WO2023108770A1 - 显示面板及显示终端 - Google Patents

显示面板及显示终端 Download PDF

Info

Publication number
WO2023108770A1
WO2023108770A1 PCT/CN2021/140611 CN2021140611W WO2023108770A1 WO 2023108770 A1 WO2023108770 A1 WO 2023108770A1 CN 2021140611 W CN2021140611 W CN 2021140611W WO 2023108770 A1 WO2023108770 A1 WO 2023108770A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
substrate
sub
hole
display
Prior art date
Application number
PCT/CN2021/140611
Other languages
English (en)
French (fr)
Inventor
马蹄遥
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US17/623,691 priority Critical patent/US20240122000A1/en
Publication of WO2023108770A1 publication Critical patent/WO2023108770A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light

Definitions

  • the present application relates to the display field, in particular to a display panel and a display terminal.
  • Display panels have been widely used in people's lives.
  • large-size display panels such as the production and manufacture of large-size organic light-emitting display panels (OLED)
  • OLED organic light-emitting display panels
  • a method of splicing small-size display components into a large-size display panel has been developed.
  • multiple small-size display components are spliced and arranged on a large-size drive substrate.
  • Each display component includes The array functional layer and the light-emitting functional layer, the array functional layer is equivalent to each film layer on the array substrate, the array functional layer includes thin film transistors (TFT), data lines, scanning lines and other structures, the light-emitting functional layer can include multiple light-emitting devices, drive The substrate includes wires and circuits for driving each display component to display images.
  • Each display component includes a first terminal, and the drive substrate includes a second terminal. After the first terminal is electrically connected to the second terminal, the drive substrate can drive each Display components display images.
  • the embodiment of the present application provides a display panel and a display terminal, which can solve the problem of poor contact in the electrical connection between the display component and the drive substrate caused by the through hole penetrating the first terminal in the current technology, and the decrease in the yield rate of the display panel. Technical issue with small windows.
  • An embodiment of the present application provides a display panel, including:
  • At least one display component comprising a first substrate, at least one first terminal disposed on the first substrate, and a light-emitting layer, the light-emitting layer being electrically connected to the first terminal;
  • the driving substrate includes a driving chip, a second base, and a plurality of second terminals arranged on the second base, the display component is arranged on the driving substrate, and the first terminal is on the driving substrate.
  • the orthographic projection at least partially overlaps the orthographic projection of the corresponding second terminal on the driving substrate, the driving chip is electrically connected to the second terminal, and the driving chip transmits a signal to the The first terminal is used to drive the light-emitting layer to display;
  • the display assembly includes at least one through-hole group, the through-hole group is arranged between the corresponding first terminal and the corresponding second terminal, and each through-hole group includes a groove and a plurality of A sub-through hole, the groove is located on the side surface of the first substrate facing the driving substrate, the sub-through hole runs through the side surface of the first substrate away from the groove, the sub-through hole The hole is connected between the first terminal and the groove, the orthographic projection of the groove on the driving substrate covers the orthographic projection of the sub-through hole on the driving substrate, and the conducting member At least filling in the groove and the sub-through hole.
  • the sub-through hole further extends to the inside of the first terminal, or the sub-through hole penetrates through the first terminal.
  • an embodiment of the present application also provides a display terminal, which includes a terminal body and a display panel, the terminal body and the display panel are integrated, and the display panel includes:
  • At least one display component comprising a first substrate, at least one first terminal disposed on the first substrate, and a light-emitting layer, the light-emitting layer being electrically connected to the first terminal;
  • the driving substrate includes a driving chip, a second base, and a plurality of second terminals arranged on the second base, the display component is arranged on the driving substrate, and the first terminal is on the driving substrate.
  • the orthographic projection at least partially overlaps the orthographic projection of the corresponding second terminal on the driving substrate, the driving chip is electrically connected to the second terminal, and the driving chip transmits a signal to the The first terminal is used to drive the light-emitting layer to display;
  • the display assembly includes at least one through-hole group, the through-hole group is arranged between the corresponding first terminal and the corresponding second terminal, and each through-hole group includes a groove and a plurality of A sub-through hole, the groove is located on the side surface of the first substrate facing the driving substrate, the sub-through hole runs through the side surface of the first substrate away from the groove, the sub-through hole The hole is connected between the first terminal and the groove, the orthographic projection of the groove on the driving substrate covers the orthographic projection of the sub-through hole on the driving substrate, and the conducting member At least filling in the groove and the sub-through hole.
  • the sub-through hole further extends to the inside of the first terminal, or the sub-through hole penetrates through the first terminal.
  • a display panel and a display terminal are provided.
  • the display panel includes at least one display component, a driving substrate, and a conductive member.
  • the display component includes a first base and at least one first terminal disposed on the first base. , and a light-emitting layer, the light-emitting layer is electrically connected to the first terminal;
  • the driving substrate includes a driving chip, a second substrate and a plurality of second terminals arranged on the second substrate, the display component is arranged on the driving substrate, and the conductive member is electrically connected to the Between the first terminal and the second terminal; wherein, the display assembly includes at least one through-hole group, the through-hole group is arranged between the corresponding first terminal and the corresponding second terminal, and each through-hole group includes a groove and a plurality of sub-terminals The through hole, the groove is located on the side surface of the first substrate facing the driving substrate, the sub-through hole runs through the side surface of the first substrate away from the groove, the sub-through hole is connected between
  • the through hole group by setting the through hole group to include grooves and multiple sub-through holes, even if the sub-through holes penetrate the first terminal in the laser drilling process, the conductive member can be in contact with the side of the first terminal, which can improve the laser performance.
  • the process window of the drilling process improves the yield rate of the drilling process, and at the same time, the contact area between the conductive member and the first terminal is increased by setting the groove, thereby improving the contact between the conductive member and the first terminal.
  • FIG. 1 is a first schematic diagram of a display panel provided by an embodiment of the present application.
  • Fig. 2 is a schematic diagram of a splicing state of a display panel provided by an embodiment of the present application
  • Fig. 3(a) is a schematic diagram of various top-view shapes of sub-vias provided by an embodiment of the present application.
  • Figure 3(b) is a schematic cross-sectional view of the sub-hole when there is no groove in the comparison condition provided by an embodiment of the present application;
  • Figure 3(c) is a schematic cross-sectional view of a sub-hole provided by an embodiment of the present application when there is a groove;
  • Fig. 4 is a second schematic diagram of a display panel provided by an embodiment of the present application.
  • Fig. 5 is a third schematic diagram of a display panel provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of the first process steps of a method for manufacturing a display panel provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of the second process steps of a method for manufacturing a display panel provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of forming a first terminal in a method for manufacturing a display panel provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of forming a first insulating layer in a method for manufacturing a display panel provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of forming a barrier layer in a method for manufacturing a display panel provided by an embodiment of the present application.
  • Fig. 11 is a schematic diagram of forming a light-emitting layer in a method for manufacturing a display panel provided by an embodiment of the present application;
  • Fig. 12(a) is a first schematic diagram of forming a through hole group in a method of manufacturing a display panel provided by an embodiment of the present application;
  • Fig. 12(b) is a second schematic diagram of forming a through-hole group in a method for manufacturing a display panel provided by an embodiment of the present application;
  • FIG. 13 is a schematic diagram of forming a first via in a method for manufacturing a display panel provided by an embodiment of the present application
  • FIG. 14 is a schematic diagram of forming a second via in a method for manufacturing a display panel provided by an embodiment of the present application.
  • FIG. 15 is a schematic diagram of a driving substrate provided in a method for manufacturing a display panel according to an embodiment of the present application.
  • FIG. 16 is a schematic diagram of the alignment connection between a display component and a driving substrate in a method for manufacturing a display panel provided by an embodiment of the present application;
  • Fig. 17 is a schematic diagram of forming an adhesive layer in a method for manufacturing a display panel provided by an embodiment of the present application.
  • Fig. 18 is a schematic diagram of a display terminal provided by an embodiment of the present application.
  • An embodiment of the present application provides a display panel, including: at least one display component, the display component including a first substrate, at least one first terminal disposed on the first substrate, and a light-emitting layer, and the light-emitting layer is electrically connected to the first terminal;
  • the driving substrate includes a driving chip, a second base, and a plurality of second terminals arranged on the second base, the display component is arranged on the driving substrate, and the orthographic projection of the first terminal on the driving substrate and the corresponding second terminal drive The orthographic projections on the substrate are at least partially overlapped, the driver chip is electrically connected to the second terminal, and the driver chip transmits a signal to the first terminal through the second terminal to drive the light-emitting layer to display; the conductive member is electrically connected between the first terminal and the second terminal Between two terminals; wherein, the display assembly includes at least one through-hole group, the through-hole group is arranged between the corresponding first terminal and the corresponding second terminal, each through-hole group includes a groove and
  • Embodiments of the present application provide a display panel and a display terminal. Each will be described in detail below. It should be noted that the description sequence of the following embodiments is not intended to limit the preferred sequence of the embodiments.
  • Figure 1 is the first schematic diagram of the display panel 100 provided by the embodiment of the application
  • Figure 2 is the implementation of the application
  • FIG. 3(a) is a schematic diagram of various top-view shapes of the sub-through holes 51 provided in the embodiment of the present application
  • FIG. 3(b) is a comparison provided in the embodiment of the present application
  • the condition is a schematic cross-sectional view of the sub-through hole 51 without the groove 52;
  • the embodiment of the present application provides a display panel 100.
  • the display panel 100 includes: at least one display component 10, a driving substrate 20, and a conductive member 30.
  • the display component 10 includes a first base 11, and at least A first terminal 12, and a light-emitting layer 19, the light-emitting layer 19 is electrically connected to the first terminal 12;
  • the driving substrate 20 includes a driving chip 60, a second base 21, and a plurality of second terminals 22 arranged on the second base 21, showing The component 10 is arranged on the driving substrate 20, the orthographic projection of the first terminal 12 on the driving substrate 20 overlaps at least partially the corresponding orthographic projection of the second terminal 22 on the driving substrate 20, and the driving chip 60 is electrically connected to the second terminal 22 , the driver chip 60 transmits the signal to the first terminal 12 through the second terminal 22 to drive the light-emitting layer 19 to display;
  • the conductive member 30 is electrically connected between the first terminal 12 and the second terminal 22; wherein, the display assembly 10 includes At least one through hole group 50,
  • FIG. 2 it is illustrated that two display components 10 are spliced and arranged on a driving substrate 20, and the length of the driving substrate 20 is equal to or greater than the sum of the lengths of the plurality of display components 10 arranged on the driving substrate 20.
  • the width of the driving substrate 20 is equal to or greater than the sum of the widths of the plurality of display components 10 disposed on the driving substrate 20 , so that the plurality of display components 10 can be driven and supplied with electrical signals through one driving substrate 20 .
  • the display component 10 may be an organic light-emitting display component or a small organic light-emitting display panel (small-sized OLED), and at least two display components 10 are spliced and arranged on the driving substrate 20 to form a large-sized display panel.
  • OLED organic light-emitting display panel
