WO2023115624A1 - 截面结构一致性高的隔膜及其制备方法 - Google Patents

截面结构一致性高的隔膜及其制备方法 Download PDF

Info

Publication number
WO2023115624A1
WO2023115624A1 PCT/CN2021/142650 CN2021142650W WO2023115624A1 WO 2023115624 A1 WO2023115624 A1 WO 2023115624A1 CN 2021142650 W CN2021142650 W CN 2021142650W WO 2023115624 A1 WO2023115624 A1 WO 2023115624A1
Authority
WO
WIPO (PCT)
Prior art keywords
diaphragm
base film
pores
film
preparation
Prior art date
Application number
PCT/CN2021/142650
Other languages
English (en)
French (fr)
Inventor
董秋春
白耀宗
刘杲珺
张绪杰
薛山
刘志刚
朱滕辉
张影
吴奇阳
史新明
马源
甘珊珊
Original Assignee
中材锂膜有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中材锂膜有限公司 filed Critical 中材锂膜有限公司
Priority to EP21968749.8A priority Critical patent/EP4439842A1/en
Publication of WO2023115624A1 publication Critical patent/WO2023115624A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/24Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length
    • B29C41/26Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length by depositing flowable material on a rotating drum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • H01M50/406Moulding; Embossing; Cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of diaphragms, in particular to a diaphragm with high cross-sectional structure consistency and a preparation method thereof.
  • the separator is mainly used to isolate the positive and negative electrodes, prevent short circuit, and at the same time ensure a certain degree of electrolyte wettability and liquid retention, and provide a channel for lithium ion transmission.
  • the performance of the separator directly determines the interface performance and internal resistance of the battery, which in turn affects the charge and discharge performance and cycle performance of the battery.
  • Lithium-ion battery separators in the prior art are mainly based on polyolefin porous separators, and the preparation methods are mainly divided into dry method and wet stretching, such as the publication number CN100448922C and the name "microporous membrane made from polyolefin".
  • the patent discloses a method and related properties of a microporous membrane made from polyolefin.
  • Publication numbers CN107910476A, CN108565382A, CN109686900A and CN107275550A disclose that the heat resistance and wettability of the separator are mainly improved by inorganic or inorganic-organic mixed coating.
  • the existing polyolefin porous separator can be maturely applied in lithium-ion batteries, the current technology mainly focuses on the basic physical properties and physical and chemical properties of the separator.
  • the surface pore size of the separator is mainly observed through an electron microscope, which cannot be investigated.
  • Its cross-sectional structure, as well as the pore size tested by the pressurized water method or air pressure method can only reflect the overall pore situation in the diaphragm, and cannot reflect the pore structure of the cross section.
  • One of the purposes of the present invention is to provide a separator with high cross-sectional structure consistency, and its cross-sectional pore structure pore size distribution has a high degree of consistency, which is used to reduce or eliminate the problems of battery self-discharge and lithium precipitation, so as to further improve the battery rate performance , life, safety and other performance.
  • the second object of the present invention is to provide a method for preparing a diaphragm with high cross-sectional structure consistency, which can prepare a diaphragm with excellent cross-sectional microstructure consistency.
  • the third object of the present invention is to provide a lithium ion battery comprising the separator.
  • the fourth object of the present invention is to provide a sodium ion battery comprising the separator.
  • the fifth object of the present invention is to provide a supercapacitor including the diaphragm.
  • the present invention provides a diaphragm with high cross-sectional structure consistency
  • the cross-sectional microporous structure of the diaphragm has the following distribution: the number of pores with a diameter of 10nm ⁇ aperture ⁇ 500nm accounts for more than 40% of the total number of pores, preferably more than 70%
  • the number of pores of 500nm ⁇ pore diameter ⁇ 800nm accounts for less than 50% of the total number of pores, preferably less than 30%;
  • the number of pores of 800nm ⁇ pore diameter ⁇ 1500nm accounts for less than 10% of the total number of pores, preferably less than 2%;
  • the thickness of the diaphragm is 3 ⁇ 20 ⁇ m .
  • the present invention provides a method for preparing a diaphragm with high cross-sectional structure consistency
  • the diaphragm includes a base film
  • the base film is prepared by a wet method: pre-preparing liquid hydrocarbon and polyolefin resin according to the formula ratio processing, or directly transported to the extrusion system, heated and melted to form a uniform mixture; the mixed melt is extruded to the casting roll to cool down; phase separation is performed, cooled and formed to obtain a membrane; then the membrane is heated to a temperature close to the melting point, Carry out two-way synchronous or step-by-step stretching to make the molecular chains oriented, heat-preserved, and shaped; the solvent elutes the residual liquid hydrocarbons, and after elution, the film is removed from the solvent, dried, and then transversely stretched, shaped, and retracted to prepare an interpenetrating film. basement membrane;
  • the wet preparation process needs to meet at least one of the conditions 1 and 2:
  • Condition 1 Use shearing rollers or pressing rollers to give the base film a holding force in the TD direction between the removal of the solvent from the film and the drying process.
  • the number of shearing rollers or pressing rollers is greater than or equal to 2, preferably 4 to 10;
  • Described base film adopts dry method to make:
  • the polyolefin resin and additive raw materials are pretreated according to the formula ratio, or directly transported to the extrusion system.
  • the raw materials are melted and plasticized, and then the melt is extruded from the die to the casting roll to cool down, cooled and formed, and formed A sheet with a specific crystalline structure, heat-treated to obtain a hard elastic film, followed by cold stretching and hot stretching to form a nano-based film;
  • the dry preparation process needs to meet condition 4: control the longitudinal tension ⁇ 300N/m in the extrusion and cooling molding process.
  • the membrane also includes a porous layer located on at least one side of the base membrane;
  • the porous layer is formed by coating the coating slurry on one or both sides of the base film, and then drying;
  • the preparation process needs to meet the condition 5: after the coating slurry is coated on the base film and the drying process, use shear rolls or pressure rolls to give the film a holding force in the TD direction, and the number of shear rolls or pressure rolls is ⁇ 2.
  • the present invention provides a lithium ion battery, comprising the separator or the separator prepared by the preparation method.
  • the present invention provides a sodium ion battery, comprising the separator or the separator prepared by the preparation method.
  • the present invention provides a supercapacitor, comprising the separator or the separator prepared by the preparation method.
  • the present invention improves the consistency of the microstructure of the diaphragm cross-section, solves the poor consistency of the diaphragm cross-section structure (especially the large pore size), which causes or aggravates the technical problems of self-discharge and lithium precipitation, and achieves the improvement of battery rate performance and service life. , safety and other performance technical effects.
  • Fig. 1 is the wet method membrane preparation process provided by the present invention
  • Fig. 2 is the dry method membrane preparation process provided by the present invention
  • Fig. 3 is the preparation process of the wet base film coating diaphragm provided by the present invention.
  • Fig. 4 is the separator with poor cross-sectional microstructure consistency prepared by comparative example
  • Fig. 5 is the separator with high cross-sectional microstructure consistency prepared in Example 1;
  • Figure 6 is a diaphragm with high cross-sectional microstructure consistency prepared in Example 2.
  • Figure 7 is a diaphragm with high cross-sectional microstructure consistency prepared in Example 4.
  • Fig. 8 is a diaphragm with high cross-sectional microstructure consistency prepared in Example 6.
  • a diaphragm with high cross-sectional structure consistency is provided.
  • the pore size (dimensions in any direction of the plane) of the cross-sectional microstructure obtained by cutting with a frozen ion beam is concentrated in: 10nm ⁇ aperture in the electronic scanning electron microscope characterization
  • the number of pores of ⁇ 500nm accounts for more than 40% of the total number of pores (such as >50%, 60%, 70%, 80%, 90%), preferably more than 70%; the number of pores of 500nm ⁇ pore diameter ⁇ 800nm accounts for 50% of the total number of pores Below (such as ⁇ 40%, 30%, 20%, 10%), preferably below 30%; the number of pores of 800nm ⁇ pore diameter ⁇ 1500nm accounts for less than 10% of the total number of pores (such as ⁇ 8%, 5%, 3%, 2 %), preferably below 2%.
