WO2023087485A1 - 微米级多孔硫酸亚铁钠/碳复合正极材料及其制备的钠离子电池或钠电池 - Google Patents

微米级多孔硫酸亚铁钠/碳复合正极材料及其制备的钠离子电池或钠电池 Download PDF

Info

Publication number
WO2023087485A1
WO2023087485A1 PCT/CN2021/140464 CN2021140464W WO2023087485A1 WO 2023087485 A1 WO2023087485 A1 WO 2023087485A1 CN 2021140464 W CN2021140464 W CN 2021140464W WO 2023087485 A1 WO2023087485 A1 WO 2023087485A1
Authority
WO
WIPO (PCT)
Prior art keywords
sodium
positive electrode
ferrous sulfate
micron
battery
Prior art date
Application number
PCT/CN2021/140464
Other languages
English (en)
French (fr)
Inventor
陈卫华
张继雨
颜永亮
杨明睿
Original Assignee
郑州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 郑州大学 filed Critical 郑州大学
Publication of WO2023087485A1 publication Critical patent/WO2023087485A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of anode materials for sodium ion batteries, in particular to a micron-scale porous sodium ferrous sulfate/carbon composite anode material capable of charging and discharging sodium ions and a high-voltage, high-power sodium-ion battery or sodium battery containing the material.
  • sodium-ion batteries are regarded as one of the most promising next-generation energy storage systems due to their abundant resource reserves and low cost.
  • the existing sodium-ion battery technology cannot meet the application requirements of new technologies, especially the cost and energy density of the positive electrode. Therefore, the development of Na-ion batteries with low cost, high energy density, high power density and long cycle life has become an urgent need.
  • the cathode material largely determines the cycle stability of the energy density of the battery device.
  • the Alluaudite type Na 2+2x Fe 2-x (SO 4 ) 3 material has high element reserves, low cost, and a high working voltage platform. It can provide high energy density and is one of the positive electrode materials for sodium-ion batteries with better large-scale application prospects. However, it has poor dynamic characteristics, severe polarization at higher rates, lower discharge specific capacity, and poor cycle stability.
  • the present invention proposes a micron-scale porous sodium ferrous sulfate/carbon composite positive electrode material and a sodium ion battery or a sodium battery prepared therefrom.
  • Micron-sized porous sodium ferrous sulfate/carbon composite particles were prepared by co-precipitation and solid-phase calcination, which has excellent structural stability, ion conductivity and improved positive electrode compaction density.
  • the sodium ferrous sulfate/carbon composite material can be further doped with metal elements for material modification, and the assembled rechargeable sodium-ion battery or sodium battery exhibits excellent rate performance and long-term cycle stability.
  • a micron-scale porous sodium ferrous sulfate/carbon composite positive electrode material the particle size of the micron-scale porous sodium ferrous sulfate/carbon composite positive electrode material is 2-30 ⁇ m, the particles have a porous structure, and the particle size is 80-200nm
  • the primary nanoparticles are closely packed; the primary nanoparticles are tightly covered by amorphous carbon, and the surface layer of the particles is covered by a thin layer of reduced graphene.
  • graphene/carbon The total mass of the sodium ferrous sulfate/carbon composite cathode material is 4%-18.5%.
  • the sodium ferrous sulfate/carbon composite positive electrode material can be doped with metal elements, and the doped metal elements are Co, Ni, Mn, Cu or Al.
  • a preparation method of micron-scale porous sodium ferrous sulfate/carbon composite cathode material comprising the steps of:
  • Preparation of precursor by co-precipitation method disperse a certain proportion of ethylene glycol and graphene oxide powder into deionized water, ultrasonicate for 15-120min, and then add a certain proportion of anhydrous sodium sulfate, ferrous sulfate heptahydrate, Antioxidant and organic carbon source, after stirring for 30-120 minutes, add organic alcohol drop by drop, after stirring for 10-120 minutes, centrifuge the obtained turbid solution, freeze-dry to obtain the precursor; or mix a certain proportion of ethylene glycol, graphite oxide Disperse olefin powder into deionized water, ultrasonicate for 15-120min, then add a certain proportion of anhydrous sodium sulfate, ferrous sulfate heptahydrate, antioxidant, organic carbon source and metal dopant, stir for 30-120min, then add dropwise Organic alcohol, after stirring for 10-120min, centrifuge the obtained turbid solution, and freeze-dry to obtain the precursor.
  • step (2) Preparation of composite positive electrode material by solid-phase calcination method: After the precursor obtained in step (1) is ground evenly, it is pre-calcined in a tube furnace with an inert atmosphere, and then heated to 300-450° C. for 8-48 hours. A micron-sized porous sodium ferrous sulfate/carbon composite cathode material is obtained.
