WO2021125301A1 - 非水系電解液及びエネルギーデバイス - Google Patents

非水系電解液及びエネルギーデバイス Download PDF

Info

Publication number
WO2021125301A1
WO2021125301A1 PCT/JP2020/047297 JP2020047297W WO2021125301A1 WO 2021125301 A1 WO2021125301 A1 WO 2021125301A1 JP 2020047297 W JP2020047297 W JP 2020047297W WO 2021125301 A1 WO2021125301 A1 WO 2021125301A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
aqueous electrolyte
mass
less
electrolyte solution
Prior art date
Application number
PCT/JP2020/047297
Other languages
English (en)
French (fr)
Inventor
脩平 澤
川上 大輔
西尾 晃一
Original Assignee
三菱ケミカル株式会社
Muアイオニックソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社, Muアイオニックソリューションズ株式会社 filed Critical 三菱ケミカル株式会社
Priority to JP2021565664A priority Critical patent/JPWO2021125301A1/ja
Priority to KR1020227019989A priority patent/KR20220100029A/ko
Priority to EP20902901.6A priority patent/EP4080533A4/en
Priority to CN202080087604.8A priority patent/CN114846669A/zh
Publication of WO2021125301A1 publication Critical patent/WO2021125301A1/ja
Priority to US17/837,270 priority patent/US20220328878A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/64Liquid electrolytes characterised by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/166Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by the solute
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/168Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte solution and an energy device.
  • Lithium primary batteries, lithium secondary batteries, and electric double-layer capacitors are used in a wide range of applications such as power supplies for mobile phones such as smartphones and so-called consumer small devices such as laptop computers, and in-vehicle power supplies for driving such as electric vehicles.
  • Lithium ion capacitors and other energy devices have been put into practical use.
  • the demand for higher performance of energy devices in recent years is increasing.
  • Patent Document 1 by using an electrolytic solution for a lithium secondary battery containing an alkyl alkane sulfonate having 1 to 6 carbon atoms, a film is formed on the surface of the carbon electrode by the reaction between the alkyl alkane sulfonate and the carbon electrode.
  • the technology is disclosed, which can suppress the decomposition of the electrolytic solution and improve the cycle characteristics.
  • Patent Document 2 describes a non-aqueous electrolyte solution containing LiPF 6 and a fluorosulfonate, wherein the molar content of FSO 3 is 0.001 to 1.2 with respect to the molar content of PF 6.
  • Patent Document 3 by using a non-aqueous electrolyte secondary battery using an electrolyte containing vinylene carbonate, difluorophosphate, etc., deterioration of the repeated charge / discharge characteristics of the battery is suppressed, and the low temperature discharge characteristics are also obtained.
  • a technique for providing an excellent non-aqueous electrolyte secondary battery is disclosed.
  • Patent Document 4 describes a non-aqueous electrolyte secondary battery using an electrolytic solution containing a boron-containing compound and a cyclic sulfonic acid ester, wherein the content of the boron-containing compound is 0.1 to 2.0.
  • a technique for providing a secondary battery having high charge / discharge efficiency by setting the mass% to% is disclosed.
  • the present inventor selected from the group consisting of chain sulfonic acid esters and fluorosulfonates, monofluorophosphates, difluorophosphates, imide salts, and oxalates.
  • chain sulfonic acid esters and fluorosulfonates monofluorophosphates, difluorophosphates, imide salts, and oxalates.
  • a non-aqueous electrolyte solution for an energy device including a positive electrode and a negative electrode.
  • the non-aqueous electrolyte solution together with the electrolyte and the non-aqueous solvent, It contains a chain sulfonic acid ester and at least one fluorophosphate selected from monofluorophosphate and difluorophosphate, and the content of the chain sulfonic acid ester relative to the content of the fluorophosphate.
  • a non-aqueous electrolyte solution having a mass ratio of 10/90 or more and 82/18 or less.
  • a non-aqueous electrolyte solution for an energy device including a positive electrode and a negative electrode.
  • the non-aqueous electrolyte solution together with the electrolyte and the non-aqueous solvent, (A) Contains a chain sulfonic acid ester and at least one compound selected from the group consisting of fluorosulfonates, imide salts, and oxalates. (B) The total content of at least one compound selected from the group consisting of fluorosulfonate, imide salt, and oxalate is 1.0 ⁇ 10 -3 % by mass or more in 100% by mass of the non-aqueous electrolyte solution.
  • the non-aqueous electrolyte solution further contains at least one compound selected from the group consisting of a cyclic carbonate having a carbon-carbon unsaturated bond and a fluorine-containing cyclic carbonate, according to [1] to [3].
  • the non-aqueous electrolyte solution according to any one.
  • An energy device comprising a positive electrode, a negative electrode, and the non-aqueous electrolyte solution according to any one of [1] to [4].
  • non-aqueous electrolyte solution capable of suppressing an increase rate of normal temperature and / or low temperature discharge resistance of an energy device. Further, by using such a non-aqueous electrolyte solution, it is possible to provide an energy device in which the rate of increase in normal temperature and / or low temperature discharge resistance is suppressed.
  • Non-aqueous electrolyte solution comprises a chain sulfonic acid ester and a fluorosulfonate, a monofluorophosphate, a difluorophosphate, an imide salt, and a oxalate.
  • a chain sulfonic acid ester and a fluorosulfonate a monofluorophosphate, a difluorophosphate, an imide salt, and a oxalate.
  • Patent Document 1 mentions that an alkyl alkanesulfonate forms a film on the surface of a carbon electrode and suppresses decomposition of an electrolytic solution.
  • the film formed here has high solubility in the electrolytic solution, and in a durability test such as a high temperature storage test, the film may dissolve in the electrolytic solution and disappear.
  • a durability test such as a high temperature storage test
  • the film may dissolve in the electrolytic solution and disappear.
  • At least one compound selected from the group consisting of fluorosulfonate, monofluorophosphate, difluorophosphate, imide salt, and oxalate is partially dissociated in the electrolytic solution and anions are formed.
  • the component is generated and the anion acts on the positive electrode to exert a protective effect.
  • fluorosulfonates, monofluorophosphates, difluorophosphates, imide salts, and oxalates have oxygen-mediated double bonds, which enhances electronic acceptability based on molecular orbital theory. It is considered that this causes a reduction side reaction on the negative electrode and inhibits the formation of the film. As a result, there is room for improvement in the discharge resistance retention rate after the durability test.
  • non-aqueous electrolyte solution contain a chain sulfonic acid ester, and fluorosulfonate, monofluorophosphate, difluorophosphate, imide salt, and oxalate. It has been found that the above-mentioned problems can be solved by mixing at least one compound selected from the group consisting of the above in a non-aqueous electrolyte solution at a specific ratio with respect to the chain sulfonic acid ester.
  • the chain sulfonic acid ester is reduced to generate anionic radicals, and at least one selected from the group consisting of fluorosulfonates, monofluorophosphates, difluorophosphates, imide salts, and oxalates.
  • anionic radicals at least one selected from the group consisting of fluorosulfonates, monofluorophosphates, difluorophosphates, imide salts, and oxalates.
  • An immediate addition reaction occurs with respect to the oxygen-mediated double bond of the compound.
  • the resulting complex has low solubility and can exist as a stable film on the negative electrode, thus enhancing the protective ability on the negative electrode. Further, even when a small amount of these complexes (composite coatings) are eluted, the components act strongly and stably on the positive electrode, so that the protective effect on the positive electrode is also enhanced. Therefore, the rate of increase in normal temperature and / or low temperature discharge resistance can be suppressed.
  • At least one compound selected from the group consisting of fluorosulfonate, monofluorophosphate, difluorophosphate, imide salt, and oxalate is too small with respect to the chain sulfonic acid ester. , Unstable film formation derived from chain sulfonic acid ester increases. Therefore, at least one compound selected from the group consisting of a chain sulfonic acid ester and a fluorosulfonate, a monofluorophosphate, a difluorophosphate, an imide salt, and a oxalate is contained in a specific ratio. There is a need.
  • the cyclic sulfonic acid ester is more easily reduced than the chain sulfonic acid ester, an unstable film-forming reaction by itself tends to proceed.
  • the cyclic structure since the cyclic structure has low steric flexibility, it is composed of fluorosulfonate, monofluorophosphate, difluorophosphate, imide salt, and oxalate, as compared with the highly flexible chain sulfonic acid ester. Addition reaction with at least one compound selected from the group is unlikely to occur. Therefore, the formation of a composite film is less likely to occur, and the effect is insufficient.
  • Additives such as chain sulfonic acid ester to the non-aqueous electrolyte solution according to one embodiment of the present invention (hereinafter, chain sulfonic acid ester, fluorosulfonate, monofluorophosphate, difluorophosphate, imide salt, And the method of containing the oxalate (also referred to as “additive” or “combination additive”) is not particularly limited.
  • chain sulfonic acid ester fluorosulfonate, monofluorophosphate, difluorophosphate, imide salt
  • the method of containing the oxalate also referred to as "additive” or “combination additive”
  • a method of generating a combined additive in an energy device or an electrolytic solution can be mentioned.
  • Examples of the method for generating the combined additive include a method in which a compound other than the combined additive is added to oxidize or hydrolyze an energy device component such as an electrolytic solution. Further, there is also a method of producing an energy device and generating it by applying an electric load such as charging / discharging.
  • the non-aqueous electrolyte solution extracted from the energy device includes the one that can detect even a very small amount of the combined additive in the present invention.
  • the combined additive is detected from the positive electrode, the negative electrode, or the separator, which are other components of the energy device. Therefore, when the combined additive is detected from the positive electrode, the negative electrode, and the separator, it can be assumed that the total amount is contained in the non-aqueous electrolyte solution. Under this assumption, the combined additives are preferably contained within the range described below.
  • the chain sulfonic acid ester in the present embodiment is not particularly limited as long as it is an ester having at least one sulfonic acid ester structure in the molecule.
  • a compound represented by the following formula (1) is preferable.
  • R 1 represents a hydrocarbon group having 1 to 5 carbon atoms which may have a substituent
  • R 2 is a hydrocarbon having 1 to 10 carbon atoms which may have a substituent. Represents a hydrogen group.
  • R 1 and R 2 in the formula (1) may be the same group or different groups, but if they are different groups, the film forming reaction proceeds efficiently and the chain sulfonic acid is used.
  • a synergistic effect is likely to be exhibited when the ester and one compound selected from the group consisting of fluorosulfonate, monofluorophosphate, difluorophosphate, imide salt, and oxalate described below are added in combination. Therefore, it is preferable.
  • R 1 is not particularly limited as long as it is a hydrocarbon group having 1 or more and 5 or less carbon atoms, and may have a substituent.
  • substituent of the hydrocarbon group include halogen atom substitution (halogeno group) and the like, preferably fluorine substitution (fluoro group).
  • the hydrocarbon group is particularly preferably an unsaturated aliphatic saturated hydrocarbon group having 1 or more and 5 or less carbon atoms.
  • unsubstituted aliphatic saturated hydrocarbon group include a linear, branched or cyclic aliphatic hydrocarbon group, preferably a linear or branched aliphatic hydrocarbon group, and more preferably a direct chain. It is a chain aliphatic hydrocarbon group.
  • the number of carbon atoms in the main chain of the hydrocarbon group according to R 1 is usually 1 or more, usually 5 or less, preferably 3 or less, and more preferably 2 or less.
  • the steric hindrance is reduced and the action on the electrode is more likely to occur.
  • the synergistic improvement effect with one compound selected from the group consisting of fluorophosphates, difluorophosphates, imide salts, and oxalates is more pronounced.
  • R 1 examples include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, sec-butyl group, i-butyl group, tert-butyl group, n-pentyl group and isopentyl.
  • It is an alkyl group having 1 to 5 carbon atoms such as a group, a neopentyl group, a 1-methylbutyl group, a 2-methylbutyl group, a 1,1-dimethylpropyl group and a 1,2-dimethylpropyl group, and more preferably a methyl group.
  • a hydrocarbon group substituted with a fluorine atom can also be preferably used.
  • the hydrocarbon group substituted with a fluorine atom include a fluoromethyl group, a fluoroethyl group, a difluoroethyl group, a trifluoroethyl group, a perfluoroethyl group, a fluoro-n-propyl group, and a difluoro-n-propyl group.
  • R 2 is not particularly limited as long as it is a hydrocarbon group having 1 or more and 10 or less carbon atoms, and may have a substituent.
  • substituent of the hydrocarbon group include halogen atom substitution (halogeno group) and the like, preferably fluorine substitution (fluoro group).
  • the hydrocarbon group is preferably an unsaturated aliphatic saturated hydrocarbon group having 1 or more and 5 or less carbon atoms.
  • unsubstituted aliphatic saturated hydrocarbon group include a linear, branched or cyclic aliphatic hydrocarbon group, preferably a linear or branched aliphatic hydrocarbon group, and more preferably a direct chain. It is a chain aliphatic hydrocarbon group.
  • the carbon atoms in the main chain of the hydrocarbon group according to R 2 is usually 1 or more, preferably 2 or more, usually 10 or less, preferably 5 or less, more preferably 3 or less.
  • Carbon atoms in the main chain of the hydrocarbon group represented by R 2, preferably by carbon atoms in the main chain of saturated hydrocarbon group is within this range, more action onto the electrode by steric hindrance is reduced Because it is more likely to occur, it is possible to use a chain sulfonic acid ester in combination with one compound selected from the group consisting of fluorosulfonates, monofluorophosphates, difluorophosphates, imide salts, and oxalates, which will be described later. The synergistic improvement effect is more pronounced.
  • R 2 include a methyl group, an ethyl group, n- propyl group, i- propyl, n- butyl group, sec- butyl group, i- butyl group, tert- butyl group, n- pentyl group, isopentyl Group, sec-pentyl group, neopentyl group, 1-methylbutyl group, 2-methylbutyl group, 1,1-dimethylpropyl group, 1,2-dimethylpropyl group, n-hexyl group, n-heptyl group, n-octyl group , N-nonyl group, n-decyl group and other alkyl groups having 1 to 10 carbon atoms; vinyl group, 1-propenyl group, 2-propenyl group, isopropenyl group, 1-butenyl group, 2-butenyl group, 3- Carbons such as butyl group, 1-pentenyl group, 2-pentenyl group
  • neopentyl group 1-methylbutyl group, 2-methylbutyl group, 1,1-dimethylpropyl group, 1,2-dimethylpropyl, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, It is an alkyl group having 1 to 10 carbon atoms such as an n-decyl group, more preferably a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-pentyl group, and a methyl group or an ethyl group. More preferably, an ethyl group is particularly preferable. This is because a protective film can be efficiently formed on the negative electrode.
  • a hydrocarbon group substituted with a fluorine atom can also be preferably used.
  • the hydrocarbon group substituted with a fluorine atom include a fluoromethyl group, a fluoroethyl group, a difluoroethyl group, a trifluoroethyl group, a perfluoroethyl group, a fluoro-n-propyl group, and a difluoro-n-propyl group.
  • chain sulfonic acid ester examples include the following.
  • Decyl acid methyl ethanesulfonic acid, ethyl ethanesulfonate, propyl ethanesulfonate, butyl ethanesulfonate, pentyl ethanesulfonate, heptyl ethanesulfonate, hexyl ethanesulfonic acid, octyl ethanesulfonate, nonyl ethanesulfonate, ethanesulfone Decyl acid is more preferred, methyl methanesulfonate, ethyl methanesulfonate, propyl methanesulfonate, butyl methanesulfonate, pentyl methanesulfonate, heptyl methanesulfonate, hexyl methanesulfonate, methyl ethanesulfonate, ethyl
  • Propyl ethanesulfonic acid, butyl ethanesulfonate, pentyl ethanesulfonate, heptyl ethanesulfonate, hexyl ethanesulfonate are more preferred, especially methyl methanesulfonate, ethyl methanesulfonate, propyl methanesulfonate, butyl methanesulfonate.
  • ethyl methanesulfonate and propyl methanesulfonate are extremely preferable.
  • Cyclic sulfonic acid esters are more reactive than chain sulfonic acid esters and are more likely to react with the anion radicals of the cyclic sulfonic acid esters, resulting in fluorosulfonates, monofluorophosphates, and difluorophosphoruses.
  • the amount of reaction with a compound selected from the group consisting of phosphates, imide salts, and oxalates is reduced. Therefore, in this embodiment, a chain sulfonic acid ester is used.
  • the content of the chain sulfonic acid ester is not particularly limited, but the content of the chain sulfonic acid ester with respect to the total amount of the non-aqueous electrolyte solution (that is, in 100% by mass of the non-aqueous electrolyte solution) is usually 1.0 ⁇ 10 -3. It is mass% or more, preferably 1.0 ⁇ 10-2 % by mass or more, more preferably 0.1% by mass or more, still more preferably 0.2% by mass or more, and particularly preferably 0.3% by mass or more.
  • NMR nuclear magnetic resonance
  • GC gas chromatography
  • the non-aqueous electrolyte solution of the present invention contains at least one compound selected from the group consisting of fluorosulfonates, monofluorophosphates, difluorophosphates, imide salts, and oxalates.
  • a non-aqueous electrolyte solution containing monofluorophosphate or difluorophosphate a chain sulfonic acid ester and a chain sulfonic acid ester containing monofluorophosphate or difluorophosphate are used.
  • the mass ratio of the content to the content of monofluorophosphate or difluorophosphate is 10/90 or more and 82/18 or less. Within this range, side reactions in the system can be efficiently suppressed and a film on the positive electrode can be stably formed, which is excellent from the viewpoint of suppressing the rate of increase in room temperature discharge resistance.
  • a non-aqueous electrolyte solution containing a compound selected from the group consisting of fluorosulfonate, imide salt, and oxalate it is selected from the group consisting of fluorosulfonate, imide salt, and oxalate.
  • the total content of at least one compound is 1.0 ⁇ 10 -3 % by mass or more and 7% by mass or less in 100% by mass of the non-aqueous electrolyte solution, and the content of the chain sulfonic acid ester and the fluorosulfonate.
  • the mass ratio to the content of at least one compound selected from the group consisting of, imide salt, and oxalate is 10/90 to 99.99 / 0.01.
  • the mass ratio of the content of the above-mentioned chain sulfonic acid ester to the content of at least one compound selected from the group consisting of fluorosulfonates, imide salts, and oxalates is preferably 20/80 or more. It is more preferably 30/70 or more, still more preferably 40/60, particularly still more preferably 50/50, particularly preferably 65/35 or more, most preferably 80/20 or more, while preferably 99.9 /. It is 0.1 or less, more preferably 98.5 / 1.5 or less, still more preferably 95/5 or less, and particularly preferably 90/10 or less.
  • the content of the above-mentioned chain sulfonic acid ester is used.
  • the total content of two or more compounds shall be used in the calculation of the mass ratio of.
  • Identification and content measurement of fluorosulfonates, monofluorophosphates, difluorophosphates, imide salts and oxalates can be performed by nuclear magnetic resonance (NMR) analysis and ion chromatography (IC) analysis. .. Usually, IC analysis is performed, but if it is difficult to assign the compound from the peak, NMR analysis is also performed.
  • the fluorosulfonate in the present embodiment is not particularly limited as long as it is a salt having at least one fluorosulfonic acid structure in the molecule.
  • the durability characteristics of the energy device using this electrolyte solution are improved, that is, normal temperature and / or low temperature discharge.
  • the resistance increase rate can be improved (suppressed).
  • the counter cations in the fluorosulfonate are not particularly limited, and lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, barium, and NR 131 R 132 R 133 R 134 (in the formula, R 131 to R 134 are Independently, ammonium represented by a hydrogen atom or an organic group having 1 to 12 carbon atoms) can be mentioned.
  • the organic group having 1 to 12 carbon atoms represented by R 131 to R 134 of the ammonium is not particularly limited, and is, for example, substituted with an alkyl group which may be substituted with a fluorine atom, a halogen atom or an alkyl group.
  • R 131 to R 134 are independently preferably a hydrogen atom, an alkyl group, a cycloalkyl group, a nitrogen atom-containing heterocyclic group or the like.
  • the counter cation lithium, sodium and potassium are preferable, and lithium is particularly preferable.
  • fluorosulfonate examples include lithium fluorosulfonate, sodium fluorosulfonate, potassium fluorosulfonate, rubidium fluorosulfonate, cesium fluorosulfonate, and the like, and lithium fluorosulfonate is preferable.
  • the fluorosulfonate one type may be used alone, or two or more types may be used in combination in any combination and ratio.
  • the content of the fluorosulfonate (total amount in the case of two or more kinds) is usually 1.0 ⁇ 10 -3 % by mass or more, preferably 0.05% by mass or more in 100% by mass of the non-aqueous electrolyte solution. , More preferably 0.1% by mass or more, more preferably 0.2% by mass or more, more preferably 0.3% by mass or more, more preferably 0.4% by mass or more, and usually 10% by mass or less.
  • It is preferably 8% by mass or less, more preferably 7% by mass or less, more preferably 6% by mass or less, more preferably 5% by mass or less, more preferably 4% by mass or less, and more preferably 3% by mass or less. It is preferably 2% by mass or less, more preferably 1% by mass or less.
  • the mass ratio of the content of the chain sulfonic acid ester to the content of the fluorosulfonate is usually 10/90 or more. Yes, preferably 20/80 or more, more preferably 30/70 or more, still more preferably 40/60, particularly still more preferably 50/50, particularly preferably 65/35 or more, most preferably 80/20 or more. On the other hand, it is usually 99.99 / 0.01 or less, preferably 99.9 / 0.1 or less, more preferably 98.5 / 1.5 or less, still more preferably 95/5 or less, particularly preferably. Is 90/10 or less.
  • the mass ratio When the mass ratio is in this range, the energy device characteristics, particularly the durability characteristics, can be remarkably improved. This principle is not clear, but it is thought that by mixing at this ratio, the side reaction of the additive on the electrode can be minimized.
  • the mass ratio is 50/50 or more, the reduction reaction of the chain sulfonic acid ester is more likely to occur than the negative electrode side reaction by the fluorosulfonate, and a stable composite film is preferably produced, which is preferable.
  • the mass ratio of the total content of fluoro sulfonate (fluoro sulfonate / LiPF 6) to the content of LiPF 6 is usually 5.0 ⁇ 10 -5 or more , Preferably 1.0 ⁇ 10 -4 or more, more preferably 1.0 ⁇ 10 -3 or more, still more preferably 1.5 ⁇ 10 -3 or more, usually 0.5 or less, preferably 0.2 or less. It is preferably 0.15 or less, more preferably 0.1 or less, and particularly preferably 0.05 or less. When the mass ratio is in this range, the energy device characteristics, particularly the durability characteristics, can be remarkably improved. Although the principle is not clear, it is considered that the decomposition side reaction of LiPF 6 in the energy device system can be minimized by mixing at this ratio.
  • the monofluorophosphate and the difluorophosphate are not particularly limited as long as they are salts having at least one monofluorophosphate or difluorophosphate structure in the molecule, respectively.
  • an energy device using this electrolyte can be used. It is possible to improve the durability characteristics, that is, to improve (suppress) the rate of increase in room temperature discharge resistance.
  • the counter cations in monofluorophosphate and difluorophosphate are not particularly limited, and lithium, sodium, potassium, magnesium, calcium, NR 121 R 122 R 123 R 124 (in the formula, R 121 to R 124 are independent.
  • ammonium represented by a hydrogen atom or an organic group having 1 or more and 12 or less carbon atoms) and the like can be mentioned.
  • the organic group having 1 to 12 carbon atoms represented by R 121 to R 124 of the ammonium is not particularly limited, and is, for example, substituted with an alkyl group which may be substituted with a fluorine atom, a halogen atom or an alkyl group.
  • R 121 to R 124 are independently preferably a hydrogen atom, an alkyl group, a cycloalkyl group, a nitrogen atom-containing heterocyclic group or the like.
  • the counter cation lithium, sodium and potassium are preferable, and lithium is particularly preferable.
  • monofluorophosphate and difluorophosphate examples include lithium monofluorophosphate, sodium monofluorophosphate, potassium monofluorophosphate, lithium difluorophosphate, sodium difluorophosphate, potassium difluorophosphate and the like. Lithium monofluorophosphate and lithium difluorophosphate are preferable, and lithium difluorophosphate is more preferable. As the monofluorophosphate and difluorophosphate, one type may be used alone, or two or more types may be used in combination in any combination and ratio.
  • the content of one or more fluorophosphates selected from monofluorophosphate and difluorophosphate is usually 1.0 ⁇ in 100% by mass of the non-aqueous electrolyte solution. It is 10-3 % by mass or more, preferably 0.01% by mass or more, more preferably 0.1% by mass or more, still more preferably 0.2% by mass or more, and particularly preferably 0.3% by mass or more. Further, it is usually 10% by mass or less, preferably 5% by mass or less, more preferably 3% by mass or less, still more preferably 2% by mass or less, particularly still more preferably 1.5% by mass or less, and particularly preferably 1% by mass. It is as follows. When the content of the fluorophosphate is within this range, the effect of improving the initial irreversible volume is remarkably exhibited when the non-aqueous electrolyte solution is used for the energy device.
  • Mass ratio of the above chain sulfonic acid ester to one or more fluorophosphates (total amount in the case of two or more) selected from monofluorophosphate and difluorophosphate ⁇ mass of chain sulfonic acid ester / (Mass of one or more fluorophosphates selected from monofluorophosphate and difluorophosphate) ⁇ is usually 10/90 or more, preferably 20/80 or more, more preferably 30/70 or more. , More preferably 40/60 or more, particularly preferably 50/50 or more, while usually 82/18 or less, preferably 80/20 or less, more preferably 75/25 or less, still more preferably 70. It is / 30 or less, particularly preferably 60/40 or less.
  • the mass ratio When the mass ratio is in this range, the energy device characteristics, particularly the durability characteristics, can be remarkably improved. This principle is not clear, but it is thought that by mixing at this ratio, the side reaction of the additive on the electrode can be minimized.
  • the mass ratio is 50/50 or more, the reduction reaction of the chain sulfonic acid ester is more likely to occur than the negative side reaction by monofluorophosphate or difluorophosphate, and a stable complex coating is preferably formed. Therefore, it is preferable.
  • the upper limit of the effective ratio with the chain sulfonic acid ester is different from that of fluorosulfonate, imide salt and oxalate. Conceivable.
  • the total content of the mass ratio of 1 or more fluorophosphate selected from monofluorophosphate and difluorophosphate salt to the content of LiPF 6 (fluorophosphate
  • the phosphate / LiPF 6 ) is usually 5.0 ⁇ 10 -5 or more, preferably 1.0 ⁇ 10 -4 or more, more preferably 1.0 ⁇ 10 -3 or more, still more preferably 1.5 ⁇ 10 ⁇ . It is 3 or more, usually 0.5 or less, preferably 0.2 or less, more preferably 0.15 or less, still more preferably 0.1 or less, and particularly preferably 0.05 or less.
  • the mass ratio is in this range, the energy device characteristics, particularly the durability characteristics, can be remarkably improved.
  • the principle is not clear, it is considered that the decomposition side reaction of LiPF 6 in the energy device system can be minimized by mixing at this ratio.
  • the imide salt has an anion having a structure in which two sulfonyl groups are bonded to a nitrogen atom (-SO 2 N - SO 2- ) or a structure in which two phosphoryl groups are bonded to a nitrogen atom (-P (O) N - P (-P (O) N-P ().
  • the salt is not particularly limited as long as it is a salt of an anion having O)-) and a counter cation.
  • the durability characteristics of the energy device using this electrolyte solution are improved, that is, the normal temperature and / or low temperature discharge resistance is increased.
  • the rate can be improved (suppressed).
  • the counter cation in the imide salt is not particularly limited, and lithium, sodium, potassium, magnesium, calcium, NR 221 R 222 R 223 R 224 (in the formula, R 221 to R 224 are independently hydrogen atoms or carbon atoms.
  • Ammonium and the like represented by (which is an organic group of 1 or more and 12 or less) can be mentioned.
  • the organic group having 1 to 12 carbon atoms represented by R 221 to R 224 of the ammonium is not particularly limited, and is, for example, substituted with an alkyl group which may be substituted with a fluorine atom, a halogen atom or an alkyl group.
  • Examples thereof include a cycloalkyl group, an aryl group which may be substituted with a halogen atom or an alkyl group, a nitrogen atom-containing heterocyclic group which may have a substituent, and the like.
  • R 221 to R 224 are independently preferably a hydrogen atom, an alkyl group, a cycloalkyl group, a nitrogen atom-containing heterocyclic group or the like.
  • As the counter cation lithium, sodium and potassium are preferable, and lithium is particularly preferable.
  • lithium imide salt examples include lithium carbonyl imide salts; lithium bis (fluorosulfonyl) imide, lithium bis (trifluoromethanesulfonyl) imide, lithium bis (pentafluoroethanesulfonyl) imide, and lithium bis (nonafluorobutanesulfonyl) imide.
  • Lithium sulfonylimide salt examples thereof include lithium phosphonylimide salt such as lithium bis (difluorophosphonyl) imide. Among them, lithium bis (fluorosulfonyl) imide is more preferable because there are few side reactions at the positive electrode.
  • the imide salt one type may be used alone, or two or more types may be used in combination in any combination and ratio.
  • the content of the imide salt (total amount in the case of two or more kinds) is usually 1.0 ⁇ 10 -3 % by mass or more, preferably 0.05% by mass or more, based on 100% by mass of the non-aqueous electrolyte solution. It is preferably 0.1% by mass or more, more preferably 0.2% by mass or more, more preferably 0.3% by mass or more, more preferably 0.4% by mass or more, and usually 10% by mass or less.
  • the mass ratio (chain sulfonic acid ester / imide salt) of the content of the chain sulfonic acid ester to the content of the imide salt is usually 10/90 or more, preferably 10/90 or more. 20/80 or more, more preferably 30/70 or more, still more preferably 40/60 or more, particularly preferably 50/50 or more, while usually 99.99 / 0.01 or less, preferably 99.9. It is /0.1 or less, more preferably 98.5 / 1.5 or less, still more preferably 95/5 or less, and particularly preferably 90/10 or less.
  • the mass ratio is in this range, the energy device characteristics, particularly the durability characteristics, can be remarkably improved.
  • the total content of the mass ratio of the imide salt to the content of LiPF 6 is usually 5.0 ⁇ 10 -5 or more, preferably 1 .0 ⁇ 10 -4 or more, more preferably 1.0 ⁇ 10 -3 or more, still more preferably 1.5 ⁇ 10 -3 or more, usually 0.5 or less, preferably 0.2 or less, more preferably 0. It is 15 or less, more preferably 0.1 or less, and particularly preferably 0.05 or less.
  • the mass ratio is in this range, the energy device characteristics, particularly the durability characteristics, can be remarkably improved.
  • the oxalate is not particularly limited as long as it is a compound having at least one oxalic acid structure in the molecule.
  • the durability characteristics that is, the normal temperature and / or low temperature discharge resistance increase rate can be obtained in the energy device using this electrolytic solution.
  • a metal salt represented by the following formula (9) is preferable. This salt is a salt having an oxalate complex as an anion.
  • M 1 is an element selected from the group consisting of Group 1, Group 2 and aluminum (Al) in the periodic table
  • M 2 is from the transition metal, Group 13, Group 14, and Group 15 of the periodic table
  • R 91 is an element selected from the group consisting of halogen, an alkyl group having 1 to 11 carbon atoms and a halogen-substituted alkyl group having 1 to 11 carbon atoms, and a and b are groups.
  • M 1 is preferably lithium, sodium, potassium, magnesium, or calcium, and lithium is particularly preferable, from the viewpoint of energy device characteristics when the non-aqueous electrolyte solution of the present embodiment is used for an energy device such as a lithium secondary battery.
  • M 2 is particularly preferably boron and phosphorus in terms of electrochemical stability when used in lithium-based energy devices such as lithium secondary batteries and lithium ion capacitors.
  • R 91 include fluorine, chlorine, methyl group, trifluoromethyl group, ethyl group, pentafluoroethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, tert-butyl group and the like. A trifluoromethyl group is preferred.
  • Examples of the metal salt represented by the formula (9) include the following. Lithium oxalate borate salts such as lithium difluorooxalate borate and lithium bis (oxalate) borate; Lithium oxalate phosphate salts such as lithium tetrafluorooxalat phosphate, lithium difluorobis (oxalate) oxalate, lithium tris (oxalate) oxalate; Of these, lithium bis (oxalate) borate and lithium difluorobis (oxalate) phosphate are preferable, and lithium bis (oxalate) borate is more preferable.
  • Lithium oxalate borate salts such as lithium difluorooxalate borate and lithium bis (oxalate) borate
  • Lithium oxalate phosphate salts such as lithium tetrafluorooxalat phosphate, lithium difluorobis (oxalate) oxalate,
  • the content of oxalate (total amount in the case of two or more kinds) is usually 1.0 ⁇ 10 -3 % by mass or more, preferably 0.01% by mass or more, in 100% by mass of the non-aqueous electrolyte solution. More preferably 0.1% by mass or more, particularly preferably 0.3% by mass or more, and usually 10% by mass or less, preferably 7% by mass or less, more preferably 6% by mass or less, still more preferably. It is 5% by mass or less, more preferably 3% by mass or less, particularly preferably 2% by mass or less, and most preferably 1% by mass or less. When the oxalate content is in this range, it is easy to control the output characteristics, load characteristics, low temperature characteristics, cycle characteristics, high temperature storage characteristics, etc. of the energy device.
  • the mass ratio (chain sulfonic acid ester / oxalate) of the content of the chain sulfonic acid ester to the content of oxalate is usually 10/90 or more. It is preferably 20/80 or more, more preferably 30/70 or more, still more preferably 40/60 or more, particularly preferably 50/50 or more, while usually 99.99 / 0.01 or less, preferably 99. It is .9 / 0.1 or less, more preferably 98.5 / 1.5 or less, still more preferably 95/5 or less, and particularly preferably 90/10 or less. When the mass ratio is in this range, the energy device characteristics, particularly the durability characteristics, can be remarkably improved.
  • a non-aqueous electrolyte contains LiPF 6, the mass ratio of the total content of oxalate (oxalate / LiPF 6) to the content of LiPF 6 is usually 5.0 ⁇ 10 -5 or more, preferably 1.0 ⁇ 10 -4 or more, more preferably 1.0 ⁇ 10 -3 or more, still more preferably 1.5 ⁇ 10 -3 or more, usually 0.5 or less, preferably 0.2 or less, more preferably 0. It is .15 or less, more preferably 0.1 or less, and particularly preferably 0.05 or less.
  • the mass ratio is in this range, the energy device characteristics, particularly the durability characteristics, can be remarkably improved.
  • the principle is not clear, it is considered that the decomposition side reaction of LiPF 6 in the energy device system can be minimized by mixing at this ratio.
  • the non-aqueous electrolyte solution contains LiPF 6 in addition to at least one compound selected from the group consisting of fluorosulfonates, monofluorophosphates, difluorophosphates, imide salts, and oxalates.
  • the weight ratio of the total content of the additive to the content of LiPF 6 is usually 5.0 ⁇ 10 -5 or more, preferably 1.0 ⁇ 10 - 4 or more, more preferably 1.0 ⁇ 10 -3 or more, still more preferably 0.02 or more, particularly preferably 0.025 or more, usually 0.5 or less, preferably 0.45 or less, more preferably 0.4 or more.
  • the mass ratio is in this range, the energy device characteristics, particularly the durability characteristics, can be remarkably improved. Although the principle is not clear, it is considered that the decomposition side reaction of LiPF 6 in the energy device system can be minimized by mixing at this ratio.
  • the non-aqueous electrolyte solution contains at least two compounds selected from the group consisting of fluorosulfonate, monofluorophosphate, difluorophosphate, imide salt, and oxalate
  • the non-aqueous electrolyte solution 100 The total content of the combined additives other than the chain sulfonic acid ester in the mass% is usually 1.0 ⁇ 10 -3 % by mass or more, preferably 0.01% by mass or more, more preferably 0.1% by mass. Above, more preferably 0.3% by mass or more, particularly preferably 0.6% by mass or more, and usually 10% by mass or less, preferably 8% by mass or less, more preferably 7% by mass or less, still more preferably. 6% by mass or less Particularly preferably 5% by mass or less. If the total content of the additives is within this range, side reactions in the energy device system can be efficiently suppressed.
  • the non-aqueous electrolyte solution of the present embodiment usually contains an electrolyte as a component thereof, like a general non-aqueous electrolyte solution.
  • the electrolyte used in the non-aqueous electrolyte solution of the present embodiment is not particularly limited, and known electrolytes can be used.
  • the total concentration of the electrolyte in the non-aqueous electrolyte solution is not particularly limited, but is usually more than 8% by mass, preferably 8.5% by mass or more, more preferably 9% by mass, based on the total amount of the non-aqueous electrolyte solution. That is all.
  • the total concentration of the electrolyte is usually 20% by mass or less, preferably 17% by mass or less, and more preferably 16% by mass or less.
  • Lithium salt As the electrolyte in the non-aqueous electrolyte solution of the present embodiment, a lithium salt is usually used.
  • the lithium salt is not particularly limited as long as it is known to be used for this purpose, and any one or more lithium salts can be used, and specific examples thereof include the following.
  • Lithium fluorophosphates such as LiPF 6 , Li 2 PO 3 F, LiPO 2 F 2; Lithium tungstic acid salts such as LiWOF 5; Lithium carboxylic acid salts such as CF 3 CO 2 Li; Lithium sulfonic acid salts such as CH 3 SO 3 Li and FSO 3 Li; Lithium imide salts such as LiN (FSO 2 ) 2 and LiN (CF 3 SO 2 ) 2; LiC (FSO 2 ) 3 etc. lithium methide salts; Lithium oxalate salts such as LiB (C 2 O 4 ) 2; In addition, fluorine-containing organic lithium salts such as LiPF 4 (CF 3 ) 2; And so on.