  • the thickness of the separator is 3 to 20 ⁇ m, preferably 3 to 16 ⁇ m.
  • section here may be a cross section or a longitudinal section (thickness direction of the diaphragm).
  • the distance from the horizontal cutting plane to the surface of the diaphragm is not less than 500nm (the thickness of the diaphragm is between 3 and 20 ⁇ m);
  • the vertical cutting plane can be any section without surface.
  • the cross-sectional microstructure of the diaphragm with the above pore distribution is excellent in consistency, there are basically no long pores > 1500nm, and the pore diameter is basically distributed in the range of 10-500nm.
  • the separator here can be a single layer or a multilayer, which is not limited, it can be a base film (single layer or multilayer), or a base film (single layer or multilayer)+porous layer (single layer) layer or multilayer) structure.
  • a base film single layer or a multilayer
  • a base film single layer or multilayer
  • a base film single layer or multilayer
  • a base film single layer or multilayer
  • the material of the base film is not particularly limited, and may be materials known in the art that can be used as the base film of a battery separator, including but not limited to polyethylene, polypropylene, polyethylene/polypropylene composite film, and the like.
  • the material of the porous layer is not particularly limited, and it can be a material known in the art that can be used as a coating on the diaphragm base film, including but not limited to inorganic materials (such as ceramics), organic polymers (such as aramid fiber, etc.), Inorganic/organic composite materials, etc.
  • inorganic materials such as ceramics
  • organic polymers such as aramid fiber, etc.
  • Inorganic/organic composite materials etc.
  • the thicknesses of the base film and the porous layer are not particularly limited as long as they are suitable for use as a separator of a battery.
  • the thickness of the base film is 3-20 ⁇ m; and/or, the thickness of the single-sided porous layer is 0.1-6 ⁇ m.
  • a method for preparing a diaphragm having a high cross-sectional structure consistency is provided:
  • the diaphragm includes a base film.
  • the base film preparation method includes a wet process, as shown in Figure 1:
  • Phase separation cooled and molded to make a diaphragm; 3 and then heated the diaphragm to a temperature close to the melting point, and carried out the first two-way synchronous or distributed stretching to orient the molecular chain, followed by heat preservation and setting for a certain period of time; 4 eluted with a volatile solvent Residual liquid hydrocarbons, 5, remove the solvent from the membrane after elution, and then dry, 6, then stretch, shape, and retract for the second time, and 7 prepare the interpenetrating base membrane material;
  • the wet preparation process needs to meet at least one of the conditions 1 and 2:
  • Condition 1 In the stage of eluting residual liquid hydrocarbons with volatile solvents and then drying, use shear rollers or pressure rollers to give the base film in the TD direction between removing the solvent and drying the film (that is, adding steps between them). (transverse direction, film width direction) holding force (that is, each shearing roller or pressing roller gives the film a holding force>0.1N in the TD direction), the number of shearing rollers or pressing rollers is greater than or equal to 2, preferably 4 to 10 ( For example, 4, 5, 6, 7, 8, 9 or 10); that is to say, it is enough to increase the holding force in the TD direction between the removal of the solvent and the drying process of the film.
  • Condition 2 Control the longitudinal tension ⁇ 300N/m during the phase separation and cooling forming process, that is, the two processes need to control the longitudinal tension ⁇ 300N/m (such as 100, 150, 200, 250N/m), for example, through each roller
  • the speed ratio or speed difference adjusts the longitudinal tension.
  • condition 1 or condition 2 can be satisfied, or both can be satisfied.
  • the wet preparation process also needs to meet condition 3: control the longitudinal tension ⁇ 500N/m during the process of removing the solvent from the membrane to drying, that is, use a volatile solvent to elute the residual liquid hydrocarbons.
  • control the longitudinal tension ⁇ 500N/m such as 100, 150, 200, 250, 300, 350, 400, 450N/m
  • adjust the longitudinal tension through the speed ratio or speed difference of each roller.
  • condition 1 condition 2, condition 1+2, condition 1+3, condition 2+3, and condition 1+2+3.
  • the base film preparation method includes a dry process, as shown in Figure 2:
  • the dry preparation process needs to meet the condition 4: the extrusion and cooling molding process control the longitudinal tension ⁇ 300N/m, that is, both the extrusion and cooling molding processes need to control the longitudinal tension ⁇ 300N/m (such as 100, 150, 200, 250N/m), for example, the longitudinal tension can be adjusted through the speed ratio or speed difference of each roller.
  • a separator with excellent cross-sectional microstructure consistency can be prepared through the above wet or dry process.
  • the separator includes a base film and a porous layer located on at least one side of the base film;
  • the porous layer is formed by coating the coating slurry on one or both sides of the base film, and then drying; as shown in FIG. 3 .
  • the preparation process needs to meet the condition 5: after the coating slurry is coated on the base film and between the drying process, a shearing roll or a pressing roll is used to give the film (coating film) a holding force in the TD direction to ensure that each shearing roll or pressing roll
  • the holding force given by the roller to the film in the TD direction is > 0.1N
  • the number of shearing rollers or pressing rollers is ⁇ 2, preferably 2 to 10 (such as 2, 3, 4, 5, 6, 7, 8, 9, 10) . That is to say, it is enough to increase the holding force in TD direction between coating and drying process.
  • the coating slurry can be composed of one or both of inorganic ceramic materials and organic polymer materials.
  • the inorganic ceramic materials in the coating slurry include inorganic ceramic particles, including but not limited to alumina, boehmite, calcium carbonate, hydrotalcite, montmorillonite, spinel, mullite, titanium dioxide, silicon dioxide, One or more of zirconium, magnesium oxide, calcium oxide, beryllium oxide, magnesium hydroxide, boron nitride, silicon nitride, aluminum nitride, titanium nitride, boron carbide, silicon carbide, and zirconium carbide;
  • the organic polymer materials in the coating slurry include organic coating materials, including but not limited to polyimide, polyetherimide, aramid fiber, polysulfone fiber, polyvinylidene fluoride, polymethyl methacrylate, One or more of polyethylene oxide, polyacrylonitrile, polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene and other organic powders or suspensions.
  • organic coating materials including but not limited to polyimide, polyetherimide, aramid fiber, polysulfone fiber, polyvinylidene fluoride, polymethyl methacrylate, One or more of polyethylene oxide, polyacrylonitrile, polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene and other organic powders or suspensions.
  • condition 6 satisfies condition 6 and/or condition 7:
  • the process of coating the slurry on one or both sides of the base film controls the longitudinal tension ⁇ 100N/m (such as 20, 50, 60, 80N/m), for example Adjust the longitudinal tension through the speed ratio or speed difference of each roller;
  • Condition 7 Control the longitudinal tension ⁇ 150N/m (such as 50, 100, 120N/m) after the coating slurry is coated on the base film to the drying process (the process from coating the slurry to drying), which can be passed through various rollers for example
  • the barrel speed ratio or speed difference adjusts the longitudinal tension.
  • a porous layer is prepared on the base film to obtain a porous layer with a high consistency of the above-mentioned cross-sectional microstructure.
  • Possible implementation methods include: condition 5, condition 5+6, condition 5+7, and condition 5+6+7.
  • the consistency of the cross-sectional microstructure of the diaphragm prepared by the above method is improved, which can reduce or avoid problems such as battery self-discharge and lithium precipitation, thereby improving battery rate performance, life, safety and other performances.
  • a lithium ion battery including the separator or the separator prepared by the preparation method.
  • a sodium ion battery including the separator or the separator prepared by the preparation method.
  • a supercapacitor including the separator or the separator prepared by the preparation method.
  • the raw materials, reagents, and methods used in the examples are conventional raw materials, reagents, and methods in the art.
  • the diluent in this embodiment is paraffin oil
