WO2023127667A1 - 接合体の製造方法 - Google Patents

接合体の製造方法 Download PDF

Info

Publication number
WO2023127667A1
WO2023127667A1 PCT/JP2022/047241 JP2022047241W WO2023127667A1 WO 2023127667 A1 WO2023127667 A1 WO 2023127667A1 JP 2022047241 W JP2022047241 W JP 2022047241W WO 2023127667 A1 WO2023127667 A1 WO 2023127667A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
resin
base material
bonding
joined body
Prior art date
Application number
PCT/JP2022/047241
Other languages
English (en)
French (fr)
Inventor
信行 高橋
優俊 森
Original Assignee
株式会社レゾナック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社レゾナック filed Critical 株式会社レゾナック
Priority to EP22915890.2A priority Critical patent/EP4372062A1/en
Priority to JP2023541794A priority patent/JPWO2023127667A1/ja
Priority to CN202280051305.8A priority patent/CN117693567A/zh
Priority to KR1020237045001A priority patent/KR20240015099A/ko
Publication of WO2023127667A1 publication Critical patent/WO2023127667A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/3404Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint
    • B29C65/3456Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint being a layer of a multilayer part to be joined, e.g. for joining plastic-metal laminates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/04Dielectric heating, e.g. high-frequency welding, i.e. radio frequency welding of plastic materials having dielectric properties, e.g. PVC
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/08Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/10Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using hot gases (e.g. combustion gases) or flames coming in contact with at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • B29C65/20Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools with direct contact, e.g. using "mirror"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/3468Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the means for supplying heat to said heated elements which remain in the join, e.g. special electrical connectors of windings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/44Joining a heated non plastics element to a plastics element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/723General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered
    • B29C66/7232General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered comprising a non-plastics layer
    • B29C66/72321General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered comprising a non-plastics layer consisting of metals or their alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J171/00Adhesives based on polyethers obtained by reactions forming an ether link in the main chain; Adhesives based on derivatives of such polymers
    • C09J171/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C09J171/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C09J171/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • C09J5/06Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers involving heating of the applied adhesive
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/35Heat-activated
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2400/00Presence of inorganic and organic materials
    • C09J2400/10Presence of inorganic materials
    • C09J2400/16Metal
    • C09J2400/163Metal in the substrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2400/00Presence of inorganic and organic materials
    • C09J2400/20Presence of organic materials
    • C09J2400/22Presence of unspecified polymer
    • C09J2400/226Presence of unspecified polymer in the substrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2463/00Presence of epoxy resin