  • LiPF 6 Li 2 PO 3 F, LiPO 2 F 2
  • Lithium tungstic acid salts such as LiWOF 5
  • Lithium carboxylic acid salts such as CF 3 CO 2 Li
  • Lithium sulfonic acid salts such as CH 3
  • the above-mentioned lithium salts may be used alone or in combination of two or more. However, when the lithium salt electrolyte corresponding to the combined additive is contained in the non-aqueous electrolyte solution, the electrolyte other than the lithium salt corresponding to the combined additive is always contained.
  • the electrolyte in the non-aqueous electrolyte solution of the present embodiment is an inorganic lithium salt or fluorophosphate from the viewpoint of further enhancing the effect of improving the charge / discharge rate characteristics and the impedance characteristics.
  • Those selected from lithium salts, sulfonic acid lithium salts, imide salts, and lithium oxalate salts are preferable.
  • LiPF 6 , LiBF 4 , LiClO 4 , etc. are preferable.
  • the total content of at least one lithium salt selected from the group consisting of lithium fluorosulfonic acid salts, imide salts, and lithium oxalate salts is 1.0 ⁇ 10 -3 % by mass or more in 100% by mass of the non-aqueous electrolyte solution. When it is 7% by mass or less, it is preferably at least one selected from LiPF 6 , LiBF 4 , and LiClO 4 , and more preferably at least one selected from LiPF 6 and LiBF 4. The preferred one is LiPF 6 .
  • the concentration of the lithium salt is usually 8% by mass or more, preferably 8.5% by mass or more, more preferably 9 with respect to the total amount of the non-aqueous electrolyte solution. It is mass% or more. Further, it is usually 20% by mass or less, preferably 17% by mass or less, and more preferably 16% by mass or less.
  • concentration of the lithium salt as the main salt is within the above range, the electrical conductivity becomes appropriate for the operation of the energy device, so that sufficient output characteristics tend to be obtained.
  • the concentration of the lithium salt is usually 0.05% by mass or more, preferably 0.1% by mass or more, based on the total amount of the non-aqueous electrolyte solution. It is more preferably 0.2% by mass or more, further preferably 0.3% by mass or more, particularly preferably 0.4% by mass or more, and usually 2% by mass or less, particularly preferably 1% by mass or less.
  • concentration of the lithium salt as a by-salt is within this range, there are few side reactions in the energy device and it is difficult to increase the resistance.
  • a non-aqueous electrolyte contains LiPF 6, PF 6 - assumes that all anion is derived from LiPF 6, the mass ratio of the total content of the chain-like sulfonate to the content of LiPF 6 was calculated therefrom (
  • the chain sulfonic acid ester / LiPF 6 ) is usually 5.0 ⁇ 10 -5 or more, preferably 1.0 ⁇ 10 -3 or more, more preferably 0.01 or more, still more preferably 0.02 or more, particularly preferably. Is 0.025 or more, usually 0.3 or less, preferably 0.2 or less, more preferably 0.1 or less, still more preferably 0.09 or less, and particularly preferably 0.08 or less.
  • the mass of LiPF 6 in the non-aqueous electrolyte solution is the mass calculated from the mass ratio of LiPF 6 by assuming that all PF 6 - anions are derived from LiPF 6. Consider it as.
  • Non-aqueous solvent Like a general non-aqueous electrolyte solution, the non-aqueous electrolyte solution usually contains a non-aqueous solvent that dissolves the above-mentioned electrolyte as its main component.
  • the non-aqueous solvent is not particularly limited, and a known organic solvent can be used.
  • the organic solvent is not particularly limited, and examples thereof include saturated cyclic carbonates, chain carbonates, chain carboxylic acid esters, ether compounds, sulfon compounds (excluding chain sulfonic acid esters), cyclic carboxylic acid esters, and the like. Can be mentioned.
  • the organic solvent is preferably at least one selected from saturated cyclic carbonate, chain carbonate and chain carboxylic acid ester, and at least chain carboxylic acid in that the initial capacity of the energy device can be easily improved. More preferably, it contains an acid ester. These can be used individually by 1 type or in combination of 2 or more types. Hereinafter, these organic solvents will be described.
  • saturated cyclic carbonate usually include those having an alkylene group having 2 to 4 carbon atoms, and a saturated cyclic carbonate having 2 to 3 carbon atoms is preferably used from the viewpoint of improving energy device characteristics resulting from an improvement in the degree of lithium ion dissociation. Be done.
  • saturated cyclic carbonate examples include ethylene carbonate, propylene carbonate, butylene carbonate and the like. Of these, ethylene carbonate and propylene carbonate are preferable, and ethylene carbonate, which is difficult to be oxidized and reduced, is more preferable.
  • saturated cyclic carbonate one type may be used alone, or two or more types may be used in combination in any combination and ratio.
  • the content of the saturated cyclic carbonate is not particularly limited and is arbitrary as long as the effects of the invention according to the present embodiment are not significantly impaired, but the lower limit of the content when one of them is used alone is the non-aqueous electrolyte solution. It is usually 3% by volume or more, preferably 5% by volume or more, based on the total amount of the solvent.
  • the upper limit of the content of the saturated cyclic carbonate is usually 90% by volume or less, preferably 85% by volume or less, and more preferably 80% by volume or less with respect to the total amount of the solvent of the non-aqueous electrolyte solution. Within this range, the oxidation / reduction resistance of the non-aqueous electrolyte solution tends to be improved, and the stability during high-temperature storage tends to be improved.
  • the volume% in this embodiment means the volume at 25 ° C. and 1 atm.
  • Chain carbonate As the chain carbonate, one having 3 to 7 carbon atoms is usually used, and in order to adjust the viscosity of the electrolytic solution in an appropriate range, a chain carbonate having 3 to 5 carbon atoms is preferably used.
  • the chain carbonates include dimethyl carbonate, diethyl carbonate, di-n-propyl carbonate, diisopropyl carbonate, n-propylisopropyl carbonate, ethylmethyl carbonate, methyl-n-propyl carbonate, n-butylmethyl carbonate, and the like.
  • Examples thereof include isobutylmethyl carbonate, t-butylmethyl carbonate, ethyl-n-propyl carbonate, n-butylethyl carbonate, isobutylethyl carbonate, t-butylethyl carbonate and the like.
  • dimethyl carbonate, diethyl carbonate, di-n-propyl carbonate, diisopropyl carbonate, n-propylisopropyl carbonate, ethylmethyl carbonate and methyl-n-propyl carbonate are preferable, and dimethyl carbonate, diethyl carbonate and ethylmethyl carbonate are particularly preferable. is there.
  • chain carbonates having a fluorine atom can also be preferably used.
  • the number of fluorine atoms contained in the fluorinated chain carbonate is not particularly limited as long as it is 1 or more, but is usually 6 or less, preferably 4 or less.
  • the fluorinated chain carbonate has a plurality of fluorine atoms, they may be bonded to the same carbon or different carbons.
  • the fluorinated chain carbonate include a fluorinated dimethyl carbonate derivative, a fluorinated ethyl methyl carbonate derivative, and a fluorinated diethyl carbonate derivative.
  • fluorinated dimethyl carbonate derivative examples include fluoromethylmethyl carbonate, difluoromethylmethyl carbonate, trifluoromethylmethyl carbonate, bis (fluoromethyl) carbonate, bis (difluoro) methyl carbonate, bis (trifluoromethyl) carbonate and the like.
  • fluorinated ethyl methyl carbonate derivative examples include 2-fluoroethyl methyl carbonate, ethyl fluoromethyl carbonate, 2,2-difluoroethyl methyl carbonate, 2-fluoroethyl fluoromethyl carbonate, ethyl difluoromethyl carbonate, and 2,2,2-tri. Fluoroethyl methyl carbonate, 2,2-difluoroethyl fluoromethyl carbonate, 2-fluoroethyl difluoromethyl carbonate, ethyl trifluoromethyl carbonate and the like can be mentioned.
  • fluorinated diethyl carbonate derivative examples include ethyl- (2-fluoroethyl) carbonate, ethyl- (2,2-difluoroethyl) carbonate, bis (2-fluoroethyl) carbonate, and ethyl- (2,2,2-trifluoro).
  • Ethyl) carbonate 2,2-difluoroethyl-2'-fluoroethyl carbonate, bis (2,2-difluoroethyl) carbonate, 2,2,2-trifluoroethyl-2'-fluoroethyl carbonate, 2,2 Examples thereof include 2-trifluoroethyl-2', 2'-difluoroethyl carbonate and bis (2,2,2-trifluoroethyl) carbonate.
  • chain carbonate one type may be used alone, or two or more types may be used in combination in any combination and ratio.
  • the content of the chain carbonate is not particularly limited, but is usually 15% by volume or more, preferably 20% by volume or more, more preferably 25% by volume or more, and more preferably 25% by volume or more, based on the total amount of the solvent of the non-aqueous electrolyte solution. It is usually 90% by volume or less, preferably 85% by volume or less, and more preferably 80% by volume or less.
  • the viscosity of the non-aqueous electrolyte solution is set in an appropriate range, the decrease in ionic conductivity is suppressed, and the output characteristics of the energy device such as the non-aqueous electrolyte secondary battery. Is easy to set in a good range.
  • the energy device performance can be significantly improved.
  • the content of ethylene carbonate is not particularly limited and is arbitrary as long as the effect of the invention according to the present embodiment is not significantly impaired. It is usually 15% by volume or more, preferably 20% by volume or more, and usually 45% by volume or less, preferably 40% by volume or less with respect to the total amount of the solvent of the aqueous electrolytic solution, and the content of dimethyl carbonate is non-aqueous electrolytic solution.
  • the content of ethyl methyl carbonate is usually 20% by volume or more, preferably 30% by volume or more, and usually 50% by volume or less, preferably 45% by volume or less, and the content of ethyl methyl carbonate is usually 20% by volume or more with respect to the total amount of the solvent of the liquid. It is preferably 30% by volume or more, and usually 50% by volume or less, preferably 45% by volume or less.
  • the chain carboxylic acid ester preferably has 3 to 12 carbon atoms, and more preferably 3 to 5 carbon atoms.
  • a chain carboxylic acid ester Methyl acetate, ethyl acetate, n-propyl acetate, n-butyl acetate, methyl propionate, ethyl propionate, n-propyl propionate, n-butyl propionate, methyl butyrate, butyric acid because there are few side reactions at the negative electrode.
  • the content is preferably 1% by volume or more, more preferably 5% by volume or more, still more preferably 10% by volume or more in 100% by volume of the non-aqueous solvent. Further, it can be contained in an amount of 50% by volume or less, more preferably 45% by volume or less, still more preferably 40% by volume or less.
  • the content of the chain carboxylic acid ester is within the above range, the electrical conductivity of the non-aqueous electrolyte solution can be improved, and the input / output characteristics and charge / discharge rate characteristics of energy devices such as the non-aqueous electrolyte secondary battery can be easily improved. Become. In addition, the increase in negative electrode resistance is suppressed, and the input / output characteristics and charge / discharge rate characteristics of energy devices such as non-aqueous electrolyte secondary batteries can be easily set in a good range.
  • the chain carboxylic acid ester When used as a non-aqueous solvent, it is preferably used in combination with a cyclic carbonate, and more preferably in combination with a cyclic carbonate and a chain carbonate. While lowering the low-temperature precipitation temperature of the electrolyte, the viscosity of the non-aqueous electrolyte solution is also lowered to improve ionic conductivity, higher input / output can be obtained even at low temperatures, and the swelling of energy devices, especially batteries, is further reduced. Because it can be made to.
  • Ether compounds a chain ether having 3 to 10 carbon atoms and a cyclic ether having 3 to 6 carbon atoms are preferable.
  • Dimethoxymethane, diethoxymethane, methoxyethoxymethane, ethylene glycol di-n-propyl ether, ethylene glycol di-n-butyl ether, and diethylene glycol dimethyl ether have the ability to solvate lithium ions as cyclic ethers having 3 to 10 carbon atoms. Is high, which is preferable in terms of improving ionic dissociation. Dimethoxymethane, diethoxymethane, and methoxyethoxymethane are particularly preferable because of their low viscosity and high ionic conductivity.
  • Examples of the cyclic ether having 3 to 6 carbon atoms include tetrahydrofuran, 2-methyltetrahydrofuran, 3-methyltetrahydrofuran, 1,3-dioxane, 2-methyl-1,3-dioxane, 4-methyl-1,3-dioxane, and 1 , 4-Dioxane and the like, and fluorinated compounds thereof.
  • the content of the ether compound is not particularly limited and is arbitrary as long as the effect of the invention according to the present embodiment is not significantly impaired, but is usually 1% by volume or more, preferably 2% by volume in 100% by volume of the non-aqueous solvent. As mentioned above, it is more preferably 3% by volume or more, and usually 30% by volume or less, preferably 25% by volume or less, and more preferably 20% by volume or less.
  • the content of the ether-based compound is within the above-mentioned preferable range, it is easy to secure the effect of improving the degree of lithium ion dissociation and improving the ionic conductivity resulting from the decrease in viscosity.
  • the negative electrode active material is a carbon-based material
  • the phenomenon that the chain ether is co-inserted together with the lithium ion can be suppressed, so that the input / output characteristics and the charge / discharge rate characteristics can be set in an appropriate range.
  • Sulfone compounds examples include sulfolanes, and among them, sulfolanes and sulfolane derivatives are preferable.
  • the sulfolane derivative is preferably one in which one or more hydrogen atoms bonded on the carbon atom constituting the sulfolane ring are substituted with a fluorine atom, an alkyl group, or a fluorine-substituted alkyl group.
  • 2-methylsulfolane, 3-methylsulfolane, 2-fluorosulfolane, 3-fluorosulfolane, 2,3-difluorosulfolane, 2-trifluoromethylsulfolane, 3-trifluoromethylsulfolane and the like have high ionic conductivity. It is preferable because the input / output is high.
  • the sulfone compound one type may be used alone, or two or more types may be used in combination in any combination and ratio.
  • the content of the sulfone compound is not particularly limited and is arbitrary as long as the effect of the invention according to the present embodiment is not significantly impaired, but the lower limit of the content when one of them is used alone is the non-aqueous electrolyte solution. It is usually 3% by volume or more, preferably 5% by volume or more, based on the total amount of the solvent.
  • the upper limit of the content of the saturated cyclic carbonate is usually 90% by volume or less, preferably 85% by volume or less, and more preferably 80% by volume or less with respect to the total amount of the solvent of the non-aqueous electrolyte solution.
  • Cyclic carboxylic acid ester preferably has 3 to 12 carbon atoms. Specific examples thereof include ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, and ⁇ -caprolactone. Of these, ⁇ -butyrolactone is particularly preferable from the viewpoint of improving energy device characteristics resulting from an improvement in the degree of lithium ion dissociation.
  • cyclic carboxylic acid ester one type may be used alone, or two or more types may be used in combination in any combination and ratio.
  • the content of the cyclic carboxylic acid ester is preferably 5% by volume or more, more preferably 10% by volume or more in 100% by volume of the non-aqueous solvent. Within this range, the electrical conductivity of the non-aqueous electrolyte solution can be improved, and the large current discharge characteristics of the energy device can be easily improved.
  • the content of the cyclic carboxylic acid ester is preferably 50% by volume or less, more preferably 40% by volume or less.
  • the viscosity of the non-aqueous electrolyte solution is set in an appropriate range, the decrease in electrical conductivity is avoided, the increase in negative electrode resistance is suppressed, and the large current discharge characteristics of the energy device are in a good range. It becomes easy to do.
  • the non-aqueous electrolyte solution may contain the following auxiliaries as long as the effects of the invention according to the present embodiment are exhibited.
  • the auxiliary agent is not particularly limited, and for example, a cyclic carbonate having a carbon-carbon unsaturated bond, a fluorine-containing cyclic carbonate, a sulfur-containing organic compound, a phosphorus-containing organic compound, an organic compound having a cyano group, and an organic compound having an isocyanate group. , Silicon-containing compounds, borates, aromatic carbonates and the like.
  • the auxiliary agent is preferably at least one selected from a cyclic carbonate having a carbon-carbon unsaturated bond and a fluorine-containing cyclic carbonate. These can be used individually by 1 type or in combination of 2 or more types. Hereinafter, specific auxiliary agents will be described.
  • Cyclic carbonate with carbon-carbon unsaturated bond The cyclic carbonate having a carbon-carbon unsaturated bond (hereinafter, also referred to as “unsaturated cyclic carbonate”) is not particularly limited as long as it is a cyclic carbonate having a carbon-carbon double bond or a carbon-carbon triple bond. Cyclic carbonates having an aromatic ring are also included in the unsaturated cyclic carbonates.
  • unsaturated cyclic carbonates include vinylene carbonates, aromatic rings, ethylene carbonates substituted with a substituent having a carbon-carbon double bond or a carbon-carbon triple bond, phenyl carbonates, vinyl carbonates, and allyl carbonates. Examples thereof include catechol carbonates. Of these, vinylene carbonates, or ethylene carbonates substituted with a substituent having an aromatic ring or a carbon-carbon double bond or a carbon-carbon triple bond are preferable.
  • unsaturated cyclic carbonate examples include vinylene carbonate, methylvinylene carbonate, 4,5-dimethylvinylene carbonate, phenylvinylene carbonate, 4,5-diphenylvinylene carbonate, vinylvinylene carbonate, 4,5-vinylvinylene carbonate, and allyl.
  • Vinylene carbonates such as 4,5-diallyl vinylene carbonate; Vinyl ethylene carbonate, 4,5-divinylethylene carbonate, 4-methyl-5-vinylethylene carbonate, 4-allyl-5-vinylethylene carbonate, ethynylethylene carbonate, 4,5-dietinylethylene carbonate, 4-methyl-5 -Ethynylethylene carbonate, 4-vinyl-5-ethynylethylene carbonate, 4-allyl-5-ethynylethylene carbonate, phenylethylenecarbonate, 4,5-diphenylethylenecarbonate, 4-phenyl-5-vinylethylenecarbonate, 4-allyl With an aromatic ring such as -5-phenylethylene carbonate, allylethylene carbonate, 4,5-diallylethylene carbonate, 4-methyl-5-allylethylene carbonate, or a substituent having a carbon-carbon double bond or a carbon-carbon triple bond.
  • Substituted ethylene carbonates include vinylene carbonate, vinylethylene carbonate and ethynylethylene carbonate are preferable because they form a more stable interfacial protective film, vinylene carbonate and vinylethylene carbonate are more preferable, and vinylene carbonate is further preferable.
  • the unsaturated cyclic carbonate one type may be used alone, or two or more types may be used in combination in any combination and ratio.
  • the content of unsaturated cyclic carbonate (total amount in the case of two or more kinds) can be 1.0 ⁇ 10 -3 % by mass or more in 100% by mass of the non-aqueous electrolyte solution, preferably 0.01% by mass. % Or more, more preferably 0.1% by mass or more, and 5% by mass or less, preferably 4% by mass or less, more preferably 3% by mass or less.
  • the mass ratio of the content of the chain sulfonic acid ester to the content of the unsaturated cyclic carbonate is usually 1/100 or more. Yes, preferably 10/100 or more, more preferably 20/100 or more, still more preferably 25/100 or more, usually 10000/100 or less, preferably 500/100 or less, more preferably 300/100 or less. is there.
  • the mass ratio is in this range, the energy device characteristics, particularly the durability characteristics, can be remarkably improved. This principle is not clear, but it is thought that by mixing at this ratio, the side reaction of the additive on the electrode can be minimized.
  • the weight ratio (unsaturated cyclic carbonate / LiPF 6) of the total content of the unsaturated cyclic carbonate to the content of LiPF 6 is usually 5.0 ⁇ 10 -5 or more , Preferably 1.0 ⁇ 10 -3 or more, more preferably 0.01 or more, still more preferably 0.02 or more, particularly preferably 0.025 or more, usually 0.5 or less, preferably 0.45 or less. It is preferably 0.4 or less, more preferably 0.35 or less.
  • the mass ratio is in this range, the energy device characteristics, particularly the durability characteristics, can be remarkably improved.
  • the fluorine-containing cyclic carbonate is not particularly limited as long as it has a cyclic carbonate structure and contains a fluorine atom.
  • Examples of the fluorine-containing cyclic carbonate include a fluorinated product of a cyclic carbonate having an alkylene group having 2 or more and 6 or less carbon atoms, and a derivative thereof.
  • a fluorinated product of ethylene carbonate hereinafter referred to as “fluorinated ethylene carbonate”).
  • Examples of the derivative of the fluorinated product of ethylene carbonate include a fluorinated product of ethylene carbonate substituted with an alkyl group (for example, an alkyl group having 1 to 4 carbon atoms). Of these, fluorinated ethylene carbonate having a fluorine number of 1 or more and 8 or less, and a derivative thereof are preferable.
  • fluorinated ethylene carbonate having 1 or more and 8 or less fluorine and its derivatives examples include monofluoroethylene carbonate, 4,4-difluoroethylene carbonate, 4,5-difluoroethylene carbonate, 4-fluoro-4-methylethylene carbonate, 4, 5-Difluoro-4-methylethylene carbonate, 4-fluoro-5-methylethylene carbonate, 4,4-difluoro-5-methylethylene carbonate, 4- (fluoromethyl) -ethylene carbonate, 4- (difluoromethyl) -ethylene Carbonate, 4- (trifluoromethyl) -ethylene carbonate, 4- (fluoromethyl) -4-fluoroethylene carbonate, 4- (fluoromethyl) -5-fluoroethylene carbonate, 4-fluoro-4,5-dimethylethylene carbonate , 4,5-Difluoro-4,5-dimethylethylene carbonate, 4,4-difluoro-5,5-dimethylethylene carbonate and the like. Of these, monofluoroethylene carbonate, 4,4-d
  • the fluorine-containing cyclic carbonate one type may be used alone, or two or more types may be used in combination in any combination and ratio.
  • the content of the fluorine-containing cyclic carbonate (total amount in the case of two or more kinds) is preferably 1.0 ⁇ 10 -3 % by mass or more, more preferably 0.01% by mass or more in 100% by mass of the non-aqueous electrolyte solution. , More preferably 0.1% by mass or more, even more preferably 0.5% by mass or more, particularly preferably 1% by mass or more, most preferably 1.2% by mass or more, and preferably 10% by mass or less.
  • the content is preferably 1% by volume or more, more preferably 5% by volume or more, still more preferably 10% by volume or more in 100% by volume of the non-aqueous solvent. Further, it is preferably 50% by volume or less, more preferably 35% by volume or less, still more preferably 25% by volume or less.
  • the mass ratio of the content of the chain sulfonic acid ester to the content of the fluorine-containing cyclic carbonate is usually 1/100 or more. Yes, preferably 10/100 or more, more preferably 20/100 or more, still more preferably 25/100 or more, usually 10000/100 or less, preferably 500/100 or less, more preferably 300/100 or less. is there.
  • the mass ratio is in this range, the energy device characteristics, particularly the durability characteristics, can be remarkably improved. This principle is not clear, but it is thought that by mixing at this ratio, the side reaction of the additive on the electrode can be minimized.
  • the mass ratio of the total content of the fluorine-containing cyclic carbonate to the content of LiPF 6 is usually 0.00005 or more, preferably 0. 001 or more, more preferably 0.01 or more, still more preferably 0.02 or more, particularly preferably 0.025 or more, usually 0.5 or less, preferably 0.45 or less, more preferably 0.4 or less, still more preferable. Is 0.35 or less.
  • the mass ratio is in this range, the energy device characteristics, particularly the durability characteristics, can be remarkably improved.
  • the non-aqueous electrolyte solution is composed of the above-mentioned non-aqueous solvent, an electrolyte, a chain sulfonic acid ester, a fluorosulfonate, a monofluorophosphate, a difluorophosphate, an imide salt, and a oxalate. It can be prepared by dissolving at least one selected compound and, if necessary, the above-mentioned "auxiliary agent" or the like.
  • each raw material of the non-aqueous electrolyte solution that is, an electrolyte such as a lithium salt; a non-aqueous solvent; a chain sulfonic acid ester; a fluorosulfonate, a monofluorophosphate, and a difluorophosphate.
  • At least one compound selected from the group consisting of salts, imide salts, and oxalates; and auxiliaries and the like are preferably dehydrated in advance.
  • the degree of dehydration it is desirable to dehydrate until the water content of the raw material is usually 50 mass ppm or less, preferably 30 mass ppm or less.
  • the means for dehydration is not particularly limited, but for example, when the object to be dehydrated is a liquid such as a non-aqueous solvent, a desiccant such as molecular sieve may be used.
  • a desiccant such as molecular sieve
  • the object to be dehydrated is a solid such as an electrolyte, it may be heated and dried at a temperature lower than the temperature at which decomposition occurs.
  • An energy device using a non-aqueous electrolyte solution includes a plurality of electrodes capable of storing and releasing metal ions, and the non-aqueous electrolyte solution described above.
  • Specific examples of the types of energy devices include metal ion capacitors such as primary batteries, secondary batteries, and lithium ion capacitors. Among them, a primary battery or a secondary battery is preferable, a secondary battery is more preferable, and a lithium secondary battery is particularly preferable.
  • the non-aqueous electrolyte solution used in these energy devices is a so-called gel electrolyte that is pseudo-solidified with a polymer, a filler, or the like.
  • the non-aqueous electrolyte secondary battery will be described.
  • Non-aqueous electrolyte secondary battery > ⁇ 2-1-1.
  • Battery configuration> The non-aqueous electrolyte secondary battery has the same configuration as the conventionally known non-aqueous electrolyte secondary battery except for the non-aqueous electrolyte, and is usually a porous film (separator) impregnated with the non-aqueous electrolyte. ), The positive electrode and the negative electrode are laminated, and these are housed in a case (exterior body). Therefore, the shape of the non-aqueous electrolyte secondary battery is not particularly limited, and may be any of a cylindrical type, a square type, a laminated type, a coin type, a large size, and the like.
  • Non-aqueous electrolyte solution As the non-aqueous electrolyte solution, the above-mentioned non-aqueous electrolyte solution is used. It is also possible to mix and use another non-aqueous electrolyte solution with the above-mentioned non-aqueous electrolyte solution as long as the gist of the invention according to the present embodiment is not deviated.
  • Negative electrode The negative electrode active material used for the negative electrode is not particularly limited as long as it can electrochemically occlude and release metal ions. Specific examples thereof include carbon-based materials, metal compound-based materials, lithium-containing metal composite oxide materials, and the like. One type of negative electrode active material may be used alone, or two or more types may be arbitrarily combined and used in combination. Of these, carbon-based materials and metal compound-based materials are preferable. Among the metal compound materials, a material containing silicon is preferable. Therefore, as the negative electrode active material, a carbon-based material and a material containing silicon are particularly preferable.
  • Carbon-based material used as the negative electrode active material is not particularly limited, but the one selected from the following (i) to (iv) provides a secondary battery having a good balance of initial irreversible capacity and high current density charge / discharge characteristics. Therefore, it is preferable.
  • Natural graphite (ii) Carbonaceous material obtained by heat-treating artificial carbonaceous material and artificial graphite material at least once in the range of 400 ° C to 3200 ° C (iii) At least two types of negative electrode active material layers A carbonaceous material consisting of carbonaceous materials with different crystalline properties and / or having an interface in which the different crystalline carbonaceous materials are in contact (iv) A carbonaceous material in which the negative electrode active material layer has at least two different orientations.
  • the carbon-based materials of carbonaceous materials (i) to (iv) which are composed of and / or have an interface in which carbonaceous substances having different orientations are in contact with each other, one kind may be used alone, or two or more kinds may be used. It may be used in any combination and ratio.
  • the artificial carbonaceous substance or artificial graphite substance in (ii) above include coal-based coke, petroleum-based coke, petroleum-based pitch, petroleum-based pitch, and those obtained by oxidizing these or natural graphite; Needle coke, pitch coke and partially graphitized carbon material; Thermal decomposition products of organic substances such as furnace black, acetylene black, and pitch-based carbon fibers; Carbideable organics and their carbides; and Examples thereof include solution-like carbides in which a carbonizable organic substance is dissolved in a low-molecular-weight organic solvent such as benzene, toluene, xylene, quinoline, and n-hexane.
  • a low-molecular-weight organic solvent such as benzene, toluene, xylene, quinoline, and n-hexane.
  • the metal compound-based material used as the negative electrode active material is not particularly limited as long as it contains a metal that can be alloyed with lithium, and its form is such that it can occlude and release metal ions, for example, lithium ions.
  • a single metal or alloy forming an alloy with lithium, or compounds such as oxides, carbides, nitrides, silices, sulfides, and phosphors thereof can be used.
  • Examples of such metal compound-based materials include compounds containing metals such as Ag, Al, Ba, Bi, Cu, Ga, Ge, In, Ni, Pb, Sb, Si, Sn, Sr, and Zn.
  • the material contains a metal / metalloid element of Group 13 or 14 of the periodic table (that is, carbon is excluded.
  • metal the metal and the metalloid are collectively referred to as "metal”).
  • metalloid of silicon Si
  • tin Sn
  • Pb lead
  • SSP metal element an alloy containing these atoms
  • It is preferably a compound of (SSP metal element).
  • the most preferred metal that can be alloyed with lithium is silicon. One of these may be used alone, or two or more thereof may be used in any combination and ratio.
  • Lithium-containing metal composite oxide material The lithium-containing metal composite oxide material used as the negative electrode active material is not particularly limited as long as it can occlude and release lithium, but a lithium-containing composite metal oxide material containing titanium is preferable, and composite oxidation of lithium and titanium is preferable.
  • a substance hereinafter, may be abbreviated as "lithium-titanium composite oxide" is particularly preferable. It is particularly preferable to use a lithium titanium composite oxide having a spinel structure in a negative electrode active material for a lithium ion non-aqueous electrolyte secondary battery because the output resistance of the secondary battery is significantly reduced.
  • At least one kind of lithium or titanium of the lithium titanium composite oxide selected from the group consisting of other metal elements such as Na, K, Co, Al, Fe, Mg, Cr, Ga, Cu, Zn and Nb. Those substituted with the element of are also preferable.
  • a preferred lithium-titanium composite oxide as the negative electrode active material includes a lithium-titanium composite oxide represented by the following general formula (2).
  • Li x Ti y M z O 4 (2) (In the general formula (2), M represents at least one element selected from the group consisting of Na, K, Co, Al, Fe, Mg, Cr, Ga, Cu, Zn and Nb.
  • M represents at least one element selected from the group consisting of Na, K, Co, Al, Fe, Mg, Cr, Ga, Cu, Zn and Nb.
  • 0.7 ⁇ x ⁇ 1.5, 1.5 ⁇ y ⁇ 2.3, and 0 ⁇ z ⁇ 1.6 are stable structures during lithium ion doping and dedoping. It is preferable because it is.
  • Negative electrode configuration, physical characteristics, preparation method> A known technical configuration can be adopted for the negative electrode, the electrode conversion method, and the current collector containing the active material, but any one or more of the following items (I) to (VI) are shown below. It is desirable to satisfy at the same time.
  • (I) Preparation of Negative Electrode Any known method can be used for the production of the negative electrode as long as the effect of the invention according to the present embodiment is not significantly limited.
  • a binder, a solvent, and if necessary, a thickener, a conductive material, a filler, and the like are added to the negative electrode active material to form a slurry-like negative electrode forming material, which is applied to a current collector, dried, and then pressed. Thereby, the negative electrode active material layer can be formed to manufacture the negative electrode.
  • a known current collector can be arbitrarily used as the current collector for holding the negative electrode active material.
  • the current collector of the negative electrode include metal materials such as aluminum, copper, nickel, stainless steel, and nickel-plated steel, but copper is particularly preferable from the viewpoint of ease of processing and cost.
  • the shape of the current collector may be, for example, a metal foil, a metal column, a metal coil, a metal plate, a metal thin film, an expanded metal, a punch metal, a foamed metal, or the like. Of these, metal thin films and metal foils are preferable.
  • a copper foil is more preferable, and a rolled copper foil by a rolling method and an electrolytic copper foil by an electrolytic method are more preferable.
  • the ratio of thickness between current collector and negative electrode active material layer is not particularly limited, but "(one side immediately before the injection process of non-aqueous electrolyte solution)
  • the value of "negative electrode active material layer thickness) / (thickness of current collector)" is preferably 150 or less, more preferably 20 or less, particularly preferably 10 or less, and preferably 0.1 or more. 4 or more is more preferable, and 1 or more is particularly preferable. If the ratio of the thickness of the current collector to the negative electrode active material layer exceeds the above range, the current collector may generate heat due to Joule heat during high current density charging / discharging of the secondary battery. Further, if it falls below the above range, the volume ratio of the current collector to the negative electrode active material may increase, and the capacity of the secondary battery may decrease.
  • the electrode structure when the negative electrode active material is converted into an electrode is not particularly limited, and the density of the negative electrode active material existing on the current collector is preferably 1 g ⁇ cm -3 or more. .2g ⁇ cm -3 or more preferably, 1.3 g ⁇ cm -3 or more, and also preferably 4g ⁇ cm -3 or less, more preferably 3 g ⁇ cm -3 or less, 2.5 g ⁇ cm - 3 or less is more preferable, and 1.7 g ⁇ cm -3 or less is particularly preferable.
  • the density of the negative electrode active material existing on the current collector is within the above range, the negative electrode active material particles are less likely to be destroyed, the initial irreversible capacity of the secondary battery is increased, and the current collector / negative electrode active material is increased. It becomes easy to prevent deterioration of high current density charge / discharge characteristics due to a decrease in permeability of the non-aqueous electrolyte solution near the interface. Further, the conductivity between the negative electrode active materials can be ensured, and the capacity per unit volume can be increased without increasing the battery resistance.
  • the slurry for forming the negative electrode active material layer is usually prepared by adding a mixture of a binder, a thickener, etc. to the negative electrode active material.
  • the binder for binding the negative electrode active material is not particularly limited as long as it is a non-aqueous electrolyte solution or a material stable to the solvent used in electrode production.
  • resin-based polymers such as polyethylene, polypropylene, polyethylene terephthalate, polymethylmethacrylate, aromatic polyamide, cellulose, and nitrocellulose
  • Rubbery polymers such as SBR (styrene / butadiene rubber), isoprene rubber, butadiene rubber, fluororubber, NBR (acrylonitrile / butadiene rubber), ethylene / propylene rubber
  • Soft resinous polymers such as syndiotactic-1,2-polybutadiene, polyvinyl acetate, ethylene /
  • the type of solvent for forming the slurry is particularly limited as long as it is a solvent capable of dissolving or dispersing the negative electrode active material, the binder, and the thickener and the conductive material used as needed.
  • a solvent capable of dissolving or dispersing the negative electrode active material, the binder, and the thickener and the conductive material used as needed is a solvent capable of dissolving or dispersing the negative electrode active material, the binder, and the thickener and the conductive material used as needed.
  • an aqueous solvent or an organic solvent may be used.
  • aqueous solvent examples include water, alcohol and the like
  • organic solvent examples include N-methylpyrrolidone (NMP), dimethylformamide, dimethylacetamide, methylethylketone, cyclohexanone, methyl acetate, methyl acrylate, diethyltriamine.
  • NMP N-methylpyrrolidone
  • dimethylformamide dimethylacetamide
  • methylethylketone examples of the organic solvent
  • cyclohexanone examples include methyl acetate, methyl acrylate, diethyltriamine.
  • THF tetrahydrofuran
  • toluene acetone
  • dimethylsulfoxide benzene, xylene, quinoline
  • pyridine methylnaphthalene,
  • aqueous solvent when used, it is preferable to include a dispersant or the like in addition to the thickener and slurry using a latex such as SBR.
  • a dispersant or the like in addition to the thickener and slurry using a latex such as SBR.
  • these solvents one type may be used alone, or two or more types may be used in any combination and ratio.
  • the ratio of the binder to 100 parts by mass of the negative electrode active material is preferably 0.1 part by mass or more, more preferably 0.5 part by mass or more, further preferably 0.6 part by mass or more, and preferably 20 parts by mass or less. It is more preferably 15 parts by mass or less, further preferably 10 parts by mass or less, and particularly preferably 8 parts by mass or less.
  • the ratio of the binder to the negative electrode active material is within the above range, the ratio of the binder that does not contribute to the battery capacity does not increase, so that the battery capacity is unlikely to decrease. Further, the strength of the negative electrode is less likely to decrease.
  • the ratio of the binder to 100 parts by mass of the negative electrode active material is preferably 0.1 part by mass or more, and is 0. .5 parts by mass or more is more preferable, 0.6 parts by mass or more is further preferable, 5 parts by mass or less is preferable, 3 parts by mass or less is more preferable, and 2 parts by mass or less is further preferable.
  • the ratio of the binder to 100 parts by mass of the negative electrode active material is preferably 1 part by mass or more, more preferably 2 parts by mass or more.
  • 3 parts by mass or more is further preferable, 15 parts by mass or less is preferable, 10 parts by mass or less is more preferable, and 8 parts by mass or less is further preferable.