  • the polyolefin resin in this embodiment is polyethylene (manufacturer: Celanese, model: GURX223) with an average molecular weight of 1.5 million
  • the equipment used is a wet-process diaphragm line from Sinoma Lithium Membrane Co., Ltd.
  • Biaxial stretching heating the film prepared in (2) to a temperature close to the melting point, carrying out bidirectional stretching to orient the molecular chains, and obtaining a film whose area is increased to 49 times through biaxial stretching;
  • the porosity is 40%, the air permeability is 140sec/100c, and the thickness is 9.2 ⁇ m.
  • the microporous structure distribution in the longitudinal section is as follows: the number of pores with 10nm ⁇ pore diameter ⁇ 500nm accounts for more than 90% of the total pores; the pores with 500nm ⁇ pore diameter ⁇ 800nm The number of pores accounts for less than 10% of the total number of pores; the number of pores with 800nm ⁇ pore diameter ⁇ 1500nm accounts for 0% of the total number of pores. As shown in Figure 5.
  • the diluent in this embodiment is paraffin oil
  • the polyolefin resin in this embodiment is polyethylene with an average molecular weight of 900,000 (manufacturer: AsahiKASEI, model: UH650), and the equipment used is a wet-process diaphragm line from Sinoma Lithium Membrane Co., Ltd.
  • Biaxial stretching heating the film prepared in (2) to a temperature close to the melting point, carrying out biaxial stretching to orient the molecular chains, and obtaining a film whose area is increased to 64 times through biaxial stretching;
  • the porosity is 38%, the air permeability is 140sec/100c, and the thickness is 7.3 ⁇ m.
  • the microporous structure distribution in the longitudinal section is as follows: the number of pores with 10nm ⁇ pore diameter ⁇ 500nm accounts for more than 97% of the total pores; the pores with 500nm ⁇ pore diameter ⁇ 800nm The number of pores accounts for less than 3% of the total number of pores; the number of pores with 800nm ⁇ pore diameter ⁇ 1500nm accounts for 0% of the total number of pores. As shown in Figure 6.
  • the base film adopts the 9.2 ⁇ m base film in Example 1;
  • Coating slurry preparation get 13 parts by weight of polyvinylidene fluoride glue solution (mass fraction is 20%) and 18 parts by weight of polyimide glue solution (massfraction is 10%), dissolve to 55 parts by weight two In the mixed liquid of methylacetamide and tripropylene glycol (wherein, the weight ratio of dimethylacetamide and tripropylene glycol is 15:70:30), then add 30 parts by weight of D50 modified by silane coupling agent in order to be 0.64 ⁇ m oxidation
  • the diluent in this embodiment is paraffin oil
  • the polyolefin resin in this embodiment is polyethylene (manufacturer: Celanese, model: GURX223) with an average molecular weight of 1.5 million
  • the equipment used is a wet-process diaphragm line from Sinoma Lithium Membrane Co., Ltd.
  • Biaxial stretching heating the film prepared in (2) to a temperature close to the melting point, carrying out biaxial stretching to orient the molecular chains, and obtaining a film whose area is increased to 56 times through biaxial stretching;
  • the porosity is 39%, the air permeability is 150sec/100c, and the thickness is 9.5 ⁇ m.
  • the microporous structure distribution in the longitudinal section is as follows: the number of pores with 10nm ⁇ pore diameter ⁇ 500nm accounts for more than 90% of the total pores; the pores with 500nm ⁇ pore diameter ⁇ 800nm The number of pores accounts for less than 10% of the total number of pores; the number of pores with 800nm ⁇ pore diameter ⁇ 1500nm accounts for 0% of the total number of pores. As shown in Figure 7.
  • the diluent in this embodiment is paraffin oil
  • the polyolefin resin in this embodiment is polyethylene with an average molecular weight of 900,000 (manufacturer: asahiKASEI, model: UH650), and the equipment used is a wet-process diaphragm line from Sinoma Lithium Membrane Co., Ltd.
  • Biaxial stretching heating the film prepared in (2) to a temperature close to the melting point, carrying out biaxial stretching to orient the molecular chains, and obtaining a film whose area is increased to 64 times through biaxial stretching;
  • Drying The extracted film is dried, and the film is removed from the solvent until the drying process.
  • the longitudinal tension of the film is 320N/m.
  • This process uses shear rollers to give the base film in the TD direction. Holding force, the holding force given by the shearing roller or pressing roller to the film in the TD direction is > 1N, and a total of 10 symmetrical shearing rollers are used on both sides of the film transverse direction;
  • the porosity is 41%, the air permeability is 142sec/100c, and the thickness is 12.0 ⁇ m.
  • the microporous structure distribution in the longitudinal section is as follows: the number of pores with 10nm ⁇ pore diameter ⁇ 500nm accounts for more than 96% of the total pores; the pores with 500nm ⁇ pore diameter ⁇ 800nm The number of pores accounts for less than 4% of the total number of pores; the number of pores with 800nm ⁇ pore diameter ⁇ 1500nm accounts for 0% of the total number of pores.
  • the same method can prepare a porosity of 25-70, an air permeability of 50-400sec/100c, and a thickness of 3-20 ⁇ m. % or more; the number of pores with 500nm ⁇ pore diameter ⁇ 800nm accounts for less than 30% of the total number of pores; the number of pores with 800nm ⁇ pore diameter ⁇ 1500nm accounts for less than 2% of the total number of pores.
  • a method for preparing a composite diaphragm with a high-consistency cross-sectional structure comprising:
  • the base film adopts the 9.5 ⁇ m thick diaphragm prepared by the wet method of the above-mentioned embodiment 4;
  • Coating slurry preparation get 15 parts by weight of polyvinylidene fluoride glue solution (mass fraction is 20%) and 20 parts by weight of polyimide glue solution (mass fraction is 10%), dissolve to 57 parts by weight In the mixed solution of methylacetamide and tripropylene glycol (wherein, the weight ratio of dimethylacetamide, tripropylene glycol and water is 15:70:30), then add 20 parts by weight of silane coupling agent to modify the D50 to be 0.64 ⁇ m alumina, 3 parts by weight of emulsion-type acrylate binder (solid content: 40%, viscosity: 20cps-200cps at 25°C), mixed and stirred at room temperature for 1 hour to obtain a white viscous coating slurry.
  • silane coupling agent to modify the D50 to be 0.64 ⁇ m alumina
  • solid content 40%, viscosity: 20cps-200cps at 25°C
  • the air permeability value of the obtained composite diaphragm is 210sec/100c, and the thickness is 13.5 ⁇ m;
  • the microporous structure distribution of the longitudinal section of the coating is as follows: the number of pores of 10nm ⁇ aperture ⁇ 500nm accounts for more than 80% of the total number of pores; 500nm ⁇ aperture ⁇ 800nm The number of pores of 800nm ⁇ pore diameter ⁇ 1500nm accounts for less than 2% of the total number of pores; the number of pores of basement membrane cross-section 10nm ⁇ pore diameter ⁇ 500nm accounts for more than 95% of the total number of pores; 500nm ⁇ pore diameter The number of pores of ⁇ 800nm accounts for less than 5% of the total number of pores; the number of pores of 800nm ⁇ pore diameter ⁇ 1500nm accounts for 0% of the total number of pores. As shown in Figure 8.
  • a method for preparing a composite diaphragm with a high-consistency cross-sectional structure comprising:
  • the base film adopts the 12 ⁇ m thick product of the wet-process diaphragm in the above-mentioned embodiment 5;
  • Coating slurry preparation Disperse a certain proportion of alumina powder in the aramid stock solution with a mass fraction of 1.5% and an apparent viscosity of 300cp, stir it through a high-speed dispersing emulsifier for 30min, and filter it through a 1000-mesh filter to obtain Uniform para-aramid size.
  • the air permeability value of the gained composite diaphragm is 270sec/100c, and the thickness is 16 ⁇ m;
  • the microporous structure distribution of the longitudinal section of the coating is as follows: the number of pores of 10nm ⁇ aperture ⁇ 500nm accounts for more than 90% of the total number of pores; the number of pores of 500nm ⁇ aperture ⁇ 800nm The number of pores accounts for less than 10% of the total number of pores; the number of pores of 800nm ⁇ pore diameter ⁇ 1500nm accounts for less than 0% of the total number of pores; the number of pores of the cross-section of the basement membrane 10nm ⁇ pore diameter ⁇ 500nm accounts for more than 96% of the total number of pores; 500nm ⁇ pore diameter ⁇ The number of pores of 800nm accounts for less than 4% of the total number of pores; the number of pores of 800nm ⁇ pore diameter ⁇ 1500nm accounts for 0% of the total number of pores.
  • step (2) phase separation and cooling forming process control the longitudinal tension of the diaphragm > 2000N/m; step (5) remove the solvent from the film until the drying process controls the longitudinal tension of the diaphragm > 1000N/m , and does not give the basement membrane a holding force in the TD direction.
  • the prepared base film is shown in Figure 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Composite Materials (AREA)
  • Cell Separators (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

