WO2024031563A1 - 显示面板、显示装置及拼接显示装置 - Google Patents

显示面板、显示装置及拼接显示装置 Download PDF

Info

Publication number
WO2024031563A1
WO2024031563A1 PCT/CN2022/111878 CN2022111878W WO2024031563A1 WO 2024031563 A1 WO2024031563 A1 WO 2024031563A1 CN 2022111878 W CN2022111878 W CN 2022111878W WO 2024031563 A1 WO2024031563 A1 WO 2024031563A1
Authority
WO
WIPO (PCT)
Prior art keywords
binding
electrode
substrate
display panel
display
Prior art date
Application number
PCT/CN2022/111878
Other languages
English (en)
French (fr)
Inventor
王莉莉
蔡婷
刘超
翟明
孙海威
齐琪
Original Assignee
京东方科技集团股份有限公司
京东方晶芯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 京东方晶芯科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2022/111878 priority Critical patent/WO2024031563A1/zh
Publication of WO2024031563A1 publication Critical patent/WO2024031563A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a display panel, a display device and a spliced display device.
  • Micro LED Micro Light Emitting Diode, Micro Light Emitting Diode
  • Mini LED Mini Light Emitting Diode Display, Mini Light Emitting Diode
  • a display panel including: a substrate, a plurality of first binding electrodes, a plurality of connecting leads, an electrode carrier plate and a plurality of second binding electrodes.
  • the substrate includes an opposite display surface and a non-display surface and a plurality of side surfaces connecting the display surface and the non-display surface, wherein at least one side surface is a selected side surface.
  • the display surface includes a first binding area
  • the non-display surface includes a second binding area
  • the first binding area and the second binding area are both close to the selected side and arranged oppositely.
  • a plurality of first binding electrodes are arranged in parallel and spaced apart in the first binding area.
  • a plurality of connecting leads are arranged side by side at intervals, and each connecting lead includes a first portion located in the first binding area, a second portion located on one side of the selected side, and a third portion located in the second binding area.
  • a first portion of each connecting lead is electrically connected to a first binding electrode.
  • the electrode carrier is disposed on a non-display side of the substrate, and a plurality of second binding electrodes are disposed on a side of the electrode carrier away from the substrate.
  • a plurality of second binding electrodes are arranged in parallel and spaced apart, and each second binding electrode is electrically connected to the third part of a connecting lead.
  • the display panel further includes: a plurality of connection pads arranged side by side and spaced apart.
  • a plurality of connection pads are located on a side of the plurality of second binding electrodes away from the substrate, and each connection pad is respectively connected to a second binding electrode and a third part of a connecting lead.
  • connection pads include metal and conductive glue.
  • the shape of the orthographic projection of the connection pad on the substrate includes a circle, an ellipse, a triangle, a star, a square, a heart, and a trapezoid.
  • the electrode carrier plate is provided with a plurality of connection vias arranged side by side and spaced apart.
  • the second binding electrode includes a first binding end and a second binding end. The first binding end of the second binding electrode is located on a side of the electrode carrier away from the substrate. The second binding end of the second binding electrode A third portion is electrically connected to a connecting lead through a connecting via.
  • the second binding end of the second binding electrode is located on a side away from the substrate of the third portion of the connection lead connected thereto.
  • the display panel also includes: an adhesive disposed in the connection via hole and configured to connect the second binding end and the third part of the connection lead.
  • the display panel further includes: adhesive glue disposed on a side of the second binding end of the second binding electrode away from the selected side of the substrate.
  • One side of the adhesive glue is connected to the side of the electrode carrier plate close to the substrate, and the other side of the adhesive glue faces the substrate.
  • the adhesive glue is configured to connect the electrode carrier and the substrate.
  • the second binding end of the second binding electrode is located on the side away from the substrate of the third part of the connection lead connected thereto, and the adhesive glue is located between the electrode carrier plate and the substrate. In the direction perpendicular to the electrode carrier, the size of the adhesive glue is the same as the size of the third part of the connecting lead.
  • the adhesive glue is an insulating glue.
  • a plurality of connecting leads are arranged side by side and spaced apart along the first direction
  • a plurality of second binding electrodes are arranged side by side and spaced apart along the first direction.
  • the display panel also includes: conductive glue, which is disposed on a side of the plurality of connecting leads away from the non-display surface of the substrate, and is configured to connect the second binding electrode and the connecting leads.
  • the conductive adhesive extends along the first direction.
  • the conductive glue covers at least the portion where the connecting lead is connected to the second binding electrode.
  • the material of the electrode carrier includes an insulating material.
  • the material of the electrode carrier includes glass and polyimide film.
  • the material of the first binding electrode includes metal.
  • the material connecting the lead and the second binding electrode includes metal or conductive metal colloid.
  • the material of the first binding electrode includes at least one of copper, titanium, aluminum, molybdenum, and nickel gold.
  • the material connecting the lead and the second binding electrode includes at least one of copper, titanium, aluminum, molybdenum, nickel gold, and conductive silver glue.
  • the second binding area extends along a first direction and the third portion of the connecting lead extends along a second direction. Wherein, the first direction and the second direction intersect.
  • the size of the connection pad in the first direction is greater than one third of the size in the first direction of the third portion of the connection lead connected to the connection pad.
  • the sum of the size in the first direction of the third portion of the connecting lead connected to the second binding electrode and the distance in the first direction of the third portions of the two adjacent connecting leads is greater than
  • the connection pad has a dimension along the first direction.
  • the size of the connection pad in the direction perpendicular to the selected side is less than or equal to the boundary of the side of the orthographic projection of the second bonding electrode connected to it on the substrate away from the selected side and the selected side. The distance between the sides.
  • the display panel further includes: a flexible circuit board disposed on a side of the plurality of second binding electrodes away from the substrate.
  • Each second binding electrode extends along the second direction, each second binding electrode includes a first binding end and a second binding end, the first binding end is configured to be electrically connected to the flexible circuit board, and the second binding electrode The binding end is configured to be electrically connected to the third portion of the connecting lead.
  • the second binding end and the portion where the third portion of the connection lead is connected there is an overlap between the second binding end and the portion where the third portion of the connection lead is connected.
  • the sum of the dimensions of the third portion of the connecting lead in the direction perpendicular to the selected side and the dimension of the second bonding electrode in the direction perpendicular to the selected side is equal to the orthographic projection of the second bonding electrode on the substrate.
  • the size of the third part of the connecting lead in the direction perpendicular to the selected side is less than or equal to the boundary of the side of the orthographic projection of the first electrode on the substrate away from the selected side and the selected side. The distance between the sides.
  • the size of the first portion of the connecting lead connected to the first binding electrode in the direction perpendicular to its extending direction is greater than or equal to the size of the first binding electrode in the direction perpendicular to its extending direction. Thirty percent of size.
  • the size of the first binding electrode in the direction perpendicular to its extension direction, and the sum of the distances of two adjacent first binding electrodes in the direction perpendicular to its extension direction, The difference in distance between the first portions of two adjacent connecting leads in the direction perpendicular to their extending direction is greater than or equal to the distance between the first portion of the connecting lead connected to the first binding electrode in the direction perpendicular to its extending direction. size of.
  • a display device including the display panel provided in any of the above embodiments.
  • a spliced display device including the display device provided in any of the above embodiments.
  • a method for preparing a display panel including:
  • Substrate is provided.
  • the substrate includes an opposite display surface and a non-display surface, and a plurality of side surfaces connecting the display surface and the non-display surface, and at least one side surface among the plurality of side surfaces is a selected side surface.
  • the display surface includes a first binding area
  • the non-display surface includes a second binding area
  • the first binding area and the second binding area are both close to the selected side and arranged oppositely.
  • a plurality of first binding electrodes arranged in parallel and spaced apart are formed on the display surface side of the substrate.
  • a plurality of first binding electrodes are disposed in the first binding area.
  • each connection lead includes a first part located in the first binding area, a second part located on one side of the selected side, and a third part located in the second binding area.
  • the first portion of each connecting lead is connected to a first binding electrode.
  • An electrode carrier is provided, and a plurality of second binding electrodes arranged side by side and spaced apart are formed on the electrode carrier.
  • An electrode carrier plate provided with a plurality of second binding electrodes is disposed on the non-display surface side of the substrate, and each second binding electrode is connected to the third part of a connecting lead.
  • Figure 1 is a cross-sectional view of a display panel according to some embodiments.
  • Figure 2 is a front structural view of a display panel according to some embodiments.
  • Figure 3 is a front structural view of a display panel according to other embodiments.
  • Figure 4 is a rear structural view of a display panel according to some embodiments.
  • Figure 5 is a rear structural view of a display panel according to other embodiments.
  • Figure 6 is a cross-sectional view of a display panel according to some embodiments.
  • FIG. 7 is an enlarged view of the back of area C of the display panel shown in FIG. 3;
  • Fig. 8 is an enlarged view of the front of area C of the display panel shown in Fig. 3;
  • Figure 9 is a cross-sectional view of a display panel according to other embodiments.
  • Figure 10 is a structural diagram of the electrode carrier plate and the second binding electrode of the display panel shown in Figure 9;
  • FIG 11 is another structural diagram of the electrode carrier plate and the second binding electrode of the display panel shown in Figure 9;
  • Figure 12 is a structural diagram of the adhesive glue of the display panel shown in Figure 9;
  • Figure 13 is another structural diagram of the adhesive glue of the display panel shown in Figure 9;
  • Figure 14 is another structural diagram of the adhesive glue of the display panel shown in Figure 9;
  • Figure 15 is a cross-sectional view of a display panel according to further embodiments.
  • Figure 16 is a structural diagram of the electrode carrier plate and the second binding electrode of the display panel shown in Figure 15;
  • Figure 17 is another structural diagram of the electrode carrier plate and the second binding electrode of the display panel shown in Figure 15;
  • Figure 18 is a structural diagram of the adhesive glue of the display panel shown in Figure 15;
  • Figure 19 is another structural diagram of the adhesive glue of the display panel shown in Figure 15;
  • Figure 20 is another structural diagram of the adhesive glue of the display panel shown in Figure 15;
  • Figure 21 is a cross-sectional view of a display panel according to further embodiments.
  • Figure 22 is a front structural view of a display device according to some embodiments.
  • Figure 23 is a structural diagram of a splicing display device according to some embodiments.
  • Figure 24 is a structural diagram of a splicing display device according to other embodiments.
  • Figure 25 is a flow chart of a method of manufacturing a display panel according to some embodiments.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, "plurality" means two or more.
  • At least one of A, B and C has the same meaning as “at least one of A, B or C” and includes the following combinations of A, B and C: A only, B only, C only, A and B The combination of A and C, the combination of B and C, and the combination of A, B and C.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • parallel includes absolutely parallel and approximately parallel, and the acceptable deviation range of approximately parallel may be, for example, a deviation within 5°;
  • perpendicular includes absolutely vertical and approximately vertical, and the acceptable deviation range of approximately vertical may also be, for example, Deviation within 5°.
  • equal includes absolute equality and approximate equality, wherein the difference between the two that may be equal within the acceptable deviation range of approximately equal is less than or equal to 5% of either one, for example.
  • Example embodiments are described herein with reference to cross-sectional illustrations and/or plan views that are idealized illustrations.
  • the thickness of layers and regions are exaggerated for clarity. Accordingly, variations from the shapes in the drawings due, for example, to manufacturing techniques and/or tolerances are contemplated.
  • example embodiments should not be construed as limited to the shapes of regions illustrated herein but are to include deviations in shapes that result from, for example, manufacturing. For example, an etched area shown as a rectangle will typically have curved features. Accordingly, the regions shown in the figures are schematic in nature and their shapes are not intended to illustrate the actual shapes of regions of the device and are not intended to limit the scope of the exemplary embodiments.
  • large-size display devices can be assembled by splicing multiple small-size display devices.
  • the small-size display device includes a display panel.
  • the wiring located on the display surface side of the display panel can be connected to a circuit board (such as a flexible circuit board) provided on the non-display surface side of the display panel through side wiring, thereby
  • a circuit board such as a flexible circuit board
  • the display panel 10 includes a substrate 1 , a plurality of first binding electrodes 2 and a plurality of connecting leads 3 .
  • the substrate 1 includes an opposite display surface 1a and a non-display surface 1b, and a plurality of side surfaces 1c connecting the display surface 1a and the non-display surface 1b. At least one side surface 1c of the plurality of side surfaces 1c of the substrate 1 is a selected side surface 1cc.
  • Each connecting lead 3 includes a first portion 31 located on the display surface 1a side of the substrate 1, a second portion 32 located on the selected side 1cc of the substrate 1, and a third portion located on the non-display surface 1b side of the substrate 1. 33.
  • the display surface 1a side of the substrate 1 is the front surface of the display panel, and the non-display surface 1b side of the substrate 1 is the back surface of the display panel.
  • the display surface 1a of the substrate 1 includes a display area AA.
  • the display area AA is provided with a film layer structure such as a driving circuit layer Q and a light-emitting device layer 6.
  • the first portion 31 of the plurality of connecting leads 3 is located on the display surface 1a side of the substrate 1, and the third portion 33 of the plurality of connecting leads 3 is located on the display surface 1a side of the substrate 1. It is located on the non-display surface 1b side of the substrate 1 .
  • the first portion 31 and the third portion 33 of the connecting lead 3 both extend in a direction perpendicular to the selected side surface 1cc of the substrate 1, for example the Y direction shown in Figure 1 .
  • the third portions 33 of the plurality of connection leads 3 are configured to connect to the circuit board located on the non-display surface 1b side of the substrate 1, for example, the ends of the third portions 33 of the plurality of connection leads 3 away from the selected side 1cc are used as connections.
  • the binding electrodes of the flexible circuit board 7, that is to say, the circuits on the back of the display panel need to reserve a large space for external circuit binding. Therefore, in the direction perpendicular to the selected side surface 1cc, the line length of the third portion 33 of the connecting lead 3 is greater than the line length of the first portion 31 of the connecting lead.
  • the length d1 of the first portion 31 of the plurality of connecting leads 3 located on the display surface 1 a side of the substrate 1 is smaller than the length d2 of the third portion 33 of the plurality of connecting leads 3 located on the non-display surface 1 b side of the substrate 1 . It can be understood that the orthographic projection of the third portion 33 of the connecting lead 3 on the substrate 1 overlaps with the area corresponding to the display area AA.
  • a plurality of connecting leads 3 are arranged side by side and spaced apart along the first direction X, the second direction Y intersects the first direction
  • the length d2 of the third portion 33 of the connecting lead 3 is the length of the third portion 33 of the connecting lead 3 in the second direction Y.
  • a plurality of connecting leads 3 are arranged in parallel and spaced apart along the first direction X, the second direction Y intersects the first direction X, the third portion 33 of the connecting leads 3 is non-linear,
  • the third part 33 includes a plurality of parts with different extending directions connected end to end.
  • the third part 33 of each connection lead 3 includes a plurality of sub-parts with different extending directions.
  • the third portion 33 of each connecting lead 3 includes, for example, a first sub-portion, a second sub-portion and a third sub-portion, and the third portion 33 of the connecting lead 3 includes a first sub-portion, a second sub-portion and a third sub-portion.
  • the extension directions of the sub-parts are different.
  • the angle between the multiple sub-parts included in the connecting lead 3 and the second direction Y is not greater than 60°.
  • the third part 33 of the connecting lead 3 as a whole can be considered to extend roughly along the Y direction and is non-linear.
  • the length d2 of the third portion 33 of the connecting lead 3 is the sum of the lengths of the orthogonal projections of the plurality of sub-portions included in the third portion 33 of the connecting lead 3 on the substrate 1 in the second direction Y along the second direction Y.
  • the preparation process of multiple connecting leads 3 is as follows: forming an entire connecting metal layer on at least one side 1 c of the substrate 1 , for example, forming the connecting metal layer through a three-dimensional sputtering coating process. Specifically, the connecting metal layer is located on The display surface 1a of the substrate 1, the side surface 1c of the substrate 1 and the non-display surface 1b side of the substrate 1; then, the connection metal layer is patterned by laser etching to form a plurality of independent connection leads 3.
  • each connection lead 3 includes a first portion 31 located on the display surface 1a side of the substrate 1, a third portion 33 located on the selected side 1cc of the substrate 1 and a non-display surface 1b of the substrate 1.
  • the third part 33 of the connecting lead 3 is smaller than the third part 33 of the connecting lead 3. Therefore, the area of the connecting metal layer located on the display surface 1a of the substrate 1 is smaller than the area of the connecting metal layer located on the display surface 1a of the substrate 1.
  • the laser may pass through the substrate. 1 is incident on the display area AA of the display surface 1a. Please refer to Figure 1.
  • the laser is irradiated to the substrate 1 along the Laser direction shown in the figure. Since the orthographic projection of the third portion 33 of the connecting lead 3 on the substrate 1 overlaps with the area corresponding to the display area AA, the laser Part of the energy will pass through the substrate 1 and reach the display area AA and cause damage to the film layers and devices in this area, leading to reliability problems such as local corrosion and the failure of the light-emitting device to light up.
  • the driving circuit layer Q may include a thin film transistor.
  • the active layer of the thin film transistor in the front driving circuit layer Q will be irradiated by the laser. This causes the characteristics of the thin film transistor to change, for example, the threshold current for turning off the thin film transistor increases, thus affecting the display effect.
  • the above preparation processes, such as sputtering coating process and laser etching process, are only described as examples and are not intended to limit the actual production process.
  • the display panel, display device and splicing display device provided by the present disclosure are introduced respectively below.
  • FIG. 2 , FIG. 3 , FIG. 4 and FIG. 5 are plan structural views of the display panel 10
  • FIG. 7 is an enlarged back view of the area C of the display panel 10 shown in FIG. 3
  • FIG. 8 is a view according to FIG. 3 is an enlarged front view of area C of the display panel 10.
  • Figures 10, 11, 16 and 17 are structural views of the side of the electrode carrier 4 away from the substrate 1 according to some embodiments.
  • Figures 12 and 17 13 Figures 14, 18, 19 and 20 are structural diagrams of the side of the electrode carrier 4 close to the substrate 1 according to some embodiments.
  • FIG. 22 is a front structural view of the display device 100 according to some embodiments.
  • 23 and 24 are structural diagrams of a spliced display device according to some embodiments.
  • Figure 25 is a flow chart of a method of manufacturing a display panel according to some embodiments.
  • the display surface 1 a side of the display panel 10 will be referred to as the front surface of the display panel 10
  • the non-display surface 1 b side of the display panel 10 will be referred to as the back surface of the display panel 10 .
  • the display panel 10 includes a substrate 1, a plurality of first binding terminals 2, a plurality of connecting leads 3, An electrode carrier 4 and a plurality of second binding electrodes 5 .
  • the electrode carrier 4 is disposed on the non-display surface 1 b side of the substrate 1
  • a plurality of second binding electrodes 5 are disposed on the side of the electrode carrier 4 away from the substrate 1 .
  • the substrate 1 includes an opposite display surface 1a and a non-display surface 1b and a plurality of side surfaces 1c connecting the display surface 1a and the non-display surface 1b, wherein at least one side surface 1c is a selected side surface 1cc.
  • the display surface 1a of the substrate 1 includes a first binding area BB1
  • the non-display surface 1b of the substrate 1 includes a second binding area BB2.
  • the first binding area BB1 and the second binding area BB2 are both close to selected sides of the substrate 1 1cc and relatively set.
  • the relative arrangement here means that the area corresponding to the display surface 1a side of the substrate 1 of the second binding area BB2 overlaps or substantially overlaps with the area corresponding to the first binding area BB1.
  • the plurality of first binding electrodes 2 are arranged in the first binding area BB1, and the plurality of first binding electrodes 2 are arranged in parallel and at intervals. The boundaries of the side of the plurality of first binding electrodes 2 away from the selected side surface 1cc of the substrate 1 are flush or substantially flush.
  • the plurality of second binding electrodes 5 are disposed on the side of the electrode carrier 4 away from the substrate 1 , and the plurality of second binding electrodes 5 are arranged in parallel and at intervals. The boundaries of the side of the plurality of second binding electrodes 5 away from the selected side surface 1cc of the substrate 1 are flush or substantially flush.
  • a plurality of connecting leads 3 are arranged in parallel and spaced apart.
  • Each connection lead 3 includes a first portion 31 located in the first binding area BB1, a second portion 32 located on one side of the selected side 1cc, and a third portion 33 located in the second binding area BB2.
  • the first portion 31 of each connecting lead 3 is electrically connected to a first binding electrode 2
  • the third portion 33 of each connecting lead 3 is electrically connected to a second binding electrode 5 .
  • both the first binding area BB1 and the second binding area BB2 extend along the first direction X.
  • a plurality of first binding electrodes 2 are arranged side by side and spaced apart along the first direction X, and each first binding electrode 2 extends along the second direction Y.
  • a plurality of second binding electrodes 5 are arranged side by side and spaced apart along the first direction X, and each second binding electrode 5 extends along the second direction Y. Wherein, the first direction X intersects the second direction Y.
  • the second direction Y is perpendicular to the first direction X.
  • the display surface 1 a of the substrate 1 includes a display area AA, and the first binding area BB1 is located at least on one side of the display area AA.
  • the substrate 1 includes two first binding areas BB1 arranged oppositely, and the first binding areas BB1 are located on opposite sides of the display area AA.
  • the substrate 1 includes a first binding area BB1 , and the first binding area BB1 is located on one side of the display area AA.
  • the driving circuit layer Q is disposed on the display surface 1a side of the substrate 1 and is located in the display area AA.
  • the light-emitting device layer 6 is disposed on the side of the driving circuit layer Q away from the substrate 1.
  • the light-emitting device layer 6 includes a plurality of light-emitting devices 61.
  • the driving circuit layer Q includes signal traces. The signal traces are connected to the light-emitting devices 61 and are configured to emit light.
  • the device 61 transmits signals to drive the plurality of light-emitting devices 61 in the light-emitting device layer 6 to emit light.
  • the above-mentioned laser damages the front film layer of the display panel, including the driving circuit layer Q and the light-emitting device layer 6.
  • the second binding electrode 5 includes a first binding end 51 and a second binding end 52.
  • the first binding end 51 of the second binding electrode 5 is configured to be electrically connected to the flexible circuit board 7.
  • the second binding ends 52 of the two binding electrodes 5 are configured to be electrically connected to the third portion 33 of the connecting lead 3 .