  • Thickeners are usually used to adjust the viscosity of the slurry.
  • the thickener is not particularly limited, and specific examples thereof include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, casein, and salts thereof. These may be used alone or in any combination and ratio of two or more.
  • the ratio of the thickener to 100 parts by mass of the negative electrode active material is usually 0.1 parts by mass or more, preferably 0.5 parts by mass or more, and more preferably 0.6 parts by mass or more.
  • the ratio is usually 5 parts by mass or less, preferably 3 parts by mass or less, and more preferably 2 parts by mass or less.
  • the ratio of the thickener to the negative electrode active material is within the above range, the coating property of the slurry is good. Further, the ratio of the negative electrode active material to the negative electrode active material layer becomes appropriate, and the problem of a decrease in battery capacity and the problem of an increase in resistance between the negative electrode active materials are less likely to occur.
  • the area of the negative electrode (also referred to as “negative electrode plate”) is not particularly limited, but is slightly larger than the facing positive electrode (also referred to as “positive electrode plate”) so that the positive electrode plate is the negative electrode. It is preferable to design it so that it does not protrude from the board. In addition, from the viewpoint of suppressing deterioration due to cycle life and high temperature storage when the secondary battery is repeatedly charged and discharged, making the area as close to the positive electrode as possible increases the proportion of electrodes that work more uniformly and effectively, and the characteristics are improved. It is preferable because it improves. In particular, when the secondary battery is used with a large current, it is important to design the area of the negative electrode plate.
  • Positive electrode active material The positive electrode active material used for the positive electrode will be described below.
  • the positive electrode active material is not particularly limited as long as it can electrochemically occlude and release metal ions, but for example, a material capable of electrochemically occluding and releasing lithium ions is preferable.
  • a substance containing lithium and at least one transition metal is preferable. Specific examples include a lithium transition metal composite oxide, a lithium-containing transition metal phosphoric acid compound, a lithium-containing transition metal silicic acid compound, and a lithium-containing transition metal borate compound.
  • the transition metal of the lithium transition metal composite oxide is preferably V, Ti, Cr, Mn, Fe, Co, Ni, Cu or the like, and specific examples of the lithium transition metal composite oxide include lithium such as LiCoO 2. Cobalt composite oxides; Lithium-nickel composite oxides such as LiNiO 2 ; Lithium-manganese composite oxides such as LiMnO 2 , LiMn 2 O 4 , Li 2 MnO 4; Substitute some metal atoms with other metals such as Al, Ti, V, Cr, Mn, Fe, Co, Li, Ni, Cu, Zn, Mg, Ga, Zr, Si, Nb, Mo, Sn, W And so on.
  • substituted ones include, for example, LiNi 0.5 Mn 0.5 O 2 , LiNi 0.85 Co 0.10 Al 0.05 O 2 , LiNi 0.33 Co 0.33 Mn 0.33 O. 2 , LiMn 1.8 Al 0.2 O 4 , Li 1.1 Mn 1.9 Al 0.1 O 4 , LiMn 1.5 Ni 0.5 O 4, and the like.
  • a lithium transition metal composite oxide containing lithium, nickel and cobalt is more preferable. This is because the lithium transition metal composite oxide containing cobalt and nickel can have a large capacity when used at the same potential.
  • cobalt is an expensive metal with a small amount of resources, and it is cheaper because it is not preferable in terms of cost because the amount of active material used is large in large batteries that require high capacity such as for automobile applications. It is also desirable to use manganese as the main component as the transition metal. That is, a lithium-nickel-cobalt-manganese composite oxide is particularly preferable.
  • a lithium-manganese composite oxide having a spinel-type structure and a lithium-manganese composite oxide in which a part of manganese is substituted are also preferable. That is, among the above specific examples, LiMn 2 O 4 , LiMn 1.8 Al 0.2 O 4 , Li 1.1 Mn 1.9 Al 0.1 O 4 , LiMn 1.5 Ni 0.5 O 4, etc. Can also be mentioned as a preferable specific example.
  • the transition metal of the lithium-containing transition metal phosphoric acid compound is preferably V, Ti, Cr, Mn, Fe, Co, Ni, Cu or the like, and specific examples of the lithium-containing transition metal phosphoric acid compound include, for example, LiFePO 4 .
  • Iron phosphates such as Li 3 Fe 2 (PO 4 ) 3 , LiFeP 2 O 7 ; Cobalts such as LiCoPO 4 ; Manganese phosphates such as LiMnPO 4 ; Transition metals that are the main constituents of these lithium-containing transition metals Part of the atom was replaced with another metal such as Al, Ti, V, Cr, Mn, Fe, Co, Li, Ni, Cu, Zn, Mg, Ga, Zr, Si, Nb, Mo, Sn, W. Things etc. can be mentioned.
  • iron phosphates lithium iron-phosphoric acid compounds
  • LiFePO 4 can be mentioned as a more preferable specific example.
  • the transition metal of the lithium-containing transition metal silicic acid compound is preferably V, Ti, Cr, Mn, Fe, Co, Ni, Cu or the like, and specific examples of the lithium-containing transition metal silicic acid compound include, for example, Li. Iron silicates such as 2 FeSiO 4 ; cobalt silicates such as Li 2 CoSiO 4 ; some of the transition metal atoms that are the main constituents of these lithium-containing transition metal silicate compounds are Al, Ti, V, Cr, Mn. , Fe, Co, Li, Ni, Cu, Zn, Mg, Ga, Zr, Si, Nb, Mo, Sn, W and the like substituted with other metals.
  • the transition metal of the lithium-containing transition metal borate compound is preferably V, Ti, Cr, Mn, Fe, Co, Ni, Cu or the like, and specific examples of the lithium-containing transition metal borate compound include, for example, LiFeBO. Iron borates such as 3rd grade; Cobalt borates such as LiCoBO 3rd grade; some of the transition metal atoms that are the main constituents of these lithium-containing transition metal boric acid compounds are Al, Ti, V, Cr, Mn, Fe, Co. , Li, Ni, Cu, Zn, Mg, Ga, Zr, Si, Nb, Mo, Sn, W and the like substituted with other metals.
  • the lithium transition metal composite oxide represented by the composition formula (14) is preferable in terms of the positive electrode capacity.
  • M represents at least one element selected from the group consisting of Mn, Al, Mg, Zr, Fe, Ti and Er.
  • Suitable specific examples of the lithium transition metal composite oxide represented by the composition formula (14) include, for example, LiNi 0.85 Co 0.10 Al 0.05 O 2 , LiNi 0.80 Co 0.15 Al 0. .05 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 , Li 1.05 Ni 0.50 Mn 0.29 Co 0.21 O 2 , LiNi 0.6 Co 0.2 Mn 0. Examples thereof include 2 O 2 , LiNi 0.8 Co 0.1 Mn 0.1 O 2.
  • the transition metal composite oxide represented by the following composition formula (15) is more suitable from the viewpoint of improving the electrochemical stability and extending the battery life.
  • M represents at least one element selected from the group consisting of Mn, Al, Mg, Zr, Fe, Ti and Er.
  • transition metal composite oxides represented by the composition formula (14) the transition metal composite oxide represented by the following composition formula (16) from the viewpoint of not inhibiting the action with the sparingly soluble composite film composed of oxalate. Is even more preferable. Li a3 Ni b3 Co c3 M d3 O 2 ...
  • M represents at least one element selected from the group consisting of Mn, Al, Mg, Zr, Fe, Ti and Er.
  • Suitable specific examples of the lithium transition metal oxide represented by the composition formula (16) include, for example, LiNi 0.5 Co 0.2 Mn 0.3 O 2 , Li 1.05 Ni 0.50 Mn 0. 29 Co 0.21 O 2 , LiNi 0.6 Co 0.2 Mn 0.2 O 2 , LiNi 0.8 Co 0.1 Mn 0.1 O 2 and the like can be mentioned.
  • the transition metal composite oxides represented by the composition formula (14) the transition metal composite oxide represented by the following composition formula (17) is selected from the viewpoint of excellent positive electrode capacity, electrochemical and chemical stability. Especially preferable. Li a4 Ni b4 Co c4 M d4 O 2 ...
  • M represents at least one element selected from the group consisting of Mn, Al, Mg, Zr, Fe, Ti and Er.
  • M preferably contains Mn or Al, and M preferably contains Mn or Al. This is because the structural stability of the transition metal composite oxide is enhanced, and structural deterioration during repeated charging and discharging is suppressed. Among them, Mn is more preferable as M.
  • two or more of the above-mentioned positive electrode active materials may be mixed and used.
  • at least one or more of the above-mentioned positive electrode active materials may be mixed and used with other positive electrode active materials.
  • examples of other positive electrode active materials include transition metal oxides, transition metal phosphoric acid compounds, transition metal silicic acid compounds, and transition metal boric acid compounds not listed above.
  • the above-mentioned lithium-manganese composite oxide having a spinel-type structure or the lithium-containing transition metal phosphoric acid compound having an olivine-type structure is preferable. Further, as the transition metal of the lithium-containing transition metal phosphoric acid compound, the above-mentioned one can be used. The same applies to the preferred embodiment.
  • the method for producing the positive electrode active material is not particularly limited as long as it does not exceed the gist of the invention according to the present embodiment, but some methods can be mentioned, and a method for producing an inorganic compound can be mentioned.
  • a general method is used as.
  • various methods can be considered for producing spherical or elliptical spherical active materials.
  • one example thereof is a transition metal raw material such as transition metal nitrate or sulfate, and if necessary, a raw material of other elements.
  • a solvent such as water
  • the pH is adjusted while stirring to prepare and recover a spherical precursor, which is dried as necessary, and then LiOH, Li 2 CO 3 , Li NO.
  • Examples thereof include a method of adding a Li source such as 3 and firing at a high temperature to obtain a positive electrode active material.
  • a transition metal raw material such as a transition metal nitrate, a sulfate, a hydroxide, or an oxide and, if necessary, a raw material of another element are dissolved or pulverized and dispersed in a solvent such as water. Then, it is dried and molded with a spray dryer or the like to obtain a spherical or elliptical spherical precursor, to which Li sources such as LiOH, Li 2 CO 3 and Li NO 3 are added and fired at a high temperature to obtain a positive electrode active material.
  • Li sources such as LiOH, Li 2 CO 3 and Li NO 3
  • a transition metal raw material such as a transition metal nitrate, a sulfate, a hydroxide, an oxide, a Li source such as LiOH, Li 2 CO 3 , or LiNO 3 , and other elements as required.
  • a method of dissolving or pulverizing and dispersing the raw material of the above in a solvent such as water, drying and molding it with a spray dryer or the like to obtain a spherical or elliptical spherical precursor, and firing this at a high temperature to obtain a positive electrode active material. can be mentioned.
  • Positive electrode structure and manufacturing method> The configuration of the positive electrode and the method for producing the positive electrode will be described below.
  • the positive electrode using the positive electrode active material can be produced by any known method.
  • the positive electrode is usually produced by forming a positive electrode active material layer containing positive electrode active material particles and a binder on a current collector. More specifically, for example, a positive electrode active material and a binder, and if necessary, a conductive material, a thickener, and the like are mixed in a dry manner to form a sheet, which is pressure-bonded to the positive electrode current collector, or these.
  • a positive electrode can be obtained by forming a positive electrode active material layer on the current collector by dissolving or dispersing the material in a liquid medium to form a slurry, applying the slurry to the positive electrode current collector, and drying the material.
  • the content of the positive electrode active material in the positive electrode active material layer is preferably 60% by mass or more, more preferably 70% by mass or more, further preferably 80% by mass or more, and preferably 99.9% by mass or less. Yes, 99% by mass or less is more preferable.
  • a sufficient electric capacity of the non-aqueous electrolyte secondary battery can be secured. Further, the strength of the positive electrode is also sufficient.
  • the positive electrode active material powder one type may be used alone, or two or more types having different compositions or different powder physical characteristics may be used in combination in any combination and ratio.
  • the composite oxide containing lithium and manganese is an expensive metal with a small amount of resources, and is not preferable in terms of cost because the amount of active material used is large in a large battery that requires a high capacity such as for automobile applications. Therefore, it is desirable to use manganese as a main component as a cheaper transition metal.
  • conductive material As the conductive material, a known conductive material can be arbitrarily used. Specific examples include metal materials such as copper and nickel; graphite (graphite) such as natural graphite and artificial graphite; carbon black such as acetylene black; carbon-based materials such as amorphous carbon such as needle coke; and the like. It should be noted that one of these may be used alone, or two or more thereof may be used in any combination and ratio.
  • the content of the conductive material in the positive electrode active material layer is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, further preferably 1% by mass or more, and preferably 50% by mass or less. It is more preferably 30% by mass or less, and further preferably 15% by mass or less.
  • the content of the conductive material is within the above range, sufficient conductivity can be ensured. Furthermore, it is easy to prevent a decrease in battery capacity.
  • the binder used for producing the positive electrode active material layer is not particularly limited as long as it is a material stable to the non-aqueous electrolyte solution and the solvent used for producing the electrode.
  • the binder is not particularly limited as long as it is a material that is dissolved or dispersed in the liquid medium used in the electrode production, and specific examples thereof include polyethylene, polypropylene, polyethylene terephthalate, and polymethyl.
  • Resin-based polymers such as methacrylate, aromatic polyamide, cellulose, and nitrocellulose; Rubbery polymers such as SBR (styrene / butadiene rubber), NBR (acrylonitrile / butadiene rubber), fluororubber, isoprene rubber, butadiene rubber, ethylene / propylene rubber; Styrene / butadiene / styrene block copolymer or hydrogenated product thereof, EPDM (ethylene / propylene / diene ternary copolymer), styrene / ethylene / butadiene / ethylene copolymer, styrene / isoprene / styrene block copolymer or Thermoplastic elastomer-like polymers such as the hydrogenated products; Soft resinous polymers such as syndiotactic-1,2-polybutadiene, polyvinyl acetate, ethylene / vinyl acetate
  • the content of the binder in the positive electrode active material layer is preferably 0.1% by mass or more, more preferably 1% by mass or more, further preferably 3% by mass or more, and preferably 80% by mass or less. 60% by mass or less is more preferable, 40% by mass or less is further preferable, and 10% by mass or less is particularly preferable.
  • the content of the binder is within the above range, the positive electrode active material can be sufficiently retained and the mechanical strength of the positive electrode can be ensured, so that the battery performance such as cycle characteristics is improved. Furthermore, it also leads to avoiding a decrease in battery capacity and conductivity.
  • the liquid medium used to prepare the slurry for forming the positive electrode active material layer is a solvent capable of dissolving or dispersing the positive electrode active material, the conductive material, the binder, and the thickener used as needed. If there is, the type is not particularly limited, and either an aqueous solvent or an organic solvent may be used.
  • aqueous solvent examples include water, a mixed medium of alcohol and water, and the like.
  • organic solvent examples include aliphatic hydrocarbons such as hexane; Aromatic hydrocarbons such as benzene, toluene, xylene, methylnaphthalene; Heterocyclic compounds such as quinoline and pyridine; Ketones such as acetone, methyl ethyl ketone, cyclohexanone; Esters such as methyl acetate and methyl acrylate; Amines such as diethylenetriamine, N, N-dimethylaminopropylamine; Ethers such as diethyl ether and tetrahydrofuran (THF); Amides such as N-methylpyrrolidone (NMP), dimethylformamide, dimethylacetamide; Aprotic polar solvents such as hexamethylphosphalamide and dimethylsulfoxide; And so on. In addition, these may be used individually by 1 type, and may use of
  • Thickener When an aqueous medium is used as the liquid medium for forming the slurry, it is preferable to use a thickener and a latex such as styrene-butadiene rubber (SBR) to form a slurry. Thickeners are commonly used to adjust the viscosity of the slurry.
  • SBR styrene-butadiene rubber
  • the thickener is not limited as long as the effect of the invention according to the present embodiment is not significantly limited, but specifically, carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, casein. And these salts and the like. These may be used alone or in any combination and ratio of two or more.
  • the ratio of the thickener to the total mass of the positive electrode active material and the thickener is preferably 0.1% by mass or more, more preferably 0.5% by mass or more. It is more preferably 0.6% by mass or more, preferably 5% by mass or less, more preferably 3% by mass or less, still more preferably 2% by mass or less.
  • the ratio of the thickener is within the above range, the coating property of the slurry is good, and the ratio of the active material in the positive electrode active material layer is sufficient, so that the capacity of the secondary battery is lowered. And the problem of increased resistance between the positive electrode active materials can be easily avoided.
  • the positive electrode active material layer obtained by applying and drying the slurry to the current collector is preferably consolidated by a hand press, a roller press, or the like in order to increase the packing density of the positive electrode active material.
  • the density of the positive electrode active material layer is preferably 1 g ⁇ cm -3 or more, more preferably 1.5 g ⁇ cm -3 or more, particularly preferably 2 g ⁇ cm -3 or more, and preferably 4 g ⁇ cm -3 or less. 3.5 g ⁇ cm -3 or less is more preferable, and 3 g ⁇ cm -3 or less is particularly preferable.
  • the density of the positive electrode active material layer is within the above range, the permeability of the non-aqueous electrolyte solution to the vicinity of the current collector / active material interface does not decrease, and charging / discharging is performed particularly at a high current density of the secondary battery. The characteristics are good. Further, the conductivity between the active materials is less likely to decrease, and the battery resistance is less likely to increase.
  • the material of the positive electrode current collector is not particularly limited, and any known material can be used. Specific examples include metal materials such as aluminum, stainless steel, nickel plating, titanium, and tantalum; carbon-based materials such as carbon cloth and carbon paper; Of these, metal materials, especially aluminum, are preferable.
  • Examples of the shape of the current collector include metal foil, metal cylinder, metal coil, metal plate, metal thin film, expanded metal, punch metal, foamed metal, etc. in the case of metal material, and carbon plate in the case of carbon-based material.
  • Examples include a carbon thin film and a carbon column. Of these, a metal foil or a metal thin film is preferable. The metal foil and the thin film may be appropriately formed in a mesh shape.
  • the thickness of the current collector is arbitrary, but is preferably 1 ⁇ m or more, more preferably 3 ⁇ m or more, further preferably 5 ⁇ m or more, and preferably 1 mm or less, more preferably 100 ⁇ m or less, further preferably 50 ⁇ m or less. preferable.
  • the thickness of the current collector is within the above range, sufficient strength required for the current collector can be secured. Further, the handleability is also good.
  • the ratio of the thickness of the current collector to the positive electrode active material layer is not particularly limited, but (thickness of the active material layer on one side immediately before the injection of the non-aqueous electrolyte solution) / (thickness of the current collector) is preferable. It is 150 or less, more preferably 20 or less, particularly preferably 10 or less, and preferably 0.1 or more, more preferably 0.4 or more, and particularly preferably 1 or more.
  • the ratio of the thickness of the current collector to the positive electrode active material layer is within the above range, the current collector is less likely to generate heat due to Joule heat during high current density charging / discharging of the secondary battery. Further, the volume ratio of the current collector to the positive electrode active material is unlikely to increase, and a decrease in battery capacity can be prevented.
  • the area of the positive electrode active material layer is preferably large with respect to the outer surface area of the battery outer case.
  • the total area of the electrode areas of the positive electrode with respect to the surface area of the exterior of the non-aqueous electrolyte secondary battery is preferably 20 times or more, more preferably 40 times or more in terms of area ratio.
  • the outer surface area of the outer case means the total area calculated from the vertical, horizontal, and thickness dimensions of the case part filled with the power generation element excluding the protruding part of the terminal in the case of the bottomed square shape. ..
  • the geometric surface area approximates the case portion filled with the power generation element excluding the protruding portion of the terminal as a cylinder.
  • the total electrode area of the positive electrode is the geometric surface area of the positive electrode mixture layer facing the mixture layer containing the negative electrode active material, and in a structure in which the positive electrode mixture layer is formed on both sides via a current collector foil. , Refers to the sum of the areas calculated separately for each surface.
  • the electrical capacity of the battery element housed in the exterior of one non-aqueous electrolyte secondary battery (the electrical capacity when the battery is discharged from a fully charged state to a discharged state) is determined.
  • the positive electrode plate is designed so that the discharge capacity is fully charged, preferably 3 Ah (ampere hour) or more, more preferably 4 Ah or more, preferably 20 Ah or less, and more preferably 10 Ah or less. ..
  • the voltage drop due to the electrode reaction resistance does not become too large when a large current is taken out, and deterioration of power efficiency can be prevented. Furthermore, the temperature distribution due to internal heat generation of the battery during pulse charging / discharging does not become too large, the durability of repeated charging / discharging is inferior, and the heat dissipation efficiency is poor against sudden heat generation at the time of abnormalities such as overcharging and internal short circuit. It is possible to avoid the phenomenon of becoming.
  • the thickness of the positive electrode plate is not particularly limited, but from the viewpoint of high capacity, high output, and high rate characteristics, the thickness of the positive electrode active material layer obtained by subtracting the thickness of the current collector from the positive electrode plate is the thickness of the current collector. With respect to one side, 10 ⁇ m or more is preferable, 20 ⁇ m or more is more preferable, 200 ⁇ m or less is preferable, and 100 ⁇ m or less is more preferable.
  • a separator is usually interposed between the positive electrode and the negative electrode in order to prevent a short circuit.
  • the non-aqueous electrolyte solution is usually used by impregnating this separator.
  • the material and shape of the separator are not particularly limited, and known ones can be arbitrarily adopted as long as the effects of the invention according to the present embodiment are not significantly impaired.
  • resins, glass fibers, inorganic substances and the like formed of a material stable to a non-aqueous electrolyte solution are used, and it is preferable to use a porous sheet or a non-woven fabric-like material having excellent liquid retention properties.
  • the electrode group has a laminated structure in which the above-mentioned positive electrode plate and the negative electrode plate are formed by the above-mentioned separator, and a structure in which the above-mentioned positive electrode plate and the negative electrode plate are spirally wound through the above-mentioned separator. Either may be used.
  • the ratio of the volume of the electrode group to the internal volume of the battery (hereinafter referred to as the electrode group occupancy rate) is preferably 40% or more, more preferably 50% or more, and preferably 95% or less, 90%. The following is more preferable. When the electrode group occupancy rate is within the above range, the battery capacity is unlikely to be reduced.
  • the internal pressure rises due to the expansion of the member due to the high temperature of the battery and the increase of the vapor pressure of the liquid component of the non-aqueous electrolyte solution, so that the battery can be used as a secondary battery. It is possible to reduce various characteristics such as charge / discharge repetition performance and high temperature storage characteristics, and to avoid the case where the gas discharge valve that releases the internal pressure to the outside operates.
  • the current collecting structure is not particularly limited, but in order to more effectively improve the discharge characteristics by the non-aqueous electrolyte solution, it is preferable to use a structure that reduces the resistance of the wiring portion and the joint portion. When the internal resistance is reduced in this way, the effect of using the non-aqueous electrolyte solution is particularly well exhibited.
  • the electrode group has the above-mentioned laminated structure
  • a structure formed by bundling the metal core portions of each electrode layer and welding them to the terminals is preferably used.
  • the internal resistance becomes large. Therefore, it is also preferably used to reduce the resistance by providing a plurality of terminals in the electrode.
  • the internal resistance can be reduced by providing a plurality of lead structures on the positive electrode and the negative electrode and bundling them in the terminals.
  • a protective element As a protective element, a PTC (Positive Temperature Coafficient) element whose resistance increases with heat generation due to excessive current, etc., a thermal fuse, a thermistor, and a valve that shuts off the current flowing through the circuit due to a sudden rise in battery internal pressure or internal temperature during abnormal heat generation. (Current cutoff valve) and the like. It is preferable to select the protective element under conditions that do not operate under normal use with a high current, and it is more preferable to design the battery so that abnormal heat generation or thermal runaway does not occur even without the protective element.
  • the non-aqueous electrolyte secondary battery is usually configured by storing the above-mentioned non-aqueous electrolyte, negative electrode, positive electrode, separator and the like in an exterior body (exterior case).
  • an exterior body exterior body
  • a known one can be arbitrarily adopted as long as the effect of the invention according to this embodiment is not significantly impaired.
  • the material of the outer case is not particularly limited as long as it is a substance stable to the non-aqueous electrolyte solution used. Specifically, a nickel-plated steel plate, stainless steel, aluminum or aluminum alloy, magnesium alloy, metals such as nickel and titanium, or a laminated film (laminated film) of resin and aluminum foil is used. From the viewpoint of weight reduction, aluminum or aluminum alloy metal or laminated film is preferably used.
  • the metals are welded together by laser welding, resistance welding, or ultrasonic welding to form a sealed and sealed structure, or the above metals are used to caulk the structure via a resin gasket. There are things to do.
  • Examples of the outer case using the above-mentioned laminated film include a case in which resin layers are heat-sealed to form a sealed and sealed structure.
  • a resin different from the resin used for the laminate film may be interposed between the resin layers.
  • the resin layer is heat-sealed via the current collecting terminal to form a closed structure, the metal and the resin are bonded to each other.
  • Resin is preferably used.
  • the shape of the outer case is also arbitrary, and may be any of, for example, a cylindrical type, a square type, a laminated type, a coin type, and a large size.
  • Examples 1-1 to 1-5 Comparative Examples 1-1 to 1-7> [Examples 1-1 to 1-5] [Preparation of non-aqueous electrolyte solution] In a dry argon atmosphere, in a mixed solvent (mixed volume ratio 2: 4: 4) consisting of ethylene carbonate (also referred to as "EC”), ethyl methyl carbonate (also referred to as “EMC”) and dimethyl carbonate (also referred to as "DMC”).
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • DMC dimethyl carbonate
  • Electrolyte LiPF 6 additive vinylene carbonate (also referred to as "VC"), compound 1 as chain lithium sulfonate and lithium fluorosulfonate (LiFSO 3 ) as fluorosulfonate, the concentrations shown in Table 1.
  • the non-aqueous electrolyte solution of Examples 1-1 to 1-5 was prepared.
  • the “content (% by mass)” in the table is the content when the total amount of each non-aqueous electrolyte solution is 100% by mass.
  • the “mass ratio” is the mass ratio of the content of the sulfonic acid ester (Compound 1 or Compound 2) to the lithium fluorosulfonate, and is the total of the sulfonic acid ester (Compound 1 or Compound 2) and the lithium fluorosulfonate. It is shown as a ratio when the content of is 100.
  • the mass ratio of Example 1-1 was calculated by the following formula.
  • [Preparation of positive electrode] 94% by mass of lithium cobalt nickel manganese oxide (LiNi 0.6 Co 0.2 Mn 0.2 O 2 ) as the positive electrode active material, 3% by mass of acetylene black as the conductive material, and polyvinylidene fluoride (PVdF) as the binder. 3% by mass was mixed with a disperser in an N-methylpyrrolidone solvent to form a slurry. This was uniformly applied to one side of an aluminum foil having a thickness of 15 ⁇ m, dried, and then pressed to obtain a positive electrode.
  • LiNi 0.6 Co 0.2 Mn 0.2 O 2 lithium cobalt nickel manganese oxide
  • acetylene black acetylene black
  • PVdF polyvinylidene fluoride
  • Amorphous coated graphite powder as negative electrode active material aqueous dispersion of sodium carboxymethyl cellulose as thickener (concentration of sodium carboxymethyl cellulose 1% by mass), aqueous dispersion of styrene-butadiene rubber as binder (concentration of styrene-butadiene rubber) 50% by mass) was added and mixed with a disperser to form a slurry.
  • This slurry was uniformly applied to one side of a copper foil having a thickness of 10 ⁇ m, dried, and then pressed to obtain a negative electrode.
  • 1C represents a current value for discharging the reference capacity of the battery in 1 hour
  • 0.2C represents, for example, 1/5 of the current value. The same applies hereinafter.
  • the lithium secondary battery subjected to the initial discharge resistance evaluation test is CC-CV charged (0.05C cut) at 0.2C to 4.3V at 25 ° C., and then stored at a high temperature at 60 ° C. for 14 days. went. Then, after the battery was sufficiently cooled, it was discharged to 2.8 V at a constant current of 0.2 C at 25 ° C. Then, after CC-CV charging (0.05C cut) to 4.3V at 0.2C, it was discharged again to 2.8V at 0.2C.
  • Example 1-1 In the electrolytic solution of Example 1-1, the non-aqueous electrolytic solution of Comparative Example 1-1 was prepared in the same manner as in Example 1-1 except that Compound 1 and lithium fluorosulfonate were not added. Further, a lithium secondary battery was produced in the same manner as in Example 1-1 except that the non-aqueous electrolyte solution of Comparative Example 1-1 was used as the electrolytic solution, and initial conditioning, initial discharge resistance evaluation test, and high temperature storage durability test were performed. And a discharge resistance evaluation test was carried out after high temperature storage.
  • Example 1-2 In the electrolytic solution of Example 1-1, the non-aqueous electrolytic solution of Comparative Example 1-2 was prepared in the same manner as in Example 1-1 except that Compound 1 was not added. Further, a lithium secondary battery was produced in the same manner as in Example 1-1 except that the non-aqueous electrolyte solution of Comparative Example 1-2 was used as the electrolytic solution, and initial conditioning, initial discharge resistance evaluation test, and high temperature storage durability test were performed. And a discharge resistance evaluation test was carried out after high temperature storage.
  • Example 1-3 In the electrolytic solution of Example 1-2, the non-aqueous electrolytic solution of Comparative Example 1-3 was prepared in the same manner as in Example 1-2 except that Compound 1 was not added. Further, a lithium secondary battery was produced in the same manner as in Example 1-2 except that the non-aqueous electrolyte solution of Comparative Example 1-3 was used as the electrolytic solution, and initial conditioning, initial discharge resistance evaluation test, and high temperature storage durability test were performed. And a discharge resistance evaluation test was carried out after high temperature storage.
  • Example 1-4 In the electrolytic solution of Example 1-3, the non-aqueous electrolytic solution of Comparative Example 1-4 was prepared in the same manner as in Example 1-3 except that Compound 1 was not added. Further, a lithium secondary battery was produced in the same manner as in Example 1-3 except that the non-aqueous electrolyte solution of Comparative Example 1-4 was used as the electrolytic solution, and initial conditioning, initial discharge resistance evaluation test, and high temperature storage durability test were performed. And a discharge resistance evaluation test was carried out after high temperature storage.
  • Example 1-5 In the electrolytic solution of Example 1-1, the non-aqueous electrolytic solution of Comparative Example 1-5 was prepared in the same manner as in Example 1-1 except that lithium fluorosulfonate was not added. Further, a lithium secondary battery was produced in the same manner as in Example 1-1 except that the non-aqueous electrolyte solution of Comparative Example 1-5 was used as the electrolytic solution, and initial conditioning, initial discharge resistance evaluation test, and high temperature storage durability test were performed. And a discharge resistance evaluation test was carried out after high temperature storage.
  • Example 1-6 In the electrolytic solution of Example 1-1, the non-aqueous electrolytic solution of Comparative Example 1-6 was prepared in the same manner as in Example 1-1 except that the content of lithium fluorosulfonate was changed as shown in Table 1. .. Further, a lithium secondary battery was produced in the same manner as in Example 1-1 except that the non-aqueous electrolyte solution of Comparative Example 1-6 was used as the electrolytic solution, and initial conditioning, initial discharge resistance evaluation test, and high temperature storage durability test were performed. And a discharge resistance evaluation test was carried out after high temperature storage.
  • Comparative Example 1-7 In the electrolytic solution of Example 1-3, Comparative Example 1-7 was used in the same manner as in Example 1-3 except that Compound 2 which is a cyclic sulfonic acid ester was used instead of Compound 1 which is a chain sulfonic acid ester. A non-aqueous electrolyte solution was prepared. Further, a lithium secondary battery was prepared in the same manner as in Example 1-3 except that the non-aqueous electrolyte solution of Comparative Example 1-7 was used as the electrolytic solution, and initial conditioning, initial discharge resistance evaluation test, and high temperature storage durability test were performed. And a discharge resistance evaluation test was carried out after high temperature storage.
  • Example 1-1 the lithium fluorosulfonate was changed to lithium bis (fluorosulfonyl) imide (LiFSI), and the electrolytic solution was prepared so that the content was as shown in Table 2 described later.
  • LiFSI lithium bis (fluorosulfonyl) imide
  • a lithium secondary battery was produced in the same manner as in Example 1-1 except that the obtained electrolytic solution was used, and the above initial conditioning, initial discharge resistance evaluation test, high temperature storage durability test, and high temperature storage post-discharge were produced. A resistance evaluation test was conducted. The evaluation results are shown in Table 2 as relative values when Comparative Example 2-1 is set to 100.00%.
  • the "mass ratio” is the mass ratio of the content of the sulfonic acid ester (Compound 1 or Compound 2) to the content of the lithium bis (fluorosulfonyl) imide, and is the mass ratio of the lithium bis (fluorosulfonyl) imide to the sulfonic acid ester. It is shown as a ratio when the total content of (Compound 1 or Compound 2) is 100.
  • Example 1-1 the lithium fluorosulfonic acid salt was changed to lithium bis (oxalate) borate (LiBOB), and an electrolytic solution was prepared so that the content was as shown in Table 3 described later.
  • LiBOB lithium bis (oxalate) borate
  • a lithium secondary battery was produced in the same manner as in Example 1-1 except that the obtained electrolytic solution was used, and the above initial conditioning, initial discharge resistance evaluation test, high temperature storage durability test, and high temperature storage post-discharge resistance evaluation test were performed. Was carried out. The evaluation results are shown in Table 3 as relative values when Comparative Example 3-1 is set to 100.00%.
  • the "mass ratio” is the mass ratio of the content of the sulfonic acid ester (Compound 1 or Compound 2) to the content of lithium bis (oxalate) borate, and is the mass ratio of the lithium bis (oxalate) borate and the sulfonic acid ester (compound). It is shown as a ratio when the total content of 1 or compound 2) is 100.
  • Example 1-1 the lithium fluorosulfonic acid salt was changed to lithium difluorophosphate (LiPO 2 F 2 ), which is a difluorophosphate, and an electrolytic solution was prepared so that the content was as shown in Table 4 described later.
  • LiPO 2 F 2 lithium difluorophosphate
  • a lithium secondary battery was produced in the same manner as in Example 1-1 except that the obtained electrolytic solution was used, and the above initial conditioning, initial discharge resistance evaluation test, high temperature storage durability test, and high temperature storage post-discharge resistance evaluation were performed. The test was carried out, and the results of the rate of increase in room temperature discharge resistance are shown in Table 4 as relative values when Comparative Example 4-2 was set to 100.00%.
  • the "mass ratio” is the mass ratio of the content of the sulfonic acid ester (Compound 1) to the content of lithium difluorophosphate, and is the total content of the lithium difluorophosphate and the sulfonic acid ester (Compound 1). Is shown as a ratio when 100 is set.
  • the fluorosulfonate or the imide salt is contained in the non-aqueous electrolyte solution in excess of a predetermined amount. In these cases (Comparative Examples 1-6 and 2-2), it was found that their effects were insufficient. On the other hand, when it contains a cyclic sulfonic acid ester and at least one compound selected from the group consisting of fluorosulfonates, imide salts, and oxalates (Comparative Examples 1-7, 2-3, and).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