本发明提供了一种截面结构一致性高的隔膜及其制备方法,涉及新能源储能技术领域,所述隔膜的截面微孔结构具有如下分布:10nm≤孔径≤500nm的孔数占总孔数40%以上;500nm<孔径≤800nm的孔数占总孔数50%以下;800nm<孔径≤1500nm的孔数占总孔数10%以下。本发明解决了隔膜截面结构一致性差进而引起或加剧自放电、析锂等问题,达到了提高电池倍率性能、寿命、安全等性能的技术效果。

Description

截面结构一致性高的隔膜及其制备方法 技术领域
本发明涉及隔膜技术领域,尤其是涉及一种截面结构一致性高的隔膜及其制备方法。
背景技术
隔膜作为锂离子电池体系中关键主材,主要作用是隔绝正、负极,防止短路,同时保证具有一定的电解质浸润性和保液性,为锂离子传输提供通道。隔膜各项性能直接决定电池的界面性能及内阻,进而影响到电池充放电性能及循环性能。
现有技术的锂离子电池隔膜主要以聚烯烃多孔隔膜为主,制备方法主要分为干法、湿法拉伸,如公开号为CN100448922C、名称为“由聚烯烃制得的微多孔膜”的专利公开了一种由聚烯烃制得的微多孔膜的方法及相关特性。公开号为CN107910476A、CN108565382A、CN109686900A及CN107275550A公开了通过无机或无机有机混涂,主要改善隔膜的耐热性和浸润性。
虽然现有聚烯烃多孔隔膜在锂离子电池中能够成熟应用,但目前技术主要关注隔膜的基本物性以及理化性能,对于微观结构,例如在孔径测试中,主要通过电镜观察隔膜的表层孔径,无法考察其截面结构,还有采用压水法或气压法测试的孔径大小(例如公开号为CN113285176A的专利文献)只能反映隔膜中整体孔情况,无法反映出截面的孔结构。
目前现有技术中对隔膜的截面微观结构的一致性关注较少,而截面微观结构缺陷易引起自放电、析锂等问题,进而影响电池倍率性能、寿命、安全等性能,国内外隔膜截面微观结构一致性亟需提升。
有鉴于此,特提出本发明。
发明内容
本发明的目的之一在于提供一种截面结构一致性高的隔膜,其截面孔结构孔径分布具有高度一致性,用于降低或消除电芯自放电、析锂等问题,以进一步提高电池倍率性能、寿命、安全等性能。
本发明的目的之二在于提供一种截面结构一致性高的隔膜的制备方法,可以制备出截面微观结构一致性优异的隔膜。
本发明的目的之三在于提供一种包括所述隔膜的锂离子电池。
本发明的目的之四在于提供一种包括所述隔膜的钠离子电池。
本发明的目的之五在于提供一种包括所述隔膜的超级电容器。
为了实现本发明的上述目的,特采用以下技术方案:
第一方面,本发明提供了一种截面结构一致性高的隔膜,所述隔膜的截面微孔结构具有如下分布:10nm≤孔径≤500nm的孔数占总孔数40%以上,优选70%以上;500nm<孔径≤800nm的孔数占总孔数50%以下,优选30%以下;800nm<孔径≤1500nm的孔数占总孔数10%以下,优选2%以下;隔膜的厚度为3~20μm。
第二方面,本发明提供了一种所述截面结构一致性高的隔膜的制备方法,所述隔膜包括基膜,所述基膜采用湿法制得:将液态烃与聚烯烃树脂按照配方比例预处理,或直接输送至挤出系统,加热熔融形成均匀的混合物;混合熔体挤出至流延辊降温;进行相分离,冷却成型,制得膜片;再将膜片加热至接近熔点温度,进行双向同步或者分步拉伸使分子链取向, 保温、定型;溶剂洗脱残留的液态烃,洗脱后将膜移出溶剂,干燥,然后再横向拉伸、定型、回缩,制备出相互贯通的基膜;
其中,湿法制备过程需要满足条件1和条件2中的至少一个:
条件1:膜移出溶剂至干燥过程之间采用剪辊或压辊给予基膜在TD方向加持力,剪辊或压辊的数量大于等于2个,优选4~10个;
条件2:相分离和冷却成型过程控制纵向张力<300N/m;
或者,
所述基膜采用干法制得:
将聚烯烃树脂及添加剂原料按照配方比例预处理,或直接输送至挤出系统,原料在挤出系统中,经熔融塑化后从模头挤出熔体至流延辊降温,冷却成型,形成特定结晶结构的片材,将片材进行热处理后得到硬弹性薄膜,随后进行冷拉伸和热拉伸后形成纳米基膜;
其中,干法制备过程需要满足条件4:挤出和冷却成型过程控制纵向张力<300N/m。
进一步的,所述隔膜还包括位于所述基膜的至少单面的多孔层;
多孔层是涂覆浆料涂覆在基膜单面或两面上,然后干燥形成;
制备过程需要满足条件5:涂覆浆料涂覆在基膜后至干燥过程之间采用剪辊或压辊给予膜在TD方向加持力,剪辊或压辊的数量≥2个。
第三方面,本发明提供了一种锂离子电池,包括所述隔膜或所述制备方法制备得到的隔膜。
第四方面,本发明提供了一种钠离子电池,包括所述隔膜或所述制备方法制备得到的隔膜。
第五方面,本发明提供了一种超级电容器,包括所述隔膜或所述制备方法制备得到的隔膜。
本发明的技术方案具有如下有益效果:
本发明通过改进,使得隔膜截面微观结构一致性得以提升,解决了隔膜截面结构一致性差(尤其大孔径偏多)进而引起或加剧自放电、析锂等技术问题,达到了提高电池倍率性能、寿命、安全等性能的技术效果。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明提供的湿法隔膜制备过程;
图2为本发明提供的干法隔膜制备过程;
图3为本发明提供的湿法基膜涂覆隔膜制备过程;
图4为对比例制备的截面微观结构一致性差的隔膜;
图5为实施例1制备的截面微观结构一致性高的隔膜;
图6为实施例2制备的截面微观结构一致性高的隔膜;
图7为实施例4制备的截面微观结构一致性高的隔膜;
图8为实施例6制备的截面微观结构一致性高的隔膜。
具体实施方式
下面将结合实施例对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
根据本发明的第一个方面,提供了一种截面结构一致性高的隔膜,经冷冻离子束切割所得截面微观结构孔径大小(平面任何方向尺寸)在电子扫描电镜表征中集中处于:10nm≤孔径≤500nm的孔数占总孔数40%以上(例如>50%、60%、70%、80%、90%),优选70%以上;500nm<孔径≤800nm的孔数占总孔数50%以下(例如<40%、30%、20%、10%),优选30%以下;800nm<孔径≤1500nm的孔数占总孔数10%以下(例如<8%、5%、3%、2%),优选2%以下。隔膜的厚度为3~20μm,优选3~16μm。
需要注意的是,此处的截面可以是横截面也可以是纵截面(隔膜厚度方向)。
当截面为横截面时,水平切割面距离隔膜表面不小于500nm(隔膜的厚度在3~20μm之间);
当截面为纵截面时,竖向切割面可以是不含表面的任意截面。
具有以上孔分布的隔膜截面微观结构一致性优异,基本不存在>1500nm以上的长孔,孔径基本分布在10~500nm。
这里的隔膜可以是单层,也可以为多层,对此不做限定,即可以是基膜(单层或多层),也可以是基膜(单层或多层)+多孔层(单层或多层)的结构。可为本领域所能想到的各种层结构。
对基膜的材料没有特别的限定,可以为本领域已知的可用作电池隔膜基膜的材料,包括但不限于聚乙烯、聚丙烯、聚乙烯/聚丙烯复合膜等。
对多孔层的材料没有特别的限定,可以为本领域已知的可用作隔膜基膜上涂覆的材料,包括但不限于无机材料(例如陶瓷)、有机聚合物(例如芳纶等)、无机/有机复合材料等。
对基膜和多孔层的厚度没有特别限定,只要其适合用作电池的隔膜即可。优选地,基膜厚度为3~20μm;和/或,单面多孔层厚度为0.1~6μm。