Definitions

  • the present invention relates to a method for manufacturing a joined body suitable for easily and firmly joining dissimilar materials.
  • Multi-materialization is a method of reducing the weight and increasing the strength of materials by using materials with different functions and materials (hereafter referred to as different materials).
  • a technology for firmly joining dissimilar materials is indispensable for the realization of multi-materials.
  • thermosetting epoxy resin-based adhesives (Patent Document 1, etc.), which are liquid adhesives, are widely used. Bonding using a liquid adhesive requires an application step of applying a liquid resin composition and a curing step of polymerizing and curing the resin composition after application. For this reason, when bonding is performed using a liquid adhesive, it takes time to apply the resin composition in the coating process, and it takes time to polymerize in the curing process (that is, the bonding process takes a long time), which is convenient. There is a problem of lack of sexuality.
  • the bonding process time means the time from the start point to the end point, starting from the time when at least one of the substrates constituting the bonded body and the film come into contact with each other, and ending at the time when the manufacturing of the bonded body is completed.
  • the time required for the process of placing the film on the substrate and the time required for bonding the substrates together for example, curing the film.
  • thermosetting epoxy resin composition After impregnating or coating a substrate with a thermosetting epoxy resin composition, it is semi-cured (to B-stage), and a bonded body is produced as a laminate with an adhesive layer composed of a B-stage thermosetting epoxy resin-based adhesive.
  • Patent Document 2 Patent Document 2, etc.
  • a curing step for polymerizing and curing the B-stage adhesive layer is required, and there is a problem that the bonding process takes a long time.
  • the B-stage adhesive layer has poor storage stability, cannot be stored at room temperature for a long period of time, requires storage at low temperatures, and has a short open time, resulting in a lack of convenience.
  • the open time means a time limit from when the bonding agent or adhesive is applied or placed on the base material A until when the base material B is completely placed. Within the open time, the bonding strength of the bonding agent or adhesive does not decrease, and the substrates A and B can be bonded together with sufficient bonding strength. The longer the open time, the longer the time limit until the completion of placing the base material B after applying or placing the bonding agent or adhesive on the base material A, and the convenience is high.
  • Hot-melt adhesives which are thermoplastic adhesives, are also used as means for joining dissimilar materials (Patent Document 3, etc.). Hot-melt adhesives are solid at room temperature and liquefy when heated and melted. A liquefied hot-melt adhesive is applied to an adherend and solidified by cooling to form a bond. Hot-melt adhesives adhere by utilizing a phase change that does not involve a polymerization reaction. Excellent. In addition, hot-melt adhesives can be stored at room temperature for a long period of time, and are excellent in terms of convenience in that they have a long open time.
  • conventional hot-melt adhesives are made of crystalline resins or resins containing crystalline resins in order to lower the melt viscosity. inability to have sufficient interaction with Moreover, when the adhesive is melted and adhered, the viscosity becomes low at high temperatures and tends to flow out from the adhesive surface, and the viscosity is difficult to control, resulting in an unstable film thickness. Due to these factors, there is a problem that conventional hot-melt adhesives cannot stably obtain high adhesive strength.
  • JP 2019-157018 A JP-A-10-17685 JP-A-10-168417
  • the present invention has been made in view of the above technical background, and provides a method for manufacturing a bonded body that has a short bonding process time, a long open time, and excellent bondability.
  • the purpose is to
  • the present invention provides the following [1] to [7].
  • [1] Manufacture of a joined body by joining a substrate A, a film mainly composed of an amorphous thermoplastic resin that is at least one of a thermoplastic epoxy resin and a phenoxy resin, and a resin B in this order.
  • a method a first joining step of joining the base material A and the film by melting and then solidifying the film while the film is in contact with the base material A; a second bonding step of bonding the base material A and the resin B by melting and then solidifying the film in a state where the film bonded to the base material A is in contact with the resin B;
  • the base material A is at least one of a metal and an inorganic material,
  • the amorphous thermoplastic resin has an epoxy equivalent of 1,600 g/eq.
  • a method for producing a joined body as described above or wherein the amorphous thermoplastic resin does not contain an epoxy group and the heat of fusion of the amorphous thermoplastic resin is 15 J/g or less.
  • the present invention it is possible to provide a method for manufacturing a bonded body that requires a short bonding process time, a long open time, and can manufacture a bonded body that is excellent in bonding properties.
  • FIG. 2 is an explanatory diagram showing the configuration of a joined body in one embodiment of the present invention
  • joining means joining things together, and adhesion and welding are subordinate concepts.
  • Adhesion means bonding two adherends (objects to be adhered) via an organic material (thermosetting resin, thermoplastic resin, etc.) such as tape or adhesive.
  • Welding means that the surface of a thermoplastic resin or the like is melted by heat and is brought into a bonded state by utilizing entanglement and crystallization due to molecular diffusion that occur in the process of cooling.
  • a to B indicating a numerical range indicates a numerical range including A and B as endpoints. That is, it means "A or more and B or less" (when A ⁇ B) or "A or less and B or more" (when A>B).
  • a base material A, a film mainly composed of an amorphous thermoplastic resin that is at least one of a thermoplastic epoxy resin and a phenoxy resin, and a resin B are prepared in this order. wherein the film is melted and then solidified while the film is in contact with the base material A, thereby joining the base material A and the film. 1, and a second bonding step of bonding the base material A and the resin B by melting and then solidifying the film while the film bonded to the base material A is in contact with the resin B. It has a bonding process.
  • the base material A is at least one of a metal and an inorganic material, and the epoxy equivalent of the amorphous thermoplastic resin is 1,600 g/eq. or the amorphous thermoplastic resin does not contain an epoxy group, and the heat of fusion of the amorphous thermoplastic resin is 15 J/g or less.
  • the "main component” means the component with the highest content among the resin components in the film.
  • the film preferably contains 50% by mass or more of the resin component, more preferably 70% by mass or more, still more preferably 80% by mass or more, and particularly preferably 90% by mass or more.
  • the bonding of the base material A and the resin B is achieved by phase change (solid to liquid ⁇ solid) and does not involve chemical reactions, so bonding can be completed in a shorter time than conventional thermosetting epoxy resins, and the open time is also longer.
  • the predetermined thermoplastic epoxy resin and phenoxy resin which are the main components of the film, have a low cohesive force in the resin and have hydroxyl groups, so they have a strong interaction with the substrate, and the conventional crystallinity is reduced. Dissimilar materials can be joined with a higher joining force than hot-melt adhesives.
  • bonding is performed by dividing the process into a first bonding process and a second bonding process.
  • the first joining step is a step of joining the base material A and the film by melting and then solidifying the film while the film is in contact with the base material A.
  • the base material A and the resin B can be bonded with high accuracy.
  • solidified means solid at room temperature, that is, having no fluidity at 23°C without pressure.
  • the film after the first bonding step may have tackiness.
  • the method for melting the film includes at least one method selected from the group consisting of contact heating, warm air heating, hot press, hot plate welding, infrared heating, ultrasonic welding, vibration welding and high frequency induction welding. .
  • infrared heating is preferable from the viewpoint of ease of manufacture and shortening of the joining process.
  • the temperature of the joint surface of the substrate A with the film is preferably heated to 100 to 300° C., more preferably 120 to 250° C., and still more preferably 150° C. to 220° C. °C.
  • the film is efficiently deformed, melted, and effectively wetted and spread over the bonding surface, resulting in high bonding strength.
  • normal temperature means a general room temperature within the range of 5 to 30°C. Among them, from the viewpoint of ease of production, the method of standing to cool at room temperature is preferable.
  • the film is mainly composed of an amorphous thermoplastic resin that is at least one of a thermoplastic epoxy resin and a phenoxy resin.
  • the epoxy equivalent of the amorphous thermoplastic resin is 1,600 g/eq. or the amorphous thermoplastic resin does not contain an epoxy group, and the heat of fusion of the amorphous thermoplastic resin is 15 J/g or less.
  • the term "film” means a sheet-like material having a thickness of 10 ⁇ m to 3 mm.
  • the amorphous thermoplastic resin in the present embodiment means a resin having a heat of fusion of 15 J/g or less in measurement using a differential scanning calorimeter (DSC).
  • DSC differential scanning calorimeter
  • the heat of fusion is calculated from the area of the endothermic peak in DSC (differential scanning calorimeter) and the weight of the thermoplastic resin component.
  • DSC differential scanning calorimeter
  • an inorganic filler or the like is contained in the film, it is calculated from the weight of the thermoplastic resin component excluding the inorganic filler. Specifically, 2 to 10 mg of the sample is weighed, placed in an aluminum pan, and heated from 23 ° C. to 200 ° C. or higher at 10 ° C./min using a DSC (DSC8231 manufactured by Rigaku Co., Ltd.) to obtain a DSC curve. Then, it can be calculated from the area of the endothermic peak at the time of melting obtained from the DSC curve and the above weighed value.
  • the content of the amorphous thermoplastic resin is preferably 60% by mass or more, more preferably 70% by mass, of the resin components in the film. % or more, more preferably 80 mass % or more, most preferably 90 mass % or more.
  • the heat of fusion of the amorphous thermoplastic resin is 15 J/g or less, preferably 11 J/g or less, more preferably 7 J/g or less, and even more preferably 4 J/g or less, Most preferably, the endothermic peak is below the limit of detection.
  • the epoxy equivalent of the amorphous thermoplastic resin is 1,600 g/eq. 2,000 g/eq. 5,000 g/eq. more preferably 9,000 g/eq. More preferably, it is above the detection limit, and most preferably, the epoxy group is not substantially detected.
  • the expression that the epoxy equivalent is greater than or equal to the detection limit means that no epoxy group is detected when the epoxy equivalent is measured according to JIS K 7236:2001, which will be described later.
  • At least one of a thermoplastic epoxy resin and a phenoxy resin is the main component, and the epoxy equivalent of the amorphous thermoplastic resin is 1,600 g/eq. or the amorphous thermoplastic resin does not contain an epoxy group, and the heat of fusion of the amorphous thermoplastic resin is 15 J/g or less.
  • the viscosity does not drop sharply, and does not reach a low viscosity (0.001 to 100 Pa ⁇ s) state even in a high temperature range exceeding 200°C. Therefore, the film does not flow out of the laminate even in a melted state, and the thickness of the bonding layer formed by solidifying the film after melting can be stably ensured, and a high bonding strength can be stably obtained.
  • the epoxy equivalent here (the weight of the thermoplastic resin containing 1 mol of epoxy groups) is the value of the epoxy equivalent of the thermoplastic epoxy resin or phenoxy resin contained in the film before bonding, and is defined in JIS-K7236:2001. It is a value (unit "g/eq.") measured by a prescribed method.
  • the solvent-diluted product (resin varnish) is converted from non-volatile to solid content It is a value calculated from the numerical value of In addition, in the case of a mixture of two or more resins, it can be calculated from each content and epoxy equivalent.
  • the melting point is preferably 50 to 400°C, more preferably 60 to 350°C, and 70 to 300°C. is more preferred. Since the film has a melting point in the range of 50 to 400° C., the film is efficiently deformed and melted by heating, and effectively wets and spreads over the bonding surface, resulting in high bonding strength.
  • the melting point of a thermoplastic resin means an endothermic peak temperature measured by DSC. When no endothermic peak is obtained or when the heat of fusion is 15 J/g or less, the melting point is the glass transition point plus 70°C.
  • the glass transition point means the temperature at which the DSC curve starts to fall in the second cycle of heating to 200°C by DSC, cooling to 40°C or less, and heating to 200°C. Specifically, it is a value measured by the method described in Examples.
  • thermosetting adhesives it is difficult to dismantle the joined body, it is difficult to separate and recycle the dissimilar materials that make up the joined body (that is, poor recyclability).
  • the film can be softened and melted by heat and can be easily peeled off, it is excellent in recyclability.
  • the film since the film is thermoplastic, it can reversibly repeat softening/melting and curing, and is excellent in repairability.
  • the thermoplastic epoxy resin comprises (a) a bifunctional epoxy resin monomer or oligomer and (b) two functional groups that are the same or different selected from the group consisting of phenolic hydroxyl groups, carboxyl groups, mercapto groups, isocyanate groups and cyanate ester groups. It is preferably a polymer with a bifunctional compound having By using such a compound, the polymerization reaction forming a linear polymer proceeds preferentially, making it possible to obtain a thermoplastic epoxy resin having desired properties.
  • the (a) bifunctional epoxy resin monomer or oligomer refers to an epoxy resin monomer or oligomer having two epoxy groups in the molecule.
  • Specific examples of (a) include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bifunctional phenol novolac type epoxy resin, bisphenol AD type epoxy resin, biphenyl type epoxy resin, bifunctional naphthalene type epoxy resin, Bifunctional alicyclic epoxy resins, bifunctional glycidyl ester type epoxy resins (e.g. diglycidyl phthalate, diglycidyl tetrahydrophthalate, dimer acid diglycidyl ester, etc.), bifunctional glycidyl amine type epoxy resins (e.g.
  • bifunctional heterocyclic epoxy resins bifunctional diarylsulfone-type epoxy resins, hydroquinone-type epoxy resins (e.g., hydroquinone diglycidyl ether, 2,5-di-tert-butylhydroquinone diglycidyl ether, resorcinol) diglycidyl ether, etc.), bifunctional alkylene glycidyl ether compounds (eg, butanediol diglycidyl ether, butenediol diglycidyl ether, butynediol diglycidyl ether, etc.), bifunctional glycidyl group-containing hydantoin compounds (eg, 1,3- diglycidyl-5,5-dialkylhydantoin, 1-glycidyl-3-(glycidoxyalkyl)-5,5-dialkylhydantoin, etc.),
  • bisphenol A type epoxy resin, bisphenol F type epoxy resin, and biphenyl type epoxy resin are preferable from the viewpoint of reactivity and workability.
  • the (b) bifunctional compound having a phenolic hydroxyl group include mononuclear aromatic dihydroxy compounds having one benzene ring such as catechol, resorcinol, hydroquinone, bis(4-hydroxyphenyl)propane (bisphenol A ), bis(4-hydroxyphenyl)methane (bisphenol F), bisphenols such as bis(4-hydroxyphenyl)ethane (bisphenol AD), compounds having condensed rings such as dihydroxynaphthalene, diallylsorcin, diallylbisphenol A, tri Bifunctional phenol compounds into which an allyl group is introduced, such as allyldihydroxybiphenyl, dibutylbisphenol A, and the like.
  • carboxyl group-containing compound (b) examples include adipic acid, succinic acid, malonic acid, cyclohexanedicarboxylic acid, phthalic acid, isophthalic acid, and terephthalic acid.
  • Examples of the (b) bifunctional compound having a mercapto group include ethylene glycol bisthioglycolate and ethylene glycol bisthiopropionate.
  • Specific examples of the isocyanate group-containing bifunctional compound (b) include diphenylmethane diisocyanate (MDI), isophorone diisocyanate (IPDI), hexamethylene diisocyanate (HMDI), and tolylene diisocyanate (TDI). .
  • cyanate ester group-containing bifunctional compound examples include 2,2-bis(4-cyanatophenyl)propane, 1,1-bis(4-cyanatophenyl)ethane, and bis (4-cyanatophenyl)methane and the like.
  • a bifunctional compound having a phenolic hydroxyl group is preferable from the viewpoint of obtaining a thermoplastic polymer.
  • a bifunctional compound having two phenolic hydroxyl groups and a bisphenol structure or a biphenyl structure is heat resistant and It is preferable from the viewpoint of bondability, and bisphenol A, bisphenol F or bisphenol S is preferable from the viewpoint of heat resistance and cost.
  • the above (a) is a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a bisphenol S type epoxy resin, or a biphenyl type epoxy resin
  • the above (b) is bisphenol A, bisphenol F or bisphenol S
  • the above (a) The polymer obtained by the polymerization of ) and (b) has a structure in which a paraphenylene structure and an ether bond are the main skeleton, and the main chain is connected by an alkylene group, and the hydroxyl group generated by polyaddition is arranged in the side chain. have.
  • the linear structure composed of the paraphenylene skeleton can enhance the mechanical strength of the polymer after polymerization, and the hydroxyl groups arranged in the side chains can improve the adhesion to the substrate. As a result, high bonding strength can be achieved while maintaining the workability of the thermosetting resin. Furthermore, in the case of a thermoplastic resin, it can be recycled and repaired by being softened and melted by heat, thereby improving the recyclability and repairability, which are problems in thermosetting resins.
  • a phenoxy resin is a polyhydroxy polyether synthesized from bisphenols and epichlorohydrin, and has thermoplasticity.
  • a method by direct reaction of dihydric phenols and epichlorohydrin, and a method by addition polymerization reaction of diglycidyl ether of dihydric phenols and dihydric phenols are known.
  • the phenoxy resin may be obtained by any production method.
  • dihydric phenols include, for example, phenols such as bisphenol A, bisphenol F, bisphenol S, biphenol, biphenylenediol, and fluorenediphenyl; ethylene glycol, propylene glycol, diethylene glycol. and other aliphatic glycols.
  • bisphenol A, bisphenol F, and bisphenol S are preferable from the viewpoint of cost, bondability, viscosity, and heat resistance. These may be used individually by 1 type, or may use 2 or more types together.
  • a phenoxy resin has a chemical structure similar to that of an epoxy resin, and has a structure in which a paraphenylene structure and an ether bond are used as a main skeleton, a main chain connecting them, and hydroxyl groups are arranged in side chains.
  • thermoplastic epoxy resin and phenoxy resin preferably have a weight average molecular weight of 10,000 to 500,000, which is a polystyrene-equivalent value measured by GPC (gel permeation chromatography), and preferably 18,000 to 18,000. It is more preferably 300,000, and even more preferably 20,000 to 200,000.
  • the weight-average molecular weight is calculated from the elution peak position detected by GPC, and is a molecular weight value in terms of standard polystyrene. When the weight-average molecular weight is within this range, the balance between thermoplasticity and heat resistance is good, and a joined body can be obtained by efficient melting, and its heat resistance is also high.
  • the weight average molecular weight is 10,000 or more, the heat resistance is excellent, and when it is 500,000 or less, the viscosity at the time of melting is low and the bondability is high.
  • the film may or may not contain fillers or additives as components other than the resin component within a range that does not hinder the object of the present invention.
  • fillers examples include inorganic fillers and organic fillers (resin powder).
  • inorganic fillers include spherical fused silica, metal powders such as iron, silica sand, talc, calcium carbonate, mica, acid clay, diatomaceous earth, kaolin, quartz, titanium oxide, silica, phenolic resin microballoons, glass balloons, and the like. is mentioned.
  • the content of the filler in 100% by volume of the total amount of the film is preferably 50% by volume or less, more preferably 30% by volume or less, and 20% by volume or less. is more preferable, and 10% by volume or less is most preferable.
  • the volume of the filler can be obtained by dividing the weight of the filler contained in the film by the true specific gravity of the filler.
  • the content of the resin component in 100% by volume of the total amount of the film is preferably 10% by volume or more, more preferably 20% by volume or more, still more preferably 30% by volume or more, and even more preferably 50% by volume or more. 80% by volume or more, 90% by volume or more in another embodiment, or 99% by volume or more in another embodiment.
  • additives include antifoaming agents, coupling agents such as silane coupling agents, pigments, and the like, and one or more of these may be contained.
  • the content of the additive in the film is preferably 10% by mass or less, more preferably 5% by mass or less, and even more preferably 1% by mass or less.
  • the content of the resin component in the film is preferably 10% by mass or more, more preferably 20% by mass or more, still more preferably 30% by mass or more, still more preferably 50% by mass or more, and in one embodiment 80% by mass or more. 90% by mass or more in the embodiment, and 99% by mass or more in another embodiment.
  • the film is a sheet with a thickness of 10 ⁇ m to 3 mm.
  • the thickness of the film is preferably 1 mm or less, more preferably 0.5 mm or less, and more preferably 0.3 mm or less from the viewpoint of obtaining a bonded body with excellent bondability in a short bonding process time. It is more preferably 0.2 mm or less, and most preferably 0.1 mm or less.
  • the film can be efficiently spread over the bonding surface by sandwiching it between the base material A and the base material B and applying heat, pressure, etc., and high bonding strength can be obtained. .