エネルギーデバイスの常温及び/又は低温放電抵抗増加率を抑制できる非水系電解液及び該非水系電解液を含むエネルギーデバイスを提供する。正極及び負極を備えるエネルギーデバイス用の非水系電解液であって、該非水系電解液が電解質及び非水系溶媒とともに、鎖状スルホン酸エステルを含有し、かつフルオロスルホン酸塩、モノフルオロリン酸塩、ジフルオロリン酸塩、イミド塩、及びシュウ酸塩からなる群より選ばれる少なくとも1種の化合物を含有し、かつ、フルオロスルホン酸塩、モノフルオロリン酸塩、ジフルオロリン酸塩、イミド塩、及びシュウ酸塩からなる群より選ばれる少なくとも1種の化合物の含有量に対する鎖状スルホン酸エステルの含有量の質量比が特定の範囲であることを特徴とする非水系電解液。

Description

非水系電解液及びエネルギーデバイス
 本発明は、非水系電解液、及びエネルギーデバイスに関する。
 スマートフォン等の携帯電話、ノートパソコン等のいわゆる民生用の小型機器用の電源や、電気自動車用等の駆動用車載電源等の広範な用途において、リチウム一次電池やリチウム二次電池、電気二重層キャパシタ、リチウムイオンキャパシタ等のエネルギーデバイスが実用化されている。しかしながら、近年のエネルギーデバイスに対する高性能化の要求はますます高くなっている。
 中でも、非水系電解液電池の電池特性を改善する手段として、正極や負極の活物質、非水系電解液の添加剤分野において数多くの検討がなされている。
 例えば、特許文献1には、炭素数1~6のアルカンスルホン酸アルキルを含有するリチウム二次電池用電解液を用いることにより、アルカンスルホン酸アルキルと炭素電極との反応により炭素電極表面上に被膜を生成させて、電解液の分解を抑制し、サイクル特性の改善が実現できる、技術が開示されている。
 特許文献2には、LiPF及びフルオロスルホン酸塩を含有する非水系電解液であって、PFのモル含有量に対するFSOのモル含有量を0.001~1.2とすることで、初期充電容量、入出力特性およびインピーダンス特性が改善され、初期の電池特性と耐久性のみならず、耐久後も高い入出力特性およびインピーダンス特性が維持される非水系電解液二次電池を提供する技術が開示されている。
 特許文献3には、ビニレンカーボネート及びジフルオロリン酸塩等を含有する電解液を用いた非水系電解液二次電池とすることにより、電池の繰り返し充放電特性低下が抑制され、低温放電特性にも優れた非水系電解液二次電池を提供する技術が開示されている。
 特許文献4には、ホウ素を含む化合物および環状スルホン酸エステルを含有する電解液を用いた非水系電解液二次電池であって、前記ホウ素を含む化合物の含有量を0.1~2.0質量%とすることで、充放電効率の高い二次電池を提供する技術が開示されている。
特開平9-245834号公報 特開2011-187440号公報 特開2007-141830号公報 特開2012-243461号公報
 近年、電気自動車の車載用途電源や、スマートフォン等の携帯電話用電源等にリチウム電池の高容量化が加速されており、電池内の空隙の割合が従来と比較して小さくなっている。そのため、特に高温保存試験などの耐久試験を実施した際の、常温及び低温放電抵抗増加率の抑制への要求が更に高まっている。
 上記に鑑み、本発明は、エネルギーデバイスの常温及び/又は低温放電抵抗増加率を抑制できる非水系電解液を提供することを課題とする。また、常温及び/又は低温放電抵抗増加率が抑制されたエネルギーデバイスを提供することを課題とする。
 本発明者は、上記課題を解決すべく鋭意検討した結果、鎖状スルホン酸エステル並びにフルオロスルホン酸塩、モノフルオロリン酸塩、ジフルオロリン酸塩、イミド塩、及びシュウ酸塩からなる群より選ばれる少なくとも1種の化合物を含有し、かつ該化合物に対し鎖状スルホン酸エステルを特定比率で含有する非水系電解液を用いることにより、エネルギーデバイスの常温および低温放電抵抗増加率抑制を実現できることを見出し、本発明に到達した。本発明は以下の具体的態様等を提供する。
[1]正極及び負極を備えるエネルギーデバイス用の非水系電解液であって、
該非水系電解液が電解質及び非水系溶媒とともに、
鎖状スルホン酸エステルと、モノフルオロリン酸塩及びジフルオロリン酸塩から選ばれる少なくとも1種のフルオロリン酸塩を含有し、かつ、フルオロリン酸塩の含有量に対する鎖状スルホン酸エステルの含有量の質量比が10/90以上82/18以下であることを特徴とする非水系電解液。
[2]正極及び負極を備えるエネルギーデバイス用の非水系電解液であって、
該非水系電解液が電解質及び非水系溶媒とともに、
(A)鎖状スルホン酸エステル、並びに、フルオロスルホン酸塩、イミド塩、及びシュウ酸塩からなる群より選ばれる少なくとも1種の化合物を含有し、
(B)フルオロスルホン酸塩、イミド塩、及びシュウ酸塩からなる群より選ばれる少なくとも1種の化合物の合計含有量が非水系電解液100質量%中、1.0×10-3質量%以上7質量%以下であり、かつ
(C)フルオロスルホン酸塩、イミド塩、及びシュウ酸塩からなる群より選ばれる少なくとも1種の化合物の含有量と鎖状スルホン酸エステルの含有量との質量比が10/90以上99.99/0.01以下であることを特徴とする非水系電解液。
[3]前記鎖状スルホン酸エステルが式(1)で表される化合物である、[1]又は[2]に記載の非水系電解液。
Figure JPOXMLDOC01-appb-C000002

(式(1)中、Rは置換基を有していてもよい炭素数1~5の炭化水素基を表し、Rは置換基を有していてもよい炭素数1~10の炭化水素基を表す。)
[4]前記非水系電解液が、更に、炭素-炭素不飽和結合を有する環状カーボネート、フッ素含有環状カーボネートからなる群より選ばれる少なくとも1種の化合物を含有する、[1]~[3]のいずれかに記載の非水系電解液。
[5]正極、負極及び[1]~[4]のいずれかに記載の非水系電解液を備える、エネルギーデバイス。
[6]前記正極が正極活物質を含み、該正極活物質が組成式(14)で表されるリチウム遷移金属複合酸化物である、[5]に記載のエネルギーデバイス。
Lia1Nib1Coc1d1・・・(14)
(式(14)中、a1、b1、c1及びd1は、それぞれ0.90≦a1≦1.10、0.50≦b1≦0.98、0.01≦c1<0.50、0.01≦d1<0.50の数値を示し、b1+c1+d1=1を満たす。MはMn、Al、Mg、Zr、Fe、Ti及びErからなる群より選ばれる少なくとも1種の元素を表す。)
 本発明によれば、エネルギーデバイスの常温及び/又は低温放電抵抗増加率を抑制できる非水系電解液を提供することができる。また、かかる非水系電解液を用いることにより、常温及び/又は低温放電抵抗増加率が抑制されたエネルギーデバイスを提供することができる。
 以下、本発明の実施の形態について詳細に説明する。以下の実施の形態は、本発明の一例(代表例)であり、本発明はこれらに限定されるものではない。また、本発明は、その要旨を逸脱しない範囲内で任意に変更して実施することができる。
<1.非水系電解液>
 本発明の一実施形態に係る非水系電解液は、以下に説明する通り、鎖状スルホン酸エステル並びにフルオロスルホン酸塩、モノフルオロリン酸塩、ジフルオロリン酸塩、イミド塩、及びシュウ酸塩からなる群より選ばれる少なくとも1種の化合物を含有し、かつ該化合物に対し該鎖状スルホン酸エステルを特定比率で含有する。
 これまでも、鎖状スルホン酸エステルを用いることにより、エネルギーデバイス特性の改善が試みられている。例えば、特許文献1において、アルカンスルホン酸アルキルが炭素電極表面上に被膜を生成し、電解液の分解を抑制すると言及されている。しかし、ここで生成する被膜は電解液への溶解性が高く、高温保存試験などの耐久試験では被膜が電解液へ溶解し消失してしまう場合がある。その結果、耐久試験時の電解液の負極上での副反応を抑制することができない為、耐久試験後の放電抵抗維持率は改善の余地がある。
 一方、フルオロスルホン酸塩、モノフルオロリン酸塩、ジフルオロリン酸塩、イミド塩、及びシュウ酸塩からなる群より選ばれる少なくとも1種の化合物は、それぞれ電解液中で一部が解離してアニオン成分を発生し、アニオンが正極に作用することで保護効果を発揮する。しかし、これら化合物は正極上で同時に副反応を起こし消費されていくため、耐久試験後には所望の効果をもたらすことができなくなる。また、フルオロスルホン酸塩、モノフルオロリン酸塩、ジフルオロリン酸塩、イミド塩、及びシュウ酸塩は酸素を介した二重結合を有する為、分子軌道論に基づくと、電子的受容性が高まることにより負極上で還元副反応を起こし、被膜の形成を阻害すると考えられる。その結果、耐久試験後の放電抵抗維持率は改善の余地がある。
 そのような課題に対し、本発明者は、非水系電解液に鎖状スルホン酸エステルを含有させ、かつフルオロスルホン酸塩、モノフルオロリン酸塩、ジフルオロリン酸塩、イミド塩、及びシュウ酸塩からなる群より選ばれる少なくとも1種の化合物を該鎖状スルホン酸エステルに対し特定比率で非水系電解液中へ混合することによって、上記課題を解決できることを見出した。
 鎖状スルホン酸エステルは還元されることでアニオンラジカルを発生し、フルオロスルホン酸塩、モノフルオロリン酸塩、ジフルオロリン酸塩、イミド塩、及びシュウ酸塩からなる群より選ばれる少なくとも1種の化合物の酸素を介した二重結合部に対して、即座に付加反応を起こす。これにより生成する複合体は溶解性が低く、負極上に安定な被膜として存在しうる為、負極上の保護能が強化される。さらに、それら複合体(複合被膜)が微量溶出した場合でも、その成分が正極に強く安定に作用することで、正極への保護効果も強化される。故に、常温及び/又は低温放電抵抗増加率の抑制を成しえることができる。また、鎖状スルホン酸エステルに対して、フルオロスルホン酸塩、モノフルオロリン酸塩、ジフルオロリン酸塩、イミド塩、及びシュウ酸塩からなる群より選ばれる少なくとも1種の化合物が過少である場合、鎖状スルホン酸エステル由来の不安定な被膜発生が多くなってしまう。よって、鎖状スルホン酸エステルとフルオロスルホン酸塩、モノフルオロリン酸塩、ジフルオロリン酸塩、イミド塩、及びシュウ酸塩からなる群より選ばれる少なくとも1種の化合物は、特定の比率で含有させる必要がある。
 なお、環状スルホン酸エステルは、鎖状スルホン酸エステルよりも還元されやすいため、それ単独での不安定な被膜形成反応が進行しやすくなる。また環状構造は立体的な柔軟性が低いため、柔軟性の高い鎖状スルホン酸エステルに比べ、フルオロスルホン酸塩、モノフルオロリン酸塩、ジフルオロリン酸塩、イミド塩、及びシュウ酸塩からなる群より選ばれる少なくとも1種の化合物との付加反応が起きにくい。よって、複合被膜形成も起きにくくなるため、効果は不十分である。
 本発明の一実施形態に係る非水系電解液に鎖状スルホン酸エステルなどの添加剤(以下、鎖状スルホン酸エステル、フルオロスルホン酸塩、モノフルオロリン酸塩、ジフルオロリン酸塩、イミド塩、及びシュウ酸塩を「添加剤」または「併用添加剤」とも表記する。)を含有させる方法は、特に制限されない。下記化合物を直接電解液に添加する方法の他に、エネルギーデバイス内又は電解液中において併用添加剤を発生させる方法が挙げられる。併用添加剤を発生させる方法としては、併用添加剤以外の化合物を添加し、電解液等のエネルギーデバイス構成要素を酸化又は加水分解等する方法が挙げられる。更には、エネルギーデバイスを作製して、充放電等の電気的な負荷をかけることによって、発生させる方法も挙げられる。
 また、併用添加剤は、非水系電解液に含有させ実際にエネルギーデバイスの作製に供すると、そのエネルギーデバイスを解体して再び非水系電解液を抜き出しても、その中の含有量が著しく低下している場合が多い。従って、エネルギーデバイスから抜き出した非水系電解液から、併用添加剤が極少量でも検出できるものは本発明に含まれるとみなされる。また、併用添加剤は、非水系電解液として実際にエネルギーデバイスの作製に供すると、そのエネルギーデバイスを解体して再び抜き出した非水系電解液には併用添加剤が極少量しか含有されていなかった場合であっても、エネルギーデバイスの他の構成部材である正極、負極若しくはセパレータ上で検出される場合も多い。従って、正極、負極、セパレータから併用添加剤が検出された場合は、その合計量を非水系電解液に含まれていたと仮定することができる。この仮定の下、併用添加剤は後述する範囲になるように含まれていることが好ましい。
<1-1.鎖状スルホン酸エステル>
 本実施形態における鎖状スルホン酸エステルとしては、分子内に少なくとも1つのスルホン酸エステル構造を有しているエステルであれば、特に制限されない。
 鎖状スルホン酸エステルとしては、以下に示す式(1)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000003

