WO2023115686A1 - 无卤无磷阻燃形状记忆双马来酰亚胺树脂及其制备方法 - Google Patents

无卤无磷阻燃形状记忆双马来酰亚胺树脂及其制备方法 Download PDF

Info

Publication number
WO2023115686A1
WO2023115686A1 PCT/CN2022/076361 CN2022076361W WO2023115686A1 WO 2023115686 A1 WO2023115686 A1 WO 2023115686A1 CN 2022076361 W CN2022076361 W CN 2022076361W WO 2023115686 A1 WO2023115686 A1 WO 2023115686A1
Authority
WO
WIPO (PCT)
Prior art keywords
free
phosphorus
halogen
bismaleimide
preparation
Prior art date
Application number
PCT/CN2022/076361
Other languages
English (en)
French (fr)
Inventor
顾嫒娟
周肃苗
梁国正
袁莉
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Publication of WO2023115686A1 publication Critical patent/WO2023115686A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F230/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F230/04Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
    • C08F230/08Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon
    • C08F230/085Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon the monomer being a polymerisable silane, e.g. (meth)acryloyloxy trialkoxy silanes or vinyl trialkoxysilanes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0834Compounds having one or more O-Si linkage
    • C07F7/0838Compounds with one or more Si-O-Si sequences
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0834Compounds having one or more O-Si linkage
    • C07F7/0838Compounds with one or more Si-O-Si sequences
    • C07F7/0872Preparation and treatment thereof
    • C07F7/0889Reactions not involving the Si atom of the Si-O-Si sequence
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/34Monomers containing two or more unsaturated aliphatic radicals