  • the film may be a single layer or a laminate composed of a plurality of layers, but the single layer is preferable from the viewpoint of ease of production and improvement of bonding strength.
  • the film may have tackiness to the extent that the bonding strength and heat resistance thereof are not impaired.
  • the method for producing the film is not particularly limited.
  • a resin composition is obtained by heating and polymerizing a monomer or oligomer of a bifunctional epoxy compound, a solvent is added to the obtained resin composition as necessary, and separation is performed.
  • a film may be obtained by coating on a mold film or the like, curing and drying, and pressing if necessary.
  • the second bonding step is a step of bonding the base material A and the resin B by melting and then solidifying the film while the film bonded to the base material A is in contact with the resin B. be.
  • the film in the second bonding step, it is preferable to heat the film at a temperature equal to or higher than the melting point of at least one of the resin B and the film to melt and then solidify the film.
  • the film and the base material become compatible, and stronger bonding strength can be easily obtained.
  • the method for melting the film includes at least one method selected from the group consisting of contact heating, warm air heating, hot press, infrared heating, hot plate welding, ultrasonic welding, vibration welding and high frequency induction welding. . Among them, hot press, ultrasonic welding, and high-frequency induction welding are preferred.
  • Conditions for hot pressing are not particularly limited.
  • the temperature is preferably 100 to 400°C, more preferably 120 to 350°C, even more preferably 150 to 300°C.
  • the pressure in the hot press is preferably 0.01 to 20 MPa, more preferably 0.1 to 10 MPa, even more preferably 0.2 to 5 MPa.
  • a pressure of 0.01 to 20 MPa makes the film and the base material compatibilized, and a strong bonding force can be obtained.
  • the oscillation frequency is preferably 10-70 kHz, more preferably 15-40 kHz.
  • the ultrasonic wave application time is preferably 0.1 to 3 seconds, more preferably 0.2 to 2 seconds, from the viewpoint of adhesion and appearance.
  • the pressure is preferably 0.01 to 20 MPa, more preferably 0.1 to 10 MPa, and even more preferably 0.2 to 5 MPa. By applying a pressure of 0.01 to 20 MPa, the film is efficiently deformed and effectively spreads on the adhesive surface, resulting in high adhesive strength.
  • the oscillation frequency ranges from 1 to 1500 kHz.
  • An appropriate oscillation frequency may be adjusted according to the size and type of the base material A and the resin B.
  • the output may range from 100 to 5000W.
  • the oscillation time may be adjusted according to the size and type of the base material A and resin B. For example, it is preferably 1.0 to 10.0 seconds, more preferably 1.5 to 8.0 seconds. .
  • the bonding between the base material A and the resin B uses the phase change (solid-liquid-solid) of the film and does not involve a chemical reaction. Bonding can be completed in an hour.
  • FIG. 1 shows one embodiment of the bonded body of the present invention.
  • a substrate A3 and a resin B4 are joined via a joining layer 2 formed by melting and then solidifying a film made of an amorphous thermoplastic resin, which is at least one of a thermoplastic epoxy resin and a phenoxy resin. , are joined together.
  • the bonded body of the present invention exhibits excellent bonding strength even when a bonded body of dissimilar materials is used.
  • the bonding strength depends on the strength of the interfacial interaction between the bonding layer and the base material A and between the bonding layer and the resin B, as well as the thickness of the bonding layer, the molecular weight and chemical structure of the polymer that constitutes the film, and the mechanical strength. Since it is affected by many factors such as properties and viscoelastic properties, the details of the mechanism by which the bonded body of the present invention exhibits excellent bonding strength are not clear. and the presence of hydroxyl groups in the resin, forming chemical bonds such as hydrogen bonds and van der Waals forces and intermolecular forces at the interfaces between the bonding layer and the base material A, and between the bonding layer and the resin B.
  • the state or characteristics of the interface of the bonded body is a very thin chemical structure of nanometer level or less, which is difficult to analyze. It is impossible or impractical in the present technology to express to distinguish from
  • the bonded body of the present invention in which the bonding layer is made of a thermoplastic resin, is excellent in recyclability and repairability, and can be easily disassembled into base material A and resin B by heating the bonded body.
  • the base material A is at least one of metal and inorganic material.
  • Metals are not particularly limited, and examples thereof include aluminum, iron, copper, magnesium, and titanium.
  • iron is used in the meaning including iron and its alloy. Examples of iron alloys include steel and stainless steel.
  • copper, aluminum, magnesium, and titanium are also used in the sense of including these simple substances and their alloys.
  • the inorganic material is not particularly limited, and examples thereof include glass, ceramics, carbon moldings, and the like.
  • the glass include, in addition to general glass, heat-resistant glass, fire-resistant glass, fire-resistant glass, chemically strengthened glass used for protection of smartphones, and the like. Specifically, soda-lime glass, lead glass, borosilicate glass, quartz glass, and the like are listed.
  • the ceramics include fine ceramics used in semiconductors, automobiles, industrial equipment, and the like. Specific examples include oxide-based ceramics such as alumina, zirconia and barium titanate; hydroxide-based ceramics such as hydroxyapatite; carbide-based ceramics such as silicon carbide; and nitride-based ceramics such as silicon nitride.
  • the base material A is preferably made of metal.
  • Resin B is not particularly limited, but preferably consists of one selected from the group consisting of thermoplastic resins, thermosetting resins, and fiber reinforced plastics (FRP). From the viewpoint of easiness of forming, it is more preferable to use a thermoplastic resin.
  • thermoplastic resins include polyolefins and acid-modified products thereof, polystyrene, polymethyl methacrylate, AS resins, ABS resins, thermoplastic aromatic polyesters such as polyethylene terephthalate and polybutylene terephthalate, polycarbonates, polyimides, polyamides, polyamideimides, Polyether imide, polyether sulfone, polyphenylene ether and modified products thereof, polyphenylene sulfide, polyoxymethylene, polyarylate, polyether ketone, polyether ether ketone, polyether ketone ketone, thermoplastic epoxy and their fiber reinforcing materials.
  • thermosetting resin for example, one or more selected from epoxy resins, vinyl ester resins, phenol resins, urethane resins and the like can be used. From the viewpoint of heat resistance, bonding strength, cost, ease of molding, etc., it is preferably made of at least one selected from polycarbonate, glass fiber reinforced polyamide, glass fiber reinforced polybutylene terephthalate, and glass fiber reinforced polyphenylene sulfide.
  • the melting point is preferably 100 to 400°C, more preferably 150 to 350°C, even more preferably 180 to 300°C. Since the film has a melting point in the range of 100 to 400° C., the film is efficiently deformed and melted by heating, and effectively wets and spreads over the bonding surface, resulting in high bonding strength.
  • the combination of base material A and resin B is not particularly limited.
  • the shape of the substrates A and B is not particularly limited, but the thickness of each is preferably 0.1 mm or more, more preferably 0.3 mm or more, and 0.5 mm or more. is more preferable, and 1 mm or more is particularly preferable. When the thickness is 0.1 mm or more, a strong joined body can be obtained.
  • the thickness of each of the substrates A and B is preferably 10 mm or less, more preferably 8 mm or less, even more preferably 6 mm or less, and particularly preferably 4 mm or less. When the thickness is 10 mm or less, it is easy to efficiently heat and easy to manufacture.
  • both the substrate A and the resin B are pretreated on the surface for the purpose of removing contaminants on the surface and/or for anchoring effect.
  • pretreatment include degreasing treatment, UV ozone treatment, blasting treatment, polishing treatment, plasma treatment, corona discharge treatment, laser treatment, etching treatment, and flame treatment.
  • the pretreatment is preferably a pretreatment for washing the surface of the substrate or a pretreatment for roughening the surface.
  • the substrate is made of aluminum, glass, ceramic, or iron, at least one selected from the group consisting of degreasing treatment, UV ozone treatment, blasting treatment, polishing treatment, plasma treatment, and etching treatment is preferable.
  • the substrate is made of FRP, polypropylene, polycarbonate, polymethyl methacrylate, polyetherimide, polyamide, or polybutylene terephthalate, from the group consisting of degreasing treatment, UV ozone treatment, blasting treatment, polishing treatment, plasma treatment and corona discharge treatment At least one selected is preferred. Only one type of pretreatment may be used, or two or more types may be applied. As specific methods for these pretreatments, known methods can be used. Usually, hydroxyl groups derived from resins and reinforcing materials exist on the surface of FRP, and it is thought that hydroxyl groups originally exist on the surface of glass and ceramics. can increase the hydroxyl group of
  • the degreasing treatment is a method of removing dirt such as oil on the base material surface by dissolving it with an organic solvent such as acetone or toluene.
  • the UV ozone treatment is a method of cleaning or modifying a surface by using the energy of short-wave ultraviolet rays emitted from a low-pressure mercury lamp and the power of ozone (O 3 ) generated thereby.
  • O 3 ozone
  • glass it is one of the surface cleaning methods for removing organic impurities on the surface.
  • Cleaning and surface modification equipment using low-pressure mercury lamps are generally called “UV ozone cleaners”, “UV cleaning equipment”, “ultraviolet surface modification equipment” and the like.
  • blasting examples include wet blasting, shot blasting, sandblasting, and the like. Among them, wet blasting is preferable because a more dense surface can be obtained than dry blasting.
  • polishing treatment examples include buffing using an abrasive cloth, roll polishing using sandpaper, electrolytic polishing, and the like.
  • the plasma treatment is a process in which a plasma beam is created with a high-voltage power supply and a rod and hits the surface of the material to excite molecules into a functional state. be done.
  • the corona discharge treatment includes a method for modifying the surface of a polymer film, in which electrons emitted from an electrode cut the polymer main chain or side chain of the polymer surface layer and generate radicals as starting points. It is a method of generating hydroxyl groups and polar groups on the surface.
  • the laser treatment is a technique for improving surface characteristics by rapidly heating and cooling only the surface of the base material by laser irradiation, and is an effective method for roughening the surface.
  • Known laser processing techniques can be used.
  • etching treatment examples include chemical etching treatments such as an alkali method, a phosphoric acid-sulfuric acid method, a fluoride method, a chromic acid-sulfuric acid method, and an iron salt method, and electrochemical etching treatments such as an electrolytic etching method. is mentioned.
  • the flame treatment is a method of burning a mixed gas of combustion gas and air to convert oxygen in the air into plasma, and applying oxygen plasma to the object to be treated to make the surface hydrophilic.
  • Known frame processing techniques can be used.
  • a non-adhesive fluororesin film (Nitoflon (registered trademark) No. 900UL, manufactured by Nitto Denko Co., Ltd.) was placed on the upper and lower plates of the press, and the thermoplastic epoxy resin was applied onto the non-adhesive fluororesin film of the lower plate. After placement, the press was heated to 160° C., and the thermoplastic composition epoxy resin was thermally compressed for 2 hours to obtain a film P-1 having a solid content of 100 mass %, a length of 32 to 33 mm, and a thickness of 100 ⁇ m. .
  • Table 1 shows the measurement results of the weight average molecular weight, epoxy equivalent, and heat of fusion of the obtained film P-1. The weight average molecular weight was measured by dissolving the obtained film in tetrahydrofuran. Similar measurements were also carried out on films and bonding agents obtained by other production examples described later, and the results are also shown in Tables 1 and 2.
  • YP-50S manufactured by Nippon Steel Chemical & Materials Co., Ltd., phenoxy resin, weight average molecular weight of about 50,000
  • thermosetting liquid epoxy adhesive E-250 manufactured by Konishi Co., Ltd., two liquid type of bisphenol type epoxy resin and amine curing agent
  • two liquids of thermosetting liquid epoxy adhesive E-250 are mixed, applied to the release film, and cured at 100 ° C. for 1 hour. After that, it was cooled and peeled off from the release film to obtain a film Q-1 with a thickness of 100 ⁇ m.
  • the film Q-1 no heat of fusion peak was detected by DSC measurement, and the epoxy equivalent and weight average molecular weight could not be measured because it was insoluble in the solvent.
  • a film Q-2 was obtained by cutting an amorphous polycarbonate film (Iupilon (registered trademark) FE2000, manufactured by Mitsubishi Engineering-Plastics Corporation, thickness 100 ⁇ m). In film Q-2, no heat of fusion peak was detected by DSC measurement, and the epoxy equivalent and weight average molecular weight could not be measured because the film was insoluble in the solvent.
  • amorphous polycarbonate film Iupilon (registered trademark) FE2000, manufactured by Mitsubishi Engineering-Plastics Corporation, thickness 100 ⁇ m.
  • a sheet was obtained by pressing a crystalline epoxy resin YSLV-80XY (manufactured by Nippon Steel Chemical & Materials Co., Ltd.) at room temperature, and then cut to obtain a film Q-3 with a thickness of 100 ⁇ m.
  • Table 2 shows the measurement results of the weight average molecular weight, epoxy equivalent, and heat of fusion of the obtained film Q-3.
  • Thermosetting liquid epoxy adhesive E-250 (manufactured by Konishi Co., Ltd., two-liquid type of bisphenol type epoxy resin and amine curing agent) was used as liquid bonding agent Q-4.
  • the bonding agent Q-4 no heat of fusion peak was detected in the DSC measurement, and the epoxy equivalent and weight average molecular weight could not be measured because it was insoluble in the solvent.
  • Phenotote registered trademark
  • YP-50S manufactured by Nippon Steel Chemical & Materials Co., Ltd., phenoxy resin, weight average molecular weight of about 50,000
  • 20 g of cyclohexanone and 80 g of cyclohexanone were charged, heated to 60° C. with stirring, dissolved visually, and cooled to 40° C. to obtain a liquid bonding agent Q-6 having a solid content of 20% by mass.
  • bonding agent Q-6 the weight average molecular weight, epoxy equivalent, heat of fusion, and melting point were measured using the phenoxy resin coating layer formed on the surface of resin A in Comparative Example 6 described later. In the bonding agent Q-6, no heat of fusion peak was detected by DSC measurement, and the epoxy equivalent was above the detection limit.
  • heat of fusion and melting point 2 to 10 mg of the film and the bonding agent were weighed, placed in an aluminum pan, and heated from 23° C. to 200° C. at a rate of 10° C./min by DSC (DSC8231 manufactured by Rigaku Corporation) to obtain a DSC curve.
  • the heat of fusion was calculated from the area of the endothermic peak at the time of melting of the DSC curve and the above weighed value.
  • the endothermic peak temperature of the obtained DSC curve was taken as the melting point.
  • the melting point was determined by adding 70°C to the glass transition point.
  • the glass transition point was defined as the temperature at which the DSC curve started to fall in the second cycle of heating to 200°C by DSC, cooling to 40°C or less, and further heating to 200°C.
  • Thermosetting resins that do not melt when heated do not have a melting point.
  • epoxy equivalent It was measured according to JIS K-7236:2001 and converted into a value as a resin solid content. In the case of a simple mixture without reaction, it was calculated from each epoxy equivalent and content.
  • the thickness of the film was measured using MDC-25MX manufactured by Mitutoyo Corporation after being left in an atmosphere of 23° C. and 50% humidity for 24 hours.
  • Base material A As the base material A, the following base materials were used. "iron” The surface of SPCC-SD was blasted to obtain a test piece with a width of 18 mm, a length of 45 mm and a thickness of 1.6 mm. “aluminum” The surface of A6061-T6 was blasted to obtain a test piece with a width of 18 mm, a length of 45 mm and a thickness of 1.6 mm.
  • ⁇ PBT (polybutylene terephthalate) ⁇ 420-1001 manufactured by SABIC was injection molded to obtain a test piece having a width of 18 m, a length of 45 mm and a thickness of 1.5 mm (softening point: 207°C, melting point: 225°C). Used without surface treatment.
  • a linear protrusion with an equilateral triangular cross section and a height of 0.5 mm is created at a location 2.5 mm from the end. bottom.
  • ⁇ PC (Polycarbonate) ⁇ 121R manufactured by SABIC was injection molded to obtain a test piece having a width of 10 mm, a length of 45 mm and a thickness of 3 mm (softening point: 129°C, melting point: 220°C). Used without surface treatment.
  • linear projections with an equilateral triangular cross section and a height of 0.5 mm were placed 2.5 mm from the end. Created.
  • Example 1 The film P-1 cut to a size of 10 ⁇ 15 mm was placed on the aluminum substrate as the substrate A, and the film P-1 was heated so that the temperature of the film P-1 reached 200° C. was melted and allowed to cool at room temperature for 1 minute to solidify the film P-1, thereby joining the substrate A and the film P-1. Subsequently, the PC substrate was brought into contact with the film P-1 bonded to the substrate A as the resin B. The overlap between these substrates was 10 mm wide and 5 mm deep. The film P-1 was arranged so as to cover all the overlapping regions of the substrates.
  • a laminate was prepared in which the resin B and the film P-1 were not bonded so that the base material A and the resin B were not in direct contact with each other and the film P-1 was interposed therebetween.
  • an ultrasonic welding machine manufactured by Seidensha Denshi Kogyo Co., Ltd., oscillator JII930S, press JIIP30S
  • the sinking amount was set to 0.6 mm
  • the ultrasonic wave application time was set to within 1 second. In addition, it was regarded as the end when the sinking was completed, and it was finished even if it was less than 1 second.
  • the subsequent holding time was 1 second.
  • a pressure of 110 N (pressure of 2.2 MPa) and an oscillation frequency of 28.5 kHz were used.
  • a conjugate was produced.
  • the aluminum is used as the base material A and the PA6 is used as the base material B
  • the aluminum is used as the base material A and the PBT is used as the base material B
  • the iron as the base material A and the base material B
  • a bonded body was obtained by the same operation as described above.
  • the resin B was brought into contact with the film bonded to the base material A, and the base material A and the resin B were bonded.
  • a conjugate was produced in the same manner except for the above.
  • Examples 2 to 5 Comparative Examples 1 to 3> A joined body was produced in the same manner as in Example 1 except that each material was as shown in Tables 1 and 2.
  • Thermosetting liquid epoxy adhesive E-250 (manufactured by Konishi Co., Ltd., two-liquid type of bisphenol type epoxy resin and amine curing agent) is mixed with bonding agent Q-4, which is used as substrate A and the aluminum substrate. and resin B were applied to each of the surfaces of the PC substrate over an area of 10 mm long ⁇ 18 mm wide, and bonded within 1 minute. After that, the bonding agent Q-4 was cured by allowing it to stand in an oven at 100° C. for 1 hour while being fixed with a clip. After that, it was cooled to room temperature. Thus, a conjugate was produced. The thickness of the adhesive layer was 0.1 mm.
  • the bonding agent Q-4 was applied to each of the base material A and the resin B, and after standing for 3 days, the base material A and the resin B were overlapped and fixed with a clip.
  • a joined body was produced in the same manner as described above, except that it was left to stand in an oven at 10° C. for 1 hour.
  • Liquid bonding agent Q-5 was bar-coated on the aluminum substrate as substrate A, dried at room temperature for 30 minutes, and then left standing in an oven at 160 ° C. for 2 hours to obtain a length of 20 mm ⁇ width of 18 mm.
  • a solid thermoplastic epoxy resin polymer coating layer having a thickness of 50 ⁇ m was formed on the surface of the substrate A. Subsequently, after superimposing the base material A and the PC base material as the resin B, a joined body was obtained by ultrasonic welding in the same manner as in Example 1.
  • the bonding process time was measured from the start point to the end point, starting when at least one of the substrates constituting the bonded body and the bonding agent came into contact with each other and ending when the manufacturing of the bonded body was completed.
  • each Example and each Comparative Example A repaired conjugate was obtained by producing a conjugate again by the same operation.
  • the shear bonding strength of the repaired joint at 23° C. was measured in the same manner as in the above test method, and if it was 80% or more of the first shear bonding strength, it was judged to be good (A), and if it was less than 80%, it was judged to be unsuitable (B). .
  • Joined bodies obtained by the production method of the present invention are, for example, door side panels, bonnet roofs, tailgates, steering hangers, A pillars, B pillars, C pillars, D pillars, crash boxes, power control unit (PCU) housings. , electric compressor parts (inner wall, intake port, exhaust control valve (ECV) insertion part, mount boss, etc.), lithium ion battery (LIB) spacer, battery case, automotive parts such as LED headlamps, smartphones, It is used as a notebook computer, a tablet computer, a smart watch, a large liquid crystal television (LCD-TV), an outdoor LED lighting structure, etc., but is not particularly limited to these examples.
  • PCU power control unit
  • electric compressor parts inner wall, intake port, exhaust control valve (ECV) insertion part, mount boss, etc.
  • LIB lithium ion battery spacer
  • automotive parts such as LED headlamps, smartphones, It is used as a notebook computer, a tablet computer, a smart watch, a large liquid