  • the display component 10 when the display component 10 is an organic light-emitting display component, the display component 10 includes an array function layer 18 and a light-emitting layer 19 disposed on the array function layer 18, and the light-emitting layer 19 can be an organic light-emitting function layer.
  • the light emitting layer 19 may include red light emitting devices, green light emitting devices, and blue light emitting devices, which will not be repeated here.
  • the array functional layer 18 may include a plurality of array-arranged thin film transistors, scan lines, data lines, and other structures, which will not be repeated here.
  • the display assembly 10 may also include other structures and components that realize display and complete the display assembly 10, for example, the display assembly 10 may also include an encapsulation layer disposed on the light emitting layer 19, etc., here No longer.
  • the display component includes a first terminal 12 arranged on the first substrate 11, and the light emitting layer 19 is electrically connected to the first terminal 12;
  • the driving substrate 20 includes a second terminal 22 arranged on the second substrate 21, and the first The terminal 12 is electrically connected to the second terminal 22 through the conductive member 30 , so that the electrical signal on the driving substrate can pass through the second terminal 22 , the conductive member 30 , and the first terminal 12 to reach the array function layer 18 in sequence.
  • the plurality of first terminals 12 of each display component 10 may include a first sub-terminal, a second sub-terminal, etc., the first sub-terminal may be electrically connected to the scanning line on the display component 10, and the second sub-terminal It can be electrically connected with the data line on the display component 10 .
  • Each display component 10 includes a plurality of first terminals 12 , and each first terminal 12 is electrically connected to a corresponding electrode or wiring on the display component 10 .
  • the drive substrate 20 may include a scan bus and a data bus, and the drive substrate 20 may include a third sub-terminal, a fourth sub-terminal, etc.
  • the scan bus is electrically connected to the third sub-terminal
  • the data bus is connected to the fourth sub-terminal.
  • the scanning bus is electrically connected to the scanning line on the corresponding display component 10 through the third sub-terminal, the conducting member 30, and the first sub-terminal
  • the data bus is electrically connected through the fourth sub-terminal, the conducting member 30, the second sub-terminal
  • the sub-terminals are electrically connected to the corresponding data lines on the display component 10 .
  • One or more frame parts of the driving substrate 20 can be electrically connected to the driving chip 60, the flexible circuit board, etc., so that the driving chip 60, the flexible circuit board, etc. can provide corresponding electrical signals to each display component 10, and drive the display component 10 to display images. .
  • a plurality of display components 10 are spliced and arranged on the driving substrate 20, and the driving is realized through the through hole group 50 penetrating through the first substrate 11, so that the splicing gap between adjacent display components 10 can be reduced and no gap can be realized. splicing to improve the image display quality of the display panel 100 .
  • multiple display components 10 are spliced and arranged on the driving substrate 20 as an example, and one display component 10 may also be arranged on the driving substrate 20 to realize functions such as a narrow frame.
  • each through hole group 50 includes a groove 52 and a plurality of sub-through holes 51, the groove 52 is located on the side surface of the first substrate 11 facing the driving substrate 20, and the sub-through holes 51 run through the first substrate 11 away from the groove 52 One side of the surface, the sub-through hole 51 is connected between the first terminal 12 and the groove 52, moreover, the groove 52 is used to reduce the thickness of the first substrate 11, and the groove 52 is arranged on the first substrate 11 toward On one side surface of the driving substrate 20 , the sub-through hole 51 runs through the corresponding portion of the first substrate 11 thinned by the groove 52 .
  • the orthographic projection of the groove 52 on the driving substrate 20 covers the orthographic projection of the sub-through hole 51 on the driving substrate 20 , that is, the sub-through hole 51 is located within the range of the groove 52 .
  • the through hole group 50 includes a groove 52 and a plurality of sub-through holes 51, the groove 52 and the plurality of sub-through holes 51 pass through the first substrate 11 as a whole, and the conductive member 30 is at least filled in the groove 52 and the sub-through holes 51 , the first terminal 12 is electrically connected to the corresponding second terminal 22 through the conducting member 30 .
  • the first terminal 12 and the second terminal 22 are electrically connected through the groove 52 and the conductive member 30 in the plurality of sub-through holes 51 .
  • the first substrate 11 when the first substrate 11 is first provided with a groove 52, the first substrate 11 is first thinned by the groove 52, and then the first The sub-through hole 51 is provided on the substrate 11.
  • the angle ⁇ between the sub-through hole 51 and the surface 111 of the first substrate 11 close to the first terminal 12
  • the width d2 of the sub-through hole 51 contacting the first terminal 12 is larger, which will increase the contact area between the conducting member 30 and the first terminal 12 , thereby improving the contact between the conducting member 30 and the first terminal 12 .
  • the via group 50 includes a plurality of sub-vias 51.
  • the conducting member 30 can also be electrically connected to the first terminal 12 through the sides of the multiple sub-through holes 51 penetrating the first terminal 12 (as shown in the subsequent embodiments), and the multiple sub-holes
  • the through hole 51 increases the side contact area, thereby preventing poor contact in the electrical connection between the display component 10 and the drive substrate 20, improving the splicing yield of the display component, and improving the process window (stability range) of the laser drilling process. , Process window, Process margin), which improves the yield rate of the punching process.
  • the groove 52 is set first to thin the first substrate 11, and then the sub-through hole 51 is provided, so that the width d2 of the sub-through hole 51 contacting the first terminal 12 is relatively large, which increases the thickness of the first substrate 11.
  • the contact area between the conductive element 30 and the first terminal 12 is increased, thereby improving the contact between the conductive element 30 and the first terminal 12 .
  • a plurality of sub-through holes 51 are arranged side by side.
  • a plurality of sub-through holes 51 in each through-hole group 50 are arranged side by side.
  • the plurality of sub-through holes 51 in each through-hole group 50 are arranged in parallel.
  • the distance between the surface of the first substrate 11 away from the groove 52 and the groove 52 is 1 ⁇ m to 3 ⁇ m.
  • the first substrate 11 is thinned by the groove 52, and the remaining part of the first substrate 11 has a thickness of 1 micron to 3 microns.
  • the sub-via 51 can contact the first substrate 11.
  • the larger width d2 of the terminal 12 increases the contact area between the conducting member 30 and the first terminal 12 , thereby improving the contact between the conducting member 30 and the first terminal 12 .
  • the length of the sub-holes 51 is 3 ⁇ m to 30 ⁇ m.
  • the length of the first terminal 12 can be in the range of 3 microns to 100 microns, and the length of the sub-through hole 51 is set to be 3 microns to 30 microns, so that the first terminal 12 may be provided with a plurality of sub-through holes 51 correspondingly.
  • the distance between adjacent via sub-holes 51 is 5 microns to 20 microns.
  • the sub-through hole 51 runs through the first substrate 11, and the material between the adjacent sub-through holes 51 is the material of the first substrate 11.
  • the width of the material of the substrate 11 in between is in the range of 5 microns to 20 microns, which can ensure that the material of the substrate 11 between adjacent sub-through holes 51 will not fall off, and at the same time, an appropriate number of sub-through holes 51 can be provided.
  • the projected shape of the sub-through hole 51 on the first substrate 11 includes at least one of a circle, a triangle, a rectangle, a rhombus, and a polygon.
  • the shape of the projection of the sub-through hole 51 on the first substrate 11 includes at least one of circle, triangle, rectangle, rhombus, and polygon, that is, on the surface of the sub-through hole 51 on the first substrate 11 away from the groove 52
  • the projected shape includes at least one of circle, triangle, rectangle, rhombus and polygon.
  • the shape of the sub-through holes 51 can be set according to requirements, for example, according to the size and shape of the first terminal 12, so as to set as many sub-through holes 51 as possible. .
  • the via 30 includes a first sub-conduction 31 and a second sub-conduction 32, the first sub-conduction 31 is filled in the groove 52 and the sub-through hole 51, and the second sub-conduction The element 32 is connected between the first sub-conducting element 31 and the second terminal 22 .
  • the second terminal 22 cannot be in direct contact with the first sub-conductor 31.
  • the second sub-conductor 32 is set to be connected to Between the first sub-conducting member 31 and the second terminal 22 , a good connection between the first terminal 12 and the second terminal 22 can be achieved.
  • the second sub-conductor 32 is disposed between the first sub-conductor 31 or the first substrate 11 and the second terminal 22 , so as to realize the close connection between the first terminal 12 and the second terminal 22 .
  • the materials of the first via 31 and the second via 32 can be the same, and can be manufactured in the same process, which can simplify the manufacturing process.
  • the materials of the first via 31 and the second via 32 may be different.
  • the first via 31 is filled in the groove 52 and the sub-hole 51, and the material of the first via 31 needs to be good.
  • the fluidity of the second sub-conducting member 32 does not need to be arranged in the sub-through hole 51.
  • the fluidity of the material of the second sub-conducting member 32 can be reduced.
  • the second The material of the first conducting member 31 and the second conducting member 32 may be different, which can increase the selection range of the material of the second conducting member 32 .
  • the display panel 100 further includes an adhesive layer 101 disposed between the first base 11 and the driving substrate 20 .
  • the adhesive layer 101 can be various types of adhesive layers, such as optical adhesive OCR, which can be formed through the capillary osmotic effect of glue filling, or can be formed through the needle hole injection method of glue injection.
  • optical adhesive OCR optical adhesive
  • the adhesive layer 101 serves to fix the display components 10 on the drive substrate 20, avoid the display components 10 from loosening, prevent the connection between the first terminal 12 and the second terminal 22 from falling off, and improve the yield rate and display of the display panel. performance.
  • the via group 50 includes a plurality of sub-vias 51.
  • the conducting member 30 can also be electrically connected to the first terminal 12 through the sides of the multiple sub-through holes 51 that penetrate the first terminal 12 (as shown in the subsequent embodiments), the multiple sub-through holes 51 increases the side contact area, thereby preventing poor contact in the electrical connection between the display component 10 and the drive substrate 20, improving the splicing yield of the display component, and at the same time improving the process window of the laser drilling process (Process window, stability range, Process margin), which improves the yield rate of the punching process.
  • This embodiment is the same or similar to the display panel in the above embodiments, except that the sub-through hole 51 also extends to the inside of the first terminal 12 .
  • FIG. 4 is a second schematic diagram of the display panel 100 provided by the embodiment of the present application.
  • the embodiment of the present application provides a display panel 100 .
  • the sub-through hole 51 also extends to the inside of the first terminal 12 .
  • the sub-vias 51 when a plurality of sub-vias 51 are formed by laser, the sub-vias 51 also extend to the inside of the first terminal 12 at the same time.
  • the first sub-vias 31 when the first sub-vias 31 are formed in the sub-vias 51 , the first sub-vias 31 also fill the part of the sub-vias 51 extending to the inside of the first terminal 12 .
  • the arrangement of the through hole group 50 also has the beneficial effects of the first embodiment.
  • the sub-through hole 51 also extends to the inside of the first terminal 12, and the first sub-conducting member 31 is also filled in the sub-through hole 51 and extends to the first terminal 12.
  • the side contact and side conduction between the conductive member 30 and the first terminal 12 are increased, and the conduction area between the conductive member 30 and the first terminal 12 is increased, which can improve the connection between the conductive member 30 and the first terminal 12.
  • the through hole group 50 includes a plurality of sub-through holes 51.
  • the conductive member 30 can also be electrically connected to the first terminal 12 through the sides of the multiple sub-through holes 51 that pass through the first terminal 12, that is, it can be electrically connected through the sides of the sub-through holes 51, and the multiple sub-through holes 51 can be electrically connected.
  • the through hole 51 increases the side contact area, thereby preventing poor contact in the electrical connection between the display component 10 and the drive substrate 20, improving the splicing yield of the display component, and at the same time improving the stability range of the laser drilling process (Process window , Process margin), which improves the yield of the punching process.
  • This embodiment is the same as or similar to the display panel in the above embodiments, except that the sub-through hole 51 also passes through the first terminal 12 .
  • FIG. 5 is a third schematic diagram of the display panel 100 provided by the embodiment of the present application.
  • the sub-through hole 51 also penetrates the first terminal 12 .
  • the size of the first terminal 12 is small and the thickness is relatively thin, and when the sub-through hole 51 does not penetrate the first terminal 12, the contact area between the first terminal 12 and the side surface of the conducting member 30 is not large enough. .
  • the contact area of the first terminal 12 with the side surface of the conducting member 30 will be larger.