  • micron-scale porous sodium ferrous sulfate/carbon composite positive electrode material is prepared by co-precipitation and solid-phase calcination.
  • the organic alcohol added dropwise is used as a precipitant to promote the co-phase precipitation of the precursor mixture.
  • the high viscosity and high Surface tension inhibits the growth of precipitated particles;
  • the obtained composite cathode material has a particle size of 2-30 ⁇ m, has a porous structure, and is formed by densely packed primary particles of 80-200 nm;
  • the added organic carbon source is in the co-precipitation process In the medium, the small molecular structure is uniformly coated on the surface of the precipitated nano-precursor particles, and a continuous carbon coating layer is formed during the subsequent solid-state calcination process, which inhibits the growth of sodium ferrous sulfate crystal particles; at the same time, the organic carbon source pyrolyzes
  • the generated gas helps to build a three-dimensional porous structure in situ inside the microparticles; the insoluble graphene oxide sheets can provide abundant precipitation sites, and are attached or coated on the micron-sized precursor particles during continuous stirring
  • the surface layer is then thermally reduced; the surface layer of composite cathode material particles is evenly wrapped by a thin layer of reduced graphene
  • the mass ratio of deionized water, ethylene glycol and graphene oxide in step (1) is 1000:(200-750):(0.1-1), anhydrous sodium sulfate, ferrous sulfate heptahydrate, organic carbon source
  • the molar ratio with antioxidant is 1:1:(0-0.4):(0.01-0.05)
  • described organic carbon source is one or more in citric acid monohydrate, glucose, polyethylene glycol, described
  • the metal dopant is a sulfate containing metal ions, including one or more of manganese sulfate, nickel sulfate, cobalt sulfate, copper sulfate, aluminum sulfate and their hydrates; or deionized water
  • the mass ratio of ethylene glycol and graphene oxide is 1000:(200-750):(0.1-1); the mol ratio of anhydrous sodium sulfate, ferrous sulfate heptahydrate, organic carbon source, antioxidant and metal dopant is 1:
  • the antioxidant is one or more of ascorbic acid, pyrrole, and hydroquinone; the volume ratio of the organic alcohol to deionized water is (1.5-5.0): 1; the organic alcohol One or more of isopropanol, absolute ethanol, n-butanol, tert-butanol, glycerol, and triethylene glycol; the centrifugation speed is 6000-9500r/min, and the centrifugation time is 1-10min , freeze-drying time is 12-36h.
  • the inert atmosphere is nitrogen, argon or argon-hydrogen mixed gas;
  • the pre-calcination process is to raise the temperature to 100-300°C at a heating rate of 1-5°C/min, and keep the temperature constant for 0.5-3h;
  • the calcination process To raise the temperature to 350-400°C at a heating rate of 1-3°C/min, and keep the temperature constant for 8-48h.
  • a sodium ion battery or sodium battery prepared by a micron-scale porous sodium ferrous sulfate/carbon composite positive electrode material which is composed of a positive electrode sheet, a negative electrode sheet, an electrolyte, a diaphragm, and a casing, and the micron-scale porous sodium ferrous sulfate/carbon composite
  • the positive electrode material is a positive electrode
  • the active material that can intercalate/remove sodium ions is used as the negative electrode of the sodium ion battery or sodium metal as the negative electrode of the sodium battery
  • the separator is a modified cellulose acetate separator, polyethylene, polypropylene microporous membrane, glass fiber separator or their Composite diaphragm
  • the electrolyte is a soluble sodium salt organic solution.
  • the positive electrode sheet of the sodium battery is obtained by filling and coating the slurry obtained after the positive electrode material is uniformly mixed with the conductive agent, the binder and the dispersant, and the current collector is aluminum foil;
  • the positive electrode sheet of the sodium ion battery is obtained by The slurry obtained by uniformly mixing the positive electrode material with the conductive agent, binder and dispersant is filled into the current collector, and the negative electrode sheet is obtained by uniformly mixing the negative electrode material with the conductive agent, binder and dispersant. It is obtained by filling and coating the current collector, and the current collector is aluminum foil or copper foil.
  • the conductive agent of the sodium ion battery or sodium battery is one or more of acetylene black, Super P or graphite;
  • the binder of the sodium ion battery or sodium battery is polytetrafluoroethylene, polyvinylidene fluoride or butyl One or several kinds of styrene rubber;
  • the dispersant of sodium ion battery or sodium battery is one or several kinds of absolute ethanol, isopropanol or 1-methyl-2-pyrrolidone.
