on the negative electrode sheet includes a negative electrode current collector and a negative electrode film coated on the negative electrode current collector.
  • the present invention has the following advantages:
  • the present invention can effectively reduce the direct contact between the highly reactive solvent molecules and the positive/negative electrode interface by adding a terminal monofluorine-substituted compound shown in structural formula 1, structural formula 2 or structural formula 3 as an additive in the non-aqueous electrolyte. contact, to reduce the adverse side reactions to the electrochemical cycle in the secondary battery, and at the same time, when the non-aqueous electrolyte containing the terminal monofluorine-substituted compound shown in structural formula 1, structural formula 2 or structural formula 3 is applied to a lithium-ion battery , can effectively inhibit the growth of lithium dendrites to improve the cycle stability of lithium-ion batteries;
  • the terminal monofluorine-substituted compound shown in structural formula 1, structural formula 2 or structural formula 3 has higher oxidation resistance potential and flame retardancy, can effectively reduce the flammability of non-aqueous electrolyte, and improve the performance of lithium-ion batteries. safety;
  • Fig. 1 is the cycle performance figure of the NCM811 battery that the embodiment of the present invention 1 makes;
  • Fig. 2 is the cycle performance figure of the NCM811 battery that comparative example 3 of the present invention makes;
  • Fig. 3 is a diagram of the average coulombic efficiency of lithium-sulfur batteries in Examples 26-28 of the present invention.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • LiPF 6 lithium hexafluorophosphate
  • NCM811 as the positive electrode
  • lithium sheet as the negative electrode
  • commercial polypropylene as the diaphragm
  • Cycle 300 cycles under the condition of 1C current density, charge and discharge voltage range is 2.4-4.4V, calculate the battery capacity retention rate under this condition, and then cycle 270 cycles under the condition of 2C current density, calculate the battery capacity retention rate under this condition .
  • Battery capacity retention rate (%) last discharge capacity/first discharge capacity ⁇ 100%.
  • Comparative Example 1 5% of the terminal monofluorine-substituted compound containing Structural Formula 1, Structural Formula 2 or Structural Formula 3 was added to the non-aqueous electrolyte, and the lithium-ion battery prepared by using it was cycled at 1C for 300 cycles at room temperature.
  • the capacity retention rate is 73%
  • the capacity retention rate of 270 cycles at 2C is 75%. It can be seen that the amount of the added compound containing the terminal monofluorine substitution has a certain influence on the cycle stability of the lithium-ion battery. Only Adding an appropriate amount, such as 10% to 100% of the terminal monofluorine substitution compound described in this application, can most effectively improve the cycle stability of the lithium-ion battery.
  • Comparative Example 2 contains a small amount of the terminal monofluorine-substituted compound. Adding a certain amount of the additive to the non-aqueous electrolyte of the fluorine-substituted compound does not greatly improve the cycle performance of the lithium-ion battery. It can be seen that only an appropriate amount of the terminal compound shown in the structural formula 1, structural formula 2 or structural formula 3 is added. When the non-aqueous electrolyte of monofluorine-substituted compounds is applied to lithium-ion batteries, the growth of lithium dendrites can be effectively inhibited to improve the cycle stability of lithium-ion batteries;
  • Comparative example 3 and comparative example 4 do not add the terminal monofluorine-substituted compound described in structural formula 1, structural formula 2 or structural formula 3 respectively in the non-aqueous electrolyte, and the data of comparative example 3 and comparative example 4 can be It can be seen that the cycle stability of the lithium-ion batteries prepared therefrom is poor.
  • the sulfur element is used as the positive electrode, which forms a layered structure on the surface of a current collector, the lithium sheet is used as the negative electrode, and the commercial polypropylene is used as the separator, together with 40uL of the non-aqueous electrolyte prepared , assembled in a CR2032 button battery case; the average Coulombic efficiency is 99.4% after cycling 200 cycles under the conditions of a current density of 0.5mA/cm 2 and a surface capacity of 1mAh/cm 2 .
  • the terminal monofluorine substitution shown in the structural formula 1, structural formula 2 or structural formula 3 When the compound is applied to the preparation of lithium-sulfur batteries, the coulombic efficiency of the prepared lithium-sulfur batteries is high, and it can reduce the solubility of lithium polysulfides in non-aqueous electrolytes, slow down the shuttle effect of lithium polysulfides, and improve the efficiency of non-aqueous electrolytes.
  • the electrolytic solution is resistant to oxidation potential, thereby improving the cycle performance of the secondary battery and helping to prolong the cycle life of the secondary battery.
  • the present invention provides a non-aqueous electrolyte and a secondary battery.
  • a terminal monofluorine-substituted compound shown in structural formula 1, structural formula 2 or structural formula 3 in the non-aqueous electrolyte, the reaction rate can be effectively reduced.
  • the direct contact between the solvent molecules with high polarity and the positive/negative electrode interface is to reduce the adverse side reactions to the electrochemical cycle in the secondary battery.
  • the terminal monofluoro When the non-aqueous electrolyte of the substituted compound is applied to a lithium-ion battery, the terminal monofluorine-substituted compound shown in the structural formula 1, structural formula 2 or structural formula 3 will decompose on the surface of the lithium-ion electrode with other components in the non-aqueous electrolyte, Participate in the formation of a passivation film on the electrode surface, and form a SEI/CEI film rich in metal fluoride on the electrode surface, which can effectively inhibit the growth of lithium dendrites and improve the cycle stability of lithium-ion batteries; 1.
  • the terminal monofluorine-substituted compound represented by structural formula 2 or structural formula 3 has high oxidation resistance potential and flame retardancy, which can effectively reduce the flammability of non-aqueous electrolytes and improve the safety of lithium-ion batteries.
  • structural formula 2 or structural formula 3 when the non-aqueous electrolyte containing the terminal monofluorine-substituted compound represented by structural formula 1, structural formula 2 or structural formula 3 is applied to a lithium-sulfur battery, the solubility of lithium polysulfide in the non-aqueous electrolyte can be reduced, and polysulfides can be slowed down.
  • the shuttle effect of lithium sulfide improves the oxidation resistance potential of the non-aqueous electrolyte, thereby improving the cycle performance of the secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