Definitions

  • the invention relates to the field of thermosetting shape-memory polymers, in particular to a halogen-free and phosphorus-free flame-retardant shape-memory bismaleimide resin and a preparation method thereof.
  • SMPs Shape memory polymers
  • Modern industry has higher and higher requirements on the flame retardancy and heat resistance of SMPs.
  • organic polymers most SMPs do not have excellent flame retardant properties, so it is particularly important to endow SMPs with flame retardant properties, and it is also an important content direction for the development of high-performance SMPs.
  • thermosetting SMPs are divided into two categories: thermosetting and thermoplastic.
  • thermosetting SMPs have excellent mechanical properties, outstanding thermal stability and heat resistance, and show unique great potential in the cutting-edge fields that require structural/functional integrated materials.
  • flame-retardant SMPs have been developed.
  • the existing flame-retardant SMPs have the following problems: (1) The flame retardancy of most flame-retardant SMPs mainly depends on phosphorus elements, and phosphorus elements have been proved to have disadvantages such as eutrophication of water bodies and the accumulation of life, so Halogen-free and phosphorus-free flame-retardant is the development trend of research and development of SMPs; (2) glass transition temperature (Tg) is the upper limit temperature of the material, all the halogen-free phosphorus-free flame-retardant SMPs disclosed in the prior art, its Tg is lower than 100°C, it is difficult to meet the use requirements of SMPs in high temperature occasions.
  • Tg glass transition temperature
  • inorganic flame retardants such as magnesium hydroxide, aluminum hydroxide, silicon dioxide, borax, etc.
  • organosilicon-based and organoboron-based flame retardants are typical environment-friendly flame retardants. However, they each have pros and cons.
  • Organoboron-based flame retardants often lead to a decrease in the moisture absorption resistance of the modified polymer, which is an essential property of electrical and electronic materials, and the synthesis of organoboron-based flame retardants is relatively complicated.
  • Silicone-based flame retardants mainly include linear polysiloxane, polysilsesquioxane, hyperbranched polysiloxane, etc.
  • the siloxane structure can usually endow the material with excellent toughness, flame retardancy, moisture absorption and other properties , but they have their own deficiencies.
  • the flame retardancy of polysiloxane is selective, and it is often used to improve the flame retardancy of polycarbonate.
  • the improvement of the flame retardancy of other polymers often requires synergistic effects with nitrogen, phosphorus, boron and other elements;
  • the controllability of the synthesis process of semisiloxane is poor, and the polysilsesquioxane prepared at present has the problem of poor stability; and the hyperbranched polysiloxane is easy to gel during storage, which is not conducive to large-scale production. manufacturing. Therefore, there is an urgent need to develop a new type of shape memory resin with high heat resistance, halogen-free, phosphorus-free flame retardancy, and good manufacturability.
  • the technical problem to be solved by the present invention is to provide a halogen-free and phosphorus-free flame-retardant bismaleimide resin with excellent heat resistance and shape memory and a preparation method thereof.
  • the present invention provides the following technical solutions:
  • the first aspect of the present invention provides a method for preparing a halogen-free and phosphorus-free flame-retardant shape-memory bismaleimide resin, comprising the following steps:
  • the mass ratio of maleic anhydride, 1,3-bis(3-aminopropyl)-1,1,3,3-tetramethyldisiloxane, catalyst and dehydrating agent in the above preparation method is (3.46 ⁇ 11.0): (3.98 ⁇ 12.0): (0.6 ⁇ 23.22): (4.77 ⁇ 23.65).
  • the solvent is selected from one of benzene, toluene, and xylene; preferably toluene with a moderate boiling point and higher safety.
  • the time for the dropping is 0.5-1.5 h; the time for continuing the reaction is 1-2 h.
  • solution B needs to be added dropwise to solution A. If it is added directly, it will react violently and generate a lot of heat, increasing the safety factor. At the same time, the viscosity of the formed amic acid rises sharply, and finally deposits on the coating part of the bottom of the bottle. Unreacted maleic anhydride, resulting in lower yields.
  • the dehydrating agent is zinc chloride and/or zinc bromide.
  • the catalyst is hexamethyldisilazane or p-toluenesulfonic acid.
  • the preparation method also includes extraction and separation, washing and drying processes after the reflux reaction in S3.
  • the extraction and separation process specifically includes: sequentially extracting and separating the crude product with dilute hydrochloric acid, saturated sodium bicarbonate and saturated sodium chloride.
  • the catalyst is hexamethyldisilazane
  • dilute hydrochloric acid to remove the residual catalyst, that is, hexamethyldisilazane reacts under acidic conditions to form trimethylchlorosilane and NH 3 , which is equivalent to a
  • the ammonium salt in the reaction product of the coordinated ammonium salt dissolved in water and then use saturated sodium bicarbonate to remove residual hydrogen chloride, the generated sodium chloride is conducive to phase separation, and finally use saturated sodium chloride to increase the polarity of the aqueous phase and the organic phase Poor performance, which further facilitates the phase-separation extraction of the organic phase and improves the yield.
  • S1-S3 are preferably carried out in a nitrogen atmosphere to prevent some materials from reacting with oxygen and moisture in the air to produce by-products and reduce the effect or yield.
  • the molar ratio of the bismaleimide containing the siloxane structure to the diallylphenyl compound is 40:(34.4 ⁇ 45.6); the diallylphenyl compound One selected from 2,2'-diallyl bisphenol A, 5,5'-diallyl-2,2'-biphenol, 2,2'-diallyl bisphenol S one or more species.
  • the melting and mixing temperature is 135-140° C.
  • the melting and mixing time is 30-45 minutes.
  • the second aspect of the present invention provides a kind of halogen-free and phosphorus-free flame-retardant shape-memory bismaleimide resin prepared by the preparation method described in the first aspect.
  • the present invention firstly synthesizes bismaleimide containing siloxane structure through the above preparation method, and then copolymerizes it with a diallyl-containing compound to obtain a halogen-free, phosphorus-containing siloxane structure with high heat resistance shape memory resin.
  • the above-mentioned resin has a siloxane structure and a ring structure such as a six-membered ring formed by curing, which makes the resin body have good flame retardancy; the flexible aliphatic propyl group and the Si-O-Si segment make the resin still have chains at high temperatures. Segment mobility is conducive to improving the shape recovery rate; in addition, the aromatic heterocycle formed by the reaction of bismaleimide group and allyl group is conducive to the shape fixation at low temperature, thereby improving the shape fixation rate of the resin.
  • the present invention prepares an intrinsic halogen-free and phosphorus-free shape-memory bismaleimide resin through rational preparation of the resin system and regulation of the preparation process, based on a special group , segment, structure, etc., the resin has excellent shape memory performance and good heat resistance, flame retardant performance, its shape fixation rate and shape recovery rate can reach 94% and 93% respectively, and the initial thermal decomposition temperature can be as high as Above 340°C, the glass transition temperature can be as high as above 125°C, and has good bending and impact strength, suitable for use in various occasions with different performance requirements.
  • the present invention synthesizes a bismaleimide containing a siloxane structure through maleic anhydride and an amino-terminated siloxane, and then copolymerizes it with a diallyl phenyl compound to obtain a halogen-free and phosphorus-free Excellent shape memory performance, high heat resistance, flame retardant bismaleimide resin, the preparation process is simple, controllable and widely applicable, and the preparation process is suitable for industrial mass production.
  • Fig. 1 is the synthetic reaction formula of the bismaleimide containing siloxane structure
  • Fig. 2 is the hydrogen nuclear magnetic resonance spectrum ( 1 H-NMR) of bismaleimide containing siloxane structure
  • Fig. 3 is the high-resolution mass spectrum (HRMS) of the bismaleimide containing siloxane structure
  • Figure 4 is the difference between the prepolymer of the halogen-free phosphorus flame-retardant shape memory bismaleimide resin in Examples 1-3 and the bismaleimide resin prepolymer prepared in Comparative Example 1 under nitrogen atmosphere Show the scanning calorimetry (DSC) curve, the heating rate is 10 °C/min;
  • Figure 5 is the loss tangent (Tan ⁇ )-temperature curve of the halogen-free and phosphorus-free flame-retardant shape-memory bismaleimide resin prepared in Example 1-3 under air, the heating rate is 3°C/min, and the frequency is 1Hz ;
  • Fig. 6 is the thermogravimetric (TGA) curve of the halogen-free and phosphorus-free flame-retardant shape-memory bismaleimide resin prepared in Examples 1-3 and Comparative Example 1 under a nitrogen atmosphere, and the heating rate is 10°C/min;
  • Fig. 7 is the comparison chart of heat release rate-temperature curve of the halogen-free phosphorus-free flame-retardant shape-memory bismaleimide resin of embodiment 2-3 and comparative example 1;
  • Fig. 8 is the impact strength bar graph of the halogen-free phosphorus-free flame-retardant shape-memory bismaleimide resin of embodiment 1-3 and comparative example 1;
  • Fig. 9 is a digital photograph of the bending-recovery shape memory of the halogen-free and phosphorus-free flame-retardant shape-memory bismaleimide resin of Examples 1-3.
  • the resulting mixture was filtered to remove solid insoluble matter to obtain a crude product.
  • the crude product was sequentially separated and extracted with 0.5mol/L dilute hydrochloric acid solution (50mL/time, 2 times), saturated sodium bicarbonate (100mL/time, 2 times) and saturated sodium chloride (100mL/time, 2 times) , and finally collect the organic phase and remove the toluene by rotary evaporation under reduced pressure to obtain a light yellow solid, which is bismaleimide containing a siloxane structure, with a yield of 85%.
  • the synthetic reaction formula of above-mentioned bismaleimide containing siloxane structure is shown in Figure 1;
  • the bismaleimide containing siloxane structure prepared carries out NMR spectrum and high-resolution mass spectrometry characterization, NMR
  • the proton characteristic peak of the double bond on the maleimide ring appeared at 6.70ppm, and at 0.05ppm, 0.48ppm, 1.59ppm and 3.51ppm , Si-CH and the proton on the aliphatic propyl group appeared
  • the proton peak indicates that the dehydration cyclization of silicon-containing diamine and maleic anhydride has been completed to generate 1,1'-((1,1,3,3-tetramethyldisiloxane-1,3-diyl) Two (propane-3,1-diyl)) bismaleimide;
  • High-resolution mass spectrum result is as shown in Figure 3, and the theoretical molecular weight [M] of the bismaleimide containing siloxane structure is 408.
  • halogen-free and phosphorus-free flame-retardant shape-memory bismaleimide resin mix 16.34g (40.0mmol) of bismaleimide containing siloxane structure prepared above with 10.61g (34.4mmol) 2,2 '-Diallyl bisphenol A was mixed and stirred at 140°C for 30 minutes to obtain a clarified prepolymer; pour the clarified prepolymer into a preheated mold at 140°C, and pump it in a vacuum oven at 140°C Vacuum for 30min; move the vacuumized prepolymer into the blast drying oven, and cure and post-treat according to the following process: 150°C/2h+180°C/2h+200°C/2h+220°C/2h and 240°C/4h ; Release the mold after natural cooling to obtain the halogen-free and phosphorus-free shape-memory bismaleimide resin.
  • the resulting mixture was filtered to remove solid insoluble matter to obtain a crude product.
  • the crude product was sequentially separated and extracted with 0.5mol/L dilute hydrochloric acid solution (50mL/time, 2 times), saturated sodium bicarbonate (100mL/time, 2 times) and saturated sodium chloride (100mL/time, 2 times) , and finally collect the organic phase and remove the toluene by rotary evaporation under reduced pressure to obtain a light yellow solid, which is bismaleimide containing a siloxane structure.
  • halogen-free and phosphorus-free flame-retardant shape-memory bismaleimide resin 16.34g (40.0mmol) bismaleimide containing siloxane structure and 10.61g (34.4mmol) 2,2'-bismaleimide Allyl bisphenol A was mixed and stirred at 135°C for 30 minutes to obtain a clarified prepolymer; the clarified prepolymer was poured into a mold preheated at 140°C, and placed in a vacuum oven at 140°C to vacuumize for 30 minutes; The prepolymer that has been evacuated is moved into a blast drying oven, and is cured and post-treated according to the following process: 150°C/2h+180°C/2h+200°C/2h and 230°C/6h; after natural cooling, it is demoulded to obtain Halogen-free and phosphorus-free shape memory bismaleimide resin.
  • halogen-free and phosphorus-free flame-retardant shape-memory bismaleimide resin 16.34g (40.0mmol) bismaleimide containing siloxane structure and 12.34g (40.0mmol) 2,2'-bismaleimide Allyl bisphenol A was mixed and stirred at 135°C for 30 minutes to obtain a clarified prepolymer; the clarified prepolymer was poured into a mold preheated at 140°C, and placed in a vacuum oven at 140°C to vacuumize for 30 minutes; The prepolymer that has been evacuated is moved into a blast drying oven, and is cured and post-treated according to the following process: 150°C/2h+180°C/2h+200°C/2h and 220°C/12h; after natural cooling, it is demoulded to obtain Halogen-free and phosphorus-free shape memory bismaleimide resin.
  • halogen-free and phosphorus-free flame-retardant shape-memory bismaleimide resin 16.34g (40.0mmol) bismaleimide containing siloxane structure, 14.06g (45.6mmol) 2,2'-bismaleimide Allyl bisphenol A was mixed and stirred at 135°C for 30 minutes to obtain a clarified prepolymer; the clarified prepolymer was poured into a mold preheated at 140°C, and placed in a vacuum oven at 140°C to vacuumize for 30 minutes; The prepolymer that has been evacuated is moved into the blast drying oven, and is cured and post-treated according to the following process: 150°C/2h+180°C/2h+200°C/2h+220°C/2h and 250°C/6h; after natural cooling After demoulding, the halogen-free and phosphorus-free shape-memory bismaleimide resin is obtained.
  • the resulting mixture was filtered to remove solid insoluble matter to obtain a crude product.
  • the crude product was sequentially separated and extracted with 0.5mol/L dilute hydrochloric acid solution (50mL/time, 2 times), saturated sodium bicarbonate (100mL/time, 2 times) and saturated sodium chloride (100mL/time, 2 times) , and finally collect the organic phase and remove the toluene by rotary evaporation under reduced pressure to obtain a light yellow solid, that is, bismaleimide with a siloxane structure.
  • halogen-free and phosphorus-free flame-retardant shape-memory bismaleimide resin 16.34g (40.0mmol) bismaleimide with siloxane structure, 9.16g (34.4mmol) 5,5'-diene Mix propyl-2,2'-biphenyldiphenol and stir at 140°C for 45 minutes to obtain a clear prepolymer; pour the clear prepolymer into a preheated mold at 140°C and put it in a vacuum oven at 140°C Vacuum inside for 30 minutes; move the vacuumized prepolymer into the blast drying oven, and cure and post-treat according to the following process: 150°C/2h+180°C/2h+200°C/2h+220°C/2h and 240°C /4h; demoulding after natural cooling to obtain a halogen-free and phosphorus-free shape-memory bismaleimide resin.
  • halogen-free and phosphorus-free flame-retardant shape-memory bismaleimide resin 16.34g (40.0mmol) bismaleimide with siloxane structure, 10.65g (40.0mmol) 5,5'-diene Mix propyl-2,2'-biphenyldiphenol and stir at 138°C for 40 minutes to obtain a clear prepolymer; pour the clear prepolymer into a preheated mold at 140°C and put it in a vacuum oven at 140°C Vacuum inside for 30 minutes; move the vacuumized prepolymer into the blast drying oven, and cure and post-treat according to the following process: 150°C/2h+180°C/2h+200°C/2h+220°C/2h and 240°C /4h; demoulding after natural cooling to obtain a halogen-free and phosphorus-free shape-memory bismaleimide resin.
  • halogen-free and phosphorus-free flame-retardant shape-memory bismaleimide resin 16.34g (40.0mmol) bismaleimide containing siloxane structure, 12.14g (45.6mmol) 5,5'-bismaleimide Mix allyl-2,2'-biphenyldiphenol and stir at 135°C for 45 minutes to obtain a clear prepolymer; pour the clear prepolymer into a preheated mold at 140°C and put it in a vacuum at 140°C Vacuum the oven for 30 minutes; move the vacuumized prepolymer into the blast drying oven, and cure and post-treat according to the following process: 150°C/2h+180°C/2h+200°C/2h+220°C/2h and 230°C °C/8h; demoulding after natural cooling to obtain halogen-free and phosphorus-free shape-memory bismaleimide resin.
  • the crude product was sequentially separated and extracted with 0.5mol/L dilute hydrochloric acid solution (100mL/time, 2 times), saturated sodium bicarbonate (120mL/time, 2 times) and saturated sodium chloride (120mL/time, 2 times) , and finally collect the organic phase and remove the toluene by rotary evaporation under reduced pressure to obtain a light yellow solid, that is, bismaleimide with a siloxane structure.
  • halogen-free and phosphorus-free flame-retardant shape-memory bismaleimide resin 16.34g (40.0mmol) bismaleimide with siloxane structure, 9.16g (34.4mmol) 5,5'-diene Mix propyl-2,2'-biphenyldiphenol and stir at 135°C for 40 minutes to obtain a clear prepolymer; pour the clear prepolymer into a preheated mold at 140°C and put it in a vacuum oven at 140°C Vacuum inside for 30 minutes; move the vacuumized prepolymer into the blast drying oven, and cure and post-treat according to the following process: 150°C/2h+180°C/2h+200°C/2h+220°C/2h and 250°C /5h; demoulding after natural cooling to obtain halogen-free and phosphorus-free shape-memory bismaleimide resin.
  • the crude product was separated with 0.5mol/L dilute hydrochloric acid solution (150mL/time, 2 times), saturated sodium bicarbonate solution (160mL/time, 2 times) and saturated sodium chloride (160mL/time, 2 times) Extraction, and finally collect the organic phase and remove the toluene by rotary evaporation under reduced pressure to obtain a light yellow solid, which is bismaleimide with a siloxane structure.
  • halogen-free and phosphorus-free flame-retardant shape-memory bismaleimide resin 16.34g (40.0mmol) bismaleimide with siloxane structure, 10.65g (40.0mmol) 5,5'-diene Mix propyl-2,2'-biphenyldiphenol and stir at 140°C for 45 minutes to obtain a clear prepolymer; pour the clear prepolymer into a preheated mold at 140°C and put it in a vacuum oven at 140°C Vacuum inside for 30min; move the vacuumized prepolymer into the blast drying oven, and solidify and post-treat according to the following process: 150°C/2h+180°C/2h+200°C/2h and 220°C/12h; natural cooling After demoulding, the halogen-free and phosphorus-free shape-memory bismaleimide resin is obtained.
  • the crude product was sequentially analyzed with 0.5mol/L dilute hydrochloric acid solution (150mL/time, 2 times), saturated sodium bicarbonate solution (200mL/time, 2 times) and saturated sodium chloride solution (200mL/time, 2 times). Liquid extraction, and finally collect the organic phase and remove the toluene by rotary evaporation under reduced pressure to obtain a light yellow solid, which is bismaleimide containing siloxane structure.