根据本发明的第二个方面,提供了一种上述截面结构一致性高的隔膜的制备方法:
作为一种实施方式,所述隔膜包括基膜。
在一个实施例中,所述基膜制备方法包括湿法工艺,如图1所示:
1将液态烃(石蜡油)与聚烯烃树脂按照配方比例预处理,或直接输送至挤出系统,加热熔融后,形成均匀的混合物,混合熔体挤出至流延辊降温;2进行相分离,冷却成型,制得膜片;3再将膜片加热至接近熔点温度,进行第一次双向同步或者分布拉伸使分子链取向,紧接着保温、定型一定时间;4用易挥发溶剂洗脱残留的液态烃,5洗脱后将膜移出溶剂,然后干燥,6然后第二次横向拉伸、定型、回缩,7制备出相互贯通的基膜材料;
其中,湿法制备过程需要满足条件1和条件2中的至少一个:
条件1:在用易挥发溶剂洗脱残留的液态烃,然后干燥这一阶段中,在膜移出溶剂至干燥过程之间(即之间增加步骤)采用剪辊或压辊给予基膜在TD方向(横向,膜幅宽方向)加持力(即每个剪辊或压辊给予膜在TD方向的加持力>0.1N),剪辊或压辊的数量大于等于2个,优选4~10个(例如4、5、6、7、8、9或10个);也就是说,在膜移出溶剂至干燥过程之间增加个TD方向加持力即可。
条件2:相分离和冷却成型过程控制纵向张力<300N/m,即这两个过程均需控制纵向张力<300N/m(例如100、150、200、250N/m),可以举例通过各个辊筒速比或速度差调整纵向张力大小。
条件1和条件2可以满足其中一个,或,两者均满足。
进一步优选,湿法制备过程还需要满足条件3:在膜移出溶剂至干燥过程控制纵向张力<500N/m,即用易挥发溶剂洗脱残留的液态烃从膜移出溶剂到干燥之间的过程需控制纵向张力<500N/m(例如100、150、200、250、300、350、400、450N/m),可以举例通过各个辊筒速比或速度差调整纵向张力大小。
需要注意的是,在湿法工艺中,可实施的方式包括:条件1、条件2、条件1+2、条件1+3、条件2+3、条件1+2+3。
在一个实施例中,所述基膜制备方法包括干法工艺,如图2所示:
1将聚烯烃树脂及添加剂等原料按照配方比例预处理,或直接输送至挤出系统,原料在挤出系统中,经熔融塑化后从模头挤出熔体至流延辊降温,2冷却成型,形成特定结晶结构的片材(或基膜),3将片材进行热处理后得到硬弹性薄膜,随后进行4冷拉伸和5热拉伸后形成6微孔基膜;
其中,干法制备过程需要满足条件4:挤出和冷却成型过程控制纵向张力<300N/m,即挤出和冷却成型两过程均需控制纵向张力<300N/m(例如100、150、200、250N/m),可以举例通过各个辊筒速比或速度差调整纵向张力大小。
通过上述湿法或干法工艺,可制备出上述截面微观结构一致性优异的隔膜。
作为另一种实施方式,所述隔膜包括基膜和位于所述基膜的至少单面的多孔层;
基膜的制备可参考上述方法,在此不再赘述。
多孔层是涂覆浆料涂覆在基膜单面或两面上,然后干燥形成;如图3所示。
其中,制备过程需要满足条件5:涂覆浆料涂覆在基膜后至干燥过程之间采用剪辊或压辊给予膜(涂覆膜)在TD方向加持力,保证每个剪辊或压辊给予膜在TD方向的加持力>0.1N,剪辊或压辊的数量≥2个,优选2~10个(例如2、3、4、5、6、7、8、9、10个)。也就是说,在涂覆后至干燥过程之间增加个TD方向加持力即可。
涂覆浆料可以由无机陶瓷材料、有机聚合物材料中的一种或两种组成。
涂覆浆料中无机陶瓷材料包括无机陶瓷颗粒,包括但不限于氧化铝、勃姆石、碳酸钙、水滑石、蒙脱土、尖晶石、莫来石、二氧化钛、二氧化硅、二氧化锆、氧化镁、氧化钙、氧化铍、氢氧化镁、氮化硼、氮化硅、氮化铝、氮化钛、碳化硼、碳化硅、碳化锆中的一种或几种;
涂覆浆料中有机聚合物材料包括有机涂覆材料,包括但不限于聚酰亚胺、聚醚酰亚胺、芳纶、芳砜纶、聚偏二氟乙烯、聚甲基丙烯酸甲酯、聚环氧乙烷、聚丙烯腈、聚偏氟乙烯、聚偏氟乙烯-六氟丙烯等有机粉料或悬浮液中的一种或几种。
进一步优选的,制备过程还需要满足条件6和/或条件7:
条件6:涂覆浆料涂覆在基膜单面或两面的过程(基膜上涂浆料的过程)控制纵向张力<100N/m(例如20、50、60、80N/m),可以举例通过各个辊筒速比或速度差调整纵向张力大小;
条件7:涂覆浆料涂覆在基膜后至干燥过程(涂覆浆料后到干燥的过程)控制纵向张力<150N/m(例如50、100、120N/m),可以举例通过各个辊筒速比或速度差调整纵向张力大小。
基膜上制备多孔层从而获得上述截面微观结构高一致性的多孔层,可实施的方式包括:条件5、条件5+6、条件5+7、条件5+6+7。
通过上述方法制备得到的隔膜截面微观结构一致性提升,可以降低或避免电池自放电、析锂等问题,进而提升电池倍率性能、寿命、安全等性能。
根据本发明的第三个方面,提供了一种锂离子电池,包括所述隔膜或所述制备方法制备得到的隔膜。
根据本发明的第四个方面,提供了一种钠离子电池,包括所述隔膜或所述制备方法制备得到的隔膜。
根据本发明的第五个方面,提供了一种超级电容器,包括所述隔膜或所述制备方法制备得到的隔膜。
通过采用上述隔膜,可以获得倍率性能、寿命、安全性更加优异的锂离子电池或超级电容器。
下面结合实施例对本发明作进一步的说明,需要说明的是,提供以下实施例仅出于说明目的并不构成对本发明要求保护范围的限制。
除特殊说明外,在实施例中所采用的原料、试剂、方法等均为本领域常规的原料、试剂、方法。
实施例1
本实施例稀释剂为石蜡油,本实施例聚烯烃树脂为分子量均值为150万的聚乙烯(厂家:Celanese,型号:GURX223),所用设备为中材锂膜有限公司湿法隔膜线。
(1)挤出:石蜡油与聚乙烯分别按比例输送至挤出机中,其中聚乙烯的质量占比为25%,石蜡油的质量占比为75%,石蜡油-聚烯烃树脂混合体系经挤出机加热熔融后,形成均匀的混合熔体;
(2)成型:将(1)得到的混合熔体流出到流延辊降温,进行相分离,冷却成型,制得膜片,此过程通过调节辊筒速比或速度差使得膜片纵向张力为200N/m;
(3)双向拉伸:将(2)制得的膜片加热至接近熔点温度,进行双向拉伸使分子链取向,得到经双向拉伸面积增加至49倍的膜片;
(4)萃取:用二氯甲烷洗脱步骤(3)经双向拉伸的膜片中残留的稀释剂;
(5)干燥:将萃取后的膜进行烘干,膜移出溶剂至干燥过程通过调节辊筒速比或速度差使得膜片纵向张力为400N/m,此过程采用剪辊给予基膜在TD方向加持力,每个剪辊给予膜在TD方向的加持力>1N,膜横向两侧对称剪辊共使用6个;
(6)横向拉伸:将步骤(5)得到的烘干后的膜进行横向拉伸,并定型、回缩。
(7)得到多孔薄膜,即本发明高安全性锂离子电池基膜。
本实施例制备得到的锂离子电池基膜性能参数为:
孔隙率为40%,透气度值为140sec/100c,厚度为9.2μm,纵截面微孔结构分布如下:10nm≤孔径≤500nm的孔数占总孔数90%以上;500nm<孔径 ≤800nm的孔数占总孔数10%以下;800nm<孔径≤1500nm的孔数占总孔数为0%。如图5所示。
实施例2
本实施例稀释剂为石蜡油,本实施例聚烯烃树脂为分子量均值为90万的聚乙烯(厂家:AsahiKASEI,型号:UH650),所用设备为中材锂膜有限公司湿法隔膜线。
(1)挤出:石蜡油与聚烯烃树脂(聚乙烯)分别按比例输送至挤出机中,其中聚乙烯的质量占比为23%,石蜡油的质量占比为77%,石蜡油-聚烯烃树脂混合体系经挤出机加热熔融后,形成均匀的混合熔体;