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Laminated Bodies (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

基材Aと、熱可塑性エポキシ樹脂及びフェノキシ樹脂の少なくとも何れかである非晶性熱可塑性樹脂を主成分とするフィルムと、樹脂Bを、この順で接合してなる接合体の製造方法であって、前記フィルムを前記基材Aに接面させた状態で、前記フィルムを溶融後固化させることにより、前記基材Aと前記フィルムを接合する第1の接合工程と、前記基材Aに接合した前記フィルムを樹脂Bに接面させた状態で、前記フィルムを溶融後固化させることにより、前記基材Aと前記樹脂Bを接合する第2の接合工程を有し、前記基材Aは、金属及び無機物の少なくとも何れかであり、前記非晶性熱可塑性樹脂のエポキシ当量が1,600g/eq.以上もしくは前記非晶性熱可塑性樹脂がエポキシ基を含まず、かつ、前記非晶性熱可塑性樹脂の融解熱が15J/g以下である、接合体の製造方法。

Description

接合体の製造方法
 本発明は、異種材を容易にかつ強固に接合する用途に好適な、接合体の製造方法に関する。
 近年、製品の軽量化及び高性能化等の観点より、自動車部品、医療機器、家電製品等、各種分野で部品のマルチマテリアル化が進んでいる。マルチマテリアル化とは、機能や材質の異なる材料(以下、異種材という)を併用することで材料の軽量化や高強度化を図る手法である。マルチマテリアル化の実現には、異種材を強固に接合する技術が不可欠である。
 異種材を強固に接合する手段として、液状型接着剤である熱硬化型エポキシ樹脂系接着剤(特許文献1等)が広く使用されている。
 液状型接着剤を用いた接合は、液状の樹脂組成物を塗布する塗布工程と、塗布後に前記樹脂組成物を重合反応させて硬化させる硬化工程が必要となる。
 このため、液状型接着剤を用いて接合を行う場合、塗布工程においては樹脂組成物の塗布に時間がかかり、硬化工程においては重合反応に時間がかかり(すなわち、接合プロセス時間が長く)、利便性に欠けるという問題がある。
 本明細書において、接合プロセス時間とは、接合体を構成する少なくとも何れかの基材とフィルムの接触時を始点、接合体の作製の完了時を終点として、始点から終点までの時間を意味する。例えば、基材に対してフィルムを載せる工程に要する時間、及び基材同士を接合する(例えば、フィルムを硬化させる)のに要する時間、が該当する。
 熱硬化型エポキシ樹脂組成物を基材に含浸又は塗工後、半硬化(Bステージ化)させ、Bステージ状の熱硬化型エポキシ樹脂系接着剤からなる接着剤層付き積層体として、接合体の製造に用いる技術も開示されている(特許文献2等)。
 しかし、Bステージ状の接着剤層を有する積層体を用いる場合も、Bステージ状の接着剤層を重合反応させて硬化させる硬化工程が必要となり、接合プロセス時間が長いという問題がある。
 また、Bステージ状の接着剤層は、貯蔵安定性が悪く、常温での長期保管ができず、低温での保管が必要であり、オープンタイムが短く利便性に欠けるという問題がある。
 本明細書においてオープンタイムとは、基材Aの上に接合剤又は接着剤を塗布もしくは載せた後、基材Bを載せ終えるまでの制限時間を意味する。オープンタイム内であれば、接合剤又は接着剤の接着力が低下せず、十分な接着力で基材Aと基材Bを貼り合わせることができる。オープンタイムが長いほど、基材Aの上に接合剤又は接着剤を塗布もしくは載せた後、基材Bを載せ終えるまでの制限時間が長くなり、利便性が高い。
 異種材を接合する手段として、熱可塑性接着剤であるホットメルト接着剤も使用されている(特許文献3等)。ホットメルト接着剤は、常温では固体で、加熱溶融することにより液状化する。液状化させたホットメルト接着剤を、被着体に塗布し、冷却固化によって接合を形成する。ホットメルト接着剤は、重合反応を伴わない相変化を利用して接着を行うものであるため、塗布工程は不要であって、硬化時間が早く(すなわち、接合プロセス時間が短く)、利便性に優れる。また、ホットメルト接着剤は、常温での長期保管も可能であって、オープンタイムが長い点においても利便性に優れる。
 しかし、従来のホットメルト接着剤は、溶融粘度を低くするために、結晶性の樹脂からなるか、もしくは、結晶性の樹脂を含む樹脂からなるため、接着樹脂内の凝集力が高く、基材への十分な相互作用を持つことができない。また、溶融して接着する際に、高温においては低粘度になり、接着面から流出しやすく、また粘度の制御がしにくいので膜厚が安定しない。これらの要因により、従来のホットメルト接着剤では高い接着力を安定して得ることができないという問題がある。
特開2019-157018号公報 特開平10-17685号公報 特開平10-168417号公報
 本発明は、かかる技術的背景に鑑みてなされたものであって、接合プロセス時間が短く、オープンタイムが長く、かつ、接合性に優れる接合体を製造し得る、接合体の製造方法を提供することを目的とする。
 本発明者等は鋭意検討の結果、所定のフィルムを基材Aに接面させた状態で、前記フィルムを溶融後固化させることにより、前記基材Aと前記フィルムを接合する第1の接合工程と、前記基材Aに接合した前記フィルムを樹脂Bに接面させた状態で、前記フィルムを溶融後固化させることにより、前記基材Aと前記樹脂Bを接合する第2の接合工程を有することで、上記課題が解決できることを見出した。本発明は、当該知見に基づくものである。
 すなわち、本発明は、以下の[1]~[7]を提供するものである。
[1] 基材Aと、熱可塑性エポキシ樹脂及びフェノキシ樹脂の少なくとも何れかである非晶性熱可塑性樹脂を主成分とするフィルムと、樹脂Bを、この順で接合してなる接合体の製造方法であって、
 前記フィルムを前記基材Aに接面させた状態で、前記フィルムを溶融後固化させることにより、前記基材Aと前記フィルムを接合する第1の接合工程と、
 前記基材Aに接合した前記フィルムを樹脂Bに接面させた状態で、前記フィルムを溶融後固化させることにより、前記基材Aと前記樹脂Bを接合する第2の接合工程を有し、
 前記基材Aは、金属及び無機物の少なくとも何れかであり、
 前記非晶性熱可塑性樹脂のエポキシ当量が1,600g/eq.以上もしくは前記非晶性熱可塑性樹脂がエポキシ基を含まず、かつ、前記非晶性熱可塑性樹脂の融解熱が15J/g以下である、接合体の製造方法。
[2] 前記樹脂Bが、熱可塑性樹脂からなる、上記[1]に記載の接合体の製造方法。
[3] 前記基材Aが、金属からなる、上記[1]又は[2]に記載の接合体の製造方法。
[4] 前記第1の接合工程において、前記フィルムを、100~300℃に加熱して溶融後固化させる、上記[1]~[3]のいずれかに記載の接合体の製造方法。
[5] 前記第2の接合工程において、前記フィルムを、接触加熱、温風加熱、熱プレス、赤外線加熱、熱板溶着、超音波溶着、振動溶着及び高周波誘導溶着からなる群より選ばれる少なくとも1種により溶融後固化させる、上記[1]~[4]のいずれかに記載の接合体の製造方法。
[6] 前記第2の接合工程において、前記樹脂B及び前記フィルムの少なくとも何れかの融点以上の温度で加熱して前記フィルムを溶融後固化させる、上記[1]~[5]のいずれかに記載の接合体の製造方法。
[7] 前記第2の接合工程において、加熱温度100~400℃、及び0.01~20Mpaの加圧下で前記フィルムを溶融後固化させる、上記[1]~[6]のいずれかに記載の接合体の製造方法。
 本発明によれば、接合プロセス時間が短く、オープンタイムが長く、かつ、接合性に優れる接合体を製造し得る、接合体の製造方法を提供することができる。
本発明の一実施形態における接合体の構成を示す説明図である。
 以下、本発明の実施形態について詳細に説明する。
 本明細書において、接合とは、物と物とを繋合わせることを意味し、接着及び溶着はその下位概念である。接着とは、テープや接着剤の様な有機材(熱硬化性樹脂や熱可塑性樹脂等)を介して、2つの被着材(接着しようとするもの)を接合状態とすることを意味する。溶着とは、熱可塑性樹脂等の表面を熱によって溶融し、冷却を行う過程で生じる、分子拡散による絡み合いと結晶化を利用して接合状態とすることを意味する。
 本明細書において、数値範囲を示す「A~B」の記載は、端点であるA及びBを含む数値範囲を示す。すなわち、「A以上B以下」(A<Bである場合)、又は「A以下B以上」(A>Bである場合)を意味する。
[接合体の製造方法]
 本実施形態に係る接合体の製造方法は、基材Aと、熱可塑性エポキシ樹脂及びフェノキシ樹脂の少なくとも何れかである非晶性熱可塑性樹脂を主成分とするフィルムと、樹脂Bを、この順で接合してなる接合体の製造方法であって、前記フィルムを前記基材Aに接面させた状態で、前記フィルムを溶融後固化させることにより、前記基材Aと前記フィルムを接合する第1の接合工程と、前記基材Aに接合した前記フィルムを樹脂Bに接面させた状態で、前記フィルムを溶融後固化させることにより、前記基材Aと前記樹脂Bを接合する第2の接合工程を有する。そして、前記基材Aは、金属及び無機物の少なくとも何れかであり、前記非晶性熱可塑性樹脂のエポキシ当量が1,600g/eq.以上もしくは前記非晶性熱可塑性樹脂がエポキシ基を含まず、かつ、前記非晶性熱可塑性樹脂の融解熱が15J/g以下である。
 前記「主成分」とは、フィルム中の樹脂成分のうちで最も含有量の高い成分を意味する。フィルムは、樹脂成分を50質量%以上含むことが好ましく、70質量%以上含むことがより好ましく、80質量%以上含むことが更に好ましく、90質量%以上含むことが特に好ましい。
 当該製造方法によると、前記基材Aと前記樹脂Bの接合は、熱可塑性エポキシ樹脂及びフェノキシ樹脂の少なくとも何れかである非晶性熱可塑性樹脂を主成分とするフィルムの相変化(固体~液体~固体)を利用したものであり、化学反応を伴わないため、従来の熱硬化型のエポキシ樹脂よりも短時間で接合を完了することができ、また、オープンタイムも長い。
 また、フィルムの主成分である所定の熱可塑性エポキシ樹脂及びフェノキシ樹脂は、樹脂内の凝集力が低く、かつ水酸基を有しているため、基材との相互作用が強く、従来の結晶性のホットメルト接着剤よりも高い接合力で異種材を接合することができる。
 また、当該製造方法は、第1の接合工程と第2の接合工程に工程を分けて接合する。このように分けることで、接合界面に適した温度で加熱して接合することができ、接合性に優れる接合体を製造することができる。また、加熱温度制御も工程を分けない場合に比べて容易となり、樹脂Bの加熱による変形も抑制することができる。さらに、予め基材Aにフィルムを接合することで、基材Aと樹脂Bを精度よく接合することができ、接合箇所にズレが生じることを抑制することができる。
<第1の接合工程>
 第1の接合工程は、前記フィルムを前記基材Aに接面させた状態で、前記フィルムを溶融後固化させることにより、前記基材Aと前記フィルムを接合する工程である。
 第1の接合工程で、基材Aと前記フィルムを予め接合することで、基材Aと樹脂Bを精度よく接合することができる。
 なお、本明細書において、「固化」とは、常温で固体、即ち23℃の加圧のない状態下において流動性が無いことを意味する。ただし、第1の接合工程後のフィルムには、タック性があってもよい。
 前記フィルムを溶融させる方法としては、接触加熱、温風加熱、熱プレス、熱板溶着、赤外線加熱、超音波溶着、振動溶着及び高周波誘導溶着からなる群より選ばれる少なくとも1種の方法が挙げられる。中でも、製造容易性及び接合プロセス短縮の観点から、赤外線加熱が好ましい。
 フィルムを加熱により溶融させる場合、基材Aのフィルムとの接合面の温度を、100~300℃に加熱して溶融させることが好ましく、より好ましくは120~250℃、更に好ましくは150℃~220℃である。100~300℃で加熱することにより、前記フィルムが効率よく変形、溶融し接合面に有効に濡れ広がるため高い接合力が得られる。
 溶融したフィルムを固化させる方法としては、常温で放冷する方法又は冷却装置を用いて放冷する方法が挙げられる。なお、「常温」とは、5~30℃の範囲内の一般的な室温を意味する。中でも、製造容易性の観点から、常温で放冷する方法が好ましい。
(フィルム)
 フィルムは、熱可塑性エポキシ樹脂及びフェノキシ樹脂の少なくとも何れかである非晶性熱可塑性樹脂を主成分とする。そして、前記非晶性熱可塑性樹脂のエポキシ当量が1,600g/eq.以上もしくは前記非晶性熱可塑性樹脂がエポキシ基を含まず、かつ、前記非晶性熱可塑性樹脂の融解熱が15J/g以下である。
 なお、本明細書において、「フィルム」とは、厚さが10μm~3mmのシート状物を意味する。
 また、本実施の形態における非晶性熱可塑性樹脂とは、示差走査熱量計(DSC)を用いた測定において、融解熱が15J/g以下となる樹脂を意味する。ただし、融解に伴う吸熱ピークが検出限界以下、もしくはノイズと同等以下で分化できない場合も含む。
 融解熱は、DSC(示差走査熱量計)の吸熱ピークの面積と、熱可塑性樹脂成分の重量から算出する。無機充填剤等がフィルム中に含まれる場合には、無機充填剤は除いた、熱可塑性樹脂成分の重量から算出する。具体的には、試料を2-10mg秤量し、アルミ製パンに入れ、DSC(株式会社リガク製DSC8231)を用いて23℃から10℃/minで200℃以上まで昇温してDSCカーブを得、次いでそのDSCカーブから求めた融解時の吸熱ピークの面積と、前記秤量値から算出することができる。
 フィルムに非晶性熱可塑性樹脂の特性を十分に付与する点から、前記非晶性熱可塑性樹脂の含有量は、フィルム中の樹脂成分のうち、好ましくは60質量%以上、より好ましくは70質量%以上、更に好ましくは80質量%以上、最も好ましくは90質量%以上である。
 非晶性熱可塑性樹脂の融解熱は、15J/g以下であり、11J/g以下であることが好ましく、7J/g以下であることがより好ましく、4J/g以下であることが更に好ましく、吸熱ピークが検出限界以下であることが最も好ましい。