  • halogen-free and phosphorus-free flame-retardant shape-memory bismaleimide resin 16.34g (40.0mmol) bismaleimide with siloxane structure, 12.14g (45.6mmol) 5,5'-diene Mix propyl-2,2'-biphenyldiphenol and stir at 135°C for 30 minutes to obtain a clear prepolymer; pour the clear prepolymer into a preheated mold at 140°C and put it in a vacuum oven at 140°C Vacuum inside for 30min; move the vacuumized prepolymer into the blast drying oven, and cure and post-treat according to the following process: 150°C/2h+180°C/2h+200°C/2h+220°C/4h and 230°C /8h; demoulding after natural cooling, and the halogen-free and phosphorus-free shape-memory bismaleimide resin is obtained.
  • the crude product was sequentially separated and extracted with 0.5mol/L dilute hydrochloric acid solution (100mL/time, 2 times), saturated sodium bicarbonate (120mL/time, 2 times) and saturated sodium chloride (120mL/time, 2 times) , and finally collect the organic phase and remove benzene by rotary evaporation under reduced pressure to obtain a light yellow solid, that is, bismaleimide with a siloxane structure.
  • halogen-free and phosphorus-free flame-retardant shape-memory bismaleimide resin 16.34g (40.0mmol) bismaleimide with siloxane structure, 11.37g (34.4mmol) 2,2'-diene Mix propyl-bisphenol S and stir at 140°C for 30 minutes to obtain a clarified prepolymer; pour the clarified prepolymer into a mold preheated at 140°C, and put it in a vacuum oven at 140°C to vacuumize for 30 minutes; The prepolymer after vacuuming is moved into the blast drying oven, and solidified and post-treated according to the following process: 150°C/2h+180°C/2h+200°C/2h+220°C/2h and 250°C/5h; after natural cooling After demoulding, the halogen-free and phosphorus-free shape-memory bismaleimide resin is obtained.
  • the crude product was sequentially separated and extracted with 0.5mol/L dilute hydrochloric acid solution (100mL/time, 2 times), saturated sodium bicarbonate (120mL/time, 2 times) and saturated sodium chloride (120mL/time, 2 times) , and finally collect the organic phase and remove the toluene by rotary evaporation under reduced pressure to obtain a light yellow solid, that is, bismaleimide with a siloxane structure.
  • halogen-free and phosphorus-free flame-retardant shape-memory bismaleimide resin 16.34g (40.0mmol) bismaleimide with siloxane structure, 13.22g (40.0mmol) 2,2'-diene Propyl-bisphenol S was mixed, stirred at 135°C for 40 minutes to obtain a clarified prepolymer; pour the clarified prepolymer into a preheated mold at 140°C, and put it into a vacuum oven at 140°C for 30 minutes; The prepolymer after vacuuming is moved into the blast drying oven, and solidified and post-treated according to the following process: 150°C/2h+180°C/2h+200°C/2h+220°C/2h and 240°C/8h; after natural cooling After demoulding, the halogen-free and phosphorus-free shape-memory bismaleimide resin is obtained.
  • the resulting mixture was filtered to remove solid insoluble matter to obtain a crude product.
  • the crude product was sequentially separated and extracted with 0.5mol/L dilute hydrochloric acid solution (100mL/time, 2 times), saturated sodium bicarbonate (120mL/time, 2 times) and saturated sodium chloride (120mL/time, 2 times) , and finally collect the organic phase and remove the solvent by rotary evaporation under reduced pressure to obtain a light yellow solid, that is, bismaleimide with a siloxane structure.
  • halogen-free and phosphorus-free flame-retardant shape-memory bismaleimide resin 16.34g (40.0mmol) bismaleimide with siloxane structure, 15.07g (45.6mmol) 2,2'-diene Propyl bisphenol S was mixed and stirred at 135°C for 45 minutes to obtain a clarified prepolymer; the clarified prepolymer was poured into a mold preheated at 140°C, and placed in a vacuum oven at 140°C for 30 minutes; The vacuum-finished prepolymer is moved into the blast drying oven, and is cured and post-treated according to the following process: 150°C/2h+180°C/2h+200°C/2h+220°C/12h; after natural cooling, it is demoulded to obtain no Halogenated phosphorus-free shape memory bismaleimide resin.
  • the crude product was separated with 0.5mol/L dilute hydrochloric acid solution (150mL/time, 2 times), saturated sodium bicarbonate solution (160mL/time, 2 times) and saturated sodium chloride (160mL/time, 2 times) Extraction, and finally collect the organic phase and remove the toluene by rotary evaporation under reduced pressure to obtain a light yellow solid, which is bismaleimide with a siloxane structure.
  • halogen-free and phosphorus-free flame-retardant shape-memory bismaleimide resin 16.34g (40.0mmol) bismaleimide with siloxane structure, 6.17g (20.0mmol) 2,2'-diene Propyl bisphenol A and 5.33g (20.0mmol) 5,5'-diallyl-2,2'-biphenyldiphenol were mixed and stirred at 140°C for 30min to obtain a clear prepolymer; the clear prepolymer Pour the prepolymer into a preheated mold at 140°C, put it in a vacuum oven at 140°C for 30 minutes and vacuumize it for 30 minutes; move the vacuumized prepolymer into a blast drying oven, and cure and post-process according to the following process: 150°C/ 2h+180°C/2h+200°C/2h and 250°C/2h; after natural cooling, release the mold to obtain halogen-free and phosphorus-free shape memory bismaleimide resin.
  • the crude product was sequentially analyzed with 0.5mol/L dilute hydrochloric acid solution (150mL/time, 2 times), saturated sodium bicarbonate solution (200mL/time, 2 times) and saturated sodium chloride solution (200mL/time, 2 times). Liquid extraction, and finally collect the organic phase and remove the toluene by rotary evaporation under reduced pressure to obtain a light yellow solid, which is bismaleimide containing siloxane structure.
  • halogen-free and phosphorus-free flame-retardant shape-memory bismaleimide resin 16.34g (40.0mmol) bismaleimide of siloxane structure, 4.69g (15.2mmol) 2,2'-diene Propyl bisphenol A, 5.02g (15.2mmol) 2,2'-diallyl bisphenol S and 4.05g (15.2mmol) 5,5'-diallyl-2,2'-biphenyldiol Mix and stir at 135°C for 30 minutes to obtain a clarified prepolymer; pour the clarified prepolymer into a mold preheated at 140°C, and put it in a vacuum oven at 140°C for 30 minutes; The body is moved into the blast drying oven, and solidified and post-treated according to the following process: 180°C/2h+200°C/2h+220°C/4h and 240°C/6h; after natural cooling, the mold is demoulded, and the halogen-free and phosphorus-free shape memory is
  • the crude product was sequentially separated and extracted with 0.5mol/L dilute hydrochloric acid solution (100mL/time, 2 times), saturated sodium bicarbonate (120mL/time, 2 times) and saturated sodium chloride (120mL/time, 2 times) , and finally collect the organic phase and remove benzene by rotary evaporation under reduced pressure to obtain a light yellow solid, that is, bismaleimide with a siloxane structure.
  • halogen-free and phosphorus-free flame-retardant shape-memory bismaleimide resin 16.34g (40.0mmol) bismaleimide with siloxane structure, 6.17g (20mmol) 2,2'-diallyl Diallyl-bisphenol A and 6.61g (20mmol) 2,2'-diallyl-bisphenol S were mixed and stirred at 140°C for 30min to obtain a clear prepolymer; pour the clear prepolymer into 140°C for preheating Put the finished mold into a vacuum oven at 140°C for 30 minutes to vacuumize; move the prepolymer after vacuumization into a blast drying oven, and cure and post-treat according to the following process: 150°C/2h+180°C/2h+ 200°C/2h+220°C/2h and 250°C/5h; after natural cooling, release the mold to obtain halogen-free and phosphorus-free shape memory bismaleimide resin.
  • the crude product was sequentially separated and extracted with 0.5mol/L dilute hydrochloric acid solution (100mL/time, 2 times), saturated sodium bicarbonate (120mL/time, 2 times) and saturated sodium chloride (120mL/time, 2 times) , and finally collect the organic phase and remove the toluene by rotary evaporation under reduced pressure to obtain a light yellow solid, that is, bismaleimide with a siloxane structure.
  • halogen-free and phosphorus-free flame-retardant shape-memory bismaleimide resin 16.34g (40.0mmol) bismaleimide with siloxane structure, 5.33g (20.0mmol) 5,5'-diene Propyl-2,2'-diphenol and 6.61g (20.0mmol) 2,2'-diallyl-bisphenol S were mixed and stirred at 135°C for 40min to obtain a clear prepolymer; Pour the polymer into a preheated mold at 140°C, put it in a vacuum oven at 140°C for 30 minutes to vacuum; move the vacuumized prepolymer into a blast drying oven, and cure and post-treat according to the following process: 180°C /2h+200°C/2h+220°C/2h and 250°C/8h; demoulding after natural cooling to obtain halogen-free and phosphorus-free shape memory bismaleimide resin.
  • the resulting mixture was filtered to remove solid insoluble matter to obtain a crude product.
  • the crude product was sequentially separated and extracted with 0.5mol/L dilute hydrochloric acid solution (50mL/time, 2 times), saturated sodium bicarbonate (100mL/time, 2 times) and saturated sodium chloride (100mL/time, 2 times) , and finally collect the organic phase and remove the toluene by rotary evaporation under reduced pressure to obtain a light yellow solid, that is, bismaleimide with a siloxane structure.
  • halogen-free and phosphorus-free flame-retardant shape-memory bismaleimide resin 16.34g (40.0mmol) bismaleimide with siloxane structure, 3.08g (10.0mmol) 2,2'-diene Propyl bisphenol A, 2.66g (10.0mmol) 5,5'-diallyl-2,2'-diphenol and 4.76g (14.4mmol) 2,2'-diallyl bisphenol S Mix and stir at 135°C for 45 minutes to obtain a clarified prepolymer; pour the clarified prepolymer into a mold preheated at 140°C, and put it in a vacuum oven at 140°C for 30 minutes; vacuumize the prepolymer The body was moved into a blast drying oven, and solidified and post-treated according to the following process: 150°C/2h+180°C/2h+200°C/2h+220°C/2h and 250°C/12h; after natural cooling, demoulding, that is, no Halogenated phosphorus-free
  • the resulting mixture was filtered to remove solid insoluble matter to obtain a crude product.
  • the crude product was sequentially separated and extracted with 0.5mol/L dilute hydrochloric acid solution (50mL/time, 2 times), saturated sodium bicarbonate (100mL/time, 2 times) and saturated sodium chloride (100mL/time, 2 times) , and finally collect the organic phase and remove the toluene by rotary evaporation under reduced pressure to obtain a light yellow solid, that is, bismaleimide with a siloxane structure.
  • halogen-free and phosphorus-free flame-retardant shape-memory bismaleimide resin 16.34g (40.0mmol) bismaleimide with siloxane structure, 5.30g (17.2mmol) 2,2'-diene Propyl bisphenol A, 4.58g (17.2mmol) 5,5'-diallyl-2,2'-biphenyldiphenol were mixed and stirred at 135°C for 45min to obtain a clear prepolymer; the clear prepolymer Pour the prepolymer into a preheated mold at 140°C, put it in a vacuum oven at 140°C for 30 minutes and vacuumize it for 30 minutes; move the vacuumized prepolymer into a blast drying oven, and cure and post-process according to the following process: 150°C/ 2h+180°C/2h+200°C/2h+220°C/2h and 230°C/10h; demoulding after natural cooling to obtain halogen-free and phosphorus-free shape memory bismaleimide
  • the resulting mixture was filtered to remove solid insoluble matter to obtain a crude product.
  • the crude product was sequentially separated and extracted with 0.5mol/L dilute hydrochloric acid solution (50mL/time, 2 times), saturated sodium bicarbonate (100mL/time, 2 times) and saturated sodium chloride (100mL/time, 2 times) , and finally collect the organic phase and remove the toluene by rotary evaporation under reduced pressure to obtain a light yellow solid, that is, bismaleimide with a siloxane structure.
  • halogen-free and phosphorus-free flame-retardant shape-memory bismaleimide resin 16.34g (40.0mmol) bismaleimide with siloxane structure, 5.61g (18.2mmol) 2,2'-diene Mix propyl bisphenol A and 5.35g (16.2mmol) 2,2'-diallyl bisphenol S, stir at 135°C for 40min to obtain a clear prepolymer; pour the clear prepolymer into 140°C for preheating Put the finished mold into a vacuum oven at 140°C for 30 minutes to vacuumize; move the prepolymer after vacuumization into a blast drying oven, and cure and post-treat according to the following process: 180°C/2h+200°C/2h+ 220°C/2h and 240°C/10h; after natural cooling, release the mold to obtain halogen-free and phosphorus-free shape memory bismaleimide resin.
  • the resulting mixture was filtered to remove solid insoluble matter to obtain a crude product.
  • the crude product was sequentially separated and extracted with 0.5mol/L dilute hydrochloric acid solution (50mL/time, 2 times), saturated sodium bicarbonate (100mL/time, 2 times) and saturated sodium chloride (100mL/time, 2 times) , and finally collect the organic phase and remove the toluene by rotary evaporation under reduced pressure to obtain a light yellow solid, that is, bismaleimide with a siloxane structure.
  • halogen-free and phosphorus-free flame-retardant shape-memory bismaleimide resin 16.34g (40.0mmol) bismaleimide with siloxane structure, 7.03g (22.8mmol) 2,2'-diene Propyl bisphenol A and 7.53g (22.8mmol) 2,2'-diallyl bisphenol S were mixed and stirred at 135°C for 40min to obtain a clear prepolymer; pour the clear prepolymer into 140°C for preheating Put the finished mold into a vacuum oven at 140°C for 30 minutes to vacuumize; move the prepolymer after vacuumization into a blast drying oven, and cure and post-treat according to the following process: 180°C/2h+200°C/2h+ 220°C/2h and 230°C/8h; demoulding after natural cooling to obtain halogen-free and phosphorus-free shape-memory bismaleimide resin.
  • the resulting mixture was filtered to remove solid insoluble matter to obtain a crude product.
  • the crude product was sequentially separated and extracted with 0.5mol/L dilute hydrochloric acid solution (50mL/time, 2 times), saturated sodium bicarbonate (100mL/time, 2 times) and saturated sodium chloride (100mL/time, 2 times) , and finally collect the organic phase and remove the toluene by rotary evaporation under reduced pressure to obtain a light yellow solid, that is, bismaleimide with a siloxane structure.
  • halogen-free and phosphorus-free flame-retardant shape-memory bismaleimide resin 16.34g (40.0mmol) bismaleimide with siloxane structure, 5.16g (22.8mmol) 5,5'-diene Propyl-2,2'-diphenol and 7.53g (22.8mmol) 2,2'-diallyl bisphenol S were mixed and stirred at 135°C for 40min to obtain a clear prepolymer; the clear prepolymer Pour the prepolymer into a preheated mold at 140°C, put it in a vacuum oven at 140°C for 30 minutes, and move the vacuumized prepolymer into a blast drying oven, and cure and post-process according to the following process: 180°C/ 2h+200°C/2h+220°C/2h and 230°C/8h; after natural cooling, release the mold to obtain halogen-free and phosphorus-free shape memory bismaleimide resin.
  • halogen-free and phosphorus-free flame-retardant shape-memory bismaleimide resin 16.34g (40.0mmol) bismaleimide containing siloxane structure, 9.25g (30.0mmol) 2,2'-bismaleimide Allyl bisphenol A and 5.15g (15.6mmol) 2,2'-diallyl bisphenol S were mixed, stirred at 135°C for 30min to obtain a clear prepolymer; pour the clear prepolymer into a prepolymer at 140°C Put the heated mold into a vacuum oven at 140°C for 30 minutes; move the prepolymer into a blast drying oven, and cure and post-treat according to the following process: 150°C/2h+180°C/2h +200°C/2h+240°C/12h; after natural cooling, release the mold to obtain halogen-free and phosphorus-free shape memory bismaleimide resin.
  • the DSC curve of the prepolymer is shown in Figure 4, from which it can be seen that the maximum reaction exothermic peaks of the halogen-free and phosphorus-free flame-retardant shape-memory bismaleimide resins of Examples 1-3 are 253.0°C, 255.1°C, and 253.7°C, respectively , is not much different from the maximum reaction exothermic peak of the diallyl bisphenol A modified bismaleimide resin of Comparative Example 1 at 249.4°C, indicating that the halogen-free and phosphorus-free flame-retardant shape memory of Examples 1-3
  • the bismaleimide resin and the 2,2'-diallyl bisphenol A modified bismaleimide resin in Comparative Example 1 can adopt the same curing and post-treatment process.
  • Fig. 5 is the Tan ⁇ -temperature curve of the halogen-free and phosphorus-free flame-retardant shape-memory resin prepared in Examples 1-3 under air atmosphere, and its glass transition temperatures are 149.0°C, 160.1°C, and 126.4°C respectively (reported in existing literature at present)
  • the Tg of the halogen-free and phosphorus-free flame-retardant shape-memory resin is generally lower than 100° C.), indicating that the halogen-free and phosphorus-free flame-retardant shape-memory resin prepared by the present invention has outstanding heat resistance.
  • Fig. 6 is the TGA curve of the cured resin that embodiment 1-3 prepares, therefrom it can be seen that the initial thermal decomposition temperature (T di ) of the cured resin prepared by embodiment 1-3 generally takes the temperature when the thermal weight loss is 5wt%. It is commonly used in To evaluate the thermal stability of the material, the higher the T di value of the material, the better the heat resistance) are 382.2°C, 385.6°C, and 345.5°C respectively, indicating that the halogen-free and phosphorus-free flame-retardant shape-memory bismaleimide prepared by the present invention Amine resins have good thermal stability.
  • the carbon residues of the cured resins prepared in Examples 1-3 at 800°C are 31.2wt%, 44.7wt%, and 31.4wt%, all of which are higher than those of the bismaleimide resin prepared in Comparative Example 1 carbon residue (29.5wt%).
  • the char residue of the thermosetting resin has a linear relationship with the flame retardancy, which means that the cured resin prepared in Examples 1-3 has better flame retardancy.
  • Fig. 7 is the microcalorimetric test curve of the resin prepared by embodiment 2, 3 and comparative example 1, as can be seen from the figure, the heat release rate and the total heat release amount of the flame retardant bismaleimide resin prepared by implementing 2, 3 Significantly lower than the corresponding value of the diallyl bisphenol A modified bismaleimide resin prepared in Comparative Example 1, it shows that the halogen-free and phosphorus-free flame-retardant shape-memory bismaleimide resin prepared by implementing 2 and 3 Has good flame retardant properties.
  • Characterization of impact strength performance Characterize the impact strength of the resins prepared in Examples 1-3 and Comparative Example 1.
  • the impact strength can reflect the toughness of the material to a certain extent.
  • Good toughness is one of the necessary conditions for the preparation of shape memory materials.
  • the characterization results are shown in Figure 8.
  • the impact strengths of the bismaleimide resins prepared in Examples 1-3 were 12.09kJ/m 2 , 14.42kJ/m 2 , and 18.77kJ/m 2 , all of which were higher than those of Comparative Examples
  • the impact strength (10.81kJ/m 2 ) of the bismaleimide resin prepared in 1 shows that the toughness of the halogen-free and phosphorus-free bismaleimide resin prepared in Examples 1-3 is better than that of the comparison Example 1 prepared bismaleimide resin.
  • a DMA method test.
  • b DSC method test.
  • the halogen-free and phosphorus-free flame-retardant shape-memory bismaleimide resin prepared in Embodiment 1-3 of the present invention has Outstanding heat resistance and dual shape memory properties. It is worth noting that although flame retardancy and shape memory properties are mentioned in some of the above-mentioned patents, the patent specifications do not give information related to glass transition temperature (Tg), thermal initial decomposition temperature (Tdi) and shape memory properties. Data, so the performance of these documents in Table 1 cannot be confirmed and cannot be given (indicated by N/A).
  • the halogen-free and phosphorus-free shape memory bismaleimide resin prepared by the present invention has good flame retardancy and heat resistance, and simultaneously has excellent toughness and double shape memory performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Silicon Polymers (AREA)