本发明涉及电化学技术领域,具体涉及一种非水电解液以及二次电池。本发明所述的非水电解液包括非水有机溶剂、锂盐以及添加剂,所述添加剂包括结构式1至结构式3所示的端单氟取代化合物中的至少一种:同时,本申请还公开了包括上述非水电解液的锂离子电池。本申请通过在非水电解液中加入含结构式1、结构式2或结构式3所示的端单氟取代化合物,能够有效减少反应性较高的溶剂分子与正/负极界面的直接接触,以降低二次电池中对电化学循环不利的副反应。

Description

一种非水电解液以及二次电池
本公开基于申请号为202210044262.2,申请日为2022年01月14日的中国专利申请提出,并要求该篇中国专利申请的优先权,该篇中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及电化学技术领域,具体涉及一种非水电解液以及二次电池。
背景技术
电解液被誉为锂离子电池中的“血液”,对锂离子电池中电极材料容量的发挥、电池循环稳定性、电池安全性等起着至关重要的作用。
传统的锂离子电池中,由于石墨负极的理论比容量(372mAh/g)较低,使得人们开始寻找具有更高比容量、更低电位的锂金属材料(3860mAh/g,-3.04V vs.SHE)作为负极材料。以碳酸乙烯酯(EC)、碳酸甲乙酯(EMC)、碳酸二甲酯(DMC)、碳酸二乙酯(DEC)等为代表的碳酸酯类电解液溶剂,其并不适用于锂金属电池,这主要是因为锂金属的电位较低,还原性较强,能够与大多数酯类电解液反应,从而在充放电过程中容易导致锂支晶的生长以及死锂的形成,最终使得电池衰减迅速,难以满足需求。此外,由于多硫化锂也可与酯类电解液发生化学反应,因而传统酯类电解液也难以用于锂硫电池。
而以乙二醇二甲醚(DME)、1,3-环戊烷(DOL)为代表的醚类电解液与锂金属反应缓慢,表现出对锂金属较好的稳定性,因而被众多学者用于锂金属电池的研究。此外多硫化锂在醚类电解液中又较好的溶解度,且不与溶剂发生反应,因而醚类电解液也被常用于锂硫电池,经典的配方为1M双三氟甲基磺酰亚胺锂(LiTFSI)溶于DME/DOL(1:1v/v)中,同时添加1~2%LiNO3作为添加剂。虽然该醚类电解液体系对锂金属有较好的稳定性,可缓解锂枝晶的生长,但是其氧化分解电位较低,难以满足高电压正极材料的需求(如三元正极材料NCM、尖晶石镍锰酸锂等正极材料)。同时,醚类电解液与酯类电解液一样,具有易燃性,给锂离子电池组带来一系列安全隐患。
另一方面,现有一类砜类化合物添加剂,如磺酰胺类化合物或磺酸酯类化合物,虽然通过在电解液中加入砜类化合物能够在较小程度上提高电池的电化学性能,但是现有的砜类化合物添加剂对于电解液的耐氧化性能方面并没有较好的提升作用。
发明内容
为了解决上述技术问题,本发明提供了一种非水电解液以及二次电池,通过将端单氟取代醚类、烃类、磺酸酯类化合物加入至非水电解液中,由于端单氟取代的醚类、烃类以及磺酸酯类合物具有高氧化电位、低可燃性,因此,对作为电解质的锂盐有良好的溶解性,可与锂盐形成稳定的电解液体系,用以最大程度的优化以及改善锂离子电池的循环性能。
为了实现上述目的,本发明第一方面提供了一种非水电解液,包括非水有机溶剂、锂盐以及添加剂,所述添加剂包括结构式1至结构式3所示的端单氟取代化合物中的至少一种:
Figure PCTCN2022127703-appb-000001
结构式1
其中,R 1选自C1-C5的烷基、C1-C5的氟代烷基、C1-C5的氟代烷氧基或C1-C5的氟代烯基;
Figure PCTCN2022127703-appb-000002
结构式2
其中,R 2选自C1-C6的烷基、C1-C6的氟代烷基或C1-C6的氟代烯基;
Figure PCTCN2022127703-appb-000003
结构式3
其中,R 3选自C1-C6的烷基、C1-C6的氟代烷基、C1-C6的氟代烷氧基或C1-C6的氟代烯基。
本发明通过将端单氟取代醚类、烃类、磺酸酯类化合物加入至非水电解液中,能够有效减少反应性较高的溶剂分子与正/负极界面的直接接触,用以降低二次电池中对电化学循环不利的副反应;同时,由于端单氟取代醚类、烃类、磺酸酯类合物具有高氧化电位、低可燃性,因此,对作为电解质的锂盐有良好的溶解性,可与锂盐形成稳定的电解液体系,还可以与非水电解液中的其他成分在电极表面分解,参与电极表面钝化膜形成,在电极表面形成富含金属氟化物的SEI/CEI膜,有效抑制锂枝晶的生长和多硫化物的穿梭效应,可以提高非水电解液的耐氧化电位,从而提高二次电池的循环性能。
