WO2023127192A1 - 固体電池及び固体電池の製造方法 - Google Patents

固体電池及び固体電池の製造方法 Download PDF

Info

Publication number
WO2023127192A1
WO2023127192A1 PCT/JP2022/031062 JP2022031062W WO2023127192A1 WO 2023127192 A1 WO2023127192 A1 WO 2023127192A1 JP 2022031062 W JP2022031062 W JP 2022031062W WO 2023127192 A1 WO2023127192 A1 WO 2023127192A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
silica
glass material
based glass
solid
Prior art date
Application number
PCT/JP2022/031062
Other languages
English (en)
French (fr)
Inventor
羊一郎 河野
明洋 三谷
Original Assignee
Fdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fdk株式会社 filed Critical Fdk株式会社
Publication of WO2023127192A1 publication Critical patent/WO2023127192A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/548Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to solid-state batteries and solid-state battery manufacturing methods.
  • a solid battery using a solid electrolyte instead of an electrolytic solution is known as an electrolyte.
  • the positive and negative electrode layers, the solid electrolyte layer provided between them, and the solid electrolyte layer covering these are first formed into a sheet or paste using a binder or the like, which is then subjected to a predetermined , followed by degreasing and firing by heat treatment to obtain a sintered body.
  • a raw material powder containing ceramic powder and a thermoplastic resin having a glass transition temperature higher than room temperature is hydrostatically pressed at a temperature lower than the glass transition temperature of the thermoplastic resin.
  • a technique of molding then heating to a temperature equal to or higher than the glass transition temperature of a thermoplastic resin, and performing warm isostatic pressure molding (Patent Document 1).
  • solid batteries a technique is known in which the surface of a battery element, in which a solid electrolyte layer is provided between positive and negative electrode layers, is covered with a protective layer containing a polymer compound. Furthermore, compared to a protective layer containing a polymer compound, the surface of the battery element is less likely to crack and fall off due to moisture and gas adsorption, and the bonding strength with the battery element is high, making it difficult to fall off due to vibration, impact, etc. , a technique of covering with a protective layer made of an insulating material other than resin, and a technique of using glass or ceramics as such an insulating material (Patent Documents 2 and 3).
  • a silica-based glass material is one of the materials from which a dense and hard sintered body can be obtained at a relatively low firing temperature. It is considered suitable as a material for covering laminates containing layers.
  • the silica-based glass material has a property of relatively high reactivity with the electrode layers included in the laminate of the battery elements. Therefore, if the silica-based glass material is used in a portion that is in direct contact with the electrode layer included in the laminate over a relatively large area, the discharge or charge/discharge characteristics of the solid battery may deteriorate due to the reaction with the electrode layer. This may lead to deterioration of battery characteristics such as mechanical strength.
  • an object of the present invention is to realize a solid-state battery that uses a silica-based glass material and exhibits excellent battery characteristics.
  • a laminate in which at least two electrode layers and at least one solid electrolyte layer are alternately laminated, and the electrode layer is positioned as the outermost layer; a silica-based glass material covering the laminate; A solid-state battery is provided that includes an insulating buffer layer provided between the electrode layer positioned as the outermost layer of the laminate and the silica-based glass material.
  • FIG. 4 is a diagram illustrating an example of a process of forming a solid electrolyte layer part; It is a figure explaining an example of the formation process of positive electrode layer parts. It is a figure explaining an example of the formation process of negative electrode layer parts. It is a figure explaining an example of the formation process of buffer layer parts. It is a figure explaining an example of the formation process of a structure. It is a figure explaining an example of the baking process of a structure, and the formation process of an external electrode. It is a figure which shows an example of the SEM image of a solid-state battery. It is an example of a charge-discharge curve diagram of a solid-state battery.
  • FIG. 2 is a diagram schematically showing an example of a microscope image of a solid-state battery;
  • Lithium-ion secondary batteries have greatly contributed to the miniaturization and weight reduction of devices, and their applications are expanding, including electric vehicles, stationary power storage equipment, mobile information terminals, IoT (Internet of Things) devices, and wearable terminals. Along with this, the required specifications are diversifying, and expectations for high energy density and safety are increasing.
  • Solid-state batteries are being developed as new batteries to meet the demand. As one of solid batteries, one using a solid electrolyte as an electrolyte is known. Since these solid-state batteries do not use flammable organic electrolytes, they can reduce the risks of leaks, combustion, explosions, and toxic gas generation, thus improving safety. is easy, and it is possible to maintain performance even under low and high temperature conditions. By using a solid electrolyte, it is possible to use an electrode material that operates at a higher voltage correspondingly, so it is expected to further improve the performance of the solid battery, such as increasing the energy density.
  • FIG. 1 is a diagram illustrating an example of a solid battery.
  • FIG. 1A schematically shows a perspective view of essential parts of an example of a solid-state battery.
  • FIG. 1(B) schematically shows an example of a cross-sectional view taken along chain line P1 in FIG. 1(A).
  • FIG. 1(C) schematically shows an example of a cross-sectional view taken along the dotted line P2 in FIG. 1(A).
  • the solid-state battery 1 shown in FIGS. 1(A) to 1(C) is an example of a chip-type battery.
  • the solid-state battery 1 includes a laminate 10 that is its battery element (solid-state battery main body) and a silica-based glass material 20 that functions as a coating film that covers the laminate 10 .
  • the solid-state battery 1 further includes a buffer layer 30 provided between the laminate 10 and the silica-based glass material 20 covering it.
  • the laminate 10 has a positive electrode layer 11 and a negative electrode layer 12, which are electrode layers of a battery element, and a solid electrolyte layer 13 provided therebetween.
  • a positive electrode layer 11 and a negative electrode layer 12 which are electrode layers of a battery element, and a solid electrolyte layer 13 provided therebetween.
  • two electrode layers, a positive electrode layer 11 and a negative electrode layer 12, and a single solid electrolyte layer 13 are alternately laminated. It is an example of a structure in which an electrode layer is positioned.
  • Solid electrolyte layer 13 contains a solid electrolyte.
  • An oxide solid electrolyte can be used for the solid electrolyte layer 13 .
  • LAGP which is a type of NASICON (Na super ionic conductor) type (also referred to as "Nasicon type") oxide solid electrolyte
  • LAGP is an oxide solid electrolyte represented by the general formula Li 1+x Al x Ge 2-x (PO 4 ) 3 (0 ⁇ x ⁇ 1).
  • the solid electrolyte layer 13 may use a sulfide solid electrolyte such as Li 2 S (lithium sulfide)—P 2 S 5 (phosphorus pentasulfide).
  • the positive electrode layer 11 contains a positive electrode active material.
  • Li 2 CoP 2 O 7 lithium cobalt pyrophosphate, also referred to as “LCPO”
  • the positive electrode layer 11 contains a positive electrode active material, a solid electrolyte (also referred to as a first solid electrolyte) and a conductive aid.
  • a solid electrolyte also referred to as a first solid electrolyte
  • a conductive aid for the solid electrolyte of the positive electrode layer 11 for example, the same type of solid electrolyte as that used for the solid electrolyte layer 13 is used.
  • LAGP is used as the solid electrolyte of the positive electrode layer 11 .
  • Carbon materials such as carbon fiber, carbon black, graphite, graphene, and carbon nanotubes are used as the conductive aid of the positive electrode layer 11, for example.
  • the negative electrode layer 12 contains a negative electrode active material. Titanium oxide (TiO 2 ), for example, is used as the negative electrode active material of the negative electrode layer 12 .
  • the negative electrode active material of the negative electrode layer 12 includes Nb 2 O 5 (niobium pentoxide), Li 3 V 2 (PO 4 ) 3 (lithium vanadium phosphate), and Li 4 Ti 5 O 12 (lithium titanate). etc. may be used.
  • the negative electrode layer 12 contains a solid electrolyte (also referred to as a second solid electrolyte) and a conductive aid in addition to the negative electrode active material.
  • the solid electrolyte of the negative electrode layer 12 for example, the same type as that used for the solid electrolyte layer 13 is used.
  • LAGP is used as the solid electrolyte of the negative electrode layer 12 .
  • Carbon materials such as carbon fiber, carbon black, graphite, graphene, and carbon nanotubes are used as the conductive aid for the negative electrode layer 12, for example.
  • the positive electrode layer 11 and the negative electrode layer 12 are provided facing each other so as to partially overlap each other with the solid electrolyte layer 13 interposed therebetween.
  • part of the side surface of the portion of the positive electrode layer 11 that does not overlap with the negative electrode layer 12 is exposed from the silica-based glass material 20 covering the laminate 10 (FIGS. 1A and 1B).
  • part of the side surface of the portion of the negative electrode layer 12 that does not overlap with the positive electrode layer 11 is exposed from the silica-based glass material 20 covering the laminate 10 (FIG. 1B).
  • the laminate 10 In the laminate 10 , during charging, lithium ions are conducted from the positive electrode layer 11 through the solid electrolyte layer 13 to the negative electrode layer 12 and taken in, and during discharging, the lithium ions are transferred from the negative electrode layer 12 through the solid electrolyte layer 13 to the positive electrode layer 11 . Lithium ions are conducted and taken in. In the laminate 10, which is a battery element of the solid battery 1, charging and discharging operations are realized by such lithium ion conduction.
  • the silica-based glass material 20 contains SiO 2 (silicon oxide or silica).
  • the silica-based glass material 20 contains SiO 2 and at least one of LiO 2 (lithium oxide), Na 2 O (sodium oxide), K 2 O (potassium oxide), and B 2 O 3 (boron oxide). may contain.
  • a ceramic material such as particulate Al 2 O 3 (aluminum oxide) may be added to the silica-based glass material 20 .
  • Such a ceramic material is obtained by adding a ceramic material such as Al 2 O 3 having higher hardness to the silica-based glass material 20, thereby increasing the hardness and mechanical strength of the silica-based glass material 20. becomes possible.
  • the silica-based glass material 20 is formed by Laminate 10 is covered.
  • the part of the side surface of the positive electrode layer 11 and the part of the side surface of the negative electrode layer 12 exposed from the silica-based glass material 20 are, for example, in the direction perpendicular to the stacking direction of the solid electrolyte layer 13, the positive electrode layer 11, and the negative electrode layer 12. They are in a facing positional relationship.
  • a portion of the side surface of the positive electrode layer 11 and a portion of the side surface of the negative electrode layer 12 exposed from the silica-based glass material 20 are used for electrical connection with the outside of the laminate 10 .
  • the side of the solid battery 1 where a part of the side surface of the positive electrode layer 11 is exposed from the silica-based glass material 20 is referred to as a positive electrode extraction surface 1a, and a part of the side surface of the negative electrode layer 12 is exposed from the silica-based glass material 20.
  • This side is called a negative electrode lead-out surface 1b.
  • the silica-based glass material 20 that covers the laminate 10 has insulating properties, and also has low permeability to moisture or gases such as hydrogen and oxygen.
  • the insulating properties of the silica-based glass material 20 refer to properties that have no or sufficiently low influence on the lithium ion conduction and electron conduction of the laminate 10 .
  • the silica-based glass material 20 further has higher hardness than the solid electrolytes used for the solid electrolyte layer 13 , positive electrode layer 11 and negative electrode layer 12 of the laminate 10 .
  • the silica-based glass material 20 seals the laminate 10 except for a portion of the positive electrode layer 11 exposed from the positive electrode extraction surface 1a and a portion of the negative electrode layer 12 exposed from the negative electrode extraction surface 1b, and prevents the laminate 10 from being exposed to the outside. It has the function of protecting from the environment of the environment and the force applied from the outside.
  • the silica-based glass material 20 as the protective layer of the laminate 10, the occurrence of damage such as cracking and chipping due to external force is suppressed compared to the case where a solid electrolyte is used for the protective layer, for example. Intrusion of moisture or gas from cracked or chipped portions, and deterioration of the battery characteristics of the solid-state battery 1, such as short-circuiting and increased resistance caused by it, can be suppressed.
  • the buffer layer 30 contains a solid electrolyte (also called a third solid electrolyte).
  • a solid electrolyte also called a third solid electrolyte.
  • the same type as that used for the solid electrolyte layer 13 is used.
  • LAGP is used as the solid electrolyte of the buffer layer 30 .
  • the buffer layer 30 is provided between the laminate 10 and the silica-based glass material 20 covering it.
  • the buffer layer 30 is provided outside the positive electrode layer 11 and the negative electrode layer 12 of the laminate 10 . That is, the buffer layer 30 is provided between the positive electrode layer 11 and the silica-based glass material 20 of the laminate 10 and between the negative electrode layer 12 and the silica-based glass material 20 of the laminate 10, respectively.
  • the silica-based glass material 20 is provided so as to cover the layered body 10 and the buffer layer 30 further layered outside thereof, except for a portion of the side surface of the positive electrode layer 11 and a portion of the side surface of the negative electrode layer 12 .
  • the manufacturing of the solid-state battery 1 having the configuration described above is performed, for example, by the following procedure.
  • a structure including a silica-based glass material 20 covering the laminate 10 and a buffer layer 30 provided between the positive electrode layer 11 and the negative electrode layer 12 and the silica-based glass material 20 is formed.
  • the positive electrode layer 11, the negative electrode layer 12, the solid electrolyte layer 13, the silica-based glass material 20, and the buffer layer 30 of this structure are made of organic powders such as active materials and solid electrolytes for exhibiting predetermined functions. It is prepared as a paste formed by mixing with a binder or the like, or as a sheet formed by coating such a paste on a support such as a polyethylene terephthalate (PET) film. Such pastes or sheets of respective layers are applied or laminated in a predetermined order, and cut as necessary to obtain the structure.
  • the resulting structure is fired at a predetermined temperature.
  • This sintering includes sintering for degreasing (also known as solvent removal) that burns off organic components such as binders contained in each layer of the structure, and sintering that joins or grows the powder particles of each layer. is included.
  • Organic components such as binders are burned out by degreasing, and particles are joined or grown by sintering so as to fill the voids formed by the burning out, and each layer of the structure is densified.
  • the buffer layer 30 using a solid electrolyte is provided between the positive electrode layer 11 and the negative electrode layer 12 of the laminate 10 and the silica-based glass material 20, as described above. Thereby, in the solid-state battery 1, the deterioration of the battery characteristics is suppressed.