(2)成型:将(1)得到的混合熔体流出到流延辊降温,进行相分离,冷却成型,制得膜片,此过程通过调节辊筒速比或速度差使得膜片纵向张力为180N/m;
(3)双向拉伸:将(2)制得的膜片加热至接近熔点温度,进行双向拉伸使分子链取向,得到经双向拉伸面积增加至64倍的膜片;
(4)萃取:用二氯甲烷洗脱步骤(3)经双向拉伸的膜片中残留的稀释剂;
(5)干燥:将萃取后的膜进行烘干,膜移出溶剂至干燥过程通过调节辊筒速比或速度差使得膜片纵向张力为300N/m,此过程采用剪辊给予基膜在TD方向加持力,每个剪辊或压辊给予膜在TD方向的加持力>0.5N,膜横向两侧对称剪辊共使用8个;
(6)横向拉伸:将步骤(5)得到的烘干后的膜进行横向拉伸,并定型、回缩;
(7)得到多孔薄膜,即本发明高安全性锂离子电池基膜。
本实施例制备得到的锂离子电池基膜性能参数为:
孔隙率为38%,透气度值为140sec/100c,厚度为7.3μm,纵截面微孔结构分布如下:10nm≤孔径≤500nm的孔数占总孔数97%以上;500nm<孔径 ≤800nm的孔数占总孔数3%以下;800nm<孔径≤1500nm的孔数占总孔数为0%。如图6所示。
实施例3
截面微观结构一致性高的隔膜应用:在实施例1中的基膜上双面涂覆有机无机混合涂层(PVDF+Al 2O 3),具体过程如下:
(1)基膜采用实施例1中9.2μm基膜;
(2)涂覆浆料配制:取13重量份聚偏氟乙烯胶液(质量分数为20%)和18重量份聚酰亚胺胶液(质量分数为10%),溶解到55重量份二甲基乙酰胺和三丙二醇混合液中(其中,二甲基乙酰胺与三丙二醇的重量比为15:70:30),之后依次加入30重量份硅烷偶联剂改性的D50为0.64μm氧化铝、4重量份乳液型丙烯酸酯类粘结剂(固含量为40%,25℃粘度为20cps~200cps),室温混合搅拌1h,得到白色粘稠涂覆浆料;
(3)涂覆过程:将实施例1制备的9.2μm作为基膜,通过MCD型涂布机,采用凹版涂覆方式在基膜的双侧涂覆上述涂覆浆料,之后浸入到20℃的凝固液(二甲基乙酰胺、三丙二醇与水的重量比28:12:60),待聚烯烃多孔膜表面的湿膜先固化,依次水洗、干燥,得到复合隔膜,复合隔膜出水槽液面后至干燥过程,双侧涂层厚度均为2μm,制备出相互贯通且高弹性形变量的基膜材料。得到透气度为210sec/100c,厚度为13μm复合隔膜。
实施例4
本实施例稀释剂为石蜡油,本实施例聚烯烃树脂为分子量均值为150万的聚乙烯(厂家:Celanese,型号:GURX223),所用设备为中材锂膜有限公司湿法隔膜线。
(1)挤出:石蜡油与聚烯烃树脂(聚乙烯)分别按比例输送至挤出机中,其中聚乙烯的质量占比为22%,石蜡油的质量占比为78%,石蜡油-聚烯烃树脂混合体系经挤出机加热熔融后,形成均匀的混合熔体;
(2)成型:将(1)得到的混合熔体流出到流延辊降温,进行相分离, 冷却成型,制得膜片,此过程通过调节辊筒速比或速度差使得膜片纵向张力为160N/m;
(3)双向拉伸:将(2)制得的膜片加热至接近熔点温度,进行双向拉伸使分子链取向,得到经双向拉伸面积增加至56倍的膜片;
(4)萃取:用二氯甲烷洗脱步骤(3)经双向拉伸的膜片中残留的稀释剂;
(5)干燥:将萃取后的膜进行烘干,膜移出溶剂至干燥过程通过调节辊筒速比或速度差使得膜片纵向张力为300N/m,此过程采用剪辊给予基膜在TD方向加持力,剪辊或压辊给予膜在TD方向的加持力>1N,膜横向两侧对称剪辊共使用6个;
(6)横向拉伸:将步骤(5)得到的烘干后的膜进行横向拉伸,并定型、回缩;
(7)得到多孔薄膜,即本发明高安全性锂离子电池基膜。
本实施例制备得到的锂离子电池基膜性能参数为:
孔隙率为39%,透气度值为150sec/100c,厚度为9.5μm,纵截面微孔结构分布如下:10nm≤孔径≤500nm的孔数占总孔数90%以上;500nm<孔径≤800nm的孔数占总孔数10%以下;800nm<孔径≤1500nm的孔数占总孔数为0%。如附图7所示。
实施例5
本实施例稀释剂为石蜡油,本实施例聚烯烃树脂为分子量均值为90万的聚乙烯(厂家:asahiKASEI,型号:UH650),所用设备为中材锂膜有限公司湿法隔膜线。
(1)挤出:石蜡油与聚烯烃树脂(聚乙烯)分别按比例输送至挤出机中,其中聚乙烯的质量占比为21%,石蜡油的质量占比为79%,石蜡油-聚烯烃树脂混合体系经挤出机加热熔融后,形成均匀的混合熔体;
(2)成型:将(1)得到的混合熔体流出到流延辊降温,进行相分离, 冷却成型,制得膜片,此过程通过调节辊筒速比或速度差使得膜片纵向张力为145N/m;
(3)双向拉伸:将(2)制得的膜片加热至接近熔点温度,进行双向拉伸使分子链取向,得到经双向拉伸面积增加至64倍的膜片;
(4)萃取:用二氯甲烷洗脱步骤(3)经双向拉伸的膜片中残留的稀释剂;
(5)干燥:将萃取后的膜进行烘干,膜移出溶剂至干燥过程通过调节辊筒速比或速度差使得膜片纵向张力为320N/m,此过程采用剪辊给予基膜在TD方向加持力,剪辊或压辊给予膜在TD方向的加持力>1N,膜横向两侧对称剪辊共使用10个;
(6)横向拉伸:将步骤(5)得到的烘干后的膜进行横向拉伸,并定型、回缩;
(7)得到多孔薄膜,即本发明高安全性锂离子电池基膜。
本实施例制备得到的锂离子电池基膜性能参数为:
孔隙率为41%,透气度值为142sec/100c,厚度为12.0μm,纵截面微孔结构分布如下:10nm≤孔径≤500nm的孔数占总孔数96%以上;500nm<孔径≤800nm的孔数占总孔数4%以下;800nm<孔径≤1500nm的孔数占总孔数为0%。
此外,同样的方法可以制备出孔隙率为25~70,透气度为50~400sec/100c,厚度为3~20μm,所得截面微观结构均满足:10nm≤孔径≤500nm的孔数占总孔数70%以上;500nm<孔径≤800nm的孔数占总孔数30%以下;800nm<孔径≤1500nm的孔数占总孔数2%以下。
实施例6
一种高一致性截面结构的复合隔膜制备方法,包括:
(1)基膜采用上述实施例4湿法制备的9.5μm厚隔膜;
(2)涂覆浆料配制:取15重量份聚偏氟乙烯胶液(质量分数为20%)和20重量份聚酰亚胺胶液(质量分数为10%),溶解到57重量份二甲基乙酰胺和三丙二醇混合液中(其中,二甲基乙酰胺、三丙二醇与水的重量比为15:70:30),之后依次加入20重量份硅烷偶联剂改性的D50为0.64μm氧化铝、3重量份乳液型丙烯酸酯类粘结剂(固含量为40%,25℃粘度为20cps~200cps),室温混合搅拌1h,得到白色粘稠涂覆浆料。
(3)涂覆过程:通过MCD型涂布机,采用凹版涂覆方式在上述9.5μm基膜的两侧涂覆上述涂覆浆料,此过程通过控制各辊速比或速差,确保膜纵向张力为35N;之后浸入到22℃的凝固液(二甲基乙酰胺、三丙二醇与水的重量比28:12:60),待聚烯烃多孔膜表面的湿膜先固化,依次水洗、干燥,得到复合隔膜;复合隔膜出水槽液面后至干燥过程,涂层厚度两侧各为2μm,整个过程通过临近前后辊筒速度差控制小于0.1m/min,使得纵向过程张力最大值为100N/m,并且此过程采用剪辊给予膜在TD方向加持力,每个剪辊给予膜在TD方向的加持力>0.3N,膜横向两侧对称剪辊共使用4个,制备出高一致性截面结构的复合隔膜。