  • the second binding electrode 5 is linear.
  • a plurality of second binding electrodes 5 are arranged side by side and spaced apart along the first direction X, and the second binding electrodes 5 extend in a direction perpendicular to the selected side surface 1cc of the substrate 1.
  • the second binding electrode 5 extends in the second direction Y, and the length d6 of the second binding electrode 5 is the length of the second binding electrode 5 in the second direction Y.
  • the size k1 of the selected side surface 1cc of the substrate 1 along the first direction X is larger than the size k2 along the first direction X of the area covered by the plurality of second binding electrodes 5 .
  • the second binding electrode 5 is non-linear.
  • a plurality of second binding electrodes 5 are arranged side by side and spaced apart along the first direction 51.
  • the first binding end 51 is the part where the second binding electrode 5 is connected to the third part 33 of the connecting lead 3.
  • the connecting part 53 is the second binding electrode 5.
  • the middle part of the second binding end 52 is the part of the second binding electrode 5 farthest from the selected side 1cc of the substrate 1 .
  • the first binding end 51 , the connecting portion 53 and the second binding end 52 of the second binding electrode 5 extend in different directions, and the angle between each sub-portion of the second binding electrode 5 and the Y direction is not greater than 60°. , but the second binding terminal 5 as a whole can be considered to extend roughly in a direction perpendicular to the selected side surface 1cc of the substrate 1, such as the Y direction shown in Figure 5. Then, the second binding electrode 5 is non-linear.
  • the length d6 is the sum of the lengths of the orthogonal projections of the plurality of sub-sections included in the second binding electrode 5 on the substrate 1 along the second direction Y.
  • the size k1 of the selected side surface 1cc of the substrate 1 along the first direction X is greater than the size k2 along the first direction X of the area covered by the plurality of first binding ends 51 .
  • the size k2 of the area covered by the plurality of first binding ends 51 along the first direction X is larger than the size k3 of the area covered by the flexible circuit board 7 along the first direction X.
  • the size k3 of the area covered by the flexible circuit board 7 along the first direction X is larger than the size k4 along the first direction X of the area covered by the plurality of second binding ends 52 .
  • the plurality of second binding ends 52 are folded inward relative to the plurality of first binding ends 51 and are suitable for relatively small-sized flexible circuit boards 7 .
  • the first binding electrode 2 extends along the second direction Y
  • the first portion 31 of the connecting lead 3 extends along the second direction Y
  • the connected first binding electrode 2 and the connecting lead 3 extend along the second direction Y.
  • the first portion 31 of 3 has an overlapping portion in the second direction Y, and the dimension d4 along the second direction Y is greater than or equal to zero.
  • the dimension d1 of the first portion 31 of the connecting lead 3 in a direction perpendicular to the selected side 1 cc of the substrate 1 is greater than zero.
  • the dimension d1 of the first portion 31 of the connecting lead 3 in a direction perpendicular to the selected side 1 cc of the substrate 1 is greater than or equal to 60 ⁇ m.
  • the dimension d1 of the first portion 31 of the connecting lead 3 in the direction perpendicular to the selected side 1 cc of the substrate 1 is, for example, 60 ⁇ m, 65 ⁇ m or 70 ⁇ m.
  • the size e1 of the first binding area BB1 in the direction perpendicular to the selected side 1cc of the substrate 1 is the same as the size e2 of the second binding area BB2 in the direction perpendicular to the selected side 1cc of the substrate 1 Or roughly the same.
  • the dimension d3 of the third portion 33 of the connecting lead 3 in the direction perpendicular to the selected side 1cc of the substrate 1 is less than or equal to the orthographic projection of the first bonding electrode 2 on the substrate 1 away from the selected side. The distance between the boundary of one side of 1cc and the selected side 1cc.
  • the distance between the boundary of the side of the orthographic projection of the first binding electrode 2 on the substrate 1 away from the selected side 1cc and the selected side 1cc is the same as the first binding area BB1 perpendicular to the substrate.
  • the dimension e1 in the direction 1cc of the selected side of 1 is the same. That is, the distance between the boundary of the orthographic projection of the first binding electrode 2 on the substrate 1 and away from the selected side surface 1cc and the selected side surface 1cc is e1.
  • the size d3 of the third portion 33 of the connecting lead 3 in the direction perpendicular to the selected side 1cc of the substrate 1 ie, the second direction Y shown in FIG. 6 ) is less than or equal to the first bonding electrode 2 on the substrate 1
  • the dimension d1 of the first portion 31 of the connecting lead 3 in the second direction Y is the same or substantially the same as the dimension d3 of the third portion 33 of the connecting lead 3 in the second direction Y.
  • the dimension d1 of the first portion 31 of the connecting lead 3 in the second direction Y is larger than the dimension d3 of the third portion 33 of the connecting lead 3 in the second direction Y, and the third portion of the connecting lead 3
  • the dimension d3 of 33 in the direction perpendicular to the selected side 1cc of the substrate 1 is less than or equal to the orthogonal projection of the first binding electrode 2 on the substrate 1 away from the selected
  • the dimension d1 of the first portion 31 of the connecting lead 3 in the second direction Y is equal to the dimension d3 of the third portion 33 of the connecting lead 3 in the second direction Y
  • the third portion 33 of the connecting lead 3 is The size d3 of the portion 33 in the direction perpendicular to the selected side surface 1cc of the substrate 1 (ie, the second direction Y shown in FIG. 6) is less than or equal to the distance from the orthographic projection of the first binding electrode 2 on the substrate 1.
  • Determine the distance e1 between the boundary of one side of side 1cc and the selected side 1cc. That is, d1 d3 ⁇ e1.
  • the dimension d1 of the first portion 31 of the connecting lead 3 in the second direction Y is smaller than the dimension d3 of the third portion 33 of the connecting lead 3 in the second direction Y, and the third portion 31 of the connecting lead 3
  • the size d3 of the portion 33 in the direction perpendicular to the selected side surface 1cc of the substrate 1 is less than or equal to the distance from the orthographic projection of the first binding electrode 2 on the substrate 1.
  • the orthographic projection of the first portion 31 of the connecting lead 3 on the display surface 1a of the substrate 1 does not overlap with the display area AA
  • the third portion 33 of the connecting lead 3 is on the non-display surface 1b of the substrate 1
  • the area corresponding to the orthographic projection of the display surface 1a of the substrate 1 does not overlap with the display area AA. That is, the orthographic projection of the first portion 31 of the connecting lead 3 on the display surface 1a of the substrate 1 does not extend to the display area AA, and the orthographic projection of the third portion 33 of the connecting lead 3 on the non-display surface 1b of the substrate 1 is The area corresponding to the display surface 1a of the substrate 1 does not extend to the display area AA.
  • the laser emitted from the display surface 1a side of the substrate 1 or from the non-display surface 1b side of the substrate 1 will not cause damage to the film layers and devices in the display area AA.
  • causes reliability problems such as localized corrosion.
  • the display panel 10 further includes a flexible circuit board 7 , one end of the plurality of second binding electrodes 5 on the electrode carrier 4 is configured to be electrically connected to the flexible circuit board 7 , and the plurality of second binding electrodes 5 The other end is configured to be electrically connected to a plurality of connection leads 3 .
  • the flexible circuit board 7 is disposed on a side of the plurality of second binding electrodes 5 away from the substrate 1 .
  • the flexible circuit board 7 is configured to transmit signals to the driving circuit layer Q and drive the plurality of light-emitting devices 61 in the light-emitting device layer 6 to emit light.
  • the electrode carrier 4 and the plurality of second binding electrodes 5 disposed on the side of the electrode carrier 4 away from the substrate 1 are integrated as a whole to achieve fixation on the substrate 1 , for example, on the electrode carrier 4
  • a connecting glue is provided on the side close to the substrate 1, and the electrode carrier 4 is attached to the non-display surface 1b side of the substrate 1.
  • each second binding electrode 5 is connected to a connecting lead 3, thereby connecting the display
  • the front circuit of panel 10 is led to the back.
  • the aforementioned connecting glue is, for example, adhesive glue 92.
  • adhesive glue 92 for the arrangement position and shape of the connecting glue, please refer to the description of adhesive glue 92 later.
  • the electrode carrier 4 By arranging the electrode carrier 4 , a plurality of second binding electrodes 5 are formed on the electrode carrier 4 alone. When the plurality of second binding electrodes 5 are formed on the electrode carrier 4 , the electrode carrier 4 has not yet been connected to the substrate 1 connect. Referring to Figures 1 and 6, with such a design, the size of the third portion 33 of the connecting lead 3 in the second direction Y is shortened.
  • one end of the third portion 33 of the connecting lead 3 away from the selected side 1cc of the substrate 1 is configured to connect to the flexible circuit board 7 .
  • the size of the third portion 33 of the connecting lead 3 in the second direction Y is shortened from d2 to d3 , and the second binding ends 52 of the plurality of second binding electrodes 5 replace the third portion 33 of the connecting lead 3 .
  • the shortened portion of the portion 33 realizes connection with the flexible circuit board 7 . On the premise of ensuring stable and effective signal transmission, it avoids laser damage to the film layers and devices in the display area AA when preparing multiple connection leads 3, leading to reliability problems such as local corrosion, and improves the reliability of the display panel 10. .
  • the display surface 1 a and the non-display surface 1 b of the substrate 1 are, for example, rectangular in shape, and the substrate 1 includes four side surfaces 1 c.
  • the plurality of first binding electrodes 2 arranged close to each selected side 1cc of the substrate 1 will be referred to as a group of first binding electrodes 2
  • the plurality of connecting leads arranged close to each selected side 1cc of the substrate 1 will be referred to as a group of first binding electrodes 2.
  • 3 is called a set of multiple connecting leads 3
  • a plurality of second binding electrodes 5 disposed on each electrode carrier 4 is called a set of second binding electrodes 5.
  • the substrate 1 includes different numbers of selected The case of 1cc on the side is explained.
  • the substrate 1 includes two opposing selected sides 1cc.
  • the display panel 10 includes two sets of first binding electrodes 2 , two sets of connecting leads 3 and two electrode carrier plates 4 on which a plurality of second binding electrodes 5 are formed.
  • Each set of first binding electrodes 2 is disposed close to a selected side 1cc, and is connected to a set of second binding electrodes 5 through a set of connecting leads 3 .
  • the substrate 1 includes a selected side 1cc.
  • the display panel 10 includes a set of first binding electrodes 2 , a set of connecting leads 3 and an electrode carrier 4 with a plurality of second binding electrodes 5 formed on the surface.
  • Each set of first binding electrodes 2 is arranged close to the selected side 1cc, and is connected to a set of second binding electrodes 5 through a set of connecting leads 3 .
  • the material of the substrate 1 is rigid materials such as glass, quartz, and plastic.
  • the above material of the substrate 1 is only an example of a possible implementation, and the material of the substrate 1 includes but is not limited to the above examples.
  • the first binding electrode 2, the connecting lead 3 and the second binding electrode 5 should have good conductive properties.
  • the materials of the first binding electrode 2, the connecting lead 3 and the second binding electrode 5 include metal.
  • the materials of the first binding electrode 2, the connecting lead 3 and the second binding electrode 5 include at least one of copper, titanium, aluminum, molybdenum, and nickel gold.
  • the material connecting the lead 3 and the second binding electrode 5 includes conductive metal colloid.
  • the material connecting the lead 3 and the second binding electrode 5 includes conductive silver glue.
  • the conductive silver glue is, for example, doped with silver nanoparticles and colloids.
  • the aforementioned conductive silver glue is ICAs (Isotropic Conductive Adhesive, isotropic conductive silver glue).
  • the aforementioned conductive silver glue is ACAs (Anisotropic Conductive Adhesives).
  • the material connecting the lead 3 and the second binding electrode 5 includes ACF (Anisotropic Conductive Film).
  • the above materials for the first binding electrode 3, the connecting lead 3 and the second binding electrode 5 are only exemplified as a possible implementation.
  • the material of the binding electrode 5 includes but is not limited to the above examples.
  • the display panel 10 further includes: a flexible circuit board 7 disposed on a side of the plurality of second binding electrodes 5 away from the substrate 1 .
  • Each second binding electrode 5 extends along the second direction Y.
  • Each second binding electrode 5 includes a first binding end 51 and a second binding end 52 .
  • the first binding end of the second binding electrode 5 51 is configured to be electrically connected to the flexible circuit board 7
  • the second binding end 52 of the second binding electrode 5 is configured to be electrically connected to the third portion 33 of the connecting lead 3 .
  • the size of the overlapping portion of the flexible circuit board 7 and the first binding end 51 of the second binding electrode 5 in the second direction Y is called the overlap distance of the flexible circuit board 7.
  • the overlap distance is too small, , there is a risk that the flexible circuit board 7 and the first binding end 51 of the second binding electrode 5 are disconnected, making the connection between the flexible circuit board 7 and the first binding end 51 of the second binding electrode 5 unreliable, When the connection between the flexible circuit board 7 and the first binding end 51 of the second binding electrode 5 is disconnected, the control signal will not be transmitted normally, causing the display panel 10 to operate abnormally.
  • the size of the overlapping portion of the flexible circuit board 7 and the first binding end 51 of the second binding electrode 5 in the second direction Y is d5 should be able to ensure a stable and effective connection between the binding flexible circuit board 7 and the first binding end 51 of the second binding electrode 5 .
  • the dimension d5 of the overlapping portion of the flexible circuit board 7 and the first binding end 51 of the second binding electrode 5 in the second direction Y is greater than or equal to 0.5 mm.
  • the dimension d5 of the overlapping portion of the flexible circuit board 7 and the first binding end 51 of the second binding electrode 5 in the second direction Y is, for example, 0.5 mm, 1 mm or 2 mm.
  • the plurality of second binding electrodes 5 provided on the electrode carrier 4 are made using a printing process, for example.
  • the plurality of second binding electrodes 5 are made by, for example, 3D printing, screen printing, pad printing/transfer printing, or stencil printing.
  • the plurality of second binding electrodes 5 are prepared by, for example, a printing process, since the preparation process of the plurality of second binding electrodes 5 does not involve a laser process, the plurality of second binding electrodes 5 can be It is directly prepared on the non-display surface 1b side of the substrate 1 without the need for an additional electrode carrier 4 and will not affect the film structure in the display area AA.
  • the plurality of second binding electrodes 5 are made by, for example, sputtering coating and laser etching.
  • a metal coating is first formed on the electrode carrier 4 through a sputtering coating process, and then the metal coating is etched through a laser etching process to form a conductive pattern, which is a plurality of second binding electrodes 5 .
  • the material of the plurality of second binding electrodes 5 disposed on the electrode carrier 4 includes conductive materials, and the plurality of second binding electrodes 5 arranged side by side are electrically insulated from each other. Therefore, the electrode carrier 4 should be insulated. material to avoid short circuiting between multiple second binding electrodes 5 through the electrode carrier plate 4, which will cause the driving signal provided by the external controller, such as the flexible circuit board 7 and/or the driving chip, to be unable to be transmitted normally to the display area AA, affecting the display area AA. Problems with the normal operation of the display panel 10.
  • the short circuit here means that at least two second binding electrodes 5 that do not have an electrical connection among the plurality of second binding electrodes 5 are connected through the electrode carrier plate 4 , so that there is no conduction through the electrode carrier plate 4 A loop is formed between at least two second binding electrodes 5 in an electrical connection relationship, resulting in a short circuit.
  • the electrode carrier plate 4 should have good high temperature resistance.
  • the material of the electrode carrier 4 includes an insulating material.
  • the material of the electrode carrier 4 includes glass and polyimide film (PI, Polyimide Film).
  • electrode carrier 4 includes high temperature resistant material.
  • the high temperature resistance mentioned here refers to the preparation of the second binding electrode 5 on the electrode carrier 4 .
  • the performance, shape, etc. of the electrode carrier plate 4 will not be affected by heat, and the electrode carrier plate 4 and the second binding electrode 5 will not be inoperable due to the deformation of the electrode carrier plate 4 when exposed to high temperatures.
  • the normal connection with the connecting lead 3 and the like ensures the normal operation of the display panel 10 .
  • the above-mentioned material of the electrode carrier plate 4 is only an example of a possible implementation, and the material of the electrode carrier plate 4 includes but is not limited to the above examples.
  • the display panel 10 further includes: a plurality of connection pads 8 located on the side of the plurality of second binding electrodes 5 away from the substrate 1 , the plurality of connection pads 8 are arranged side by side at intervals, and each connection pad 8 is respectively Connected to a second binding electrode 5 and a third portion 33 of the connecting lead 3 .
  • connection pad 8 includes metal
  • connection pad 8 includes at least one of copper, titanium, aluminum, molybdenum, nickel gold, and conductive silver glue.
  • the material of the connection pad 8 includes conductive glue.
  • the conductive adhesives are ICAs.
  • the conductive adhesive is ACA.
  • the conductive adhesive is ACF.
  • connection pad 8 When the material of the connection pad 8 is, for example, ACA or ACF, ACA or ACF can conduct electricity in only one direction, for example, the Y direction, and can also serve as an adhesive to achieve a bonding effect, but does not conduct electricity in the X and Z directions, and can only conduct electricity in the X and Z directions. Acts as an adhesive for bonding.
  • ACA or ACF can only conduct electricity in the Y direction. Therefore, ACA or ACF should be disposed between the second binding terminal 5 and the third part 33 of the connecting lead 3 , and along the Y direction, ACA or ACF One end of ACA or ACF is connected to the second binding terminal 5, and the other end of ACA or ACF is connected to the third part 33 of the connecting lead 3, thereby realizing the conduction between the second binding terminal 5 and the third part 33 of the connecting lead 3. .
  • ACA or ACF is not conductive in the X direction, multiple connection pads can contact each other in the X direction. It can be understood that the above material of the connection pad 8 is only used as an example of a possible implementation, and the material of the connection pad 8 includes but is not limited to the above examples.
  • connection pad 8 configured to connect the second binding electrode 5 and the connection lead 3 should meet the connection requirements.
  • the shape and size of the connection pad 8 are introduced below.
  • the shape of the orthographic projection of the connection pad 8 on the substrate 1 includes a circle, an ellipse, a triangle, a star, a square, a heart, a trapezoid, etc.
  • the connection pad 8 can achieve conduction between the second binding electrode 5 and the connecting lead 3, it will not cause at least two second binding electrodes 5 among the plurality of second binding electrodes to have no electrical connection relationship. Or a short circuit problem occurs in at least two connecting leads 3 among the plurality of connecting leads 3 that do not have a connection relationship.
  • the short circuit here refers to at least two second binding electrodes 5 among the plurality of second binding electrodes 5 that do not have a connection relationship or at least two connection leads 3 among the plurality of connection leads 3 that do not have a connection relationship. conduction between them, forming a loop and causing a short circuit.
  • the second binding area BB2 extends along the first direction X
  • the third portion 33 of the connecting lead 3 extends along the second direction Y.
  • the first direction X intersects the second direction Y.
  • the dimension r3 of the connection pad 8 along the first direction That is, r3>(1/3) ⁇ r1.
  • the size r1 of the third portion 33 of the connecting lead 3 connected to the second binding electrode 5 in the first direction The sum of the distances r2 in the first direction X is greater than the size r3 of the connection pad 8 along the first direction X. That is, r1+r2>r3.
  • the dimension r3 along the first direction X of the connection pad 8 is smaller than the dimension r1 along the first direction X of the third portion 33 of the connection lead 3 connected thereto. That is, r3 ⁇ r1.
  • the dimension r3 along the first direction X of the connection pad 8 is greater than the dimension r1 along the first direction X of the third portion 33 of the connecting lead 3 connected thereto.
  • the size r1 of the third part 33 of the connecting lead 3 connected to the second binding electrode 5 in the first direction The sum is greater than the size r3 of the connection pad 8 along the first direction X. That is, r3>r1, and r1+r2>r3.
  • the size r4 of the connection pad 8 in the direction perpendicular to the selected side 1cc of the substrate 1 is less than or equal to the orthographic projection of the second bonding electrode 5 connected thereto on the substrate 1
  • the dimension r4 of the connection pad 8 in the direction perpendicular to the selected side 1 cc of the substrate 1 is greater than or equal to 30 ⁇ m.
  • the dimension r4 of the connection pad 8 in the direction perpendicular to the selected side 1 cc of the substrate 1 is, for example, 30 ⁇ m, 35 ⁇ m or 40 ⁇ m.
  • the boundary of the orthographic projection of the plurality of second binding electrodes 5 on the substrate 1 away from the selected side 1cc of the substrate 1 is between the selected side 1cc of the substrate 1
  • the distance r5 between them is greater than or equal to 3mm.
  • the boundary of the orthographic projection of the plurality of second binding electrodes 5 on the substrate 1 away from the selected side 1cc of the substrate 1 is between the selected side 1cc of the substrate 1
  • the distance r5 between them is less than or equal to 200mm.
  • the distance r5 between the boundary of the orthographic projection of the plurality of second binding electrodes 5 on the substrate 1 away from the selected side 1cc of the substrate 1 and the selected side 1cc of the substrate 1 is, for example, 3 mm, 60 mm, 100 mm or 200mm.
  • the size d11 of the first portion 31 of the connecting lead 3 connected to the first binding electrode 2 in the direction perpendicular to its extending direction is greater than or equal to that of the first binding electrode. 2 Thirty percent of dimension d12 in a direction perpendicular to its direction of extension. That is, d11 ⁇ d12 ⁇ 30%.
  • the size d12 of the first binding electrode 2 in the direction perpendicular to its extension direction is different from the size d12 of the two adjacent first binding electrodes 2 perpendicular to its extension direction.
  • the sum of the distances d13 in the direction and the difference d14 between the first portions 31 of the two adjacent connecting leads 3 in the direction perpendicular to their extension direction are greater than or equal to the connecting leads connected to the first binding electrode 2
  • Dimension d11 of the first portion 31 of 3 in a direction perpendicular to its direction of extension That is, d12+d13-d14 ⁇ d11.
  • the portion where the second binding end 52 of the second binding electrode 5 is connected to the third portion 33 of the connecting lead 3 overlaps.
  • the sum of the dimension d3 of the third portion 33 of the connecting lead 3 in the direction perpendicular to the selected side 1cc and the dimension d9 of the second bonding electrode 5 in the direction perpendicular to the selected side 1cc is equal to the second bonding
  • the distance d10 between the boundary of the orthographic projection of the electrode 5 on the substrate 1 and the side away from the selected side 1cc and the selected side 1cc has an overlapping portion with the second binding end 52 and the third part 33 of the connecting lead 3
  • the above overlap refers to the overlap in the orthographic projection on the substrate 1. It can be understood that the second binding end 52 of the second binding electrode 5 and the third portion 33 of the connecting lead 3 may or may not be in direct contact. direct contact.
  • the electrode carrier plate 4 is provided with a plurality of connection vias 41 arranged in parallel and spaced apart.
  • the second binding electrode 5 includes a first binding end 51 and a second binding end 52.
  • the first binding end 51 of the second binding electrode 5 is located on the side of the electrode carrier 4 away from the substrate 1.
  • the second binding end 52 of the electrode 5 passes through a connecting via 41 and is electrically connected to the third portion 33 of a connecting lead 3 .
  • the cross-sectional shape of the second binding electrode 5 includes the following situations:
  • the second binding electrode 5 is sectioned along the section line DD shown in Figure 10 or along the section line EE shown in Figure 11.
  • the cross-sectional shape of the two binding electrodes 5 is L-shaped.
  • the plurality of second binding electrodes 5 are located on the side of the third portions 33 of the plurality of connecting leads 3 away from the substrate 1 .
  • the third portion 33 of the plurality of connection leads 3 mentioned here is a portion of the plurality of connection leads 3 located on the non-display surface 1 b side of the substrate 1 .