对于结构式1至结构式3所示的端单氟取代化合物,R 1、R 2或R 3基团的氟代基团可以为全氟代或部分氟代,同时,R 1、R 2或R 3基团的氟取代程度以及碳链长度与其极性相关,具体来说,氟代基团的氟取代程度越高,则其碳链长度越长且极性越低,则对锂盐的溶解力越差,而R 1、R 2或R 3基团的碳链越长会有利于提高非水电解液的耐氧化性能和阻燃性,但其基团的碳链长度不宜过长,因为R 1、R 2或R 3基团的碳链长度过长会导致溶剂分子的极性减小,降低溶剂对锂盐的溶解能力,不利于非水电解液电导率的提升,而R 1、R 2或R 3基团的碳链长度相对短一些,可提高所述端单氟取代化合物中的极性官能团-CH 2F在整个分子中的比例,有利于锂离子的解离,从而提供更高的离子电导率。
需要说明的是,在R 1选自烷基、氟代烷基、氟代烷氧基或氟代烯基情况下,所述烷基可以是直链烷基或支链烷基,所述烷氧基可以是直链烷氧基或支链烷氧基,所述烯基可以是直链烯基或支链烯基;在R 2选自烷基、氟代烷基或氟代烯基情况下,所述烷基可以是直链烷基 或支链烷基,所述烯基可以是直链烯基或支链烯基;在R 3选自烷基、氟代烷基、氟代烷氧基或氟代烯基情况下,所述烷基可以是直链烷基或支链烷基,所述烷氧基可以是直链烷氧基或支链烷氧基,所述烯基可以是直链烯基或支链烯基。
进一步的,所述结构式1所示的端单氟取代化合物选自以下化合物中的一种或多种:
Figure PCTCN2022127703-appb-000004
所述结构式2所示的端单氟取代化合物选自以下化合物中的一种或多种:
Figure PCTCN2022127703-appb-000005
所述结构式3所示的端单氟取代化合物选自以下化合物中的一种或多种:
Figure PCTCN2022127703-appb-000006
本发明所述的端单氟取代化合物中,包括了以-CH 2F为主的端单氟取代基团,由于该基团中独特的单氟烷基链能够解离锂盐,表现出对锂盐良好的溶解性,从而提供较高的离子电导率。
此外,本发明人还发现端单氟取代化合物在提供良好离子电导率的同时,氟的取代能够有效提升溶剂分子的耐氧化电位,从而能够使得到的非水电解液表现出对高压正极的稳定性,有利于高压电池的稳定循环。而且,在负极一侧,所选化合物的基团(包括醚、烷烃、磺酸酯)均对锂金属表现出良好的化学稳定性,副反应较少,有利于锂金属的高度可逆沉积。
而且,所取代的单氟官能团能够在锂金属负极优先被还原分解,生成富含氟化物的固态电解质膜(SEI膜),有利于阻止电解液与锂金属的进一步反应,因而有利于锂金属的沉积与剥离,提高锂金属的库伦效率。由于含所述端单氟取代化合物的溶剂对锂盐的接力能力弱于强相互作用溶剂,因此其形成的溶剂化结构中锂离子在电极表面的脱出更为容易,因而能够抑制溶剂分子在石墨片层之间的插层反应,从而提高电解液对石墨负极的稳定性。基于上述原理,本发明所述的非水电解液在正/负极表面生成薄而稳定的氟化物SEI/CEI保护层,从而使得锂金属、石墨、硅氧等负极以及高压正极稳定循环。
进一步的,以所述非水电解液的总质量为100%计,所述端单氟取代化合物的质量百分比为10%~100%;进一步优选为80%。
由于所述的端单氟取代化合物具有较高的耐氧化电位和阻燃性,因此,在非水电解液中,加入适量的本发明所述的端单氟取代化合物可降低非水电解液的可燃性,提升其安全性。
进一步的,所述溶剂与所述端单氟取代化合物的体积比为0:100~90:10;进一步优选为20:80。
进一步的,所述溶剂包括醚类溶剂、腈类溶剂、碳酸酯类溶剂和羧酸酯类溶剂中的一种或多种。
优选的,所述醚类溶剂选自乙二醇二甲醚、甲基九氟正丁基醚、1,1,2,2-四氟乙基-2,2,3,3-四氟丙基醚、乙二醇双丙腈醚中的至少一种。
优选的,所述腈类溶剂选自丁二腈、戊二腈、己烷三腈、己二腈、庚二腈、辛二腈、壬二腈中的至少一种。
优选的,所述碳酸酯类溶剂选自碳酸乙烯酯、碳酸丙烯酯、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯中的至少一种。
优选的,所述羧酸酯类溶剂选自乙酸乙酯、乙酸丙酯、丙酸乙酸中的至少一种。
进一步的,所述锂盐选自LiTFSI、LiPF 6、LiBOB、LiDFOB、LiPO 2F 2、LiBF 4、LiSbF 6、LiAsF 6、LiN(SO 2F) 2、LiBETI中的至少一种。