Abstract

无卤无磷阻燃形状记忆双马来酰亚胺树脂及其制备方法,主要以马来酸酐、1,3-双(3-氨基丙基)-1,1,3,3-四甲基二硅氧烷及二烯丙基苯基化合物为原料,通过含硅二胺与马来酸酐之间的酰胺化和脱水环化反应合成新型含硅氧烷结构的双马来酰亚胺单体后,再加入二烯丙基苯基化合物混合均匀,固化得到所述双马来酰亚胺树脂。上述制备方法具有良好的工艺性,制备得到的双马来酰亚胺树脂经过4次弯曲-回复循环测试后仍有具有优异的形状记忆性能,且具有良好的阻燃性、优异耐热性和韧性,在高温场合下温敏传感器及自展开结构等材料方面具有广泛的应用潜力。

Description

[根据细则37.2由ISA制定的发明名称] 无卤无磷阻燃形状记忆双马来酰亚胺树脂及其制备方法 技术领域
本发明涉及热固性形状记忆聚合物领域,具体涉及一种无卤无磷阻燃形状记忆双马来酰亚胺树脂及其制备方法。
背景技术
形状记忆聚合物(SMPs)作为一种刺激-响应性地主动变形智能材料,一直受到工业界和学术界广泛关注,其应用领域也越来越广阔。现代工业对SMPs的阻燃性和耐热性的要求越来越高。但作为有机高分子,绝大多数SMPs本身不具有优异的阻燃性能,因此赋予SMPs阻燃性能就显得尤为重要,同时也是高性能SMPs研发的重要内容方向。
SMPs分为热固性和热塑性两类,其中热固性SMPs具有优异的力学性能、突出的热稳定性和耐热性,在需求结构/功能一体化材料的尖端领域中显示出独特的巨大潜力。目前,已开发了多种阻燃型SMPs。但现有阻燃SMPs均存在以下问题:(1)大多数阻燃型SMPs阻燃性的发挥主要依赖含磷元素,而磷元素被证明具有水体富营养化和生命的聚积性等弊端,因此无卤无磷阻燃是研发SMPs的发展趋势;(2)玻璃化转变温度(Tg)是材料的使用上限温度,所有现有技术公开的无卤无磷阻燃型SMPs,其Tg均低于100℃,难以满足SMPs在高温场合的使用需求。
传统的无机阻燃剂(如氢氧化镁、氢氧化铝、二氧化硅、硼砂等),以及有机硅系、有机硼系阻燃剂是典型的环境友好型阻燃剂。然而,它们各有利弊。为提升无机阻燃剂与聚合物之间的界面相容性,往往涉及到复杂的无机阻燃剂的改性,并且无机阻燃剂的阻燃性能的发挥往往是以高添加量(>30wt%)和良好的分散性为前提。有机硼系阻燃剂往往会导致改性聚合物的抗吸湿性能下降,而抗吸湿性能是电子电气材料的必备性能,并且有机硼系阻燃剂的合成也相对复杂。有机硅系阻燃剂主要包括线性聚硅氧烷、聚倍半硅氧烷、超支化聚硅氧烷等,硅氧烷结构通常可赋予材料优良的韧性、阻燃性、抗吸湿性能等性能,但是它们各自存在不足。例如,聚硅氧烷阻燃性的发挥存在选择性,常用于改善聚碳酸酯的阻燃性能,对其它聚合物阻燃性能的改善往往需要与氮、磷、硼等元素协同作用;聚倍半硅氧烷合成工艺的可控性差,且目前制备得到的聚倍半硅氧烷存在稳定性不好的问题;而超支化聚硅氧烷在储存过程中易凝胶,不利于大规模的生产制造。因此,目前亟需研发一种兼具高耐热、无卤无磷阻燃、良好工艺性的新型形状记忆树脂。
发明内容
本发明要解决的技术问题是提供一种兼具优良的耐热性和形状记忆性的无卤无磷阻燃双马来酰胺树脂及其制备方法。
为解决上述技术问题,本发明提供以下技术方案:
本发明第一方面提供一种无卤无磷阻燃形状记忆双马来酰亚胺树脂的制备方法,包含以下步骤:
S1:将马来酸酐溶解于溶剂中,得到溶液A;将1,3-双(3-氨基丙基)-1,1,3,3-四甲基二硅氧烷溶于溶剂中,得到溶液B;
S2:在搅拌条件下,将溶液B滴加至溶液A中,滴加结束后继续反应得到混合物;
S3:向混合物中加入脱水剂、催化剂,升温至回流,反应得到含硅氧烷结构的双马来酰亚胺;
S4:将上述硅氧烷结构的双马来酰亚胺与二烯丙基苯基化合物进行熔融预聚,再经过固化、后处理得到所述无卤无磷阻燃形状记忆双马来酰亚胺树脂。
进一步地,上述制备方法中马来酸酐、1,3-双(3-氨基丙基)-1,1,3,3-四甲基二硅氧烷、催化剂、脱水剂的质量比为(3.46~11.0):(3.98~12.0):(0.6~23.22):(4.77~23.65)。
进一步地,S1中,所述溶剂选自苯、甲苯、二甲苯中的一种;优选沸点适中、安全性更高的甲苯。
进一步地,S2中,所述滴加的时间为0.5~1.5h;所述继续反应的时间为1~2h。
S2中需将溶液B通过滴加的方式加入溶液A中,若直接加入,会剧烈反应产生大量的热,增加不安全系数,同时形成的酰胺酸粘度急剧上升,最终沉积在瓶底包覆部分未反应的马来酸酐,导致产率降低。
进一步地,所述脱水剂为氯化锌和/或溴化锌。
进一步地,所述催化剂为六甲基二硅氮烷或对甲苯磺酸。
进一步地,所述制备方法还包括S3中回流反应后的萃取分离、洗涤、干燥过程。
进一步地,所述萃取分离过程具体为:将粗产物依次用稀盐酸、饱和碳酸氢钠和饱和氯化钠进行萃取分离。
若催化剂为六甲基二硅氮烷,先利用稀盐酸去除残余催化剂,即六甲基二硅氮烷在酸性条件下反应生成三甲基氯硅烷跟NH 3,也就相当于于一种可溶于水的配位铵盐的反应产物中铵盐,再利用饱和碳酸氢钠去除残余的氯化氢,生成的氯化钠有利于分相,最后使用饱和氯化钠增加水相和有机相的极性差,进一步有利于有机相的分相提取,提高产率。
进一步地,S1~S3优选在氮气气氛中进行,防止部分物料与空气中氧气、水分反应,产生副产物,降低效果或产率。
进一步地,S4中,所述含硅氧烷结构的双马来酰亚胺与二烯丙基苯基化合物的摩尔比为40:(34.4~45.6);所述的二烯丙基苯基化合物选自2,2’-二烯丙基双酚A、5,5’-二烯丙基-2,2’-联苯二酚、2,2’-二烯丙基双酚S中的一种或多种。
进一步地,S4中,所述熔融混合的温度为135~140℃,熔融混合的时间为30~45min。
本发明第二方面提供了第一方面所述制备方法制备得到的一种无卤无磷阻燃形状记忆 双马来酰亚胺树脂。
本发明通过上述制备方法先合成了含硅氧烷结构的双马来酰亚胺,再将其与含二烯丙基的化合物共聚制备得到无卤无磷含硅氧烷结构的高耐热型的形状记忆树脂。上述树脂内部具有硅氧烷结构和固化形成的六元环等环状结构,使树脂本体具有良好的阻燃性能;柔性脂肪丙基和Si-O-Si链段使树脂在高温下仍具有链段活动能力,有利于提高形状回复率;此外,由双马来酰亚胺基团与烯丙基反应生成的芳杂环有利于低温下的形状固定,从而提高树脂的形状固定率。
与现有技术相比,本发明的有益效果在于:
1.较之传统的SMPs相比,本发明通过对树脂体系的合理配制以及制备工艺的调控,制备得到一种本征型无卤无磷形状记忆双马来酰亚胺树脂,基于特殊基团、链段、结构等,该树脂具有优异的形状记忆性能和良好的耐热、阻燃性能,其形状固定率和形状回复率分别可达94%和93%以上,起始热分解温度可高达340℃以上、玻璃化转变温度亦可高达125℃以上,且具有良好的弯曲、冲击强度,适用于不同性能需求的多种场合的使用要求。
2.本发明通过马来酸酐与端氨基硅氧烷合成含硅氧烷结构的双马来酰亚胺,再将其与含二烯丙基苯基化合物共聚制备得到一种无卤无磷具有优异的形状记忆性能、高耐热性、阻燃的双马来酰亚胺树脂,制备工艺操作简单、可控且适用性广,该制备工艺适用于工业化量产。
附图说明
图1为含硅氧烷结构的双马来酰亚胺的合成反应式;
图2为含硅氧烷结构的双马来酰亚胺的核磁共振氢谱( 1H-NMR);
图3为含硅氧烷结构的双马来酰亚胺的高分辨质谱(HRMS);
图4为实施例1-3中无卤无磷阻燃形状记忆双马来酰亚胺树脂的预聚体与比较例1制备的双马来酰亚胺树脂预聚体在氮气氛围下的差示扫描量热(DSC)曲线,升温速率为10℃/min;
图5为实施例1-3制备的无卤无磷阻燃形状记忆双马来酰亚胺树脂在空气下的损耗角正切(Tanδ)-温度曲线,升温速率为3℃/min,频率为1Hz;
图6为实施例1-3及比较例1制备的无卤无磷阻燃形状记忆双马来酰亚胺树脂在氮气氛围下的热失重(TGA)曲线,升温速率为10℃/min;
图7为实施例2-3及比较例1的无卤无磷阻燃形状记忆双马来酰亚胺树脂热释放速率-温度曲线对比图;
图8为实施例1-3及比较例1的无卤无磷阻燃形状记忆双马来酰亚胺树脂的冲击强度柱状图;
图9为实施例1-3的无卤无磷阻燃形状记忆双马来酰亚胺树脂的弯曲-回复形状记忆数码照片。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
实施例1
含硅氧烷结构的双马来酰亚胺的制备:将3.98g 1,3-双(3-氨基丙基)-1,1,3,3-四甲基二硅氧烷/20mL甲苯溶液逐滴加入至3.46g马来酸酐/30mL甲苯混合溶液,于0.5h滴毕并充分混合后,在25℃、氮气气氛下继续反应1h,得到混合物;向混合物中加入4.77g氯化锌后升温至80℃,再滴加10mL六甲基二硅氮烷/20mL甲苯溶液,于0.5h滴毕后升温至回流温度并保持3h。反应结束后将所得混合液过滤除去固体不溶物,得到粗产物。粗产物依次用0.5mol/L的稀盐酸溶液(50mL/次,2次)、饱和碳酸氢钠(100mL/次,2次)和饱和氯化钠(100mL/次,2次)进行分液萃取,最后收集有机相后进行旋蒸减压除去甲苯,得到淡黄色固体,即为含硅氧烷结构的双马来酰亚胺,产率为85%。
上述含硅氧烷结构的双马来酰亚胺的合成反应式如图1所示;对制备得到的含硅氧烷结构的双马来酰亚胺进行核磁氢谱及高分辨质谱表征,核磁结果如图2所示,在6.70ppm出现马来酰亚胺环上双键的质子特征峰,并且分别在0.05ppm、0.48ppm、1.59ppm和3.51ppm出现Si-CH 3和脂肪丙基上的质子峰,说明含硅二胺与马来酸酐已经完成脱水环化,生成了1,1’-((1,1,3,3-四甲基二硅氧烷-1,3-二基)双(丙烷-3,1-二基))双马来酰亚胺;高分辨质谱结果如图3所示,含硅氧烷结构的双马来酰亚胺的理论分子量[M]为408.60,理论值[M+Na +]为431.1429,与[M+Na +]的实验值431.1502相符,进一步验证制备得到1,1’-((1,1,3,3-四甲基二硅氧烷-1,3-二基)双(丙烷-3,1-二基))双马来酰亚胺,即为含硅氧烷结构的双马来酰亚胺。
无卤无磷阻燃形状记忆双马来酰亚胺树脂的制备:将16.34g(40.0mmol)上述制备的含硅氧烷结构的双马来酰亚胺与10.61g(34.4mmol)2,2’-二烯丙基双酚A混合,在140℃下搅拌30min,得到澄清预聚体;将澄清预聚体倒入140℃预热好的模具中,在放入140℃的真空烘箱内抽真空30min;将抽真空完毕的预聚体移入鼓风干燥箱,并按如下工艺固化和后处理:150℃/2h+180℃/2h+200℃/2h+220℃/2h和240℃/4h;自然冷却后脱模,即得到无卤无磷形状记忆双马来酰亚胺树脂。
实施例2
将16.34g(40.0mmol)实施例1合成的含硅氧烷结构的双马来酰亚胺与12.34g(40.0mmol)2,2’-二烯丙基双酚A混合,在140℃下搅拌30min,得到澄清预聚体;将澄清预聚体倒入140℃预热好的模具中,放入140℃的真空烘箱内抽真空30min;将抽真空完毕的预聚体移入鼓风干燥箱,并按如下工艺固化和后处理:150℃/2h+180℃/2h+200℃/2h+220℃/2 h和240℃/4h;自然冷却后脱模,即得到无卤无磷形状记忆双马来酰亚胺树脂。
实施例3
将16.34g(40.0mmol)实施例1合成的含硅氧烷结构的双马来酰亚胺与14.06g(45.6mmol)2,2’-二烯丙基双酚A混合,在140℃下搅拌30min,得到澄清预聚体;将澄清预聚体倒入140℃预热好的模具中,放入140℃的真空烘箱内抽真空30min;将抽真空完毕的预聚体移入鼓风干燥箱,并按如下工艺固化和后处理:150℃/2h+180℃/2h+200℃/2h+220℃/2h和240℃/4h;自然冷却后脱模,即得到无卤无磷形状记忆双马来酰亚胺树脂。
实施例4
含硅氧烷结构的双马来酰亚胺的制备:将3.98g 1,3-双(3-氨基丙基)-1,1,3,3-四甲基二硅氧烷/20mL甲苯溶液逐滴加入至3.46g马来酸酐/30mL甲苯混合溶液,于30min滴毕并充分混合后,在25℃、氮气气氛下继续反应1.5h,得到混合物;加入7.88g溴化锌后升温至80℃后开始滴加10mL(约7.74g)六甲基二硅氮烷/20mL甲苯溶液,于30min滴毕后升温至回流温度并保持3h。反应结束后将所得混合液过滤除去固体不溶物,得到粗产物。粗产物依次用0.5mol/L的稀盐酸溶液(50mL/次,2次)、饱和碳酸氢钠(100mL/次,2次)和饱和氯化钠(100mL/次,2次)进行分液萃取,最后收集有机相后进行旋蒸减压除去甲苯,得到淡黄色固体,即为含硅氧烷结构的双马来酰亚胺。