  • the sub-through hole 51 penetrates the first terminal 12, which again increases the contact area between the first terminal 12 and the side surface of the conducting member 30, which can further improve the conduction.
  • the conduction performance and contact tightness between the component 30 and the first terminal 12 also have the beneficial effects of the above-mentioned embodiments.
  • This embodiment is the same or similar to the display panel in the above embodiments, except that the display component 10 further includes a third substrate 16 .
  • the luminescent layer 19 is disposed on the third substrate 16 , and the luminescent layer 19 is electrically connected to the first terminal 12 through the connection hole 181 .
  • the display component 10 includes a first base 11 and a third base 16 , and the stacked first base 11 and third base 16 can better prevent water vapor intrusion, and improve the lifespan and performance of the display component 10 .
  • the first terminal 12 is arranged between the first substrate 11 and the third substrate 16 to prevent damage to the film layer structure on the third substrate 16 such as the light-emitting layer 19 when forming the sub-through hole 51, and improve the performance of the display assembly 10. longevity and performance.
  • the display component 10 further includes a blocking layer 14 for blocking ultraviolet light, and the blocking layer 14 is disposed on a side of the first terminal 12 away from the first substrate 11 .
  • the blocking layer 14 can reflect, absorb, or block laser light in the ultraviolet wavelength range.
  • the laser light is irradiated from the side of the first substrate 11 away from the first terminal 12, and the blocking layer 14 can block The laser continues to irradiate toward the third substrate 16 or the array functional layer 18 to prevent damage to the film layer structure on the third substrate 16 such as the array functional layer 18 when forming the sub-vias 51 , and improve the life and performance of the display component 10 .
  • the display component 10 further includes a first insulating layer 13 disposed between the barrier layer 14 and the first terminal 12 , and the material of the first insulating layer 13 includes an inorganic material.
  • the first insulating layer 13 has the effect of isolating heat conduction when the laser is irradiated, and at the same time, the first insulating layer 13 can increase the adhesion between the first substrate 11 and the third substrate 16, so that the first substrate 11 and the third substrate 16 are more firmly bonded, improving the reliability of the display component 10.
  • the material of the first insulating layer 13 may include but not limited to silicon nitride and silicon oxide.
  • the material of the barrier layer 14 includes at least one of an opaque metal layer and amorphous silicon.
  • the material of the barrier layer 14 needs to be able to block or absorb laser light in the ultraviolet wavelength range.
  • Opaque metals can block laser light, and amorphous silicon can absorb laser light to prevent damage to the third substrate 16 such as the array functional layer 18 when forming the sub-connection groove 61.
  • the destruction of the film layer structure on the surface improves the life and performance of the display component 10 .
  • the material of the barrier layer 14 may be a-Si (amorphous silicon), or a composite film of a-Si (amorphous silicon) and SiOx (silicon nitride), or other resistant materials coated by coating.
  • the organic film layer that is high temperature and capable of blocking ultraviolet light, or the composite film layer of an organic film layer and an inorganic film layer, may also be a metal layer.
  • the barrier layer 14 may not be patterned; when the barrier layer 14 is a conductive material, the barrier layer 14 is preferably patterned, and only the material of the barrier layer 14 corresponding to the first terminal 12 is reserved, and other parts The material of the barrier layer 14 is removed by etching or the like.
  • the second insulating layer 15 can also be arranged between the barrier layer 14 and the third substrate 16, and the second insulating layer 15 can also be arranged between the third substrate 16 and the array function layer 18.
  • the materials of the third insulating layer 17, the second insulating layer 15 and the third insulating layer 17 may include but not limited to silicon nitride and silicon oxide, and the third insulating layer 17 may be a buffer layer.
  • An embodiment of the present application provides a method for manufacturing a display panel. Any display panel in the above embodiments can be manufactured by using the method for manufacturing a display panel in the embodiment of the present application.
  • FIG. 6 is a schematic diagram of the first process steps of the manufacturing method
  • FIG. 7 is a schematic diagram of the second process steps of the manufacturing method of the display panel provided by the embodiment of the present application
  • FIG. 9 is a schematic diagram of forming a first insulating layer 13 in a method for manufacturing a display panel provided in an embodiment of the present application
  • FIG. 10 is a schematic diagram of forming a barrier layer 14 in a method for manufacturing a display panel provided in an embodiment of the present application
  • FIG. 11 is a schematic diagram of forming the light-emitting layer 19 in the manufacturing method of the display panel provided by the embodiment of the present application
  • Fig. 12(a) is a first schematic diagram of forming the through hole group 50 in the manufacturing method of the display panel provided by the embodiment of the present application
  • FIG. 12(b) is a second schematic diagram of the formation of the through hole group 50 in the manufacturing method of the display panel provided by the embodiment of the present application
  • FIG. 12(a) is a first schematic diagram of forming the through hole group 50 in the manufacturing method of the display panel provided by the embodiment of the present application
  • FIG. 12(b) is a second schematic diagram of the formation of the through hole group 50 in the manufacturing method of the display panel provided by the embodiment of the present application
  • FIG. 13 is the formation of the first conduction in the manufacturing method of the display panel provided by the embodiment of the present application
  • Figure 14 is a schematic diagram of forming the second via 32 in the manufacturing method of the display panel provided by the embodiment of the present application
  • Figure 15 is a schematic diagram of the driving substrate 20 provided in the manufacturing method of the display panel provided by the embodiment of the present application Schematic diagram
  • FIG. 16 is a schematic diagram of the alignment connection between the display component 10 and the drive substrate 20 in the manufacturing method of the display panel provided by the embodiment of the present application
  • FIG. 17 is the formation of the adhesion layer 101 in the manufacturing method of the display panel provided by the embodiment of the present application schematic diagram.
  • the manufacturing method of the display panel 100 includes the following process steps: step S100 , step S200 , step S300 , step S400 , and step S500 .
  • Step S100 providing a first substrate, forming a first terminal on the first substrate, forming a light-emitting layer on the first substrate, and electrically connecting the light-emitting layer to the first terminal, and completing the fabrication of the display component.
  • a first substrate 11 is provided, a first terminal 12 is formed on the first substrate 11, a light-emitting layer 19 is formed on the first substrate 11, and the light-emitting layer 19 and the first substrate 11 are connected to each other.
  • a terminal 12 is electrically connected to complete the fabrication of the display component 10 .
  • the first terminals 12 are formed.
  • the first insulating layer 13 can be selectively formed according to requirements.
  • the barrier layer 14 can be selectively formed according to requirements.
  • an array function layer 18 and a light emitting layer 19 are formed.
  • the manufacturing method of the display assembly 10 may also include other layer structures and manufacturing equations of components, for example, the display assembly 10 is an organic light-emitting display assembly, the display assembly 10 may also include an encapsulation layer, and the manufacturing process of the display assembly 10 may also include a thin film Fabrication of the encapsulation layer.
  • Step S200 forming a groove on the first substrate at a position corresponding to the first terminal, and the groove is formed on a surface of the first substrate away from the array functional layer.
  • Step S300 forming a plurality of sub-through holes on the portion of the first substrate where the grooves are thinned, and the sub-through holes at least penetrate through the first substrate.
  • a laser is used to irradiate the corresponding part of the first terminal 12 from the side of the first substrate 11 far away from the first terminal 12 , to form a groove 52 on the first substrate 11 .
  • each first terminal 12 corresponds to a concave A through hole group 50 composed of the groove 52 and a plurality of sub-through holes 51 , the through hole group 50 penetrates through the first substrate 11 .
  • the sub-through hole 51 when the sub-through hole 51 is formed, the sub-through hole 51 also extends to the inside of the first terminal 12, or the sub-through hole 51 penetrates the first terminal 12.
  • the structure and function of the sub-through hole 51 have been described in the above-mentioned embodiments. , which will not be repeated here.
  • the first substrate 11 is a flexible substrate, for example, the material of the first substrate 11 is polyimide (PI).
  • PI polyimide
  • a substrate 11 is formed on the rigid substrate 102 , and before forming the through hole group 50 , it also includes peeling the first substrate 11 or the display assembly 10 from the rigid substrate 102 .
  • Step S400 providing a driving substrate, the driving substrate includes a second base and second terminals disposed on the second base.
  • a driving substrate 20 is provided.
  • the driving substrate 20 includes at least a second base 21 and a second terminal 22.
  • the structure and function of the driving substrate 20 have been described in the above-mentioned embodiments, and will not be repeated here. .
  • Step S500 forming vias, the vias are at least filled in the grooves and the sub-vias.
  • the conducting element 30 includes a first conducting element 31 and a second conducting element 32 .
  • first via 31 and the second via 32 can be formed in different steps and processes; in some embodiments, the first via 31 and the second via 32 can be formed in the same step and process formation.
  • Materials of the first vias 31 and/or the second vias 32 include but are not limited to silver paste and anisotropic conductive paste (ACF).
  • the forming process of the first via 31 and/or the second via 32 includes: screen printing, inkjet printing.
  • Step S600 disposing the display component on the driving substrate, and the first terminal is electrically connected to the corresponding second terminal through the conductive member.
  • At least one display component 10 is disposed on the drive substrate 20 , and the first terminal 12 on the display component 10 is electrically connected to the corresponding second terminal 12 on the drive substrate 20 through a conductive member 30 . Terminal 22.
  • the driving substrate 20 when disposing a plurality of display components 10 on the driving substrate 20 for splicing, it also includes aligning the display components 10 with the driving substrate 20 , and disposing the display components 10 on the corresponding preset positions on the driving substrate 20 .
  • step S100 further includes manufacturing steps: S110 , S200 , and S300 .
  • Step S110 providing a first substrate, and forming first terminals on the first substrate.
  • a first substrate 11 is provided, and first terminals 12 are formed on the first substrate.
  • Step S120 forming a third substrate on the first terminal, forming a connection hole on the third substrate, and the connection hole penetrates through the third substrate.
  • a third base 16 is formed on the first terminal 12 , and a connection hole 181 is formed on the third base 16 , and the connection hole 181 penetrates through the third base 16 .
  • Step S130 forming a light-emitting layer on the third substrate, and the light-emitting layer is electrically connected to the first terminal through the connection hole 181 .
  • the array functional layer 18 and the light emitting layer 19 are formed on the third substrate 16 , and the array functional layer is electrically connected to the first terminal 12 through the connection hole 181 .
  • step S112 is further included.
  • Step S112 forming a blocking layer on the first terminal, the blocking layer can block ultraviolet light.
  • the material, structure and function of the barrier layer 14 have been described in the above embodiments, and will not be repeated here.
  • the method for forming the via 30 includes: forming the via 30 by at least one of screen printing, inkjet printing, and dispensing.
  • step S400 the step of forming the via includes steps: S410, S420.
  • Step S410 forming the first sub-vias 31, and the first sub-vias 31 are filled in the grooves 52 and the sub-vias 51;
  • Step S420 Forming the second sub-conducting member 32 on the first sub-conducting member 31, the first sub-conducting member 31 and the second sub-conducting member 32 constitute the conducting member 30, and the second sub-conducting member 32 is connected to between the first sub-conductor 31 and the second terminal 22 .
  • the manufacturing method of the display panel further includes a manufacturing step: step S600.
  • Step S600 forming an adhesive layer between the first base and the driving substrate.
  • step S600 is also included, forming an adhesive layer 101 between the first substrate 11 and the driving substrate 20, the material, forming process, and structure of the adhesive layer 101 1.
  • the functions have been described in the above-mentioned embodiments, and will not be repeated here.
  • FIG. 18 is a schematic diagram of a display terminal 200 provided by an embodiment of the present application.
  • An embodiment of the present application provides a display terminal 200, including a terminal body 201 and the display panel 100 in any one of the above embodiments, and the terminal body 201 and the display panel 100 are combined into one.
  • the display terminal 200 may be a mobile phone, a television, a notebook computer, and the like.
  • Embodiments of the present application further provide a display terminal 200, which is manufactured by using the method for manufacturing a display panel described in any one of the above embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示面板(100)及显示终端(200),显示面板(100)包括至少一个显示组件(10)、驱动基板(20)和导通件(30),其中,显示组件(10)包括至少一个通孔组(50),每一通孔组(50)包括凹槽(52)和多个子通孔(51),子通孔(51)连接在第一端子(12)和凹槽(52)之间,导通件(30)至少填充于凹槽(52)和子通孔(51)内,通过设置多个子通孔(51)可以提升激光打孔工艺的工艺窗口。