进一步的,所述非水电解液还包括添加剂,所述添加剂选自联苯、氟苯、碳酸亚乙烯酯、三氟甲基碳酸乙烯酯、碳酸乙烯亚乙酯、1,3-丙磺酸内酯、1,4-丁磺酸内酯、硫酸乙烯酯、亚硫酸乙烯酯、甲烷二磺酸亚甲酯、丁二腈、己二腈、1,2-二(2-氰乙氧基)乙烷和1,3,6-己烷三腈中的至少一种。
第二方面,本发明还提供一种二次电池,包括正极片、负极片、隔离膜以及上述任一段落所述的非水电解液;所述正极片包括正极集流体及涂布在正极集流体上的正极膜片,所述负极片包括负极集流体及涂布在负极集流体上的负极膜片。
与现有技术相比,本发明有以下优点:
(1)本发明通过在非水电解液中加入含结构式1、结构式2或结构式3所示的端单氟取代化合物作为添加剂,能够有效减少反应性较高的溶剂分子与正/负极界面的直接接触,以降低二次电池中对电化学循环不利的副反应,同时,将所述含结构式1、结构式2或结构式3所示的端单氟取代化合物的非水电解液应用于锂离子电池时,能有效抑制锂枝晶的生长,用 以提高锂离子电池的循环稳定性;
(2)所述含结构式1、结构式2或结构式3所示的端单氟取代化合物具有较高的耐氧化电位和阻燃性,可有效降低非水电解液的可燃性,提升锂离子电池的安全性;
(3)将所述含结构式1、结构式2或结构式3所示的端单氟取代化合物的非水电解液应用于锂硫电池时,可降低多硫化锂在非水电解液中的溶解度,减缓多硫化锂的穿梭效应,提高非水电解液耐氧化电位,从而提高二次电池的循环性能。
附图说明
图1是本发明实施例1制得的NCM811电池的循环性能图;
图2是本发明对比例3制得的NCM811电池的循环性能图;
图3是本发明实施例26-28中锂硫电池的平均库伦效率图。
具体实施方式
下面将结合本发明中的实施例,对本发明实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通的技术人员在没有做出创造性劳动的前提下所获得的所有其它实施例,都属于本发明的保护范围。
以下将通过实施例对本发明进行详细描述。
表1
Figure PCTCN2022127703-appb-000007
Figure PCTCN2022127703-appb-000008
注:以下实施例和对比例中采用的化合物1~18选自于表1。
实施例1
一、非水电解液的制备
将碳酸乙烯酯(EC)、碳酸二乙酯(DEC)和碳酸甲乙酯(EMC)按质量比为EC:DEC:EMC=1:1:1进行混合,然后加入六氟磷酸锂(LiPF 6)至摩尔浓度为2mol/L,以非水电解液的总重量为100%计,加入按表2中实施例1所示质量百分比的化合物1,搅拌、充分溶解,即得。
二、电池的组装以及电池性能测试
以NCM811为正极,锂片为负极,以商用的聚丙烯为隔膜,与40uL制得的所述非水电解液一起,组装在CR2032型纽扣电池壳中;在24℃恒温条件下静止3小时,以1C电流密度的条件下循环300圈,充放电电压范围为2.4-4.4V,计算该条件下电池容量保持率,再以2C电流密度的条件下循环270圈,计算该条件下电池容量保持率。
按下式计算循环的容量保持率:
电池容量保持率(%)=最后一次的放电容量/第1次的放电容量×100%。
实施例2-25
实施例2-25中包括实施例1中大部分的操作步骤,其不同之处在于:
非水电解液的制备过程中,加入表2中实施例2-25所示质量百分比的组分。得到的测试结果填入表2。
对比例1-4
对比例1-4中包括实施例1中大部分的操作步骤,其不同之处在于:
非水电解液的制备过程中,加入表2中对比例1-4所示质量百分比的组分。得到的测试结果填入表2。
表2
Figure PCTCN2022127703-appb-000009
Figure PCTCN2022127703-appb-000010
结合图1-2、实施例1-25以及对比例1-4的数据可以看出,在非水电解液中加入含有结构式1、结构式2或者结构式3所述的端单氟取代化合物时,可以显著提高锂离子电池的常温循环稳定性,尤其是当含有所述结构式1、结构式2或者结构式3的端单氟取代化合物的质量百分数在10%~100%时,用其制备得到的锂离子电池在常温条件下以1C循环300周的容量保持率可达80%以上,其以2C循环270周的容量保持率可达85%以上,且当溶剂与所述 端单氟取代化合物的体积比在20:80时,制备得到的所述锂离子电池以1C循环300周的容量保持率高达91%,其以2C循环270周的容量保持率高达93%;