(4)所得复合隔膜透气度值为210sec/100c,厚度为13.5μm;涂层纵截面微孔结构分布如下:10nm≤孔径≤500nm的孔数占总孔数80%以上;500nm<孔径≤800nm的孔数占总孔数10%以下;800nm<孔径≤1500nm的孔数占总孔数为2%以下;基膜截面10nm≤孔径≤500nm的孔数占总孔数95%以上;500nm<孔径≤800nm的孔数占总孔数5%以下;800nm<孔径≤1500nm的孔数占总孔数为0%。如附图8所示。
实施例7
一种高一致性截面结构的复合隔膜制备方法,包括:
(1)基膜采用上述实施例5中湿法隔膜12μm厚产品;
(2)涂覆浆料配制:向质量分数为1.5%、表观粘度为300cp的芳纶原液中分散一定比例的氧化铝粉,通过高速分散乳化机搅拌30min,在1000目滤网过滤后得到均匀的对位芳纶浆料。
(3)涂覆过程:通过MCD型涂布机,采用凹版涂覆方式在基膜的一侧涂覆上述对位芳纶浆料,此过程通过控制各辊速比或速差,确保膜纵向张力为30N/m;制备的涂覆膜在60℃、60%RH的饱和蒸汽氛围下停留30s,随后进入纯水槽水洗120s;然后进入75℃的烘箱干燥60s,整个过程通过临近前后辊筒速度差,使得复合隔膜出水槽液面后至干燥过程纵向张力为40N/m;复合隔膜出水槽液面后至干燥过程,采用剪辊给予膜在TD方向的加持力>0.5N,膜横向两侧对称剪辊共使用6个;最后经过定型收卷得到单侧涂覆4μm芳纶的复合隔膜。
(4)所得复合隔膜透气度值为270sec/100c,厚度为16μm;涂层纵截面微孔结构分布如下:10nm≤孔径≤500nm的孔数占总孔数90%以上;500nm<孔径≤800nm的孔数占总孔数10%以下;800nm<孔径≤1500nm的孔数占总孔数为0%以下;基膜截面10nm≤孔径≤500nm的孔数占总孔数96%以上;500nm<孔径≤800nm的孔数占总孔数4%以下;800nm<孔径≤1500nm的孔数占总孔数为0%。
对比例
本对比例与实施例1的区别在于,步骤(2)相分离和冷却成型过程控制膜片纵向张力>2000N/m;步骤(5)膜移出溶剂至干燥过程控制膜片纵向张力>1000N/m,且不给予基膜在TD方向加持力。制备得到的基膜如图4所示。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行 修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种截面结构一致性高的隔膜,其特征在于,所述隔膜的截面微孔结构具有如下分布:10nm≤孔径≤500nm的孔数占总孔数40%以上;500nm<孔径≤800nm的孔数占总孔数50%以下;800nm<孔径≤1500nm的孔数占总孔数10%以下;
    隔膜的厚度为3~20μm;
    所述截面为横截面时,横截面与其邻近的隔膜表面之间的距离不小于0.5μm;
    所述截面为纵截面时,纵截面为不含表面的任意截面。
  2. 根据权利要求1所述的隔膜,其特征在于,所述隔膜包括基膜,基膜为单层或多层;
    或者,
    所述隔膜包括基膜和位于所述基膜的至少单面的多孔层;基膜为单层或多层;多孔层为单层或多层。
  3. 根据权利要求2所述的隔膜,其特征在于,基膜的厚度为3~20μm;
    和/或,
    多孔层的厚度为0.1~6μm。
  4. 一种权利要求1-3任一项所述的截面结构一致性高的隔膜的制备方法,其特征在于,所述隔膜包括基膜,所述基膜采用湿法制得:将液态烃与聚烯烃树脂预处理,或直接输送至挤出系统,加热熔融形成均匀的混合物;混合熔体挤出至流延辊降温,进行相分离,冷却成型,制得膜片;再将膜片加热至接近熔点温度,进行双向同步或者分步拉伸使分子链取向,保温、定型;溶剂洗脱残留的液态烃,洗脱后将膜移出溶剂,干燥,然后再横向拉伸、定型、回缩,制备出相互贯通的基膜;
    其中,湿法制备过程需要满足条件1和条件2中的至少一个:
    条件1:膜移出溶剂至干燥过程之间采用剪辊或压辊给予基膜在TD方向加持力,剪辊或压辊的数量大于等于2个;
    条件2:相分离和冷却成型过程控制纵向张力<300N/m;
    或者,
    所述基膜采用干法制得:
    将聚烯烃树脂及添加剂原料预处理,或直接输送至挤出系统,原料在挤出系统中,经熔融塑化后从模头挤出熔体至流延辊降温,冷却成型,形成特定结晶结构的片材,将片材进行热处理后得到硬弹性薄膜,随后进行冷拉伸和热拉伸后形成纳米基膜;
    其中,干法制备过程需要满足条件4:挤出和冷却成型过程控制纵向张力<300N/m。
  5. 根据权利要求4所述的制备方法,其特征在于,湿法制备过程还需要满足条件3:膜移出溶剂至干燥过程控制纵向张力<500N/m。
  6. 根据权利要求4或5所述的制备方法,其特征在于,所述隔膜还包括位于所述基膜的至少单面的多孔层;
    多孔层是涂覆浆料涂覆在基膜单面或两面上,然后干燥形成;
    制备过程需要满足条件5:涂覆浆料涂覆在基膜后至干燥过程之间采用剪辊或压辊给予膜在TD方向加持力,剪辊或压辊的数量≥2个。
  7. 根据权利要求6所述的制备方法,其特征在于,制备过程还需要满足条件6和/或条件7:
    条件6:涂覆浆料涂覆在基膜单面或两面的过程控制纵向张力<100N/m;
    条件7:涂覆浆料涂覆在基膜后至干燥过程控制纵向张力<150N/m。
  8. 根据权利要求6所述的制备方法,其特征在于,涂覆浆料包括无机陶瓷涂覆材料、有机聚合物材料中的一种或几种;
    无机陶瓷涂覆材料包括氧化铝、勃姆石、碳酸钙、水滑石、蒙脱土、尖 晶石、莫来石、二氧化钛、二氧化硅、二氧化锆、氧化镁、氧化钙、氧化铍、氢氧化镁、氮化硼、氮化硅、氮化铝、氮化钛、碳化硼、碳化硅、碳化锆中的一种或几种;
    有机聚合物材料包括聚酰亚胺、聚醚酰亚胺、芳纶、芳砜纶、聚偏二氟乙烯、聚甲基丙烯酸甲酯、聚环氧乙烷、聚丙烯腈、聚偏氟乙烯、聚偏氟乙烯-六氟丙烯有机粉料或悬浮液中的一种或几种。
  9. 一种锂离子或钠离子电池,其特征在于,所述锂离子或钠离子电池包括权利要求1-3任一项所述的隔膜或权利要求4-8任一项所述的制备方法制备得到的隔膜。
  10. 一种超级电容器,其特征在于,所述超级电容器包括权利要求1-3任一项所述的隔膜或权利要求4-8任一项所述的制备方法制备得到的隔膜。
PCT/CN2021/142650 2021-12-23 2021-12-29 截面结构一致性高的隔膜及其制备方法 WO2023115624A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21968749.8A EP4439842A1 (en) 2021-12-23 2021-12-29 Separator having high section structure consistency and preparation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111589281.5 2021-12-23
CN202111589281.5A CN114243222B (zh) 2021-12-23 2021-12-23 截面结构一致性高的隔膜及其制备方法