无卤无磷阻燃形状记忆双马来酰亚胺树脂的制备:将16.34g(40.0mmol)含硅氧烷结构的双马来酰亚胺与10.61g(34.4mmol)2,2’-二烯丙基双酚A混合,在135℃下搅拌30min,得到澄清预聚体;将澄清预聚体倒入140℃预热好的模具中,放入140℃的真空烘箱内抽真空30min;将抽真空完毕的预聚体移入鼓风干燥箱,并按如下工艺固化和后处理:150℃/2h+180℃/2h+200℃/2h和230℃/6h;自然冷却后脱模,即得到无卤无磷形状记忆双马来酰亚胺树脂。
实施例5
含硅氧烷结构的双马来酰亚胺的制备:将7.95g的1,3-双(3-氨基丙基)-1,1,3,3-四甲基二硅氧烷/30mL甲苯溶液逐滴加入至7.2g马来酸酐/50mL甲苯混合溶液,于1h滴毕并充分混合后,在25℃、氮气气氛下继续反应2h,得到混合物;加入15.77g溴化锌后升温至80℃后开始滴加20mL(约15.48g)六甲基二硅氮烷/30mL甲苯溶液,于60min滴毕后升温至回流温度并保持4h。反应结束后将所得混合液过滤除去固体不溶物,得到粗产物。粗产物依次用0.5mol/L的稀盐酸溶液(100mL/次,2次)、饱和碳酸氢钠溶液(150mL/次,2次)及饱和氯化钠(150mL/次,2次)进行分液萃取,最后收集有机相后进行旋蒸减压除去甲苯,得到淡黄色固体,即为含硅氧烷结构的双马来酰亚胺。
无卤无磷阻燃形状记忆双马来酰亚胺树脂的制备:将16.34g(40.0mmol)含硅氧烷结构的双马来酰亚胺与12.34g(40.0mmol)2,2’-二烯丙基双酚A混合,在135℃下搅拌30min,得到澄清预聚体;将澄清预聚体倒入140℃预热好的模具中,放入140℃的真空烘箱内抽真空30min;将抽真空完毕的预聚体移入鼓风干燥箱,并按如下工艺固化和后处理:150℃/2h+180℃/2h+200℃/2h和220℃/12h;自然冷却后脱模,即得到无卤无磷形状记忆双马来酰亚胺树脂。
实施例6
含硅氧烷结构的双马来酰亚胺的制备:将11.93g 1,3-双(3-氨基丙基)-1,1,3,3-四甲基二硅氧烷/40mL甲苯溶液逐滴加入至10.8g马来酸酐/50mL甲苯混合溶液,于1.5h滴毕后并充分混合,在25℃、氮气气氛下反应并继续反应2h,得到混合物;加入23.65g溴化锌后升温至80℃后开始滴加30mL(约23.22g)六甲基二硅氮烷/50mL甲苯溶液,于1.5h滴毕后升温至回流温度并保持5h。反应结束后将所得混合液过滤除去固体不溶物,得到粗产物。粗产物依次用0.5mol/L的稀盐酸溶液(150mL/次,2次)、饱和碳酸氢钠溶液(200mL/次,2次)及饱和氯化钠溶液(200mL/次,2次)进行分液萃取,最后收集有机相后进行旋蒸减压除去甲苯,得到淡黄色固体,即为含硅氧烷结构的双马来酰亚胺。
无卤无磷阻燃形状记忆双马来酰亚胺树脂的制备:将16.34g(40.0mmol)含硅氧烷结构的双马来酰亚胺、14.06g(45.6mmol)2,2’-二烯丙基双酚A混合,在135℃下搅拌30min,得到澄清预聚体;将澄清预聚体倒入140℃预热好的模具中,放入140℃的真空烘箱内抽真空30min;将抽真空完毕的预聚体移入鼓风干燥箱,并按如下工艺固化和后处理:150℃/2h+180℃/2h+200℃/2h+220℃/2h和250℃/6h;自然冷却后脱模,即得到无卤无磷形状记忆双马来酰亚胺树脂。
实施例7
含硅氧烷结构的双马来酰亚胺的制备:按质量计,将3.98g 1,3-双(3-氨基丙基)-1,1,3,3-四甲基二硅氧烷/20mL甲苯溶液逐滴加入至3.46g马来酸酐/30mL甲苯混合溶液,于0.5h滴毕并充分混合后,在25℃、氮气气氛下继续反应1h,得到混合物;加入7.88g溴化锌后升温至80℃后开始滴加10mL(约7.74g)六甲基二硅氮烷/20mL甲苯溶液,于0.5h滴毕后升温至回流温度并保持3h。反应结束后将所得混合液过滤除去固体不溶物,得到粗产物。粗产物依次用0.5mol/L的稀盐酸溶液(50mL/次,2次)、饱和碳酸氢钠(100mL/次,2次)和饱和氯化钠(100mL/次,2次)进行分液萃取,最后收集有机相后进行旋蒸减压除去甲苯,得到淡黄色固体,即硅氧烷结构的双马来酰亚胺。
无卤无磷阻燃形状记忆双马来酰亚胺树脂的制备:将16.34g(40.0mmol)硅氧烷结构的双马来酰亚胺、9.16g(34.4mmol)5,5’-二烯丙基-2,2’-联苯二酚混合,在140℃下搅拌45min,得到澄清预聚体;将澄清预聚体倒入140℃预热好的模具中,放入140℃的真空烘箱内抽真空30min;将抽真空完毕的预聚体移入鼓风干燥箱,并按如下工艺固化和后处理:150℃/2h+180℃/2h+200℃/2h+220℃/2h和240℃/4h;自然冷却后脱模,即得到无卤无磷形状记忆双马来酰亚胺树脂。
实施例8
含硅氧烷结构的双马来酰亚胺的制备:将7.95g 1,3-双(3-氨基丙基)-1,1,3,3-四甲基二硅氧烷/30mL甲苯溶液逐滴加入至7.2g马来酸酐/50mL甲苯混合溶液,于1h滴毕并充分混合后,在25℃、氮气气氛下继续反应1h,得到混合物;加入15.77g溴化锌后升温至80℃后开始滴加20mL(约15.48g)六甲基二硅氮烷/30mL甲苯溶液,于1h滴毕后升温至回流温度并保持4h。反应结束后将所得混合液过滤除去固体不溶物,得到粗产物。粗产物依次用0.5mol/L的稀盐酸溶液(100mL/次,2次)、饱和碳酸氢钠溶液(150mL/次,2次)及 饱和氯化钠(150mL/次,2次)进行分液萃取,最后收集有机相后进行旋蒸减压除去甲苯,得到淡黄色固体,即为硅氧烷结构的双马来酰亚胺。
无卤无磷阻燃形状记忆双马来酰亚胺树脂的制备:将16.34g(40.0mmol)硅氧烷结构的双马来酰亚胺、10.65g(40.0mmol)5,5’-二烯丙基-2,2’-联苯二酚混合,在138℃下搅拌40min,得到澄清预聚体;将澄清预聚体倒入140℃预热好的模具中,放入140℃的真空烘箱内抽真空30min;将抽真空完毕的预聚体移入鼓风干燥箱,并按如下工艺固化和后处理:150℃/2h+180℃/2h+200℃/2h+220℃/2h和240℃/4h;自然冷却后脱模,即得到无卤无磷形状记忆双马来酰亚胺树脂。
实施例9
含硅氧烷结构的双马来酰亚胺的制备:将11.93g 1,3-双(3-氨基丙基)-1,1,3,3-四甲基二硅氧烷/40mL甲苯溶液逐滴加入至10.8g马来酸酐/50mL甲苯混合溶液,于1.5h滴毕并充分混合后,在25℃、氮气气氛下反应并保温反应2h,得到混合物;加入23.65g溴化锌后升温至80℃后开始滴加30mL(约23.22g)六甲基二硅氮烷/50mL甲苯溶液,于1.5h滴毕后升温至回流温度并保持5h。反应结束后将所得混合液过滤除去固体不溶物,得到粗产物。粗产物依次用0.5mol/L的稀盐酸溶液(150mL/次,2次)、饱和碳酸氢钠溶液(200mL/次,2次)及饱和氯化钠溶液(200mL/次,2次)进行分液萃取,最后收集有机相后进行旋蒸减压除去甲苯,得到淡黄色固体,即为含硅氧烷结构的双马来酰亚胺。
无卤无磷阻燃形状记忆双马来酰亚胺树脂的制备:将16.34g(40.0mmol)含硅氧烷结构的双马来酰亚胺、12.14g(45.6mmol)5,5’-二烯丙基-2,2’-联苯二酚混合,在135℃下搅拌45min,得到澄清预聚体;将澄清预聚体倒入140℃预热好的模具中,放入140℃的真空烘箱内抽真空30min;将抽真空完毕的预聚体移入鼓风干燥箱,并按如下工艺固化和后处理:150℃/2h+180℃/2h+200℃/2h+220℃/2h和230℃/8h;自然冷却后脱模,即得到无卤无磷形状记忆双马来酰亚胺树脂。
实施例10
含硅氧烷结构的双马来酰亚胺的制备:将3.98g 1,3-双(3-氨基丙基)-1,1,3,3-四甲基二硅氧烷/20mL甲苯溶液逐滴加入至3.46g马来酸酐/30mL甲苯混合溶液,于0.5h滴毕并充分混合后,在25℃、氮气气氛下继续反应1h,得到混合物;加入7.88g溴化锌和0.6g对甲苯磺酸后升温至回流温度并保持3h。反应结束后将所得混合液过滤除去固体不溶物,得到粗产物。粗产物依次用0.5mol/L的稀盐酸溶液(100mL/次,2次)、饱和碳酸氢钠(120mL/次,2次)和饱和氯化钠(120mL/次,2次)进行分液萃取,最后收集有机相后进行旋蒸减压除去甲苯,得到淡黄色固体,即硅氧烷结构的双马来酰亚胺。
无卤无磷阻燃形状记忆双马来酰亚胺树脂的制备:将16.34g(40.0mmol)硅氧烷结构的双马来酰亚胺、9.16g(34.4mmol)5,5’-二烯丙基-2,2’-联苯二酚混合,在135℃下搅拌40min,得到澄清预聚体;将澄清预聚体倒入140℃预热好的模具中,放入140℃的真空烘箱内抽真空30min;将抽真空完毕的预聚体移入鼓风干燥箱,并按如下工艺固化和后处理:150℃/2h+180℃/2h+200℃/2h+220℃/2h和250℃/5h;自然冷却后脱模,即得到无卤无磷形状记忆双马来酰亚胺树脂。
实施例11
含硅氧烷结构的双马来酰亚胺的制备:将7.95g 1,3-双(3-氨基丙基)-1,1,3,3-四甲基二硅氧烷/30mL甲苯溶液逐滴加入至7.2g马来酸酐/50mL甲苯混合溶液,于1h滴毕并充分混合后,在25℃、氮气气氛下继续反应1h,得到混合物;加入15.77g溴化锌和1.2g对甲苯磺酸后升温至回流温度并保持4h。反应结束后将所得混合液过滤除去固体不溶物,得到粗产物。粗产物依次用0.5mol/L的稀盐酸溶液(150mL/次,2次)、饱和碳酸氢钠溶液(160mL/次,2次)及饱和氯化钠(160mL/次,2次)进行分液萃取,最后收集有机相后进行旋蒸减压除去甲苯,得到淡黄色固体,即为硅氧烷结构的双马来酰亚胺。
无卤无磷阻燃形状记忆双马来酰亚胺树脂的制备:将16.34g(40.0mmol)硅氧烷结构的双马来酰亚胺、10.65g(40.0mmol)5,5’-二烯丙基-2,2’-联苯二酚混合,在140℃下搅拌45min,得到澄清预聚体;将澄清预聚体倒入140℃预热好的模具中,放入140℃的真空烘箱内抽真空30min;将抽真空完毕的预聚体移入鼓风干燥箱,并按如下工艺固化和后处理:150℃/2h+180℃/2h+200℃/2h和220℃/12h;自然冷却后脱模,即得到无卤无磷形状记忆双马来酰亚胺树脂。
实施例12
含硅氧烷结构的双马来酰亚胺的制备:将11.93g 1,3-双(3-氨基丙基)-1,1,3,3-四甲基二硅氧烷/40mL甲苯溶液逐滴加入至11.0g马来酸酐/50mL甲苯混合溶液并充分混合后,在30℃、氮气气氛下反应并保温反应1h,得到混合物;加入23.65g溴化锌和1.8g对甲苯磺酸后升温至回流温度并保持5h。反应结束后将所得混合液过滤除去固体不溶物,得到粗产物。粗产物依次用0.5mol/L的稀盐酸溶液(150mL/次,2次)、饱和碳酸氢钠溶液(200mL/次,2次)及饱和氯化钠溶液(200mL/次,2次)进行分液萃取,最后收集有机相后进行旋蒸减压除去甲苯,得到淡黄色固体,即为含硅氧烷结构的双马来酰亚胺。
无卤无磷阻燃形状记忆双马来酰亚胺树脂的制备:将16.34g(40.0mmol)硅氧烷结构的双马来酰亚胺、12.14g(45.6mmol)5,5’-二烯丙基-2,2’-联苯二酚混合,在135℃下搅拌30min,得到澄清预聚体;将澄清预聚体倒入140℃预热好的模具中,放入140℃的真空烘箱内抽真空30min;将抽真空完毕的预聚体移入鼓风干燥箱,并按如下工艺固化和后处理:150℃/2h+180℃/2h+200℃/2h+220℃/4h和230℃/8h;自然冷却后脱模,即得到无卤无磷形状记忆双马来酰亚胺树脂。
实施例13
含硅氧烷结构的双马来酰亚胺的制备:将3.98g 1,3-双(3-氨基丙基)-1,1,3,3-四甲基二硅氧烷/30mL苯溶液逐滴加入至3.46g马来酸酐/30mL苯混合溶液,于1h滴毕并充分混合后,在25℃、氮气气氛下继续反应1h,得到混合物;加入7.88g溴化锌和0.6g对甲苯磺酸后升温至回流温度并保持4h。反应结束后将所得混合液过滤除去固体不溶物,得到粗产物。粗产物依次用0.5mol/L的稀盐酸溶液(100mL/次,2次)、饱和碳酸氢钠(120mL/次,2次)和饱和氯化钠(120mL/次,2次)进行分液萃取,最后收集有机相后进行旋蒸减压除去苯,得到淡黄色固体,即硅氧烷结构的双马来酰亚胺。
无卤无磷阻燃形状记忆双马来酰亚胺树脂的制备:将16.34g(40.0mmol)硅氧烷结构 的双马来酰亚胺、11.37g(34.4mmol)2,2’-二烯丙基-双酚S混合,在140℃下搅拌30min,得到澄清预聚体;将澄清预聚体倒入140℃预热好的模具中,放入140℃的真空烘箱内抽真空30min;将抽真空完毕的预聚体移入鼓风干燥箱,并按如下工艺固化和后处理:150℃/2h+180℃/2h+200℃/2h+220℃/2h和250℃/5h;自然冷却后脱模,即得到无卤无磷形状记忆双马来酰亚胺树脂。