  • a plurality of second binding electrodes 5 are arranged side by side and spaced apart along the first direction 3 is connected to the third part 33 of the connecting lead 3, the first binding end 51 of the second binding electrode 5 is located on the side of the third part 33 of the connecting lead 3 away from the substrate 1, and the first binding end 51 of the second binding electrode 5 Configured to be connected to the flexible circuit board 7, the end of the second binding end 52 of the second binding electrode 5 connected to the third part 33 of the connecting lead 3 is flush with the surface of the side of the electrode carrier 4 close to the substrate 1 Flat or roughly flush.
  • the second binding end 52 of the second binding electrode 5 extends toward the third portion 33 of the connecting lead 3 .
  • the second binding end 52 of the second binding terminal 5 includes its portion located within the connection via hole 41 , the second binding end 52 extends along the third direction Z, and the second binding end 52 extends along the third direction Z.
  • the first binding end 51 of the binding terminal 5 is the part connected to the flexible circuit board, and the connection part 53 of the second binding terminal 5 is the part between the first binding end 51 and the second binding end 52, Both the connecting portion 53 and the first binding end 51 extend in a plane perpendicular to the third direction Z.
  • the size of the second binding end 52 of the second binding electrode 5 along the third direction Z is larger than the size of the second binding end 52 and/or the connecting portion 53 of the second binding electrode 5 along the third direction Z. size.
  • the second binding electrode 5 is sectioned along the section line FF shown in Figure 16 or along the section line GG shown in Figure 17,
  • the cross-sectional shape of the second binding electrode 5 is Z-shaped.
  • the first binding end 51 of the second binding electrode 5 is located on the side of the electrode carrier 4 away from the substrate 1
  • the second binding end 52 of the second binding electrode 5 includes a side of the electrode carrier 4 close to the substrate 1
  • the second binding end 52 is L-shaped in the cross-sectional view shown in FIG. 15 .
  • the second binding end 52 of the second binding electrode 5 is connected to the third portion 33 of the connecting lead 3.
  • the first binding end 51 of the second binding terminal 5 is the part connected to the flexible circuit board, and the connection part 53 of the second binding terminal 5 is between the first binding end 51 and the second binding end 52 part, the connecting portion 53 and the first binding end 51 both extend in a plane perpendicular to the third direction Z.
  • both the first binding end 51 and the first part of the second binding end 52 of the second binding electrode 5 extend along the second direction Y.
  • the sum of the sizes of the first binding end 51 and the connecting portion 53 of the second binding electrode 5 along the second direction Y is greater than the size of the second binding end 52 of the second binding electrode 5 along the second direction Y.
  • the display panel 10 further includes: a plurality of connection structures 9 , each connection structure 9 is configured to connect the first binding end 51 of the second binding electrode 5 and the third portion 33 of one connection lead 3 .
  • the connection structure 9 includes an adhesive 91 and/or an adhesive glue 92 .
  • the position, shape, material, etc. of the connecting structure 9 are introduced below.
  • connection structure 9 includes an adhesive 91 configured to connect the second binding end 52 to the third portion 33 of the connection lead 3 .
  • the second binding end 52 is located on the side away from the substrate 1 of the third portion 33 of the connection lead 3 connected thereto.
  • the adhesive 91 is disposed in the connection via hole 41 .
  • the adhesive 91 needs to be filled into the connection via hole 41 on the electrode carrier board 4. Therefore, it needs to have fluidity and be able to solidify after being filled into the connection via hole 41 on the electrode carrier board 4, thereby ensuring the second bonding.
  • the stability of the connection between the electrode 5 and the connecting lead 3 is determined.
  • adhesive 91 includes glue.
  • the colloid of the glue meets the binding resistance conditions.
  • the glue must at least meet the condition that the colloid will not deform or reduce viscosity within 7 minutes at an ambient temperature of 200°C.
  • the aforementioned glue is an insulating glue with good viscosity.
  • the adhesive 91 is a curable liquid glue, and the thickness of the adhesive 91 after curing does not exceed the thickness of the second binding electrode 5 , where the thickness refers to its display perpendicular to the substrate 1 Dimensions in the direction of surface 1a.
  • the flow range of the adhesive 91 is less than 1 mm.
  • the radius of the orthographic projection of the connecting via hole 41 on the substrate 1 is Rmm.
  • the orthographic projection of the circular connecting via hole 41 on the substrate 1 is the reference point, and the radius of the circle with the reference point as the center is (R+1) mm.
  • the flow range of the adhesive 91 is less than 1 mm, which means that the orthogonal projection of the cured adhesive 91 on the substrate 1 is within the Within a circle with a radius of (R+1)mm.
  • the shape of the orthographic projection of the connection via hole 41 on the substrate 1 includes but is not limited to a circle, and can also be an ellipse, a square or a polygon, etc., as long as the flow range of the cured adhesive 91 does not exceed the edge of the connection via hole 41 1mm is enough.
  • the aforementioned glue is conductive glue, which has good viscosity and conductivity.
  • the orthographic projection of the glue on the non-display surface 1b of the substrate 1 overlaps or substantially overlaps the orthographic projection of the connection via hole 41 on the non-display surface 1b of the substrate 1 to ensure the electrical connection between the second binding terminal 5 and the connecting lead 3 .
  • the glue is, for example, silver glue.
  • connecting lead 3 and the second binding electrode 5 can be electrically connected through direct contact, or indirectly through the conductivity and adhesiveness of the adhesive 91 .
  • the adhesive 91 bonds the second binding end 52 of the second binding electrode 5 to the third portion 33 of the connecting lead 3 such that the second binding end 52 of the second binding electrode 5
  • the relative position with the third part 33 of the connecting lead 3 remains unchanged, ensuring that the two can be connected stably.
  • the second binding end 52 of the second binding electrode 5 and the third part 33 of the connecting lead 3 may be in direct contact to achieve connection conduction.
  • the connection can also be achieved through indirect conduction through the adhesive 91 .
  • the second binding electrode 5 is sectioned along the section line DD shown in Figure 10 or along the section line EE shown in Figure 11,
  • the cross-sectional shape of the second binding electrode 5 is L-shaped.
  • the connection structure 9 includes an adhesive glue 92 , which is disposed on a side of the second binding end 52 of the second binding electrode 5 away from the selected side 1 cc of the substrate 1 , and is configured to connect the electrode carrier 4 and the substrate 1 .
  • One side of the adhesive glue 92 is connected to the side of the electrode carrier 4 close to the substrate 1 , and the other side of the adhesive glue 92 faces the substrate 1 .
  • the adhesive glue 92 is an insulating glue and has good viscosity.
  • the adhesive 92 is textured glue or pressure-sensitive glue.
  • the second binding end 52 of the second binding electrode 5 is located on the side of the third portion 33 of the connection lead 3 connected thereto away from the substrate 1 , and the adhesive glue 92 is located on the electrode carrier plate. 4 and substrate 1.
  • the size f2 of the adhesive glue 92 is the same or substantially the same as the size f1 of the third portion 33 of the connecting lead 3 .
  • the thickness of the adhesive glue 92 in a direction perpendicular to the non-display surface 1 b of the substrate 1 is greater than 10 ⁇ m.
  • the thickness of the adhesive glue 92 in the direction perpendicular to the non-display surface 1 b of the substrate 1 is, for example, 10 ⁇ m, 13 ⁇ m, or 17 ⁇ m.
  • the description of the thickness of the adhesive glue 92 here is only used to illustrate a possible design and does not serve as a limitation on the size of the adhesive glue 92 .
  • the adhesive glue 92 is disposed on the second binding end 52 of the second binding electrode 5 on a side away from the substrate 1 of the third portion 33 of the connection lead 3 connected thereto.
  • the distance between the adhesive glue 92 and the side opposite to the third portion 33 of the connection lead 3 is greater than or equal to zero. That is, the adhesive glue 92 is in direct contact with the side opposite to the third portion 33 of the connection lead 3, or is not in direct contact.
  • the orthographic projection of the electrode carrier 4 on the substrate 1 partially overlaps with the orthographic projection of the third portion 33 of the connecting lead 3 on the substrate 1 , and the orthographic projection of the adhesive glue 92 on the substrate 1 does not overlap with the connection.
  • the orthographic projection of the third portion 33 of the lead 3 on the substrate 1 does not overlap.
  • the adhesive glue 92 is disposed on the portion of the side of the electrode carrier 4 close to the substrate 1 except for the overlapping area between the second binding electrode 5 and the third portion 33 of the connecting lead 3 .
  • the effective and stable connection between the second binding end 52 of the second binding electrode 5 and the third portion 33 of the connecting lead 3 is ensured by disposing the adhesive glue 92 .
  • the adhesive glue 92 By arranging the adhesive glue 92, the surfaces of the electrode carrier 4 and the opposite side of the substrate 1 are parallel or substantially parallel, thereby avoiding a large included angle between the electrode carrier 4 and the surfaces of the opposite side of the substrate 1.
  • the distance between the side of the electrode carrier 4 close to the selected side 1cc of the substrate 1 and the substrate 1 is greater than the distance between the side of the electrode carrier 4 away from the selected side 1cc of the substrate 1 and the substrate 1, so that the second The distance between the second binding end 52 of the binding electrode 5 and the third portion 33 of the connecting lead 3 exceeds the preset distance, so that electrical connection cannot be achieved.
  • the third binding electrode 5 of each of the plurality of second binding electrodes 5 Both binding ends 52 should be able to pass through a connecting via 41 and make direct contact with the third part 33 of a connecting lead 3 to achieve electrical connection, or indirectly contact through the adhesive 91 filled in the connecting via 41 to achieve electrical connection. .
  • the adhesive 91 is, for example, conductive glue, which is filled in the connection via hole on the electrode carrier 4 A part of the adhesive 91 in 41 will overflow toward the substrate 1 side. After the adhesive 91 is cured, a stable connection between the second binding end 52 of the two binding electrodes 5 and the third part 33 of the connecting lead 3 can be achieved.
  • the connection stability between the electrode carrier 4 and the substrate 1 is increased by providing the adhesive glue 92 .
  • the adhesive glue 92 includes, for example, a plurality of long strips of adhesive glue 92 arranged in parallel and spaced apart, or has a network structure, or a block structure. This increases the bonding area between the electrode carrier 4 and the substrate 1, thereby making the connection between the two more stable.
  • the second binding electrode 5 is sectioned along the section line FF shown in Figure 16 or along the section line GG shown in Figure 17,
  • the cross-sectional shape of the second binding electrode 5 is Z-shaped.
  • the connection structure 9 includes an adhesive glue 92 , which is disposed on a side of the second binding end 52 of the second binding electrode 5 away from the selected side 1 cc of the substrate 1 , and is configured to connect the electrode carrier 4 and the substrate 1 .
  • One side of the adhesive glue 92 is connected to the side of the electrode carrier 4 close to the substrate 1 , and the other side of the adhesive glue 92 faces the substrate 1 .
  • the first binding end 51 of the second binding electrode 5 is located on the side of the electrode carrier 4 away from the substrate 1
  • the second binding end 52 of the second binding electrode 5 is located on the side of the electrode carrier 4 close to the substrate 1 .
  • the first binding end 51 and the second binding end 52 of the second binding electrode 5 and the third portion 33 of the connecting lead 3 all extend along the second direction Y.
  • the extension direction of the first binding end 51 , the second binding end 52 of the second binding electrode 5 and the third portion 33 of the connecting lead 3 described here is the overall extension direction thereof. That is, the entirety of any one of the first binding end 51 and the second binding end 52 of the second binding electrode 5 or the third portion 33 of the connecting lead 3 may be linear or non-linear.
  • the specific shapes of the first binding end 51 , the second binding end 52 of the second binding electrode 5 or the third part 33 of the connecting lead 3 refer to the above for the third part 33 of the connecting lead 3 and the second binding electrode. The description of 5 will not be repeated here.
  • the adhesive glue 92 is located between the electrode carrier 4 and the substrate 1 .
  • the size f2 of the adhesive glue 92 is the same or substantially the same as the size f3 of the first binding end 51 of the second binding electrode 5 .
  • the adhesive glue 92 includes, for example, a plurality of long strips of adhesive glue 92 arranged side by side and spaced apart, or has a network structure, or a block structure. This increases the bonding area between the electrode carrier 4 and the substrate 1, thereby making the connection between the two more stable.
  • the orthographic projection of the electrode carrier 4 on the substrate 1 does not overlap with the orthographic projection of the third portion 33 of the connecting lead 3 on the substrate 1
  • the orthographic projection of the adhesive glue 92 on the substrate 1 does not overlap with the orthographic projection of the connecting lead 3
  • the orthographic projection of the third part 33 of 3 on the substrate 1 has no overlap.
  • the adhesive glue 92 is disposed on the portion of the side of the electrode carrier 4 close to the substrate 1 except for the area corresponding to the second binding end 52 of the second binding electrode 5 and the connection via hole 41 .
  • a plurality of connecting leads 3 are arranged in parallel and spaced apart along the first direction X, and a plurality of second binding electrodes 5 are arranged in parallel and spaced apart along the first direction X.
  • the display panel 10 further includes: conductive adhesive D, which is disposed on the side of the plurality of connection leads 3 away from the non-display surface 1b of the substrate 1 and is configured to connect the plurality of second binding electrodes 5 and the plurality of second binding electrodes 5 .
  • Connect lead 3 extends along the first direction X.
  • the third portion 33 of each connecting lead 3 located on the non-display surface 1b side of the substrate 1 is electrically connected to a second binding electrode 5 .
  • the conductive glue D covers at least the portions where the plurality of connection leads 3 are connected to the plurality of second binding electrodes 5 .
  • the conductive adhesive D is ACF.
  • the display panel 10 further includes an adhesive glue 92 located between the electrode carrier 4 and the substrate 1 .
  • the size f2 of the adhesive glue 92 is the same as the distance f4 between the side surface of the conductive glue D away from the substrate 1 and the substrate 1 .
  • the dimensions of the plurality of first binding electrodes 2 in the first direction X are the same. In other embodiments, the dimensions of the plurality of first binding electrodes 2 in the first direction X are different.
  • the plurality of second binding electrodes 5 have the same size in the first direction X. In other embodiments, the dimensions of the plurality of second binding electrodes 5 in the first direction X are different.
  • the first portions 31 of the plurality of connecting leads 3 have the same size in the first direction X. In other embodiments, the first portions 31 of the plurality of connecting leads 3 have different sizes in the first direction X.
  • the third portions 33 of the plurality of connecting leads 3 have the same size in the first direction X. In other embodiments, the third portions 33 of the plurality of connecting leads 3 have different sizes in the first direction X.
  • the light-emitting device layer 6 includes a plurality of light-emitting devices 61 , a plurality of pixel driving chips 62 and a protective film 63 .
  • the pixel driving chip is used to provide driving signals to the light-emitting device 61; and in some embodiments, the light-emitting device layer 6 may not have the pixel driving chip 62, but uses a thin film transistor provided in the driving circuit layer Q to provide the driving signal to the light-emitting device 61.
  • the light-emitting device 61 provides a driving signal, which is not limited in this disclosure.
  • the display panel 10 includes at least three colors of sub-pixels P.
  • the multiple-color sub-pixels include at least a first color sub-pixel, a second color sub-pixel and a third color.
  • the sub-pixels, the first color, the second color and the third color are three primary colors (such as red, green and blue).
  • each sub-pixel P includes at least one light-emitting device 61.
  • the protective film 63 includes a portion covering the plurality of light-emitting devices 61 and a portion filling gap areas of the plurality of light-emitting devices 61 .
  • the material of the protective film 63 may be black silicone or black resin.
  • the protective film 63 can protect the plurality of light-emitting devices 61 in the light-emitting device layer 6 and prevent the plurality of light-emitting devices 61 from being damaged during the process after the light-emitting devices 61 are formed.
  • the light-emitting device 61 includes, but is not limited to, OLED (Organic Light-Emitting Diode, organic light-emitting diode), Mini LED (Mini Light-Emitting Diode, mini light-emitting diode), Micro LED (Micro Light-Emitting Diode, micro light-emitting diode). )wait.
  • OLED Organic Light-Emitting Diode, organic light-emitting diode
  • Mini LED Mini Light-Emitting Diode, mini light-emitting diode
  • Micro LED Micro Light-Emitting Diode, micro light-emitting diode.
  • a display device 100 including the display panel 10 provided in any of the foregoing embodiments.
  • the display device 100 may be any device that displays moving (eg, video), fixed (eg, still images), text, or images. More specifically, it is contemplated that the embodiments may be implemented in or in association with a variety of electronic devices, such as, but not limited to, mobile phones, wireless devices, personal data assistants (PDAs) , handheld or portable computers, GPS receivers/navigators, cameras, MP4 video players, camcorders, game consoles, watches, clocks, calculators, television monitors, flat panel displays, computer monitors, automotive displays (e.g., odometer display, etc.), navigator, cockpit controller and/or display, camera view display (e.g. display of a rear view camera in a vehicle), electronic photographs, electronic billboards or signs, projectors, building structures, packaging and aesthetic structure (for example, for the display of an image of a piece of jewelry), etc.
  • PDAs personal data assistants
  • handheld or portable computers GPS receivers/navigators
  • MP4 video players camcorders
  • the above-mentioned display device 100 may also include a frame and other electronic accessories.
  • the display panel 10 may be disposed within the frame, for example.
  • a splicing display device 1000 is provided, including the display device 100 provided in any of the foregoing embodiments.
  • the spliced display device 1000 includes a plurality of display devices 100 as provided in the above embodiments.
  • multiple display devices 100 in the spliced display device 1000 are arranged in an array.
  • the display device 100 is, for example, rectangular.
  • a plurality of first binding electrodes 2 are arranged in parallel and spaced apart along the first direction X.
  • a plurality of connecting leads 3 are also arranged in parallel and spaced apart along the first direction surface, and another direction perpendicular to the first direction X is called the second direction Y.
  • the display device 100 includes multiple sides. Hereinafter, among the multiple sides of the display device 100 , the side close to the first binding area BB1 of the substrate 1 is referred to as a selected side of the display device 100 .
  • the substrate 1 includes a display area AA and two first binding areas BB1 located on opposite sides of the display area AA.
  • the display panel 10 includes two sets of first binding electrodes, each set of first binding electrodes.
  • a binding electrode includes a plurality of first binding electrodes 2 , and two groups of first binding electrodes are respectively disposed close to the two first binding areas BB1 of the substrate 1 .
  • the size of the first binding area BB1 in the second direction Y is very small. Therefore, when the splicing display device 1000 is actually viewed, the splicing seam between two adjacent display devices 100 is difficult to detect with the naked eye within the viewing distance. As a result, the display screen of the splicing display device 1000 is more complete and can present a better display effect.
  • the display panel 10 includes a display area AA and a first binding area BB1 located on one side of the display area AA.
  • the plurality of first binding electrodes 2 are close to the first binding area BB1 of the substrate 1 set up.
  • the selected side surfaces of two adjacent display devices 100 are arranged along the first direction X, In this way, among the multiple display devices 100 arranged in a row along the first direction X, there is basically no seam between two adjacent display devices 100 along the first direction X; There is a splicing gap between two adjacent display devices 100 in a display device 100 , that is to say, in a plurality of display devices 100 arranged in a row along the first direction X, there is a splicing gap between two adjacent display devices 100 The size is smaller than the size of the splicing gap between two adjacent display devices 100 among the plurality of display devices 100 arranged in a row along the second direction Y.
  • the size of the first binding area BB1 in the second direction Y is very small. Therefore, when the splicing display device 1000 is actually viewed, the splicing seam between two adjacent display devices 100 is difficult to detect with the naked eye within the viewing distance. As a result, the display screen of the splicing display device 1000 is more complete and can present a better display effect.
  • a method of manufacturing the display panel 10 is provided. As shown in Figure 25, the preparation method of the display panel 10 includes:
  • the substrate 1 includes an opposite display surface 1a and a non-display surface 1b and a plurality of side surfaces 1c connecting the display surface 1a and the non-display surface 1b. At least one side surface 1c among the plurality of side surfaces 1c is a selected side surface 1cc.
  • the display surface 1a includes a first binding area BB1
  • the non-display surface 1b includes a second binding area BB2.
  • the first binding area BB1 and the second binding area BB2 are both close to the selected side 1cc and arranged oppositely.
  • a plurality of first binding electrodes 2 are disposed in the first binding area BB1 .
  • each connection lead 3 includes a first part 31 located in the first binding area BB1, a second part 32 located on the side of the selected side 1cc, and The third part 33 located in the second binding area BB2, the first part 31 of each connecting lead 3 is connected to a first binding electrode 2.
  • S4 Provide an electrode carrier 4. As shown in Figures 10 to 14 and 16 to 20, a plurality of second binding electrodes 5 arranged in parallel and spaced apart are formed on the electrode carrier 4.
  • the first binding area BB1 and the second binding area BB2 are arranged oppositely, and both the first binding area BB1 and the second binding area BB2 are along the first direction X extend.
  • step S3 for example, a full-surface metal layer is first formed on the selected side 1cc of the substrate 1 through a three-dimensional sputtering coating process. Then, the metal layer is trimmed by laser etching, and the metal layer is patterned, thereby forming A plurality of connecting leads 3 enable the wiring on the front side of the substrate 1 (for example, the driving circuit layer Q) to be routed to the back side through the selected side 1cc.
  • the line length that needs to be laser etched on the back side, that is, the plurality of connecting leads 3 is located at the third part 33 on the non-display surface 1b side of the substrate 1, compared to The first portion 31 of the plurality of connecting leads 3 located on the display surface 1a side of the substrate 1 is longer. That is to say, during the backside etching process, the laser will be irradiated into the front display area AA, as shown in Figure 1. The laser is irradiated to the substrate 1 along the Laser direction shown in the figure, and from the back side of the substrate 1.
  • the emitted laser will irradiate into the display area AA, and the residual energy will cause damage to the inner film of the display area AA, and even affect the characteristics of the light-emitting device, leading to quality problems such as local corrosion, NG reliability, and failure to light up the product.
  • step S4 a plurality of second binding electrodes 5 are added.
  • the plurality of second binding electrodes 5 replace the extension of the third portion 33 of the connecting lead 3 shown in Figure 1. to the area corresponding to the display area AA, and the plurality of second binding electrodes 5 are separately prepared on the electrode carrier.
  • step S5 the plurality of second binding electrodes 5 and the electrode carrier 4 are integrated as a whole. It is connected to a plurality of connecting leads 3 and fixed on the non-display surface 1b side of the substrate 1. Due to the orthographic projection of the third portion 33 of the connecting leads 3 on the substrate 1, the corresponding area on the display surface 1a side of the substrate 1 is There is no overlap in the display area AA. It can be understood that with such a design, when the third part 33 of the connecting lead 3 is formed by laser etching, it can effectively prevent the laser from passing through the substrate 1 and then irradiating the film structure on the front side of the substrate 1. question.
  • the plurality of second binding electrodes 5 provided on the electrode carrier 4 are made using a printing process, for example.
  • the second binding electrode 5 is made by, for example, 3D printing, screen printing, pad printing/transfer printing, or stencil printing.
  • the second binding electrode 5 when the second binding electrode 5 is prepared by, for example, a printing process, since no laser is used in the preparation process of the second binding electrode 5 , the second binding electrode 5 can be directly prepared on a non-surface surface of the substrate 1 . On the display surface 1b side, there is no need to use the electrode carrier 4, and it will not affect the film structure in the display area AA.
  • the second binding electrode 5 is made by, for example, sputtering coating and laser etching.
  • a metal coating is first formed on the electrode carrier 4 through a sputtering coating process, and then a conductive pattern is formed on the metal coating through a laser etching process.
  • the conductive pattern is, for example, a plurality of second binding electrodes.