  • the silica-based glass material 20 has the function of protecting the laminate 10 from the external environment and external forces, while the silica-based glass material 20 reacts with the electrode layers such as the positive electrode layer 11 and the negative electrode layer 12 during firing as described above. It has the property of being relatively strong. For example, due to the reaction between the electrode layer and the silica-based glass material 20 during firing, diffusion of different elements between the electrode layer and the silica-based glass material 20, resulting in insufficient sintering, etc., is relatively likely to occur. This can cause a decrease in utilization of active material in the electrode layer.
  • the reaction between the electrode layer and the silica-based glass material 20 during firing may cause problems such as charge/discharge characteristics and mechanical strength. There is a possibility that deterioration of battery characteristics may be caused.
  • a solid electrolyte is used between the electrode layers (the positive electrode layer 11 and the negative electrode layer 12) and the silica-based glass material 20.
  • a buffer layer 30 is provided.
  • the area of the electrode layer in direct contact with the silica-based glass material 20 can be reduced.
  • the reaction between the electrode layer and the silica-based glass material 20 is suppressed, and deterioration of battery characteristics such as charge/discharge characteristics and mechanical strength due to the reaction is suppressed.
  • the excellent battery can be obtained.
  • a solid-state battery 1 exhibiting characteristics is realized.
  • FIG. 2 is a diagram illustrating a configuration example of a solid-state battery.
  • FIG. 2A schematically shows a perspective view of essential parts of an example of a solid-state battery.
  • FIG. 2(B) schematically shows an example of a cross-sectional view taken along chain line P3 in FIG. 2(A).
  • FIG. 2(C) schematically shows an example of a cross-sectional view taken along the dotted line P4 in FIG. 2(A).
  • a solid-state battery 1A shown in FIGS. 2(A) to 2(C) is an example of a chip-type battery.
  • a solid-state battery 1A includes a laminate 10A, a silica-based glass material 20A, a buffer layer 30A, an external electrode 40 and an external electrode 50. As shown in FIG.
  • the laminate 10A has a solid electrolyte layer 13, a positive electrode layer 11 (electrode layer) and a negative electrode layer 12 (electrode layer).
  • the solid electrolyte layer 13, the positive electrode layer 11, and the negative electrode layer 12 of the laminate 10A are arranged so that one layer of the solid electrolyte layer 13 is interposed between a pair of the positive electrode layer 11 and the negative electrode layer 12 that are arranged to face each other. , is laminated.
  • the laminate 10A shown in this example has a structure in which a negative electrode layer 12, a solid electrolyte layer 13, a positive electrode layer 11, a solid electrolyte layer 13, and a negative electrode layer 12 are stacked in order from the bottom.
  • a pair of positive electrode layer 11 and negative electrode layer 12 facing each other with one solid electrolyte layer 13 interposed therebetween are provided so as to partially overlap each other with the solid electrolyte layer 13 interposed therebetween.
  • at least two electrode layers (positive electrode layer 11 and negative electrode layer 12) and at least one solid electrolyte layer (solid electrolyte layer 13) are alternately laminated, and the electrode layer (negative electrode layer 12) is laminated as the outermost layer.
  • the electrode layer (negative electrode layer 12) is laminated as the outermost layer.
  • the laminate 10A including one layer of the positive electrode layer 11, two layers of the negative electrode layer 12, and two layers of the solid electrolyte layer 13 alternately stacked thereon is taken as an example.
  • the number of layers of 11, negative electrode layer 12 and solid electrolyte layer 13 is not limited to this example.
  • the solid electrolyte layer 13 of the laminate 10A for example, one containing LAGP, which is an oxide solid electrolyte, is used.
  • LAGP for example, one containing LCPO as a positive electrode active material
  • LAGP as an oxide solid electrolyte
  • a carbon material as a conductive aid is used.
  • the negative electrode layer 12 of the laminate 10A for example, one containing anatase-type TiO 2 as a negative electrode active material, LAGP as an oxide solid electrolyte, and a carbon material as a conductive aid is used.
  • lithium ions are conducted from the positive electrode layer 11 to the negative electrode layer 12 via the solid electrolyte layer 13 and incorporated therein. Lithium ions are conducted and taken in.
  • such lithium ion conduction between the positive electrode layer 11 and the negative electrode layer 12 facing each other and the solid electrolyte layer 13 interposed therebetween realizes charging and discharging operations.
  • the silica-based glass material 20A covers the laminated body 10A so that part of the side surface of the positive electrode layer 11 and part of the side surface of the negative electrode layer 12 of the laminated body 10A are exposed.
  • the side surface of the solid battery 1A where part of the positive electrode layer 11 is exposed from the silica-based glass material 20A is the positive electrode lead-out surface 1Aa
  • the side surface where the negative electrode layer 12 is partially exposed from the silica-based glass material 20A is the negative electrode lead-out surface. 1Ab.
  • a silica-based glass material 20A covering the laminate 10A contains SiO 2 .
  • the silica-based glass material 20A may contain at least one of LiO 2 , Na 2 O, K 2 O and B 2 O 3 in addition to SiO 2 .
  • a ceramic material such as particulate Al 2 O 3 may be added to the silica-based glass material 20A.
  • the silica-based glass material 20A has insulating properties and low permeability to moisture or gases such as hydrogen and oxygen.
  • the silica-based glass material 20A further has a higher hardness than the solid electrolytes used for the solid electrolyte layer 13, the positive electrode layer 11, and the negative electrode layer 12.
  • the buffer layer 30A is provided between the laminate 10A and the silica-based glass material 20A covering it.
  • the buffer layer 30A is provided outside each of the two negative electrode layers 12 that are the outermost electrode layers of the laminate 10A. That is, the buffer layer 30A is provided between the negative electrode layer 12 of the laminate 10A and the silica-based glass material 20A.
  • the buffer layer 30A is provided, for example, outside the two negative electrode layers 12 located in the outermost layer of the laminate 10A so as to overlap the solid electrolyte layer 13 with the negative electrode layer 12 interposed therebetween.
  • the silica-based glass material 20A covers the laminate 10A and the negative electrode layer 12 except for a portion of the side surface of the positive electrode layer 11 exposed from the positive electrode extraction surface 1Aa and a portion of the side surface of the negative electrode layer 12 exposed from the negative electrode extraction surface 1Ab. It is provided so as to cover the buffer layer 30A further laminated on the outside. LAGP of an oxide solid electrolyte is used for the buffer layer 30A, for example.
  • the external electrode 40 is provided on the positive electrode lead-out surface 1Aa of the solid battery 1A, and is connected to a portion of the side surface of the positive electrode layer 11 of the laminate 10A exposed from the positive electrode lead-out surface 1Aa.
  • the external electrode 50 is provided on the negative electrode lead-out surface 1Ab of the solid battery 1A, and is connected to a portion of the side surface of the negative electrode layer 12 of the laminate 10A exposed from the negative electrode lead-out surface 1Ab. .
  • Various conductor materials are used for the external electrodes 40 and the external electrodes 50 .
  • the external electrodes 40 and 50 are formed by drying and hardening a conductive paste containing metal particles such as silver (Ag) or conductive particles such as carbon particles, or using a sputtering method, a plating method, or the like. Those formed by deposition of the various metals used are used.
  • the buffer layer 30A using a solid electrolyte is provided between the outermost negative electrode layer 12 of the laminate 10A and the silica-based glass material 20A covering the laminate 10A.
  • the contact area between the negative electrode layer 12 and the silica-based glass material 20A is suppressed, and the reaction between the negative electrode layer 12 and the silica-based glass material 20A during firing performed in the manufacturing process described later, resulting in the dissimilar element diffusion, insufficient sintering, and a decrease in the utilization rate of the negative electrode active material can be suppressed.
  • deterioration in charge/discharge characteristics and mechanical strength of the solid-state battery 1A can be suppressed.
  • solid-state battery 1A laminate 10A and buffer layer 30A are covered with silica-based glass material 20A as a protective layer.
  • silica-based glass material 20A As a result, damage such as cracks and chips due to external force may occur, moisture and gas may enter from cracks and chips, and the battery characteristics of the solid-state battery 1A may deteriorate, such as short circuits and increased resistance. suppressed.
  • the buffer layer 30A is provided between the laminate 10A and the silica-based glass material 20A, the solid-state battery 1A using the silica-based glass material 20A as a protective layer and exhibiting excellent battery characteristics is realized. .
  • LAGP powder First, powders of Li 2 CO 3 (lithium carbonate), Al 2 O 3 , GeO 2 (germanium oxide), and NH 4 H 2 PO 4 (ammonium dihydrogen phosphate), which are raw materials of LAGP, have a predetermined composition ratio. are weighed and mixed in a magnetic mortar or ball mill. The mixture obtained by mixing is placed in an alumina crucible or the like and pre-fired at a temperature of 300° C. to 400° C. for 3 to 5 hours. The powder obtained by calcination is melted by heat treatment at a temperature of 1200° C. to 1400° C. for 1 hour to 2 hours. The material obtained by melting is quenched and vitrified. This forms an amorphous LAGP powder.
  • the LAGP powder may be amorphous as well as crystalline.
  • the obtained LAGP powder (amorphous or crystalline or both) is coarsely pulverized to a particle size of 200 ⁇ m or less, and further pulverized using a pulverizing device such as a ball mill.
  • the target particle diameter p (median diameter D50) is adjusted.
  • the particle size p of the LAGP powder for the electrolyte layer and the buffer layer is adjusted to 2 ⁇ m ⁇ p ⁇ 5 ⁇ m, for example.
  • the particle size p Finer than for layers eg 0.2 ⁇ m ⁇ p ⁇ 1.0 ⁇ m.
  • the solid electrolyte layer 13 of the solid battery 1A, the positive electrode layer 11 and the negative electrode layer 12 as electrode layers, and the LAGP powder used for the buffer layer 30A are prepared.
  • a solid electrolyte is mixed with a binder, a plasticizer, a dispersant, a diluent, and the like to prepare a solid electrolyte paste.
  • the amount of each component of the solid electrolyte paste is adjusted as appropriate.
  • a solid electrolyte paste is prepared using LAGP, which is an oxide solid electrolyte, as the solid electrolyte.
  • a positive electrode paste is prepared by mixing a positive electrode active material, a solid electrolyte, and a conductive aid with a binder, a plasticizer, a dispersant, a diluent, and the like. The amount of each component of the positive electrode paste is adjusted as appropriate.
  • a positive electrode paste is prepared using LCPO as a positive electrode active material, LAGP, which is an oxide solid electrolyte, as a solid electrolyte, and a carbon material as a conductive aid.
  • a negative electrode paste is prepared by mixing a negative electrode active material, a solid electrolyte, and a conductive aid with a binder, a plasticizer, a dispersant, a diluent, and the like. The amount of each component of the negative electrode paste is adjusted as appropriate.
  • a negative electrode paste is prepared using anatase-type TiO 2 as a negative electrode active material, LAGP, which is an oxide solid electrolyte, as a solid electrolyte, and a carbon material as a conductive aid.
  • silica-based glass material paste A silica-based glass powder containing a glass component of SiO2 is prepared.
  • the glass component of the silica-based glass powder may contain SiO 2 and at least one of LiO 2 , Na 2 O, K 2 O and B 2 O 3 .
  • a silica-based glass powder is mixed with a binder, a plasticizer, a dispersant, a diluent, and the like to prepare a silica-based glass material paste.
  • the amount of each component of the silica-based glass material paste is appropriately adjusted.
  • a ceramic material such as particulate Al 2 O 3 may be added to the silica-based glass material paste.
  • FIG. 3 is a diagram illustrating an example of a process for forming a solid electrolyte layer part.
  • FIG. 3A schematically shows a perspective view of essential parts of an example of the preparation process of the support.
  • FIG. 3B schematically shows a perspective view of essential parts of an example of the process of forming the solid electrolyte layer.
  • FIG. 3C schematically shows a perspective view of essential parts of an example of a process for forming a silica-based glass material.
  • FIG. 3D schematically shows a perspective view of essential parts of an example of the separation step of the support.
  • a PET film for example, is used for the support 60 shown in FIG. 3(A).
  • a part of the support 60 is coated with a solid electrolyte paste to a predetermined thickness, dried under predetermined conditions to remove the solvent component, and solidified.
  • An electrolyte layer 13 is formed. Note that the application of the solid electrolyte paste may be performed on a portion of the support 60 once or may be performed multiple times. The drying of the solid electrolyte paste may be performed after each application, or may be performed collectively after a plurality of applications.
  • silica-based glass material paste is applied around the solid electrolyte layer 13 on the support 60, as shown in FIG. 3(C). , and dried under predetermined conditions to remove the solvent component to form the silica-based glass material 20A.
  • the application of the silica-based glass material paste may be performed once around the solid electrolyte layer 13 on the support 60, or may be performed multiple times. Drying of the silica-based glass material paste may be performed after each application, or may be performed collectively after a plurality of applications.
  • the support 60 is separated from them. Thereby, the solid electrolyte layer part 2 as shown in FIG. 3(D) is formed.
  • FIG. 4 is a diagram illustrating an example of a process of forming a positive electrode layer part.
  • FIG. 4A schematically shows a perspective view of essential parts of an example of the preparation process of the support.
  • FIG. 4B schematically shows a perspective view of essential parts of an example of the process of forming the positive electrode layer.
  • FIG. 4C schematically shows a perspective view of essential parts of an example of a process for forming a silica-based glass material.
  • FIG. 4D schematically shows a perspective view of essential parts of an example of the separation step of the support.
  • a positive electrode paste is applied to a part of a support 60 such as a PET film as shown in FIG. , and dried under predetermined conditions to remove the solvent component, thereby forming the positive electrode layer 11 .
  • the application of the positive electrode paste may be performed on a portion of the support 60 once, or may be performed multiple times. Drying of the positive electrode paste may be performed after each application, or may be performed collectively after a plurality of applications.
  • the silica-based glass material paste may be applied around the positive electrode layer 11 on the support 60 once or multiple times. Drying of the silica-based glass material paste may be performed after each application, or may be performed collectively after a plurality of applications.
  • the support 60 is separated from them. Thereby, the positive electrode layer part 3 as shown in FIG. 4(D) is formed.
  • FIG. 5 is a diagram illustrating an example of a process for forming negative electrode layer parts.
  • FIG. 5A schematically shows a perspective view of essential parts of an example of the preparation process of the support.