实施例14
含硅氧烷结构的双马来酰亚胺的制备:将12.0g 1,3-双(3-氨基丙基)-1,1,3,3-四甲基二硅氧烷/30mL甲苯溶液逐滴加入至11.0g马来酸酐/40mL甲苯混合溶液,于1h滴毕并充分混合后,在25℃、氮气气氛下继续反应1h,得到混合物;加入14.41g氯化锌和0.6g对甲苯磺酸后升温至回流温度并保持3h。反应结束后将所得混合液过滤除去固体不溶物,得到粗产物。粗产物依次用0.5mol/L的稀盐酸溶液(100mL/次,2次)、饱和碳酸氢钠(120mL/次,2次)和饱和氯化钠(120mL/次,2次)进行分液萃取,最后收集有机相后进行旋蒸减压除去甲苯,得到淡黄色固体,即硅氧烷结构的双马来酰亚胺。
无卤无磷阻燃形状记忆双马来酰亚胺树脂的制备:将16.34g(40.0mmol)硅氧烷结构的双马来酰亚胺、13.22g(40.0mmol)2,2’-二烯丙基-双酚S混合,在135℃下搅拌40min,得到澄清预聚体;将澄清预聚体倒入140℃预热好的模具中,放入140℃的真空烘箱内抽真空30min;将抽真空完毕的预聚体移入鼓风干燥箱,并按如下工艺固化和后处理:150℃/2h+180℃/2h+200℃/2h+220℃/2h和240℃/8h;自然冷却后脱模,即得到无卤无磷形状记忆双马来酰亚胺树脂。
实施例15
含硅氧烷结构的双马来酰亚胺的制备:将12.0g 1,3-双(3-氨基丙基)-1,1,3,3-四甲基二硅氧烷/40mL二甲苯溶液逐滴加入至3.46g马来酸酐/40mL二甲苯混合溶液,于1h滴毕并充分混合后,在25℃、氮气气氛下继续反应1h,得到混合物;加入14.41g氯化锌后升温至80℃,再滴加30mL(约23.22g)六甲基二硅氮烷/30mL二甲苯溶液,于60min滴毕后升温至回流温度并保持4h。反应结束后将所得混合液过滤除去固体不溶物,得到粗产物。粗产物依次用0.5mol/L的稀盐酸溶液(100mL/次,2次)、饱和碳酸氢钠(120mL/次,2次)和饱和氯化钠(120mL/次,2次)进行分液萃取,最后收集有机相后进行旋蒸减压除去溶剂,得到淡黄色固体,即硅氧烷结构的双马来酰亚胺。
无卤无磷阻燃形状记忆双马来酰亚胺树脂的制备:将16.34g(40.0mmol)硅氧烷结构的双马来酰亚胺、15.07g(45.6mmol)2,2’-二烯丙基双酚S混合,在135℃下搅拌45min,得到澄清预聚体;将澄清预聚体倒入140℃预热好的模具中,放入140℃的真空烘箱内抽真空30min;将抽真空完毕的预聚体移入鼓风干燥箱,并按如下工艺固化和后处理:150℃/2h+180℃/2h+200℃/2h+220℃/12h;自然冷却后脱模,即得到无卤无磷形状记忆双马来酰亚胺树脂。
实施例16
含硅氧烷结构的双马来酰亚胺的制备:将8.0g 1,3-双(3-氨基丙基)-1,1,3,3-四甲基二硅氧烷/30mL甲苯溶液逐滴加入至7.5g马来酸酐/20mL甲苯混合溶液,于0.5h滴毕并充 分混合后,在25℃、氮气气氛下继续反应2h,得到混合物;加入15.77g溴化锌和1.2g对甲苯磺酸后升温至回流温度并保持4h。反应结束后将所得混合液过滤除去固体不溶物,得到粗产物。粗产物依次用0.5mol/L的稀盐酸溶液(150mL/次,2次)、饱和碳酸氢钠溶液(160mL/次,2次)及饱和氯化钠(160mL/次,2次)进行分液萃取,最后收集有机相后进行旋蒸减压除去甲苯,得到淡黄色固体,即为硅氧烷结构的双马来酰亚胺。
无卤无磷阻燃形状记忆双马来酰亚胺树脂的制备:将16.34g(40.0mmol)硅氧烷结构的双马来酰亚胺、6.17g(20.0mmol)2,2’-二烯丙基双酚A和5.33g(20.0mmol)5,5’-二烯丙基-2,2’-联苯二酚混合,在140℃下搅拌30min,得到澄清预聚体;将澄清预聚体倒入140℃预热好的模具中,放入140℃的真空烘箱内抽真空30min;将抽真空完毕的预聚体移入鼓风干燥箱,并按如下工艺固化和后处理:150℃/2h+180℃/2h+200℃/2h和250℃/2h;自然冷却后脱模,即得到无卤无磷形状记忆双马来酰亚胺树脂。
实施例17
含硅氧烷结构的双马来酰亚胺的制备:将11.93g 1,3-双(3-氨基丙基)-1,1,3,3-四甲基二硅氧烷/30mL甲苯溶液逐滴加入至11.0g马来酸酐/30mL甲苯混合溶液并充分混合后,在25℃、氮气气氛下反应并保温反应1.5h,得到混合物;加入23.65g溴化锌和1.2g对甲苯磺酸后升温至回流温度并保持5h。反应结束后将所得混合液过滤除去固体不溶物,得到粗产物。粗产物依次用0.5mol/L的稀盐酸溶液(150mL/次,2次)、饱和碳酸氢钠溶液(200mL/次,2次)及饱和氯化钠溶液(200mL/次,2次)进行分液萃取,最后收集有机相后进行旋蒸减压除去甲苯,得到淡黄色固体,即为含硅氧烷结构的双马来酰亚胺。
无卤无磷阻燃形状记忆双马来酰亚胺树脂的制备:将16.34g(40.0mmol)硅氧烷结构的双马来酰亚胺,4.69g(15.2mmol)2,2’-二烯丙基双酚A、5.02g(15.2mmol)2,2’-二烯丙基双酚S和4.05g(15.2mmol)5,5’-二烯丙基-2,2’-联苯二酚混合,在135℃下搅拌30min,得到澄清预聚体;将澄清预聚体倒入140℃预热好的模具中,放入140℃的真空烘箱内抽真空30min;将抽真空完毕的预聚体移入鼓风干燥箱,并按如下工艺固化和后处理:180℃/2h+200℃/2h+220℃/4h和240℃/6h;自然冷却后脱模,即得到无卤无磷形状记忆双马来酰亚胺树脂。
实施例18
含硅氧烷结构的双马来酰亚胺的制备:将4.0g 1,3-双(3-氨基丙基)-1,1,3,3-四甲基二硅氧烷/30mL苯溶液逐滴加入至4.5g马来酸酐/30mL苯混合溶液,于1.5h滴毕并充分混合后,在25℃、氮气气氛下继续反应1h,得到混合物;加入7.88g溴化锌和0.6g对甲苯磺酸后升温至回流温度并保持4h。反应结束后将所得混合液过滤除去固体不溶物,得到粗产物。粗产物依次用0.5mol/L的稀盐酸溶液(100mL/次,2次)、饱和碳酸氢钠(120mL/次,2次)和饱和氯化钠(120mL/次,2次)进行分液萃取,最后收集有机相后进行旋蒸减压除去苯,得到淡黄色固体,即硅氧烷结构的双马来酰亚胺。
无卤无磷阻燃形状记忆双马来酰亚胺树脂的制备:将16.34g(40.0mmol)硅氧烷结构的双马来酰亚胺、6.17g(20mmol)2,2’-二烯丙基-双酚A和6.61g(20mmol)2,2’-二烯丙基-双酚S混合,在140℃下搅拌30min,得到澄清预聚体;将澄清预聚体倒入140℃预 热好的模具中,放入140℃的真空烘箱内抽真空30min;将抽真空完毕的预聚体移入鼓风干燥箱,并按如下工艺固化和后处理:150℃/2h+180℃/2h+200℃/2h+220℃/2h和250℃/5h;自然冷却后脱模,即得到无卤无磷形状记忆双马来酰亚胺树脂。
实施例19
含硅氧烷结构的双马来酰亚胺的制备:将12.0g 1,3-双(3-氨基丙基)-1,1,3,3-四甲基二硅氧烷/30mL甲苯溶液逐滴加入至11.0g马来酸酐/40mL甲苯混合溶液,于1.5h滴毕并充分混合后,在25℃、氮气气氛下继续反应1.5h,得到混合物;加入12.41g氯化锌和0.8g对甲苯磺酸后升温至回流温度并保持4h。反应结束后将所得混合液过滤除去固体不溶物,得到粗产物。粗产物依次用0.5mol/L的稀盐酸溶液(100mL/次,2次)、饱和碳酸氢钠(120mL/次,2次)和饱和氯化钠(120mL/次,2次)进行分液萃取,最后收集有机相后进行旋蒸减压除去甲苯,得到淡黄色固体,即硅氧烷结构的双马来酰亚胺。
无卤无磷阻燃形状记忆双马来酰亚胺树脂的制备:将16.34g(40.0mmol)硅氧烷结构的双马来酰亚胺、5.33g(20.0mmol)5,5’-二烯丙基-2,2’-联苯二酚和6.61g(20.0mmol)2,2’-二烯丙基-双酚S混合,在135℃下搅拌40min,得到澄清预聚体;将澄清预聚体倒入140℃预热好的模具中,放入140℃的真空烘箱内抽真空30min;将抽真空完毕的预聚体移入鼓风干燥箱,并按如下工艺固化和后处理:180℃/2h+200℃/2h+220℃/2h和250℃/8h;自然冷却后脱模,即得到无卤无磷形状记忆双马来酰亚胺树脂。
实施例20
含硅氧烷结构的双马来酰亚胺的制备:按质量计,将4.0g 1,3-双(3-氨基丙基)-1,1,3,3-四甲基二硅氧烷/20mL甲苯溶液逐滴加入至4.5g马来酸酐/30mL甲苯混合溶液,于1h滴毕并充分混合后,在25℃、氮气气氛下继续反应1h,得到混合物;加入8.0g溴化锌后升温至80℃后开始滴加10mL(约7.74g)六甲基二硅氮烷/20mL甲苯溶液,于1h滴毕后升温至回流温度并保持4h。反应结束后将所得混合液过滤除去固体不溶物,得到粗产物。粗产物依次用0.5mol/L的稀盐酸溶液(50mL/次,2次)、饱和碳酸氢钠(100mL/次,2次)和饱和氯化钠(100mL/次,2次)进行分液萃取,最后收集有机相后进行旋蒸减压除去甲苯,得到淡黄色固体,即硅氧烷结构的双马来酰亚胺。
无卤无磷阻燃形状记忆双马来酰亚胺树脂的制备:将16.34g(40.0mmol)硅氧烷结构的双马来酰亚胺、3.08g(10.0mmol)2,2’-二烯丙基双酚A、2.66g(10.0mmol)5,5’-二烯丙基-2,2’-联苯二酚和4.76g(14.4mmol)2,2’-二烯丙基双酚S混合,在135℃下搅拌45min,得到澄清预聚体;将澄清预聚体倒入140℃预热好的模具中,放入140℃的真空烘箱内抽真空30min;将抽真空完毕的预聚体移入鼓风干燥箱,并按如下工艺固化和后处理:150℃/2h+180℃/2h+200℃/2h+220℃/2h和250℃/12h;自然冷却后脱模,即得到无卤无磷形状记忆双马来酰亚胺树脂。
实施例21
含硅氧烷结构的双马来酰亚胺的制备:按质量计,将4.0g 1,3-双(3-氨基丙基)-1,1,3,3-四甲基二硅氧烷/20mL甲苯溶液逐滴加入至4.8g马来酸酐/30mL甲苯混合溶液,于1.5h滴毕并充分混合后,在25℃、氮气气氛下继续反应1h,得到混合物;加入8.0g溴化锌后 升温至80℃后开始滴加10mL(约7.74g)六甲基二硅氮烷/20mL甲苯溶液,于1h滴毕后升温至回流温度并保持4h。反应结束后将所得混合液过滤除去固体不溶物,得到粗产物。粗产物依次用0.5mol/L的稀盐酸溶液(50mL/次,2次)、饱和碳酸氢钠(100mL/次,2次)和饱和氯化钠(100mL/次,2次)进行分液萃取,最后收集有机相后进行旋蒸减压除去甲苯,得到淡黄色固体,即硅氧烷结构的双马来酰亚胺。
无卤无磷阻燃形状记忆双马来酰亚胺树脂的制备:将16.34g(40.0mmol)硅氧烷结构的双马来酰亚胺、5.30g(17.2mmol)2,2’-二烯丙基双酚A、4.58g(17.2mmol)5,5’-二烯丙基-2,2’-联苯二酚混合,在135℃下搅拌45min,得到澄清预聚体;将澄清预聚体倒入140℃预热好的模具中,放入140℃的真空烘箱内抽真空30min;将抽真空完毕的预聚体移入鼓风干燥箱,并按如下工艺固化和后处理:150℃/2h+180℃/2h+200℃/2h+220℃/2h和230℃/10h;自然冷却后脱模,即得到无卤无磷形状记忆双马来酰亚胺树脂。
实施例22
含硅氧烷结构的双马来酰亚胺的制备:按质量计,将4.8g 1,3-双(3-氨基丙基)-1,1,3,3-四甲基二硅氧烷/20mL甲苯溶液逐滴加入至5.8g马来酸酐/30mL甲苯混合溶液,于1.5h滴毕并充分混合后,在25℃、氮气气氛下继续反应1.5h,得到混合物;加入8.0g溴化锌后升温至80℃后开始滴加10mL(约7.74g)六甲基二硅氮烷/20mL甲苯溶液,于1h滴毕后升温至回流温度并保持4h。反应结束后将所得混合液过滤除去固体不溶物,得到粗产物。粗产物依次用0.5mol/L的稀盐酸溶液(50mL/次,2次)、饱和碳酸氢钠(100mL/次,2次)和饱和氯化钠(100mL/次,2次)进行分液萃取,最后收集有机相后进行旋蒸减压除去甲苯,得到淡黄色固体,即硅氧烷结构的双马来酰亚胺。