对比例1是在非水电解液中加入5%的含有结构式1、结构式2或者结构式3所述的端单氟取代化合物,用其制备得到的锂离子电池在常温条件下以1C循环300周的容量保持率为73%,且以2C循环270周的容量保持率为75%,可见,加入的含所述端单氟取代化合物的量对锂离子电池的循环稳定性是有一定影响的,只有加入适量的,例如本申请所述的10%~100%的端单氟取代化合物,才可以最有效提升锂离子电池的循环稳定性,对比例2是在含有较少量的含所述端单氟取代化合物的非水电解液中加入一定量的所述添加剂,其对锂离子电池的循环性能提升不大,可见,只有将适量的所述含结构式1、结构式2或结构式3所示的端单氟取代化合物的非水电解液应用于锂离子电池时,才能有效抑制锂枝晶的生长,用以提高锂离子电池的循环稳定性;
对比例3和对比例4分别是在所述非水电解液中不加入所述含有结构式1、结构式2或者结构式3所述的端单氟取代化合物,通过对比例3和对比例4的数据可以看出,以其制备得到的锂离子电池的循环稳定性均较差。
实施例26
实施例26中包括实施例1中大部分的操作步骤,其不同之处在于:
电池的组装过程中,以硫单质为正极,其在一集流体的表面形成一层状结构,锂片为负极,以商用的聚丙烯为隔膜,与40uL制得的所述非水电解液一起,组装在CR2032型纽扣电池壳中;以电流密度为0.5mA/cm 2,面容量为1mAh/cm 2的条件下循环200圈,其平均库伦效率为99.4%。
实施例27
实施例27中包括实施例1中大部分的操作步骤,其不同之处在于:
非水电解液的制备过程中,加入表2中实施例13所示质量百分比的化合物9;电池的组装过程中,以硫单质为正极,其在一集流体的表面形成一层状结构,锂片为负极,以商用的聚丙烯为隔膜,与40uL制得的所述非水电解液一起,组装在CR2032型纽扣电池壳中;以电流密度为0.5mA/cm 2,面容量为1mAh/cm 2的条件下循环200圈,其平均库伦效率为99.6%。
实施例28
实施例28中包括实施例1中大部分的操作步骤,其不同之处在于:
非水电解液的制备过程中,加入表2中实施例20所示质量百分比的化合物16;电池的组装过程中,以硫单质为正极,其在一集流体的表面形成一层状结构,锂片为负极,以商用的聚丙烯为隔膜,与40uL制得的所述非水电解液一起,组装在CR2032型纽扣电池壳中;以电流密度为0.5mA/cm 2,面容量为1mAh/cm 2的条件下循环200圈,其平均库伦效率为99.5%。
结合图3以及实施例26-28的数据可以看出,分别将含有结构式1、结构式2或者结构式3所示端单氟取代化合物的非水电解液制备成不同锂硫电池时,其以电流密度为0.5mA/cm 2,面容量为1mAh/cm 2的条件下循环200圈的平均库伦效率均高于99.5%,可见,将含有所述结构式1、结构式2或者结构式3所示端单氟取代化合物应用于锂硫电池的制备时,制得的锂硫电池的库伦效率高,且其可降低多硫化锂在非水电解液中的溶解度,减缓多硫化锂的穿梭效应,用以提高非水电解液耐氧化电位,从而提高二次电池的循环性能,利于延长二次电池的循环使用寿命。
综上所述,本发明提供了一种非水电解液及二次电池,通过在非水电解液中加入含结构式1、结构式2或结构式3所示的端单氟取代化合物,能够有效减少反应性较高的溶剂分子与正/负极界面的直接接触,以降低二次电池中对电化学循环不利的副反应,同时,将所述含结构式1、结构式2或结构式3所示的端单氟取代化合物的非水电解液应用于锂离子电池时,所述含结构式1、结构式2或结构式3所示的端单氟取代化合物会与非水电解液中的其他成 分在锂离子电极表面分解,参与电极表面钝化膜的形成,在电极表面形成富含金属氟化物的SEI/CEI膜,能有效抑制锂枝晶的生长,用以提高锂离子电池的循环稳定性;而且,所述含结构式1、结构式2或结构式3所示的端单氟取代化合物具有较高的耐氧化电位和阻燃性,可有效降低非水电解液的可燃性,提升锂离子电池的安全性。此外,将所述含结构式1、结构式2或结构式3所示的端单氟取代化合物的非水电解液应用于锂硫电池时,可降低多硫化锂在非水电解液中的溶解度,减缓多硫化锂的穿梭效应,提高非水电解液耐氧化电位,从而提高二次电池的循环性能。
以上借助具体实施例对本发明做了进一步描述,但是应该理解的是,这里具体的描述,不应理解为对本发明的实质和范围的限定,本领域内的普通技术人员在阅读本说明书后对上述实施例做出的各种修改,都属于本发明所保护的范围。