  • FIG. 5B schematically shows a perspective view of essential parts of an example of a step of forming a negative electrode layer.
  • FIG. 5(C) schematically shows a perspective view of an essential part of an example of a process for forming a silica-based glass material.
  • FIG. 5D schematically shows a perspective view of essential parts of an example of the separation step of the support.
  • negative electrode paste is applied to a part of a support 60 such as a PET film as shown in FIG. 5(A) so as to have a predetermined thickness and negative electrode active material amount. , and dried under predetermined conditions to remove the solvent component, thereby forming the negative electrode layer 12 .
  • the application of the negative electrode paste may be performed on a part of the support 60 once, or may be performed multiple times.
  • the drying of the negative electrode paste may be performed each time after each coating, or may be performed collectively after multiple coatings.
  • Drying is performed under predetermined conditions to remove the components, and the silica-based glass material 20A is formed.
  • the application of the silica-based glass material paste may be performed once around the negative electrode layer 12 on the support 60, or may be performed multiple times. Drying of the silica-based glass material paste may be performed after each application, or may be performed collectively after a plurality of applications.
  • the support 60 is separated from them. Thereby, the negative electrode layer part 4 as shown in FIG. 5(D) is formed.
  • FIG. 6 is a diagram illustrating an example of the process of forming the buffer layer parts.
  • FIG. 6A schematically shows a perspective view of essential parts of an example of the preparation process of the support.
  • FIG. 6B schematically shows a perspective view of an essential part of an example of the process of forming the buffer layer.
  • FIG. 6C schematically shows a perspective view of essential parts of an example of a process for forming a silica-based glass material.
  • FIG. 6D schematically shows a perspective view of essential parts of an example of the separation step of the support.
  • a solid electrolyte paste is applied to a predetermined thickness on a part of a support 60 such as a PET film as shown in FIG. 6(A). It is dried under predetermined conditions for removal to form the buffer layer 30A. Note that the application of the solid electrolyte paste may be performed on a portion of the support 60 once or may be performed multiple times. The drying of the solid electrolyte paste may be performed after each application, or may be performed collectively after a plurality of applications.
  • the silica-based glass material paste may be applied around the buffer layer 30A on the support 60 once or multiple times. Drying of the silica-based glass material paste may be performed after each application, or may be performed collectively after a plurality of applications.
  • the support 60 is separated from them. Thereby, a buffer layer part 5 as shown in FIG. 6(D) is formed.
  • a silica-based glass material paste is applied to a predetermined thickness on a support such as a PET film, and dried under predetermined conditions to remove the solvent component, thereby forming a sheet-like silica-based glass material 20A. It is formed.
  • the application of the silica-based glass material paste may be performed once or multiple times on the support. Drying of the silica-based glass material paste may be performed after each application, or may be performed collectively after a plurality of applications.
  • FIG. 7 is a diagram illustrating an example of a structure forming process.
  • FIG. 7A schematically shows a cross-sectional view of essential parts of an example of the lamination process of the solid electrolyte layer parts, the positive electrode layer parts, the negative electrode layer parts, the buffer layer parts, and the sheet-like silica-based glass material.
  • FIG. 7B schematically shows a cross-sectional view of a main part of an example of the cutting process.
  • the positive electrode layer part 3, the negative electrode layer part 4, the buffer layer part 5, and the sheet-like silica-based glass material 20A are given a predetermined amount as shown in FIG. They are laminated in order to form the structure 6 .
  • the sheet-like silica-based glass material 20A, the buffer layer part 5, the negative electrode layer part 4, the solid electrolyte layer part 2, the positive electrode layer part 3, the solid electrolyte layer part 2, the negative electrode layer part 4, the buffer The layer part 5 and the sheet-like silica-based glass material 20A are laminated to form the structural body 6 .
  • the structure 6 is thermocompression bonded under predetermined pressure and temperature conditions.
  • the solid electrolyte layer 13, the positive electrode layer 11, the negative electrode layer 12, and the buffer layer 30A included in the structure 6 are all completely covered with the silica-based glass material 20A. It is in a state where it is not exposed from the glass material 20A.
  • the structure 6 is cut at predetermined positions C1 and C2 as shown in FIG. 7(A).
  • the position C1 is a position where a part of the side surface of the positive electrode layer 11 is exposed from the silica-based glass material 20A on the cut surface
  • the position C2 is a position where a part of the side surface of the negative electrode layer 12 is exposed on the cut surface. This is the position exposed from the base glass material 20A.
  • part of the positive electrode layer 11 and part of the negative electrode layer 12 may be cut.
  • a body 7 is formed.
  • the cut surfaces of the structure 7 where the side surfaces of the positive electrode layer 11 and the negative electrode layer 12 are partly exposed from the silica-based glass material 20A are the positive electrode lead surface 1Aa and the negative electrode lead surface 1Ab, respectively.
  • the solid electrolyte layer part 2, the positive electrode layer part 3, the negative electrode layer part 4, the buffer layer part 5, and the sheet-like silica-based glass material 20A are prepared in advance, and these are laminated in a predetermined order and thermocompression bonded.
  • the method of obtaining the structure 7 by obtaining the structure 6 and cutting it at a predetermined position has been exemplified, the method for obtaining the structure 7 is not limited to such a method.
  • a sheet-shaped silica-based glass material 20A is formed on the support 60 using a silica-based glass material paste.
  • a solid electrolyte paste is used to form a buffer layer 30A on a portion of the sheet-shaped silica-based glass material 20A, and a silica-based glass material paste is used to form the silica-based glass material 20A around the buffer layer 30A.
  • forming a layer corresponding to the buffer layer part 5 forming a layer corresponding to the buffer layer part 5 .
  • a negative electrode layer 12 is formed on part of this layer using a negative electrode paste, and a silica-based glass material 20A is formed around the negative electrode layer 12 using a silica-based glass material paste, which corresponds to the negative electrode layer part 4. form a layer.
  • a solid electrolyte layer 13 is formed on a portion of this layer using a solid electrolyte paste, and a silica-based glass material 20A is formed around the solid electrolyte layer 13 using a silica-based glass material paste to form a solid electrolyte layer.
  • a layer corresponding to part 2 is formed.
  • a positive electrode layer 11 is formed on a part of this layer using a positive electrode paste, and a silica-based glass material 20A is formed around the positive electrode layer 11 using a silica-based glass material paste, which corresponds to the positive electrode layer part 3.
  • the structure 6 as shown in FIG. 7A is obtained.
  • the structure 6 thus obtained is cut at a predetermined position to obtain a structure 7 .
  • the structure 7 can also be obtained using such a technique.
  • FIG. 8 is a diagram illustrating an example of a structure firing process and an external electrode forming process.
  • FIG. 8A schematically shows a fragmentary cross-sectional view of an example of the sintering process of the structure.
  • FIG. 8B schematically shows a fragmentary cross-sectional view of an example of the process of forming the external electrodes.
  • the structure 7 obtained by cutting is transported to a firing furnace 70 and fired under predetermined conditions of atmosphere, temperature and time, as shown in FIG. 8(A).
  • firing for degreasing that mainly burns off organic components such as binders, and mainly sintering solid electrolytes, positive and negative electrode active materials, and silica-based glass materials Firing is performed to
  • heat treatment for degreasing is performed by heating at 500° C. for 7 hours in an air atmosphere
  • sintering is performed by heating at 600° C. to 625° C. for 2 hours in a nitrogen atmosphere.
  • Organic components such as binders in the structure 7 are burned out by degreasing, and particles of the solid electrolyte, the positive and negative electrode active materials, and the silica-based glass material are joined or grown by sintering so as to fill the voids formed by the burning. , each layer in the structure 7 is densified.
  • the solid electrolyte in the solid electrolyte layer 13 and the buffer layer 30A is sintered by firing (firing for degreasing and subsequent firing for sintering). Further, the solid electrolyte and the positive and negative electrode active materials in the positive electrode layer 11 and the negative electrode layer 12 are sintered. Thereby, as shown in FIG. A buffer layer 30A is formed outside the positioned negative electrode layer 12 . Furthermore, the silica-based glass material 20A is sintered and integrated by firing. As a result, a structure 8 as shown in FIG. 8A is obtained, which has a structure in which the laminated body 10A and the buffer layer 30A are covered with the silica-based glass material 20A.
  • an external electrode 40 and an external electrode 50 are formed on the positive electrode lead-out surface 1Aa and the negative electrode lead-out surface 1Ab, respectively, as shown in FIG. 8(B).
  • the external electrode 40 and the external electrode 50 are formed on the positive electrode lead-out surface 1Aa and the negative electrode lead-out surface 1Ab of the structure 8 by applying and baking Ag paste or the like, respectively.
  • Ag paste for the external electrodes 40 and 50, in addition to Ag paste, conductive paste containing conductive particles such as various metal particles and carbon particles can also be used.
  • the external electrodes 40 and 50 may be formed by depositing various metals using a sputtering method, a plating method, or the like. After applying and baking a conductive paste containing Ag or the like, various metals may be deposited using a sputtering method, a plating method, or the like to form the external electrodes 40 and 50 .
  • the solid-state battery 1A having the configuration shown in FIG. 8B (and FIGS. 2A to 2C) is manufactured.
  • [Characteristics of solid-state battery] Next, evaluation results of the characteristics of solid-state batteries will be described.
  • a solid battery 1A (FIGS. 2A to 2C and 8B) in which a buffer layer 30A is provided between the negative electrode layer 12 of the laminate 10A and the silica-based glass material 20A covering the laminate 10A. )), its cross section was observed with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • FIG. 9 shows the results of observation by SEM.
  • FIG. 9 is a diagram showing an example of a SEM image of a solid battery.
  • FIG. 9A shows an example of a SEM image of a solid-state battery provided with a buffer layer.
  • FIG. 9B shows an example of a SEM image of a solid battery without a buffer layer.
  • the buffer layer 30A is provided between the outermost negative electrode layer 12 facing the positive electrode layer 11 with the solid electrolyte layer 13 interposed therebetween and the silica-based glass material 20A.
  • FIG. 9(A) between the silica-based glass material 20A and the buffer layer 30A, diffusion of a dissimilar element that can cause a decrease in the utilization rate of the negative electrode active material causes diffusion of It was confirmed that an insufficiently sintered layer was formed.
  • the buffer layer 30A is not provided, as shown in FIG. A large layer was formed, and a partial drop 80 of the negative electrode layer 12 was confirmed. From the results of FIGS.
  • the buffer layer 30A between the silica-based glass material 20A and the negative electrode layer 12, the reaction between the silica-based glass material 20A and the negative electrode layer 12,
  • the buffer layer 30A suppresses the diffusion of dissimilar elements between the layers, thereby suppressing the formation of a layer that results in insufficient sintering, and it is possible to effectively suppress the decrease in the utilization rate of the negative electrode active material in the negative electrode layer 12. can be done.
  • the solid battery 1A for charge and discharge evaluation includes a laminate 10A in which five positive electrode layers 11, solid electrolyte layers 13, and negative electrode layers 12 are laminated in parallel, and the outermost negative electrode layer 12 and a silica-based glass material. 20A was provided with a buffer layer 30A.
  • charge/discharge measurements were performed under the following conditions.
  • a buffer layer 30A was provided between the outermost negative electrode layer 12 and the silica-based glass material 20A in the laminate 10A in which the positive electrode layer 11, the solid electrolyte layer 13, and the negative electrode layer 12 were stacked in five parallel layers.
  • a sample not provided was prepared, and charge/discharge measurement was performed under the following conditions.
  • the conditions for charge/discharge measurement were as follows.
  • the charging was constant current (CC) charging, the final voltage was 3.6 V, and the current value was 10 ⁇ A for both charging and discharging.
  • Discharge was CC discharge, and the condition of final voltage of 0V was used.
  • the charge-discharge measurement was performed in a constant temperature bath at 20° C. for 3 cycles.
  • FIG. 10 shows the results of charge-discharge measurements performed under these conditions.
  • FIG. 10 is an example of a charge/discharge curve diagram of a solid battery.
  • FIG. 10A shows an example of a charge/discharge curve diagram of a solid battery provided with a buffer layer.
  • FIG. 10(B) shows an example of a charge/discharge curve diagram of a solid battery without a buffer layer.
  • a buffer layer 30A is provided between the negative electrode layer 12 and the silica-based glass material 20A, and a discharge capacity substantially as designed can be obtained for the solid battery 1A designed for 5 parallel discharge capacities of 45 ⁇ Ah. was confirmed.
  • FIG. 10B it was confirmed that a sufficient discharge capacity cannot be obtained in a solid battery designed with 5 parallels and a discharge capacity of 45 ⁇ Ah without the buffer layer 30A. From the results of FIGS. 10A and 10B, the provision of the buffer layer 30A between the silica-based glass material 20A and the negative electrode layer 12 effectively suppresses the deterioration of the charge/discharge characteristics of the solid battery 1A. can be said to be possible.
  • FIG. 11 shows the results of observation with a microscope.
  • FIG. 11 is a diagram schematically showing an example of a microscope image of a solid-state battery.
  • FIG. 11 schematically shows an example of a cross-sectional microscope image of a solid-state battery in which cracks are generated inside.
  • a solid battery 1A including a laminate 10A having a negative electrode layer 12 as the outermost layer and a buffer layer 30A provided between the negative electrode layer 12 and the silica-based glass material 20A is taken as an example.
  • the same effect as described above can be obtained in a solid battery including a laminate in which the positive electrode layer 11 is positioned as the outermost layer, and in which the buffer layer 30A is provided between the positive electrode layer 11 and the silica-based glass material 20A. .
  • Reference Signs List 1 1A solid battery 1a, 1Aa positive electrode lead surface 1b, 1Ab negative electrode lead surface 2 solid electrolyte layer parts 3 positive electrode layer parts 4 negative electrode layer parts 5 buffer layer parts 6, 7, 8 structure 10, 10A laminate 11 positive electrode layer 12 Negative electrode layer 13 Solid electrolyte layer 20, 20A Silica-based glass material 30, 30A Buffer layer 40, 50 External electrode 60 Support 70 Firing furnace 80 Missing 90 Crack