(式(1)中、Rは置換基を有していてもよい炭素数1~5の炭化水素基を表し、Rは置換基を有していてもよい炭素数1~10の炭化水素基を表す。)
 式(1)中のR及びRは、それぞれ同一の基であっても異なる基であってもよいが、それぞれ異なる基であると、被膜形成反応が効率よく進行し、鎖状スルホン酸エステルと後述のフルオロスルホン酸塩、モノフルオロリン酸塩、ジフルオロリン酸塩、イミド塩、及びシュウ酸塩からなる群より選ばれる1種の化合物とを併用添加した際の相乗効果が発現しやすくなるため、好ましい。
 Rは炭素数1以上5以下の炭化水素基であれば特に制限はなく、置換基を有するものであってもよい。炭化水素基の置換基としては、ハロゲン原子置換(ハロゲノ基)などがあげられ、好ましくはフッ素置換(フルオロ基)である。また、炭化水素基は、炭素数1以上5以下の非置換脂肪族飽和炭化水素基であることが特に好ましい。非置換脂肪族飽和炭化水素基としては、直鎖状、分岐鎖状もしくは環状の脂肪族炭化水素基が挙げられ、好ましくは直鎖状または分岐鎖状の脂肪族炭化水素基、より好ましくは直鎖状脂肪族炭化水素基である。
 また、Rに係る炭化水素基の主鎖の炭素数は、通常1以上であり、通常5以下、好ましくは3以下、より好ましくは2以下である。Rで表される炭化水素基の主鎖の炭素数がこの範囲であることで、立体障害が小さくなることでより電極上への作用が起きやすくなるため、後述のフルオロスルホン酸塩、モノフルオロリン酸塩、ジフルオロリン酸塩、イミド塩、及びシュウ酸塩からなる群より選ばれる1種の化合物との相乗改善効果がより顕著に発現する。
 Rの具体例としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、sec-ブチル基、i-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、sec-ペンチル基、ネオペンチル基、1-メチルブチル基、2-メチルブチル基、1,1-ジメチルプロピル基、1,2-ジメチルプロピル基等の炭素数1~5のアルキル基;ビニル基、1-プロペニル基、2-プロペニル基、イソプロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、1-ペンテニル基、2-ペンテニル基、3-ペンテニル基、4-ペンテニル基等の炭素数2~5のアルケニル基;エチニル基、1-プロピニル基、2-プロピニル基、1-ブチニル基、2-ブチニル基、3-ブチニル基、1-ペンチニル基、2-ペンチニル基、3-ペンチニル基、4-ペンチニル基等の炭素数2~5のアルキニル基;等があげられる。好ましくは、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、sec-ブチル基、i-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、sec-ペンチル基、ネオペンチル基、1-メチルブチル基、2-メチルブチル基、1,1-ジメチルプロピル基及び1,2-ジメチルプロピル基等の炭素数1~5のアルキル基であり、より好ましくは、メチル基、エチル基、n-プロピル基、n-ブチル基又はn-ペンチル基であり、メチル基又はエチル基がさらに好ましく、メチル基が特に好ましい。効率よく負極上に保護被膜が形成できる為である。
 Rとして、フッ素原子で置換されている炭化水素基も好ましく使用することができる。フッ素原子で置換されている炭化水素基の具体例としては、フルオロメチル基、フルオロエチル基、ジフルオロエチル基、トリフルオロエチル基、パーフルオロエチル基、フルオロ-n-プロピル基、ジフルオロ-n-プロピル基、トリフルオロ-n-プロピル基、パーフルオロ-n-プロピル基、フルオロ-n-ブチル基、ジフルオロ-n-ブチル基、トリフルオロ-n-ブチル基、パーフルオロ-n-ブチル基等が好ましい。上記のフッ素原子で置換されている炭化水素基は、化合物の安定性が高い為である。
 Rは炭素数1以上10以下の炭化水素基であれば特に制限はなく、置換基を有するものであってもよい。炭化水素基の置換基としては、ハロゲン原子置換(ハロゲノ基)などがあげられ、好ましくはフッ素置換(フルオロ基)である。また、炭化水素基は、炭素数1以上5以下の非置換脂肪族飽和炭化水素基であることが好ましい。非置換脂肪族飽和炭化水素基としては、直鎖状、分岐鎖状もしくは環状の脂肪族炭化水素基が挙げられ、好ましくは直鎖状または分岐鎖状の脂肪族炭化水素基、より好ましくは直鎖状脂肪族炭化水素基である。
 また、Rに係る炭化水素基の主鎖の炭素数は、通常1以上であり、好ましくは2以上、通常10以下、好ましくは5以下、より好ましくは3以下である。Rで表される炭化水素基の主鎖の炭素数、好ましくは飽和炭化水素基の主鎖の炭素数がこの範囲であることで、立体障害が小さくなることでより電極上への作用が起きやすくなるため、鎖状スルホン酸エステルと後述のフルオロスルホン酸塩、モノフルオロリン酸塩、ジフルオロリン酸塩、イミド塩、及びシュウ酸塩からなる群より選ばれる1種の化合物との併用による相乗改善効果がより顕著に発現する。
 Rの具体例としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、sec-ブチル基、i-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、sec-ペンチル基、ネオペンチル基、1-メチルブチル基、2-メチルブチル基、1,1-ジメチルプロピル基、1,2-ジメチルプロピル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基等の炭素数1~10のアルキル基;ビニル基、1-プロペニル基、2-プロペニル基、イソプロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、1-ペンテニル基、2-ペンテニル基、3-ペンテニル基、4-ペンテニル基、1-ヘキセニル基、1-ヘプテニル基、1-オクテニル基、1-ノネニル基、1-デセニル基等の炭素数2~10のアルケニル基;エチニル基、1-プロピニル基、2-プロピニル基、1-ブチニル基、2-ブチニル基、3-ブチニル基、1-ペンチニル基、2-ペンチニル基、3-ペンチニル基、4-ペンチニル基、1-へプチニル基、1-オクチニル基、1-ノニニル基、1-デシニル基等の炭素数2~10のアルキニル基;等があげられる。好ましくは、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、sec-ブチル基、i-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、sec-ペンチル基、ネオペンチル基、1-メチルブチル基、2-メチルブチル基、1,1-ジメチルプロピル基、1,2-ジメチルプロピル、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基等の炭素数1~10のアルキル基であり、より好ましくは、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基であり、メチル基、エチル基がさらに好ましく、エチル基が特に好ましい。効率よく負極上に保護被膜が形成できる為である。
 Rとして、フッ素原子で置換されている炭化水素基も好ましく使用することができる。フッ素原子で置換されている炭化水素基の具体例としては、フルオロメチル基、フルオロエチル基、ジフルオロエチル基、トリフルオロエチル基、パーフルオロエチル基、フルオロ-n-プロピル基、ジフルオロ-n-プロピル基、トリフルオロ-n-プロピル基、パーフルオロ-n-プロピル基、フルオロ-n-ブチル基、ジフルオロ-n-ブチル基、トリフルオロ-n-ブチル基、パーフルオロ-n-ブチル基等が好ましい。上記のフッ素原子で置換されている炭化水素基は、化合物の安定性が高い為である。
 鎖状スルホン酸エステルの具体例としては、以下のものが挙げられる。
 メタンスルホン酸メチル、メタンスルホン酸エチル、メタンスルホン酸プロピル、メタンスルホン酸ブチル、メタンスルホン酸ペンチル、メタンスルホン酸ヘプチル、メタンスルホン酸ヘキシル、メタンスルホン酸オクチル、メタンスルホン酸ノニル、メタンスルホン酸デシル、メタンスルホン酸2-プロピニル、メタンスルホン酸3-ブチニル、ブスルファン、2-(メタンスルホニルオキシ)プロピオン酸メチル、2-(メタンスルホニルオキシ)プロピオン酸エチル、2-(メタンスルホニルオキシ)プロピオン酸2-プロピニル、2-(メタンスルホニルオキシ)プロピオン酸3-ブチニル、メタンスルホニルオキシ酢酸メチル、メタンスルホニルオキシ酢酸エチル、メタンスルホニルオキシ酢酸2-プロピニル及びメタンスルホニルオキシ酢酸3-ブチニル等のメタンスルホン酸エステル;
 エタンスルホン酸メチル、エタンスルホン酸エチル、エタンスルホン酸プロピル、エタンスルホン酸ブチル、エタンスルホン酸ペンチル、エタンスルホン酸ヘプチル、エタンスルホン酸ヘキシル、エタンスルホン酸オクチル、エタンスルホン酸ノニル、エタンスルホン酸デシル、エタンスルホン酸2-プロピニル、エタンスルホン酸3-ブチニル、2-(エタンスルホニルオキシ)プロピオン酸メチル、2-(エタンスルホニルオキシ)プロピオン酸エチル、2-(エタンスルホニルオキシ)プロピオン酸2-プロピニル、2-(エタンスルホニルオキシ)プロピオン酸3-ブチニル、エタンスルホニルオキシ酢酸メチル、エタンスルホニルオキシ酢酸エチル、エタンスルホニルオキシ酢酸2-プロピニル及びエタンスルホニルオキシ酢酸3-ブチニル等のエタンスルホン酸エステル等のエタンスルホン酸エステル;
 ビニルスルホン酸メチル、ビニルスルホン酸エチル、ビニルスルホン酸アリル、ビニルスルホン酸プロパルギル、アリルスルホン酸メチル、アリルスルホン酸エチル、アリルスルホン酸アリル、アリルスルホン酸プロパルギル及び1,2-ビス(ビニルスルホニロキシ)エタン等のアルケニルスルホン酸エステル;
 メタンジスルホン酸メトキシカルボニルメチル、メタンジスルホン酸エトキシカルボニルメチル、メタンジスルホン酸1-メトキシカルボニルエチル、メタンジスルホン酸1-エトキシカルボニルエチル、1,2-エタンジスルホン酸メトキシカルボニルメチル、1,2-エタンジスルホン酸エトキシカルボニルメチル、1,2-エタンジスルホン酸1-メトキシカルボニルエチル、1,2-エタンジスルホン酸1-エトキシカルボニルエチル、1,3-プロパンジスルホン酸メトキシカルボニルメチル、1,3-プロパンジスルホン酸エトキシカルボニルメチル、1,3-プロパンジスルホン酸1-メトキシカルボニルエチル、1,3-プロパンジスルホン酸1-エトキシカルボニルエチル、1,3-ブタンジスルホン酸メトキシカルボニルメチル、1,3-ブタンジスルホン酸エトキシカルボニルメチル、1,3-ブタンジスルホン酸1-メトキシカルボニルエチル、1,3-ブタンジスルホン酸1-エトキシカルボニルエチル等のアルキルジスルホン酸エステル。
 これらのうち、メタンスルホン酸メチル、メタンスルホン酸エチル、メタンスルホン酸プロピル、メタンスルホン酸ブチル、メタンスルホン酸ペンチル、メタンスルホン酸ヘプチル、メタンスルホン酸ヘキシル、メタンスルホン酸オクチル、メタンスルホン酸ノニル、メタンスルホン酸デシル、メタンスルホン酸2-プロピニル、メタンスルホン酸3-ブチニル、ブスルファン、2-(メタンスルホニルオキシ)プロピオン酸メチル、2-(メタンスルホニルオキシ)プロピオン酸エチル、2-(メタンスルホニルオキシ)プロピオン酸2-プロピニル、2-(メタンスルホニルオキシ)プロピオン酸3-ブチニル、メタンスルホニルオキシ酢酸メチル、メタンスルホニルオキシ酢酸エチル、メタンスルホニルオキシ酢酸2-プロピニル及びメタンスルホニルオキシ酢酸3-ブチニル等のメタンスルホン酸エステル;
 エタンスルホン酸メチル、エタンスルホン酸エチル、エタンスルホン酸プロピル、エタンスルホン酸ブチル、エタンスルホン酸ペンチル、エタンスルホン酸ヘプチル、エタンスルホン酸ヘキシル、エタンスルホン酸オクチル、エタンスルホン酸ノニル、エタンスルホン酸デシル、エタンスルホン酸2-プロピニル、エタンスルホン酸3-ブチニル、2-(エタンスルホニルオキシ)プロピオン酸メチル、2-(エタンスルホニルオキシ)プロピオン酸エチル、2-(エタンスルホニルオキシ)プロピオン酸2-プロピニル、2-(エタンスルホニルオキシ)プロピオン酸3-ブチニル、エタンスルホニルオキシ酢酸メチル、エタンスルホニルオキシ酢酸エチル、エタンスルホニルオキシ酢酸2-プロピニル及びエタンスルホニルオキシ酢酸3-ブチニル等のエタンスルホン酸エステル等のエタンスルホン酸エステル;
が好ましく、メタンスルホン酸メチル、メタンスルホン酸エチル、メタンスルホン酸プロピル、メタンスルホン酸ブチル、メタンスルホン酸ペンチル、メタンスルホン酸ヘプチル、メタンスルホン酸ヘキシル、メタンスルホン酸オクチル、メタンスルホン酸ノニル、メタンスルホン酸デシル、エタンスルホン酸メチル、エタンスルホン酸エチル、エタンスルホン酸プロピル、エタンスルホン酸ブチル、エタンスルホン酸ペンチル、エタンスルホン酸ヘプチル、エタンスルホン酸ヘキシル、エタンスルホン酸オクチル、エタンスルホン酸ノニル、エタンスルホン酸デシルがより好ましく、メタンスルホン酸メチル、メタンスルホン酸エチル、メタンスルホン酸プロピル、メタンスルホン酸ブチル、メタンスルホン酸ペンチル、メタンスルホン酸ヘプチル、メタンスルホン酸ヘキシル、エタンスルホン酸メチル、エタンスルホン酸エチル、エタンスルホン酸プロピル、エタンスルホン酸ブチル、エタンスルホン酸ペンチル、エタンスルホン酸ヘプチル、エタンスルホン酸ヘキシルがさらに好ましく、メタンスルホン酸メチル、メタンスルホン酸エチル、メタンスルホン酸プロピル、メタンスルホン酸ブチルが特に好ましく、メタンスルホン酸エチル、メタンスルホン酸プロピルが極めて好ましい。
 環状スルホン酸エステルの場合、鎖状スルホン酸エステルと比較して反応性が高く、環状スルホン酸エステルのアニオンラジカル同士で反応する確率が増すため、フルオロスルホン酸塩、モノフルオロリン酸塩、ジフルオロリン酸塩、イミド塩、及びシュウ酸塩からなる群より選ばれる化合物との反応量が減少する。このため、本実施形態においては、鎖状スルホン酸エステルを用いる。
 鎖状スルホン酸エステルの含有量は特に限定されないが、非水系電解液全量に対する(すなわち、非水系電解液100質量%中の)鎖状スルホン酸エステルの含有量が通常1.0×10-3質量%以上であり、好ましくは1.0×10-2質量%以上、より好ましくは0.1質量%以上、更に好ましくは0.2質量%以上、特に好ましくは0.3質量%以上であり、また、通常10質量%以下であり、好ましくは5質量%以下、より好ましくは4質量%以下、更に好ましくは3質量%以下、殊更に好ましくは2質量%以下、特に好ましくは1質量%以下である。鎖状スルホン酸エステルの含有量がこの範囲内であると、抵抗増加が少なく発明の効果が顕著に発現される。
 鎖状スルホン酸エステルの同定や含有量の測定は、核磁気共鳴(NMR)分析やガスクロマトグラフィ(GC)分析により行うことができる。通常、NMR分析を行うが、溶媒のピークにより他の化合物の帰属が困難であるような場合は、GC分析も行う。
<1-2.フルオロスルホン酸塩、モノフルオロリン酸塩、ジフルオロリン酸塩、イミド塩、シュウ酸塩>
 本発明の非水系電解液は、フルオロスルホン酸塩、モノフルオロリン酸塩、ジフルオロリン酸塩、イミド塩、及びシュウ酸塩からなる群より選ばれる少なくとも1種の化合物を含有する。
 モノフルオロリン酸塩又はジフルオロリン酸塩を含む非水系電解液の場合には、鎖状スルホン酸エステルと、モノフルオロリン酸塩又はジフルオロリン酸塩を含有し、かつ、鎖状スルホン酸エステルの含有量と、モノフルオロリン酸塩又はジフルオロリン酸塩の含有量との質量比が10/90以上82/18以下である。この範囲であれば、系内での副反応を効率よく抑制でき、正極上の被膜を安定的に形成できるため、常温放電抵抗増加率抑制の観点で優れる。
 また、フルオロスルホン酸塩、イミド塩、及びシュウ酸塩からなる群より選ばれる化合物を含む非水系電解液の場合には、フルオロスルホン酸塩、イミド塩、及びシュウ酸塩からなる群より選ばれる少なくとも1種の化合物の合計含有量が非水系電解液100質量%中、1.0×10-3質量%以上7質量%以下であり、かつ鎖状スルホン酸エステルの含有量とフルオロスルホン酸塩、イミド塩、及びシュウ酸塩からなる群より選ばれる少なくとも1種の化合物の含有量との質量比が10/90乃至99.99/0.01である。この範囲であれば、エネルギーデバイス非水系電解液二次電池系内での副反応を効率よく抑制でき、正極上の被膜を安定的に形成できるため、常温及び/又は低温放電抵抗増加率抑制の観点で優れる。
 上述の鎖状スルホン酸エステルの含有量とフルオロスルホン酸塩、イミド塩、及びシュウ酸塩からなる群より選ばれる少なくとも1種の化合物の含有量との質量比が、好ましくは20/80以上、より好ましくは30/70以上、さらに好ましくは40/60、殊更に好ましくは50/50、特に好ましくは65/35以上、最も好ましくは80/20以上、であり、一方、好ましくは99.9/0.1以下であり、より好ましくは98.5/1.5以下、さらに好ましくは95/5以下、特に好ましくは90/10以下である。
 フルオロスルホン酸塩、モノフルオロリン酸塩、ジフルオロリン酸塩、イミド塩、及びシュウ酸塩からなる群より選ばれる化合物を2種以上含む場合には、上述の鎖状スルホン酸エステルの含有量との質量比の算出は、2種以上の化合物の合計含有量を用いるものとする。
 フルオロスルホン酸塩、モノフルオロリン酸塩、ジフルオロリン酸塩、イミド塩およびシュウ酸塩の同定や含有量の測定は、核磁気共鳴(NMR)分析やイオンクロマトグラフィ(IC)分析により行うことができる。通常、IC分析を行うが、ピークからでは化合物の帰属が困難であるような場合は、NMR分析も行う。
<1-2-1.フルオロスルホン酸塩>
 本実施形態におけるフルオロスルホン酸塩としては、分子内に少なくとも1つのフルオロスルホン酸構造を有している塩であれば、特に制限されない。本実施形態の非水系電解液において、上記鎖状スルホン酸エステルとフルオロスルホン酸塩とを併用することにより、この電解液を用いたエネルギーデバイスにおいて、耐久特性を向上、すなわち常温及び/又は低温放電抵抗増加率を改善する(抑制する)ことができる。
 フルオロスルホン酸塩におけるカウンターカチオンは、特に制限されず、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、バリウム及び、NR131132133134(式中、R131~R134は、各々独立に、水素原子又は炭素数1以上12以下の有機基である)で表されるアンモニウム等が挙げられる。上記アンモニウムのR131~R134で表わされる炭素数1以上12以下の有機基は特に制限されず、例えば、フッ素原子で置換されていてもよいアルキル基、ハロゲン原子又はアルキル基で置換されていてもよいシクロアルキル基、ハロゲン原子又はアルキル基で置換されていてもよいアリール基、置換基を有していてもよい窒素原子含有複素環基等が挙げられる。中でもR131~R134は、独立して、水素原子、アルキル基、シクロアルキル基又は窒素原子含有複素環基等が好ましい。カウンターカチオンとしては、リチウム、ナトリウム、カリウムが好ましく、中でもリチウムが好ましい。
 フルオロスルホン酸塩としては、フルオロスルホン酸リチウム、フルオロスルホン酸ナトリウム、フルオロスルホン酸カリウム、フルオロスルホン酸ルビジウム、フルオロスルホン酸セシウム等が挙げられ、フルオロスルホン酸リチウムが好ましい。
 フルオロスルホン酸塩は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。フルオロスルホン酸塩の含有量(2種以上の場合は合計量)は、非水系電解液100質量%中、通常1.0×10-3質量%以上、好ましくは0.05質量%以上であり、より好ましくは0.1質量%以上、より好ましくは0.2質量%以上、より好ましくは0.3質量%以上、より好ましくは0.4質量%以上であり、また、通常10質量%以下であり、好ましくは8質量%以下、より好ましくは7質量%以下、より好ましくは6質量%以下、より好ましくは5質量%以下、より好ましくは4質量%以下、よりは3質量%以下、より好ましくは2質量%以下、より好ましくは1質量%以下である。フルオロスルホン酸塩の含有量がこの範囲内であると、エネルギーデバイス中での副反応が生じにくく、抵抗を上昇させにくい。
 フルオロスルホン酸塩の含有量(2種以上の場合は合計量)に対する上記鎖状スルホン酸エステルの含有量の質量比(鎖状スルホン酸エステル/フルオロスルホン酸塩)は、通常10/90以上であり、好ましくは20/80以上、より好ましくは30/70以上、さらに好ましくは40/60、殊更に好ましくは50/50、特に好ましくは65/35以上、最も好ましくは80/20以上、であり、一方、通常99.99/0.01以下であり、好ましくは99.9/0.1以下であり、より好ましくは98.5/1.5以下、さらに好ましくは95/5以下、特に好ましくは90/10以下である。該質量比がこの範囲であれば、エネルギーデバイス特性、特に耐久特性を著しく向上させることができる。この原理については定かではないが、この比率で混合させることで、電極上での添加剤の副反応を最小限に抑えられるためと考えられる。特に、該質量比が50/50以上であると、フルオロスルホン酸塩による負極副反応より鎖状スルホン酸エステルの還元反応が起きやすく、安定な複合体被膜が好適に生成されるため、好ましい。
 非水系電解液中がLiPFを含有する場合、LiPFの含有量に対するフルオロスルホン酸塩の総含有量の質量比(フルオロスルホン酸塩/LiPF)は、通常5.0×10-5以上、好ましくは1.0×10-4以上、より好ましくは1.0×10-3以上、さらに好ましくは1.5×10-3以上、通常0.5以下、好ましくは0.2以下、より好ましくは0.15以下、さらに好ましくは0.1以下、特に好ましくは0.05以下である。該質量比がこの範囲であれば、エネルギーデバイス特性、特に耐久特性を著しく向上させることができる。この原理については定かではないが、この比率で混合させることで、エネルギーデバイス系内でのLiPFの分解副反応が最小限に抑えられるためと考えられる。
<1-2-2.モノフルオロリン酸塩及びジフルオロリン酸塩>
 モノフルオロリン酸塩及びジフルオロリン酸塩は、それぞれ、分子内に少なくとも1つのモノフルオロリン酸又はジフルオロリン酸構造を有する塩であれば、特に制限されない。本実施形態の非水系電解液において、上記鎖状スルホン酸エステルとモノフルオロリン酸塩及びジフルオロリン酸塩から選ばれる1種以上とを併用することにより、この電解液を用いたエネルギーデバイスにおいて、耐久特性の向上、すなわち常温放電抵抗増加率を改善する(抑制する)ことができる。
 モノフルオロリン酸塩及びジフルオロリン酸塩におけるカウンターカチオンは、特に制限されず、リチウム、ナトリウム、カリウム、マグネシウム、カルシウム、NR121122123124(式中、R121~R124は、独立して、水素原子又は炭素数1以上12以下の有機基である)で表されるアンモニウム等が挙げられる。上記アンモニウムのR121~R124で表わされる炭素数1以上12以下の有機基は特に制限されず、例えば、フッ素原子で置換されていてもよいアルキル基、ハロゲン原子又はアルキル基で置換されていてもよいシクロアルキル基、ハロゲン原子又はアルキル基で置換されていてもよいアリール基、置換基を有していてもよい窒素原子含有複素環基等が挙げられる。中でもR121~R124は、独立して、水素原子、アルキル基、シクロアルキル基又は窒素原子含有複素環基等が好ましい。カウンターカチオンとしては、リチウム、ナトリウム、カリウムが好ましく、中でもリチウムが好ましい。
 モノフルオロリン酸塩及びジフルオロリン酸塩としては、モノフルオロリン酸リチウム、モノフルオロリン酸ナトリウム、モノフルオロリン酸カリウム、ジフルオロリン酸リチウム、ジフルオロリン酸ナトリウム、ジフルオロリン酸カリウム等が挙げられ、モノフルオロリン酸リチウム、ジフルオロリン酸リチウムが好ましく、ジフルオロリン酸リチウムがより好ましい。モノフルオロリン酸塩及びジフルオロリン酸塩は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 モノフルオロリン酸塩及びジフルオロリン酸塩から選ばれる1種以上のフルオロリン酸塩の含有量(2種以上の場合は合計量)は、非水系電解液100質量%中、通常1.0×10-3質量%以上であり、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、更に好ましくは0.2質量%以上、特に好ましくは0.3質量%以上であり、また、通常10質量%以下であり、好ましくは5質量%以下、より好ましくは3質量%以下、更に好ましくは2質量%以下、殊更に好ましくは1.5質量%以下、特に好ましくは1質量%以下である。フルオロリン酸塩の含有量がこの範囲内であると、非水系電解液をエネルギーデバイスに用いた場合に初期不可逆容量向上の効果が顕著に発現される。
 モノフルオロリン酸塩及びジフルオロリン酸塩から選ばれる1種以上のフルオロリン酸塩(2種以上の場合は合計量)に対する上記鎖状スルホン酸エステルの質量比{鎖状スルホン酸エステルの質量/(モノフルオロリン酸塩及びジフルオロリン酸塩から選ばれる1種以上のフルオロリン酸塩の質量)}が、通常10/90以上であり、好ましくは20/80以上、より好ましくは30/70以上、さらに好ましくは40/60以上、特に好ましくは50/50以上であり、一方、通常82/18以下であり、好ましくは80/20以下であり、より好ましくは75/25以下、さらに好ましくは70/30以下、特に好ましくは60/40以下である。該質量比がこの範囲であれば、エネルギーデバイス特性、特に耐久特性を著しく向上させることができる。この原理については定かではないが、この比率で混合させることで、電極上での添加剤の副反応を最小限に抑えられるためと考えられる。特に、該質量比が50/50以上であると、モノフルオロリン酸塩又はジフルオロリン酸塩による負極副反応より鎖状スルホン酸エステルの還元反応が起きやすく、安定な複合体被膜が好適に生成されるため、好ましい。なお、モノフルオロリン酸塩又はジフルオロリン酸塩は初期の正極との相互作用が強いため、鎖状スルホン酸エステルとの有効比率の上限がフルオロスルホン酸塩、イミド塩及びシュウ酸塩と異なると考えられる。
 非水系電解液中がLiPFを含有する場合、LiPFの含有量に対するモノフルオロリン酸塩及びジフルオロリン酸塩から選ばれる1種以上のフルオロリン酸塩の総含有量の質量比(フルオロリン酸塩/LiPF)は、通常5.0×10-5以上、好ましくは1.0×10-4以上、より好ましくは1.0×10-3以上、さらに好ましくは1.5×10-3以上、通常0.5以下、好ましくは0.2以下、より好ましくは0.15以下、さらに好ましくは0.1以下、特に好ましくは0.05以下である。該質量比がこの範囲であれば、エネルギーデバイス特性、特に耐久特性を著しく向上させることができる。この原理については定かではないが、この比率で混合させることで、エネルギーデバイス系内でのLiPFの分解副反応が最小限に抑えられるためと考えられる。
<1-2-3.イミド塩>
 イミド塩は、窒素原子に2つのスルホニル基が結合した構造(-SOSO-)を有するアニオン又は窒素原子に2つのホスホリル基が結合した構造(-P(O)NP(O)-)を有するアニオンとカウンターカチオンとの塩であれば、特に限定されない。本実施形態の非水系電解液において、上記鎖状スルホン酸エステルとイミド塩とを併用することにより、この電解液を用いたエネルギーデバイスにおいて、耐久特性を向上、すなわち常温及び/又は低温放電抵抗増加率を改善(抑制)することができる。
 イミド塩におけるカウンターカチオンは、特に制限されず、リチウム、ナトリウム、カリウム、マグネシウム、カルシウム、NR221222223224(式中、R221~R224は、独立して、水素原子又は炭素数1以上12以下の有機基である)で表されるアンモニウム等が挙げられる。上記アンモニウムのR221~R224で表わされる炭素数1以上12以下の有機基は特に制限されず、例えば、フッ素原子で置換されていてもよいアルキル基、ハロゲン原子又はアルキル基で置換されていてもよいシクロアルキル基、ハロゲン原子又はアルキル基で置換されていてもよいアリール基、置換基を有していてもよい窒素原子含有複素環基等が挙げられる。中でもR221~R224は、独立して、水素原子、アルキル基、シクロアルキル基又は窒素原子含有複素環基等が好ましい。カウンターカチオンとしては、リチウム、ナトリウム、カリウムが好ましく、中でもリチウムが好ましい。
 リチウムイミド塩としては、例えばリチウムカルボニルイミド塩;リチウムビス(フルオロスルホニル)イミド、リチウムビス(トリフルオロメタンスルホニル)イミド、リチウムビス(ペンタフルオロエタンスルホニル)イミド、リチウムビス(ノナフルオロブタンスルホニル)イミド等のリチウムスルホニルイミド塩;リチウムビス(ジフルオロホスホニル)イミド等のリチウムホスホニルイミド塩等を挙げられる。中でも、リチウムビス(フルオロスルホニル)イミドが、正極での副反応が少ない点でより好ましい。
 イミド塩は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。イミド塩の含有量(2種以上の場合は合計量)は、非水系電解液100質量%中、通常1.0×10-3質量%以上、好ましくは0.05質量%以上であり、より好ましくは0.1質量%以上、より好ましくは0.2質量%以上、より好ましくは0.3質量%以上、より好ましくは0.4質量%以上であり、また、通常10質量%以下であり、好ましくは8質量%以下、より好ましくは7質量%以下、より好ましくは6質量%以下、より好ましくは5質量%以下、より好ましくは4質量%以下、より好ましくは3質量%以下、より好ましくは2質量%以下、より好ましくは1質量%以下である。イミド塩の含有量がこの範囲であれば、負極での副反応が少ない。
 イミド塩(2種以上の場合は合計量)の含有量に対する上記鎖状スルホン酸エステルの含有量の質量比(鎖状スルホン酸エステル/イミド塩)は、通常10/90以上であり、好ましくは20/80以上、より好ましくは30/70以上、さらに好ましくは40/60以上、特に好ましくは50/50以上であり、一方、通常99.99/0.01以下であり、好ましくは99.9/0.1以下であり、より好ましくは98.5/1.5以下、さらに好ましくは95/5以下、特に好ましくは90/10以下である。該質量比がこの範囲であれば、エネルギーデバイス特性、特に耐久特性を著しく向上させることができる。この原理については定かではないが、この比率で混合させることで、電極上での添加剤の副反応を最小限に抑えられるためと考えられる。特に、該質量比が50/50以上であると、イミド塩による負極副反応より鎖状スルホン酸エステルの還元反応が起きやすく、安定な複合体被膜が好適に生成されるため、好ましい。
 非水系電解液中がLiPFを含有する場合、LiPFの含有量に対するイミド塩の総含有量の質量比(イミド塩/LiPF)は、通常5.0×10-5以上、好ましくは1.0×10-4以上、より好ましくは1.0×10-3以上、さらに好ましくは1.5×10-3以上、通常0.5以下、好ましくは0.2以下、より好ましくは0.15以下、さらに好ましくは0.1以下、特に好ましくは0.05以下である。該質量比がこの範囲であれば、エネルギーデバイス特性、特に耐久特性を著しく向上させることができる。この原理については定かではないが、この比率で混合させることで、エネルギーデバイス系内でのLiPFの分解副反応が最小限に抑えられるためと考えられる。
<1-2-4.シュウ酸塩>
 本実施形態において、シュウ酸塩は、分子内に少なくとも1つのシュウ酸構造を有する化合物であれば、特に制限されない。本実施形態の非水系電解液において、鎖状スルホン酸エステルとシュウ酸塩とを併用することによって、この電解液を用いたエネルギーデバイスにおいて、耐久特性、すなわち常温及び/又は低温放電抵抗増加率を改善することができる。
 シュウ酸塩としては、以下に示す式(9)で表される金属塩が好ましい。この塩は、オキサラト錯体をアニオンとする塩である。
Figure JPOXMLDOC01-appb-C000004
(式中、Mは、周期表における1族、2族及びアルミニウム(Al)からなる群より選ばれる元素であり、Mは、遷移金属、周期表の13族、14族及び15族からなる群より選ばれる元素であり、R91は、ハロゲン、炭素数1以上11以下のアルキル基及び炭素数1以上11以下のハロゲン置換アルキル基からなる群より選ばれる基であり、a及びbは正の整数であり、cは0又は正の整数であり、dは1~3の整数である。)
 Mは、本実施形態の非水系電解液をリチウム二次電池等のエネルギーデバイスに用いたときのエネルギーデバイス特性の点から、リチウム、ナトリウム、カリウム、マグネシウム、カルシウムが好ましく、リチウムが特に好ましい。
 Mは、リチウム二次電池、リチウムイオンキャパシタ等のリチウム系エネルギーデバイスに用いる場合の電気化学的安定性の点で、ホウ素及びリンが特に好ましい。
 R91としては、フッ素、塩素、メチル基、トリフルオロメチル基、エチル基、ペンタフルオロエチル基、プロピル基、イソプロピル基、ブチル基、sec-ブチル基、tert-ブチル基等が挙げられ、フッ素、トリフルオロメチル基が好ましい。
 式(9)で表される金属塩としては、以下が挙げられる。
 リチウムジフルオロオキサラトボレート及びリチウムビス(オキサラト)ボレート等のリチウムオキサラトボレート塩類;
 リチウムテトラフルオロオキサラトホスフェート、リチウムジフルオロビス(オキサラト)ホスフェート、リチウムトリス(オキサラト)ホスフェート等のリチウムオキサラトホスフェート塩類;
 これらのうち、リチウムビス(オキサラト)ボレート及びリチウムジフルオロビス(オキサラト)ホスフェートが好ましく、リチウムビス(オキサラト)ボレートがより好ましい。
 シュウ酸塩は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。シュウ酸塩の含有量(2種以上の場合は合計量)は、非水系電解液100質量%中、通常1.0×10-3質量%以上であり、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、特に好ましくは0.3質量%以上であり、また、通常10質量%以下であり、好ましくは7質量%以下、より好ましくは6質量%以下、さらに好ましくは5質量%以下、殊更に好ましくは3質量%以下、特に好ましくは2質量%以下、最も好ましくは1質量%以下である。シュウ酸塩の含有量がこの範囲にあると、エネルギーデバイスの出力特性、負荷特性、低温特性、サイクル特性、高温保存特性等を制御しやすい。
 シュウ酸塩(2種以上の場合は合計量)の含有量に対する上記鎖状スルホン酸エステルの含有量の質量比(鎖状スルホン酸エステル/シュウ酸塩)が、通常10/90以上であり、好ましくは20/80以上、より好ましくは30/70以上、さらに好ましくは40/60以上、特に好ましくは50/50以上であり、一方、通常99.99/0.01以下であり、好ましくは99.9/0.1以下であり、より好ましくは98.5/1.5以下、さらに好ましくは95/5以下、特に好ましくは90/10以下である。該質量比がこの範囲であれば、エネルギーデバイス特性、特に耐久特性を著しく向上させることができる。この原理については定かではないが、この比率で混合させることで、電極上での添加剤の副反応を最小限に抑えられるためと考えられる。特に、該質量比が50/50以上であると、シュウ酸塩による負極副反応より鎖状スルホン酸エステルの還元反応が起きやすく、安定な複合体被膜が好適に生成されるため、好ましい。
 非水系電解液がLiPFを含有する場合、LiPFの含有量に対するシュウ酸塩の総含有量の質量比(シュウ酸塩/LiPF)は、通常5.0×10-5以上、好ましくは1.0×10-4以上、より好ましくは1.0×10-3以上、さらに好ましくは1.5×10-3以上、通常0.5以下、好ましくは0.2以下、より好ましくは0.15以下、さらに好ましくは0.1以下、特に好ましくは0.05以下である。該質量比がこの範囲であれば、エネルギーデバイス特性、特に耐久特性を著しく向上させることができる。この原理については定かではないが、この比率で混合させることで、エネルギーデバイス系内でのLiPFの分解副反応が最小限に抑えられるためと考えられる。