Claims (8)

  1. 一种非水电解液,其特征在于,包括非水有机溶剂、锂盐以及添加剂,所述添加剂包括结构式1至结构式3所示的端单氟取代化合物中的至少一种:
    Figure PCTCN2022127703-appb-100001
    其中,R 1选自C1-C5的烷基、C1-C5的氟代烷基、C1-C5的氟代烷氧基或C1-C5的氟代烯基;
    Figure PCTCN2022127703-appb-100002
    其中,R 2选自C1-C6的烷基、C1-C6的氟代烷基或C1-C6的氟代烯基;
    Figure PCTCN2022127703-appb-100003
    其中,R 3选自C1-C6的烷基、C1-C6的氟代烷基、C1-C6的氟代烷氧基或C1-C6的氟代烯基。
  2. 根据权利要求1所述的非水电解液,其特征在于,所述结构式1所示的端单氟取代化合物选自以下化合物中的一种或多种:
    Figure PCTCN2022127703-appb-100004
    所述结构式2所示的端单氟取代化合物选自以下化合物中的一种或多种:
    Figure PCTCN2022127703-appb-100005
    Figure PCTCN2022127703-appb-100006
    所述结构式3所示的端单氟取代化合物选自以下化合物中的一种或多种:
    Figure PCTCN2022127703-appb-100007
  3. 根据权利要求1所述的非水电解液,其特征在于,以所述非水电解液的总质量为100%计,所述端单氟取代化合物的质量百分比为10%~100%。
  4. 根据权利要求1所述的非水电解液,其特征在于,所述非水有机溶剂与所述端单氟取代化合物的体积比为0:100~90:10。
  5. 根据权利要求4所述的非水电解液,其特征在于,所述非水有机溶剂包括醚类溶剂、腈类溶剂、碳酸酯类溶剂和羧酸酯类溶剂中的一种或多种;
    所述醚类溶剂选自乙二醇二甲醚、甲基九氟正丁基醚、1,1,2,2-四氟乙基-2,2,3,3-四氟丙基醚、乙二醇双丙腈醚中的至少一种;
    所述腈类溶剂选自丁二腈、戊二腈、己烷三腈、己二腈、庚二腈、辛二腈、壬二腈中的至少一种;
    所述碳酸酯类溶剂选自碳酸乙烯酯、碳酸丙烯酯、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯中的至少一种;
    所述羧酸酯类溶剂选自乙酸乙酯、乙酸丙酯、丙酸乙酸中的至少一种。
  6. 根据权利要求1所述的非水电解液,其特征在于,所述锂盐选自LiPF 6、LiBOB、LiDFOB、LiPO 2F 2、LiBF 4、LiSbF 6、LiAsF 6、LiN(SO 2F) 2、LiN(SO 2CF 3) 2、LiBETI中的至少一种。
  7. 根据权利要求1所述的非水电解液,其特征在于,所述非水电解液还包括添加剂,所述添加剂选自联苯、氟苯、碳酸亚乙烯酯、三氟甲基碳酸乙烯酯、碳酸乙烯亚乙酯、1,3-丙磺酸内酯、1,4-丁磺酸内酯、硫酸乙烯酯、亚硫酸乙烯酯、甲烷二磺酸亚甲酯、丁二腈、己二腈、1,2-二(2-氰乙氧基)乙烷和1,3,6-己烷三腈中的至少一种。
  8. 一种二次电池,其特征在于,包括正极片、负极片、隔离膜以及权利要求1-7任一项所述的非水电解液。
PCT/CN2022/127703 2022-01-14 2022-10-26 一种非水电解液以及二次电池 WO2023134262A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210044262.2 2022-01-14
CN202210044262.2A CN114256508A (zh) 2022-01-14 2022-01-14 一种非水电解液以及二次电池