Abstract

一种显示面板(10),包括:基板(1)、多个第一绑定电极(2)、多条连接引线(3)、电极载板(4)和多个第二绑定电极(5)。基板(1)包括相对的显示面(1a)和非显示面(1b)以及多个侧面(1c),至少一个侧面(1c)为选定侧面(1cc)。显示面(1a)包括第一绑定区(BB1),非显示面(1b)包括第二绑定区(BB2),第一绑定区(BB1)和第二绑定区(BB2)均靠近选定侧面(1cc)且相对设置。多个第一绑定电极(2)并列间隔排布于第一绑定区(BB1)内。多条连接引线(3)并列间隔排布,每条连接引线(3)包括位于第一绑定区(BB1)的第一部(31)、位于选定侧面(1cc)一侧的第二部(32)和位于第二绑定区(BB2)的第三部(33);每条连接引线(3)的第一部(31)与一个第一绑定电极(2)电连接。电极载板(4)设置于非显示面(1b)一侧,电极载板(4)远离基板(1)的一侧设置有并列间隔排布的多个第二绑定电极(5),每个第二绑定电极(5)与一条连接引线(3)的第三部(33)电连接。

Description

显示面板、显示装置及拼接显示装置 技术领域
本公开涉及显示技术领域,尤其涉及一种显示面板、显示装置及拼接显示装置。
背景技术
Micro LED(Micro Light Emitting Diode,微发光二极管)及Mini LED(Mini Light Emitting Diode Display,迷你发光二极管)相较于传统LED,颗粒更小,即体积更小。
发明内容
一方面,提供一种显示面板,包括:基板、多个第一绑定电极、多条连接引线、电极载板和多个第二绑定电极。基板包括相对的显示面和非显示面以及连接显示面和非显示面的多个侧面,其中,至少一个侧面为选定侧面。显示面包括第一绑定区,非显示面包括第二绑定区,第一绑定区和第二绑定区均靠近选定侧面且相对设置。多个第一绑定电极并列间隔设置于第一绑定区内。多条连接引线并列间隔排布,每条连接引线包括位于第一绑定区的第一部、位于选定侧面一侧的第二部和位于第二绑定区的第三部。每条连接引线的第一部与一个第一绑定电极电连接。电极载板设置于基板的非显示面一侧,多个第二绑定电极设置于电极载板远离基板的一侧。多个第二绑定电极并列间隔排布,每个第二绑定电极与一条连接引线的第三部电连接。
在一些实施例中,显示面板还包括:并列间隔排布的多个连接垫。多个连接垫位于多个第二绑定电极远离基板的一侧,每个连接垫分别与一个第二绑定电极和一条连接引线的第三部连接。
在一些实施例中,连接垫包括金属、导电胶。
在一些实施例中,连接垫在基板上的正投影的形状包括圆形、椭圆形、三角形、星型、方形、心形、梯形。
在一些实施例中,电极载板开设有并列间隔排布的多个连接过孔。第二绑定电极包括第一绑定端和第二绑定端,第二绑定电极的第一绑定端位于电极载板远离基板的一侧,第二绑定电极的第二绑定端穿过一个连接过孔与一条连接引线的第三部电连接。
在一些实施例中,第二绑定电极的第二绑定端位于与其连接的连接引线的第三部远离基板的一侧。显示面板还包括:粘接剂,设置于连接过孔内,被配置为连接第二绑定端与连接引线的第三部。
在一些实施例中,显示面板还包括:粘合胶,设置于第二绑定电极的第二绑定端远离基板的选定侧面的一侧。粘合胶的一侧与电极载板靠近基板的一侧连接,粘合胶的另一侧朝向基板。粘合胶被配置为连接电极载板与基板。
第二绑定电极的第二绑定端位于与其连接的连接引线的第三部远离基板的一侧,粘合胶位于电极载板与基板之间。在垂直于电极载板的方向上,粘合胶的尺寸与连接引线的第三部的尺寸相同。
在一些实施例中,粘合胶为绝缘胶。
在一些实施例中,多条连接引线沿第一方向并列间隔排布,多个第二绑定电极沿第一方向并列间隔排布。显示面板还包括:导电胶,设置于多条连接引线远离基板的非显示面的一侧,被配置为连接第二绑定电极与连接引线。导电胶沿第一方向延伸。导电胶至少覆盖连接引线与第二绑定电极连接的部分。
在一些实施例中,电极载板的材料包括绝缘材料。
在一些实施例中,电极载板的材料包括玻璃、聚酰亚胺薄膜。
在一些实施例中,第一绑定电极的材料包括金属。连接引线和第二绑定电极的材料包括金属或导电金属胶体。
在一些实施例中,第一绑定电极的材料包括铜、钛、铝、钼、镍金中的至少一种。
在一些实施例中,连接引线和第二绑定电极的材料包括铜、钛、铝、钼、镍金、导电银胶中的至少一种。
在一些实施例中,第二绑定区沿第一方向延伸,连接引线的第三部沿第二方向延伸。其中,第一方向与第二方向交叉。连接垫在沿第一方向上的尺寸大于,与连接垫连接的连接引线的第三部在第一方向上的尺寸的三分之一。
在一些实施例中,与第二绑定电极相连的连接引线的第三部在第一方向上的尺寸与相邻的两条连接引线的第三部在第一方向上的距离之和,大于连接垫在沿第一方向上的尺寸。
在一些实施例中,连接垫在垂直于选定侧面的方向上的尺寸小于或等于,与其相连的第二绑定电极在基板上的正投影的远离选定侧面的一侧的边界与选定侧面之间的距离。
在一些实施例中,显示面板还包括:柔性电路板,设置于多个第二绑定电极远离基板的一侧。每个第二绑定电极沿第二方向延伸,每个第二绑定电极包括第一绑定端和第二绑定端,第一绑定端被配置为与柔性电路板电连接,第二绑定端被配置为与连接引线的第三部电连接。
在一些实施例中,第二绑定端与连接引线的第三部连接的部分存在交叠。连 接引线的第三部在垂直于选定侧面的方向上的尺寸与第二绑定电极在垂直于选定侧面的方向上的尺寸之和等于,第二绑定电极在基板上的正投影的远离选定侧面的一侧的边界与选定侧面之间的距离与第二绑定端与连接引线的第三部存在交叠部分在垂直于选定侧面的方向上的尺寸之和。
在一些实施例中,连接引线的第三部,在垂直于选定侧面的方向上的尺寸小于或等于,第一电极在基板上的正投影的远离选定侧面的一侧的边界与选定侧面之间的距离。
在一些实施例中,与第一绑定电极相连的连接引线的第一部在垂直于其延伸方向的方向上的尺寸大于或等于,第一绑定电极在垂直于其延伸方向的方向上的尺寸的百分之三十。
在一些实施例中,第一绑定电极在垂直于其延伸方向的方向上的尺寸,与相邻的两个所述第一绑定电极在垂直于其延伸方向的方向上的距离之和,与相邻的两条连接引线的第一部在垂直于其延伸方向的方向上的距离之差大于或等于第一绑定电极相连的连接引线的第一部在垂直于其延伸方向的方向上的尺寸。
另一方面,提供一种显示装置,包括如上述任一实施例所提供的显示面板。
又一方面,提供一种拼接显示装置,包括如上述任一实施例所提供的显示装置。
再一方面,提供一种显示面板的制备方法,包括:
提供基板。其中,基板包括相对的显示面和非显示面,以及连接显示面和非显示面的多个侧面,多个侧面中的至少一个侧面为选定侧面。显示面包括第一绑定区,非显示面包括第二绑定区,第一绑定区和第二绑定区均靠近选定侧面且相对设置。
在基板的显示面一侧形成并列间隔排布的多个第一绑定电极。多个第一绑定电极设置于第一绑定区内。
形成并列间隔排布多条的连接引线。其中,每条连接引线包括位于第一绑定区的第一部、位于选定侧面一侧的第二部和位于第二绑定区的第三部。每条连接引线的第一部与一个第一绑定电极连接。
提供电极载板,在电极载板上形成并列间隔排布的多个第二绑定电极。
将设置有多个第二绑定电极的电极载板设置于基板的非显示面一侧,且使每个第二绑定电极与一条连接引线的第三部连接。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的 一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据一些实施例的显示面板的截面图;
图2为根据一些实施例的显示面板的正面结构图;
图3为根据另一些实施例的显示面板的正面结构图;
图4为根据一些实施例的显示面板的背面结构图;
图5为根据另一些实施例的显示面板的背面结构图;
图6为根据一些实施例的显示面板的截面图;
图7为根据图3所示的显示面板的区域C的背面的放大图;
图8为根据图3所示的显示面板的区域C的正面的放大图;
图9为根据另一些实施例的显示面板的截面图;
图10为根据图9所示的显示面板的电极载板与第二绑定电极的一种结构图;
图11为根据图9所示的显示面板的电极载板与第二绑定电极的另一种结构图;
图12为根据图9所示的显示面板的粘合胶的一种结构图;
图13为根据图9所示的显示面板的粘合胶的另一种结构图;
图14为根据图9所示的显示面板的粘合胶的又一种结构图;
图15为根据又一些实施例的显示面板的截面图;
图16为根据图15所示的显示面板的电极载板与第二绑定电极的一种结构图;
图17为根据图15所示的显示面板的电极载板与第二绑定电极的另一种结构图;
图18为根据图15所示的显示面板的粘合胶的一种结构图;
图19为根据图15所示的显示面板的粘合胶的另一种结构图;
图20为根据图15所示的显示面板的粘合胶的又一种结构图;
图21为根据再一些实施例的显示面板的截面图;
图22为根据一些实施例的显示装置的正面结构图;
图23为根据一些实施例的拼接显示装置的结构图;
图24为根据另一些实施例的拼接显示装置的结构图;
图25为根据一些实施例的显示面板的制备方法的流程图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“耦接”和“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。又如,描述一些实施例时可能使用了术语“耦接”以表明两个或两个以上部件有直接物理接触或电接触。然而,术语“耦接”或“通信耦合(communicatively coupled)”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
如本文所使用的那样,“约”、“大致”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的 局限性)所确定。
如本文所使用的那样,“平行”、“垂直”、“相等”包括所阐述的情况以及与所阐述的情况相近似的情况,该相近似的情况的范围处于可接受偏差范围内,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。例如,“平行”包括绝对平行和近似平行,其中近似平行的可接受偏差范围例如可以是5°以内偏差;“垂直”包括绝对垂直和近似垂直,其中近似垂直的可接受偏差范围例如也可以是5°以内偏差。“相等”包括绝对相等和近似相等,其中近似相等的可接受偏差范围内例如可以是相等的两者之间的差值小于或等于其中任一者的5%。
应当理解的是,当层或元件被称为在另一层或基板上时,可以是该层或元件直接在另一层或基板上,或者也可以是该层或元件与另一层或基板之间存在中间层。
本文参照作为理想化示例性附图的剖视图和/或平面图描述了示例性实施方式。在附图中,为了清楚,放大了层和区域的厚度。因此,可设想到由于例如制造技术和/或公差引起的相对于附图的形状的变动。因此,示例性实施方式不应解释为局限于本文示出的区域的形状,而是包括因例如制造而引起的形状偏差。例如,示为矩形的蚀刻区域通常将具有弯曲的特征。因此,附图中所示的区域本质上是示意性的,且它们的形状并非旨在示出设备的区域的实际形状,并且并非旨在限制示例性实施方式的范围。
为提高产品可靠性,以及降低运输成本、维修成本,大尺寸显示装置可以采用多个小尺寸显示装置拼接的方法来组装形成。
为了避免拼接带来的显示画面割裂感,需要减小单个小尺寸显示装置的边框尺寸,降低拼缝宽度。小尺寸显示装置包括显示面板,例如可以通过侧面走线将位于显示面板的显示面一侧的走线与设置在显示面板的非显示面一侧的电路板(例如柔性电路板)实现连接,从而在多个小尺寸显示装置拼接形成更大尺寸的大尺寸显示装置时,相邻的小尺寸显示装置之间的间距可以更小,从而使得多个小尺寸显示装置拼接形成的大尺寸显示装置的显示质量得以提升。
如图1所示,在一些实施例中,显示面板10包括基板1、多个第一绑定电极2和多条连接引线3。基板1包括相对的显示面1a和非显示面1b,以及连接显示面1a和非显示面1b的多个侧面1c,基板1的多个侧面1c中的至少一个侧面1c为选定侧面1cc。每条连接引线3包括位于基板1的显示面1a一侧的第一部31、位于基板1的选定侧面1cc上的第二部32和位于基板1的非显示面1b一侧的第三部33。
其中,基板1的显示面1a一侧为显示面板的正面,基板1的非显示面1b一侧为显示面板的背面。基板1的显示面1a包括显示区AA。在显示区AA设置有驱动线路层Q和发光器件层6等膜层结构,多条连接引线3的第一部31位于基板1的显示面1a一侧,多条连接引线3的第三部33位于基板1的非显示面1b一侧。连接引线3的第一部31和第三部33均沿垂直于基板1的选定侧面1cc的方向,例如图1中所示的Y方向延伸。
多条连接引线3的第三部33被配置为连接位于基板1的非显示面1b一侧的电路板,例如多条连接引线3的第三部33的远离选定侧面1cc的端部作为连接柔性电路板7的绑定电极,也就是说显示面板的背面线路需要预留较大位置进行外部线路绑定。因此,在沿与选定侧面1cc垂直的方向上,连接引线3的第三部33的线长,大于连接引线的第一部31的线长。即多条连接引线3位于基板1的显示面1a一侧的第一部31的长度d1小于多条连接引线位于基板1的非显示面1b一侧的第三部33的长度d2。可以理解的是,连接引线3的第三部33在基板1上的正投影与显示区AA对应的区域有重叠。
对于多条连接引线3位于基板1的非显示面1b一侧的第三部33的长度,有以下几种情况:
在一些实施例中,多条连接引线3沿第一方向X并列间隔排布,第二方向Y与第一方向X交叉,连接引线3的第三部33呈直线型,连接引线3的第三部33沿Y方向延伸,那么,连接引线3的第三部33的长度d2即为连接引线3的第三部33在第二方向Y上的长度。
在另一些实施例中,多条连接引线3沿第一方向X并列间隔排布,第二方向Y与第一方向X交叉,连接引线3的第三部33呈非直线状,连接引线3的第三部33包括依次首尾连接的多个延伸方向不同的部分,每条连接引线3的第三部33包括延伸方向不同的多个子部。每条连接引线3的第三部33例如包括第一子部、第二子部和第三子部,且连接引线3的第三部33包括的第一子部、第二子部和第三子部的延伸方向不同,连接引线3包括的多个子部与第二方向Y的夹角不大于60°,连接引线3的第三部33整体可以认为大致是沿Y方向延伸那么,呈非直线状的连接引线3的第三部33的长度d2为连接引线3的第三部33包括的多个子部在基板1上的正投影在沿第二方向Y上的长度之和。
在一些示例中,多条连接引线3的制备工艺如下:在基板1的至少一个侧面1c形成整面的连接金属层,例如通过立体溅射镀膜工艺形成连接金属层,具体地,连接金属层位于基板1的显示面1a、基板1的侧面1c和基板1的非显示面1b一侧;接着,通过激光刻蚀将连接金属层图案化,使其形成多条独立的连 接引线3。
可以理解的是,每条连接引线3包括位于基板1的显示面1a一侧的第一部31、位于基板1的选定侧面1cc上的第三部33和位于基板1的非显示面1b一侧的第三部33,且连接引线3的第一部31的线长小于连接引线3的第三部33的线长,因此连接金属层的位于基板1的显示面1a的面积小于其位于基板1的非显示面1b的面积。这样在实际激光刻蚀过程中,基板1的非显示面1b一侧需要激光刻蚀的线长更长,在刻蚀得到连接引线3的第三部33的过程中,激光可能会穿过基板1入射到显示面1a的显示区AA内。请参阅图1,激光沿图中所示Laser方向分别为照射向基板1,由于连接引线3的第三部33在基板1上的正投影与显示区AA对应的区域存在交叠,因此激光的部分能量会穿过基板1到达显示区AA并对该区域内的膜层和器件造成损伤,导致局部腐蚀、发光器件无法点亮等信赖性问题。
在一些实施例中,驱动线路层Q中可以包括薄膜晶体管,在采用激光刻蚀连接引线3的第三部33时,正面的驱动线路层Q中的薄膜晶体管的有源层受到激光照射后会导致薄膜晶体管的特性发生改变,例如使薄膜晶体管关断的阈值电流上升,从而影响显示效果。上述制备工艺,例如溅射镀膜工艺和激光刻蚀工艺等仅作为示例性描述,不作为对实际生产工艺的限定。
以下对本公开提供的显示面板、显示装置和拼接显示装置分别进行介绍。
在本公开中,图2、图3、图4和图5为显示面板10的平面结构图,图7为根据图3所示的显示面板10的区域C的背面放大图,图8为根据图3所示的显示面板10的区域C的正面放大图,图10、图11、图16和图17为根据一些实施例的电极载板4远离基板1的一侧的结构图,图12、图13、图14、图18、图19和图20为根据一些实施例的电极载板4的靠近基板1的一侧的结构图。图22为根据一些实施例的显示装置100的正面结构图。图23和图24为根据一些实施例的拼接显示装置的结构图。图25为根据一些实施例的显示面板的制备方法的流程图。
以下将显示面板10的显示面1a一侧称为显示面板10的正面,对应地,将显示面板10的非显示面1b一侧称为显示面板10的背面。
本公开的一些实施例提供一种显示面板10,如图2、图3、图4和图5所示,显示面板10包括基板1、多个第一绑定端子2、多条连接引线3、电极载板4和多个第二绑定电极5。其中,电极载板4设置于基板1的非显示面1b一侧,多个第二绑定电极5设置于电极载板4远离基板1的一侧。
基板1包括相对的显示面1a和非显示面1b以及连接显示面1a和非显示面 1b的多个侧面1c,其中,至少一个侧面1c为选定侧面1cc。基板1的显示面1a包括第一绑定区BB1,基板1的非显示面1b包括第二绑定区BB2,第一绑定区BB1和第二绑定区BB2均靠近基板1的选定侧面1cc且相对设置。这里的相对设置是指第二绑定区BB2的基板1的显示面1a一侧对应的区域,与第一绑定区BB1对应的区域重叠或大致重叠。
多个第一绑定电极2设置于第一绑定区BB1内,多个第一绑定电极2并列间隔排布。多个第一绑定电极2远离基板1的选定侧面1cc的一侧的边界齐平或大致齐平。
多个第二绑定电极5设置于电极载板4远离基板1的一侧,多个第二绑定电极5并列间隔排布。多个第二绑定电极5远离基板1的选定侧面1cc的一侧的边界齐平或大致齐平。
多条连接引线3并列间隔排布。每条连接引线3包括位于第一绑定区BB1的第一部31、位于选定侧面1cc一侧的第二部32,和位于第二绑定区BB2的第三部33。每条连接引线3的第一部31与一个第一绑定电极2电连接,每条连接引线3的第三部33与一个第二绑定电极5电连接。
在一些实施例中,如图3、图4和图5所示,第一绑定区BB1与第二绑定区BB2均沿第一方向X延伸。多个第一绑定电极2沿第一方向X并列间隔排布,每个第一绑定电极2沿第二方向Y延伸。多个第二绑定电极5沿第一方向X并列间隔排布,每个第二绑定电极5沿第二方向Y延伸。其中,第一方向X与第二方向Y交叉。
示例性地,第二方向Y垂直于第一方向X。
示例性地,如图2和图3所示,基板1的显示面1a包括显示区AA,第一绑定区BB1至少位于显示区AA的一侧。
在一些实施例中,如图2所示,基板1包括相对设置的两个第一绑定区BB1,第一绑定区BB1位于显示区AA相对的两侧。
在另一些实施例中,如图3所示,基板1包括一个第一绑定区BB1,第一绑定区BB1位于显示区AA的一侧。
驱动线路层Q设置于基板1的显示面1a一侧,且位于显示区AA。发光器件层6设置在驱动线路层Q远离基板1的一侧,发光器件层6包括多个发光器件61,驱动线路层Q包括信号走线,信号走线连接发光器件61,被配置为向发光器件61传输信号,驱动发光器件层6中的多个发光器件61发光。
上述提到的激光损伤显示面板的正面膜层,包括驱动线路层Q和发光器件层6等。
示例性地,第二绑定电极5包括第一绑定端51和第二绑定端52,第二绑定电极5的第一绑定端51被配置为与柔性电路板7电连接,第二绑定电极5的第二绑定端52被配置为与连接引线3的第三部33电连接。
对于多个第二绑定电极5,有以下几种情况:
在一些实施例中,如图4所示,第二绑定电极5呈直线型。多个第二绑定电极5沿第一方向X并列间隔排布,且第二绑定电极5垂直于基板1的选定侧面1cc的方向延伸,第二绑定电极5例如沿图4中示出的第二方向Y延伸,第二绑定电极5长度d6为第二绑定电极5在第二方向Y上的长度。
示例性地,如图4所示,基板1的选定侧面1cc沿第一方向X的尺寸k1大于多个第二绑定电极5所覆盖区域沿第一方向X的尺寸k2。