Description

显示面板及显示终端 技术领域
本申请涉及显示领域,具体涉及一种显示面板及显示终端。
背景技术
显示面板已经广泛用于人们生活之中,在大尺寸显示面板的生产制造中,例如大尺寸的有机发光显示面板(OLED)的生产制造中,还存在生产难度较大、良率较低的问题,因此开发了小尺寸显示组件拼接而成大尺寸显示面板的方法,在拼接的大尺寸显示面板中,即将多个小尺寸的显示组件拼接设置在一个大尺寸的驱动基板上,各个显示组件包括阵列功能层和发光功能层,阵列功能层相当于阵列基板上的各膜层,阵列功能层包括薄膜晶体管(TFT)、数据线、扫描线等结构,发光功能层可以包括多个发光器件,驱动基板上包括驱动各个显示组件显示图像的走线、电路等,各个显示组件包括第一端子,驱动基板上包括第二端子,第一端子与第二端子电性连接后,驱动基板才可以驱动各个显示组件显示图像。
然而,当前技术中,显示组件的每一第一端子与驱动基板上对应的第二端子之间只设置一个整体的通孔,通过整体的通孔电性连接时,在激光打孔工艺中,由于第一端子的厚度很小,容易出现整体的通孔贯穿第一端子的情况,此时就会导致显示组件与驱动基板的电性连接出现接触不良,显示面板的良率下降,使得打孔工艺窗口较小。
技术问题
本申请实施例提供了一种显示面板及显示终端,可以解决当前技术中通孔贯穿第一端子导致显示组件与驱动基板的电性连接出现接触不良,显示面板的良率下降,使得打孔工艺窗口较小的技术问题。
技术解决方案
本申请实施例提供了一种显示面板,其中,包括:
至少一个显示组件,所述显示组件包括第一基底、设置于所述第一基底上的至少一个第一端子,以及发光层,所述发光层电连接所述第一端子;
驱动基板,包括驱动芯片、第二基底和设置于所述第二基底上的多个第二端子,所述显示组件设置于所述驱动基板上,所述第一端子在所述驱动基板上的正投影与对应的所述第二端子在所述驱动基板上的正投影至少部分重叠,所述驱动芯片与所述第二端子电连接,所述驱动芯片通过所述第二端子将信号传输至所述第一端子,以驱动所述发光层显示;
导通件,电连接在所述第一端子和所述第二端子之间;
其中,所述显示组件包括至少一个通孔组,所述通孔组设置于对应的所述第一端子和对应的所述第二端子之间,每一所述通孔组包括凹槽和多个子通孔,所述凹槽位于所述第一基底朝向所述驱动基板的一侧表面上,所述子通孔贯穿所述第一基底远离所述凹槽的一侧表面,所述子通孔连接在所述第一端子和所述凹槽之间,所述凹槽在所述驱动基板上的正投影覆盖所述子通孔在所述驱动基板上的正投影,所述导通件至少填充于所述凹槽和所述子通孔内。
可选的,在本申请的一些实施例中,其中,所述子通孔还延伸至所述第一端子内部,或者所述子通孔贯穿所述第一端子。
相应的,本申请实施例还提供了一种显示终端,其中,包括终端主体和显示面板,所述终端主体与所述显示面板组合为一体,所述显示面板包括:
至少一个显示组件,所述显示组件包括第一基底、设置于所述第一基底上的至少一个第一端子,以及发光层,所述发光层电连接所述第一端子;
驱动基板,包括驱动芯片、第二基底和设置于所述第二基底上的多个第二端子,所述显示组件设置于所述驱动基板上,所述第一端子在所述驱动基板上的正投影与对应的所述第二端子在所述驱动基板上的正投影至少部分重叠,所述驱动芯片与所述第二端子电连接,所述驱动芯片通过所述第二端子将信号传输至所述第一端子,以驱动所述发光层显示;
导通件,电连接在所述第一端子和所述第二端子之间;
其中,所述显示组件包括至少一个通孔组,所述通孔组设置于对应的所述第一端子和对应的所述第二端子之间,每一所述通孔组包括凹槽和多个子通孔,所述凹槽位于所述第一基底朝向所述驱动基板的一侧表面上,所述子通孔贯穿所述第一基底远离所述凹槽的一侧表面,所述子通孔连接在所述第一端子和所述凹槽之间,所述凹槽在所述驱动基板上的正投影覆盖所述子通孔在所述驱动基板上的正投影,所述导通件至少填充于所述凹槽和所述子通孔内。
可选的,在本申请的一些实施例中,其中,所述子通孔还延伸至所述第一端子内部,或者所述子通孔贯穿所述第一端子。
有益效果
本申请实施例中,提供了一种显示面板及显示终端,显示面板包括至少一个显示组件、驱动基板和导通件,显示组件包括第一基底、设置于第一基底上的至少一个第一端子,以及发光层,发光层电连接第一端子;驱动基板包括驱动芯片、第二基底和设置于第二基底上的多个第二端子,显示组件设置于驱动基板上,导通件电连接在第一端子和第二端子之间;其中,显示组件包括至少一个通孔组,通孔组设置于对应的第一端子和对应的第二端子之间,每一通孔组包括凹槽和多个子通孔,凹槽位于第一基底朝向驱动基板的一侧表面上,子通孔贯穿第一基底远离凹槽的一侧表面,子通孔连接在第一端子和凹槽之间,凹槽在驱动基板上的正投影覆盖子通孔在驱动基板上的正投影,导通件至少填充于凹槽和子通孔内。本实施例中通过设置通孔组包括凹槽和多个子通孔,即便在激光打孔工艺中子通孔贯穿了第一端子,也可以实现导通件与第一端子侧面接触,可以提升激光打孔工艺的工艺窗口,提升打孔工艺的良率,同时通过凹槽的设置增大导通件与第一端子的接触面积,从而提升导通件与第一端子的接触性。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一实施例提供的一种显示面板的第一种示意图;
图2是本申请一实施例提供的一种显示面板的拼接状态的示意图;
图3(a)是本申请一实施例提供的子通孔的多种俯视形状示意图;
图3(b)是本申请一实施例提供的对比条件中无凹槽时子通孔的截面示意图;
图3(c)是本申请一实施例提供的有凹槽时子通孔的截面示意图;
图4是本申请一实施例提供的一种显示面板的第二种示意图;
图5是本申请一实施例提供的一种显示面板的第三种示意图;
图6是本申请一实施例提供的一种显示面板的制造方法的第一种流程步骤示意图;
图7是本申请一实施例提供的一种显示面板的制造方法的第二种流程步骤示意图;
图8是本申请一实施例提供的一种显示面板的制造方法的形成第一端子示意图;
图9是本申请一实施例提供的一种显示面板的制造方法中形成第一绝缘层的示意图;
图10是本申请一实施例提供的一种显示面板的制造方法中形成阻挡层的示意图;
图11是本申请一实施例提供的一种显示面板的制造方法中形成发光层的示意图;
图12(a)是本申请一实施例提供的一种显示面板的制造方法中形成通孔组的第一种示意图;
图12(b)是本申请一实施例提供的一种显示面板的制造方法中形成通孔组的第二种示意图;
图13是本申请一实施例提供的一种显示面板的制造方法中形成第一导通件的示意图;
图14是本申请一实施例提供的一种显示面板的制造方法中形成第二导通件的示意图;
图15是本申请一实施例提供的一种显示面板的制造方法中提供驱动基板的示意图;
图16是本申请一实施例提供的一种显示面板的制造方法中显示组件与驱动基板对位连接的示意图;
图17是本申请一实施例提供的一种显示面板的制造方法中形成粘附层的示意图;
图18是本申请一实施例提供的一种显示终端的示意图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。此外,应当理解的是,此处所描述的具体实施方式仅用于说明和解释本申请,并不用于限制本申请。在本申请中,在未作相反说明的情况下,使用的方位词如“上”和“下”通常是指装置实际使用或工作状态下的上和下,具体为附图中的图面方向;而“内”和“外”则是针对装置的轮廓而言的。
本申请实施例提供了一种显示面板,包括:至少一个显示组件,显示组件包括第一基底、设置于第一基底上的至少一个第一端子,以及发光层,发光层电连接第一端子;驱动基板,包括驱动芯片、第二基底和设置于第二基底上的多个第二端子,显示组件设置于驱动基板上,第一端子在驱动基板上的正投影与对应的第二端子在驱动基板上的正投影至少部分重叠,驱动芯片与第二端子电连接,驱动芯片通过第二端子将信号传输至第一端子,以驱动发光层显示;导通件,电连接在第一端子和第二端子之间;其中,显示组件包括至少一个通孔组,通孔组设置于对应的第一端子和对应的第二端子之间,每一通孔组包括凹槽和多个子通孔,凹槽位于第一基底朝向驱动基板的一侧表面上,子通孔贯穿第一基底远离凹槽的一侧表面,子通孔连接在第一端子和凹槽之间,凹槽在驱动基板上的正投影覆盖子通孔在驱动基板上的正投影,导通件至少填充于凹槽和子通孔内。
本申请实施例提供了一种显示面板及显示终端。以下分别进行详细说明。需说明的是,以下实施例的描述顺序不作为对实施例优选顺序的限定。
实施例一、
请参阅图1、图2、图3(a)、图3(b)、图3(c),图1为本申请实施例提供的显示面板100的第一种示意图;图2为本申请实施例提供的显示面板100的一种拼接状态的示意图;图3(a)为本申请实施例提供的子通孔51的多种俯视形状示意图;图3(b)为本申请实施例提供的对比条件无凹槽52时子通孔51的截面示意图;图3(c)为本申请实施例提供的有凹槽52时子通孔51的截面示意图。
本申请实施例提供了一种显示面板100,显示面板100包括:至少一个显示组件10、驱动基板20、导通件30,显示组件10包括第一基底11、设置于第一基底11上的至少一个第一端子12,以及发光层19,发光层19电连接第一端子12;驱动基板20包括驱动芯片60、第二基底21和设置于第二基底21上的多个第二端子22,显示组件10设置于驱动基板20上,第一端子12在驱动基板20上的正投影与对应的第二端子22在驱动基板20上的正投影至少部分重叠,驱动芯片60与第二端子22电连接,驱动芯片60通过第二端子22将信号传输至第一端子12,以驱动发光层19显示;导通件30电连接在第一端子12和第二端子22之间;其中,显示组件10包括至少一个通孔组50,通孔组50设置于对应的第一端子12和对应的第二端子22之间,每一通孔组50包括凹槽52和多个子通孔51,凹槽52位于第一基底11朝向驱动基板20的一侧表面上,子通孔51贯穿第一基底11远离凹槽52的一侧表面,子通孔51连接在第一端子12和凹槽52之间,凹槽52在驱动基板20上的正投影覆盖子通孔51在驱动基板20上的正投影,导通件30至少填充于凹槽52和子通孔51内。