无卤无磷阻燃形状记忆双马来酰亚胺树脂的制备:将16.34g(40.0mmol)硅氧烷结构的双马来酰亚胺、5.61g(18.2mmol)2,2’-二烯丙基双酚A、5.35g(16.2mmol)2,2’-二烯丙基双酚S混合,在135℃下搅拌40min,得到澄清预聚体;将澄清预聚体倒入140℃预热好的模具中,放入140℃的真空烘箱内抽真空30min;将抽真空完毕的预聚体移入鼓风干燥箱,并按如下工艺固化和后处理:180℃/2h+200℃/2h+220℃/2h和240℃/10h;自然冷却后脱模,即得到无卤无磷形状记忆双马来酰亚胺树脂。
实施例23
含硅氧烷结构的双马来酰亚胺的制备:按质量计,将5.0g 1,3-双(3-氨基丙基)-1,1,3,3-四甲基二硅氧烷/20mL甲苯溶液逐滴加入至6.0g马来酸酐/30mL甲苯混合溶液,于1.5h滴毕并充分混合后,在25℃、氮气气氛下继续反应1h,得到混合物;加入9.0g溴化锌后升温至80℃后开始滴加10mL(约7.74g)六甲基二硅氮烷/20mL甲苯溶液,于1h滴毕后升温至回流温度并保持4h。反应结束后将所得混合液过滤除去固体不溶物,得到粗产物。粗产物依次用0.5mol/L的稀盐酸溶液(50mL/次,2次)、饱和碳酸氢钠(100mL/次,2次)和饱和氯化钠(100mL/次,2次)进行分液萃取,最后收集有机相后进行旋蒸减压除去甲苯,得到淡黄色固体,即硅氧烷结构的双马来酰亚胺。
无卤无磷阻燃形状记忆双马来酰亚胺树脂的制备:将16.34g(40.0mmol)硅氧烷结构的双马来酰亚胺、7.03g(22.8mmol)2,2’-二烯丙基双酚A和7.53g(22.8mmol)2,2’- 二烯丙基双酚S混合,在135℃下搅拌40min,得到澄清预聚体;将澄清预聚体倒入140℃预热好的模具中,放入140℃的真空烘箱内抽真空30min;将抽真空完毕的预聚体移入鼓风干燥箱,并按如下工艺固化和后处理:180℃/2h+200℃/2h+220℃/2h和230℃/8h;自然冷却后脱模,即得到无卤无磷形状记忆双马来酰亚胺树脂。
实施例24
含硅氧烷结构的双马来酰亚胺的制备:按质量计,将6.0g 1,3-双(3-氨基丙基)-1,1,3,3-四甲基二硅氧烷/30mL甲苯溶液逐滴加入至7.2g马来酸酐/30mL甲苯混合溶液,于1.5h滴毕并充分混合后,在25℃、氮气气氛下继续反应1.5h,得到混合物;加入9.0g溴化锌后升温至80℃后开始滴加10mL(约7.74g)六甲基二硅氮烷/20mL甲苯溶液,于1h滴毕后升温至回流温度并保持4h。反应结束后将所得混合液过滤除去固体不溶物,得到粗产物。粗产物依次用0.5mol/L的稀盐酸溶液(50mL/次,2次)、饱和碳酸氢钠(100mL/次,2次)和饱和氯化钠(100mL/次,2次)进行分液萃取,最后收集有机相后进行旋蒸减压除去甲苯,得到淡黄色固体,即硅氧烷结构的双马来酰亚胺。
无卤无磷阻燃形状记忆双马来酰亚胺树脂的制备:将16.34g(40.0mmol)硅氧烷结构的双马来酰亚胺、5.16g(22.8mmol)5,5’-二烯丙基-2,2’-联苯二酚和7.53g(22.8mmol)2,2’-二烯丙基双酚S混合,在135℃下搅拌40min,得到澄清预聚体;将澄清预聚体倒入140℃预热好的模具中,放入140℃的真空烘箱内抽真空30min;将抽真空完毕的预聚体移入鼓风干燥箱,并按如下工艺固化和后处理:180℃/2h+200℃/2h+220℃/2h和230℃/8h;自然冷却后脱模,即得到无卤无磷形状记忆双马来酰亚胺树脂。
实施例25
含硅氧烷结构的双马来酰亚胺的制备:将11.93g 1,3-双(3-氨基丙基)-1,1,3,3-四甲基二硅氧烷/40mL甲苯溶液逐滴加入至11.0g马来酸酐/50mL甲苯混合溶液,于1.5h滴毕后并充分混合,在25℃、氮气气氛下反应并继续反应1.5h,得到混合物;加入23.65g溴化锌后升温至80℃后开始滴加30mL(约23.22g)六甲基二硅氮烷/50mL甲苯溶液,于1.5h滴毕后升温至回流温度并保持5h。反应结束后将所得混合液过滤除去固体不溶物,得到粗产物。粗产物依次用0.5mol/L的稀盐酸溶液(150mL/次,2次)、饱和碳酸氢钠溶液(200mL/次,2次)及饱和氯化钠溶液(200mL/次,2次)进行分液萃取,最后收集有机相后进行旋蒸减压除去甲苯,得到淡黄色固体,即为含硅氧烷结构的双马来酰亚胺。
无卤无磷阻燃形状记忆双马来酰亚胺树脂的制备:将16.34g(40.0mmol)含硅氧烷结构的双马来酰亚胺、9.25g(30.0mmol)2,2’-二烯丙基双酚A和5.15g(15.6mmol)2,2’-二烯丙基双酚S混合,在135℃下搅拌30min,得到澄清预聚体;将澄清预聚体倒入140℃预热好的模具中,放入140℃的真空烘箱内抽真空30min;将抽真空完毕的预聚体移入鼓风干燥箱,并按如下工艺固化和后处理:150℃/2h+180℃/2h+200℃/2h+240℃/12h;自然冷却后脱模,即得到无卤无磷形状记忆双马来酰亚胺树脂。
比较例1:二烯丙基双酚A改性双马来酰亚胺树脂
将14.3g(40mmol)N,N’-4,4’-二苯甲烷双马来酰亚胺、10.61g(34.4mmol)2,2’-二烯丙基双酚A混合,在140℃下搅拌30min,得到澄清预聚体;将澄清预聚体倒入140℃预 热好的模具中,放入140℃的真空烘箱内抽真空30min;将抽真空完毕的预聚体移入鼓风干燥箱,并按如下工艺固化和后处理:150℃/2h+180℃/2h+200℃/2h+220℃/2h和240℃/4h;自然冷却后脱模,即得到固化的双马来酰亚胺树脂。
性能表征
热性能表征:在氮气氛围下,对实施例1~3及比较例1制备树脂过程中的预聚体进行DSC表征,以及对其制备得到的树脂进行TGA表征;此外,测试实施例1-3制备的树脂的Tanδ-温度曲线,测试实施例2、3及比较例1制备的树脂的热释放速率-温度曲线。
预聚体的DSC曲线见图4,从中可知,实施例1-3的无卤无磷阻燃形状记忆双马来酰亚胺树脂的最大反应放热峰分别为253.0℃、255.1℃、253.7℃,与比较例1的二烯丙基双酚A改性双马来酰亚胺树脂的最大反应放热峰为249.4℃相差不大,表明实施例1-3的无卤无磷阻燃形状记忆双马来酰亚胺树脂与比较例1中2,2’-二烯丙基双酚A改性的双马来酰亚胺树脂可以采用相同的固化和后处理工艺。
图5为实施例1-3制备的无卤无磷阻燃形状记忆树脂在空气氛围下的Tanδ-温度曲线,其玻璃化转变温度分别为149.0℃、160.1℃、126.4℃(目前现有文献报道的无卤无磷阻燃形状记忆树脂的Tg普遍低于100℃),说明本发明制备的无卤无磷阻燃形状记忆树脂具有突出的耐热性。
图6为实施例1-3制备的固化树脂的TGA曲线,从中可知,实施例1-3制备的固化树脂的起始热分解温度(T di,一般取热失重5wt%时的温度。常用于评价材料的热稳定性,材料的T di值越高、耐热性越好)分别为382.2℃、385.6℃、345.5℃,说明本发明制备的无卤无磷阻燃形状记忆双马来酰亚胺树脂具有良好的热稳定性。
此外,从图6可知实施例1-3制备的固化树脂在800℃的残炭量为31.2wt%、44.7wt%、31.4wt%,均高于比较例1制备的双马来酰亚胺树脂的残炭量(29.5wt%)。一般,热固性树脂的残炭量与阻燃性成线性关系,即表明实施例1-3制备的固化树脂具有更优的阻燃性。
图7为实施例2、3与比较例1制备的树脂的微型量热测试曲线,由图可知,实施2、3制备的阻燃双马来酰亚胺树脂的热释放速率和总热释放量显著低于比较例1制备的二烯丙基双酚A改性双马来酰亚胺树脂的相应值,表明实施2、3制备的无卤无磷阻燃形状记忆双马来酰亚胺树脂具有良好的阻燃性能。
冲击强度性能表征:对实施例1-3以及比较例1制备的树脂进行冲击强度表征,冲击强度可在一定程度上反映材料的韧性,良好的韧性是制备形状记忆材料的必要条件之一。
表征结果如图8所示,实施例1-3制备的双马来酰亚胺树脂的冲击强度分别为12.09kJ/m 2、14.42kJ/m 2、18.77kJ/m 2,均高于比较例1中制备的双马来酰亚胺树脂的冲击强度(10.81kJ/m 2),由此可知实施例1-3制备得到的无卤无磷双马来酰亚胺树脂的韧性要优于比较例1制备的双马来酰亚胺树脂。
形状记忆性能表征:对实施例1-3制备的无卤无磷阻燃形状记忆双马来酰亚胺树脂进行弯曲-回复实验,将由各实施例制备的树脂赋形至“U”型,降温至室温后可保持临时形状,再次升温至编程温度(Tprog)后均可回复至初始的直条形状,说明实施例1-3制备的无卤无磷双马来酰亚胺树脂均具有优良的二重形状记忆性能,且在经过多次弯曲-回复实验(重复 弯曲-回复实验4次),仍保持高形状记忆固定率和恢复率。而比较例1制备的双马来酰亚胺树脂在其Tprog下难以赋型至“U”型,其变形角度无法达到90°,因此判定其不具有形状记忆性能。
将上述实施例1-3制备的树脂的热性能、形状记忆性能与现有技术的阻燃SMP对比,结果如下所示:
表1实施例1-3及现有技术中无卤无磷阻燃SMPs的耐热性、形状记忆性能对比数据
Figure PCTCN2022076361-appb-000001
a:DMA法测试。 b:DSC法测试。
参考文献:
[1]Zhang L,Huang Y,Dong H,Xu R,Jiang S.Flame-retardant shape memory polyurethane/MXene paper andthe application for early fire alarm sensor[J].Composites Part B:Engineering,2021,223:109149.
[2]Chen L,Zhao H-B,Ni Y-P,Fu T,Wu W-S,Wang X-L,Wang Y-Z.3D printable robust shape memory PET copolyesters with fire safety via pi-stacking and synergistic crosslinking[J].Journal of Materials Chemistry  A,2019,7(28):17037-17045.
[3]Alnajrani M N,Alosime E M,Basfar A A.Influence of irradiation crosslinking on the flame-retardant properties of polyolefinblends[J].Journal of Applied Polymer Science,2020,137(18):48649.
[4]Weng P X,Yin X,Z Yang S W,Han L,Tan Y,Chen N,Chen D,Zhou Y,Wang L,Wang H.Functionalized magnesium hydroxide fluids/acrylate-coated hybrid cotton fabric with enhanced mechanical,flame retardant and shape-memory properties[J].Cellulose,2018,25(2):1425-1436.
[5]张赛华,张蕾.一种阻燃导电光热响应形状记忆纸及其制备方法与应用,中国专利号:CN110952308B.
[6]申腾飞,靳洁琳,朱海鑫.一种纳米杂化多功能聚氨酯阻燃材料及其制备方法,中国专利号:CN112322025A.
[7]李强,任月璋,罗伟.一种证件用防伪标签的聚碳酸酯薄膜及其制备方法,中国专利号:CN112521739A.
[8]夏琳,耿洁婷,辛振祥.一种石墨烯掺杂的杜仲胶形状记忆材料的制备方法及应用,中国专利号:CN108264659A.
[9]刘晓霞,王小丹,林兰天,董淼军,陈艳,任乾乾.一种瞬时耐高温智能防火隔热组合面料结构,中国专利号:CN102241169A.
[10]黄锦波,祝成炎,张红霞.一种气凝胶填充的三维间隔织物及其制备方法,中国专利号:CN112553750A.
[11]黄博伟,李实.一种新型端头高温防护结构及牵引绳端头结构,中国专利号:CN110697543B.
由上表1可知,与现有技术公开的无卤无磷阻燃性能的形状记忆树脂相比,本发明实施1-3制备的无卤无磷阻燃形状记忆双马来酰亚胺树脂具有突出的耐热性和二重形状记忆性能。值得说明的是,上述部分专利中虽提及了阻燃性能和形状记忆性能,但专利说明书中并未给出玻璃化转变温度(Tg)、热初始分解温度(Tdi)和形状记忆性能相关的数据,所以表1中这些文献的性能不能确认,也无法给出(用N/A表示)。
综上可知,本发明制备的无卤无磷形状记忆双马来酰亚胺树脂具有良好的阻燃性能、耐热性,同时兼具优异的韧性和二重形状记忆性能。
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