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

シリカ系ガラス材料が用いられ、且つ、優れた電池特性を示す固体電池を実現する。 固体電池(1A)は、積層体(10A)、シリカ系ガラス材料(20A)及び緩衝層(30A)を含む。積層体(10A)は、電極層である正極層(11)及び負極層(12)と、固体電解質層(13)とを有し、電極層と固体電解質層(13)とが交互に積層され、一例として最外層に負極層(12)が位置する。シリカ系ガラス材料(20A)は、積層体(10A)を覆う。緩衝層(30A)は、絶縁性を有し、積層体(10A)の最外層の負極層(12)とシリカ系ガラス材料(20A)との間に設けられる。

Description

固体電池及び固体電池の製造方法
 本発明は、固体電池及び固体電池の製造方法に関する。
 電解質として、電解液に代えて、固体電解質を用いた固体電池が知られている。このような固体電池に関し、正負極の電極層及びそれらの間に設けられる固体電解質層、並びにこれらを覆う固体電解質層を、まずバインダー等を用いたシート状やペースト状に形成し、それを所定の順に積層した後、熱処理による脱脂及び焼成を行って、焼結体を得る技術が知られている。
 従来、焼結用セラミックス成形体の作製方法に関し、セラミックス粉末とガラス転移温度が室温よりも高い熱可塑性樹脂とを含む原料粉末を、熱可塑性樹脂のガラス転移温度よりも低い温度で静水圧加圧成形し、その後、熱可塑性樹脂のガラス転移温度以上に加熱して温間静水圧加圧成形する技術が知られている(特許文献1)。
 また、固体電池に関し、正負極の電極層の間に固体電解質層が設けられる電池要素の表面を、高分子化合物を含む保護層で覆う技術が知られている。更に、電池要素の表面を、高分子化合物を含む保護層と比較して、水分及びガスの吸着による割れ及び脱落が起こり難く、電池要素との接合強度が高く振動及び衝撃等による脱落が起こり難い、樹脂以外の絶縁性物質からなる保護層で覆う技術、そのような絶縁性物質としてガラスやセラミックスを用いる技術が知られている(特許文献2,3)。
特開2019-199078号公報 国際公開WO2020/054544号パンフレット 国際公開WO2020/054549号パンフレット
 ところで、シリカ系ガラス材料は、比較的低い焼成温度で緻密且つ硬質な焼結体が得られる材料の1つであり、電池要素、即ち、正負極の電極層及びそれらの間に設けられる固体電解質層を含む積層体を覆うための材料として好適と考えられる。
 しかし、シリカ系ガラス材料は、電池要素の積層体に含まれる電極層との反応性が比較的高いという性質がある。そのため、シリカ系ガラス材料を、積層体に含まれる電極層と比較的大面積で直接接するような部分に用いると、電極層との反応に起因して、固体電池の放電又は充放電特性や、機械的強度といった、電池特性の低下を招く恐れがある。
 1つの側面では、本発明は、シリカ系ガラス材料が用いられ、且つ、優れた電池特性を示す固体電池を実現することを目的とする。
 1つの態様では、少なくとも2層の電極層と少なくとも1層の固体電解質層とが交互に積層され、最外層に前記電極層が位置する積層体と、前記積層体を覆うシリカ系ガラス材料と、前記積層体の最外層に位置する前記電極層と前記シリカ系ガラス材料との間に設けられる絶縁性の緩衝層とを含む固体電池が提供される。
 また、1つの態様では、上記のような固体電池の製造方法が提供される。
 1つの側面では、シリカ系ガラス材料が用いられ、且つ、優れた電池特性を示す固体電池を実現することが可能になる。
 本発明の目的、特徴及び利点は、本発明の例として好ましい実施の形態を表す添付の図面と関連した以下の説明により明らかになるであろう。
固体電池の一例について説明する図である。 固体電池の構成例について説明する図である。 固体電解質層パーツの形成工程の一例について説明する図である。 正極層パーツの形成工程の一例について説明する図である。 負極層パーツの形成工程の一例について説明する図である。 緩衝層パーツの形成工程の一例について説明する図である。 構造体の形成工程の一例について説明する図である。 構造体の焼成工程及び外部電極の形成工程の一例について説明する図である。 固体電池のSEM像の一例を示す図である。 固体電池の充放電曲線図の一例である。 固体電池のマイクロスコープ像の一例を模式的に示す図である。
 リチウムイオン二次電池は、装置の小型化や軽量化に大きく寄与し、電気自動車、定置型蓄電設備、携帯情報端末、IoT(Internet of Things)機器、ウェアラブル端末等、用途は拡大している。それに伴い、要求される仕様も多様化しており、高いエネルギー密度、安全性への期待が高まっている。要求に対応するための新しい電池として固体電池の開発が進められている。固体電池の1つとして、電解質に固体電解質を用いるものが知られている。このような固体電池は、可燃性の有機電解液を用いないため、漏液、燃焼、爆発、有毒ガスの発生といった危険性を低減して安全性を高めることが可能で、大気中での取り扱いが容易であり、また、低温及び高温の条件でも性能を維持することが可能である。固体電解質を用いることで、それに対応して、より高電圧で動作する電極材料を用いることができるため、高エネルギー密度化等、固体電池の更なる性能向上も期待される。
 [固体電池]
 図1は固体電池の一例について説明する図である。図1(A)には、固体電池の一例の要部斜視図を模式的に示している。図1(B)には、図1(A)の鎖線P1に沿った断面図の一例を模式的に示している。図1(C)には、図1(A)の点線P2に沿った断面図の一例を模式的に示している。
 図1(A)~図1(C)に示す固体電池1は、チップ形電池の一例である。固体電池1は、その電池要素(固体電池本体)である積層体10と、積層体10を覆うコーティング膜として機能するシリカ系ガラス材料20とを含む。固体電池1は更に、積層体10とそれを覆うシリカ系ガラス材料20との間に設けられる緩衝層30を含む。
 積層体10は、電池要素の電極層である正極層11及び負極層12と、それらの間に設けられる固体電解質層13とを有する。図1(A)~図1(C)に示す積層体10は、正極層11と負極層12の2層の電極層と、1層の固体電解質層13とが交互に積層され、最外層に電極層が位置する構造を有するものの一例である。
 固体電解質層13は、固体電解質を含む。固体電解質層13には、酸化物固体電解質を用いることができる。例えば、固体電解質層13には、NASICON(Na super ionic conductor)型(「ナシコン型」とも称される)の酸化物固体電解質の1種であるLAGPが用いられる。LAGPは、一般式Li1+xAlGe2-x(PO(0<x≦1)で表される酸化物固体電解質である。例えば、固体電解質層13のLAGPとして、組成比x=0.5のLi1.5Al0.5Ge1.5(POが用いられる。このほか、固体電解質層13には、LiS(硫化リチウム)-P(五硫化二リン)等の硫化物固体電解質が用いられてもよい。
 正極層11は、正極活物質を含む。正極層11の正極活物質には、例えば、LiCoP(ピロリン酸コバルトリチウム、「LCPO」とも言う)が用いられる。正極層11は、正極活物質のほか、固体電解質(第1固体電解質とも言う)及び導電助剤を含む。正極層11の固体電解質には、例えば、固体電解質層13に用いられるものと同種のものが用いられる。例えば、正極層11の固体電解質として、LAGPが用いられる。正極層11の導電助剤には、例えば、カーボンファイバー、カーボンブラック、グラファイト、グラフェン、カーボンナノチューブ等の炭素材料が用いられる。
 負極層12は、負極活物質を含む。負極層12の負極活物質には、例えば、酸化チタン(TiO)が用いられる。このほか、負極層12の負極活物質には、Nb(五酸化ニオブ)、Li(PO(リン酸バナジウムリチウム)、LiTi12(チタン酸リチウム)等が用いられてもよい。負極層12は、負極活物質のほか、固体電解質(第2固体電解質とも言う)及び導電助剤を含む。負極層12の固体電解質には、例えば、固体電解質層13に用いられるものと同種のものが用いられる。例えば、負極層12の固体電解質として、LAGPが用いられる。負極層12の導電助剤には、例えば、カーボンファイバー、カーボンブラック、グラファイト、グラフェン、カーボンナノチューブ等の炭素材料が用いられる。
 積層体10において、正極層11と負極層12とは、固体電解質層13を介して互いに部分的に重複するように対向して設けられる。後述のように、正極層11の、負極層12と重複しない部位の側面の一部は、積層体10を覆うシリカ系ガラス材料20から露出し(図1(A)及び図1(B))、負極層12の、正極層11と重複しない部位の側面の一部は、積層体10を覆うシリカ系ガラス材料20から露出する(図1(B))。
 積層体10において、その充電時には、正極層11から固体電解質層13を介して負極層12にリチウムイオンが伝導して取り込まれ、放電時には、負極層12から固体電解質層13を介して正極層11にリチウムイオンが伝導して取り込まれる。固体電池1の電池要素である積層体10では、このようなリチウムイオン伝導によって充放電動作が実現される。
 シリカ系ガラス材料20は、SiO(酸化シリコン又はシリカ)を含む。シリカ系ガラス材料20は、SiOのほか、LiO(酸化リチウム)、NaO(酸化ナトリウム)、KO(酸化カリウム)及びB(酸化ホウ素)のうちの少なくとも1種を含んでもよい。シリカ系ガラス材料20には、粒子状のAl(酸化アルミニウム)等のセラミックス材料が添加されてもよい。このようなセラミックス材料は、シリカ系ガラス材料20に、それよりも高い硬度を有するAl等のセラミックス材料が添加されることで、シリカ系ガラス材料20の硬度、機械的強度を高めることが可能になる。
 シリカ系ガラス材料20は、図1(A)及び図1(B)に示すように、積層体10の正極層11の側面の一部及び負極層12の側面の一部が露出するように、積層体10を覆う。シリカ系ガラス材料20から露出する正極層11の側面の一部と負極層12の側面の一部とは、例えば、固体電解質層13、正極層11及び負極層12の積層方向と直交する方向において対向する位置関係にある。シリカ系ガラス材料20から露出する正極層11の側面の一部及び負極層12の側面の一部は、積層体10の外部との電気接続に用いられる。ここでは、固体電池1の、シリカ系ガラス材料20から正極層11の側面の一部が露出する側を正極引出面1aと言い、シリカ系ガラス材料20から負極層12の側面の一部が露出する側を負極引出面1bと言う。
 積層体10を覆うシリカ系ガラス材料20は、絶縁性を有するほか、水分又は水素や酸素等のガスの透過性が低い性質を有する。尚、シリカ系ガラス材料20の絶縁性とは、積層体10のリチウムイオン伝導、電子伝導に対する影響が無いか或いは十分に低い性質を言う。シリカ系ガラス材料20は更に、積層体10の固体電解質層13、正極層11及び負極層12に用いられる固体電解質よりも高い硬度を有する。
 シリカ系ガラス材料20は、正極引出面1aから露出させる正極層11の一部及び負極引出面1bから露出させる負極層12の一部を除き、積層体10を封止し、積層体10を外部の環境や外部から加えられる力から保護する機能を有する。シリカ系ガラス材料20が積層体10の保護層として用いられることで、例えば保護層に固体電解質を用いた場合に比べて、外部から加えられる力による割れや欠け等の損傷の発生が抑えられ、割れや欠けの発生した部分からの水分やガスの侵入、それによる短絡や抵抗の増大等の固体電池1の電池特性の低下が抑えられる。