Publications (1)

Publication Number Publication Date
WO2023134262A1 true WO2023134262A1 (zh) 2023-07-20

Family

ID=80799616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/127703 WO2023134262A1 (zh) 2022-01-14 2022-10-26 一种非水电解液以及二次电池

Country Status (2)

Country Link
CN (1) CN114256508A (zh)
WO (1) WO2023134262A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116914264A (zh) * 2023-09-14 2023-10-20 泉州市博泰半导体科技有限公司 一种电解液及其制备方法和电池、电化学器件以及组件
CN117682972A (zh) * 2024-01-31 2024-03-12 安徽盟维新能源科技有限公司 含磺酰胺基团和氟化基团的有机化合物及其应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114256508A (zh) * 2022-01-14 2022-03-29 南方科技大学 一种非水电解液以及二次电池
CN115472914B (zh) * 2022-10-26 2023-08-15 吉林师范大学 高硫面载量锂硫电池的电解液及其高硫面载量锂硫电池

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS634569A (ja) * 1986-06-24 1988-01-09 Bridgestone Corp 非水電解液二次電池
JPS6430180A (en) * 1987-07-27 1989-02-01 Nippon Telegraph & Telephone Electrolyte for lithium battery
JPH09293533A (ja) * 1996-04-26 1997-11-11 Mitsubishi Chem Corp 非水電解液二次電池
CN102479977A (zh) * 2010-11-29 2012-05-30 张家港市国泰华荣化工新材料有限公司 一种非水电解质溶液及其用途
CN105098237A (zh) * 2014-05-20 2015-11-25 浙江省化工研究院有限公司 一种高电压电解液添加剂及其应用
CN109301322A (zh) * 2018-09-21 2019-02-01 宁德新能源科技有限公司 电解液和包含该电解液的电化学装置
CN111354978A (zh) * 2020-03-09 2020-06-30 东莞维科电池有限公司 一种高电压三元锂离子电池电解液及高电压三元锂离子电池
WO2021125301A1 (ja) * 2019-12-17 2021-06-24 三菱ケミカル株式会社 非水系電解液及びエネルギーデバイス
CN114256508A (zh) * 2022-01-14 2022-03-29 南方科技大学 一种非水电解液以及二次电池

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602005017837D1 (de) * 2004-01-15 2010-01-07 Panasonic Corp Nichtwässriger Elektrolyt für elektrochemische Vorrichtungen
JP5471617B2 (ja) * 2010-03-05 2014-04-16 三菱化学株式会社 非水系電解液及びそれを用いた非水系電解液二次電池
JP6070540B2 (ja) * 2011-03-28 2017-02-01 日本電気株式会社 二次電池および電解液
KR20140083170A (ko) * 2012-12-24 2014-07-04 삼성에스디아이 주식회사 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
JP6400888B2 (ja) * 2013-06-19 2018-10-03 株式会社Gsユアサ 蓄電素子
KR101895901B1 (ko) * 2017-05-26 2018-09-07 삼성에스디아이 주식회사 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
KR20210029533A (ko) * 2019-09-06 2021-03-16 주식회사 엘지화학 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
CN111525191B (zh) * 2020-04-29 2022-07-05 宁德新能源科技有限公司 一种电解液及电化学装置
CN112382792A (zh) * 2020-10-31 2021-02-19 华南理工大学 一种用于锂金属/锂离子/锂硫电池的含氟醚类电解液共溶剂及电解液与锂二次电池
KR20210116547A (ko) * 2020-12-29 2021-09-27 동관 엠프렉스 테크놀로지 리미티드 전해액, 전기화학장치 및 전자장치