Claims (10)

  1. 一种无卤无磷阻燃形状记忆双马来酰亚胺树脂的制备方法,其特征在于,所述制备方法包括以下步骤:
    S1:将马来酸酐溶解于溶剂中,得到溶液A;将1,3-双(3-氨基丙基)-1,1,3,3-四甲基二硅氧烷溶于溶剂中,得到溶液B;
    S2:在搅拌条件下,将溶液B滴加至溶液A中,滴加结束后继续反应得到混合物;
    S3:向混合物中加入脱水剂、催化剂,升温至回流,反应得到含硅氧烷结构的双马来酰亚胺;
    S4:将上述含硅氧烷结构的双马来酰亚胺与二烯丙基苯基化合物进行熔融预聚,再经过固化、后处理得到所述无卤无磷阻燃形状记忆双马来酰亚胺树脂。
  2. 根据权利要求1所述的一种无卤无磷阻燃形状记忆双马来酰亚胺树脂的制备方法,其特征在于,马来酸酐、1,3-双(3-氨基丙基)-1,1,3,3-四甲基二硅氧烷、催化剂、脱水剂的质量比为(3.46~11.0):(3.98~12.0):(0.6~23.22):(4.77~23.65)。
  3. 根据权利要求1所述的一种无卤无磷阻燃形状记忆双马来酰亚胺树脂的制备方法,其特征在于,S1中,所述溶剂选自苯、甲苯、二甲苯中的一种。
  4. 根据权利要求1所述的一种无卤无磷阻燃形状记忆双马来酰亚胺树脂的制备方法,其特征在于,S2中,所述滴加的时间为0.5~1.5h;所述继续反应的时间为1~2h。
  5. 根据权利要求1所述的一种无卤无磷阻燃形状记忆双马来酰亚胺树脂的制备方法,其特征在于,S3中,所述脱水剂为氯化锌和/或溴化锌。
  6. 根据权利要求1所述的一种无卤无磷阻燃形状记忆双马来酰亚胺树脂的制备方法,其特征在于,S3中,所述催化剂为六甲基二硅氮烷或对甲苯磺酸。
  7. 根据权利要求1所述的一种无卤无磷阻燃形状记忆双马来酰亚胺树脂的制备方法,其特征在于,S4中,所述含硅氧烷结构的双马来酰亚胺与二烯丙基化合物的摩尔比为40:(34.4~45.6);所述的二烯丙基苯基化合物选自2,2’-二烯丙基双酚A、5,5’-二烯丙基-2,2’-联苯二酚、2,2’-二烯丙基双酚S中的一种或多种。
  8. 根据权利要求1所述的一种无卤无磷阻燃形状记忆双马来酰亚胺树脂的制备方法,其特征在于,S4中,所述熔融预聚的温度为135~140℃,熔融混合的时间为30~45min。
  9. 根据权利要求1所述的一种无卤无磷阻燃形状记忆双马来酰亚胺树脂的制备方法,其特征在于,所述制备方法还包括S3中回流反应后的萃取分离、洗涤、干燥过程。
  10. 一种无卤无磷阻燃形状记忆双马来酰亚胺树脂,其特征在于,所述双马来酰亚胺树 脂由权利要求1~9任一项所述的制备方法制备得到。
PCT/CN2022/076361 2021-12-22 2022-02-15 无卤无磷阻燃形状记忆双马来酰亚胺树脂及其制备方法 WO2023115686A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111584707.8 2021-12-22
CN202111584707.8A CN114380947B (zh) 2021-12-22 2021-12-22 一种无卤无磷阻燃形状记忆双马来酰亚胺树脂及其制备方法

Publications (1)

Publication Number Publication Date
WO2023115686A1 true WO2023115686A1 (zh) 2023-06-29

Family

ID=81197859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/076361 WO2023115686A1 (zh) 2021-12-22 2022-02-15 无卤无磷阻燃形状记忆双马来酰亚胺树脂及其制备方法

Country Status (2)

Country Link
CN (1) CN114380947B (zh)
WO (1) WO2023115686A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117487303A (zh) * 2023-12-28 2024-02-02 汕头市科彩新材料有限公司 一种耐光热老化改性聚丙烯材料及其制备方法和在无纺布中的应用
CN117533001A (zh) * 2023-10-25 2024-02-09 江门建滔积层板有限公司 一种耐冲击阻燃覆铜板及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116355133B (zh) * 2023-04-06 2023-09-15 广州豫顺新材料有限公司 一种改性二氧化硅-双马来酰亚胺复合材料及其合成工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5122589A (en) * 1989-04-10 1992-06-16 Rhone-Poulenc Chimie Imido/siloxane bismaleimide/aromatic diamine prepolymers
JP2000226560A (ja) * 1999-02-08 2000-08-15 Tomoegawa Paper Co Ltd 電子部品用接着テープ
JP2007186684A (ja) * 2005-12-14 2007-07-26 Nec Corp 再成形可能かつ優れた形状回復能を有する形状記憶樹脂の高強度化
CN103740054A (zh) * 2013-12-17 2014-04-23 中航复合材料有限责任公司 有两个玻璃化转变温度的热固性形状记忆树脂的制备方法
CN108484910A (zh) * 2018-04-13 2018-09-04 苏州大学 基于双马来酰亚胺的热固性形状记忆树脂及其制备方法
CN108586743A (zh) * 2018-04-13 2018-09-28 苏州大学 热固性形状记忆双马来酰亚胺树脂及其制备方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0308812A3 (en) * 1987-09-24 1989-04-26 BASF Aktiengesellschaft Toughened bismaleimide resin systems
US5206383A (en) * 1992-01-28 1993-04-27 Allied-Signal Inc. o,o'-bismaleimide resin systems
TWI243189B (en) * 1998-11-06 2005-11-11 Tomoegawa Paper Co Ltd Laminated board and circuit laminate material made of thermosetting low-dielectric resin composition
JP5651952B2 (ja) * 2007-11-16 2015-01-14 日本電気株式会社 形状記憶樹脂及びこれを用いた成形体及び成形体の使用方法
CN101880363B (zh) * 2010-07-09 2011-09-28 苏州大学 一种烯丙基化超支化聚苯醚改性双马来酰亚胺树脂及其制备方法
US8668981B2 (en) * 2010-11-11 2014-03-11 Spirit Aerosystems, Inc. High temperature shape memory polymer via reactive extrusion
CN104371108B (zh) * 2014-11-25 2018-04-03 苏州大学 一种无卤无磷含硅阻燃剂及其制备方法
CN104356388B (zh) * 2014-11-25 2017-03-29 苏州大学 一种阻燃双马来酰亚胺树脂及其制备方法
CN108250443B (zh) * 2016-12-29 2021-07-30 广东生益科技股份有限公司 一种聚硅氧烷-烯丙基化合物阻燃剂及其制备方法和应用
CN106905914B (zh) * 2017-03-01 2019-09-24 成都正威新材料研发有限公司 一种半互穿网络聚酰亚胺树脂组合物及其制备的膜状胶粘剂
CN109180947A (zh) * 2018-07-24 2019-01-11 西北工业大学 一种含乙烯基笼型倍半硅氧烷改性双马来酰亚胺树脂及制备方法
CN111018769A (zh) * 2019-12-26 2020-04-17 艾蒙特成都新材料科技有限公司 一种高耐热双马来酰亚胺树脂、制备方法及应用
CN112250878B (zh) * 2020-09-28 2022-03-15 厦门大学 一种热致自修复可回收环氧树脂及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5122589A (en) * 1989-04-10 1992-06-16 Rhone-Poulenc Chimie Imido/siloxane bismaleimide/aromatic diamine prepolymers
JP2000226560A (ja) * 1999-02-08 2000-08-15 Tomoegawa Paper Co Ltd 電子部品用接着テープ
JP2007186684A (ja) * 2005-12-14 2007-07-26 Nec Corp 再成形可能かつ優れた形状回復能を有する形状記憶樹脂の高強度化
CN103740054A (zh) * 2013-12-17 2014-04-23 中航复合材料有限责任公司 有两个玻璃化转变温度的热固性形状记忆树脂的制备方法
CN108484910A (zh) * 2018-04-13 2018-09-04 苏州大学 基于双马来酰亚胺的热固性形状记忆树脂及其制备方法
CN108586743A (zh) * 2018-04-13 2018-09-28 苏州大学 热固性形状记忆双马来酰亚胺树脂及其制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117533001A (zh) * 2023-10-25 2024-02-09 江门建滔积层板有限公司 一种耐冲击阻燃覆铜板及其制备方法
CN117533001B (zh) * 2023-10-25 2024-05-10 江门建滔积层板有限公司 一种耐冲击阻燃覆铜板及其制备方法
CN117487303A (zh) * 2023-12-28 2024-02-02 汕头市科彩新材料有限公司 一种耐光热老化改性聚丙烯材料及其制备方法和在无纺布中的应用
CN117487303B (zh) * 2023-12-28 2024-05-14 汕头市科彩新材料有限公司 一种耐光热老化改性聚丙烯材料及其制备方法和在无纺布中的应用

Also Published As

Publication number Publication date
CN114380947B (zh) 2022-09-23
CN114380947A (zh) 2022-04-22

Similar Documents

Publication Publication Date Title
WO2023115686A1 (zh) 无卤无磷阻燃形状记忆双马来酰亚胺树脂及其制备方法
WO2018095358A1 (zh) 一种含磷氮硅聚合物阻燃剂及其制备方法与应用
CN108368261B (zh) 可聚合组合物
Agag et al. Synthesis and characterization of benzoxazine resin-SiO2 hybrids by sol-gel process: The role of benzoxazine-functional silane coupling agent
CN109354673B (zh) 一种基于硅噻唑dopo型阻燃剂改性的环氧树脂制备方法
US20100016585A1 (en) Phosphorus-containing bisphenols and preparing method thereof
CN110655652B (zh) 一种金属杂化poss阻燃剂、制备方法和应用
CN109438382B (zh) 一种基于脱氧对茴香偶姻的双苯并噁嗪单体及其制备方法
WO2023010800A1 (zh) 一种可重塑与降解生物质苯并噁嗪树脂及其制备方法
CN109563266B (zh) 可聚合组合物
EP2986590A1 (en) Novel curing agents and degradable polymers and composites based thereon
CN108368069A (zh) 恶嗪化合物、组合物及固化物
WO2013134900A1 (zh) 磷硅协同阻燃剂及其制备方法与应用
Chozhan et al. Synthesis and characterization of 1, 1-bis (3-methyl-4-hydroxy phenyl) cyclohexane polybenzoxazine–organoclay hybrid nanocomposites
CN108473642A (zh) 恶嗪化合物、组合物及固化物
CN107129493B (zh) 一种含脂环烃酰亚胺基的二胺型双苯并噁嗪及其制备方法
CN110423352B (zh) 一种含碳硼烷结构耐高温有机硅材料的制备方法
CN108349861B (zh) 烯基苯氧基取代的1,1-二苯基乙烯、它们的制备方法和它们的用途
CN103951829B (zh) 一种超支化聚硅氧烷液晶改性热固性树脂及其制备方法
Zhang et al. Synthesis and properties of novel alicyclic‐functionalized polyimides prepared from natural—(D)‐camphor
CN113930058A (zh) 一种低温热塑板组合物及其制备方法
CN110330647B (zh) 可重塑形状记忆双马来酰亚胺树脂及其应用
CN104817581B (zh) 一种含硅二元酚及其制备方法
CN108368218A (zh) 恶嗪化合物、组合物及固化物
CN111234211A (zh) 一种苯并噁嗪本征阻燃型树脂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22909030

Country of ref document: EP

Kind code of ref document: A1