 緩衝層30は、固体電解質(第3固体電解質とも言う)を含む。緩衝層30の固体電解質には、例えば、固体電解質層13に用いられるものと同種のものが用いられる。例えば、緩衝層30の固体電解質として、LAGPが用いられる。
 緩衝層30は、積層体10とそれを覆うシリカ系ガラス材料20との間に設けられる。この例では、緩衝層30は、積層体10の正極層11の外側及び負極層12の外側にそれぞれ設けられる。即ち、緩衝層30は、積層体10の正極層11とシリカ系ガラス材料20との間、及び積層体10の負極層12とシリカ系ガラス材料20との間に、それぞれ設けられる。シリカ系ガラス材料20は、正極層11の側面の一部及び負極層12の側面の一部を除き、積層体10とその外側に更に積層された緩衝層30とを覆うように設けられる。
 上記のような構成を有する固体電池1の製造は、例えば、次のような手順で行われる。
 まず、正極層11及び負極層12とそれらの間に設けられる固体電解質層13とを有する積層体10と、正極層11の側面の一部及び負極層12の側面の一部が露出するように積層体10を覆うシリカ系ガラス材料20と、正極層11及び負極層12とシリカ系ガラス材料20との間に設けられる緩衝層30とを含む構造体が形成される。この構造体の正極層11、負極層12、固体電解質層13、シリカ系ガラス材料20及び緩衝層30はそれぞれ、所定の機能を発現させるための活物質や固体電解質等の粉体を有機系のバインダー等と混合して形成されるペースト、或いはそのようなペーストをポリエチレンテレフタレート(PET)フィルム等の支持体上に塗工して形成されるシートとして準備される。このような各層のペースト又はシートが、所定の順で塗布又は積層され、必要に応じて裁断が行われて、当該構造体が得られる。
 得られた構造体は、所定の温度で焼成される。この焼成には、構造体の各層に含まれるバインダー等の有機成分を焼失させる脱脂(脱媒とも言う)のための焼成、及び各層の粉体の粒子を接合又は成長させる焼結のための焼成が含まれる。脱脂によってバインダー等の有機成分が焼失し、その焼失により形成される空隙を埋めるように、焼結によって粒子が接合又は成長し、構造体の各層が緻密化される。このような構造体の焼成により、固体電池1が製造される。
 固体電池1では、上記のように、積層体10の正極層11及び負極層12とシリカ系ガラス材料20との間に、固体電解質が用いられた緩衝層30が設けられる。これにより、固体電池1では、その電池特性の低下が抑えられる。
 即ち、シリカ系ガラス材料20は、積層体10を外部の環境や外部から加えられる力から保護する機能を有する一方、上記のような焼成時における正極層11や負極層12といった電極層との反応性が比較的高いという性質を有する。例えば、焼成時の電極層とシリカ系ガラス材料20との反応により、電極層とシリカ系ガラス材料20との間の異種元素の拡散、それによる焼結不足等が比較的起こり易い。これは電極層内の活物質の利用率低下を引き起こし得る。そのため、シリカ系ガラス材料20が、電極層と比較的大面積で直接接していると、焼成時の電極層とシリカ系ガラス材料20との反応に起因して、充放電特性や機械的強度といった電池特性の低下を招く恐れがある。
 これに対し、図1(A)~図1(C)に示すような固体電池1では、電極層(正極層11及び負極層12)とシリカ系ガラス材料20との間に、固体電解質が用いられた緩衝層30が設けられる。これにより、電極層がシリカ系ガラス材料20と直接接する面積が抑えられる。その結果、電極層とシリカ系ガラス材料20との反応が抑えられ、その反応に起因した充放電特性や機械的強度といった電池特性の低下が抑えられる。
 正極層11及び負極層12とそれらの間に設けられる固体電解質層13とを有する積層体10と、それを覆うシリカ系ガラス材料20との間に緩衝層30が設けられることで、優れた電池特性を示す固体電池1が実現される。
 [固体電池の構成例]
 次に、固体電池の構成例について述べる。
 図2は固体電池の構成例について説明する図である。図2(A)には、固体電池の一例の要部斜視図を模式的に示している。図2(B)には、図2(A)の鎖線P3に沿った断面図の一例を模式的に示している。図2(C)には、図2(A)の点線P4に沿った断面図の一例を模式的に示している。
 図2(A)~図2(C)に示す固体電池1Aは、チップ形電池の一例である。固体電池1Aは、積層体10A、シリカ系ガラス材料20A、緩衝層30A、外部電極40及び外部電極50を含む。
 積層体10Aは、図2(B)及び図2(C)に示すように、固体電解質層13、正極層11(電極層)及び負極層12(電極層)を有する。積層体10Aの固体電解質層13、正極層11及び負極層12は、対向して配置される一対の正極層11と負極層12との間に、1層の固体電解質層13が介在されるように、積層される。即ち、この例に示す積層体10Aでは、下から順に、負極層12、固体電解質層13、正極層11、固体電解質層13、負極層12が積層された構造になっている。積層体10Aにおいて、1層の固体電解質層13を介して対向する一対の正極層11と負極層12とは、固体電解質層13を介して互いに部分的に重複するように設けられる。積層体10Aは、少なくとも2層の電極層(正極層11及び負極層12)と少なくとも1層の固体電解質層(固体電解質層13)とが交互に積層され、最外層に電極層(負極層12)が位置する積層体の一例である。
 尚、ここでは、1層の正極層11及び2層の負極層12、並びにそれらと交互となるように積層される2層の固体電解質層13を含む積層体10Aを例にするが、正極層11及び負極層12並びに固体電解質層13の層数は、この例に限定されるものではない。
 積層体10Aの固体電解質層13には、例えば、酸化物固体電解質のLAGPを含むものが用いられる。積層体10Aの正極層11には、例えば、正極活物質のLCPO、酸化物固体電解質のLAGP、及び導電助剤の炭素材料を含むものが用いられる。積層体10Aの負極層12には、例えば、負極活物質のアナターゼ型TiO、酸化物固体電解質のLAGP、及び導電助剤の炭素材料を含むものが用いられる。
 積層体10Aにおいて、その充電時には、正極層11から固体電解質層13を介して負極層12にリチウムイオンが伝導して取り込まれ、放電時には、負極層12から固体電解質層13を介して正極層11にリチウムイオンが伝導して取り込まれる。積層体10Aでは、対向する正極層11及び負極層12とそれらの間に介在される固体電解質層13とにおける、このようなリチウムイオン伝導によって、充放電動作が実現される。
 シリカ系ガラス材料20Aは、図2(B)に示すように、積層体10Aの正極層11の側面の一部及び負極層12の側面の一部が露出するように、積層体10Aを覆う。固体電池1Aの、シリカ系ガラス材料20Aから正極層11の一部が露出する側面が、正極引出面1Aaとなり、シリカ系ガラス材料20Aから負極層12の一部が露出する側面が、負極引出面1Abとなる。
 積層体10Aを覆うシリカ系ガラス材料20Aは、SiOを含む。シリカ系ガラス材料20Aは、SiOのほか、LiO、NaO、KO及びBのうちの少なくとも1種を含んでもよい。シリカ系ガラス材料20Aには、粒子状のAl等のセラミックス材料が添加されてもよい。シリカ系ガラス材料20Aは、絶縁性を有するほか、水分又は水素や酸素等のガスの透過性が低い性質を有する。シリカ系ガラス材料20Aは更に、固体電解質層13、正極層11及び負極層12に用いられる固体電解質よりも高い硬度を有する。
 緩衝層30Aは、積層体10Aとそれを覆うシリカ系ガラス材料20Aとの間に設けられる。この例では、緩衝層30Aは、積層体10Aの最外層の電極層である2層の負極層12の外側にそれぞれ設けられる。即ち、緩衝層30Aは、積層体10Aの負極層12とシリカ系ガラス材料20Aとの間に設けられる。緩衝層30Aは、例えば、積層体10Aの最外層に位置する2層の負極層12の外側に、負極層12を介して固体電解質層13と重複するように設けられる。シリカ系ガラス材料20Aは、正極引出面1Aaから露出する正極層11の側面の一部及び負極引出面1Abから露出する負極層12の側面の一部を除き、積層体10Aとその負極層12の外側に更に積層された緩衝層30Aとを覆うように、設けられる。緩衝層30Aには、例えば、酸化物固体電解質のLAGPが用いられる。
 外部電極40は、図2(B)に示すように、固体電池1Aの正極引出面1Aaに設けられ、正極引出面1Aaから露出する積層体10Aの正極層11の側面の一部と接続される。外部電極50は、図2(B)に示すように、固体電池1Aの負極引出面1Abに設けられ、負極引出面1Abから露出する積層体10Aの負極層12の側面の一部と接続される。外部電極40及び外部電極50には、各種導体材料が用いられる。例えば、外部電極40及び外部電極50には、銀(Ag)等の金属粒子や炭素粒子等の導電性粒子を含有した導電性ペーストを乾燥して硬化したもの、或いはスパッタ法やメッキ法等を用いた各種金属の堆積によって形成されたものが用いられる。
 上記のように、固体電池1Aでは、積層体10Aの最外層の負極層12と、積層体10Aを覆うシリカ系ガラス材料20Aとの間に、固体電解質を用いた緩衝層30Aが設けられる。これにより、負極層12とシリカ系ガラス材料20Aとの接触面積が抑えられ、後述のような製造過程で実施される焼成時における負極層12とシリカ系ガラス材料20Aとの反応、それによる異種元素の拡散や焼結不足、負極活物質の利用率低下が抑えられる。その結果、固体電池1Aの充放電特性や機械的強度の低下が抑えられる。固体電池1Aでは、積層体10A及び緩衝層30Aが、保護層としてのシリカ系ガラス材料20Aで覆われる。そのため、外部から加えられる力による割れや欠け等の損傷の発生、割れや欠けの発生した部分からの水分やガスの侵入、それによる短絡や抵抗の増大等の固体電池1Aの電池特性の低下が抑えられる。積層体10Aとシリカ系ガラス材料20Aとの間に緩衝層30Aを設ける構成によれば、シリカ系ガラス材料20Aが保護層として用いられ、且つ、優れた電池特性を示す固体電池1Aが実現される。
 [固体電池の製造方法]
 次に、固体電池の製造方法について述べる。
 (LAGP粉体)
 まず、LAGPの原料となるLiCO(炭酸リチウム)、Al、GeO(酸化ゲルマニウム)、NHPO(リン酸二水素アンモニウム)の粉末が所定の組成比となるように秤量され、磁性乳鉢やボールミルで混合される。混合によって得られた混合物は、アルミナルツボ等に入れられ、温度300℃~400℃で3時間~5時間仮焼成される。仮焼成によって得られた粉体は、温度1200℃~1400℃で1時間~2時間の熱処理によって溶解される。溶解によって得られた材料は、急冷され、ガラス化される。これにより、非晶質のLAGP粉体が形成される。尚、LAGP粉体として、非晶質のもののほか、結晶質のものが形成されてもよい。