具体的,如图2所示,举例示意了两个显示组件10拼接设置于一驱动基板20上,驱动基板20的长度等于或大于设置于驱动基板20上的多个显示组件10的长度之和,驱动基板20的宽度等于或大于设置于驱动基板20上的多个显示组件10的宽度之和,以便多个显示组件10能够通过一个驱动基板20进行驱动和供给电信号。
具体的,显示组件10可以为有机发光显示组件或有机发光显示面板小片(小尺寸OLED),至少两个显示组件10拼接设置在驱动基板20上形成大尺寸的显示面板。
具体的,本领域技术人员容易理解是,显示组件10为有机发光显示组件时,显示组件10包括阵列功能层18和设置于阵列功能层18上的发光层19,发光层19可以为有机发光功能层,发光层19可以包括红色发光器件、绿色发光器件、蓝色发光器件,在此不再赘述。
具体的,本领域技术人员容易理解是,阵列功能层18可以包括多个阵列排布的薄膜晶体管、扫描线、数据线等结构,在此不再赘述。
具体的,本领域技术人员容易理解是,显示组件10还可以包括其他实现显示和完善显示组件10的结构和部件,例如显示组件10还可以包括设置于发光层19上的封装层等,在此不再赘述。
具体的,显示组件包括设置于第一基底11上的第一端子12,发光层19与第一端子12电性连接;驱动基板20包括设置于第二基底21上的第二端子22,第一端子12与第二端子22通过导通件30电性连接,使得驱动基板上的电信号能够依次通过第二端子22、导通件30、第一端子12到达阵列功能层18。
具体的,每一显示组件10的多个第一端子12中可以包括第一子端子、第二子端子等,第一子端子可以与显示组件10上的扫描线电性连接,第二子端子可以与显示组件10上的数据线电性连接。每一显示组件10包括多个第一端子12,每一第一端子12与显示组件10上对应的电极或走线等电性连接。
具体的,驱动基板20上可以包括扫描总线和数据总线,驱动基板20上可以包括第三子端子、第四子端子等,扫描总线与第三子端子电性连接,数据总线与第四子端子电性连接,扫描总线通过第三子端子、导通件30、第一子端子与对应的显示组件10上的扫描线电性连接,数据总线通过第四子端子、导通件30、第二子端子与对应的显示组件10上的数据线电性连接。驱动基板20的一个或多个边框部位可以电性连接驱动芯片60、柔性电路板等,这样驱动芯片60、柔性电路板等可以提供对应电信号至每一显示组件10,驱动显示组件10显示图像。
具体的,多个显示组件10拼接设置于驱动基板20上,通过贯穿第一基底11的通孔组50来实现其驱动,可以减小相邻的显示组件10之间的拼接缝隙,实现无缝隙拼接,提升显示面板100的图像显示质量。
需要说明的是,举例说明了多个显示组件10拼接设置于驱动基板20上,也可以是一个显示组件10设置于驱动基板20上,可以实现窄边框等功能。
具体的,每一通孔组50包括凹槽52和多个子通孔51,凹槽52位于第一基底11朝向驱动基板20的一侧表面上,子通孔51贯穿第一基底11远离凹槽52的一侧表面,子通孔51连接在第一端子12和凹槽52之间,更具的,凹槽52用于减薄第一基底11的厚度,凹槽52设置在第一基底11朝向驱动基板20的一侧表面上,子通孔51贯穿被凹槽52减薄的第一基底11对应的部位。
具体的,凹槽52在驱动基板20上的正投影覆盖子通孔51在驱动基板20上的正投影,即子通孔51位于凹槽52的范围内。
具体的,通孔组50包括凹槽52和多个子通孔51,凹槽52和多个子通孔51整体上贯通第一基底11,导通件30至少填充于凹槽52和子通孔51内,第一端子12通过导通件30电性连接对应的第二端子22。第一端子12和第二端子22之间通过凹槽52、多个子通孔51内的导通件30进行电连接。
具体的,假设第一端子12和第二端子22之间只设置一个整体的通孔,当使用激光打孔形成整体的通孔时,激光能量存在波动,由于第一基底11的厚度相对较厚,第一端子12的厚度相对很小,较容易出现整体的通孔贯穿第一端子12的情况,此时就会导致显示组件10与驱动基板20的电性连接出现接触不良,显示组件拼接的良率下降。
具体的,如图3(b)所示,当在第一基底11上不设置凹槽52,而直接设置子通孔51时,由于第一基底11的厚度较大,子通孔51与第一基底11靠近第一端子12的表面111的夹角α较小,子通孔51接触第一端子12的宽度d1较小,会导致导通件30与第一端子12的接触面积不够,从而产生接触不良。
具体的,如图3(c)所示,在本实施例中,当在第一基底11上先设置凹槽52时,凹槽52将第一基底11先做减薄处理,再在第一基底11上设置子通孔51,此时,由于设置子通孔51的第一基底11部位的厚度较小,子通孔51与第一基底11靠近第一端子12的表面111的夹角α较大,子通孔51接触第一端子12的宽度d2较大,会增大导通件30与第一端子12的接触面积,从而提升导通件30与第一端子12的接触性。
具体的,在本实施例中,通孔组50包括多个子通孔51,当使用激光打孔形成通孔组50的多个子通孔51时,即便激光能量存在波动,使得多个子通孔51贯穿了第一端子12,导通件30还可以通过贯穿了第一端子12的多个子通孔51的侧面与第一端子12进行电连接(如后续实施例中的情况所示),多个子通孔51增加了侧面接触面积,从而可以防止显示组件10与驱动基板20的电性连接出现接触不良,提高了显示组件拼接的良率,同时可以提升激光打孔工艺的工艺窗口(稳定性范围,Process window,Process margin),提升了打孔工艺的良率。
具体的,此外,在本实施例中,先设置凹槽52减薄第一基底11,然后再设置子通孔51,可以使得子通孔51接触第一端子12的宽度d2较大,会增大导通件30与第一端子12的接触面积,从而提升导通件30与第一端子12的接触性。
在一些实施例中,在平行于第一基底11的表面的方向上,多个子通孔51并列设置。
具体的,在平行于第一基底11的表面的方向上,每一通孔组50中的多个子通孔51是并列设置的。
更具体的,在平行于第一基底11的表面的方向上,每一通孔组50中的多个子通孔51是平行设置的。
在一些实施例中,第一基底11远离凹槽52的表面与凹槽52的距离为1微米至3微米。
具体的,凹槽52减薄了第一基底11,同时保留的第一基底11的部分的厚度为1微米至3微米,在后续形成子通孔51时,可以使得子通孔51接触第一端子12的宽度d2较大,会增大导通件30与第一端子12的接触面积,从而提升导通件30与第一端子12的接触性。
在一些实施例中,在平行于第一基底11的表面的方向上,子通孔51的长度为3微米至30微米。
具体的,在平行于第一基底11的表面的方向上,第一端子12的长度可以在3微米至100微米的范围,设置子通孔51的长度为3微米至30微米,使得第一端子12可以对应设置多个子通孔51。
在一些实施例中,在平行于第一基底11的表面的方向上,相邻子通孔51之间的距离为5微米至20微米。
具体的,子通孔51贯穿第一基底11,相邻子通孔51之间为第一基底11的材料,在平行于第一基底11的表面的方向上,设置相邻子通孔51之间的基底11的材料的宽度为5微米至20微米范围,可以保证相邻子通孔51之间为基底11的材料不会脱落,同时可以设置适当数量的子通孔51。
在一些实施例中,如图3(a)所示,子通孔51在第一基底11上投影的形状包括圆形、三角形、矩形、菱形、多边形中至少一种。
具体的,子通孔51在第一基底11上投影的形状包括圆形、三角形、矩形、菱形、多边形中至少一种,即在子通孔51在第一基底11远离凹槽52的表面上投影的形状包括圆形、三角形、矩形、菱形、多边形中至少一种。
具体的,在第一基底11靠近凹槽52的表面上,子通孔51的形状可以视需求设置,例如按照第一端子12的尺寸和形状选择,以便设置尽量多的子通孔51的数量。
在一些实施例中,导通件30包括第一子导通件31和第二子导通件32,第一子导通件31填充于凹槽52和子通孔51内,第二子导通件32连接于第一子导通件31和第二端子22之间。
具体的,在一些实施例中,由于驱动基板20上设置有多个膜层结构,第二端子22不能与第一子导通件31直接接触,此时设置第二子导通件32连接于第一子导通件31和第二端子22之间,可以使得第一端子12与第二端子22实现良好的连接。
具体的,第二子导通件32设置在第一子导通件31或第一基底11与第二端子22之间,可以实现第一端子12与第二端子22的密切连接。
具体的,第一导通件31和第二导通件32的材料可以相同,且同一工艺中制作完成,可以简化制作工艺。
具体的,第一导通件31和第二导通件32的材料可以不相同,例如第一导通件31填充于凹槽52和子通孔51内,第一导通件31的材料需要良好的流动性,第二子导通件32不需要设置于子通孔51内,相比于第一子导通件31的材料,第二子导通件32的材料的流动性可以降低,第一导通件31和第二导通件32的材料可以不相同,可以增大第二导通件32的材料的选择范围。
在一些实施例中,显示面板100还包括粘附层101,粘附层101设置于第一基底11和驱动基板20之间。
具体的,粘附层101可以为各类胶层,例如光学胶OCR,可以通过毛细渗透效应进行灌胶的工艺形成,也可以采用针孔注射方案进行注胶的工艺形成。
具体的,粘附层101起到将各显示组件10固定设置于驱动基板20上,避免显示组件10松动,避免第一端子12和第二端子22的连接脱落,提高显示面板的良率、显示性能。