 非晶性熱可塑性樹脂のエポキシ当量は、1,600g/eq.以上であり、2,000g/eq.以上であることが好ましく、5,000g/eq.以上であることがより好ましく、9,000g/eq.以上であることが更に好ましく、検出限界以上であってエポキシ基が実質的に検出されないことが最も好ましい。なお、エポキシ当量が検出限界以上とは、後述のJIS K 7236:2001に基づきエポキシ当量を測定した際に、エポキシ基が検出されないことを意味する。
 熱可塑性エポキシ樹脂及びフェノキシ樹脂の少なくとも何れかを主成分とし、前記非晶性熱可塑性樹脂のエポキシ当量が1,600g/eq.以上もしくは前記非晶性熱可塑性樹脂がエポキシ基を含まず、前記非晶性熱可塑性樹脂の融解熱が15J/g以下であるフィルムとして用いることにより、加熱時に、従来のホットメルト接着剤で見られるような急激な粘度低下は起こらず、200℃を超える高温度領域においても低粘度(0.001~100Pa・s)状態には至らない。このため当該フィルムは溶融した状態でも積層体から流れ出すことはなく、フィルムが溶融後固化して形成された接合層の厚みが安定して確保でき、高い接合力を安定して得ることができる。
 ここで言うエポキシ当量(エポキシ基1モルが含まれる前記熱可塑性樹脂の重量)は、接合前のフィルムに含まれる熱可塑性エポキシ樹脂もしくはフェノキシ樹脂のエポキシ当量の値であり、JIS-K7236:2001に規定された方法で測定された値(単位「g/eq.」)である。具体的には、電位差滴定装置を用い、臭素化テトラエチルアンモニウム酢酸溶液を加え、0.1mol/L過塩素酸-酢酸溶液を用い、溶媒希釈品(樹脂ワニス)は、不揮発分から固形分換算値としての数値を算出した値である。なお、2種以上の樹脂の混合物の場合はそれぞれの含有量とエポキシ当量から算出することもできる。
 フィルムの主成分である非晶性熱可塑性樹脂が融点を有する場合、融点は50~400℃であることが好ましく、60℃~350℃であることがより好ましく、70℃~300℃であることが更に好ましい。50~400℃の範囲に融点があることにより、前記フィルムが加熱により効率よく変形及び溶融し、接合面に有効に濡れ広がるため高い接合力が得られる。
 本明細書において、熱可塑性樹脂の融点とは、DSCで測定される吸熱ピーク温度を意味する。なお、吸熱ピークが得られない場合や、融解熱が15J/g以下である場合は、ガラス転移点に70℃を足した温度を融点とする。ガラス転移点は、DSCで200℃まで昇温後、40℃以下に冷却し、さらに200℃まで加熱した2サイクル目のDSCカーブの降下開始時の温度を意味する。具体的には、実施例に記載の方法で測定される値である。
 従来の熱硬化性の接着剤では、接合体を解体することが困難であり、接合体を構成する異種材を分別してリサイクルすることが難しく(すなわち、リサイクル性に劣り)、また、接合体の製造工程において接合箇所のズレ等があった際や内容物や被着体に欠陥があり交換が必要な場合に貼り直しが難しく(すなわち、リペア性に劣り)、利便性に欠けるという問題があったが、前記フィルムは、熱で軟化・溶融させることができ、容易に剥離できるため、リサイクル性に優れる。また、前記フィルムは熱可塑性であるため、可逆的に軟化・溶融と硬化を繰り返すことができ、リペア性にも優れる。
《熱可塑性エポキシ樹脂》
 熱可塑性エポキシ樹脂は、(a)2官能エポキシ樹脂モノマーもしくはオリゴマーと(b)フェノール性水酸基、カルボキシル基、メルカプト基、イソシアネート基及びシアネートエステル基からなる群より選ばれる同一の又は異なる2つの官能基を有する2官能性化合物との重合体であることが好ましい。
 かかる化合物を使用することにより、直鎖状のポリマーを形成する重合反応が優先的に進行して、所望の特性を具備する熱可塑性エポキシ樹脂を得ることが可能となる。
 前記(a)2官能エポキシ樹脂モノマーもしくはオリゴマーとは、分子内にエポキシ基を2個有するエポキシ樹脂モノマーもしくはオリゴマーをいう。
 前記(a)の具体例として、例えばビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、2官能のフェノールノボラック型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ビフェニル型エポキシ樹脂、2官能のナフタレン型エポキシ樹脂、2官能の脂環式エポキシ樹脂、2官能のグリシジルエステル型エポキシ樹脂(例えばジグリシジルフタレート、ジグリシジルテトラヒドロフタレート、ダイマー酸ジグリシジルエステルなど)、2官能のグリシジルアミン型エポキシ樹脂(例えばジグリシジルアニリン、ジグリシジルトルイジンなど)、2官能の複素環式エポキシ樹脂、2官能のジアリールスルホン型エポキシ樹脂、ヒドロキノン型エポキシ樹脂(例えばヒドロキノンジグリシジルエーテル、2,5-ジ-tert-ブチルヒドロキノンジグリシジルエーテル、レゾルシンジグリシジルエーテルなど)、2官能のアルキレングリシジルエーテル系化合物(例えばブタンジオールジグリシジルエーテル、ブテンジオールジグリシジルエーテル、ブチンジオールジグリシジルエーテルなど)、2官能のグリシジル基含有ヒダントイン化合物(例えば1,3-ジグリシジル-5,5-ジアルキルヒダントイン、1-グリシジル-3-(グリシドキシアルキル)-5,5-ジアルキルヒダントインなど)、2官能のグリシジル基含有シロキサン(例えば1,3-ビス(3-グリシドキシプロピル)-1,1,3,3-テトラメチルジシロキサン、α,β-ビス(3-グリシドキシプロピル)ポリジメチルシロキサンなど)及びそれらの変性物などが挙げられる。これらのうち、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂が、反応性及び作業性の点から好ましい。
 前記(b)のフェノール水酸基を持つ2官能性化合物としては、例えばカテコール、レゾルシン、ヒドロキノンなどのベンゼン環を1個有する一核体芳香族ジヒドロキシ化合物類、ビス(4-ヒドロキシフェニル)プロパン(ビスフェノールA)、ビス(4-ヒドロキシフェニル)メタン(ビスフェノールF)、ビス(4-ヒドロキシフェニル)エタン(ビスフェノールAD)などのビスフェノール類、ジヒドロキシナフタレンなどの縮合環を有する化合物、ジアリ
ルレゾルシン、ジアリルビスフェノールA、トリアリルジヒドロキシビフェニルなどのアリル基を導入した2官能フェノール化合物、ジブチルビスフェノールAなどが挙げられる。
 前記(b)のカルボキシル基含有化合物の具体例としては、アジピン酸、コハク酸、マロン酸、シクロヘキサンジカルボン酸、フタル酸、イソフタル酸、及びテレフタル酸などが挙げられる。
 前記(b)のメルカプト基を持つ2官能性化合物としては、例えば、エチレングリコールビスチオグリコレート、エチレングリコールビスチオプロピオネートなどが挙げられる。
 前記(b)のイソシアネート基含有の2官能性化合物の具体例としては、ジフェニルメタンジイソシアネート(MDI)、イソホロンジイソシアネート(IPDI)、へキサメチレンジイソシアネート(HMDI)、及びトリレンジイソシアネート(TDI)などが挙げられる。
 前記(b)のシアネートエステル基含有の2官能性化合物の具体例としては、2,2-ビス(4-シアナトフェニル)プロパン、1,1-ビス(4-シアナトフェニル)エタン、及びビス(4-シアナトフェニル)メタンなどが挙げられる。
 前記(b)のなかでもフェノール水酸基を持つ2官能性化合物が熱可塑性の重合物を得る観点から好ましく、フェノール性水酸基を2つ持ち、ビスフェノール構造もしくはビフェニル構造を持つ2官能性化合物が耐熱性及び接合性の観点から好ましく、ビスフェノールA、ビスフェノールFもしくはビスフェノールSが耐熱性及びコストの観点から好ましい。
 前記(a)がビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビフェニル型エポキシ樹脂であり、前記(b)がビスフェノールA、ビスフェノールFもしくはビスフェノールSである場合、前記(a)と(b)の重合により得られるポリマーは、パラフェニレン構造とエーテル結合を主骨格とし、それらをアルキレン基で連結した主鎖と、重付加により生成した水酸基が側鎖に配置された構造を有する。
 パラフェニレン骨格からなる直鎖状の構造により、重合後のポリマーの機械的強度を高めることができるとともに、側鎖に配置された水酸基により、基材への密着性を向上させることができる。この結果、熱硬化性樹脂の作業性を維持しながら、高い接合強度を実現することができる。さらに、熱可塑性樹脂である場合は、熱で軟化・溶融させることによってリサイクル及びリペアが可能となり、熱硬化性樹脂における問題点であるリサイクル性及びリペア性を改善することができる。
《フェノキシ樹脂》
 フェノキシ樹脂は、ビスフェノール類と、エピクロルヒドリンより合成されるポリヒドロキシポリエーテルであり、熱可塑性を有する。フェノキシ樹脂の製造には、二価フェノール類とエピクロルヒドリンの直接反応による方法、二価フェノール類のジグリシジルエーテルと二価フェノール類の付加重合反応による方法が知られているが、本発明に用いられるフェノキシ樹脂はいずれの製法により得られるものであってもよい。二価フェノール類とエピクロルヒドリンの直接反応の場合は、二価フェノール類としては、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールS、ビフェノール、ビフェニレンジオール、フルオレンジフェニル等のフェノール類;エチレングリコール、プロピレングリコール、ジエチレングリコール等の脂肪族グリコールが挙げられる。中でも、コストや接合性、粘度、耐熱性の観点から、ビスフェノールA、ビスフェノールF、ビスフェノールSが好ましい。これらは、1種単独で用いても、2種以上を併用してもよい。
 フェノキシ樹脂は、エポキシ樹脂に類似の化学構造をもち、パラフェニレン構造とエーテル結合を主骨格とし、それらを連結した主鎖と、水酸基が側鎖に配置された構造を有する。
《熱可塑性エポキシ樹脂及びフェノキシ樹脂の物性》
 前記熱可塑性エポキシ樹脂及びフェノキシ樹脂は、GPC(ゲル・パーミエ―ション・クロマトグラフィー)測定によるポリスチレン換算の値である重量平均分子量が10,000~500,000であることが好ましく、18,000~300,000であることがより好ましく、20,000~200,000であることが更に好ましい。重量平均分子量はGPCによって検出される溶出ピーク位置から算出され、それぞれ標準ポリスチレン換算での分子量の値である。重量平均分子量がこの値の範囲であると熱可塑性と耐熱性のバランスが良く、効率よく溶融によって接合体が得られ、その耐熱性も高くなる。重量平均分子量が10,000以上であると耐熱性に優れ、500,000以下であると溶融時の粘度が低く、接合性が高くなる。
《フィルム中における樹脂成分以外の成分》
 必要に応じて、本発明の目的を阻害しない範囲で、フィルムは、樹脂成分以外の成分として、フィラーや添加剤を含有してもよく、含有しなくてもよい。
 フィラーとしては、無機フィラー及び有機フィラー(樹脂粉体)が挙げられる。
 無機フィラーとしては、例えば、球状溶融シリカ、鉄などの金属の金属粉、珪砂、タルク、炭酸カルシウム、マイカ、酸性白土、珪藻土、カオリン、石英、酸化チタン、シリカ、フェノール樹脂マイクロバルーン、ガラスバルーン等が挙げられる。
 フィルムがフィラーを含有する場合、フィルムの全量100体積%中におけるフィラーの含有量は、50体積%以下であることが好ましく、30体積%以下であることがより好ましく、20体積%以下であることが更に好ましく、10体積%以下であることが最も好ましい。なお、フィラーの体積は、フィルム中に含有されるフィラーの重量をフィラーの真比重で除して求めることができる。
 フィルムの全量100体積%中における樹脂成分の含有量は、好ましくは10体積%以上、より好ましくは20体積%以上、更に好ましくは30体積%以上、より更に好ましくは50体積%以上、一態様では80体積%以上、別の態様では90体積%以上、別の態様では99体積%以上である。
 添加剤としては、例えば、消泡剤、シランカップリング剤等のカップリング剤、顔料等を挙げることができ、これらは1種又は2種以上含有していてもよい。
 フィルム中における添加剤の含有量は、好ましくは10質量%以下、より好ましくは5質量%以下、更に好ましくは1質量%以下である。
 フィルム中における樹脂成分の含有量は、好ましく10質量%以上、より好ましくは20質量%以上、更に好ましくは30質量%以上、より更に好ましくは50質量%以上、一態様では80質量%以上、別の態様では90質量%以上、別の態様では99質量%以上である。
《フィルムの形態》
 フィルムは、厚さが10μm~3mmのシート状物である。
 フィルムの厚さは、短い接合プロセス時間で接合性に優れた接合体を得る観点から、1mm以下であることが好ましく、0.5mm以下であることがより好ましく、0.3mm以下であることが更に好ましく、0.2mm以下であることがより更に好ましく、0.1mm以下であることが最も好ましい。
 そのような範囲のサイズであると、基材Aと基材Bの間に挟み、加熱や加圧等をすることによって、フィルムが効率よく接合面に広がることができ、高い接合力が得られる。
 当該フィルムは単層であってもよく複数層からなる積層体であってもよいが、製造容易性の観点及び接合力の向上の観点から単層であることが好ましい。
 また、フィルムは、接合力やその耐熱性を阻害しない範囲で、タック性があってもよい。
《フィルムの製造方法》
 フィルムの製造方法は特に限定されないが、例えば、2官能エポキシ化合物のモノマーもしくはオリゴマーを加熱して重合させることで樹脂組成物を得、得られた樹脂組成物に必要に応じて溶媒を加え、離型フィルム等に塗布し、硬化・乾燥、必要に応じて加圧することによりフィルムを得てもよい。