 得られたLAGP粉体(非晶質のもの若しくは結晶質のもの又はこれらの両方)は、200μm以下の粒子径となるように粗解砕され、更にボールミル等の粉砕装置を用いて粉砕されることで、目的の粒径p(メジアン径D50)に調整される。ここで、電解質層用及び緩衝層用のLAGP粉体については、その粒径pが、例えば2μm≦p≦5μmに調整される。また、電極層用のLAGP粉体については、それぞれ粉体状の活物質の粒子間にLAGP粉体を介在させて電極層のリチウムイオン伝導性を確保する観点から、その粒径pが、電解質層用のものよりも細かい、例えば0.2μm≦p≦1.0μmに調整される。
 例えばこのような方法により、固体電池1Aの固体電解質層13、電極層である正極層11及び負極層12、並びに緩衝層30Aに用いられるLAGP粉体が準備される。
 (固体電解質ペースト)
 固体電解質が、バインダー、可塑剤、分散剤及び希釈剤等と混合され、固体電解質ペーストが準備される。固体電解質ペーストの各成分の量は、適宜調整される。一例として、固体電解質に酸化物固体電解質であるLAGPを用いた固体電解質ペーストが準備される。
 (正極ペースト)
 正極活物質、固体電解質及び導電助剤が、バインダー、可塑剤、分散剤及び希釈剤等と混合され、正極ペーストが準備される。正極ペーストの各成分の量は、適宜調整される。一例として、正極活物質にLCPO、固体電解質に酸化物固体電解質であるLAGP、導電助剤に炭素材料を用いた正極ペーストが準備される。
 (負極ペースト)
 負極活物質、固体電解質及び導電助剤が、バインダー、可塑剤、分散剤及び希釈剤等と混合され、負極ペーストが準備される。負極ペーストの各成分の量は、適宜調整される。一例として、負極活物質にアナターゼ型TiO、固体電解質に酸化物固体電解質であるLAGP、導電助剤に炭素材料を用いた負極ペーストが準備される。
 (シリカ系ガラス材料ペースト)
 SiOのガラス成分を含むシリカ系ガラス粉体が準備される。シリカ系ガラス粉体のガラス成分には、SiOのほか、LiO、NaO、KO及びBのうちの少なくとも1種が含まれてもよい。シリカ系ガラス粉体が、バインダー、可塑剤、分散剤及び希釈剤等と混合され、シリカ系ガラス材料ペーストが準備される。シリカ系ガラス材料ペーストの各成分の量は、適宜調整される。シリカ系ガラス材料ペーストには、粒子状Al等のセラミックス材料が添加されてもよい。
 上記のような固体電解質ペースト、正極ペースト、負極ペースト及びシリカ系ガラス材料ペーストが用いられ、固体電池1Aが製造される。
 (固体電解質層パーツの形成)
 図3は固体電解質層パーツの形成工程の一例について説明する図である。図3(A)には、支持体の準備工程の一例の要部斜視図を模式的に示している。図3(B)には、固体電解質層の形成工程の一例の要部斜視図を模式的に示している。図3(C)には、シリカ系ガラス材料の形成工程の一例の要部斜視図を模式的に示している。図3(D)には、支持体の分離工程の一例の要部斜視図を模式的に示している。
 図3(A)に示す支持体60には、例えば、PETフィルムが用いられる。支持体60上の一部に、図3(B)に示すように、固体電解質ペーストが所定の厚みとなるように塗工され、溶媒成分の除去のために所定の条件で乾燥されて、固体電解質層13が形成される。尚、固体電解質ペーストの塗工は、支持体60上の一部に1回行われてもよいし、複数回行われてもよい。固体電解質ペーストの乾燥は、各回の塗工後に都度行われてもよいし、複数回の塗工後に一括で行われてもよい。
 支持体60上の一部に固体電解質層13が形成された後、図3(C)に示すように、支持体60上の固体電解質層13の周囲に、シリカ系ガラス材料ペーストが塗工され、溶媒成分の除去のために所定の条件で乾燥されて、シリカ系ガラス材料20Aが形成される。尚、シリカ系ガラス材料ペーストの塗工は、支持体60上の固体電解質層13の周囲に1回行われてもよいし、複数回行われてもよい。シリカ系ガラス材料ペーストの乾燥は、各回の塗工後に都度行われてもよいし、複数回の塗工後に一括で行われてもよい。
 支持体60上に固体電解質層13及びシリカ系ガラス材料20Aが形成された後、これらから支持体60が分離される。これにより、図3(D)に示すような固体電解質層パーツ2が形成される。
 (正極層パーツの形成)
 図4は正極層パーツの形成工程の一例について説明する図である。図4(A)には、支持体の準備工程の一例の要部斜視図を模式的に示している。図4(B)には、正極層の形成工程の一例の要部斜視図を模式的に示している。図4(C)には、シリカ系ガラス材料の形成工程の一例の要部斜視図を模式的に示している。図4(D)には、支持体の分離工程の一例の要部斜視図を模式的に示している。
 図4(A)に示すようなPETフィルム等の支持体60上の一部に、図4(B)に示すように、正極ペーストが所定の厚み及び正極活物質量となるように塗工され、溶媒成分の除去のために所定の条件で乾燥されて、正極層11が形成される。尚、正極ペーストの塗工は、支持体60上の一部に1回行われてもよいし、複数回行われてもよい。正極ペーストの乾燥は、各回の塗工後に都度行われてもよいし、複数回の塗工後に一括で行われてもよい。
 支持体60上の一部に正極層11が形成された後、図4(C)に示すように、支持体60上の正極層11の周囲に、シリカ系ガラス材料ペーストが塗工され、溶媒成分の除去のために所定の条件で乾燥されて、シリカ系ガラス材料20Aが形成される。尚、シリカ系ガラス材料ペーストの塗工は、支持体60上の正極層11の周囲に1回行われてもよいし、複数回行われてもよい。シリカ系ガラス材料ペーストの乾燥は、各回の塗工後に都度行われてもよいし、複数回の塗工後に一括で行われてもよい。
 支持体60上に正極層11及びシリカ系ガラス材料20Aが形成された後、これらから支持体60が分離される。これにより、図4(D)に示すような正極層パーツ3が形成される。
 (負極層パーツの形成)
 図5は負極層パーツの形成工程の一例について説明する図である。図5(A)には、支持体の準備工程の一例の要部斜視図を模式的に示している。図5(B)には、負極層の形成工程の一例の要部斜視図を模式的に示している。図5(C)には、シリカ系ガラス材料の形成工程の一例の要部斜視図を模式的に示している。図5(D)には、支持体の分離工程の一例の要部斜視図を模式的に示している。
 図5(A)に示すようなPETフィルム等の支持体60上の一部に、図5(B)に示すように、負極ペーストが所定の厚み及び負極活物質量となるように塗工され、溶媒成分の除去のために所定の条件で乾燥されて、負極層12が形成される。尚、負極ペーストの塗工は、支持体60上の一部に1回行われてもよいし、複数回行われてもよい。負極ペーストの乾燥は、各回の塗工後に都度行われてもよいし、複数回の塗工後に一括で行われてもよい。
 支持体60上の一部に負極層12が形成された後、図5(C)に示すように、支持体60上の負極層12の周囲に、シリカ系ガラス材料ペーストが塗工され、溶媒成分の除去のために所定の条件で乾燥されて、シリカ系ガラス材料20Aが形成される。尚、シリカ系ガラス材料ペーストの塗工は、支持体60上の負極層12の周囲に1回行われてもよいし、複数回行われてもよい。シリカ系ガラス材料ペーストの乾燥は、各回の塗工後に都度行われてもよいし、複数回の塗工後に一括で行われてもよい。
 支持体60上に負極層12及びシリカ系ガラス材料20Aが形成された後、これらから支持体60が分離される。これにより、図5(D)に示すような負極層パーツ4が形成される。
 (緩衝層パーツの形成)
 図6は緩衝層パーツの形成工程の一例について説明する図である。図6(A)には、支持体の準備工程の一例の要部斜視図を模式的に示している。図6(B)には、緩衝層の形成工程の一例の要部斜視図を模式的に示している。図6(C)には、シリカ系ガラス材料の形成工程の一例の要部斜視図を模式的に示している。図6(D)には、支持体の分離工程の一例の要部斜視図を模式的に示している。
 図6(A)に示すようなPETフィルム等の支持体60上の一部に、図6(B)に示すように、固体電解質ペーストが所定の厚みとなるように塗工され、溶媒成分の除去のために所定の条件で乾燥されて、緩衝層30Aが形成される。尚、固体電解質ペーストの塗工は、支持体60上の一部に1回行われてもよいし、複数回行われてもよい。固体電解質ペーストの乾燥は、各回の塗工後に都度行われてもよいし、複数回の塗工後に一括で行われてもよい。
 支持体60上の一部に緩衝層30Aが形成された後、図6(C)に示すように、支持体60上の緩衝層30Aの周囲に、シリカ系ガラス材料ペーストが塗工され、溶媒成分の除去のために所定の条件で乾燥されて、シリカ系ガラス材料20Aが形成される。尚、シリカ系ガラス材料ペーストの塗工は、支持体60上の緩衝層30Aの周囲に1回行われてもよいし、複数回行われてもよい。シリカ系ガラス材料ペーストの乾燥は、各回の塗工後に都度行われてもよいし、複数回の塗工後に一括で行われてもよい。
 支持体60上に緩衝層30A及びシリカ系ガラス材料20Aが形成された後、これらから支持体60が分離される。これにより、図6(D)に示すような緩衝層パーツ5が形成される。
 (シート状シリカ系ガラス材料の形成)
 PETフィルム等の支持体上に、シリカ系ガラス材料ペーストが所定の厚みとなるように塗工され、溶媒成分の除去のために所定の条件で乾燥されて、シート状のシリカ系ガラス材料20Aが形成される。尚、シリカ系ガラス材料ペーストの塗工は、支持体上に1回行われてもよいし、複数回行われてもよい。シリカ系ガラス材料ペーストの乾燥は、各回の塗工後に都度行われてもよいし、複数回の塗工後に一括で行われてもよい。
 (構造体の形成)
 図7は構造体の形成工程の一例について説明する図である。図7(A)には、固体電解質層パーツ、正極層パーツ、負極層パーツ、緩衝層パーツ及びシート状シリカ系ガラス材料の積層工程の一例の要部断面図を模式的に示している。図7(B)には、裁断工程の一例の要部断面図を模式的に示している。
 上記のような固体電解質層パーツ2、正極層パーツ3、負極層パーツ4、緩衝層パーツ5及びシート状のシリカ系ガラス材料20Aの準備後、これらが図7(A)に示すような所定の順で積層され、構造体6が形成される。この例では、下から順に、シート状のシリカ系ガラス材料20A、緩衝層パーツ5、負極層パーツ4、固体電解質層パーツ2、正極層パーツ3、固体電解質層パーツ2、負極層パーツ4、緩衝層パーツ5、シート状のシリカ系ガラス材料20Aが積層され、構造体6が形成される。構造体6は、所定の圧力及び温度の条件で熱圧着される。図7(A)に示す積層工程では、構造体6に含まれる固体電解質層13、正極層11、負極層12及び緩衝層30Aは、いずれもシリカ系ガラス材料20Aで完全に覆われ、シリカ系ガラス材料20Aから露出しない状態になっている。
 構造体6は、図7(A)に示すような所定の位置C1及び位置C2で裁断される。位置C1は、その裁断面に正極層11の側面の一部がシリカ系ガラス材料20Aから露出するようになる位置であり、位置C2は、その裁断面に負極層12の側面の一部がシリカ系ガラス材料20Aから露出するようになる位置である。尚、裁断時には、正極層11の一部及び負極層12の一部が裁断されてもよい。このような位置C1及び位置C2での裁断により、図7(B)に示すような、裁断面に正極層11及び負極層12の各々の側面の一部がシリカ系ガラス材料20Aから露出する構造体7が形成される。構造体7における、正極層11及び負極層12の各々の側面の一部がシリカ系ガラス材料20Aから露出する裁断面が、それぞれ正極引出面1Aa及び負極引出面1Abとなる。