Publications (1)

Publication Number Publication Date
WO2023115624A1 true WO2023115624A1 (zh) 2023-06-29

Family

ID=80761950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/142650 WO2023115624A1 (zh) 2021-12-23 2021-12-29 截面结构一致性高的隔膜及其制备方法

Country Status (3)

Country Link
EP (1) EP4439842A1 (zh)
CN (1) CN114243222B (zh)
WO (1) WO2023115624A1 (zh)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100448922C (zh) 2003-12-24 2009-01-07 旭化成化学株式会社 由聚烯烃制得的微多孔膜
CN101786332A (zh) * 2010-02-10 2010-07-28 沧州明珠塑料股份有限公司 一种湿法制备多层聚烯烃微孔膜的方法
JP2012064569A (ja) * 2010-08-18 2012-03-29 Asahi Kasei E-Materials Corp リチウムイオン二次電池
CN105609686A (zh) * 2015-12-28 2016-05-25 深圳市星源材质科技股份有限公司 一种孔径分布均匀的聚烯烃微孔膜制备方法
CN107275550A (zh) 2017-06-20 2017-10-20 深圳市星源材质科技股份有限公司 一种陶瓷和聚合物复合涂覆锂离子隔膜及其制备方法
CN107910476A (zh) 2017-11-06 2018-04-13 上海恩捷新材料科技股份有限公司 一种陶瓷复合锂离子电池隔膜及其制备方法
CN108470873A (zh) * 2018-03-09 2018-08-31 同济大学 具有热关断功能的abab型多层锂离子电池隔膜及其制备方法
CN108565382A (zh) 2018-04-28 2018-09-21 上海恩捷新材料科技股份有限公司 一种水性涂层锂离子电池隔膜及其制备方法
CN109686900A (zh) 2017-10-19 2019-04-26 上海恩捷新材料科技股份有限公司 一种锂离子电池隔膜及其制备方法
CN209813061U (zh) * 2019-03-27 2019-12-20 安徽新衡新材料科技有限公司 一种湿法隔膜萃取系统及其夹边辊装置
CN111391267A (zh) * 2020-03-25 2020-07-10 石狮申泰新材料科技有限公司 一种锂电池隔膜的干法单拉生产工艺
CN113258213A (zh) * 2021-05-13 2021-08-13 江苏厚生新能源科技有限公司 一种用于锂离子电池的高厚度均匀性聚烯烃隔膜及其制备方法、锂离子电池
CN113285176A (zh) 2021-05-13 2021-08-20 江苏厚生新能源科技有限公司 一种用于锂离子电池的高孔隙率、孔径均匀的聚烯烃隔膜及其制备方法、锂离子电池
CN113782916A (zh) * 2021-08-17 2021-12-10 中材锂膜有限公司 功能化微孔膜及其制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100409017B1 (ko) * 2000-06-23 2003-12-06 주식회사 엘지화학 다성분계 복합 분리막 및 그의 제조방법
JP2008055890A (ja) * 2006-06-06 2008-03-13 Fujifilm Corp 熱可塑性樹脂フィルムおよびその製造方法、並びに、偏光板、光学補償フィルム、反射防止フィルムおよび液晶表示装置
KR101432146B1 (ko) * 2007-11-28 2014-08-28 에스케이이노베이션 주식회사 물성과 고온 열안정성이 우수한 폴리올레핀 미세다공막
CN102931371B (zh) * 2012-11-13 2015-07-08 辽源鸿图锂电隔膜科技股份有限公司 一种电池隔膜的制备方法
JP2017171783A (ja) * 2016-03-24 2017-09-28 東レ株式会社 コーティング加工用芳香族ポリアミドフィルム
CN109422890A (zh) * 2017-08-25 2019-03-05 北京师范大学 一种复合聚丙烯微孔膜及其制备方法和用途
CN113054320A (zh) * 2021-02-03 2021-06-29 中材锂膜有限公司 一种耐老化锂离子电池隔膜及制作方法
CN112688029B (zh) * 2021-03-15 2021-06-29 江苏厚生新能源科技有限公司 一种锂离子电池多层复合隔膜及其制备方法
CN113067101B (zh) * 2021-03-19 2022-07-05 江苏厚生新能源科技有限公司 一种高刚性锂离子电池隔膜及制备方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100448922C (zh) 2003-12-24 2009-01-07 旭化成化学株式会社 由聚烯烃制得的微多孔膜
CN101786332A (zh) * 2010-02-10 2010-07-28 沧州明珠塑料股份有限公司 一种湿法制备多层聚烯烃微孔膜的方法
JP2012064569A (ja) * 2010-08-18 2012-03-29 Asahi Kasei E-Materials Corp リチウムイオン二次電池
CN105609686A (zh) * 2015-12-28 2016-05-25 深圳市星源材质科技股份有限公司 一种孔径分布均匀的聚烯烃微孔膜制备方法
CN107275550A (zh) 2017-06-20 2017-10-20 深圳市星源材质科技股份有限公司 一种陶瓷和聚合物复合涂覆锂离子隔膜及其制备方法
CN109686900A (zh) 2017-10-19 2019-04-26 上海恩捷新材料科技股份有限公司 一种锂离子电池隔膜及其制备方法
CN107910476A (zh) 2017-11-06 2018-04-13 上海恩捷新材料科技股份有限公司 一种陶瓷复合锂离子电池隔膜及其制备方法
CN108470873A (zh) * 2018-03-09 2018-08-31 同济大学 具有热关断功能的abab型多层锂离子电池隔膜及其制备方法
CN108565382A (zh) 2018-04-28 2018-09-21 上海恩捷新材料科技股份有限公司 一种水性涂层锂离子电池隔膜及其制备方法
CN209813061U (zh) * 2019-03-27 2019-12-20 安徽新衡新材料科技有限公司 一种湿法隔膜萃取系统及其夹边辊装置
CN111391267A (zh) * 2020-03-25 2020-07-10 石狮申泰新材料科技有限公司 一种锂电池隔膜的干法单拉生产工艺
CN113258213A (zh) * 2021-05-13 2021-08-13 江苏厚生新能源科技有限公司 一种用于锂离子电池的高厚度均匀性聚烯烃隔膜及其制备方法、锂离子电池
CN113285176A (zh) 2021-05-13 2021-08-20 江苏厚生新能源科技有限公司 一种用于锂离子电池的高孔隙率、孔径均匀的聚烯烃隔膜及其制备方法、锂离子电池
CN113782916A (zh) * 2021-08-17 2021-12-10 中材锂膜有限公司 功能化微孔膜及其制备方法

Also Published As

Publication number Publication date
EP4439842A1 (en) 2024-10-02
CN114243222A (zh) 2022-03-25
CN114243222B (zh) 2022-09-20

Similar Documents

Publication Publication Date Title
US11603443B2 (en) Composite porous membrane and preparation method therefor and use thereof
KR101342994B1 (ko) 폴리올레핀 조성물, 그의 제조 방법 및 그로부터 제조된 전지용 세퍼레이터
JP5283383B2 (ja) ポリエチレン微多孔膜の製造方法及び電池用セパレータ
US9293750B2 (en) Porous membrane and method for manufacturing the same
KR101406051B1 (ko) 폴리올레핀 다층 미세 다공막, 그 제조 방법, 전지용 세페레이터 및 전지
TWI418581B (zh) 聚乙烯微多孔膜及其製法與電池用隔離材
CN109509856B (zh) 一种芳香族聚酰胺微孔膜及其制备方法和用途
CN110350155B (zh) 一种含沿横向拉伸方向取向的纳米纤维状多孔层的复合微孔膜
TWI565124B (zh) 電化學裝置用分離器及包括所述分離器的電化學裝置
CN112531285A (zh) 一种耐高温对位芳纶涂覆锂离子电池隔膜及其制备方法
WO2007023918A1 (ja) ポリエチレン多層微多孔膜並びにそれを用いた電池用セパレータ及び電池
CN107808943B (zh) 一种多层聚烯烃微孔隔膜及其制备方法
WO2023115625A1 (zh) 高弹性形变量隔膜及其制备方法
TW201815921A (zh) 微多孔膜、鋰離子二次電池及微多孔膜製造方法
WO2024187671A1 (zh) 一种聚烯烃微孔膜及其制备方法、电池隔膜、电化学装置
TW201807867A (zh) 聚烯烴微多孔膜及其製造方法以及電池用隔膜及其製造方法
CN110600657B (zh) 丝状偏氟乙烯聚合物复合涂覆隔膜的制备方法
TW201727970A (zh) 電池用隔膜及其製備方法以及電池用隔膜的捲繞體
WO2023115624A1 (zh) 截面结构一致性高的隔膜及其制备方法
JP2022517293A (ja) ポリオレフィン多孔質膜の製造方法
CN115312973B (zh) 一种聚烯烃多孔膜及其制备方法、电池隔膜、电化学装置
TW201926772A (zh) 用於電儲存裝置之分離件
CN114597587A (zh) 一种芳纶涂覆隔膜及其制备方法
CN107845756B (zh) 一种耐高温共挤出单向拉伸微孔隔膜的制备方法及微孔隔膜
WO2024077927A1 (zh) 一种聚烯烃多孔膜及其制备方法、电池隔膜、电化学装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21968749

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021968749

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021968749

Country of ref document: EP

Effective date: 20240625

NENP Non-entry into the national phase

Ref country code: DE