在本申请实施例种,通孔组50包括多个子通孔51,当使用激光打孔形成通孔组50的多个子通孔51时,即便激光能量存在波动,使得多个子通孔51贯穿了第一端子12,导通件30还可以通过贯穿了第一端子12的多个子通孔51的侧面与第一端子12进行电连接(如后续实施例中的情况所示),多个子通孔51增加了侧面接触面积,从而可以防止显示组件10与驱动基板20的电性连接出现接触不良,提高了显示组件拼接的良率,同时可以提升激光打孔工艺的工艺窗口(Process window,稳定性范围,Process margin),提升了打孔工艺的良率。
实施例二、
本实施例与上述实施例中的显示面板相同或相似,不同之处在于:子通孔51还延伸至第一端子12内部。
请参阅图4,图4为本申请实施例提供的显示面板100的第二种示意图。
本申请实施例提供了一种显示面板100,相比于实施例一,子通孔51还延伸至第一端子12内部。
具体的,在用激光镭射形成多个子通孔51时,同时子通孔51还延伸至第一端子12内部。
具体的,在子通孔51内形成第一子导通件31时,第一子导通件31还填充于子通孔51延伸至第一端子12内部的部分。
在本申请实施例中,通孔组50的设置,使得也具有实施例一的有益效果。
在本申请实施例中,相比于实施例一,进一步的,子通孔51还延伸至第一端子12内部,第一子导通件31还填充于子通孔51延伸至第一端子12内部的部分,此时增加了导通件30与第一端子12的侧面接触和侧面导通,增加了导通件30与第一端子12的导通面积,可以提升导通件30与第一端子12的导通性能和接触紧密性。
在本申请实施例中,通孔组50包括多个子通孔51,当使用激光打孔形成通孔组50的多个子通孔51时,即便激光能量存在波动,使得多个子通孔51贯穿了第一端子12,导通件30还可以通过贯穿了第一端子12的多个子通孔51的侧面与第一端子12进行电连接,即可以通过子通孔51的侧面进行电连接,多个子通孔51增加了侧面接触面积,从而可以防止显示组件10与驱动基板20的电性连接出现接触不良,提高了显示组件拼接的良率,同时可以提升激光打孔工艺的稳定性范围(Process window,Process margin),提升了打孔工艺的良率。
实施例三、
本实施例与上述实施例中的显示面板相同或相似,不同之处在于:子通孔51还贯穿第一端子12。
请参阅图5,图5为本申请实施例提供的显示面板100的第三种示意图。
在本申请实施例中,相比于实施例一和实施例二,子通孔51还贯穿第一端子12。
具体的,在一些实施情况中,第一端子12的尺寸较小、厚度较薄,子通孔51未贯穿第一端子12时,第一端子12与导通件30的侧面接触的面积不够大。
具体的,当子通孔51还贯穿第一端子12时,第一端子12与导通件30的侧面接触的面积会更大。
在本申请实施例中,相比于实施例二,进一步的,子通孔51贯穿第一端子12,再次增加了第一端子12与导通件30的侧面接触的面积,可以进一步提升导通件30与第一端子12的导通性能和接触紧密性,同时也具有上述实施例中的有益效果。
实施例四、
本实施例与上述实施例中的显示面板相同或相似,不同之处在于:显示组件10还包括第三基底16。
在一些实施例中,请继续参阅图1、图4、图5,显示组件还包括第三基底16和贯穿第三基底16的连接孔181,第一端子12设置于第一基底11和第三基底16之间,发光层19设置于第三基底16上,发光层19通过连接孔181与第一端子12电性连接。
具体,显示组件10包括第一基底11和第三基底16,层叠设置的第一基底11和第三基底16可以更好的防止水汽侵入,提升显示组件10的寿命和性能。
具体的,第一端子12设置于第一基底11和第三基底16之间,防止形成子通孔51时对发光层19等第三基板16上的膜层结构的破坏,提升显示组件10的寿命和性能。
在一些实施例中,显示组件10还包括阻挡层14,阻挡层14用以阻挡紫外光,阻挡层14设置于第一端子12远离第一基底11的一侧。
具体的,阻挡层14可以反射、或吸收、或隔绝紫外波长范围内的激光,当形成子通孔51时,激光从第一基底11远离第一端子12的一侧照射,阻挡层14可以阻挡激光继续向第三基底16或阵列功能层18方向继续照射,防止形成子通孔51时对阵列功能层18等第三基板16上的膜层结构的破坏,提升显示组件10的寿命和性能。
在一些实施例中,显示组件10还包括第一绝缘层13,第一绝缘层13设置于阻挡层14和第一端子12之间,第一绝缘层13的材料包括无机材料。
具体的,第一绝缘层13具有隔绝激光照射时的热传导作用,同时第一绝缘层13可以增加第一基底11和第三基底16之间粘附的作用,使得第一基底11和第三基底16之间结合的更加牢固,提升显示组件10的可靠性。
具体的,第一绝缘层13的材料可以包括但不限于氮化硅、氧化硅。
在一些实施例中,阻挡层14的材料包括不透明金属层、非晶硅中的至少一种。
具体的,阻挡层14的材料需要可以阻挡或者吸收紫外波长范围内的激光,不透明金属可以阻挡激光,非晶硅可以吸收激光,防止形成子连接槽61时对阵列功能层18等第三基板16上的膜层结构的破坏,提升显示组件10的寿命和性能。
具体的,阻挡层14的材料可以是a-Si(非晶硅)、或a-Si(非晶硅)和SiOx(氮化硅)的复合膜,可以是通过涂布方式涂布的其它耐高温且能阻挡紫外光的有机膜层、或有机膜层和无机膜层的复合膜层,还可以是金属层。阻挡层14是非导电材料时,阻挡层14可以不图案化;当阻挡层14是导电材料时,阻挡层14优选进行图案化,只保留第一端子12对应部位的阻挡层14的材料,其他部位的阻挡层14的材料通过刻蚀等方式去除。
需说明的是,在上述实施例中的显示组件10中,阻挡层14和第三基底16之间还可以设置第二绝缘层15,第三基底16与阵列功能层18之间还可以设置第三绝缘层17,第二绝缘层15和第三绝缘层17的材料可以包括但不限于氮化硅、氧化硅,第三绝缘层17可以为缓冲层。
实施例五、
本申请实施例提供了一种显示面板的制造方法,上述实施例中的任一项显示面板可以采用本申请实施例中的显示面板的制造方法制造而成。
请参阅图6、图7、图8、图9、图10、图11、图12、图13、图14、图15、图16、图17,图6为本申请实施例提供的显示面板的制造方法的第一种流程步骤示意图;图7为本申请实施例提供的显示面板的制造方法的第二种流程步骤示意图;图8为本申请实施例提供的显示面板的制造方法中形成第一端子12示意图;图9为本申请实施例提供的显示面板的制造方法中形成第一绝缘层13的示意图;图10为本申请实施例提供的显示面板的制造方法中形成阻挡层14的示意图;图11为本申请实施例提供的显示面板的制造方法中形成发光层19的示意图;图12(a)为本申请实施例提供的显示面板的制造方法中形成通孔组50的第一种示意图;图12(b)为本申请实施例提供的显示面板的制造方法中形成通孔组50的第二种示意图;图13为本申请实施例提供的显示面板的制造方法中形成第一导通件31的示意图;图14为本申请实施例提供的显示面板的制造方法中形成第二导通件32的示意图;图15为本申请实施例提供的显示面板的制造方法中提供驱动基板20的示意图;图16为本申请实施例提供的显示面板的制造方法中显示组件10与驱动基板20对位连接的示意图;图17为本申请实施例提供的显示面板的制造方法中形成粘附层101的示意图。
本申请实施例的显示面板100的制造方法包括如下流程步骤:步骤S100、步骤S200、步骤S300、步骤S400、步骤S500。
步骤S100:提供一第一基底,在第一基底上形成第一端子,在第一基底上形成发光层,发光层与第一端子电性连接,完成显示组件的制作。
如图8、图9、图10、图11所示,提供一第一基底11,在第一基底11上形成第一端子12,在第一基底11上形成发光层19,发光层19与第一端子12电性连接,完成显示组件10的制作。
具体的,形成显示组件10时,如图8所示,形成第一端子12。
具体的,形成显示组件10时,如图9所示,可以视需求选择性的形成第一绝缘层13。
具体的,形成显示组件10时,如图10所示,可以视需求选择性的形成阻挡层14。
具体的,形成显示组件10时,如图11所示,形成阵列功能层18和发光层19。
具体的,显示组件10的制造方法还可以包括其他层结构和部件的制造方程,例如显示组件10为有机发光显示组件,显示组件10还可以包括封装层,显示组件10的制造过程还可以包括薄膜封装层的制作。
步骤S200:在第一基底上对应第一端子的部位形成凹槽,凹槽形成于第一基底远离阵列功能层的一侧表面上。
步骤S300:在第一基底被凹槽减薄的部位上形成多个子通孔,子通孔至少贯穿第一基底。
具体的,如图12(a),首先用激光从第一基底11远离第一端子12的一侧照射第一端子12对应的部位,在第一基底11上形成凹槽52。
具体的,如图12(b),然后再用同一个或另外一个激光从第一基底11靠近凹槽52的表面照射,以形成多个子通孔51,每一第一端子12对应的一个凹槽52和多个子通孔51组成的一个通孔组50,通孔组50贯通第一基底11。
具体的,在形成子通孔51时,子通孔51还延伸至第一端子12内部,或者子通孔51贯穿第一端子12,子通孔51的结构和作用已在上述实施例中表述,在此不再赘述。
需要说明的,如图11、图12(a)所示,显示组件10为柔性显示组件时,第一基底11为柔性基底,例如第一基底11的材料为聚酰亚胺(PI),第一基底11是形成在刚性基底102上的,在形成通孔组50之前,还包括将第一基底11或显示组件10从刚性基底102上剥离。
步骤S400:提供一驱动基板,驱动基板包括第二基底和设置于第二基底上的第二端子。
具体的,如图15所示,提供一驱动基板20,驱动基板20至少包括第二基底21和第二端子22,驱动基板20的结构和功能已在上述实施例中表述,在此不再赘述。
步骤S500:形成导通件,导通件至少填充于凹槽和子通孔内。
具体的,如图14所示,导通件30包括第一导通件31和第二导通件32。
在一些实施例情况中第一导通件31和第二导通件32可以分不同步骤和工艺形成;在一些实施例情况中第一导通件31和第二导通件32可以在同一步骤和工艺形成。