在另一些实施例中,如图5所示,第二绑定电极5呈非直线状。多个第二绑定电极5沿第一方向X并列间隔排布,第二绑定电极5包括依次首尾连接的延伸方向不同的多个子部,第二绑定电极5例如包括第一绑定端51、连接部53和第二绑定端52,第一绑定端51为第二绑定电极5与连接引线3的第三部33相接的部分,连接部53为第二绑定电极5的中间部分,第二绑定端52为第二绑定电极5最远离基板1的选定侧面1cc的部分。
第二绑定电极5的第一绑定端51、连接部53和第二绑定端52的延伸方向不同,第二绑定电极5包括的各个子部与Y方向的夹角不大于60°,但第二绑定端子5整体可以认为大致是沿垂直于基板1的选定侧面1cc的方向,如图5中示出的Y方向延伸,那么,呈非直线状的第二绑定电极5的长度d6为第二绑定电极5包括的多个子部在基板1上的正投影在沿第二方向Y上的长度之和。
示例性地,如图5所示,基板1的选定侧面1cc沿第一方向X的尺寸k1大于,多个第一绑定端51所覆盖区域沿第一方向X的尺寸k2。多个第一绑定端51所覆盖区域沿第一方向X的尺寸k2大于,柔性电路板7所覆盖区域沿第一方向X的尺寸k3。柔性电路板7所覆盖区域沿第一方向X的尺寸k3大于,多个第二绑定端52所覆盖区域沿第一方向X的尺寸k4。多个第二绑定端52相对于多个第一绑定端51向内收拢,适用于尺寸相对较小的柔性电路板7。
示例性地,如图6所示,第一绑定电极2沿第二方向Y延伸,连接引线3的第一部31沿第二方向Y延伸,相连接的第一绑定电极2和连接引线3的第一部31在第二方向Y上存在交叠的部分,沿第二方向Y的尺寸d4大于或者等于零。
示例性地,连接引线3的第一部31在垂直于基板1的选定侧面1cc的方向上的尺寸d1大于零。
在一些实施例中,连接引线3的第一部31在垂直于基板1的选定侧面1cc的方向上的尺寸d1大于或等于60μm。
连接引线3的第一部31在垂直于基板1的选定侧面1cc的方向上的尺寸d1例如为60μm、65μm或70μm。
示例性地,第一绑定区BB1在垂直于基板1的选定侧面1cc的方向上的尺寸e1与第二绑定区BB2在垂直于基板1的选定侧面1cc的方向上的尺寸e2相同或大致相同。
示例性地,连接引线3的第三部33在垂直于基板1的选定侧面1cc的方向上的尺寸d3小于或等于,第一绑定电极2在基板1上的正投影的远离选定侧面1cc的一侧的边界与选定侧面1cc之间的距离。
在一些实施例中,第一绑定电极2在基板1上的正投影的远离选定侧面1cc的一侧的边界与选定侧面1cc之间的距离与第一绑定区BB1在垂直于基板1的选定侧面1cc的方向上的尺寸e1相同。即,第一绑定电极2在基板1上的正投影的远离选定侧面1cc的一侧的边界与选定侧面1cc之间的距离为e1。连接引线3的第三部33在垂直于基板1的选定侧面1cc的方向(即图6中所示的第二方向Y)上的尺寸d3小于或者等于第一绑定电极2在基板1上的正投影的远离选定侧面1cc的一侧的边界与选定侧面1cc之间的距离e1。即,d3≤e1。
示例性地,连接引线3的第一部31在第二方向Y上的尺寸d1与连接引线3的第三部33在第二方向Y上的尺度d3相同或大致相同。
在一些实施例中,连接引线3的第一部31在第二方向Y上的尺寸d1大于连接引线3的第三部33在第二方向Y上的尺度d3,且连接引线3的第三部33在垂直于基板1的选定侧面1cc的方向(即图6中所示的第二方向Y)上的尺寸d3小于或者等于第一绑定电极2在基板1上的正投影的远离选定侧面1cc的一侧的边界与选定侧面1cc之间的距离e1。即,d1>d3,且d3≤e1。
在另一些实施例中,连接引线3的第一部31在第二方向Y上的尺寸d1等于连接引线3的第三部33在第二方向Y上的尺度d3,且连接引线3的第三部33在垂直于基板1的选定侧面1cc的方向(即图6中所示的第二方向Y)上的尺寸d3小于或者等于第一绑定电极2在基板1上的正投影的远离选定侧面1cc的一侧的边界与选定侧面1cc之间的距离e1。即,d1=d3≤e1。
在又一些实施例中,连接引线3的第一部31在第二方向Y上的尺寸d1小于连接引线3的第三部33在第二方向Y上的尺度d3,且连接引线3的第三部33在垂直于基板1的选定侧面1cc的方向(即图6中所示的第二方向Y)上的尺寸d3小于或者等于第一绑定电极2在基板1上的正投影的远离选定侧面1cc 的一侧的边界与选定侧面1cc之间的距离e1。即,d1<d3≤e1。
可以理解的是,连接引线3的第一部31在基板1的显示面1a上的正投影与显示区AA不交叠,且连接引线3的第三部33在基板1的非显示面1b上的正投影在基板1的显示面1a对应的区域与显示区AA不存在交叠。即,连接引线3的第一部31在基板1的显示面1a上的正投影没有延伸至显示区AA,且连接引线3的第三部33在基板1的非显示面1b上的正投影在基板1的显示面1a对应的区域没有延伸至显示区AA。因此,在制备多条连接引线3时,不会出现自基板1的显示面1a一侧或自基板1的非显示面1b一侧发射的激光对显示区AA内的膜层和器件造成损伤,导致局部腐蚀等信赖性的问题。
示例性地,显示面板10还包括柔性电路板7,电极载板4上的多个第二绑定电极5的一端被配置为与柔性电路板7电连接,多个第二绑定电极5的另一端被配置为与多条连接引线3电连接。柔性电路板7设置于多个第二绑定电极5远离基板1的一侧,柔性电路板7被配置为向驱动线路层Q传输信号,驱动发光器件层6中的多个发光器件61发光。
在制备显示面板10时,电极载板4与设置于电极载板4远离基板1一侧的多个第二绑定电极5作为一个整体,实现在基板1上的固定,例如在电极载板4靠近基板1的一侧设置连接胶,将电极载板4贴附在基板1的非显示面1b一侧,接着,将每个第二绑定电极5分别与一条连接引线3连接,从而将显示面板10的正面线路引至背面。前述连接胶例如为粘合胶92,连接胶的设置位置及形状等参见后文对于粘合胶92的描述。
通过设置电极载板4,单独在电极载板4上形成多个第二绑定电极5,在电极载板4上形成多个第二绑定电极5时,电极载板4还未与基板1连接。参见图1和图6,采用这样的设计,缩短了连接引线3的第三部33在第二方向Y上的尺寸。
如图1所示,连接引线3的第三部33远离基板1的选定侧面1cc的一端被配置为连接柔性电路板7。如图6所示,连接引线3的第三部33在第二方向Y上的尺寸由d2缩短为d3,多个第二绑定电极5的第二绑定端52代替连接引线3的第三部33缩短的部分实现与柔性电路板7的连接。在保证信号稳定有效传输的前提下,避免了制备多条连接引线3时激光对显示区AA内的膜层和器件造成损伤,导致局部腐蚀等信赖性的问题,提高了显示面板10的信赖性。
示例性地,如图2和图3所示,基板1的显示面1a和非显示面1b的形状例如为矩形,基板1包括四个侧面1c。
以下将靠近基板1的每个选定侧面1cc设置的多个第一绑定电极2称为一 组第一绑定电极2,将靠近基板1的每个选定侧面1cc设置的多条连接引线3称为一组多条连接引线3,将设置于每个电极载板4上的多个第二绑定电极5称为一组第二绑定电极5,对基板1包括不同数量的选定侧面1cc的情况进行说明。
在一些实施例中,如图2所示,基板1包括相对的两个选定侧面1cc。进一步地,显示面板10包括两组第一绑定电极2、两组连接引线3和两个表面形成有多个第二绑定电极5的电极载板4。其中,每组第一绑定电极2靠近一个选定侧面1cc设置,并通过一组连接引线3连接一组第二绑定电极5。
在另一些实施例中,如图3所示,基板1包括一个选定侧面1cc。进一步地,显示面板10包括一组第一绑定电极2、一组连接引线3和一个表面形成有多个第二绑定电极5的电极载板4。每组第一绑定电极2靠近选定侧面1cc设置,并通过一组连接引线3连接一组第二绑定电极5。
示例性地,基板1的材料例如为玻璃、石英、塑料等刚性材料。
可以理解的是,上述对于基板1的材料仅作为一种可能的实施方式举例说明,基板1的材料包括但不限于上述示例。
为保证信号稳定有效传输,第一绑定电极2、连接引线3和第二绑定电极5应具备良好的导电性能。
在一些实施例中,第一绑定电极2、连接引线3和第二绑定电极5的材料包括金属。
示例性地,第一绑定电极2、连接引线3和第二绑定电极5的材料包括铜、钛、铝、钼、镍金中的至少一种。
在另一些实施例中,连接引线3和第二绑定电极5的材料包括导电金属胶体。
示例性地,连接引线3和第二绑定电极5的材料包括导电银胶。进一步地,导电银胶例如为纳米银粒子和胶体掺杂。
在一些示例中,前述导电银胶为ICAs(Isotropic Conductive Adhesive,各向同性导电银胶)。
在另一些示例中,前述导电银胶为ACAs(Anisotropic Conductive Adhesives,各向异性导电银胶)。
在又一些示例中,连接引线3和第二绑定电极5的材料包括ACF(Anisotropic Conductive Film,异方性导电胶膜)。
可以理解的是,上述对于第一绑定电极3、连接引线3和第二绑定电极5的材料仅作为一种可能的实施方式举例说明,第一绑定电极3、连接引线3和第二绑定电极5的材料包括但不限于上述示例。
示例性地,如图4、图5和图6所示,显示面板10还包括:设置于多个第二绑定电极5远离基板1的一侧的柔性电路板7。每个第二绑定电极5沿第二方向Y延伸,每个第二绑定电极5包括第一绑定端51和第二绑定端52,第二绑定电极5的第一绑定端51被配置为与柔性电路板7电连接,第二绑定电极5的第二绑定端52被配置为与连接引线3的第三部33电连接。
柔性电路板7与第二绑定电极5的第一绑定端51连接的部分存在交叠。将柔性电路板7与第二绑定电极5的第一绑定端51存在交叠的部分在第二方向Y上的尺寸称为柔性电路板7的搭接距离,当前述搭接距离过小时,存在柔性电路板7与第二绑定电极5的第一绑定端51连接断开的风险,使得柔性电路板7与第二绑定电极5的第一绑定端51的连接不可靠,当柔性电路板7与第二绑定电极5的第一绑定端51的连接断开时,会造成控制信号无法正常传输,使得显示面板10工作异常。因此,为保证柔性电路板7与多个第二绑定电极的稳定有效连接,柔性电路板7与第二绑定电极5的第一绑定端51交叠部分在第二方向Y上的尺寸d5应能够保证绑定柔性电路板7与第二绑定电极5的第一绑定端51的稳定有效连接。
在一些实施例中,柔性电路板7与第二绑定电极5的第一绑定端51交叠部分在第二方向Y上的尺寸d5大于或等于0.5mm。
柔性电路板7与第二绑定电极5的第一绑定端51交叠部分在第二方向Y上的尺寸d5例如为0.5mm、1mm或2mm。
在一些实施例中,电极载板4上设置的多个第二绑定电极5例如采用印刷工艺制成。
示例性地,多个第二绑定电极5例如采用3D打印、丝网印刷、移印/转印或者钢网印刷制成。
可以理解的是,当多个第二绑定电极5例如采用印刷工艺制备时,由于多个第二绑定电极5的制备过程中不涉及激光工艺,因此,多个第二绑定电极5可以直接制备在基板1的非显示面1b一侧,而无需额外设置电极载板4,且不会对显示区AA内的膜层结构造成影响。
在另一些实施例中,多个第二绑定电极5例如采用溅射镀膜加激光刻蚀的工艺制成。例如,先通过溅射镀膜工艺在电极载板4上形成金属镀膜,接着,通过激光刻蚀工艺对前述金属镀膜刻蚀以形成导电图案,该导电图案即为多个第二绑定电极5。
设置于电极载板4上的多个第二绑定电极5的材料包括导电材料,且并列排布的多个第二绑定电极5彼此之间电绝缘,因此,电极载板4应为绝缘材料, 避免多个第二绑定电极5之间通过电极载板4短接,从而导致外部控制器,例如柔性电路板7和/或驱动芯片提供的驱动信号无法正常传输至显示区AA,影响显示面板10的正常工作的问题。
这里的短接是指,多个第二绑定电极5中不存在电连接关系的至少两个第二绑定电极5通过电极载板4导通,使得通过电极载板4导通的不存在电连接关系的至少两个第二绑定电极5之间形成回路,造成短路。
当多个第二绑定电极5例如采用镀膜加激光刻蚀的工艺制备,在激光刻蚀时,激光的能量会差生大量热量,使得电极载板4受热,因此,电极载板4应具备良好的耐高温性能。
示例性地,电极载板4的材料包括绝缘材料。
在一些实施例中,电极载板4的材料包括玻璃、聚酰亚胺薄膜(PI,Polyimide Film)。
在另一些实施例中,电极载板4包括耐高温材料。当采用溅镀加激光刻蚀的工艺在电极载板4上形成第二绑定电极5的过程中,会产生大量热量,这里所说的耐高温是指在电极载板4上制备第二绑定电极5时,电极载板4不会因为受热导致其性能、形状等受到影响,避免电极载板4和第二绑定电极5不会由于电极载板4在受到高温时产生形变等造成无法与连接引线3等正常连接的情况,从而保证显示面板10的正常工作。
可以理解的是,上述对于电极载板4的材料仅作为一种可能的实施方式举例说明,电极载板4的材料包括但不限于上述示例。
在一些实施例中,显示面板10还包括:多个连接垫8,位于多个第二绑定电极5远离基板1的一侧,多个连接垫8并列间隔排布,每个连接垫8分别与一个第二绑定电极5和一条连接引线3的第三部33连接。
在一些实施例中,连接垫8的材料包括金属。
示例性地,连接垫8的材料包括铜、钛、铝、钼、镍金、导电银胶中的至少一种。
在另一些实施例中,连接垫8的材料包括导电胶。
在一些示例中,导电胶为ICAs。
在另一些示例中,导电胶为ACA。
再又一些示例中,导电胶为ACF。
连接垫8的材料例如为ACA或ACF时,ACA或ACF仅在一个方向上,例如Y方向既可以导电,也可以作为胶黏剂起到黏接效果,而在X和Z方向不导电,仅作为胶黏剂起到黏接效果。
可以理解的是,ACA或ACF仅在Y方向上可以导电,因此,ACA或ACF应设置于第二绑定端子5与连接引线3的第三部33之间,且沿Y方向,ACA或ACF的一端与第二绑定端子5连接,ACA或ACF的另一端与连接引线3的第三部33连接,从而实现第二绑定端子5与连接引线3的第三部33之间的导通。同时,由于ACA或ACF在X方向上不导电,因此多个连接垫在在X方向上可以彼此接触。可以理解的是,上述对于连接垫8的材料仅作为一种可能的实施方式举例说明,连接垫8的材料包括但不限于上述示例。
为保证连接引线3与第二绑定电极5的稳定连接,被配置为连接第二绑定电极5和连接引线3的连接垫8的尺寸应满足连接需求。以下对连接垫8的形状、尺寸做介绍。
示例性地,如图4、图5所示,连接垫8在基板1上的正投影的形状包括圆形、椭圆形、三角形、星型、方形、心形、梯形等。连接垫8只要能够实现第二绑定电极5与连接引线3之间导通的同时,又不会造成多个第二绑定电极中不存在电连接关系的至少两个第二绑定电极5或多条连接引线3中不存在连接关系的的至少两条连接引线3产生短接问题即可。
这里的短接是指,多个第二绑定电极5中的不存在连接关系的至少两个第二绑定电极5或多条连接引线3中的不存在连接关系的至少两条连接引线3之间导通,形成回路,造成短路。
示例性地,如图7所示,第二绑定区BB2沿第一方向X延伸,连接引线3的第三部33沿第二方向Y延伸。其中,第一方向X与第二方向Y交叉。连接垫8在沿第一方向X上的尺寸r3大于,与连接垫8连接的连接引线3的第三部33在第一方向X上的尺寸r1的三分之一。即,r3>(1/3)×r1。
示例性地,如图7所示,与第二绑定电极5相连的连接引线3的第三部33在第一方向X上的尺寸r1与相邻的两条连接引线3的第三部33在第一方向X上的距离r2之和,大于连接垫8在沿第一方向X上的尺寸r3。即,r1+r2>r3。
在一些实施例中,连接垫8沿第一方向X上的尺寸r3小于与其相连的连接引线3的第三部33沿第一方向X的尺寸r1。即,r3<r1。
在另一些实施例中,连接垫8沿第一方向X上的尺寸r3等于与其相连的连接引线3的第三部33沿第一方向X的尺寸r1。即,r3=r1。
在又一些实施例中,连接垫8沿第一方向X上的尺寸r3大于与其相连的连接引线3的第三部33沿第一方向X的尺寸r1。且与第二绑定电极5相连的连接引线3的第三部33在第一方向X上的尺寸r1与相邻的两条连接引线3的第三部33在第一方向X上的距离r2之和,大于连接垫8在沿第一方向X上的尺 寸r3。即,r3>r1,且r1+r2>r3。
示例性地,如图7所示,连接垫8在垂直于基板1的选定侧面1cc的方向上的尺寸r4小于或等于,与其相连的第二绑定电极5在基板1上的正投影的远离选定侧面1cc的一侧的边界与选定侧面1cc之间的距离r5。即r4≤r5。
在一些实施例中,如图7所示,连接垫8在垂直于基板1的选定侧面1cc的方向上的尺寸r4大于或等于30μm。
连接垫8在垂直于基板1的选定侧面1cc的方向上的尺寸r4例如为30μm、35μm或40μm。
在一些实施例中,如图7所示,多个第二绑定电极5在基板1上的正投影的远离基板1的选定侧面1cc一侧的边界,与基板1的选定侧面1cc之间的距离r5大于或等于3mm。
在一些实施例中,如图7所示,多个第二绑定电极5在基板1上的正投影的远离基板1的选定侧面1cc一侧的边界,与基板1的选定侧面1cc之间的距离r5小于或等于200mm。
多个第二绑定电极5在基板1上的正投影的远离基板1的选定侧面1cc一侧的边界,与基板1的选定侧面1cc之间的距离r5例如为3mm、60mm、100mm或200mm。
在一些实施例中,如图8所示,与第一绑定电极2相连的连接引线3的第一部31在垂直于其延伸方向的方向上的尺寸d11大于或等于,第一绑定电极2在垂直于其延伸方向的方向上的尺寸d12的百分之三十。即,d11≥d12×30%。
在一些实施例中,如图8所示,第一绑定电极2在垂直于其延伸方向的方向上的尺寸d12,与相邻的两个第一绑定电极2在垂直于其延伸方向的方向上的距离d13之和,与相邻的两条连接引线3的第一部31在垂直于其延伸方向的方向上的距离d14之差,大于或等于第一绑定电极2相连的连接引线3的第一部31在垂直于其延伸方向的方向上的尺寸d11。即d12+d13-d14≥d11。
在一些实施例中,如图9所示,第二绑定电极5的第二绑定端52与连接引线3的第三部33连接的部分存在交叠。连接引线3的第三部33,在垂直于选定侧面1cc的方向上的尺寸d3与第二绑定电极5在垂直于选定侧面1cc的方向上的尺寸d9之和等于,第二绑定电极5在基板1上的正投影的远离选定侧面1cc的一侧的边界与选定侧面1cc之间的距离d10与第二绑定端52与连接引线3的第三部33存在交叠部分在垂直于选定侧面1cc的方向上的尺寸d7之和。即,d3+d9=d10+d7。
上述交叠所指的是在基板1上的正投影存在交叠,可以理解的是,第二绑 定电极5的第二绑定端52与连接引线3的第三部33可以直接接触或没有直接接触。
示例性地,如图9、图10、图15和图16所示,电极载板4开设有并列间隔排布的多个连接过孔41。第二绑定电极5包括第一绑定端51和第二绑定端52,第二绑定电极5的第一绑定端51位于电极载板4远离基板1的一侧,第二绑定电极5的第二绑定端52穿过一个连接过孔41与一条连接引线3的第三部33电连接。
这时,对于第二绑定电极5的截面形状包括以下几种情况:
在一些实施例中,如图9、图10和图11所示,沿图10中所示的截面线DD或沿图11中所示的截面线EE对第二绑定电极5做截面,第二绑定电极5的截面形状呈L型。多个第二绑定电极5位于多条连接引线3的第三部33远离基板1的一侧。这里所说的多条连接引线3的第三部33为多条连接引线3位于基板1的非显示面1b一侧的部分。
示例性地,多个第二绑定电极5沿第一方向X并列间隔排布,第二绑定电极5的第二绑定端52穿过电极载板4上的连接过孔41与连接引线3的第三部33连接,第二绑定电极5的第一绑定端51位于连接引线3的第三部33远离基板1的一侧,第二绑定电极5的第一绑定端51被配置为与柔性电路板7连接,第二绑定电极5的第二绑定端52的与连接引线3的第三部33连接的端部与电极载板4靠近基板1的一侧表面齐平或大致齐平。
第二绑定电极5的第二绑定端52朝向连接引线3的第三部33延伸。在一些示例中,如图9所示,第二绑定端子5的第二绑定端52包括其位于连接过孔41内的部分,第二绑定端52沿第三方向Z延伸,第二绑定端子5的第一绑定端51为其与柔性电路板连接的部分,第二绑定端子5的连接部53为第一绑定端51和第二绑定端52之间的部分,连接部53和第一绑定端51均在与第三方向Z垂直的平面内延伸。示例性地,第二绑定电极5的第二绑定端52沿第三方向Z的尺寸大于第二绑定电极5的第二绑定端52和/或连接部53沿第三方向Z的尺寸。