 尚、ここでは、予め固体電解質層パーツ2、正極層パーツ3、負極層パーツ4、緩衝層パーツ5及びシート状のシリカ系ガラス材料20Aを準備し、これらを所定の順に積層、熱圧着して構造体6を得て、これを所定の位置で裁断して構造体7を得る手法を例示したが、構造体7を得るための手法は、このような手法に限定されるものではない。
 例えば、支持体60上にシリカ系ガラス材料ペーストを用いてシート状のシリカ系ガラス材料20Aを形成する。そのシート状のシリカ系ガラス材料20A上の一部に固体電解質ペーストを用いて緩衝層30Aを形成し、その緩衝層30Aの周囲にシリカ系ガラス材料ペーストを用いてシリカ系ガラス材料20Aを形成し、緩衝層パーツ5に相当する層を形成する。この層上の一部に負極ペーストを用いて負極層12を形成し、その負極層12の周囲にシリカ系ガラス材料ペーストを用いてシリカ系ガラス材料20Aを形成し、負極層パーツ4に相当する層を形成する。更にこの層上の一部に固体電解質ペーストを用いて固体電解質層13を形成し、その固体電解質層13の周囲にシリカ系ガラス材料ペーストを用いてシリカ系ガラス材料20Aを形成し、固体電解質層パーツ2に相当する層を形成する。更にこの層上の一部に正極ペーストを用いて正極層11を形成し、その正極層11の周囲にシリカ系ガラス材料ペーストを用いてシリカ系ガラス材料20Aを形成し、正極層パーツ3に相当する層を形成する。これより上の各層についても同様に、固体電解質層パーツ2、負極層パーツ4及び緩衝層パーツ5に相当する層を形成し、最上層にシート状のシリカ系ガラス材料20Aを形成する。これにより、図7(A)に示すような構造体6を得る。このようにして得られた構造体6を所定の位置で裁断し、構造体7を得る。例えば、このような手法を用いて構造体7を得ることもできる。
 (構造体の焼成及び外部電極の形成)
 図8は構造体の焼成工程及び外部電極の形成工程の一例について説明する図である。図8(A)には、構造体の焼成工程の一例の要部断面図を模式的に示している。図8(B)には、外部電極の形成工程の一例の要部断面図を模式的に示している。
 裁断により得られた構造体7は、図8(A)に示すように、焼成炉70に搬送され、所定の雰囲気、温度及び時間の条件の下で、焼成される。例えば、焼成炉70に搬送された構造体7に対し、主にバインダー等の有機成分を焼失させる脱脂のための焼成、並びに、主に固体電解質や正負極活物質及びシリカ系ガラス材料を焼結させるための焼成が行われる。一例として、脱脂のための熱処理は、大気雰囲気中、500℃で7時間の加熱によって脱脂が行われ、窒素雰囲気中、600℃~625℃で2時間の加熱によって焼結が行われる。脱脂によって構造体7中のバインダー等の有機成分が焼失し、その焼失により形成される空隙を埋めるように、焼結によって固体電解質や正負極活物質及びシリカ系ガラス材料の粒子が接合又は成長し、構造体7中の各層が緻密化される。
 焼成(脱脂のための焼成及びその後の焼結のための焼成)により、固体電解質層13内及び緩衝層30A内の固体電解質が焼結される。また、正極層11内及び負極層12内の固体電解質及び正負極活物質が焼結される。これにより、図8(A)に示すような、正極層11及び負極層12とそれらの間に設けられる固体電解質層13とを有する積層体10A、並びにその積層体10Aの最上層及び最下層に位置する負極層12の外側に積層された緩衝層30Aが形成される。更に、焼成により、シリカ系ガラス材料20Aが焼結されて一体化される。これにより、積層体10A及び緩衝層30Aがシリカ系ガラス材料20Aで覆われた構造を有する、図8(A)に示すような構造体8が得られる。
 このような構造体8の形成後、その正極引出面1Aa及び負極引出面1Abにそれぞれ、図8(B)に示すように、外部電極40及び外部電極50が形成される。例えば、構造体8の正極引出面1Aa及び負極引出面1Abにそれぞれ、Agペースト等の塗布及び焼き付けにより、外部電極40及び外部電極50が形成される。外部電極40及び外部電極50には、Agペーストのほか、各種金属粒子や炭素粒子等の導電性粒子を含有した導電性ペーストを用いることもできる。また、外部電極40及び外部電極50は、スパッタ法やメッキ法等を用いた各種金属の堆積によって形成されてもよい。Ag等を含有する導電性ペーストの塗布及び焼き付け後に、スパッタ法やメッキ法等を用いた各種金属の堆積が行われ、外部電極40及び外部電極50が形成されてもよい。
 以上のような工程により、図8(B)(及び図2(A)~図2(C))に示すような構成を有する固体電池1Aが製造される。
 [固体電池の特性]
 続いて、固体電池の特性の評価結果について説明する。
 (焼結性評価)
 積層体10Aの負極層12と、積層体10Aを覆うシリカ系ガラス材料20Aとの間に、緩衝層30Aを設けた固体電池1A(図2(A)~図2(C)及び図8(B))について、その断面を走査電子顕微鏡(Scanning Electron Microscope;SEM)により観察した。また、比較のため、積層体10Aの負極層12と、積層体10Aを覆うシリカ系ガラス材料20Aとの間に、緩衝層30Aを設けていない固体電池を作製し、その断面をSEMにより観察した。
 SEMにより観察した結果を図9に示す。図9は固体電池のSEM像の一例を示す図である。図9(A)には、緩衝層を設けた固体電池のSEM像の一例を示している。図9(B)には、緩衝層を設けていない固体電池のSEM像の一例を示している。
 上記固体電池1Aでは、正極層11と固体電解質層13を介して対向する最外層の負極層12と、シリカ系ガラス材料20Aとの間に、緩衝層30Aが設けられる。このような固体電池1Aでは、図9(A)に示すように、シリカ系ガラス材料20Aと緩衝層30Aとの間に、負極活物質の利用率低下の原因となり得る、異種元素の拡散によって生じる焼結不足となった層が形成されている様子が確認された。これに対し、緩衝層30Aが設けられていない固体電池では、図9(B)に示すように、シリカ系ガラス材料20Aと負極層12との間に、異種元素の拡散によって生じる焼結不足となった層が大きく形成され、負極層12の一部の欠落80が確認された。図9(A)及び図9(B)の結果より、シリカ系ガラス材料20Aと負極層12との間に緩衝層30Aを設けることで、シリカ系ガラス材料20Aと負極層12との反応、それらの間の異種元素の拡散、それにより焼結不足となる層の形成を、緩衝層30Aにより抑え、負極層12内の負極活物質の利用率低下を効果的に抑えることが可能になると言うことができる。
 (充放電評価)
 ここでは、充放電評価用の固体電池1Aとして、正極層11、固体電解質層13及び負極層12が5並列で積層された積層体10Aを含み、その最外層の負極層12とシリカ系ガラス材料20Aとの間に緩衝層30Aを設けたものを準備した。このような構成を有する固体電池1Aについて、下記のような条件の充放電測定を行った。また、比較のため、同じく正極層11、固体電解質層13及び負極層12が5並列で積層された積層体10Aの最外層の負極層12とシリカ系ガラス材料20Aとの間に緩衝層30Aを設けていないものを準備し、これについて、下記のような条件の充放電測定を行った。
 ここで、充放電測定の条件は、次のようなものとした。充電は、定電流(Constant Current;CC)充電とし、終止電圧を3.6V、電流値を充放電共に10μAとする条件を用いた。放電は、CC放電とし、終止電圧を0Vとする条件を用いた。充放電測定は、3サイクルとし、20℃の恒温槽中で行った。
 このような条件を用いて行った充放電測定の結果を図10に示す。図10は固体電池の充放電曲線図の一例である。図10(A)には、緩衝層を設けた固体電池の充放電曲線図の一例を示している。図10(B)には、緩衝層を設けていない固体電池の充放電曲線図の一例を示している。
 図10(A)より、負極層12とシリカ系ガラス材料20Aとの間に緩衝層30Aが設けられ、5並列で放電容量45μAh設計の固体電池1Aに対し、ほぼ設計通りの放電容量が得られることが確認された。これに対し、図10(B)より、5並列で放電容量45μAh設計の固体電池であって緩衝層30Aが設けられていない固体電池では、十分な放電容量が得られないことが確認された。図10(A)及び図10(B)の結果より、シリカ系ガラス材料20Aと負極層12との間に緩衝層30Aを設けることで、固体電池1Aの充放電特性の低下を効果的に抑えることが可能になると言うことができる。
 (クラック評価)
 積層体10Aの負極層12と、積層体10Aを覆うシリカ系ガラス材料20Aとの間に、緩衝層30Aを設けた固体電池1Aについて、その内部にクラックを発生させ、断面をマイクロスコープで観察した。
 マイクロスコープにより観察した結果を図11に示す。図11は固体電池のマイクロスコープ像の一例を模式的に示す図である。図11には、内部にクラックを発生させた固体電池の断面マイクロスコープ像の一例を模式的に示している。
 図11に示すように、正極層11と固体電解質層13を介して対向する最外層の負極層12と、シリカ系ガラス材料20Aとの間に、緩衝層30Aを設けた固体電池1Aでは、その内部の積層体10Aにクラック90が発生しても、そのクラック90が緩衝層30Aでとどまる様子が確認された。図11の結果より、シリカ系ガラス材料20Aと負極層12との間に緩衝層30Aを設けることで、積層体10Aで発生するクラック90の、固体電池1Aの最表層のシリカ系ガラス材料20Aへの進展を効果的に抑えることが可能になると言うことができる。
 (考察)
 図9(A)及び図9(B)より、負極層12とシリカ系ガラス材料20Aとの間に緩衝層30Aを設けた固体電池1Aでは、緩衝層30Aを設けないものに比べて、負極層12とシリカ系ガラス材料20Aとの間の異種元素の拡散、それにより焼結不足となる層の形成を、緩衝層30Aにより抑え、負極層12内の負極活物質の利用率低下を抑えることが可能になり、これにより、十分な放電容量が得られ、充放電特性の低下を抑えることが可能になる。更に、固体電池1Aの内部の積層体10Aでクラック90が発生した際には、そのクラック90の進展を緩衝層30A内でとどめることが可能になり、これにより、シリカ系ガラス材料20Aの損傷、それによる固体電池1Aの機械的強度の低下、水分やガスの侵入等を抑えることが可能になる。
 尚、ここでは、最外層に負極層12が位置する積層体10Aを含み、その負極層12とシリカ系ガラス材料20Aとの間に緩衝層30Aを設けた固体電池1Aを例にした。このほか、最外層に正極層11が位置する積層体を含み、その正極層11とシリカ系ガラス材料20Aとの間に緩衝層30Aを設ける固体電池においても、上記同様の効果を得ることができる。
 上記については単に例を示すものである。更に、多数の変形、変更が当業者にとって可能であり、本発明は上記に示し、説明した正確な構成及び応用例に限定されるものではなく、対応する全ての変形例及び均等物は、添付の請求項及びその均等物による本発明の範囲とみなされる。
 1,1A 固体電池
 1a,1Aa 正極引出面
 1b,1Ab 負極引出面
 2 固体電解質層パーツ
 3 正極層パーツ
 4 負極層パーツ
 5 緩衝層パーツ
 6,7,8 構造体
 10,10A 積層体
 11 正極層
 12 負極層
 13 固体電解質層
 20,20A シリカ系ガラス材料
 30,30A 緩衝層
 40,50 外部電極
 60 支持体
 70 焼成炉
 80 欠落
 90 クラック