<1-2-5.併用添加剤の総濃度等>
 非水系電解液が、フルオロスルホン酸塩、モノフルオロリン酸塩、ジフルオロリン酸塩、イミド塩、及びシュウ酸塩からなる群より選ばれる少なくとも1種の化合物に加え、LiPFを含有する場合、LiPFの含有量に対する前記添加剤の総含有量の質量比(添加剤の総含有量/LiPFの含有量)は、通常5.0×10-5以上、好ましくは1.0×10-4以上、より好ましくは1.0×10-3以上、さらに好ましくは0.02以上、特に好ましくは0.025以上、通常0.5以下、好ましくは0.45以下、より好ましくは0.4以下、さらに好ましくは0.35以下である。該質量比がこの範囲であれば、エネルギーデバイス特性、特に耐久特性を著しく向上させることができる。この原理については定かではないが、この比率で混合させることで、エネルギーデバイス系内でのLiPFの分解副反応が最小限に抑えられるためと考えられる。
 非水系電解液が、フルオロスルホン酸塩、モノフルオロリン酸塩、ジフルオロリン酸塩、イミド塩、及びシュウ酸塩からなる群より選ばれる少なくとも2種の化合物を含有する場合、非水系電解液100質量%中の前記鎖状スルホン酸エステル以外の併用添加剤の総含有量は、通常1.0×10-3質量%以上、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、更に好ましくは0.3質量%以上、特に好ましくは0.6質量%以上であり、また、通常10質量%以下、好ましくは8質量%以下、より好ましくは7質量%以下、さらに好ましくは6質量%以下特に好ましくは5質量%以下である。添加剤の総含有量がこの範囲であれば、エネルギーデバイス系内での副反応を効率よく抑制できる。
<1-3.電解質>
 本実施形態の非水系電解液は、一般的な非水系電解液と同様、通常はその成分として、電解質を含有する。本実施形態の非水系電解液に用いられる電解質について特に制限は無く、公知の電解質を用いることができる。非水系電解液中の電解質の総濃度は、特に制限はないが、非水系電解液の全量に対して、通常8質量%より多く、好ましくは8.5質量%以上、より好ましくは9質量%以上である。また、通常20質量%以下、好ましくは17質量%以下、より好ましくは16質量%以下である。電解質の総濃度が上記範囲内であると、電気伝導率が非水系電解液二次電池動作に適正となるため、十分な出力特性が得られる傾向にある。以下、電解質の具体例について詳述する。
<1-3-1.リチウム塩>
 本実施形態の非水系電解液における電解質としては、通常、リチウム塩が用いられる。リチウム塩としては、この用途に用いることが知られているものであれば特に制限がなく、任意のものを1種以上用いることができ、具体的には以下のものが挙げられる。
 例えば、
 LiPF、LiPOF、LiPO等のフルオロリン酸リチウム塩類;
 LiWOF等のタングステン酸リチウム塩類;
 CFCOLi等のカルボン酸リチウム塩類;
 CHSOLi、FSOLi等のスルホン酸リチウム塩類;
 LiN(FSO、LiN(CFSO等のリチウムイミド塩類;
 LiC(FSO等のリチウムメチド塩類;
 LiB(C等のリチウムオキサラート塩類;
 その他、LiPF(CF等の含フッ素有機リチウム塩類;
等が挙げられる。
 以上に挙げたリチウム塩は1種類のみで用いてもよいし、2種類以上を組み合わせて用いてもよい。ただし、併用添加剤に該当するリチウム塩電解質が非水系電解液に含まれる場合、併用添加剤に該当するリチウム塩以外の電解質を必ず含有する。
 エネルギーデバイスの高温環境下での充電保存特性向上に加え、充放電レート特性、インピーダンス特性の向上効果を更に高める点から、本実施形態の非水系電解液における電解質は、無機リチウム塩類、フルオロリン酸リチウム塩類、スルホン酸リチウム塩類、イミド塩類、リチウムオキサラート塩類の中から選ばれるものが好ましい。これらのうち、モノフルオロリン酸リチウム塩類又はジフルオロリン酸リチウム塩類の含有量が非水系電解液100質量%中、7質量%以下である場合には、好ましくはLiPF、LiBF、LiClO、LiB(C、Li(FSON及びLi(CFSONから選ばれる少なくとも1つであり、より好ましいものはLiPF、LiBF、Li(FSON及びLi(CFSONから選ばれる少なくとも1つであり、更に好ましいのは、LiPF及びLi(FSONのうちの少なくとも一方であり、特に好ましいものはLiPFである。フルオロスルホン酸リチウム塩類、イミド塩類、及びシュウ酸リチウム塩類からなる群より選ばれる少なくとも1種のリチウム塩の合計含有量が非水系電解液100質量%中、1.0×10-3質量%以上7質量%以下である場合には、好ましくはLiPF、LiBF、LiClO、から選ばれる少なくとも1つであり、より好ましいものはLiPF、及びLiBFから選ばれる少なくとも1つであり、特に好ましいものはLiPFである。
 リチウム塩を非水系電解液の主塩として用いる場合、該リチウム塩の濃度は、非水系電解液の全量に対して、通常8質量%以上、好ましくは8.5質量%以上、より好ましくは9質量%以上である。また、通常20質量%以下、好ましくは17質量%以下、より好ましくは16質量%以下である。主塩としての該リチウム塩の濃度が上記範囲内であると、電気伝導率がエネルギーデバイス動作に適正となるため、十分な出力特性が得られる傾向にある。リチウム塩を非水系電解液の副塩として用いる場合、該リチウム塩の濃度は、非水系電解液の全量に対して、通常0.05質量%以上であり、好ましくは0.1質量%以上、より好ましくは0.2質量%以上、更に好ましくは0.3質量%以上、特に好ましくは0.4質量%以上であり、また、通常2質量%以下、特に好ましくは1質量%以下である。副塩としての該リチウム塩の濃度がこの範囲内であると、エネルギーデバイス中での副反応が少なく、抵抗を上昇させにくい。
 非水系電解液がLiPFを含有する場合、PF アニオンはすべてLiPF由来であるとみなし、そこから算出したLiPFの含有量に対する前記鎖状スルホン酸エステルの総含有量の質量比(鎖状スルホン酸エステル/LiPF)は、通常5.0×10-5以上、好ましくは1.0×10-3以上、より好ましくは0.01以上、さらに好ましくは0.02以上、特に好ましくは0.025以上、通常0.3以下、好ましくは0.2以下、より好ましくは0.1以下、さらに好ましくは0.09以下、特に好ましくは0.08以下である。LiPFの含有量がこの範囲であれば、エネルギーデバイスの特性、特に耐久特性を著しく向上させることができる。この原理については定かではないが、この比率で混合させることで、エネルギーデバイス系内でのLiPFの分解副反応が最小限に抑えられるためと考えられる。
 鎖状スルホン酸エステル以外の併用添加剤に対する質量比においても、同様に、非水系電解液中のLiPFの質量は、PF アニオンすべてがLiPF由来であるとみなし、そこから算出した質量とみなす。
<1-4.非水系溶媒>
 非水系電解液は、一般的な非水系電解液と同様、通常はその主成分として、上述した電解質を溶解する非水系溶媒を含有する。非水系溶媒について特に制限はなく、公知の有機溶媒を用いることができる。有機溶媒としては、特に限定されず、例えば飽和環状カーボネート、鎖状カーボネート、鎖状カルボン酸エステル、エーテル系化合物、スルホン系化合物(但し、鎖状スルホン酸エステルを除く)、環状カルボン酸エステル等が挙げられる。これらのうち、有機溶媒は、飽和環状カーボネート、鎖状カーボネート及び鎖状カルボン酸エステルから選ばれる少なくとも1つであることが好ましく、エネルギーデバイスの初期容量を向上させやすくなる点で、少なくとも鎖状カルボン酸エステルを含むことがより好ましい。これらは、1種を単独で又は2種以上を組み合わせて用いることができる。以下、これらの有機溶媒について説明する。
<1-4-1.飽和環状カーボネート>
 飽和環状カーボネートとしては、通常炭素数2~4のアルキレン基を有するものが挙げられ、リチウムイオン解離度の向上に由来するエネルギーデバイス特性向上の点から炭素数2~3の飽和環状カーボネートが好ましく用いられる。
 飽和環状カーボネートとしては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等が挙げられる。中でも、エチレンカーボネートとプロピレンカーボネートが好ましく、酸化・還元されにくいエチレンカーボネートがより好ましい。飽和環状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 飽和環状カーボネートの含有量は、特に制限されず、本実施形態に係る発明の効果を著しく損なわない限り任意であるが、1種を単独で用いる場合の含有量の下限は、非水系電解液の溶媒全量に対して、通常3体積%以上、好ましくは5体積%以上である。飽和環状カーボネートの含有量の下限をこの範囲とすることで、非水系電解液の誘電率の低下に由来する電気伝導率の低下を回避し、非水系電解液二次電池等のエネルギーデバイスの大電流放電特性、負極に対する安定性、サイクル特性を良好な範囲としやすくなる。また、飽和環状カーボネートの含有量の含有量の上限は、非水系電解液の溶媒全量に対して、通常90体積%以下、好ましくは85体積%以下、より好ましくは80体積%以下である。この範囲とすることで、非水系電解液の酸化・還元耐性が向上し、高温保存時の安定性が向上する傾向にある。
 なお、本実施形態における体積%とは25℃、1気圧における体積を意味する。
<1-4-2.鎖状カーボネート>
 鎖状カーボネートとしては、通常炭素数3~7のものが用いられ、電解液の粘度を適切な範囲に調整するために、炭素数3~5の鎖状カーボネートが好ましく用いられる。
 具体的には、鎖状カーボネートとしては、ジメチルカーボネート、ジエチルカーボネート、ジ-n-プロピルカーボネート、ジイソプロピルカーボネート、n-プロピルイソプロピルカーボネート、エチルメチルカーボネート、メチル-n-プロピルカーボネート、n-ブチルメチルカーボネート、イソブチルメチルカーボネート、t-ブチルメチルカーボネート、エチル-n-プロピルカーボネート、n-ブチルエチルカーボネート、イソブチルエチルカーボネート、t-ブチルエチルカーボネート等が挙げられる。
 中でも、ジメチルカーボネート、ジエチルカーボネート、ジ-n-プロピルカーボネート、ジイソプロピルカーボネート、n-プロピルイソプロピルカーボネート、エチルメチルカーボネート、メチル-n-プロピルカーボネートが好ましく、特に好ましくはジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートである。
 また、フッ素原子を有する鎖状カーボネート類(以下、「フッ素化鎖状カーボネート」と略記する場合がある。)も好適に用いることができる。フッ素化鎖状カーボネートが有するフッ素原子の数は、1以上であれば特に制限されないが、通常6以下であり、好ましくは4以下である。フッ素化鎖状カーボネートが複数のフッ素原子を有する場合、それらは互いに同一の炭素に結合していてもよく、異なる炭素に結合していてもよい。フッ素化鎖状カーボネートとしては、フッ素化ジメチルカーボネート誘導体、フッ素化エチルメチルカーボネート誘導体、フッ素化ジエチルカーボネート誘導体等が挙げられる。
 フッ素化ジメチルカーボネート誘導体としては、フルオロメチルメチルカーボネート、ジフルオロメチルメチルカーボネート、トリフルオロメチルメチルカーボネート、ビス(フルオロメチル)カーボネート、ビス(ジフルオロ)メチルカーボネート、ビス(トリフルオロメチル)カーボネート等が挙げられる。
 フッ素化エチルメチルカーボネート誘導体としては、2-フルオロエチルメチルカーボネート、エチルフルオロメチルカーボネート、2,2-ジフルオロエチルメチルカーボネート、2-フルオロエチルフルオロメチルカーボネート、エチルジフルオロメチルカーボネート、2,2,2-トリフルオロエチルメチルカーボネート、2,2-ジフルオロエチルフルオロメチルカーボネート、2-フルオロエチルジフルオロメチルカーボネート、エチルトリフルオロメチルカーボネート等が挙げられる。
 フッ素化ジエチルカーボネート誘導体としては、エチル-(2-フルオロエチル)カーボネート、エチル-(2,2-ジフルオロエチル)カーボネート、ビス(2-フルオロエチル)カーボネート、エチル-(2,2,2-トリフルオロエチル)カーボネート、2,2-ジフルオロエチル-2’-フルオロエチルカーボネート、ビス(2,2-ジフルオロエチル)カーボネート、2,2,2-トリフルオロエチル-2’-フルオロエチルカーボネート、2,2,2-トリフルオロエチル-2’,2’-ジフルオロエチルカーボネート、ビス(2,2,2-トリフルオロエチル)カーボネート等が挙げられる。
 鎖状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 鎖状カーボネートの含有量は特に限定されないが、非水系電解液の溶媒全量に対して、通常15体積%以上であり、好ましくは20体積%以上、より好ましくは25体積%以上であり、また、通常90体積%以下、好ましくは85体積%以下、より好ましくは80体積%以下である。鎖状カーボネートの含有量を上記範囲とすることによって、非水系電解液の粘度を適切な範囲とし、イオン伝導度の低下を抑制し、ひいては非水系電解液二次電池等のエネルギーデバイスの出力特性を良好な範囲としやすくなる。
 さらに、特定の鎖状カーボネートに対して、エチレンカーボネートを特定の含有量で組み合わせることにより、エネルギーデバイス性能を著しく向上させることができる。
 例えば、特定の鎖状カーボネートとしてジメチルカーボネートとエチルメチルカーボネートを選択した場合、エチレンカーボネートの含有量は、特に制限されず、本実施形態に係る発明の効果を著しく損なわない限り任意であるが、非水系電解液の溶媒全量に対して、通常15体積%以上、好ましくは20体積%以上、また、通常45体積%以下、好ましくは40体積%以下であり、ジメチルカーボネートの含有量は、非水系電解液の溶媒全量に対して、通常20体積%以上、好ましくは30体積%以上、また、通常50体積%以下、好ましくは45体積%以下であり、エチルメチルカーボネートの含有量は通常20体積%以上、好ましくは30体積%以上、また、通常50体積%以下、好ましくは45体積%以下である。エチレンカーボネート、ジメチルカーボネート及びエチルメチルカーボネートの含有量を上記範囲内とすることで、高温安定性に優れ、ガス発生が抑制される傾向がある。
<1-4-3.鎖状カルボン酸エステル>
 鎖状カルボン酸エステルとしては、炭素数が3~12のものが好ましく、炭素数3~5のものがより好ましい。
 鎖状カルボン酸エステルとしては、
負極での副反応が少ない点から、酢酸メチル、酢酸エチル、酢酸n-プロピル、酢酸n-ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸n-プロピル、プロピオン酸n-ブチル、酪酸メチル、酪酸エチル、酪酸n-プロピル、酪酸n-ブチル、吉草酸メチル、吉草酸エチル、吉草酸n-プロピル、吉草酸n-ブチル、ピバル酸メチル、ピバル酸エチル、ピバル酸n-プロピル又はピバル酸n-ブチルが好ましく、電解液粘度低下によるイオン伝導度の向上の点から、酢酸メチル、酢酸エチル、酢酸n-プロピル、酢酸n-ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸n-プロピル又はプロピオン酸n-ブチルがより好ましく、酢酸メチル、酢酸エチル、プロピオン酸メチル及びプロピオン酸エチルが更に好ましく、酢酸メチルまたは酢酸エチルが特に好ましい。
 鎖状カルボン酸エステルを非水系溶媒として用いる場合の含有量は、非水系溶媒100体積%中、好ましくは1体積%以上、より好ましくは5体積%以上、更に好ましくは10体積%以上であり、また、50体積%以下で含有させることができ、より好ましくは45体積%以下、更に好ましくは40体積%以下である。鎖状カルボン酸エステルの含有量を前記範囲とすると、非水系電解液の電気伝導率を改善し、非水系電解液二次電池等のエネルギーデバイスの入出力特性や充放電レート特性を向上させやすくなる。また、負極抵抗の増大を抑制し、非水系電解液二次電池等のエネルギーデバイスの入出力特性や充放電レート特性を良好な範囲としやすくなる。
 尚、鎖状カルボン酸エステルを非水系溶媒として用いる場合は、好ましくは環状カーボネートとの併用であり、更に好ましくは環状カーボネートと鎖状カーボネートとの併用である。電解質の低温析出温度を低下させながら、非水系電解液の粘度も低下させてイオン伝導度を向上させ、低温でも更に高い入出力を得ることができ、またエネルギーデバイス、特に電池の膨れを更に低下させることができるからである。
<1-4-4.エーテル系化合物>
 エーテル系化合物としては、炭素数3~10の鎖状エーテル、及び炭素数3~6の環状エーテルが好ましい。
 炭素数3~10の環状エーテルとしては、ジメトキシメタン、ジエトキシメタン、メトキシエトキシメタン、エチレングリコールジ-n-プロピルエーテル、エチレングリコールジ-n-ブチルエーテル、ジエチレングリコールジメチルエーテルが、リチウムイオンへの溶媒和能力が高く、イオン解離性を向上させる点で好ましい。粘性が低く、高いイオン伝導度を与えることから、ジメトキシメタン、ジエトキシメタン、メトキシエトキシメタンが特に好ましい。
 炭素数3~6の環状エーテルとしては、テトラヒドロフラン、2-メチルテトラヒドロフラン、3-メチルテトラヒドロフラン、1,3-ジオキサン、2-メチル-1,3-ジオキサン、4-メチル-1,3-ジオキサン、1,4-ジオキサン等、及びこれらのフッ素化化合物が挙げられる。
 エーテル系化合物の含有量は、特に制限されず、本実施形態に係る発明の効果を著しく損なわない限り任意であるが、非水系溶媒100体積%中、通常1体積%以上、好ましくは2体積%以上、より好ましくは3体積%以上、また、通常30体積%以下、好ましくは25体積%以下、より好ましくは20体積%以下である。エーテル系化合物の含有量が前記好ましい範囲内であれば、リチウムイオン解離度の向上と粘度低下に由来するイオン伝導度の向上効果を確保しやすい。また、負極活物質が炭素系材料の場合、鎖状エーテルがリチウムイオンと共に共挿入される現象を抑制できることから、入出力特性や充放電レート特性を適正な範囲とすることができる。
<1-4-5.スルホン系化合物>
 スルホン系化合物(但し、鎖状スルホン酸エステルを除く)としては、スルホラン類等が挙げられ、中でも、スルホラン及びスルホラン誘導体が好ましい。スルホラン誘導体としては、スルホラン環を構成する炭素原子上に結合した水素原子の1以上がフッ素原子、アルキル基、又はフッ素置換アルキル基で置換されたものが好ましい。
 特に、2-メチルスルホラン、3-メチルスルホラン、2-フルオロスルホラン、3-フルオロスルホラン、2,3-ジフルオロスルホラン、2-トリフルオロメチルスルホラン、3-トリフルオロメチルスルホラン等が、イオン伝導度が高く入出力が高い点で好ましい。
 スルホン系化合物は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 スルホン系化合物の含有量は、特に制限されず、本実施形態に係る発明の効果を著しく損なわない限り任意であるが、1種を単独で用いる場合の含有量の下限は、非水系電解液の溶媒全量に対して、通常3体積%以上、好ましくは5体積%以上である。スルホン系化合物の含有量の下限をこの範囲とすることで、非水系電解液の誘電率の低下に由来する電気伝導率の低下を回避し、非水系電解液二次電池等の非水系電解液二次電池の大電流放電特性、負極に対する安定性、サイクル特性を良好な範囲としやすくなる。また、飽和環状カーボネートの含有量の含有量の上限は、非水系電解液の溶媒全量に対して、通常90体積%以下、好ましくは85体積%以下、より好ましくは80体積%以下である。この範囲とすることで、非水系電解液の酸化・還元耐性が向上し、高温保存時の安定性が向上する傾向にある。
<1-4-6.環状カルボン酸エステル>
 環状カルボン酸エステルとしては、炭素数が3~12のものが好ましい。
 具体的には、γ-ブチロラクトン、γ-バレロラクトン、γ-カプロラクトン、ε-カプロラクトン等が挙げられる。中でも、γ-ブチロラクトンがリチウムイオン解離度の向上に由来するエネルギーデバイス特性向上の点から特に好ましい。
 環状カルボン酸エステルは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 環状カルボン酸エステルの含有量は、非水系溶媒100体積%中、好ましくは5体積%以上、より好ましくは10体積%以上である。この範囲であれば、非水系電解液の電気伝導率を改善し、エネルギーデバイスの大電流放電特性を向上させやすくなる。また、環状カルボン酸エステルの含有量は、好ましくは50体積%以下、より好ましくは40体積%以下である。このように上限を設定することにより、非水系電解液の粘度を適切な範囲とし、電気伝導率の低下を回避し、負極抵抗の増大を抑制し、エネルギーデバイスの大電流放電特性を良好な範囲としやすくなる。
<1-5.助剤>
 非水系電解液において、本実施形態に係る発明の効果を奏する範囲で以下の助剤を含有してもよい。助剤としては、特に限定されず、例えば炭素-炭素不飽和結合を有する環状カーボネート、フッ素含有環状カーボネート、硫黄含有有機化合物、リン含有有機化合物、シアノ基を有する有機化合物、イソシアネート基を有する有機化合物、ケイ素含有化合物、ホウ酸塩、芳香族カーボネート等が挙げられる。これらのうち、助剤は、炭素-炭素不飽和結合を有する環状カーボネート、フッ素含有環状カーボネートから選ばれる少なくとも1つであることが好ましい。これらは、1種を単独で又は2種以上を組み合わせて用いることができる。以下、具体的な助剤について説明する。
<1-5-1.炭素-炭素不飽和結合を有する環状カーボネート>
 炭素-炭素不飽和結合を有する環状カーボネート(以下、「不飽和環状カーボネート」ともいう)としては、炭素-炭素二重結合又は炭素-炭素三重結合を有する環状カーボネートであれば、特に制限はない。芳香環を有する環状カーボネートも、不飽和環状カーボネートに包含されることとする。
 不飽和環状カーボネートとしては、ビニレンカーボネート類、芳香環、炭素-炭素二重結合又は炭素-炭素三重結合を有する置換基で置換されたエチレンカーボネート類、フェニルカーボネート類、ビニルカーボネート類、アリルカーボネート類、カテコールカーボネート類等が挙げられる。中でもビニレンカーボネート類、または芳香環もしくは炭素-炭素二重結合又は炭素-炭素三重結合を有する置換基で置換されたエチレンカーボネート類が好ましい。
 不飽和環状カーボネートの具体例としては、ビニレンカーボネート、メチルビニレンカーボネート、4,5-ジメチルビニレンカーボネート、フェニルビニレンカーボネート、4,5-ジフェニルビニレンカーボネート、ビニルビニレンカーボネート、4,5-ビニルビニレンカーボネート、アリルビニレンカーボネート、4,5-ジアリルビニレンカーボネート等のビニレンカーボネート類;
ビニルエチレンカーボネート、4,5-ジビニルエチレンカーボネート、4-メチル-5-ビニルエチレンカーボネート、4-アリル-5-ビニルエチレンカーボネート、エチニルエチレンカーボネート、4,5-ジエチニルエチレンカーボネート、4-メチル-5-エチニルエチレンカーボネート、4-ビニル-5-エチニルエチレンカーボネート、4-アリル-5-エチニルエチレンカーボネート、フェニルエチレンカーボネート、4,5-ジフェニルエチレンカーボネート、4-フェニル-5-ビニルエチレンカーボネート、4-アリル-5-フェニルエチレンカーボネート、アリルエチレンカーボネート、4,5-ジアリルエチレンカーボネート、4-メチル-5-アリルエチレンカーボネート等の芳香環もしくは炭素-炭素二重結合又は炭素-炭素三重結合を有する置換基で置換されたエチレンカーボネート類;
等が挙げられる。中でも、ビニレンカーボネート、ビニルエチレンカーボネート、エチニルエチレンカーボネートは更に安定な界面保護被膜を形成するので好ましく、ビニレンカーボネート、ビニルエチレンカーボネートがより好ましく、ビニレンカーボネートがさらに好ましい。
 不飽和環状カーボネートは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。不飽和環状カーボネートの含有量(2種以上の場合は合計量)は、非水系電解液100質量%中、1.0×10-3質量%以上であることができ、好ましくは0.01質量%以上、より好ましくは0.1質量%以上であり、また、5質量%以下であることができ、好ましくは4質量%以下、より好ましくは3質量%以下である。不飽和環状カーボネートの含有量がこの範囲内であれば、非水系電解液電池等のエネルギーデバイスが十分なサイクル特性向上効果を発現しやすく、また、高温保存特性が低下し、ガス発生量が多くなり、放電容量維持率が低下するといった事態を回避しやすい。
 不飽和環状カーボネートの含有量(2種以上の場合は合計量)に対する上記鎖状スルホン酸エステルの含有量の質量比(鎖状スルホン酸エステル/不飽和環状カーボネート)は、通常1/100以上であり、好ましくは10/100以上、より好ましくは20/100以上、更に好ましくは25/100以上であり、通常10000/100以下であり、好ましくは500/100以下、より好ましくは300/100以下である。該質量比がこの範囲であれば、エネルギーデバイス特性、特に耐久特性を著しく向上させることができる。この原理については定かではないが、この比率で混合させることで、電極上での添加剤の副反応を最小限に抑えられるためと考えられる。
 非水系電解液中がLiPFを含有する場合、LiPFの含有量に対する不飽和環状カーボネートの総含有量の質量比(不飽和環状カーボネート/LiPF)は、通常5.0×10-5以上、好ましくは1.0×10-3以上、より好ましくは0.01以上、さらに好ましくは0.02以上、特に好ましくは0.025以上、通常0.5以下、好ましくは0.45以下、より好ましくは0.4以下、さらに好ましくは0.35以下である。該質量比がこの範囲であれば、エネルギーデバイス特性、特に耐久特性を著しく向上させることができる。この原理については定かではないが、この比率で混合させることで、エネルギーデバイス系内でのLiPFの分解副反応が最小限に抑えられるためと考えられる。
<1-5-2.フッ素含有環状カーボネート>
 フッ素含有環状カーボネートは、環状のカーボネート構造を有し、かつフッ素原子を含有するものであれば特に制限されない。
 フッ素含有環状カーボネートとしては、炭素数2以上6以下のアルキレン基を有する環状カーボネートのフッ素化物、及びその誘導体が挙げられ、例えばエチレンカーボネートのフッ素化物(以下、「フッ素化エチレンカーボネート」と記載する場合がある)、及びその誘導体が挙げられる。エチレンカーボネートのフッ素化物の誘導体としては、アルキル基(例えば、炭素数1以上4以下のアルキル基)で置換されたエチレンカーボネートのフッ素化物が挙げられる。中でもフッ素数1以上8以下のフッ素化エチレンカーボネート、及びその誘導体が好ましい。
 フッ素数1以上8以下のフッ素化エチレンカーボネート及びその誘導体としては、モノフルオロエチレンカーボネート、4,4-ジフルオロエチレンカーボネート、4,5-ジフルオロエチレンカーボネート、4-フルオロ-4-メチルエチレンカーボネート、4,5-ジフルオロ-4-メチルエチレンカーボネート、4-フルオロ-5-メチルエチレンカーボネート、4,4-ジフルオロ-5-メチルエチレンカーボネート、4-(フルオロメチル)-エチレンカーボネート、4-(ジフルオロメチル)-エチレンカーボネート、4-(トリフルオロメチル)-エチレンカーボネート、4-(フルオロメチル)-4-フルオロエチレンカーボネート、4-(フルオロメチル)-5-フルオロエチレンカーボネート、4-フルオロ-4,5-ジメチルエチレンカーボネート、4,5-ジフルオロ-4,5-ジメチルエチレンカーボネート、4,4-ジフルオロ-5,5-ジメチルエチレンカーボネート等が挙げられる。中でも、モノフルオロエチレンカーボネート、4,4-ジフルオロエチレンカーボネート、4,5-ジフルオロエチレンカーボネートが、電解液に高イオン伝導性を与え、かつ安定な界面保護被膜を容易に形成しやすい点で好ましい。
 フッ素含有環状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。フッ素含有環状カーボネートの含有量(2種以上の場合は合計量)は、非水系電解液100質量%中、好ましくは1.0×10-3質量%以上、より好ましくは0.01質量%以上、更に好ましくは0.1質量%以上、更により好ましくは0.5質量%以上、特に好ましくは1質量%以上、最も好ましくは1.2質量%以上であり、また、好ましくは10質量%以下、より好ましくは7質量%以下、更に好ましくは5質量%以下、特に好ましくは3質量%以下、最も好ましくは2質量%以下である。また、フッ素含有環状カーボネートを非水系溶媒として用いる場合の含有量は、非水系溶媒100体積%中、好ましくは1体積%以上、より好ましくは5体積%以上、更に好ましくは10体積%以上であり、また、好ましくは50体積%以下、より好ましくは35体積%以下、更に好ましくは25体積%以下である。
 フッ素含有環状カーボネート(2種以上の場合は合計量)の含有量に対する上記鎖状スルホン酸エステルの含有量の質量比(鎖状スルホン酸エステル/フッ素含有環状カーボネート)は、通常1/100以上であり、好ましくは10/100以上、より好ましくは20/100以上、更に好ましくは25/100以上であり、通常10000/100以下であり、好ましくは500/100以下、より好ましくは300/100以下である。該質量比がこの範囲であれば、エネルギーデバイス特性、特に耐久特性を著しく向上させることができる。この原理については定かではないが、この比率で混合させることで、電極上での添加剤の副反応を最小限に抑えられるためと考えられる。
 非水系電解液がLiPFを含有する場合、LiPFの含有量に対するフッ素含有環状カーボネートの総含有量の質量比(フッ素含有環状カーボネート/LiPF)は、通常0.00005以上、好ましくは0.001以上、より好ましくは0.01以上、さらに好ましくは0.02以上、特に好ましくは0.025以上、通常0.5以下、好ましくは0.45以下、より好ましくは0.4以下、さらに好ましくは0.35以下である。該質量比がこの範囲であれば、エネルギーデバイス特性、特に耐久特性を著しく向上させることができる。この原理については定かではないが、この比率で混合させることで、エネルギーデバイス系内でのLiPFの分解副反応が最小限に抑えられるためと考えられる。
<1-6.非水系電解液の製造方法>
 非水系電解液は、前述の非水系溶媒に、電解質と、鎖状スルホン酸エステルと、フルオロスルホン酸塩、モノフルオロリン酸塩、ジフルオロリン酸塩、イミド塩、及びシュウ酸塩からなる群より選ばれる少なくとも1種の化合物と、必要に応じて前述の「助剤」などを溶解することにより調製することができる。
 非水系電解液を調製するに際しては、非水系電解液の各原料、すなわち、リチウム塩等の電解質;非水系溶媒;鎖状スルホン酸エステル;フルオロスルホン酸塩、モノフルオロリン酸塩、ジフルオロリン酸塩、イミド塩、及びシュウ酸塩からなる群より選ばれる少なくとも1種の化合物;及び、助剤等は、予め脱水しておくことが好ましい。脱水の程度としては、原料の水分量が通常50質量ppm以下、好ましくは30質量ppm以下となるまで脱水することが望ましい。
 非水系電解液中の水分を除去することで、水の電気分解、水とリチウム金属との反応、リチウム塩の加水分解等が生じ難くなる。脱水の手段としては特に制限はないが、例えば、脱水する対象が非水系溶媒等の液体の場合は、モレキュラーシーブ等の乾燥剤を用いればよい。また脱水する対象が電解質等の固体の場合は、分解が起きる温度未満で加熱して乾燥させればよい。
<2.非水系電解液を用いたエネルギーデバイス>
 非水系電解液を用いたエネルギーデバイスは、金属イオンを吸蔵及び放出可能な複数の電極と、以上説明した非水系電解液とを備えるものである。エネルギーデバイスの種類としては、一次電池、二次電池、リチウムイオンキャパシタをはじめとする金属イオンキャパシタが具体例として挙げられる。中でも、一次電池または二次電池が好ましく、二次電池がより好ましく、リチウム二次電池が特に好ましい。なお、これらのエネルギーデバイスに用いられる非水系電解液は、高分子やフィラー等で疑似的に固体化された、所謂ゲル電解質であることも好ましい。以下、非水系電解液二次電池について説明する。
<2-1.非水系電解液二次電池>
<2-1-1.電池構成>
 非水系電解液二次電池は、非水系電解液以外の構成については、従来公知の非水系電解液二次電池と同様であり、通常は、非水系電解液が含浸されている多孔膜(セパレータ)を介して正極と負極とが積層され、これらがケース(外装体)に収納された形態を有する。従って、非水系電解液二次電池の形状は特に制限されるものではなく、円筒型、角形、ラミネート型、コイン型、大型等のいずれであってもよい。
<2-1-2.非水系電解液>
 非水系電解液としては、上述の非水系電解液を用いる。なお、本実施形態に係る発明の趣旨を逸脱しない範囲において、上述の非水系電解液に対し、その他の非水系電解液を混合して用いることも可能である。
<2-1-3.負極>
 負極に使用される負極活物質としては、電気化学的に金属イオンを吸蔵及び放出可能なものであれば、特に制限はない。その具体例としては、炭素系材料、金属化合物系材料、リチウム含有金属複合酸化物材料等が挙げられる。負極活物質は1種を単独で用いてもよく、また2種以上を任意に組み合わせて併用してもよい。
 なかでも、炭素系材料及び金属化合物系材料が好ましい。金属化合物系材料の中では、ケイ素を含む材料が好ましい。したがって負極活物質としては、炭素系材料及びケイ素を含む材料が特に好ましい。
<2-1-3-1.炭素系材料>
 負極活物質として用いられる炭素系材料としては、特に限定されないが、下記(i)~(iv)から選ばれるものが、初期不可逆容量、高電流密度充放電特性のバランスがよい二次電池を与えるので好ましい。
(i)天然黒鉛
(ii)人造炭素質物質並びに人造黒鉛質物質を400℃~3200℃の範囲で1回以上熱処理して得られた炭素質材料
(iii)負極活物質層が少なくとも2種類の異なる結晶性を有する炭素質から成り立ち、かつ/またはその異なる結晶性の炭素質が接する界面を有している炭素質材料
(iv)負極活物質層が少なくとも2種類の異なる配向性を有する炭素質から成り立ち、かつ/またはその異なる配向性の炭素質が接する界面を有している炭素質材料
(i)~(iv)の炭素系材料は1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 上記(ii)における人造炭素質物質または人造黒鉛質物質の具体例としては、石炭系コークス、石油系コークス、石炭系ピッチ、石油系ピッチ及びこれら又は天然黒鉛を酸化処理したもの;
ニードルコークス、ピッチコークス及びこれらを一部黒鉛化した炭素材;
ファーネスブラック、アセチレンブラック、ピッチ系炭素繊維等の有機物の熱分解物;
炭化可能な有機物及びこれらの炭化物;並びに、
炭化可能な有機物をベンゼン、トルエン、キシレン、キノリン、n-へキサン等の低分子有機溶媒に溶解させた溶液状の炭化物;などが挙げられる。
 上記(i)~(iv)の炭素系材料はいずれも従来公知であり、その製造方法は当業者によく知られており、またこれらの市販品を購入することもできる。
<2-1-3-2.金属化合物系材料>
 負極活物質として用いられる金属化合物系材料としては、リチウムと合金化可能な金属が含まれていれば特に限定されず、その形態としては、金属イオン、例えば、リチウムイオンを吸蔵及び放出可能であれば、特に限定されず、リチウムと合金を形成する単体金属若しくは合金、またはそれらの酸化物、炭化物、窒化物、珪化物、硫化物、燐化物等の化合物が使用できる。このような金属化合物系材料としては、Ag、Al、Ba、Bi、Cu、Ga、Ge、In、Ni、Pb、Sb、Si、Sn、Sr、Zn等の金属を含有する化合物が挙げられる。とりわけ、周期表13族または14族の金属・半金属元素(すなわち炭素を除く。また以降では、金属及び半金属をまとめて「金属」と呼ぶ。)を含む材料であることがより好ましく、更には、ケイ素(Si)、スズ(Sn)または鉛(Pb)(以下、これら3種の元素を「SSP金属元素」という場合がある)の単体金属若しくはこれら原子を含む合金、または、それらの金属(SSP金属元素)の化合物であることが好ましい。リチウムと合金化可能な金属として最も好ましいのはケイ素である。これらは、1種を単独で用いてもよく、また2種以上を任意の組み合わせ及び比率で併用してもよい。