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS634569A (ja) * 1986-06-24 1988-01-09 Bridgestone Corp 非水電解液二次電池
JPS6430180A (en) * 1987-07-27 1989-02-01 Nippon Telegraph & Telephone Electrolyte for lithium battery
JPH09293533A (ja) * 1996-04-26 1997-11-11 Mitsubishi Chem Corp 非水電解液二次電池
CN102479977A (zh) * 2010-11-29 2012-05-30 张家港市国泰华荣化工新材料有限公司 一种非水电解质溶液及其用途
CN105098237A (zh) * 2014-05-20 2015-11-25 浙江省化工研究院有限公司 一种高电压电解液添加剂及其应用
CN109301322A (zh) * 2018-09-21 2019-02-01 宁德新能源科技有限公司 电解液和包含该电解液的电化学装置
WO2021125301A1 (ja) * 2019-12-17 2021-06-24 三菱ケミカル株式会社 非水系電解液及びエネルギーデバイス
CN111354978A (zh) * 2020-03-09 2020-06-30 东莞维科电池有限公司 一种高电压三元锂离子电池电解液及高电压三元锂离子电池
CN114256508A (zh) * 2022-01-14 2022-03-29 南方科技大学 一种非水电解液以及二次电池

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116914264A (zh) * 2023-09-14 2023-10-20 泉州市博泰半导体科技有限公司 一种电解液及其制备方法和电池、电化学器件以及组件
CN116914264B (zh) * 2023-09-14 2023-12-19 泉州市博泰半导体科技有限公司 一种电解液及其制备方法和电池、电化学器件以及组件
CN117682972A (zh) * 2024-01-31 2024-03-12 安徽盟维新能源科技有限公司 含磺酰胺基团和氟化基团的有机化合物及其应用
CN117682972B (zh) * 2024-01-31 2024-04-30 安徽盟维新能源科技有限公司 含磺酰胺基团和氟化基团的有机化合物及其应用

Also Published As

Publication number Publication date
CN114256508A (zh) 2022-03-29

Similar Documents

Publication Publication Date Title
WO2023134262A1 (zh) 一种非水电解液以及二次电池
US10141608B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery containing the same
JP6712588B2 (ja) 高電圧広温度範囲リチウムイオン電池の電解液、その調製方法及びその応用
CN103875116B (zh) 二次电池用非水电解液及锂离子二次电池
US9979049B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
JP2020147566A (ja) リチウム塩混合物のLi−イオン電池電解質としての使用
WO2021208955A1 (zh) 电解液添加剂、二次电池电解液、二次电池和终端
US20080160419A1 (en) Electrolyte Solutions For Electrochemical Energy Devices
KR20180093700A (ko) 리튬 이차전지 전해액 및 이를 포함하는 리튬 이차전지
US9548515B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
CN114583270B (zh) 一种锂离子电池
CN113054251B (zh) 一种适用于高电压体系锂离子电池的电解液及锂离子电池
CN111490294B (zh) 非水电解液功能添加剂、非水电解液及锂离子电池
JP2007141760A (ja) 非水電解質電池
US20220093972A1 (en) Localized High-Salt-Concentration Electrolytes Containing Longer-Sidechain Glyme-Based Solvents and Fluorinated Diluents, and Uses Thereof
CN104409771B (zh) 一种含有腈乙基氢氟醚的电解液及一种锂二次电池
KR102022363B1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
US20160276709A1 (en) Electrolyte for lithium secondary battery, and lithium secondary battery including same
CN108539268B (zh) 高比能锂电池非水电解液
WO2022127796A1 (zh) 电池电解液、二次电池和终端
CN112768774B (zh) 一种含腈类化合物的电解液、其制备方法及锂二次电池
WO2023005505A1 (zh) 一种锂离子电池
JP2018125219A (ja) リチウムイオン二次電池用の電解液
CN113782835A (zh) 一种全氟溶剂高电压电解液及其在锂离子电池中的应用
CN114695956A (zh) 一种非水电解液及电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22919896

Country of ref document: EP

Kind code of ref document: A1