<第2の接合工程>
 第2の接合工程は、前記基材Aに接合した前記フィルムを樹脂Bに接面させた状態で、前記フィルムを溶融後固化させることにより、前記基材Aと前記樹脂Bを接合する工程である。
 高い接合力を得る観点から、第2の接合工程では、樹脂B及びフィルムの少なくとも何れかの融点以上の温度で加熱してフィルムを溶融後固化させることが好ましい。樹脂B及びフィルムの少なくとも何れかの融点以上の温度で加熱することで、フィルムと基材が相溶化し、より強い接合力が得られ易い。
 前記フィルムを溶融させる方法としては、接触加熱、温風加熱、熱プレス、赤外線加熱、熱板溶着、超音波溶着、振動溶着及び高周波誘導溶着からなる群より選ばれる少なくとも1種の方法が挙げられる。中でも、熱プレス、超音波溶着、及び高周波誘導溶着が好ましい。
 熱プレスを行う場合の条件については特に限定はない。
 例えば、温度は、100~400℃が好ましく、120~350℃がより好ましく、150℃~300℃が更に好ましい。100~400℃で加熱することにより、前記フィルムが効率よく変形、溶融し接合面に有効に濡れ広がるため高い接合力が得られる。
 前記熱プレスにおける加圧力は0.01~20MPaが好ましく、0.1~10MPaがより好ましく、0.2~5MPaが更に好ましい。0.01~20MPaで加圧することにより、前記フィルムが効率よく変形し接合面に有効に濡れ広がるため高い接合力が得られる。樹脂Bが熱可塑性樹脂の場合、0.01~20MPaで加圧することにより、フィルムと基材を相溶化させ、強い接合力を得ることができる。
 超音波溶着を行う場合の条件に付いては特に限定は無い。
 例えば、発信周波数は、好ましくは10~70kHz、より好ましくは15~40kHzである。
 超音波印可時間は、接着性と外観性の観点から、好ましくは0.1~3秒、より好ましくは0.2~2秒である。
 超音波印可時に基材Aと樹脂Bとを加圧する場合、加圧力は0.01~20MPaが好ましく、0.1~10MPaがより好ましく、0.2~5MPaが更に好ましい。0.01~20MPaで加圧することにより、前記フィルムが効率よく変形し接着面に有効に濡れ広がるため高い接着力が得られる。
 超音波溶着を行う場合の条件に付いては特に限定は無い。
 例えば、発振周波数は、1~1500kHzの範囲が挙げられる。基材A及び樹脂Bの大きさや種類に応じて、適切な発振周波数に調整すればよい。
 出力は、100~5000Wの範囲が挙げられる。
 発振時間は、基材A及び樹脂Bの大きさや種類に応じて調整すればよく、例えば、好ましくは1.0~10.0秒であり、より好ましくは1.5~8.0秒である。
 基材Aと樹脂Bの接合は、上述のとおり、フィルムの相変化(固体~液体~固体)を利用したものであり、化学反応を伴わないため、従来の熱硬化型のエポキシ樹脂よりも短時間で接合を完了することができる。
[接合体]
 図1に、本発明の接合体の一実施形態を示す。図1に示す接合体1は、熱可塑性エポキシ樹脂及びフェノキシ樹脂の少なくとも何れかである非晶性熱可塑性樹脂からなるフィルムが溶融後固化した接合層2を介して、基材A3と樹脂B4が、接合一体化されたものである。本発明の接合体は、異種材の接合体でも、優れた接合強度を示す。接合強度は、接合層と基材A及び接合層と樹脂Bとの間に働く界面相互作用の強さの他に、接合層の厚さ、フィルムを構成するポリマーの分子量や化学構造、力学的特性、粘弾性的特性など数多くの因子に影響を受けるため、本発明の接合体が優れた接合強度を示す機構の詳細は明らかではないが、接合層2を構成する非晶性熱可塑性樹脂内の凝集力が低いことと、樹脂内に水酸基が存在し、接合層と基材A、及び、接合層と樹脂Bの界面で水素結合やファンデルワールス力などの化学結合や分子間力を形成することが主な要因であると推測される。しかしながら、前記接合体において、前記接合体の前記界面の状態又は特性はナノメーターレベル以下のごく薄い化学構造であり、分析が困難であり、それを特定することにより、フィルムの使用によらないものと区別すべく表現することは、現時点の技術において、不可能又は非実際的である。
 接合層が熱可塑性樹脂からなる本発明の接合体は、リサイクル性及びリペア性に優れ、接合体を加熱することで、容易に基材Aと樹脂Bに解体することができる。
(基材A)
 基材Aは、金属又は無機物の少なくとも何れかである。
 金属は、特に限定されるものではなく、例えば、アルミニウム、鉄、銅、マグネシウム、チタン等が挙げられる。
 なお、本実施形態において、「鉄」の語は、鉄及びその合金を含む意味で用いられる。鉄の合金としては、例えば、鋼、ステンレス等が挙げられる。同様に、銅、アルミニウム、マグネシウム、チタンも、これらの単体及びその合金を含む意味で用いるものとする。
 無機物は、特に限定されるものではなく、例えば、ガラス、セラミック、カーボン成形体等が挙げられる。
 前記ガラスとしては、例えば、一般的なガラスの他、耐熱ガラス、防火ガラス、耐火ガラス、スマートフォンの保護等に用いられる化学強化ガラス等であってもよい。具体的には、ソーダ石灰ガラス、鉛ガラス、ホウケイ酸ガラス、石英ガラス等が挙げられる。
 前記セラミックスとしては、例えば、半導体、自動車、産業用機器等に用いられるファインセラミックス等が挙げられる。具体的には、アルミナ、ジルコニア、チタン酸バリウム等の酸化物系セラミックス;ハイドロキシアパタイト等の水酸化物系セラミックス、炭化ケイ素等の炭化物系セラミックス;窒化ケイ素等の窒化物系セラミックス等が挙げられる。
 基材Aは、耐熱性や強度の観点から、金属からなることが好ましい。
(樹脂B)
 樹脂Bは、特に限定されるものではないが、熱可塑性樹脂、熱硬化性樹脂、及び繊維強化プラスチック(FRP)からなる群から選択される1種からなることが好ましく、接合力やコスト、成形の容易性の観点から、熱可塑性樹脂からなることがより好ましい。
 熱可塑性樹脂としては、例えば、ポリオレフィン及びその酸変性物、ポリスチレン、ポリメチルメタクリレート、AS樹脂、ABS樹脂、ポリエチレンテレフタレートやポリブチレンテレフタレート等の熱可塑性芳香族ポリエステル、ポリカーボネート、ポリイミド、ポリアミド、ポリアミドイミド、ポリエーテルイミド、ポリエーテルスルホン、ポリフェニレンエーテル及びその変性物、ポリフェニレンスルフィド、ポリオキシメチレン、ポリアリレート、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルケトンケトン、熱可塑性エポキシやそれらの繊維強化材等が挙げられ、また、熱硬化性樹脂としては、例えば、エポキシ樹脂、ビニルエステル樹脂、フェノール樹脂、ウレタン樹脂等から選ばれる1種以上を使用することができる。耐熱性、接合力やコスト、成形の容易性等の観点から、ポリカーボネート、ガラス繊維強化ポリアミド、ガラス繊維強化ポリブチレンテレフタレート、ガラス繊維強化ポリフェニレンサルファイドより選ばれる少なくとも1種からなることが好ましい。
 樹脂Bが融点を有する場合、融点は100~400℃であることが好ましく、150℃~350℃であることがより好ましく、180℃~300℃であることが更に好ましい。100~400℃の範囲に融点があることにより、前記フィルムが加熱により効率よく変形及び溶融し、接合面に有効に濡れ広がるため高い接合力が得られる。
 基材Aと樹脂Bの組み合わせは特に限定されない。
基材A及びBの形状は特に限定されるものではないが、それぞれの厚さは0.1mm以上であることが好ましく、0.3mm以上であることがより好ましく、0.5mm以上であることがさらに好ましく、1mm以上であることが特に好ましい。0.1mm以上であると強固な接合体が得られる。また、基材A及びBのそれぞれの厚さは10mm以下であることが好ましく、8mm以下であることがより好ましく、6mm以下であることがさらに好ましく、4mm以下であることが特に好ましい。10mm以下であると効率的に加熱し易く製造が容易となる。
(前処理)
 前記基材A、及び前記樹脂Bは、いずれも表面の汚染物の除去、及び/又は、アンカー効果を目的として、表面に前処理を施すことが好ましい。
 前処理としては、例えば、脱脂処理、UVオゾン処理、ブラスト処理、研磨処理、プラズマ処理、コロナ放電処理、レーザー処理、エッチング処理、フレーム処理等が挙げられる。
 前処理としては、基材の表面を洗浄する前処理又は表面に凹凸を付ける前処理が好ましい。具体的には、基材がアルミニウム、ガラス、セラミック、又は鉄からなる場合、脱脂処理、UVオゾン処理、ブラスト処理、研磨処理、プラズマ処理、エッチング処理からなる群より選ばれる少なくとも1種が好ましく、基材がFRP、ポリプロピレン、ポリカーボネート、ポリメチルメタクリレート、ポリエーテルイミド、ポリアミド、又はポリブチレンテレフタレートからなる場合、脱脂処理、UVオゾン処理、ブラスト処理、研磨処理、プラズマ処理及びコロナ放電処理からなる群より選ばれる少なくとも1種が好ましい。
 前処理は、1種のみであってもよく、2種以上を施してもよい。これらの前処理の具体的な方法としては、公知の方法を用いることができる。
 通常、FRPの表面には樹脂や補強材に由来する水酸基が存在し、ガラスやセラミック表面には元々水酸基が存在すると考えられるが、前記の前処理によって新たに水酸基が生成され、基材の表面の水酸基を増やすことができる。
 前記脱脂処理とは、基材表面の油脂などの汚れをアセトン、トルエン等の有機溶剤等で溶かして除去する方法である。
 前記UVオゾン処理とは、低圧水銀ランプから発光する短波長の紫外線の持つエネルギーとそれにより発生するオゾン(O)の力で、表面を洗浄したり改質する方法である。ガラスの場合、表面の有機系不純物の除去を行う表面洗浄法の一つとなる。一般に、低圧水銀ランプを用いた洗浄表面改質装置は、「UVオゾンクリーナー」、「UV洗浄装置」、「紫外線表面改質装置」などと呼ばれている。
 前記ブラスト処理としては、例えば、ウェットブラスト処理、ショットブラスト処理、サンドブラスト処理等が挙げられる。中でも、ウェットブラスト処理は、ドライブラスト処理と比べより緻密な面が得られるため、好ましい。
 前記研磨処理としては、例えば、研磨布を用いたバフ研磨や、研磨紙(サンドペーパー)を用いたロール研磨、電解研磨等が挙げられる。
 前記プラズマ処理とは、高圧電源とロッドでプラズマビームを作り素材表面にぶつけて分子を励起させて官能状態とするもので、素材表面に水酸基や極性基を付与できる大気圧プラズマ処理方法等が挙げられる。
 前記コロナ放電処理とは、高分子フィルムの表面改質に施される方法が挙げられ、電極から放出された電子が高分子表面層の高分子主鎖や側鎖を切断し発生したラジカルを起点に表面に水酸基や極性基を発生させる方法である。
 前記レーザー処理とは、レーザー照射によって基材の表面のみを急速に加熱、冷却して、表面の特性を改善する技術で表面の粗面化に有効な方法である。公知のレーザー処理技術を使用することができる。
 前記エッチング処理としては、例えば、アルカリ法、リン酸-硫酸法、フッ化物法、クロム酸-硫酸法、塩鉄法等の化学的エッチング処理、また、電解エッチング法等の電気化学的エッチング処理等が挙げられる。
 前記フレーム処理とは、燃焼ガスと空気の混合ガスを燃やすことで空気中の酸素をプラズマ化させ、酸素プラズマを処理対象物に付与することで表面の親水化を図る方法である。公知のフレーム処理技術を使用することができる。
 次に、本発明の具体的実施例について説明するが、本発明はこれら実施例のものに特に限定されるものではない。
[フィルムの製造]
<製造例1>
 撹拌機、環流冷却器、ガス導入管、及び温度計を付した反応装置に、jER(登録商標)1007(三菱ケミカル株式会社製、ビスフェノールA型エポキシ樹脂、重量平均分子量約10,000)1.0等量(203g)、ビスフェノールS1.0等量(12.5g)、トリフェニルホスフィン2.4g、及びメチルエチルケトン1,000gを仕込み、窒素雰囲気下で撹拌しながら100℃まで昇温した。目視で溶解したことを確認し、40℃まで冷却して固形分約20質量%の熱可塑性エポキシ樹脂組成物を得た。これから溶剤を除去して、固形成分として熱可塑性エポキシ樹脂を得た。プレス機の上板及び下板に非粘着フッ素樹脂フィルム(ニトフロン(登録商標)No.900UL、日東電工株式会社製)を設置し、下板の非粘着フッ素樹脂フィルム上に上記熱可塑性エポキシ樹脂を配置した後、前記プレス機を160℃に加熱し、前記熱可塑組成エポキシ樹脂を2時間加熱圧縮して固形分100質量%、長さ32~33mm、厚さ100μmのフィルムP-1を得た。得られたフィルムP-1の重量平均分子量、エポキシ当量、及び融解熱の測定結果は、表1に示すとおりである。なお、重量平均分子量の測定については、得られたフィルムをテトラヒドロフランに溶解させ測定した。
 また、後述する他の製造例により得られたフィルム及び接合剤についても同様の測定を行い、その結果も表1及び2に示す。
<製造例2>
 撹拌機、環流冷却器、ガス導入管、及び温度計を付した反応装置に、エノトート(登録商標)YP-50S(日鉄ケミカル&マテリアル株式会社製、フェノキシ樹脂、重量平均分子量約50,000)20g、シクロヘキサノン80gを仕込み、撹拌しながら60℃まで昇温し、目視で溶解したことを確認し、40℃まで冷却して固形分20質量%の樹脂組成物を得た。これから溶剤を除去して固形分100質量%、厚さ100μmのフィルムP-2を得た。
<製造例3>
 前記フィルムP-2と結晶性エポキシ樹脂YSLV-80XY(日鉄ケミカル&マテリアル株式会社製)をそれぞれ粉砕して98対2の質量比で混合し、万力でプレスし、50℃に加熱することで固形分100質量%、厚さ100μmのフィルムP-3を得た。
<製造例4>
 前記フィルムP-2と結晶性エポキシ樹脂YSLV-80XY(日鉄ケミカル&マテリアル株式会社製)をそれぞれ粉砕して94対6の質量比で混合し、万力でプレスし、50℃に加熱することで固形分100質量%、厚さ100μmのフィルムP-4を得た。