第一导通件31或/和第二导通件32的材料包括但不限于银浆、异方性导电胶(ACF)。
第一导通件31或/和第二导通件32的形成工艺包括:丝网印刷、喷墨印刷。
步骤S600:将显示组件设置于驱动基板上,第一端子通过导通件电性连接对应的第二端子。
具体的,如图16、图2所示,将至少一个显示组件10设置于驱动基板20上,显示组件10上的第一端子12通过导通件30电性连接驱动基板20上对应的第二端子22。
具体的,将多个显示组件10设置于驱动基板20上进行拼接时,还包括将显示组件10与驱动基板20进行对位设置,将显示组件10设置于驱动基板20上对应的预设位置。
在一些实施例中,如图7所示,步骤S100还包括制造步骤:S110、S200、S300。
步骤S110:提供一第一基底,在第一基底上形成第一端子。
具体的,如图8所示,提供一第一基底11,在第一基底上形成第一端子12。
步骤S120:在第一端子上形成第三基底,在所第三基底上形成连接孔,连接孔贯通第三基底。
具体的,如图10、图11所示,在第一端子12上形成第三基底16,在第三基底16上形成连接孔181,连接孔181贯穿第三基底16。
步骤S130:在第三基底上形成发光层,发光层通过连接孔181电性连接第一端子。
具体的,在第三基底16上形成阵列功能层18和发光层19,阵列功能层通过连接孔181电性连接第一端子12。
具体的,阵列功能层18的结构和功能已在上述实施例中表述,在此不再赘述。
在一些实施例的显示面板的制造方法中,在步骤S110和步骤S120之间,还包括步骤S112。
步骤S112,在第一端子上形成阻挡层,阻挡层可以阻挡紫外光。
具体的,如图11所示,阻挡层14的材料、结构和功能已在上述实施例中表述,在此不再赘述。
在一些实施例中,在步骤S400中,形成导通件30的方法包括:通过丝网印刷、喷墨印刷、点胶工艺中的至少一种工艺方法形成导通件30。
在一些实施例的显示面板的制造方法中,在步骤S400中,形成导通件的步骤包括步骤:S410、S420。
步骤S410:形成第一子导通件31,第一子导通件31填充于凹槽52和子通孔51内;
步骤S420:在第一子导通件31上形成第二子导通件32,第一子导通件31和第二子导通件32构成导通件30,第二子导通件32连接于第一子导通件31和第二端子22之间。
在一些实施例的显示面板的制造方法中,还包括制造步骤:步骤S600。
步骤S600:在第一基底和驱动基板之间形成粘附层。
具体的,如图16、图17所示,在步骤S500之后,还包括步骤S600,形成粘附层101于第一基底11和驱动基板20之间,粘附层101的材料、形成工艺、结构、功能已在上述实施例中表述,在此不再赘述。
实施例六、
请参阅图18,图18为本申请实施例提供的一种显示终端200的示意图;
本申请实施例提供了一种显示终端200,包括终端主体201和上述实施例中任一项的显示面板100,终端主体201与显示面板100组合为一体。
具体的,显示终端200可以为手机、电视、笔记本电脑等。
本申请实施例还提供了一种显示终端200,显示终端200采用上述实施例中任一项所述的显示面板的制造方法制造而成。
以上对本申请实施例所提供的一种显示面板及显示终端进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种显示面板,其中,包括:
    至少一个显示组件,所述显示组件包括第一基底、设置于所述第一基底上的至少一个第一端子,以及发光层,所述发光层电连接所述第一端子;
    驱动基板,包括驱动芯片、第二基底和设置于所述第二基底上的多个第二端子,所述显示组件设置于所述驱动基板上,所述第一端子在所述驱动基板上的正投影与对应的所述第二端子在所述驱动基板上的正投影至少部分重叠,所述驱动芯片与所述第二端子电连接,所述驱动芯片通过所述第二端子将信号传输至所述第一端子,以驱动所述发光层显示;
    导通件,电连接在所述第一端子和所述第二端子之间;
    其中,所述显示组件包括至少一个通孔组,所述通孔组设置于对应的所述第一端子和对应的所述第二端子之间,每一所述通孔组包括凹槽和多个子通孔,所述凹槽位于所述第一基底朝向所述驱动基板的一侧表面上,所述子通孔贯穿所述第一基底远离所述凹槽的一侧表面,所述子通孔连接在所述第一端子和所述凹槽之间,所述凹槽在所述驱动基板上的正投影覆盖所述子通孔在所述驱动基板上的正投影,所述导通件至少填充于所述凹槽和所述子通孔内。
  2. 如权利要求1所述的显示面板,其中,所述子通孔还延伸至所述第一端子内部,或者所述子通孔贯穿所述第一端子。
  3. 如权利要求1所述的显示面板,其中,在平行于所述第一基底的表面的方向上,多个所述子通孔并列设置。
  4. 如权利要求1所述的显示面板,其中,所述第一基底远离所述凹槽的表面与所述凹槽的距离为1微米至3微米。
  5. 如权利要求1所述的显示面板,其中,所述显示组件还包括第三基底和贯穿所述第三基底的连接孔,所述第一端子设置于所述第一基底和所述第三基底之间,所述发光层设置于所述第三基底上,所述发光层通过所述连接孔与所述第一端子电性连接。
  6. 如权利要求1所述的显示面板,其中,所述显示组件还包括阻挡层,所述阻挡层用以阻挡紫外光,所述阻挡层设置于所述第一端子远离所述第一基底的一侧。
  7. 如权利要求6所述的显示面板,其中,所述显示组件还包括第一绝缘层,所述第一绝缘层设置于所述阻挡层和所述第一端子之间,所述第一绝缘层的材料包括无机材料。
  8. 如权利要求7所述的显示面板,其中,所述阻挡层的材料包括不透明金属层、非晶硅中的至少一种。
  9. 如权利要求1所述的显示面板,其中,在平行于所述第一基底的表面的方向上,所述子通孔的长度为3微米至30微米。
  10. 如权利要求9所述的显示面板,其中,在平行于所述第一基底的表面的方向上,相邻所述子通孔之间的距离为5微米至20微米。
  11. 如权利要求9所述的显示面板,其中,所述子通孔在所述第一基底上投影的形状包括圆形、三角形、矩形、菱形、多边形中至少一种。
  12. 如权利要求1所述的显示面板,其中,所述导通件包括第一子导通件和第二子导通件,所述第一子导通件填充于所述子通孔内,所述第二子导通件连接于所述第一子导通件和所述第二端子之间。
  13. 如权利要求1所述的显示面板,其中,还包括粘附层,所述粘附层设置于所述第一基底和所述驱动基板之间。
  14. 如权利要求2所述的显示面板,其中,所述显示组件还包括第三基底和贯穿所述第三基底的连接孔,所述第一端子设置于所述第一基底和所述第三基底之间,所述发光层设置于所述第三基底上,所述发光层通过所述连接孔与所述第一端子电性连接。
  15. 如权利要求14所述的显示面板,其中,所述显示组件还包括阻挡层,所述阻挡层用以阻挡紫外光,所述阻挡层设置于所述第一端子远离所述第一基底的一侧。
  16. 一种显示终端,其中,包括终端主体和显示面板,所述终端主体与所述显示面板组合为一体,所述显示面板包括:
    至少一个显示组件,所述显示组件包括第一基底、设置于所述第一基底上的至少一个第一端子,以及发光层,所述发光层电连接所述第一端子;
    驱动基板,包括驱动芯片、第二基底和设置于所述第二基底上的多个第二端子,所述显示组件设置于所述驱动基板上,所述第一端子在所述驱动基板上的正投影与对应的所述第二端子在所述驱动基板上的正投影至少部分重叠,所述驱动芯片与所述第二端子电连接,所述驱动芯片通过所述第二端子将信号传输至所述第一端子,以驱动所述发光层显示;
    导通件,电连接在所述第一端子和所述第二端子之间;
    其中,所述显示组件包括至少一个通孔组,所述通孔组设置于对应的所述第一端子和对应的所述第二端子之间,每一所述通孔组包括凹槽和多个子通孔,所述凹槽位于所述第一基底朝向所述驱动基板的一侧表面上,所述子通孔贯穿所述第一基底远离所述凹槽的一侧表面,所述子通孔连接在所述第一端子和所述凹槽之间,所述凹槽在所述驱动基板上的正投影覆盖所述子通孔在所述驱动基板上的正投影,所述导通件至少填充于所述凹槽和所述子通孔内。
  17. 如权利要求16所述的显示终端,其中,所述子通孔还延伸至所述第一端子内部,或者所述子通孔贯穿所述第一端子。
  18. 如权利要求16所述的显示终端,其中,所述显示组件还包括第三基底和贯穿所述第三基底的连接孔,所述第一端子设置于所述第一基底和所述第三基底之间,所述发光层设置于所述第三基底上,所述发光层通过所述连接孔与所述第一端子电性连接。
  19. 如权利要求17所述的显示终端,其中,所述显示组件还包括第三基底和贯穿所述第三基底的连接孔,所述第一端子设置于所述第一基底和所述第三基底之间,所述发光层设置于所述第三基底上,所述发光层通过所述连接孔与所述第一端子电性连接。
  20. 如权利要求16所述的显示终端,其中,所述显示组件还包括阻挡层,所述阻挡层用以阻挡紫外光,所述阻挡层设置于所述第一端子远离所述第一基底的一侧。
PCT/CN2021/140611 2021-12-16 2021-12-22 显示面板及显示终端 WO2023108770A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/623,691 US20240122000A1 (en) 2021-12-16 2021-12-22 Display panel and display terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111542204.4 2021-12-16
CN202111542204.4A CN114388597A (zh) 2021-12-16 2021-12-16 显示面板及显示终端