在另一些实施例中,如图15、图16和图17所示,沿图16中所示的截面线FF或沿图17中所示的截面线GG对第二绑定电极5做截面,第二绑定电极5的截面形状呈Z型。第二绑定电极5的第一绑定端51位于电极载板4远离基板1的一侧,第二绑定电极5的第二绑定端52包括其位于电极载板4靠近基板1的一侧的第一部分和位于连接过孔41内的第二部分,在图15所示的截面图中,第二绑定端52呈L型。第二绑定电极5的第二绑定端52与连接引线3的第三 部33相接。第二绑定端子5的第一绑定端51为其与柔性电路板连接的部分,第二绑定端子5的连接部53为第一绑定端51和第二绑定端52之间的部分,连接部53和第一绑定端51均在与第三方向Z垂直的平面内延伸。
在一些示例中,如图15所示,第二绑定电极5的第一绑定端51和第二绑定端52的第一部分均沿第二方向Y延伸。第二绑定电极5的第一绑定端51和连接部53沿第二方向Y的尺寸之和大于第二绑定电极5的第二绑定端52沿第二方向Y的尺寸。
示例性地,显示面板10还包括:多个连接结构9,每个连接结构9被配置为连接第二绑定电极5的第一绑定端51与一条连接引线3的第三部33。连接结构9包括粘接剂91和/或粘合胶92。
以下对连接结构9的位置、形状、材料等做介绍。
在一些实施例中,如图9、图10和图11所示,连接结构9包括粘接剂91,粘接剂91被配置为连接第二绑定端52与连接引线3的第三部33。第二绑定端52位于与其连接的连接引线3的第三部33远离基板1的一侧。粘接剂91设置于连接过孔41内。
粘接剂91需要填充进电极载板4上的连接过孔41内,因此,需要具备流动性,且在填充进电极载板4上的连接过孔41内后能够固化,从而保证第二绑定电极5与连接引线3的连接稳定性。
在一些实施例中,粘接剂91包括胶水。胶水的胶体满足耐绑定条件,示例性地,胶水至少满足在环境温度200℃条件下,7分钟内胶体不变形,不减粘。
在一些示例中,前述胶水为绝缘胶,具备良好的粘性。作为一种可能的设计,粘接剂91为可固化液态胶水,且粘接剂91固化后的厚度不超过第二绑定电极5的厚度,这里的厚度是指其在垂直于基板1的显示面1a的方向上的尺寸。粘接剂91的流动范围小于1mm。
以连接过孔41在基板1上的正投影为圆形为例,连接过孔41在基板1上的正投影的半径为Rmm,以连接过孔41在基板1上的圆形的正投影的圆心为基准点,以该基准点为圆心的半径为(R+1)mm的圆,粘接剂91的流动范围小于1mm是指固化后的粘接剂91在基板1上的正投影在该半径为(R+1)mm的圆内。
可以理解的是,以上是为了清楚的描述粘接剂91的流动范围所做的示例性描述,而不是对本公开的限定。连接过孔41在基板1上的正投影的形状包括但不限于圆形,也可以是椭圆形、正方形或多边形等,只要保证固化后的粘接剂91流动范围不超出连接过孔41的边缘1mm即可。
在另一些示例中,前述胶水为导电胶,具备良好的粘性和导电性。胶水在基板1的非显示面1b的正投影与连接过孔41在基板1的非显示面1b的正投影重叠或大致重叠,以保证第二绑定端子5与连接引线3的电性连接。
作为一种可能的设计,胶水例如为银胶。
可以理解的是,连接引线3和第二绑定电极5可以通过直接接触实现电性连接,也可以通过粘接剂91的导电性和粘接性间接实现电性连接。
在一些实施例中,粘接剂91将第二绑定电极5的第二绑定端52与连接引线3的第三部33粘接,使得第二绑定电极5的第二绑定端52与连接引线3的第三部33之间的相对位置保持不变,保证二者能够稳定连接。
在另一些实施例中,采用具备良好的导电性的粘接剂91,第二绑定电极5的第二绑定端52与连接引线3的第三部33之间可以是直接接触实现连接导通,也可以是通过粘接剂91间接导通实现连接。
可以理解的是,不论第二绑定电极5的第二绑定端52与连接引线3的第三部33之间是直接接触实现连接导通,还是通过粘接剂91间接导通,都能够实现第二绑定电极5与连接引线3之间的有效导通,从而保证信号能够正常传输。
在另一些实施例中,如图9、图10和图11所示,沿图10中所示的截面线DD或沿图11中所示的截面线EE对第二绑定电极5做截面,第二绑定电极5的截面形状呈呈L型。连接结构9包括粘合胶92,设置于第二绑定电极5的第二绑定端52远离基板1的选定侧面1cc的一侧,被配置为连接电极载板4与基板1。粘合胶92的一侧与电极载板4靠近基板1的一侧连接,粘合胶92的另一侧朝向基板1。
示例性地,粘合胶92为绝缘胶,具备良好的粘性。在一些示例中,粘合胶92为网纹胶或压敏胶。
示例性地,如图9所示,第二绑定电极5的第二绑定端52位于与其连接的连接引线3的第三部33远离基板1的一侧,粘合胶92位于电极载板4与基板1之间。在垂直于电极载板4的方向(例如图9中所示的第三方向Z)上,粘合胶92的尺寸f2与连接引线3的第三部33的尺寸f1相同或大致相同。
在一些实施例中,粘合胶92沿垂直于基板1的非显示面1b的方向上的厚度大于10μm。粘合胶92沿垂直于基板1的非显示面1b的方向上的厚度例如为10μm、13μm或17μm。
这里对于粘合胶92的厚度的描述仅作为一种可能的设计进行说明,并不作为对粘合胶92尺寸的限定。
示例性地,如图9所示,粘合胶92设置于第二绑定电极5的第二绑定端52 位于与其连接的连接引线3的第三部33远离基板1的一侧。粘合胶92与连接引线3的第三部33相对的一侧之间的距离大于或者等于零。即,粘合胶92与连接引线3的第三部33相对的一侧直接接触,或者不直接接触。
如图9所示,由于连接引线3的第三部33远离基板1的选定侧面1cc的一端的至少一部分位于电极载板4与基板1之间,可以理解的是,在电极载板4与基板1之间的部分,除连接引线3的第三部33所占据的空间之外会产生至少一部分间隙区域,通过设置粘合胶92,对前述的空隙区域进行填补,从而实现电极载板4的平整贴附,进一步地,实现第二绑定电极5的平整贴附,保证第二绑定电极5与连接引线3的稳定有效连接,避免由于第二绑定电极3与连接引线3相连接的一侧与基板1之间的距离差较大,使得连接第二绑定电极3与连接引线3相连接的部分容易断开,导致控制信号传输异常,造成显示面板10显示异常的问题。
示例性地,电极载板4在基板1上的正投影与连接引线3的第三部33在基板1上的正投影存在部分交叠,且粘合胶92在基板1上的正投影与连接引线3的第三部33在基板1上的正投影无交叠。可以理解的是,粘合胶92设置于电极载板4靠近基板1的一侧的除第二绑定电极5与连接引线3的第三部33存在交叠的区域之外的部分。
可以理解的是,通过设置粘合胶92保证了第二绑定电极5的第二绑定端52与连接引线3的第三部33的有效稳定的连接。通过设置粘合胶92,使得电极载板4与基板1相对的一侧的表面平行或大致平行,避免了由于电极载板4与基板1相对的一侧的表面之间存在较大夹角,例如电极载板4靠近基板1的选定侧面1cc的一侧与基板1之间的距离大于电极载板4远离基板1的选定侧面1cc的一侧与基板1之间的距离,使得第二绑定电极5的第二绑定端52与连接引线3的第三部33之间的距离超出预设距离,从而无法实现电连接。
在将设置有多个第二绑定电极5的电极载板4设置于基板1的非显示面1b一侧时,多个第二绑定电极5中的每个第二绑定电极5的第二绑定端52均应能够穿过一个连接过孔41与一条连接引线3的第三部33直接接触实现电连接,或通过填充进连接过孔41内的粘接剂91间接接触实现电连接。
需要说明的是,第二绑定电极5的第二绑定端52与连接引线3的第三部33直接接触时,两者之间的距离为零;第二绑定电极5的第二绑定端52与连接引线3的第三部33通过粘接剂91间接接触时,两者之间存在一定距离,但粘接剂91例如为导电胶水,填入电极载板4上的连接过孔41内的粘接剂91会有一部分向着基板1一侧溢出,粘接剂91固化后实现二绑定电极5的第二绑定端52 与连接引线3的第三部33的稳定连接。
可以理解的是,通过设置粘合胶92增加了电极载板4与基板1的连接稳定性。如图12、图13和图14所示,粘合胶92例如包括为多个并列间隔排布的长条状粘合胶92,或者呈网状结构,又或者为一个块状结构。这样增大了电极载板4与基板1之间的粘接面积,从而使得两者的连接更加稳定。
在又一些实施例中,如图15、图16和图17所示,沿图16中所示的截面线FF或沿图17中所示的截面线GG对第二绑定电极5做截面,第二绑定电极5的截面形状呈Z型。连接结构9包括粘合胶92,设置于第二绑定电极5的第二绑定端52远离基板1的选定侧面1cc的一侧,被配置为连接电极载板4与基板1。粘合胶92的一侧与电极载板4靠近基板1的一侧连接,粘合胶92的另一侧朝向基板1。
第二绑定电极5的第一绑定端51位于电极载板4远离基板1的一侧,第二绑定电极5的第二绑定端52位于电极载板4靠近基板1的一侧。第二绑定电极5的第一绑定端51、第二绑定端52以及连接引线3的第三部33均沿第二方向Y延伸。
需要说明的是,这里所述的第二绑定电极5的第一绑定端51、第二绑定端52和连接引线3的第三部33的延伸方向为其整体的延伸方向。即,第二绑定电极5的第一绑定端51、第二绑定端52或连接引线3的第三部33中的任一个的整体可以是呈直线状或者呈非直线状。对于第二绑定电极5的第一绑定端51、第二绑定端52或连接引线3的第三部33的具体形状参考前文对于连接引线3的第三部33和第二绑定电极5的描述,此处不再赘述。
如图15、图18、图19和图20所示,粘合胶92位于电极载板4与基板1之间。在垂直于电极载板4的方向上,粘合胶92的尺寸f2与第二绑定电极5的第一绑定端51的尺寸f3相同或大致相同。
如图18、图19和图20所示,粘合胶92例如包括为多个并列间隔排布的长条状粘合胶92,或者呈网状结构,又或者为一个块状结构。这样增大了电极载板4与基板1之间的粘接面积,从而使得两者的连接更加稳定。
示例性地,电极载板4在基板1上的正投影与连接引线3的第三部33在基板1上的正投影无交叠,且粘合胶92在基板1上的正投影与连接引线3的第三部33在基板1上的正投影无交叠。粘合胶92设置于电极载板4靠近基板1的一侧的除第二绑定电极5的第二绑定端52以及连接过孔41对应的区域之外的部分。
粘合胶92的作用、效果等与上述相同,此处不再赘述。
在一些实施例中,多条连接引线3沿第一方向X并列间隔排布,多个第二绑定电极5沿第一方向X并列间隔排布。如图21所示,显示面板10还包括:导电胶D,设置于多条连接引线3远离基板1的非显示面1b的一侧,被配置为连接多个第二绑定电极5与多条连接引线3。导电胶D沿第一方向X延伸。每条连接引线3位于基板1的非显示面1b一侧的第三部33与一个第二绑定电极5电连接。导电胶D至少覆盖多条连接引线3与多个第二绑定电极5连接的部分。
示例性地,导电胶D例如为ACF。
在一些示例中,如图21所示,显示面板10还包括粘合胶92,粘合胶92位于电极载板4与基板1之间。在垂直于电极载板4的方向上,粘合胶92的尺寸f2与导电胶D远离基板1的一侧表面与基板1之间的距离f4相同。
第二绑定电极5与连接引线3的第三部33之间的尺寸大小、比例关系等,参照前文对第一绑定电极2与连接引线3的第一部31之间尺寸关系的描述,此处不再赘述。
需要说明的是,在一些实施例中,多个第一绑定电极2在第一方向X的尺寸相同。在另一些实施例中,多个第一绑定电极2在第一方向X的尺寸不相同。
在一些实施例中,多个第二绑定电极5在第一方向X的尺寸相同。在另一些实施例中,多个第二绑定电极5在第一方向X的尺寸不相同。
在一些实施例中,多条连接引线3的第一部31在第一方向X的尺寸相同。在另一些实施例中,多条连接引线3的第一部31在第一方向X的尺寸不相同。
在一些实施例中,多条连接引线3的第三部33在第一方向X的尺寸相同。在另一些实施例中,多条连接引线3的第三部33在第一方向X的尺寸不相同。
示例性地,如图6、图9、图15所示,发光器件层6包括多个发光器件61、多个像素驱动芯片62和保护膜63。可以理解的是,像素驱动芯片用于向发光器件61提供驱动信号;而在一些实施例中,发光器件层6可以没有像素驱动芯片62,而是利用设置在驱动线路层Q中的薄膜晶体管向发光器件61提供驱动信号,本公开在此不做限定。
在一些实施例中,如图2、图3,显示面板10包括至少三种颜色的子像素P,该多种颜色的子像素至少包括第一颜色子像素、第二颜色子像素和第三颜色子像素,第一颜色、第二颜色和第三颜色为三基色(例如红色、绿色和蓝色)。
示例性地,每个子像素P包括至少一个发光器件61。
在一些示例中,如图6、图9、图15所示,保护膜63包括覆盖多个发光器件61的部分和填充多个发光器件61的间隙区域的部分。示例性地,保护膜63 的材料可以为黑色硅胶或者黑色树脂等。保护膜63能够对发光器件层6内的多个发光器件61进行保护,避免多个发光器件61在形成发光器件61之后的工艺制程中受到损坏。
示例性地,发光器件61包括但不限于OLED(Organic Light-Emitting Diode,有机发光二极管)、Mini LED(Mini Light-Emitting Diode,迷你发光二极管)、Micro LED(Micro Light-Emitting Diode,微型发光二极管)等。
另一方面,提供一种显示装置100,包括前述任一实施例所提供的显示面板10。
该显示装置100可以是显示不论运动的(例如,视频)、固定的(例如,静止图像)、文字的或是图像的任何装置。更明确地说,预期所述实施例可实施在多种电子装置中或与多种电子装置关联,所述多种电子装置例如(但不限于)移动电话、无线装置、个人数据助理(PDA)、手持式或便携式计算机、GPS接收器/导航器、相机、MP4视频播放器、摄像机、游戏控制台、手表、时钟、计算器、电视监视器、平板显示器、计算机监视器、汽车显示器(例如,里程表显示器等)、导航仪、座舱控制器和/或显示器、相机视图的显示器(例如,车辆中后视相机的显示器)、电子相片、电子广告牌或指示牌、投影仪、建筑结构、包装和美学结构(例如,对于一件珠宝的图像的显示器)等。
示例性地,上述显示装置100还可以包括框架以及其他电子配件等。其中,显示面板10例如可以设置在该框架内。
又一方面,提供一种拼接显示装置1000,包括前述任一实施例所提供的显示装置100。
如图23、图24所示,所述拼接显示装置1000包括多个如上述实施例所提供的显示装置100。
示例性地,拼接显示装置1000中的多个显示装置100呈阵列排布。
示例性地,如图23、图24所示,显示装置100例如为矩形。
显示面板10中,多个第一绑定电极2沿第一方向X并列间隔排布,相应地,多条连接引线3也是沿第一方向X并列间隔排布,将平行与显示装置100的显示面,且垂直于第一方向X的另一方向称为第二方向Y。显示装置100包括多个侧面,以下,将显示装置100的多个侧面中靠近基板1的第一绑定区BB1的侧面称为显示装置100的选定侧面进行描述。
示例性地,如图2所示,基板1包括显示区AA和位于显示区AA相对的两侧的两个第一绑定区BB1,显示面板10包括两组第一绑定电极,每组第一绑定电极包括多个第一绑定电极2,两组第一绑定电极分别靠近基板1的两个第一 绑定区BB1设置。
进一步地,如图23所示,将多个包括如图2所示的显示面板10的显示装置100拼接时,将相邻的两个显示装置100的选定侧面均沿第一方向X设置,这样,沿第一方向X上排成一排的多个显示装置100中,相邻两个显示装置100之间沿第一方向X基本没有拼缝;沿第二方向Y上排成一列的多个显示装置100中相邻两个显示装置100之间有拼接缝隙,也就是说沿第一方向X上排成一排的多个显示装置100中,相邻两个显示装置之间的拼接缝隙的尺寸,小于沿第二方向Y上排成一列的多个显示装置100中相邻两个显示装置100之间的拼接缝隙的尺寸。
但第一绑定区BB1在第二方向Y上的尺寸很小,因此拼接显示装置1000在实际观看时,相邻两个显示装置100之间的拼缝在观看距离内较难被肉眼发现,从而使得拼接显示装置1000的显示画面较完整,可以呈现较佳的显示效果。
示例性地,如图3所示,显示面板10包括显示区AA和位于显示区AA一侧的第一绑定区BB1,多个第一绑定电极2靠近基板1的第一绑定区BB1设置。
进一步地,如图24所示,将多个包括如图3所示的显示面板10的显示装置100拼接时,将相邻的两个显示装置100的选定侧面均沿第一方向X设置,这样,沿第一方向X上排成一排的多个显示装置100中,相邻两个显示装置100之间沿第一方向X基本没有拼缝;沿第二方向Y上排成一列的多个显示装置100中相邻两个显示装置100之间有拼接缝隙,也就是说沿第一方向X上排成一排的多个显示装置100中,相邻两个显示装置之间的拼接缝隙的尺寸,小于沿第二方向Y上排成一列的多个显示装置100中相邻两个显示装置100之间的拼接缝隙的尺寸。
但第一绑定区BB1在第二方向Y上的尺寸很小,因此拼接显示装置1000在实际观看时,相邻两个显示装置100之间的拼缝在观看距离内较难被肉眼发现,从而使得拼接显示装置1000的显示画面较完整,可以呈现较佳的显示效果。
再一方面,提供一种显示面板10的制备方法。如图25所示,显示面板10的制备方法包括:
S1、提供基板1。
其中,基板1包括相对的显示面1a和非显示面1b以及连接显示面1a和非显示面1b的多个侧面1c,多个侧面1c中的至少一个侧面1c为选定侧面1cc。显示面1a包括第一绑定区BB1,非显示面1b包括第二绑定区BB2,第一绑定区BB1和第二绑定区BB2均靠近选定侧面1cc且相对设置。
S2、形成并列间隔排布的多个第一绑定电极2。
其中,如图2、图3所示,多个第一绑定电极2设置于第一绑定区BB1内。
S3、形成并列间隔排布的多条连接引线3。
其中,如图6、图9、图15和图21所示,每条连接引线3包括位于第一绑定区BB1的第一部31、位于选定侧面1cc一侧的第二部32,和位于第二绑定区BB2内的第三部33,每条连接引线3的第一部31与一个第一绑定电极2连接。
S4、提供电极载板4,如图10~图14和图16~图20所示,在电极载板4上形成并列间隔排布的多个第二绑定电极5。
S5、将设置有多个第二绑定电极5的电极载板4设置于基板1的非显示面1b一侧,且使每个第二绑定电极5与一条连接引线3的第三部33连接。
如图6、图9、图15和图21所示,第一绑定区BB1和第二绑定区BB2相对设置,第一绑定区BB1和第二绑定区BB2均沿第一方向X延伸。
在步骤S3中,例如先通过立体溅射镀膜工艺在基板1的选定侧面1cc形成整面的金属层,接着,通过激光刻蚀对前述金属层进行修整,将前述金属层图案化,从而形成多条连接引线3,实现基板1正面走线(例如驱动线路层Q)经由选定侧面1cc绕行至背面。
当连接引线3的背面线长d2大于正面线长d1时,背面需要激光刻蚀的线长,即多条连接引线3位于基板1的非显示面1b一侧的第三部33,相较于多条连接引线3位于基板1的显示面1a一侧的第一部31更长。也就是说,在背面刻蚀过程中,激光会照射进正面的显示区AA内,如图1所示,激光沿图中所示Laser方向分别为照射向基板1,自基板1的背面一侧发射的激光会照射进显示区AA,残余的能量会造成显示区AA内膜层损伤,甚至会影响发光器件特性,导致产品出现局部腐蚀、信赖性NG、无法点亮等品质问题。
上述制备工艺,例如溅射镀膜工艺和激光刻蚀等仅作为示例性描述,不作为对实际生产工艺的限定。
通过增加步骤S4,增加了多个第二绑定电极5,如图4、图5所示,多个第二绑定电极5代替了图1中所示的连接引线3的第三部33延伸至显示区AA对应的区域内的部分,且多个第二绑定电极5为单独制备在电极载板上,在步骤S5中,多个第二绑定电极5与电极载板4作为一个整体与多条连接引线3相连,并固定在基板1的非显示面1b一侧,由于连接引线3的第三部33在基板1上的正投影在基板1的显示面1a一侧对应的区域与显示区AA无交叠,可以理解的是,采用这样的设计,激光刻蚀形成连接引线3的第三部33时,能够有效避免激光穿过基板1进而照射在基板1正面的膜层结构的问题。
在一些实施例中,电极载板4上设置的多个第二绑定电极5例如采用印刷 工艺制成。
示例性地,第二绑定电极5例如采用3D打印、丝网印刷、移印/转印或者钢网印刷制成。
可以理解的是,当第二绑定电极5例如采用印刷工艺制备时,由于第二绑定电极5的制备过程中不使用激光,因此,第二绑定电极5可以直接制备在基板1的非显示面1b一侧,而无需使用电极载板4,且不会对显示区AA内的膜层结构造成影响。
在另一些实施例中,第二绑定电极5例如采用溅射镀膜加激光刻蚀的工艺制成。例如,先通过溅射镀膜工艺在电极载板4上形成金属镀膜,接着,通过激光刻蚀工艺在前述金属镀膜上形成导电图案,该导电图案例如为多个第二绑定电极。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (24)