Claims (9)

  1.  少なくとも2層の電極層と少なくとも1層の固体電解質層とが交互に積層され、最外層に前記電極層が位置する積層体と、
     前記積層体を覆うシリカ系ガラス材料と、
     前記積層体の最外層に位置する前記電極層と前記シリカ系ガラス材料との間に設けられる絶縁性の緩衝層と
     を含むことを特徴とする固体電池。
  2.  前記積層体の少なくとも2層の前記電極層は、正極活物質及び第1固体電解質を含有する正極層と、負極活物質及び第2固体電解質を含有する負極層とを含むことを特徴とする請求項1に記載の固体電池。
  3.  前記積層体の最外層に位置する前記電極層は、前記負極層であることを特徴とする請求項2に記載の固体電池。
  4.  前記緩衝層は、第3固体電解質が用いられた層であることを特徴とする請求項1に記載の固体電池。
  5.  前記シリカ系ガラス材料は、SiOと、LiO、NaO、KO及びBのうちの少なくとも1種とを含有することを特徴とする請求項1に記載の固体電池。
  6.  前記積層体の少なくとも2層の前記電極層のそれぞれの一部が前記シリカ系ガラス材料から露出し、
     前記シリカ系ガラス材料から露出した前記一部と接続される外部電極を含むことを特徴とする請求項1に記載の固体電池。
  7.  少なくとも2層の電極層と少なくとも1層の固体電解質層とが交互に積層され、最外層に前記電極層が位置する積層体と、
     前記積層体を覆うシリカ系ガラス材料と、
     前記積層体の最外層に位置する前記電極層と前記シリカ系ガラス材料との間に設けられる絶縁性の緩衝層と
     を含む構造体を形成する工程と、
     前記構造体を焼成する工程と
     を含むことを特徴とする固体電池の製造方法。
  8.  前記緩衝層は、固体電解質が用いられた層であることを特徴とする請求項7に記載の固体電池の製造方法。
  9.  前記構造体は、前記積層体の少なくとも2層の前記電極層のそれぞれの一部が前記シリカ系ガラス材料から露出し、
     前記構造体を焼成する工程後に、前記シリカ系ガラス材料から露出した前記一部と接続される外部電極を形成する工程を含むことを特徴とする請求項7に記載の固体電池の製造方法。
     
PCT/JP2022/031062 2021-12-28 2022-08-17 固体電池及び固体電池の製造方法 WO2023127192A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021214980 2021-12-28
JP2021-214980 2021-12-28

Publications (1)

Publication Number Publication Date
WO2023127192A1 true WO2023127192A1 (ja) 2023-07-06

Family

ID=86998531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/031062 WO2023127192A1 (ja) 2021-12-28 2022-08-17 固体電池及び固体電池の製造方法

Country Status (2)

Country Link
TW (1) TW202343867A (ja)
WO (1) WO2023127192A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016001600A (ja) * 2014-05-19 2016-01-07 Tdk株式会社 固体電池及びそれを用いた組電池。
WO2018123319A1 (ja) * 2016-12-29 2018-07-05 株式会社 村田製作所 全固体電池、電子機器、電子カード、ウェアラブル機器および電動車両
WO2018163514A1 (ja) * 2017-03-10 2018-09-13 株式会社村田製作所 全固体電池およびその製造方法、電子機器ならびに電子カード
WO2019139070A1 (ja) * 2018-01-10 2019-07-18 Tdk株式会社 全固体リチウムイオン二次電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016001600A (ja) * 2014-05-19 2016-01-07 Tdk株式会社 固体電池及びそれを用いた組電池。
WO2018123319A1 (ja) * 2016-12-29 2018-07-05 株式会社 村田製作所 全固体電池、電子機器、電子カード、ウェアラブル機器および電動車両
WO2018163514A1 (ja) * 2017-03-10 2018-09-13 株式会社村田製作所 全固体電池およびその製造方法、電子機器ならびに電子カード
WO2019139070A1 (ja) * 2018-01-10 2019-07-18 Tdk株式会社 全固体リチウムイオン二次電池

Also Published As

Publication number Publication date
TW202343867A (zh) 2023-11-01

Similar Documents

Publication Publication Date Title
KR101553096B1 (ko) 리튬 이온 2차 전지 및 그 제조 방법
JP5910737B2 (ja) 全固体電池
KR101568437B1 (ko) 리튬이온 2차 전지 및 그 제조 방법
JP5299860B2 (ja) 全固体電池
CN111566867B (zh) 全固体锂离子二次电池
JP5304168B2 (ja) 全固体電池
US20120115039A1 (en) All Solid Secondary Battery and Manufacturing Method Therefor
KR20100057678A (ko) 비수 전해질 이차전지 및 그의 제조 방법
WO2014132320A1 (ja) 全固体イオン二次電池
US10879560B2 (en) Active material and all-solid-state lithium-ion secondary battery
US20190305306A1 (en) All-solid lithium ion secondary battery
JP5269665B2 (ja) 全固体電池及びその製造方法
WO2013100002A1 (ja) 全固体電池およびその製造方法
JP2011192606A (ja) 電解質・電極積層体の製造方法、電解質・電極積層体及び全固体電池
WO2020054549A1 (ja) 固体電池および固体電池群
WO2012060402A1 (ja) 全固体電池およびその製造方法
WO2023127192A1 (ja) 固体電池及び固体電池の製造方法
CN113228375A (zh) 全固体电池
JP2019057495A (ja) 固体電解質シート及びその製造方法、並びに全固体二次電池
JP6622974B2 (ja) 全固体電池の製造方法
JP6642901B2 (ja) 全固体電池の製造方法
WO2013035526A1 (ja) 全固体電池用積層成形体、全固体電池およびその製造方法
WO2024070051A1 (ja) 固体電池およびその製造方法
JP7372183B2 (ja) 固体電池及び固体電池の製造方法
WO2023188470A1 (ja) 全固体二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22915427

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023570648

Country of ref document: JP

Kind code of ref document: A