<製造例5>
 前記フィルムP-2と結晶性エポキシ樹脂YSLV-80XY(日鉄ケミカル&マテリアル株式会社製)をそれぞれ粉砕して89対11の質量比で混合し、万力でプレスし、50℃に加熱することで固形分100質量%、厚さ100μmのフィルムP-5を得た。
<比較製造例1>
 熱硬化性液状エポキシ接着剤E-250(コニシ株式会社製、ビスフェノール型エポキシ樹脂とアミン硬化剤の2液タイプ)の2液を混合し、離型フィルムに塗布し、100℃で1時間硬化させたあと、冷却し、離型フィルムから剥がして、厚さ100μmのフィルムQ-1を得た。
 フィルムQ-1においては、DSC測定で融解熱ピークは検出されず、エポキシ当量及び重量平均分子量は溶媒に不溶の為測定できなかった。
<比較製造例2>
 非晶性のポリカーボネートフィルム(ユーピロン(登録商標)FE2000、三菱エンジニアリングプラスチックス株式会社製、厚さ100μm)をカットして、フィルムQ-2を得た。
 フィルムQ-2においては、DSC測定で融解熱ピークは検出されず、エポキシ当量及び重量平均分子量は溶媒に不溶の為測定できなかった。
<比較製造例3>
 結晶性エポキシ樹脂YSLV-80XY(日鉄ケミカル&マテリアル株式会社製)を、室温でプレスすることでシートを得て、その後、カットして、厚さ100μmのフィルムQ-3を得た。
 得られたフィルムQ-3の重量平均分子量、エポキシ当量、及び融解熱の測定結果は、表2に示すとおりである。
<比較製造例4>
 熱硬化性液状エポキシ接着剤E-250(コニシ株式会社製、ビスフェノール型エポキシ樹脂とアミン硬化剤の2液タイプ)を、そのまま液状の接合剤Q-4とした。
 接合剤Q-4においては、DSC測定で融解熱ピークは検出されず、エポキシ当量及び重量平均分子量は溶媒に不溶の為測定できなかった。
<比較製造例5>
 フラスコに、jER(登録商標)1007(三菱ケミカル株式会社製、ビスフェノールA型エポキシ樹脂、重量平均分子量約10,000)1.0等量(203g)、ビスフェノールS1.0等量(12.5g)、トリフェニルホスフィン2.4g、及びメチルエチルケトン1,000gを仕込み、常温で撹拌することで固形分約20質量%の液状の接合剤Q-5を得た。
 なお、接合剤Q-5においては、後述の比較例5において樹脂Aの表面に形成した熱可塑性エポキシ樹脂重合物を用いて、重量平均分子量、エポキシ当量、融解熱、及び融点を測定した。
<比較製造例6>
 撹拌機、環流冷却器、ガス導入管、及び温度計を付した反応装置に、フエノトート(登録商標)YP-50S(日鉄ケミカル&マテリアル株式会社製、フェノキシ樹脂、重量平均分子量約50,000)20g、シクロヘキサノン80gを仕込み、撹拌しながら60℃まで昇温し、目視で溶解したことを確認し、40℃まで冷却して固形分20質量%の液状の接合剤Q-6を得た。
 なお、接合剤Q-6においては、後述の比較例6において樹脂Aの表面に形成したフェノキシ樹脂コーティング層を用いて、重量平均分子量、エポキシ当量、融解熱、及び融点を測定した。
 接合剤Q-6においては、DSC測定で融解熱ピークは検出されず、エポキシ当量は検出限界以上であった。
<比較製造例7>
 結晶性のポリアミド系ホットメルト接着剤フィルムNT-120(日本マタイ株式会社製、厚さ100μm)をカットして、厚さ100μmのフィルムQ-7を得た。
 フィルムQ-7においては、溶媒に不溶の為エポキシ当量及び重量平均分子量は測定できなかった。融解熱の測定結果は、表3に示すとおりである。
<評価方法>
 フィルム及び接合剤の重量平均分子量、融解熱及びエポキシ当量を、それぞれ以下のように求めた。また、フィルムの厚さを、以下の方法により測定した。
(重量平均分子量)
 フィルム及び接合剤をテトラヒドロフランに溶解し、Prominence 501(昭和サイエンス株式会社製、Detector:Shodex(登録商標) RI-501(昭和電工株式会社製))を用い、以下の条件で測定した。
 カラム:昭和電工株式会社製 LF-804×2本
 カラム温度:40℃
 試料:樹脂の0.4質量%テトラヒドロフラン溶液
 流量:1ml/分
 溶離液:テトラヒドロフラン
 較正法:標準ポリスチレンによる換算
(融解熱及び融点)
 フィルム及び接合剤を2~10mg秤量し、アルミ製パンに入れ、DSC(株式会社リガク製DSC8231)で23℃から10℃/minで200℃まで昇温し、DSCカーブを得た。そのDSCカーブの融解時の吸熱ピークの面積と前記秤量値から融解熱を算出した。また、得られたDSCカーブの吸熱ピーク温度を融点とした。なお、吸熱ピークが得られない場合や、融解熱が15J/g以下である場合は、ガラス転移点に70℃を足した温度を融点とした。ガラス転移点は、DSCで200℃まで昇温後、40℃以下に冷却し、さらに200℃まで加熱した2サイクル目のDSCカーブの降下開始時の温度とした。なお、加熱により溶融しない熱硬化性樹脂については、融点は無しとした。
(エポキシ当量)
 JIS K-7236:2001で測定し、樹脂固形分としての値に換算した。また、反応を伴わない単純混合物の場合はそれぞれのエポキシ当量と含有量から算出した。
(フィルムの厚さ)
 フィルムの厚さは、23℃、湿度50%の雰囲気中に24時間放置後、株式会社ミツトヨ製のMDC-25MXを用いて測定した。
[接合体の製造]
<基材A>
 基材Aとして、以下の基材を使用した。
《鉄》
 SPCC-SDの表面をブラスト処理し、幅18mm、長さ45mm、厚さ1.6mmの試験片を得た。
《アルミニウム》
 A6061-T6の表面をブラスト処理し、幅18mm、長さ45mm、厚さ1.6mmの試験片を得た。
<樹脂B>
 樹脂Bとして、以下の基材を使用した。
《PA6(6-ナイロン)》
 東レ株式会社製アミランCM1011G-30を射出成形して、幅10mm、長さ45mm、厚さ3mmの試験片(軟化点215℃、融点225℃)を得た。表面処理はせずに使用した。
 超音波溶着の際に効率よく加熱をするために断面が正三角形の高さ0.5mmの線状の突起を端から2.5mmの場所に作成した。
《PBT(ポリブチレンテレフタレート)》
 SABIC製420-1001を射出成形して、幅18m、長さ45mm、厚さ1.5mmの試験片(軟化点:207℃、融点225℃)を得た。表面処理はせずに使用した。超音波溶着機を用いた接合(第2の接合工程)際に効率よく加熱をするために、断面が正三角形の高さ0.5mmの線状の突起を端から2.5mmの場所に作成した。
《PC(ポリカーボネート)》
 SABIC製121Rを射出成形して、幅10mm、長さ45mm、厚さ3mmの試験片(軟化点:129℃、融点220℃)を得た。表面処理はせずに使用した。超音波溶着機を用いた接合(第2の接合工程)の際に効率よく加熱をするために、断面が正三角形の高さ0.5mmの線状の突起を端から2.5mmの場所に作成した。
<実施例1>
 基材Aとして前記アルミニウム基材の上に、10×15mmの大きさに裁断した前記フィルムP-1を配置し、フィルムP-1の温度が200℃となるように加熱し、フィルムP-1を溶融させた後、常温にて1分放冷して、フィルムP-1を固化し、基材AとフィルムP-1を接合した。
 続いて、基材Aに接合したフィルムP-1に樹脂Bとして前記PC基材を接面させた。これらの基材同士の重なりは幅10mm、奥行き5mmとした。前記フィルムP-1は前記基材同士の重なり領域をすべて覆うように配置した。つまり、前記基材Aと樹脂B同士は、直接触れず、その間に前記フィルムP-1が介在した状態として、樹脂BとフィルムP-1は未接合の積層体を準備した。
 超音波溶着機(精電舎電子工業株式会社製、発振器JII930S、プレスJIIP30S)を用いて超音波を印可することにより、加熱・加圧により基材Aと基材Bを接合した。沈み込み量は0.6mmにし、超音波印可時間は1秒以内とした。なお、前記沈み込みが完了した時点で終了とし、1秒未満であっても終了した。その後の保持時間は1秒とした。加圧力は110N(圧力2.2MPa)、発振周波数は28.5kHzを用いた。このようにして、接合体を作製した。
 また、基材Aとして前記アルミニウム及び基材Bとして前記PA6を用いた場合、基材Aとして前記アルミニウム及び基材Bとして前記PBTを用いた場合、並びに基材Aとして前記鉄及び基材Bとして前記PCを用いた場合についても、上記と同様の操作にて接合体を得た。
 また、オープンタイム評価用として、前記基材Aにフィルムを接合した状態で3日間静置した後、基材Aに接合したフィルムに樹脂Bを接面させ、基材Aと樹脂Bを接合したこと以外は同様にして接合体を作製した。
<実施例2~5、比較例1~3>
 各材料を表1及び表2のとおりとすること以外は実施例1と同様にして、接合体を作製した。
<比較例4>
 熱硬化性液状エポキシ接着剤E-250(コニシ株式会社製、ビスフェノール型エポキシ樹脂とアミン硬化剤の2液タイプ)の2液を混合した接合剤Q-4を、基材Aとして前記アルミニウム基材及び樹脂Bとして前記PC基材の表面の各々に、縦10mm×横18mmの領域にわたって塗布し、1分以内に貼り合わせをした。その後、クリップにて固定した状態で100℃のオーブン内に1時間静置することで接合剤Q-4を硬化させた。その後、室温まで冷却した。このようにして、接合体を作製した。接着剤層の厚みは0.1mmであった。
 また、オープンタイム評価用として、基材Aと樹脂Bの各々に接合剤Q-4を塗布し、3日間静置した後、基材Aと樹脂Bを重ね合わせクリップにて固定した状態で100℃のオーブン内に1時間静置したこと以外は上記と同様にして、接合体を作製した。
<比較例5>
 基材Aとして前記アルミニウム基材の上に液状接合剤Q-5をバーコート塗布し、室温で30分乾燥させた後に、160℃のオーブンに2時間静置することで、縦20mm×横18mm×厚さ50μmの固形の熱可塑性エポキシ樹脂重合物コーティング層を基材Aの表面上に形成した。
 続いて、基材Aと樹脂Bとして前記PC基材とを重ね合わせた後、実施例1と同様にして超音波溶着で接合体を得た。
 また、オープンタイム評価用として、上記熱可塑性エポキシ樹脂重合物コーティング層を表面に形成した基材Aを3日間静置した後、当該基材Aと樹脂Bを重ねたこと以外は上記と同様にして、接合体を作製した。
<比較例6>
 基材Aとして前記アルミニウム基材の上に、前記液状樹脂組成物をバーコート塗布し、70℃のオーブンに30分静置することで、20mm×横18mm×厚さ50μmのフェノキシ樹脂コーティング層を基材Aの表面上に形成した。
 基材A上のコーティング層と樹脂Bとして前記PC基材とを重ね合わせたこと以外は比較例5と同様にして、接合体を作製した。
 また、オープンタイム評価用として、上記フェノキシ樹脂コーティング層を表面に形成した基材Aを3日間静置した後、当該基材Aと樹脂Bとを重ね合わせこと以外は上記と同様にして、接合体を作製した。
<比較例7>
 フィルムとしてフィルムQ-7を用いたこと以外は実施例1と同様にして、接合体(オープンタイム評価用接合体含む)を作製した。
<比較例8~11>
 基材Aとフィルムを接合せずに、基材Aと、フィルムと、樹脂Bをこの順で積層して積層体を準備したこと以外は実施例1と同様にして、接合体(オープンタイム評価用接合体含む)を作製した。
<接合体評価方法>
 得られた接合体について、以下の評価を行った。その評価結果を表1~3に示す。
(せん断接合力)
 実施例及び比較例で得られた接合体を測定温度(23℃もしくは80℃)で30分以上静置後、ISO19095に準拠して、引張試験機(万能試験機オートグラフ「AG-X plus」(株式会社島津製作所製);ロードセル10kN、引張速度10mm/min)にて、23℃及び80℃雰囲気での引張りせん断接合強度試験を行い、接合強度を測定した。
(接合プロセス時間)
 接合プロセス時間は、接合体を構成する少なくとも何れかの基材と接合剤の接触時を始点、接合体の作製の完了時を終点として、始点から終点までの時間を測定した。
(リサイクル性)
 接合体を200℃のホットプレートに置いて1分加熱した後、1N以下の力で容易に剥離できるかで判断した。剥離できれば良好(A)で、剥離できなければ不適(B)とした。
(リペア性)
 実施例及び比較例によって作製された接合体の各々について、前記引張りせん断強度試験の23℃での試験によって接合が解除された基材A及び樹脂Bを用いて、各実施例及び各比較例と同様の操作により再度接合体を作製することにより、リペア接合体を得た。
 当該リペア接合体の23℃のせん断接合力を前記試験方法と同様に測定し、1回目のせん断接合力の80%以上であれば良好(A)、80%未満ならば不適(B)とした。
(オープンタイム評価)
 オープンタイム評価用接合体を用いて、前記引張りせん断接合強度試験を23℃で実施した。前記実施例及び比較例の方法で作成した試験片と比べてせん断接合力が80%以上であれば良好(A)で、80%未満であれば不適(B)とした。オープンタイム評価が良好(A)とは、オープンタイムが長く、利便性に優れることを意味する。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 本発明の方製造法で得た接合体は、例えば、ドアサイドパネル、ボンネットルーフ、テールゲート、ステアリングハンガー、Aピラー、Bピラー、Cピラー、Dピラー、クラッシュボックス、パワーコントロールユニット(PCU)ハウジング、電動コンプレッサー部材(内壁部、吸入ポート部、エキゾーストコントロールバルブ(ECV)挿入部、マウントボス部等)、リチウムイオン電池(LIB)スペーサー、電池ケース、LEDヘッドランプ等の自動車用部品や、スマートフォン、ノートパソコン、タブレットパソコン、スマートウォッチ、大型液晶テレビ(LCD-TV)、屋外LED照明の構造体等として用いられるが、特にこれら例示の用途に限定されるものではない。
  1  接合体
  2  接合層
  3  基材A
  4  樹脂B