<2-1-3-3.リチウム含有金属複合酸化物材料>
 負極活物質として用いられるリチウム含有金属複合酸化物材料としては、リチウムを吸蔵及び放出可能であれば特に限定はされないが、チタンを含むリチウム含有複合金属酸化物材料が好ましく、リチウムとチタンの複合酸化物(以下、「リチウムチタン複合酸化物」と略記する場合がある。)が特に好ましい。スピネル構造を有するリチウムチタン複合酸化物を、リチウムイオン非水系電解液二次電池用負極活物質に含有させて用いると、二次電池の出力抵抗が大きく低減するので特に好ましい。
 また、リチウムチタン複合酸化物のリチウムやチタンが、他の金属元素、例えば、Na、K、Co、Al、Fe、Mg、Cr、Ga、Cu、Zn及びNbからなる群より選ばれる少なくとも1種の元素で置換されているものも好ましい。
 負極活物質として好ましいリチウムチタン複合酸化物としては、下記一般式(2)で表されるリチウムチタン複合酸化物が挙げられる。
  LiTi     (2)
(一般式(2)中、Mは、Na、K、Co、Al、Fe、Mg、Cr、Ga、Cu、Zn及びNbからなる群より選ばれる少なくとも1種の元素を表す。また、一般式(2)中、0.7≦x≦1.5、1.5≦y≦2.3、0≦z≦1.6であることが、リチウムイオンのドープ・脱ドープの際の構造が安定であることから好ましい。)
<2-1-3-4.負極の構成、物性、調製方法>
 上記活物質材料を含有する負極及び電極化手法、集電体については、公知の技術構成を採用することができるが、次に示す(I)~(VI)のいずれか1項目または複数の項目を同時に満たしていることが望ましい。
(I)負極作製
 負極の製造は、本実施形態に係る発明の効果を著しく制限しない限り、公知のいずれの方法をも用いることができる。例えば、負極活物質に、バインダー、溶媒、必要に応じて、増粘剤、導電材、充填材等を加えてスラリー状の負極形成材料とし、これを集電体に塗布、乾燥した後にプレスすることによって、負極活物質層を形成して負極を製造することができる。
(II)集電体
 負極活物質を保持させる集電体としては、公知のものを任意に用いることができる。負極の集電体としては、例えば、アルミニウム、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属材料が挙げられるが、加工し易さとコストの点から特に銅が好ましい。
 また、集電体の形状は、集電体が金属材料の場合は、例えば、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられる。中でも、好ましくは金属薄膜及び金属箔である。より好ましくは銅箔であり、更に好ましくは圧延法による圧延銅箔と、電解法による電解銅箔である。
(III)集電体と負極活物質層の厚さの比
 集電体と負極活物質層の厚さの比は特には限定されないが、「(非水系電解液の注液工程の直前の片面の負極活物質層厚さ)/(集電体の厚さ)」の値が、150以下が好ましく、20以下がより好ましく、10以下が特に好ましく、また、0.1以上が好ましく、0.4以上がより好ましく、1以上が特に好ましい。
 集電体と負極活物質層の厚さの比が、上記範囲を上回ると、二次電池の高電流密度充放電時に集電体がジュール熱による発熱を生じる場合がある。また、上記範囲を下回ると、負極活物質に対する集電体の体積比が増加し、二次電池の容量が減少する場合がある。
(IV)電極密度
 負極活物質を電極化した際の電極構造は、特には限定されず、集電体上に存在している負極活物質の密度は、1g・cm-3以上が好ましく、1.2g・cm-3以上がより好ましく、1.3g・cm-3以上が更に好ましく、また、4g・cm-3以下が好ましく、3g・cm-3以下がより好ましく、2.5g・cm-3以下が更に好ましく、1.7g・cm-3以下が特に好ましい。集電体上に存在している負極活物質の密度が、上記範囲内であると、負極活物質粒子が破壊されにくく、二次電池の初期不可逆容量の増加や、集電体/負極活物質界面付近への非水系電解液の浸透性低下による高電流密度充放電特性悪化を防ぎ易くなる。さらに、負極活物質間の導電性を確保することができ、電池抵抗が増大することなく、単位容積当たりの容量を稼ぐことができる。
(V)バインダー・溶媒等
 負極活物質層を形成するためのスラリーは、通常、負極活物質に対して、溶媒にバインダー、増粘剤等を混合したものを加えて調製される。
 負極活物質を結着するバインダーとしては、非水系電解液や電極製造時に用いる溶媒に対して安定な材料であれば、特に制限されない。
 その具体例としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂系高分子;
SBR(スチレン・ブタジエンゴム)、イソプレンゴム、ブタジエンゴム、フッ素ゴム、NBR(アクリロニトリル・ブタジエンゴム)、エチレン・プロピレンゴム等のゴム状高分子;
スチレン・ブタジエン・スチレンブロック共重合体またはその水素添加物、EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・スチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体またはその水素添加物等の熱可塑性エラストマー状高分子;
シンジオタクチック-1,2-ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α-オレフィン共重合体等の軟質樹脂状高分子;
ポリフッ化ビニリデン、ポリテトラフルオロエチレン、テトラフルオロエチレン・エチレン共重合体等のフッ素系高分子;
アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物;
等が挙げられる。
 これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
 スラリーを形成するための溶媒としては、負極活物質、バインダー、並びに必要に応じて使用される増粘剤及び導電材を溶解または分散することが可能な溶媒であれば、その種類に特に制限はなく、水系溶媒と有機系溶媒のどちらを用いてもよい。
 前記水系溶媒の例としては水、アルコール等が挙げられ、前記有機系溶媒の例としてはN-メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N-ジメチルアミノプロピルアミン、テトラヒドロフラン(THF)、トルエン、アセトン、ジエチルエーテル、ジメチルアセトアミド、ヘキサメチルホスファルアミド、ジメチルスルフォキシド、ベンゼン、キシレン、キノリン、ピリジン、メチルナフタレン、ヘキサン等が挙げられる。
 特に水系溶媒を用いる場合、増粘剤に併せて分散剤等を含有させ、SBR等のラテックスを用いてスラリー化することが好ましい。
 なお、これらの溶媒は、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
 負極活物質100質量部に対するバインダーの割合は、0.1質量部以上が好ましく、0.5質量部以上がより好ましく、0.6質量部以上が更に好ましく、また、20質量部以下が好ましく、15質量部以下がより好ましく、10質量部以下が更に好ましく、8質量部以下が特に好ましい。負極活物質に対するバインダーの割合が、上記範囲内であると、電池容量に寄与しないバインダーの割合が多くならないので、電池容量の低下を招き難くなる。さらに、負極の強度低下も招き難くなる。
 特に、負極形成材料であるスラリーがSBRに代表されるゴム状高分子を主要成分として含有する場合には、負極活物質100質量部に対するバインダーの割合は、0.1質量部以上が好ましく、0.5質量部以上がより好ましく、0.6質量部以上が更に好ましく、また、5質量部以下が好ましく、3質量部以下がより好ましく、2質量部以下が更に好ましい。
 また、スラリーがポリフッ化ビニリデンに代表されるフッ素系高分子を主要成分として含有する場合には、負極活物質100質量部に対するバインダーの割合は、1質量部以上が好ましく、2質量部以上がより好ましく、3質量部以上が更に好ましく、また、15質量部以下が好ましく、10質量部以下がより好ましく、8質量部以下が更に好ましい。
 増粘剤は、通常、スラリーの粘度を調整するために使用される。増粘剤としては、特に制限はないが、具体的には、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、燐酸化スターチ、カゼイン及びこれらの塩等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
 増粘剤を用いる場合、負極活物質100質量部に対する増粘剤の割合は、通常0.1質量部以上であり、0.5質量部以上が好ましく、0.6質量部以上がより好ましい。また、前記割合は通常5質量部以下であり、3質量部以下が好ましく、2質量部以下がより好ましい。負極活物質に対する増粘剤の割合が、上記範囲内にあると、スラリーの塗布性が良好となる。さらに、負極活物質層に占める負極活物質の割合も適度なものとなり、電池容量が低下する問題や負極活物質間の抵抗が増大する問題が生じ難くなる。
(VI)負極板の面積
 負極(「負極板」ともいう。)の面積は、特に限定されないが、対向する正極(「正極板」ともいう。)よりもわずかに大きくして、正極板が負極板から外にはみ出すことがないように設計することが好ましい。また、二次電池の充放電を繰り返したときのサイクル寿命や高温保存による劣化を抑制する観点から、できる限り正極に等しい面積に近づけることが、より均一かつ有効に働く電極割合を高めて特性が向上するので好ましい。特に、二次電池が大電流で使用される場合には、この負極板の面積の設計が重要である。
<2-1-4.正極>
 以下に非水系電解液二次電池に使用される正極について説明する。
<2-1-4-1.正極活物質>
 以下に前記正極に使用される正極活物質について説明する。
(1)組成
 正極活物質としては、電気化学的に金属イオンを吸蔵及び放出可能なものであれば特に制限はないが、例えば、電気化学的にリチウムイオンを吸蔵及び放出可能なものが好ましく、リチウムと少なくとも1種の遷移金属を含有する物質が好ましい。具体例としては、リチウム遷移金属複合酸化物、リチウム含有遷移金属燐酸化合物、リチウム含有遷移金属ケイ酸化合物、リチウム含有遷移金属ホウ酸化合物が挙げられる。
 前記リチウム遷移金属複合酸化物の遷移金属としてはV、Ti、Cr、Mn、Fe、Co、Ni、Cu等が好ましく、前記リチウム遷移金属複合酸化物の具体例としては、LiCoO等のリチウム・コバルト複合酸化物;LiNiO等のリチウム・ニッケル複合酸化物;LiMnO、LiMn、LiMnO等のリチウム・マンガン複合酸化物;これらのリチウム遷移金属複合酸化物の主体となる遷移金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Si、Nb、Mo、Sn、W等の他の金属で置換したもの等が挙げられる。
 置換されたものの具体例としては、例えば、LiNi0.5Mn0.5、LiNi0.85Co0.10Al0.05、LiNi0.33Co0.33Mn0.33、LiMn1.8Al0.2、Li1.1Mn1.9Al0.1、LiMn1.5Ni0.5等が挙げられる。
 中でも、リチウムとニッケルとコバルトとを含有するリチウム遷移金属複合酸化物がより好ましい。コバルトとニッケルを含有するリチウム遷移金属複合酸化物は、同じ電位で使用した際の容量を大きくとることが可能となるためである。
 一方でコバルトは資源量も少なく高価な金属であり、自動車用途等の高容量が必要とされる大型電池では活物質の使用量が大きくなることから、コストの点で好ましくないため、より安価な遷移金属としてマンガンを主成分に用いることも望ましい。すなわち、リチウム・ニッケル・コバルト・マンガン複合酸化物が特に好ましい。
 また、化合物としての安定性や、製造の容易さによる調達コストに鑑みると、スピネル型構造を有するリチウム・マンガン複合酸化物及びマンガンの一部が置換されたリチウム・マンガン複合酸化物も好ましい。すなわち、上記の具体例のうちLiMn、LiMn1.8Al0.2、Li1.1Mn1.9Al0.1、LiMn1.5Ni0.5等も好ましい具体例として挙げることができる。
 前記リチウム含有遷移金属燐酸化合物の遷移金属としては、V、Ti、Cr、Mn、Fe、Co、Ni、Cu等が好ましく、前記リチウム含有遷移金属燐酸化合物の具体例としては、例えば、LiFePO、LiFe(PO、LiFeP等の燐酸鉄類;LiCoPO等の燐酸コバルト類;LiMnPO等の燐酸マンガン類;これらのリチウム含有遷移金属燐酸化合物の主体となる遷移金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Si、Nb、Mo、Sn、W等の他の金属で置換したもの等が挙げられる。
 中でも、燐酸鉄類(リチウム鉄燐酸化合物)が好ましい、鉄は資源量も豊富で極めて安価な金属であり、かつ有害性も少ないためである。すなわち、上記の具体例のうち、LiFePOをより好ましい具体例として挙げることができる。
 前記リチウム含有遷移金属ケイ酸化合物の遷移金属としては、V、Ti、Cr、Mn、Fe、Co、Ni、Cu等が好ましく、前記リチウム含有遷移金属ケイ酸化合物の具体例としては、例えば、LiFeSiO等のケイ酸鉄類;LiCoSiO等のケイ酸コバルト類;これらのリチウム含有遷移金属ケイ酸化合物の主体となる遷移金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Si、Nb、Mo、Sn、W等の他の金属で置換したもの等が挙げられる。
 前記リチウム含有遷移金属ホウ酸化合物の遷移金属としては、V、Ti、Cr、Mn、Fe、Co、Ni、Cu等が好ましく、前記リチウム含有遷移金属ホウ酸化合物の具体例としては、例えば、LiFeBO等のホウ酸鉄類;LiCoBO等のホウ酸コバルト類;これらのリチウム含有遷移金属ホウ酸化合物の主体となる遷移金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Si、Nb、Mo、Sn、W等の他の金属で置換したもの等が挙げられる。
 また、非水系電解液二次電池に用いられる正極が含む正極活物質としては、組成式(14)で表されるリチウム遷移金属複合酸化物が正極容量の点で好ましい。
Lia1Nib1Coc1d1・・・(14)
(式(14)中、a1、b1、c1及びd1は、それぞれ0.90≦a1≦1.10、0.50≦b1≦0.98、0.01≦c1<0.50、0.01≦d1<0.50の数値を示し、b1+c1+d1=1を満たす。MはMn、Al、Mg、Zr、Fe、Ti及びErからなる群より選ばれる少なくとも1種の元素を表す。)
 組成式(14)で表されるリチウム遷移金属複合酸化物の好適な具体例としては、例えば、LiNi0.85Co0.10Al0.05、LiNi0.80Co0.15Al0.05、LiNi0.5Co0.2Mn0.3、Li1.05Ni0.50Mn0.29Co0.21、LiNi0.6Co0.2Mn0.2、LiNi0.8Co0.1Mn0.1等が挙げられる。
 電気化学的安定性が向上し、電池寿命が延びる観点から、組成式(14)で表される遷移金属複合酸化物の内、下記組成式(15)で表される遷移金属複合酸化物がより好ましい。
Lia2Nib2Coc2d2・・・(15)
(式(15)中、a2、b2、c2及びd2は、それぞれ0.90≦a2≦1.10、0.50≦b2≦0.90、0.05≦c2≦0.30、0.05≦d2≦0.30の数値を示し、かつb2+c2+d2=1を満たす。MはMn、Al、Mg、Zr、Fe、Ti及びErからなる群より選ばれる少なくとも1種の元素を表す。)
 化学的安定性も向上し、酸化物表面の副反応による相転移が抑制されるため、鎖状スルホン酸エステルと、フルオロスルホン酸塩、モノフルオロリン酸塩、ジフルオロリン酸塩、イミド塩、又はシュウ酸塩からなる難溶性複合被膜との作用が阻害されない観点から、組成式(14)で表される遷移金属複合酸化物の内、下記組成式(16)で表される遷移金属複合酸化物がさらに好ましい。
Lia3Nib3Coc3d3・・・(16)
(式(16)中、a3、b3、c3及びd3は、それぞれ0.90≦a3≦1.10、0.50≦b3≦0.90、0.10≦c3≦0.30、0.10≦d3≦0.30の数値を示し、かつb3+c3+d3=1を満たす。MはMn、Al、Mg、Zr、Fe、Ti及びErからなる群より選ばれる少なくとも1種の元素を表す。)
 組成式(16)で表されるリチウム遷移金属酸化物の好適な具体例としては、例えば、LiNi0.5Co0.2Mn0.3、Li1.05Ni0.50Mn0.29Co0.21、LiNi0.6Co0.2Mn0.2、LiNi0.8Co0.1Mn0.1等が挙げられる。
 正極容量、及び電気化学的並びに化学的安定性に優れる観点から、組成式(14)で表される遷移金属複合酸化物の内、下記組成式(17)で表される遷移金属複合酸化物が特に好ましい。
Lia4Nib4Coc4d4・・・(17)
(式(17)中、a4、b4、c4及びd4は、それぞれ0.90≦a4≦1.10、0.55≦b4≦0.90、0.10≦c4≦0.30、0.10≦d4≦0.30の数値を示し、かつb4+c4+d4=1を満たす。MはMn、Al、Mg、Zr、Fe、Ti及びErからなる群より選ばれる少なくとも1種の元素を表す。)
 組成式(14)~(17)中、MはMn又はAlを含むことが好ましく、MはMn、Alが好ましい。遷移金属複合酸化物の構造安定性が高まり、繰り返し充放電した際の構造劣化が抑制されるからである。中でも、MとしてはMnがさらに好ましい。
 また、上記の正極活物質のうち2種類以上を混合して使用してもよい。同様に、上記の正極活物質のうち少なくとも1種以上と他の正極活物質とを混合して使用してもよい。他の正極活物質の例としては、上記に挙げられていない遷移金属酸化物、遷移金属燐酸化合物、遷移金属ケイ酸化合物、遷移金属ホウ酸化合物が挙げられる。
 正極活物質のうち2種類以上を混合して使用する場合には、上述した、スピネル型構造を有するリチウム・マンガン複合酸化物又はオリビン型構造を有するリチウム含有遷移金属燐酸化合物が好ましい。
 また、リチウム含有遷移金属燐酸化合物の遷移金属としては、上述したものを用いることができる。また、好ましい態様も同様である。
(2)正極活物質の製造法
 正極活物質の製造法としては、本実施形態に係る発明の要旨を超えない範囲で特には制限されないが、いくつかの方法が挙げられ、無機化合物の製造法として一般的な方法が用いられる。
 特に球状ないし楕円球状の活物質を作製するには種々の方法が考えられるが、例えばその1例として、遷移金属硝酸塩、硫酸塩等の遷移金属原料物質と、必要に応じ他の元素の原料物質を水等の溶媒中に溶解ないし粉砕分散して、攪拌をしながらpHを調節して球状の前駆体を作製回収し、これを必要に応じて乾燥した後、LiOH、LiCO、LiNO等のLi源を加えて高温で焼成して正極活物質を得る方法が挙げられる。
 また、別の方法の例として、遷移金属硝酸塩、硫酸塩、水酸化物、酸化物等の遷移金属原料物質と、必要に応じ他の元素の原料物質を水等の溶媒中に溶解ないし粉砕分散して、それをスプレードライヤー等で乾燥成型して球状ないし楕円球状の前駆体とし、これにLiOH、LiCO、LiNO等のLi源を加えて高温で焼成して正極活物質を得る方法が挙げられる。
 更に別の方法の例として、遷移金属硝酸塩、硫酸塩、水酸化物、酸化物等の遷移金属原料物質と、LiOH、LiCO、LiNO等のLi源と、必要に応じ他の元素の原料物質とを水等の溶媒中に溶解ないし粉砕分散して、それをスプレードライヤー等で乾燥成型して球状または楕円球状の前駆体とし、これを高温で焼成して正極活物質を得る方法が挙げられる。
<2-1-4-2.正極構造と作製法>
 以下に、正極の構成及びその作製法について説明する。
(正極の作製法)
 正極活物質を用いる正極の製造は、公知のいずれの方法でも作製することができる。正極は、通常、正極活物質粒子とバインダーとを含有する正極活物質層を、集電体上に形成して作製される。より具体的には、例えば、正極活物質とバインダー、並びに必要に応じて導電材及び増粘剤等を乾式で混合してシート状にしたものを正極集電体に圧着するか、またはこれらの材料を液体媒体に溶解または分散させてスラリーとして、これを正極集電体に塗布し、乾燥することにより、正極活物質層を集電体上に形成させることにより正極を得ることができる。
 正極活物質の正極活物質層中の含有量は、好ましくは60質量%以上であり、70質量%以上がより好ましく、80質量%以上が更に好ましく、また、好ましくは99.9質量%以下であり、99質量%以下がより好ましい。正極活物質の含有量が、上記範囲内であると、非水系電解液二次電池の電気容量を十分確保できる。さらに、正極の強度も十分なものとなる。なお、正極活物質粉体は、1種を単独で用いてもよく、異なる組成または異なる粉体物性の2種以上を任意の組み合わせ及び比率で併用してもよい。2種以上の活物質を組み合わせて用いる際は、前記リチウムとマンガンとを含有する複合酸化物を粉体の成分として用いることが好ましい。前記の通り、コバルトまたはニッケルは、資源量も少なく高価な金属であり、自動車用途等の高容量が必要とされる大型電池では活物質の使用量が大きくなることから、コストの点で好ましくないため、より安価な遷移金属としてマンガンを主成分に用いることが望ましいためである。
(導電材)
 導電材としては、公知の導電材を任意に用いることができる。具体例としては、銅、ニッケル等の金属材料;天然黒鉛、人造黒鉛等の黒鉛(グラファイト);アセチレンブラック等のカーボンブラック;ニードルコークス等の無定形炭素等の炭素系材料;等が挙げられる。なお、これらは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 正極活物質層中の導電材の含有量は、好ましくは0.01質量%以上であり、0.1質量%以上がより好ましく、1質量%以上が更に好ましく、また、好ましくは50質量%以下であり、30質量%以下がより好ましく、15質量%以下が更に好ましい。導電材の含有量が上記範囲内であると、導電性を十分確保できる。さらに、電池容量の低下も防ぎやすい。
(バインダー)
 正極活物質層の製造に用いるバインダーは、非水系電解液や電極製造時に用いる溶媒に対して安定な材料であれば、特に限定されない。
 塗布法で正極を作製する場合は、バインダーは電極製造時に用いる液体媒体に対して溶解または分散される材料であれば特に限定されないが、その具体例としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂系高分子;
SBR(スチレン・ブタジエンゴム)、NBR(アクリロニトリル・ブタジエンゴム)、フッ素ゴム、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴム等のゴム状高分子;
スチレン・ブタジエン・スチレンブロック共重合体またはその水素添加物、EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・エチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体またはその水素添加物等の熱可塑性エラストマー状高分子;
シンジオタクチック-1,2-ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α-オレフィン共重合体等の軟質樹脂状高分子;
ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン、テトラフルオロエチレン・エチレン共重合体等のフッ素系高分子;
アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物;等が挙げられる。
 なお、バインダーは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 正極活物質層中のバインダーの含有量は、好ましくは0.1質量%以上であり、1質量%以上がより好ましく、3質量%以上が更に好ましく、また、好ましくは80質量%以下であり、60質量%以下がより好ましく、40質量%以下が更に好ましく、10質量%以下が特に好ましい。バインダーの含有量が、上記範囲内であると、正極活物質を十分保持でき、正極の機械的強度を確保できるため、サイクル特性等の電池性能が良好となる。さらに、電池容量や導電性の低下を回避することにもつながる。
(液体媒体)
 正極活物質層を形成するためのスラリーの調製に用いる液体媒体としては、正極活物質、導電材、バインダー、並びに必要に応じて使用される増粘剤を溶解または分散することが可能な溶媒であれば、その種類に特に制限はなく、水系溶媒と有機系溶媒のどちらを用いてもよい。
 前記水系溶媒の例としては、例えば、水、アルコールと水との混合媒等が挙げられる。前記有機系溶媒の例としては、ヘキサン等の脂肪族炭化水素類;
ベンゼン、トルエン、キシレン、メチルナフタレン等の芳香族炭化水素類;
キノリン、ピリジン等の複素環化合物;
アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類;
酢酸メチル、アクリル酸メチル等のエステル類;
ジエチレントリアミン、N,N-ジメチルアミノプロピルアミン等のアミン類;
ジエチルエーテル、テトラヒドロフラン(THF)等のエーテル類;
N-メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド等のアミド類;
ヘキサメチルホスファルアミド、ジメチルスルフォキシド等の非プロトン性極性溶媒;
等を挙げることができる。
 なお、これらは、1種を単独で用いてもよく、また2種以上を任意の組み合わせ及び比率で併用してもよい。
(増粘剤)
 スラリーを形成するための液体媒体として水系媒体を用いる場合、増粘剤と、スチレン・ブタジエンゴム(SBR)等のラテックスとを用いてスラリー化するのが好ましい。増粘剤は、通常、スラリーの粘度を調整するために使用される。
 増粘剤としては、本実施形態に係る発明の効果を著しく制限しない限り制限はないが、具体的には、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、燐酸化スターチ、カゼイン及びこれらの塩等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
 増粘剤を使用する場合には、正極活物質と増粘剤の質量の合計に対する増粘剤の割合は、好ましくは0.1質量%以上であり、0.5質量%以上がより好ましく、0.6質量%以上が更に好ましく、また、好ましくは5質量%以下であり、3質量%以下がより好ましく、2質量%以下が更に好ましい。増粘剤の割合が上記範囲内であると、スラリーの塗布性が良好となり、さらに、正極活物質層に占める活物質の割合が十分なものとなるため、二次電池の容量が低下する問題や正極活物質間の抵抗が増大する問題を回避し易くなる。
(圧密化)
 集電体への上記スラリーの塗布、乾燥によって得られた正極活物質層は、正極活物質の充填密度を上げるために、ハンドプレス、ローラープレス等により圧密化することが好ましい。正極活物質層の密度は、1g・cm-3以上が好ましく、1.5g・cm-3以上が更に好ましく、2g・cm-3以上が特に好ましく、また、4g・cm-3以下が好ましく、3.5g・cm-3以下が更に好ましく、3g・cm-3以下が特に好ましい。
 正極活物質層の密度が、上記範囲内であると、集電体/活物質界面付近への非水系電解液の浸透性が低下することなく、特に二次電池の高電流密度での充放電特性が良好となる。さらに、活物質間の導電性が低下し難くなり、電池抵抗が増大し難くなる。
(集電体)
 正極集電体の材質としては特に制限は無く、公知のものを任意に用いることができる。具体例としては、アルミニウム、ステンレス鋼、ニッケルメッキ、チタン、タンタル等の金属材料;カーボンクロス、カーボンペーパー等の炭素系材料;が挙げられる。中でも金属材料、特にアルミニウムが好ましい。
 集電体の形状としては、金属材料の場合、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられ、炭素系材料の場合、炭素板、炭素薄膜、炭素円柱等が挙げられる。これらのうち、金属箔又は金属薄膜が好ましい。なお、金属箔及び薄膜は適宜メッシュ状に形成してもよい。
 集電体の厚さは任意であるが、好ましくは1μm以上であり、3μm以上がより好ましく、5μm以上が更に好ましく、また、好ましくは1mm以下であり、100μm以下がより好ましく、50μm以下が更に好ましい。集電体の厚さが、上記範囲内であると、集電体として必要な強度を十分確保することができる。さらに、取り扱い性も良好となる。
 集電体と正極活物質層の厚さの比は特には限定されないが、(非水系電解液注液直前の片面の活物質層厚さ)/(集電体の厚さ)が、好ましくは150以下であり、20以下がより好ましく、10以下が特に好ましく、また、好ましくは0.1以上であり、0.4以上がより好ましく、1以上が特に好ましい。
 集電体と正極活物質層の厚さの比が、上記範囲内であると、二次電池の高電流密度充放電時に集電体がジュール熱による発熱を生じ難くなる。さらに、正極活物質に対する集電体の体積比が増加し難くなり、電池容量の低下を防ぐことができる。
(電極面積)
 高出力かつ高温時の安定性を高める観点から、正極活物質層の面積は、電池外装ケースの外表面積に対して大きくすることが好ましい。具体的には、非水系電解液二次電池の外装の表面積に対する前記正極の電極面積の総和を、面積比で20倍以上とすることが好ましく、40倍以上とすることがより好ましい。外装ケースの外表面積とは、有底角型形状の場合には、端子の突起部分を除いた発電要素が充填されたケース部分の縦と横と厚さの寸法から計算で求める総面積をいう。有底円筒形状の場合には、端子の突起部分を除いた発電要素が充填されたケース部分を円筒として近似する幾何表面積である。正極の電極面積の総和とは、負極活物質を含む合材層に対向する正極合材層の幾何表面積であり、集電体箔を介して両面に正極合材層を形成してなる構造では、それぞれの面を別々に算出する面積の総和をいう。
(放電容量)
 非水系電解液を用いる場合、非水系電解液二次電池の1個の電池外装に収納される電池要素のもつ電気容量(電池を満充電状態から放電状態まで放電したときの電気容量)が、1アンペアーアワー(Ah)以上であると、低温放電特性の向上効果が大きくなるため好ましい。そのため、正極板は、放電容量が満充電で、好ましくは3Ah(アンペアアワー)以上であり、より好ましくは4Ah以上、また、好ましくは20Ah以下であり、より好ましくは10Ah以下になるように設計する。
 上記範囲内であると、大電流の取り出し時に電極反応抵抗による電圧低下が大きくなり過ぎず、電力効率の悪化を防ぐことができる。さらに、パルス充放電時の電池内部発熱による温度分布が大きくなり過ぎず、充放電繰り返しの耐久性が劣り、また、過充電や内部短絡等の異常時の急激な発熱に対して放熱効率も悪くなるといった現象を回避することができる。
(正極板の厚さ)
 正極板の厚さは、特に限定されないが、高容量かつ高出力、高レート特性の観点から、正極板から集電体の厚さを差し引いた正極活物質層の厚さは、集電体の片面に対して、10μm以上が好ましく、20μm以上がより好ましく、また、200μm以下が好ましく、100μm以下がより好ましい。
<2-1-5.セパレータ>
 非水系電解液二次電池において、正極と負極との間には、短絡を防止するために、通常はセパレータを介在させる。この場合、非水系電解液は、通常はこのセパレータに含浸させて用いる。
 セパレータの材料や形状については特に制限は無く、本実施形態に係る発明の効果を著しく損なわない限り、公知のものを任意に採用することができる。中でも、非水系電解液に対し安定な材料で形成された、樹脂、ガラス繊維、無機物等が用いられ、保液性に優れた多孔性シートまたは不織布状の形態の物等を用いるのが好ましい。
<2-1-6.電池設計>
(電極群)
 電極群は、前述の正極板と負極板とを前述のセパレータを介してなる積層構造のもの、及び前述の正極板と負極板とを前述のセパレータを介して渦巻き状に捲回した構造のもののいずれでもよい。電極群の体積が電池内容積に占める割合(以下、電極群占有率と称する)は、好ましくは40%以上であり、50%以上がより好ましく、また、好ましくは95%以下であり、90%以下がより好ましい。電極群占有率が、上記範囲内であると、電池容量が小さくなり難くなる。また、適度な空隙スペースを確保できるため、電池が高温になることによって部材が膨張したり非水系電解液の液成分の蒸気圧が高くなったりして内部圧力が上昇し、二次電池としての充放電繰り返し性能や高温保存特性等の諸特性を低下させたり、更には、内部圧力を外に逃がすガス放出弁が作動する場合を回避することができる。
(集電構造)
 集電構造は特に限定されるものではないが、非水系電解液による放電特性の向上をより効果的に実現するには、配線部分や接合部分の抵抗を低減する構造にすることが好ましい。この様に内部抵抗を低減させた場合、非水系電解液を使用した効果は特に良好に発揮される。
 電極群が前述の積層構造のものでは、各電極層の金属芯部分を束ねて端子に溶接して形成される構造が好適に用いられる。1枚の電極面積が大きくなる場合には、内部抵抗が大きくなるので、電極内に複数の端子を設けて抵抗を低減することも好適に用いられる。電極群が前述の捲回構造のものでは、正極及び負極にそれぞれ複数のリード構造を設け、端子に束ねることにより、内部抵抗を低くすることができる。
(保護素子)
 保護素子として、過大電流等による発熱とともに抵抗が増大するPTC(Positive Temperature Coefficient)素子、温度ヒューズ、サーミスター、異常発熱時に電池内部圧力や内部温度の急激な上昇により回路に流れる電流を遮断する弁(電流遮断弁)等が挙げられる。前記保護素子は高電流の通常使用で作動しない条件のものを選択することが好ましく、保護素子がなくても異常発熱や熱暴走に至らない電池設計にすることがより好ましい。
(外装体)
 非水系電解液二次電池は、通常、上記の非水系電解液、負極、正極、セパレータ等を外装体(外装ケース)内に収納して構成される。この外装体に制限は無く、本実施形態に係る発明の効果を著しく損なわない限り公知のものを任意に採用することができる。
 外装ケースの材質は用いられる非水系電解液に対して安定な物質であれば特に限定されるものではない。具体的には、ニッケルめっき鋼板、ステンレス、アルミニウムもしくはアルミニウム合金、マグネシウム合金、ニッケル、チタン等の金属類、または、樹脂とアルミ箔との積層フィルム(ラミネートフィルム)が用いられる。軽量化の観点から、アルミニウム若しくはアルミニウム合金の金属又はラミネートフィルムが好適に用いられる。
 上記金属類を用いる外装ケースでは、レーザー溶接、抵抗溶接、超音波溶接により金属同士を溶着して封止密閉構造とするもの、または、樹脂製ガスケットを介して上記金属類を用いてかしめ構造とするものが挙げられる。上記ラミネートフィルムを用いる外装ケースでは、樹脂層同士を熱融着することにより封止密閉構造とするもの等が挙げられる。シール性を上げるために、上記樹脂層の間にラミネートフィルムに用いられる樹脂と異なる樹脂を介在させてもよい。特に、集電端子を介して樹脂層を熱融着して密閉構造とする場合には、金属と樹脂との接合になるので、介在する樹脂として極性基を有する樹脂や極性基を導入した変成樹脂が好適に用いられる。
 また、外装ケースの形状も任意であり、例えば円筒型、角形、ラミネート型、コイン型、大型等のいずれであってもよい。
 以下、実施例及び比較例を挙げて本発明を更に具体的に説明するが、本発明は、その要旨を超えない限り、これらの実施例に限定されるものではない。
 本実施例及び比較例に使用した化合物を以下に示す。
Figure JPOXMLDOC01-appb-C000005