Publications (1)

Publication Number Publication Date
WO2023108770A1 true WO2023108770A1 (zh) 2023-06-22

Family

ID=81197018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/140611 WO2023108770A1 (zh) 2021-12-16 2021-12-22 显示面板及显示终端

Country Status (3)

Country Link
US (1) US20240122000A1 (zh)
CN (1) CN114388597A (zh)
WO (1) WO2023108770A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114975749A (zh) * 2022-05-25 2022-08-30 武汉华星光电半导体显示技术有限公司 显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040178725A1 (en) * 2002-10-03 2004-09-16 Seiko Epson Corporation Display panel, electronic apparatus with the same, and method of manufacturing the same
CN102969457A (zh) * 2011-09-01 2013-03-13 索尼公司 有机el显示器、有机el显示器制造方法以及电子装置
CN110544704A (zh) * 2019-09-25 2019-12-06 京东方科技集团股份有限公司 驱动基板及制作方法、微led绑定方法
CN111599284A (zh) * 2020-05-29 2020-08-28 上海天马微电子有限公司 拼接显示屏的制造方法及拼接显示屏
CN112652617A (zh) * 2020-12-22 2021-04-13 中国电子科技集团公司第五十五研究所 一种Micro-LED新型显示器件的制备方法
CN112687184A (zh) * 2020-12-30 2021-04-20 武汉华星光电技术有限公司 显示模组

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040178725A1 (en) * 2002-10-03 2004-09-16 Seiko Epson Corporation Display panel, electronic apparatus with the same, and method of manufacturing the same
CN102969457A (zh) * 2011-09-01 2013-03-13 索尼公司 有机el显示器、有机el显示器制造方法以及电子装置
CN110544704A (zh) * 2019-09-25 2019-12-06 京东方科技集团股份有限公司 驱动基板及制作方法、微led绑定方法
CN111599284A (zh) * 2020-05-29 2020-08-28 上海天马微电子有限公司 拼接显示屏的制造方法及拼接显示屏
CN112652617A (zh) * 2020-12-22 2021-04-13 中国电子科技集团公司第五十五研究所 一种Micro-LED新型显示器件的制备方法
CN112687184A (zh) * 2020-12-30 2021-04-20 武汉华星光电技术有限公司 显示模组

Also Published As

Publication number Publication date
US20240122000A1 (en) 2024-04-11
CN114388597A (zh) 2022-04-22

Similar Documents

Publication Publication Date Title
US6693384B1 (en) Interconnect structure for electronic devices
KR20190106885A (ko) 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
CN111276474B (zh) 显示面板以及显示装置
US20220246583A1 (en) Display device using semiconductor light-emitting elements, and method for manufacturing same
WO2021223302A1 (zh) 显示面板及其制备方法
CN112864177B (zh) 显示模组和显示面板
CN111627953B (zh) 一种显示面板及其制备方法、显示装置
KR20180120527A (ko) 반도체 발광 소자를 이용한 디스플레이 장치의 제조 방법
CN114188381B (zh) 显示面板及显示装置
KR20180130845A (ko) 반도체 발광소자를 이용한 디스플레이 장치
WO2015151401A1 (ja) 半導体ユニット、半導体素子、発光装置、表示装置、半導体素子の製造方法
WO2024040877A1 (zh) 拼接显示面板及其拼接方法、显示装置
TW202206904A (zh) 顯示裝置
CN113745303A (zh) 显示面板及显示装置
WO2023108770A1 (zh) 显示面板及显示终端
CN115249725A (zh) 一种显示面板及其制备方法
WO2021238443A1 (zh) 显示模组和显示装置
WO2021189491A1 (zh) 显示模组及显示装置
CN111525016A (zh) 显示面板及其制作方法
WO2019206023A1 (zh) 一种显示面板、其制作方法及显示装置
WO2022067520A1 (zh) 显示基板及其制作方法、显示装置
WO2024000653A1 (zh) 显示面板
KR20230002650A (ko) 반도체 발광소자 및 반도체 발광소자를 이용한 디스플레이 장치
WO2024031563A1 (zh) 显示面板、显示装置及拼接显示装置
WO2022067522A1 (zh) 显示基板及其制作方法、显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17623691

Country of ref document: US