  1. 一种显示面板,包括:
    基板,包括相对的显示面和非显示面以及连接所述显示面和非显示面的多个侧面,其中,至少一个侧面为选定侧面;所述显示面包括第一绑定区,所述非显示面包括第二绑定区,所述第一绑定区和所述第二绑定区均靠近所述选定侧面且相对设置;
    多个第一绑定电极,并列间隔设置于所述第一绑定区内;
    多条连接引线,所述多条连接引线并列间隔排布;每条连接引线包括位于所述第一绑定区的第一部、位于所述选定侧面一侧的第二部和位于第二绑定区的第三部;每条所述连接引线的第一部与一个所述第一绑定电极电连接;
    电极载板,设置于所述非显示面一侧,所述电极载板远离所述基板的一侧设置有并列间隔排布的多个第二绑定电极,每个第二绑定电极与一条所述连接引线的第三部电连接。
  2. 根据权利要求1所述的显示面板,其中,所述显示面板还包括:
    多个连接垫,位于所述多个第二绑定电极远离所述基板的一侧,所述多个连接垫并列间隔排布;每个所述连接垫分别与一个所述第二绑定电极和一条所述连接引线的第三部连接。
  3. 根据权利要求2所述的显示面板,其中,所述连接垫的材料包括金属、导电胶。
  4. 根据权利要求2或3中任一项所述的显示面板,其中,所述连接垫在所述基板上的正投影的形状包括圆形、椭圆形、三角形、星型、方形、心形、梯形。
  5. 根据权利要求1所述的显示面板,其中,所述电极载板开设有并列间隔排布的多个连接过孔;
    所述第二绑定电极包括第一绑定端和第二绑定端,所述第二绑定电极的第一绑定端位于所述电极载板远离所述基板的一侧,所述第二绑定电极的第二绑定端穿过一个连接过孔与一条所述连接引线的第三部电连接。
  6. 根据权利要求5所述的显示面板,其中,所述第二绑定端位于与其连接的所述连接引线的第三部远离所述基板的一侧,所述显示面板还包括:
    粘接剂,设置于所述连接过孔内,被配置为连接所述第二绑定端与所述连接引线的第三部。
  7. 根据权利要求5或6所述的显示面板,其中,所述显示面板还包括:
    粘合胶,设置于所述第二绑定端远离所述选定侧面的一侧,被配置为连接所述电极载板与所述基板;所述粘合胶的一侧与所述电极载板靠近所述基板的一侧连接,所述粘合胶的另一侧朝向所述基板;
    所述第二绑定端位于与其连接的所述连接引线的第三部远离所述基板的一侧,所述粘合胶位于所述电极载板与所述基板之间;在垂直于所述电极载板的方向上,所述粘合胶的尺寸与所述连接引线的第三部的尺寸相同。
  8. 根据权利要求7所述的显示面板,其中,所述粘合胶为绝缘胶。
  9. 根据权利要求5所述的显示面板,其中,所述多条连接引线沿第一方向并列间隔排布,所述多个第二绑定电极沿第一方向并列间隔排布;
    所述显示面板还包括:
    导电胶,设置于所述多条连接引线远离所述非显示面的一侧,被配置为连接所述第二绑定电极与所述连接引线;所述导电胶沿第一方向延伸;
    所述导电胶至少覆盖所述连接引线与所述多个第二绑定电极连接的部分。
  10. 根据权利要求1~9中任一项所述的显示面板,其中,所述电极载板的材料包括绝缘材料。
  11. 根据权利要求10所述的显示面板,其中,所述电极载板的材料包括玻璃、聚酰亚胺薄膜。
  12. 根据权利要求1~11中任一项所述的显示面板,其中,
    所述第一绑定电极的材料包括金属;
    所述连接引线和所述第二绑定电极的材料包括金属或导电金属胶体。
  13. 根据权利要求12所述的显示面板,其中,
    所述第一绑定电极的材料包括铜、钛、铝、钼、镍金中的至少一种;
    所述连接引线和所述第二绑定电极的材料包括铜、钛、铝、钼、镍金、导电银胶中的至少一种。
  14. 根据权利要求1~4、10~13中任一项所述的显示面板,其中,所述第二绑定区沿所述第一方向延伸,所述连接引线的第三部沿第二方向延伸;其中,所述第一方向与所述第二方向交叉;
    所述连接垫在沿所述第一方向上的尺寸大于,与所述连接垫连接的所述连接引线的第三部在所述第一方向上的尺寸的三分之一。
  15. 根据权利要求13所述的显示面板,其中,与所述第二绑定电极相连的所述连接引线的第三部在所述第一方向上的尺寸与所述相邻的两条连接引线的第三部在所述第一方向上的距离之和,大于所述连接垫在沿所述第一方向上的尺寸。
  16. 根据权利要求1~4、10、11~15中任一项所述的显示面板,其中,
    所述连接垫在垂直于所述选定侧面的方向上的尺寸小于或等于,与其相连的所述第二绑定电极在所述基板上的正投影的远离所述选定侧面的一侧的边界 与所述选定侧面之间的距离。
  17. 根据权利要求1~16中任一项所述的显示面板,其中,所述显示面板还包括:
    柔性电路板,设置于所述多个第二绑定电极远离所述基板的一侧;
    每个所述第二绑定电极沿所述第二方向延伸,所述第一绑定端被配置为与所述柔性电路板电连接,所述第二绑定端被配置与所述连接引线的第三部电连接。
  18. 根据权利要求1~17中任一项所述的显示面板,其中,所述第二绑定端与所述连接引线的第三部连接的部分存在交叠;
    所述连接引线的第三部在垂直于所述选定侧面的方向上的尺寸与所述第二绑定电极在垂直于所述选定侧面的方向上的尺寸之和等于,
    所述第二绑定电极在所述基板上的正投影的远离所述选定侧面的一侧的边界,与所述选定侧面之间的距离与所述第二绑定端与所述连接引线的第三部存在交叠部分在垂直于所述选定侧面的方向上的尺寸之和。
  19. 根据权利要求1~18中任一项所述的显示面板,其中,所述连接引线的第三部在垂直于所述选定侧面的方向上的尺寸小于或等于,所述第一绑定电极在所述基板上的正投影的远离所述选定侧面的一侧的边界,与所述选定侧面之间的距离。
  20. 根据权利要求1~19中任一项所述的显示面板,其中,与所述第一绑定电极相连的所述连接引线的第一部在垂直于其延伸方向的方向上的尺寸大于或等于,所述第一绑定电极在垂直于其延伸方向的方向上的尺寸的百分之三十。
  21. 根据权利要求20所述的显示面板,其中,所述第一绑定电极在垂直于其延伸方向的方向上的尺寸,与所述相邻的两个所述第一绑定电极在垂直于其延伸方向的方向上的距离之和,与所述相邻的两条连接引线的第一部在垂直于其延伸方向的方向上的距离之差大于或等于,所述第一绑定电极相连的所述连接引线的第一部在垂直于其延伸方向的方向上的尺寸。
  22. 一种显示装置,包括如权利要求1~21中任一项所述的显示面板。
  23. 一种拼接显示装置,包括如权利要求22所述的显示装置。
  24. 一种显示面板的制备方法,包括:
    提供基板;其中,所述基板包括相对的显示面和非显示面以及连接所述显示面和非显示面的多个侧面,所述多个侧面中的至少一个侧面为选定侧面;所述显示面包括第一绑定区,所述非显示面包括第二绑定区,所述第一绑定区和所述第二绑定区均靠近所述选定侧面且相对设置;
    在所述基板的显示面一侧形成并列间隔排布的多个第一绑定电极;所述多个第一绑定电极设置于所述第一绑定区内;
    形成并列间隔排布的多条连接引线;其中,每条连接引线包括位于所述第一绑定区的第一部、位于所述选定侧面一侧的第二部和位于所述第二绑定区的第三部;每条所述连接引线的第一部与一个第一绑定电极连接;
    提供电极载板,在所述电极载板上形成并列间隔排布的多个第二绑定电极;
    将设置有所述多个第二绑定电极的电极载板设置于所述非显示面一侧,且使每个第二绑定电极与一条所述连接引线的第三部连接。
PCT/CN2022/111878 2022-08-11 2022-08-11 显示面板、显示装置及拼接显示装置 WO2024031563A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/111878 WO2024031563A1 (zh) 2022-08-11 2022-08-11 显示面板、显示装置及拼接显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/111878 WO2024031563A1 (zh) 2022-08-11 2022-08-11 显示面板、显示装置及拼接显示装置