メタンスルホン酸エチル
Figure JPOXMLDOC01-appb-C000006

1,3-プロパンスルトン
<実施例1-1~1-5、比較例1-1~1-7>
[実施例1-1~1-5]
[非水系電解液の調製]
 乾燥アルゴン雰囲気下、エチレンカーボネート(「EC」ともいう)、エチルメチルカーボネート(「EMC」ともいう)及びジメチルカーボネート(「DMC」ともいう)からなる混合溶媒(混合体積比2:4:4)に、電解質であるLiPF、添加剤であるビニレンカーボネート(「VC」ともいう)、鎖状スルホン酸リチウムとして化合物1及びフルオロスルホン酸塩としてフルオロスルホン酸リチウム(LiFSO)を、表1に示す濃度となるよう調整し、実施例1-1~1-5の非水系電解液を調製した。なお、表中の「含有量(質量%)」は、各非水系電解液全体を100質量%とした時の含有量である。表1中、「質量比」はフルオロスルホン酸リチウムに対するスルホン酸エステル(化合物1又は化合物2)の含有量の質量比であり、スルホン酸エステル(化合物1又は化合物2)とフルオロスルホン酸リチウムの合計の含有量を100としたときの比で示した。例えば、実施例1-1の質量比は、以下の式で算出した。
実施例1-1:{1/(1+0.002)x100}/{0.002/(1+0.002)x100}=99.80/0.20
[正極の作製]
 正極活物質としてリチウムコバルトニッケルマンガン酸化物(LiNi0.6Co0.2Mn0.2)94質量%と、導電材としてアセチレンブラック3質量%と、バインダーとしてのポリフッ化ビニリデン(PVdF)3質量%とを、N-メチルピロリドン溶媒中で、ディスパーザーで混合してスラリー化した。これを厚さ15μmのアルミニウム箔の片面に均一に塗布、乾燥した後、プレスして正極とした。
[負極の作製]
 負極活物質として非晶質被覆黒鉛粉末、増粘剤としてカルボキシメチルセルロースナトリウムの水性ディスパージョン(カルボキシメチルセルロースナトリウムの濃度1質量%)、バインダーとしてスチレン・ブタジエンゴムの水性ディスパージョン(スチレン・ブタジエンゴムの濃度50質量%)を加え、ディスパーザーで混合してスラリー化した。このスラリーを厚さ10μmの銅箔の片面に均一に塗布、乾燥した後、プレスして負極とした。なお、乾燥後の負極において、天然黒鉛:カルボキシメチルセルロースナトリウム:スチレン・ブタジエンゴム=98:1:1の質量比となるように作製した。
[リチウム二次電池の作製]
 上記の正極、負極、及びポリプロピレン製のセパレータを、負極、セパレータ、正極、セパレータ、負極の順に積層して電池要素を作製した。この電池要素をアルミニウム(厚さ40μm)の両面を樹脂層で被覆したラミネートフィルムからなる袋内に正・負極の端子を突設するように挿入した後、非水系電解液を袋内に注入し、真空封止を行ない、シート状のリチウム二次電池を作製した。
[初期コンディショニング]
 リチウム二次電池をガラス板で挟んで加圧した状態で、25℃において、0.05Cに相当する電流で10時間定電流充電した後、0.2Cで2.8Vまで定電流放電した。更に、0.2Cに相当する電流で4.1Vまで定電流-定電圧充電(「CC-CV充電」ともいう)(0.05Cカット)した後、60℃、24時間の条件下で放置した。電池を十分に冷却させた後、0.2Cの定電流で2.8Vまで放電した。次いで、0.2Cで4.3VまでCC-CV充電(0.05Cカット)した後、0.2Cで2.8Vまで再度放電し、初期の電池特性を安定させた。
 ここで、1Cとは電池の基準容量を1時間で放電する電流値を表し、例えば、0.2Cとはその1/5の電流値を表す。以下同様である。
[初期放電抵抗評価試験]
 初期コンディショニングを実施したリチウム二次電池を、25℃において、0.2Cで3.72VまでCC-CV充電(0.05Cカット)した後、1Cの電流で10秒間放電を実施した。このときの放電前の電池電圧と10秒放電直後(放電開始から10秒放電した時点)の電圧の差分から、オームの法則R(抵抗)=V(電圧)÷I(電流)に従い抵抗を算出し、これを初期常温放電抵抗とした。
 さらに、-20℃において1Cの電流で10秒間放電を実施し、このときの放電前の電池電圧と10秒放電直後の電圧の差分から、オームの法則R(抵抗)=V(電圧)÷I(電流)に従い抵抗を算出し、これを初期低温放電抵抗とした。
[高温保存耐久試験]
 初期放電抵抗評価試験を実施したリチウム二次電池を、25℃において、0.2Cで4.3VまでCC-CV充電(0.05Cカット)した後、60℃、14日間の条件で高温保存を行った。その後、電池を十分に冷却させた後、25℃において、0.2Cの定電流で2.8Vまで放電した。次いで、0.2Cで4.3VまでCC-CV充電(0.05Cカット)した後、0.2Cで2.8Vまで再度放電した。
[高温保存後放電抵抗評価試験]
 高温保存耐久試験を実施したリチウム二次電池を、25℃において、0.2Cで3.72VまでCC-CV充電(0.05Cカット)した後、1Cの電流で10秒間放電を実施した。このときの放電前の電池電圧と10秒放電直後の電圧の差分から、オームの法則R(抵抗)=V(電圧)÷I(電流)に従い抵抗を算出し、これを保存後常温放電抵抗とした。さらに、初期常温放電抵抗に対する保存後常温放電抵抗の割合(保存後常温放電抵÷初期常温放電抵抗)を求め、これを常温放電抵抗増加率(%)とした。
 また、-20℃において1Cの電流で10秒間放電を実施し、このときの放電前の電池電圧と10秒放電直後の電圧の差分から、オームの法則R(抵抗)=V(電圧)÷I(電流)に従い抵抗を算出し、これを保存後低温放電抵抗とした。さらに、初期低温放電抵抗に対する保存後低温放電抵抗の割合(保存後低温放電抵÷初期低温放電抵抗)を求め、これを低温放電抵抗増加率(%)とした。
 上記作製したリチウム二次電池を用いて、上記の初期コンディショニング、初期放電抵抗評価試験、高温保存耐久試験及び高温保存後放電抵抗評価試験を実施した。評価結果を、後述する比較例1-1を100.00%としたときの相対値で表1に示す。以下比較例1-2~1-7も同様とする。
[比較例1-1]
 実施例1-1の電解液において、化合物1及びフルオロスルホン酸リチウムを添加しなかった以外は実施例1-1と同様にして比較例1-1の非水系電解液を調製した。また、電解液として比較例1-1の非水系電解液を用いた以外は実施例1-1と同様にしてリチウム二次電池を作製し、初期コンディショニング、初期放電抵抗評価試験、高温保存耐久試験及び高温保存後放電抵抗評価試験を実施した。
[比較例1-2]
 実施例1-1の電解液において、化合物1を添加しなかった以外は実施例1-1と同様にして比較例1-2の非水系電解液を調製した。また、電解液として比較例1-2の非水系電解液を用いた以外は実施例1-1と同様にしてリチウム二次電池を作製し、初期コンディショニング、初期放電抵抗評価試験、高温保存耐久試験及び高温保存後放電抵抗評価試験を実施した。
[比較例1-3]
 実施例1-2の電解液において、化合物1を添加しなかった以外は実施例1-2と同様にして比較例1-3の非水系電解液を調製した。また、電解液として比較例1-3の非水系電解液を用いた以外は実施例1-2と同様にしてリチウム二次電池を作製し、初期コンディショニング、初期放電抵抗評価試験、高温保存耐久試験及び高温保存後放電抵抗評価試験を実施した。
[比較例1-4]
 実施例1-3の電解液において、化合物1を添加しなかった以外は実施例1-3と同様にして比較例1-4の非水系電解液を調製した。また、電解液として比較例1-4の非水系電解液を用いた以外は実施例1-3と同様にしてリチウム二次電池を作製し、初期コンディショニング、初期放電抵抗評価試験、高温保存耐久試験及び高温保存後放電抵抗評価試験を実施した。
[比較例1-5]
 実施例1-1の電解液において、フルオロスルホン酸リチウムを添加しなかった以外は実施例1-1と同様にして比較例1-5の非水系電解液を調製した。また、電解液として比較例1-5の非水系電解液を用いた以外は実施例1-1と同様にしてリチウム二次電池を作製し、初期コンディショニング、初期放電抵抗評価試験、高温保存耐久試験及び高温保存後放電抵抗評価試験を実施した。
[比較例1-6]
 実施例1-1の電解液において、フルオロスルホン酸リチウムの含有量を表1の通りに変更した以外は実施例1-1と同様にして、比較例1-6の非水系電解液を調製した。また、電解液として比較例1-6の非水系電解液を用いた以外は実施例1-1と同様にしてリチウム二次電池を作製し、初期コンディショニング、初期放電抵抗評価試験、高温保存耐久試験及び高温保存後放電抵抗評価試験を実施した。
[比較例1-7]
 実施例1-3の電解液において、鎖状スルホン酸エステルである化合物1の代わりに環状スルホン酸エステルである化合物2を用いた以外は実施例1-3と同様にして比較例1-7の非水系電解液を調製した。また、電解液として比較例1-7の非水系電解液を用いた以外は実施例1-3と同様にしてリチウム二次電池を作製し、初期コンディショニング、初期放電抵抗評価試験、高温保存耐久試験及び高温保存後放電抵抗評価試験を実施した。
Figure JPOXMLDOC01-appb-T000007
<実施例2-1~2-2、比較例2-1~2-3>
 実施例1-1において、フルオロスルホン酸リチウムをリチウムビス(フルオロスルホニル)イミド(LiFSI)に変更し、含有量を後述する表2となるように電解液を調製した。また、得られた電解液を用いた以外は、実施例1-1と同様にしてリチウム二次電池を作製し、上記の初期コンディショニング、初期放電抵抗評価試験、高温保存耐久試験及び高温保存後放電抵抗評価試験を実施した。評価結果を、比較例2-1を100.00%としたときの相対値で表2に示す。表2中、「質量比」はリチウムビス(フルオロスルホニル)イミドの含有量に対するスルホン酸エステル(化合物1又は化合物2)の含有量の質量比であり、リチウムビス(フルオロスルホニル)イミドとスルホン酸エステル(化合物1又は化合物2)の合計の含有量を100としたときの比で示した。
Figure JPOXMLDOC01-appb-T000008
<実施例3-1~3-6、比較例3-1~3-4>
 実施例1-1において、フルオロスルホン酸リチウム塩をリチウムビス(オキサラト)ボレート(LiBOB)に変更し、含有量を後述する表3となるように電解液を調製した。得られた電解液を用いた以外は、実施例1-1と同様にリチウム二次電池を作製し、上記の初期コンディショニング、初期放電抵抗評価試験、高温保存耐久試験及び高温保存後放電抵抗評価試験を実施した。評価結果を、比較例3-1を100.00%としたときの相対値で表3に示す。表3中、「質量比」はリチウムビス(オキサラト)ボレートの含有量に対するスルホン酸エステル(化合物1又は化合物2)の含有量の質量比であり、リチウムビス(オキサラト)ボレートとスルホン酸エステル(化合物1又は化合物2)の合計の含有量を100としたときの比で示した。
Figure JPOXMLDOC01-appb-T000009
<実施例4-1~4-6、比較例4-1~4-2>
 実施例1-1において、フルオロスルホン酸リチウム塩をジフルオロリン酸塩であるジフルオロリン酸リチウム(LiPO)に変更し、含有量を後述する表4となるように電解液を調製した。得られた電解液を用いた以外は、実施例1-1と同様にしてリチウム二次電池を作製し、上記の初期コンディショニング、初期放電抵抗評価試験、高温保存耐久試験及び高温保存後放電抵抗評価試験を実施し、常温放電抵抗増加率の結果を、比較例4-2を100.00%としたときの相対値で表4に示す。表4中、「質量比」はジフルオロリン酸リチウムの含有量に対するスルホン酸エステル(化合物1)の含有量の質量比であり、ジフルオロリン酸リチウムとスルホン酸エステル(化合物1)の合計の含有量を100としたときの比で示した。
Figure JPOXMLDOC01-appb-T000010
 表1~3から、実施例1-1~1-5、2-1~2-2、及び3-1~3-6の非水系電解液を用いると、鎖状スルホン酸エステルと、フルオロスルホン酸塩、イミド塩、及びシュウ酸塩からなる群より選ばれる少なくとも1種の化合物を共に含有していない場合(比較例1-1、2-1、及び3-1)に比べ、リチウム二次電池の常温及び低温での放電抵抗増加率が同時に抑制されることがわかった。また、鎖状スルホン酸エステルとフルオロスルホン酸塩との組み合わせ及び鎖状スルホン酸エステルとイミド塩との組合せにおいて、フルオロスルホン酸塩又はイミド塩が所定の量を超えて非水系電解液に含有される場合(比較例1-6及び2-2)はそれらの効果が不十分になることが分かった。
 一方、環状スルホン酸エステルと、フルオロスルホン酸塩、イミド塩、及びシュウ酸塩からなる群より選ばれる少なくとも1種の化合物とを含有している場合(比較例1-7、2-3、及び3-2~3-4)と比べても、同じ比率で鎖状スルホン酸エステルを含有する電解液を用いた場合の方が、二次電池の常温及び低温での放電抵抗増加率が同時に抑制されることがわかった。
 フルオロスルホン酸塩のみを含む非水系電解液の場合(比較例1-2~1-4)、常温及び低温での放電抵抗増加率は比較例1-1よりも増加し、フルオロスルホン酸塩を含むことにより常温及び低温での放電抵抗増加率が増加するため電池性能が不十分となることが示された。また、鎖状スルホン酸エステルのみを含む非水系電解液の場合(比較例1-5)、低温での放電抵抗増加率は抑制されるもののその改善効果は小さく、さらに常温での放電抵抗増加率は比較例1-1よりも増加し、鎖状スルホン酸エステルを含まない場合よりも電池性能が不十分となることが示された。よって、本発明の一実施形態にかかる非水系電解液を用いたリチウム二次電池の方が優れた特性を有することは明らかである。
 表4から、実施例4-1~4-6の非水系電解液を用いると、鎖状スルホン酸エステルとジフルオロリン酸リチウムを共に含有していない場合(比較例4-2)に比べ、リチウム二次電池の常温での放電抵抗増加率が抑制されることがわかった。またジフルオロリン酸塩に対する鎖状スルホン酸エステルの質量比が相対的に大きい場合は、その効果が不十分になることが分かった(比較例4-1)。よって、本発明の一実施形態にかかる非水系電解液を用いたリチウム二次電池の方が優れた特性を有することは明らかである。
 以上の表1~4において示した実施例及び比較例においては、各種耐久試験期間はモデル的に比較的短期間として行なっているが、有意な差が確認されている。実際の非水系電解液二次電池の使用は数年に及ぶ場合もあるため、これら結果の差は長期間の使用を想定した場合、更に顕著な差になると理解することができる。
 本出願は、2019年12月17日出願の日本特許出願(特願2019-226955)に基づくものであり、その内容はここに参照として取り込まれる。

Claims (6)

  1. 正極及び負極を備えるエネルギーデバイス用の非水系電解液であって、
    該非水系電解液が電解質及び非水系溶媒とともに、
    鎖状スルホン酸エステルと、モノフルオロリン酸塩及びジフルオロリン酸塩から選ばれる少なくとも1種のフルオロリン酸塩を含有し、かつ、フルオロリン酸塩の含有量に対する鎖状スルホン酸エステルの含有量の質量比が10/90以上82/18以下であることを特徴とする非水系電解液。
  2. 正極及び負極を備えるエネルギーデバイス用の非水系電解液であって、
    該非水系電解液が電解質及び非水系溶媒とともに、
    (A)鎖状スルホン酸エステル、並びに、フルオロスルホン酸塩、イミド塩、及びシュウ酸塩からなる群より選ばれる少なくとも1種の化合物を含有し、
    (B)フルオロスルホン酸塩、イミド塩、及びシュウ酸塩からなる群より選ばれる少なくとも1種の化合物の合計含有量が非水系電解液100質量%中、1.0×10-3質量%以上7質量%以下であり、かつ
    (C)フルオロスルホン酸塩、イミド塩、及びシュウ酸塩からなる群より選ばれる少なくとも1種の化合物の含有量と鎖状スルホン酸エステルの含有量との質量比が10/90以上99.99/0.01以下であることを特徴とする非水系電解液。
  3. 前記鎖状スルホン酸エステルが式(1)で表される化合物である、請求項1又は2に記載の非水系電解液。
    Figure JPOXMLDOC01-appb-C000001

    (式(1)中、Rは置換基を有していてもよい炭素数1~5の炭化水素基を表し、Rは置換基を有していてもよい炭素数1~10の炭化水素基を表す。)
  4. 前記非水系電解液が、更に、炭素-炭素不飽和結合を有する環状カーボネート、フッ素含有環状カーボネートからなる群より選ばれる少なくとも1種の化合物を含有する、請求項1~3のいずれか1項に記載の非水系電解液。
  5. 正極、負極及び請求項1~4のいずれか1項に記載の非水系電解液を備える、エネルギーデバイス。
  6. 前記正極が正極活物質を含み、該正極活物質が組成式(14)で表されるリチウム遷移金属複合酸化物である、請求項5に記載のエネルギーデバイス。
    Lia1Nib1Coc1d1・・・(14)
    (式(14)中、a1、b1、c1及びd1は、それぞれ0.90≦a1≦1.10、0.50≦b1≦0.98、0.01≦c1<0.50、0.01≦d1<0.50の数値を示し、b1+c1+d1=1を満たす。MはMn、Al、Mg、Zr、Fe、Ti及びErからなる群より選ばれる少なくとも1種の元素を表す。)
PCT/JP2020/047297 2019-12-17 2020-12-17 非水系電解液及びエネルギーデバイス WO2021125301A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021565664A JPWO2021125301A1 (ja) 2019-12-17 2020-12-17
KR1020227019989A KR20220100029A (ko) 2019-12-17 2020-12-17 비수계 전해액 및 에너지 디바이스
EP20902901.6A EP4080533A4 (en) 2019-12-17 2020-12-17 NON-AQUEOUS ELECTROLYTE SOLUTION AND ENERGY DEVICE
CN202080087604.8A CN114846669A (zh) 2019-12-17 2020-12-17 非水电解液及能量设备
US17/837,270 US20220328878A1 (en) 2019-12-17 2022-06-10 Non-Aqueous Electrolyte Solution and Energy Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-226955 2019-12-17
JP2019226955 2019-12-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/837,270 Continuation US20220328878A1 (en) 2019-12-17 2022-06-10 Non-Aqueous Electrolyte Solution and Energy Device

Publications (1)

Publication Number Publication Date
WO2021125301A1 true WO2021125301A1 (ja) 2021-06-24

Family

ID=76476757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047297 WO2021125301A1 (ja) 2019-12-17 2020-12-17 非水系電解液及びエネルギーデバイス

Country Status (6)

Country Link
US (1) US20220328878A1 (ja)
EP (1) EP4080533A4 (ja)
JP (1) JPWO2021125301A1 (ja)
KR (1) KR20220100029A (ja)
CN (1) CN114846669A (ja)
WO (1) WO2021125301A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114256508A (zh) * 2022-01-14 2022-03-29 南方科技大学 一种非水电解液以及二次电池
WO2024053351A1 (ja) * 2022-09-06 2024-03-14 株式会社日本触媒 電解液及びそれを用いた電池

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220048804A (ko) * 2020-10-13 2022-04-20 현대자동차주식회사 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09245834A (ja) 1996-03-13 1997-09-19 Mitsubishi Chem Corp リチウム二次電池用電解液
JP2007141830A (ja) 2005-10-20 2007-06-07 Mitsubishi Chemicals Corp 二次電池用非水系電解液及びそれを用いた二次電池
JP2011187440A (ja) 2010-02-12 2011-09-22 Mitsubishi Chemicals Corp 非水系電解液及び非水系電解液二次電池
JP2012190700A (ja) * 2011-03-11 2012-10-04 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いた非水系電解液二次電池
JP2012243461A (ja) 2011-05-17 2012-12-10 Nec Corp 二次電池
WO2013141345A1 (ja) * 2012-03-23 2013-09-26 宇部興産株式会社 非水電解液およびそれを用いた蓄電デバイス
JP2014232704A (ja) * 2013-05-30 2014-12-11 トヨタ自動車株式会社 非水電解液二次電池
JP2017162633A (ja) * 2016-03-09 2017-09-14 日立マクセル株式会社 非水二次電池
CN109755635A (zh) * 2019-01-18 2019-05-14 杉杉新材料(衢州)有限公司 一种兼顾高低温性能的电池电解液添加剂、电解液及高镍三元锂离子电池
CN109818063A (zh) * 2019-03-12 2019-05-28 杉杉新材料(衢州)有限公司 一种三元锂离子电池非水电解液及三元锂离子电池

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6436583B1 (en) * 2000-08-04 2002-08-20 Moltech Corporation Storage life enhancement in lithium-sulfur batteries

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09245834A (ja) 1996-03-13 1997-09-19 Mitsubishi Chem Corp リチウム二次電池用電解液
JP2007141830A (ja) 2005-10-20 2007-06-07 Mitsubishi Chemicals Corp 二次電池用非水系電解液及びそれを用いた二次電池
JP2011187440A (ja) 2010-02-12 2011-09-22 Mitsubishi Chemicals Corp 非水系電解液及び非水系電解液二次電池
JP2012190700A (ja) * 2011-03-11 2012-10-04 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いた非水系電解液二次電池
JP2012243461A (ja) 2011-05-17 2012-12-10 Nec Corp 二次電池
WO2013141345A1 (ja) * 2012-03-23 2013-09-26 宇部興産株式会社 非水電解液およびそれを用いた蓄電デバイス
JP2014232704A (ja) * 2013-05-30 2014-12-11 トヨタ自動車株式会社 非水電解液二次電池
JP2017162633A (ja) * 2016-03-09 2017-09-14 日立マクセル株式会社 非水二次電池
CN109755635A (zh) * 2019-01-18 2019-05-14 杉杉新材料(衢州)有限公司 一种兼顾高低温性能的电池电解液添加剂、电解液及高镍三元锂离子电池
CN109818063A (zh) * 2019-03-12 2019-05-28 杉杉新材料(衢州)有限公司 一种三元锂离子电池非水电解液及三元锂离子电池

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114256508A (zh) * 2022-01-14 2022-03-29 南方科技大学 一种非水电解液以及二次电池
WO2023134262A1 (zh) * 2022-01-14 2023-07-20 南方科技大学 一种非水电解液以及二次电池
WO2024053351A1 (ja) * 2022-09-06 2024-03-14 株式会社日本触媒 電解液及びそれを用いた電池

Also Published As

Publication number Publication date
JPWO2021125301A1 (ja) 2021-06-24
KR20220100029A (ko) 2022-07-14
US20220328878A1 (en) 2022-10-13
CN114846669A (zh) 2022-08-02
EP4080533A1 (en) 2022-10-26
EP4080533A4 (en) 2023-09-20

Similar Documents

Publication Publication Date Title
KR102469213B1 (ko) 비수 전해액 전지용 전해액 및 그것을 이용한 비수 전해액 전지
JP7116311B2 (ja) 非水電解液電池用電解液及びそれを用いた非水電解液電池
KR102276985B1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
KR20190004232A (ko) 전해질 첨가제 및 이를 포함하는 리튬 이차전지용 비수전해액
JP7168851B2 (ja) 非水電解液電池用電解液及びそれを用いた非水電解液電池
JP6433486B2 (ja) 電解液及び電気化学デバイス
KR101513086B1 (ko) 높은 열적안정성 및 넓은 전해창을 갖는 고전압 리튬이차전지용 전해액
JP6779775B2 (ja) 電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール
WO2021125301A1 (ja) 非水系電解液及びエネルギーデバイス
WO2019111983A1 (ja) 非水電解液電池用電解液及びそれを用いた非水電解液電池
JP2015191738A (ja) 電解液及び電気化学デバイス
JP7058652B2 (ja) 電解液、電気化学デバイス、二次電池及びモジュール
JP2021082556A (ja) 非水系電解液及びエネルギーデバイス
WO2020246522A1 (ja) 非水電解液及び非水電解液電池
JP6971740B2 (ja) 非水系電解液及びそれを用いた蓄電デバイス
JP6372128B2 (ja) 電解液及び電気化学デバイス
JPWO2016068033A1 (ja) リチウムイオン二次電池
JP7090079B2 (ja) 電解液、電気化学デバイス、二次電池及びモジュール
JP6308292B2 (ja) 電解液及び電気化学デバイス
WO2019111958A1 (ja) 非水電解液電池用電解液及びそれを用いた非水電解液電池
WO2021006302A1 (ja) 非水電解液、及びこれを用いた非水電解液電池
KR102129499B1 (ko) 리튬 이차 전지
KR20230146479A (ko) 리튬 이차전지
EP3965205A1 (en) Non-aqueous electrolyte solution
EP3965204A1 (en) Nonaqueous electrolyte solution

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20902901

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021565664

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227019989

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020902901

Country of ref document: EP

Effective date: 20220718