 

Claims (7)

  1.  基材Aと、熱可塑性エポキシ樹脂及びフェノキシ樹脂の少なくとも何れかである非晶性熱可塑性樹脂を主成分とするフィルムと、樹脂Bを、この順で接合してなる接合体の製造方法であって、
     前記フィルムを前記基材Aに接面させた状態で、前記フィルムを溶融後固化させることにより、前記基材Aと前記フィルムを接合する第1の接合工程と、
     前記基材Aに接合した前記フィルムを樹脂Bに接面させた状態で、前記フィルムを溶融後固化させることにより、前記基材Aと前記樹脂Bを接合する第2の接合工程を有し、
     前記基材Aは、金属及び無機物の少なくとも何れかであり、
     前記非晶性熱可塑性樹脂のエポキシ当量が1,600g/eq.以上もしくは前記非晶性熱可塑性樹脂がエポキシ基を含まず、かつ、前記非晶性熱可塑性樹脂の融解熱が15J/g以下である、接合体の製造方法。
  2.  前記樹脂Bが、熱可塑性樹脂からなる、請求項1に記載の接合体の製造方法。
  3.  前記基材Aが、金属からなる、請求項1又は2に記載の接合体の製造方法。
  4.  前記第1の接合工程において、前記フィルムを、100~300℃に加熱して溶融後固化させる、請求項1~3のいずれか1項に記載の接合体の製造方法。
  5.  前記第2の接合工程において、前記フィルムを、接触加熱、温風加熱、熱プレス、赤外線加熱、熱板溶着、超音波溶着、振動溶着及び高周波誘導溶着からなる群より選ばれる少なくとも1種により溶融後固化させる、請求項1~4のいずれか1項に記載の接合体の製造方法。
  6.  前記第2の接合工程において、前記樹脂B及び前記フィルムの少なくとも何れかの融点以上の温度で加熱して前記フィルムを溶融後固化させる、請求項1~5のいずれか1項に記載の接合体の製造方法。
  7.  前記第2の接合工程において、加熱温度100~400℃、及び0.01~20MPaの加圧下で前記フィルムを溶融後固化させる、請求項1~6のいずれか1項に記載の接合体の製造方法。
PCT/JP2022/047241 2021-12-27 2022-12-21 接合体の製造方法 WO2023127667A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP22915890.2A EP4372062A1 (en) 2021-12-27 2022-12-21 Method for manufacturing joined body
JP2023541794A JPWO2023127667A1 (ja) 2021-12-27 2022-12-21
CN202280051305.8A CN117693567A (zh) 2021-12-27 2022-12-21 接合体的制造方法
KR1020237045001A KR20240015099A (ko) 2021-12-27 2022-12-21 접합체의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021213476 2021-12-27
JP2021-213476 2021-12-27

Publications (1)

Publication Number Publication Date
WO2023127667A1 true WO2023127667A1 (ja) 2023-07-06

Family

ID=86999045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/047241 WO2023127667A1 (ja) 2021-12-27 2022-12-21 接合体の製造方法

Country Status (6)

Country Link
EP (1) EP4372062A1 (ja)
JP (1) JPWO2023127667A1 (ja)
KR (1) KR20240015099A (ja)
CN (1) CN117693567A (ja)
TW (1) TW202335868A (ja)
WO (1) WO2023127667A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5689520A (en) * 1979-12-21 1981-07-20 Unitika Ltd Bonding method of metal plate
JP2001019743A (ja) * 1999-07-05 2001-01-23 Nippon Kayaku Co Ltd エポキシ樹脂、これを含むエポキシ樹脂溶液、エポキシ樹脂組成物及びエポキシ樹脂の製造法
JP2011126942A (ja) * 2009-12-15 2011-06-30 Toyota Motor Corp ホットメルト型接着剤及びrtm成形方法
JP2017052907A (ja) * 2015-09-11 2017-03-16 日立化成株式会社 フェノキシ樹脂組成物及びそれを用いた接着剤組成物
WO2018124215A1 (ja) * 2016-12-28 2018-07-05 新日鉄住金化学株式会社 金属-繊維強化樹脂材料複合体、その製造方法及び接着シート
WO2022209116A1 (ja) * 2021-03-31 2022-10-06 日鉄ケミカル&マテリアル株式会社 接着用樹脂組成物、接着フィルム及び接着構造体

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5512147A (en) * 1978-07-11 1980-01-28 Nitto Electric Ind Co Ltd Bonding of plate
JP2525683Y2 (ja) * 1989-02-28 1997-02-12 ティーディーケイ株式会社 ホットメルト接着剤転写シ−トの転写装置
JPH06234183A (ja) * 1992-09-03 1994-08-23 Hitachi Kasei Polymer Kk 自動車内装部品の製造方法
JP3678258B2 (ja) 1996-07-08 2005-08-03 三菱瓦斯化学株式会社 プリプレグ及び積層板
JPH10168417A (ja) 1996-12-11 1998-06-23 Sekisui Chem Co Ltd ホットメルト接着剤
JP7195055B2 (ja) 2018-03-15 2022-12-23 株式会社Adeka 硬化性樹脂組成物およびこれを用いた接着剤
JPWO2022014503A1 (ja) * 2020-07-13 2022-01-20
US20240117228A1 (en) * 2021-02-10 2024-04-11 Resonac Corporation Welding film and joined body

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5689520A (en) * 1979-12-21 1981-07-20 Unitika Ltd Bonding method of metal plate
JP2001019743A (ja) * 1999-07-05 2001-01-23 Nippon Kayaku Co Ltd エポキシ樹脂、これを含むエポキシ樹脂溶液、エポキシ樹脂組成物及びエポキシ樹脂の製造法
JP2011126942A (ja) * 2009-12-15 2011-06-30 Toyota Motor Corp ホットメルト型接着剤及びrtm成形方法
JP2017052907A (ja) * 2015-09-11 2017-03-16 日立化成株式会社 フェノキシ樹脂組成物及びそれを用いた接着剤組成物
WO2018124215A1 (ja) * 2016-12-28 2018-07-05 新日鉄住金化学株式会社 金属-繊維強化樹脂材料複合体、その製造方法及び接着シート
WO2022209116A1 (ja) * 2021-03-31 2022-10-06 日鉄ケミカル&マテリアル株式会社 接着用樹脂組成物、接着フィルム及び接着構造体

Also Published As

Publication number Publication date
KR20240015099A (ko) 2024-02-02
JPWO2023127667A1 (ja) 2023-07-06
TW202335868A (zh) 2023-09-16
CN117693567A (zh) 2024-03-12
EP4372062A1 (en) 2024-05-22

Similar Documents

Publication Publication Date Title
WO2022172863A1 (ja) 溶着フィルム及び接合体
JP5505776B2 (ja) ホットメルト型接着剤及びrtm成形方法
WO2023127667A1 (ja) 接合体の製造方法
WO2023127668A1 (ja) 接合体の製造方法
WO2023127666A1 (ja) 接合体の製造方法
TWI835487B (zh) 接合體之製造方法
WO2022270613A1 (ja) 接合体の製造方法
JP7207510B2 (ja) 金属―熱可塑性繊維強化樹脂材料複合部材の加工方法
JP7491480B2 (ja) 接合体の製造方法及び基材の製造方法
JP7485227B1 (ja) 接合体の製造方法、接合体、及び電気電子部品
JP7485005B1 (ja) 接合体の製造方法、接合体、及び電気電子部品
JP2023097068A (ja) 電池ケースのトップカバーの製造方法
JP2023096713A (ja) 車載カメラの製造方法
JP7485170B1 (ja) 接合体の製造方法及び電気電子部品
JP2023096624A (ja) 車載用ecuの製造方法
JP2023096903A (ja) 光電センサーの製造方法
JP2023096973A (ja) ルーフ用クロスメンバの製造方法、及びルーフ構造体の製造方法
JP2023097194A (ja) 自動車用ドアの製造方法
JP2023096956A (ja) 自動車の車体用ピラーの製造方法
JP2023096752A (ja) 車載モーターの製造方法、及び車載モーターを含む電動コンプレッサの製造方法
JP2023097088A (ja) 車両用ステアリングハンガーの製造方法
JP2023097184A (ja) レーダー装置の製造方法
JP2023097104A (ja) 車両用サイドステップの製造方法
WO2024042878A1 (ja) 金属材の連結体及び金属材の連結方法
JP2023097163A (ja) バンパーフェイシアの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023541794

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22915890

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237045001

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237045001

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 202280051305.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022915890

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022915890

Country of ref document: EP

Effective date: 20240214