Publications (1)

Publication Number Publication Date
WO2024031563A1 true WO2024031563A1 (zh) 2024-02-15

Family

ID=89850374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/111878 WO2024031563A1 (zh) 2022-08-11 2022-08-11 显示面板、显示装置及拼接显示装置

Country Status (1)

Country Link
WO (1) WO2024031563A1 (zh)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001066624A (ja) * 1999-08-31 2001-03-16 Optrex Corp 液晶表示装置
CN107204395A (zh) * 2016-03-16 2017-09-26 晶元光电股份有限公司 半导体装置及其制造方法
CN108762562A (zh) * 2018-05-25 2018-11-06 京东方科技集团股份有限公司 一种显示基板、显示面板、触控显示装置及其制作方法
CN109545828A (zh) * 2018-04-18 2019-03-29 友达光电股份有限公司 拼接用显示面板及其制造方法
CN110379314A (zh) * 2019-07-23 2019-10-25 深圳市华星光电半导体显示技术有限公司 一种无缝拼接屏
CN110503898A (zh) * 2019-08-28 2019-11-26 京东方科技集团股份有限公司 微发光二极管显示面板及制备方法、拼接显示面板、装置
CN110707120A (zh) * 2019-10-30 2020-01-17 深圳市华星光电半导体显示技术有限公司 显示面板、制造方法以及拼接显示面板
CN113380779A (zh) * 2021-06-08 2021-09-10 京东方科技集团股份有限公司 驱动基板、发光装置及其制备方法
CN113763837A (zh) * 2021-11-09 2021-12-07 Tcl华星光电技术有限公司 混接面板及拼接面板
CN114114762A (zh) * 2020-08-25 2022-03-01 京东方科技集团股份有限公司 显示基板及其制作方法、显示装置
CN114171664A (zh) * 2021-12-07 2022-03-11 Tcl华星光电技术有限公司 发光二极体显示器的制作方法
CN114255665A (zh) * 2020-09-24 2022-03-29 京东方科技集团股份有限公司 显示面板及其制备方法、显示装置及拼接显示装置
US20220231198A1 (en) * 2021-01-20 2022-07-21 Gio Optoelectronics Corp Substrate structure and electronic device

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001066624A (ja) * 1999-08-31 2001-03-16 Optrex Corp 液晶表示装置
CN107204395A (zh) * 2016-03-16 2017-09-26 晶元光电股份有限公司 半导体装置及其制造方法
CN109545828A (zh) * 2018-04-18 2019-03-29 友达光电股份有限公司 拼接用显示面板及其制造方法
CN108762562A (zh) * 2018-05-25 2018-11-06 京东方科技集团股份有限公司 一种显示基板、显示面板、触控显示装置及其制作方法
CN110379314A (zh) * 2019-07-23 2019-10-25 深圳市华星光电半导体显示技术有限公司 一种无缝拼接屏
CN110503898A (zh) * 2019-08-28 2019-11-26 京东方科技集团股份有限公司 微发光二极管显示面板及制备方法、拼接显示面板、装置
CN110707120A (zh) * 2019-10-30 2020-01-17 深圳市华星光电半导体显示技术有限公司 显示面板、制造方法以及拼接显示面板
CN114114762A (zh) * 2020-08-25 2022-03-01 京东方科技集团股份有限公司 显示基板及其制作方法、显示装置
CN114255665A (zh) * 2020-09-24 2022-03-29 京东方科技集团股份有限公司 显示面板及其制备方法、显示装置及拼接显示装置
US20220231198A1 (en) * 2021-01-20 2022-07-21 Gio Optoelectronics Corp Substrate structure and electronic device
CN113380779A (zh) * 2021-06-08 2021-09-10 京东方科技集团股份有限公司 驱动基板、发光装置及其制备方法
CN113763837A (zh) * 2021-11-09 2021-12-07 Tcl华星光电技术有限公司 混接面板及拼接面板
CN114171664A (zh) * 2021-12-07 2022-03-11 Tcl华星光电技术有限公司 发光二极体显示器的制作方法

Similar Documents

Publication Publication Date Title
CN104412315B (zh) 显示装置
CN107464503B (zh) 显示基板及其制备方法和显示装置
TW201322845A (zh) 驅動印刷電路板及含有該印刷電路板的液晶顯示裝置
CN110277365B (zh) 电子装置与拼接电子系统
JP2009186707A (ja) 電気光学装置の製造方法、電気光学装置
WO2021087726A1 (zh) 一种阵列基板及其制作方法、显示装置
US20220085000A1 (en) Light-emitting module and manufacturing method thereof and display device
CN113570966A (zh) 一种显示装置及拼接屏
CN113327891A (zh) 一种显示面板的制备方法
CN110161740B (zh) 一种显示面板及其制作方法、显示装置
KR20160043190A (ko) 칩-온-필름 회로 및 그를 포함하는 플렉서블 표시장치
JP6006955B2 (ja) 接続体の製造方法、接続方法
US11877483B2 (en) Display device with circuit film coupled to lateral surface of base substrate
JP2006119321A (ja) 電気回路間の導通接続構造
WO2024031563A1 (zh) 显示面板、显示装置及拼接显示装置
JP2006210809A (ja) 配線基板および実装構造体、電気光学装置および電子機器
CN115424538A (zh) 显示装置及其制备方法
WO2023108770A1 (zh) 显示面板及显示终端
TW200906209A (en) System for displaying image and fabrication method thereof
CN118056284A (zh) 显示面板、显示装置及拼接显示装置
TW202242497A (zh) 顯示裝置
CN108415620B (zh) Oled显示结构及oled显示屏
JP2011023510A (ja) 基板の接続構造、及び表示装置
JP5332219B2 (ja) 電気光学装置の製造方法
JP2007219300A (ja) 表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22954529

Country of ref document: EP

Kind code of ref document: A1