  • the negative electrode of the sodium ion battery can intercalate/remove sodium ion active materials, including carbon materials, metal sulfides, metal oxides, and alloy compounds;
  • the soluble sodium salt organic solution is obtained by dissolving sodium salt in an organic solvent, and sodium
  • the salt is one or more of sodium hexafluorophosphate, sodium perchlorate, and sodium trifluoromethanesulfonate
  • the organic solvent is ethylene carbonate (EC), propylene carbonate (PC), fluoroethylene carbonate (FEC) ), dimethyl carbonate, diethyl carbonate, diglyme, 1,3-cyclopentanediol, ethylene glycol dimethyl ether and triglyme.
  • the shell of the sodium ion battery or the sodium battery is made of organic plastic, aluminum shell, aluminum plastic film, stainless steel or their composite materials.
  • the shape of the sodium ion battery or sodium battery can be button, column or square.
  • the micron-scale porous sodium ferrous sulfate/carbon composite positive electrode material of the present invention has a novel and unique appearance feature: the micron-scale porous sodium ferrous sulfate/carbon composite positive electrode material, including containing and/or not containing metal doping elements Sodium ferrous sulfate/carbon composite material has a micron-scale size, porous particle structure, stable micron-sized blocks and effective carbon coating structure strengthen the structural stability of the composite material; the sodium ferrous sulfate/carbon composite material Micron-sized particles are assembled from nano-sized sodium ferrous sulfate primary nanoparticles in an orderly manner.
  • Nano-sized particles shorten the Na+ transmission path, reduce concentration polarization, and successfully increase the ion diffusivity of the material; amorphous carbon
  • the multi-level conductive network constructed by uniform coating and highly dispersed graphene enhances the electronic conductivity of the composite material; doping the positive electrode material with suitable metal cations helps to improve the stability of the surface of the positive electrode material. Therefore, the micron-scale porous sodium ferrous sulfate/carbon composite positive electrode material has the advantages of low electrode cost, abundant raw material reserves, high operating voltage, good rate performance and good cycle stability.
  • the rechargeable sodium ion battery or sodium Batteries have high energy density and high power density.
  • the present invention uses micron-scale porous sodium ferrous sulfate/carbon composite positive electrode material as the positive electrode of sodium ion battery or sodium battery, which helps to improve the tap density of the positive electrode and the volumetric energy density of the battery.
  • the particle size of the sodium ferrous sulfate/carbon composite positive electrode material is 2-30 ⁇ m, and it has a porous structure. It is formed by the accumulation of primary particles of 80-200 nm;
  • the three-dimensional conductive network can significantly improve the electron and ion diffusion rate of the composite material and enhance the electrochemical stability.
  • the obtained composite positive electrode material has low cost, abundant raw materials, high operating voltage, good rate performance and good cycle stability, and the preparation process is simple, easy to scale up, and environmentally friendly.
  • the sodium ion battery or sodium battery containing the material that can charge and discharge sodium ions has low cost, high energy density and power density, and long-term cycle stability, showing broad market application prospects.
  • Fig. 1 is the X-ray diffraction (XRD) figure of the micron porous sodium ferrous sulfate/carbon composite cathode material prepared in Example 1.
  • Example 2 is a scanning electron microscope (SEM) image of the precursor prepared in Example 1.
  • Example 3 is an SEM image of the micron-scale porous sodium ferrous sulfate/carbon composite positive electrode material prepared in Example 1.
  • Example 4 is a high-resolution SEM image of the micron-scale porous sodium ferrous sulfate/carbon composite cathode material prepared in Example 1.
  • Example 5 is a graph showing the charge and discharge curves of the sodium battery in Example 1.
  • FIG. 6 is a graph of the rate performance of the sodium battery in Example 1.
  • FIG. 7 is a diagram of the cycle performance of the sodium battery in Example 1.
  • FIG. 8 is a graph showing charge and discharge curves of the sodium ion battery in Example 2.
  • FIG. 9 is a graph showing charge and discharge curves of the sodium ion battery in Example 3.
  • FIG. 10 is a graph showing charge and discharge curves of the sodium battery in Example 4.
  • Example 11 is an SEM image of the micron-scale porous sodium ferrous sulfate/carbon composite positive electrode material prepared in Example 5.
  • Fig. 12 is a graph showing the charging and discharging curves of the sodium battery in Example 5.
  • Fig. 13 is a graph showing the charging and discharging curves of the sodium battery in Example 6.
  • Fig. 14 is a graph showing the charge and discharge curves of the sodium battery in Example 7.
  • Figure 15 is a graph showing the charge and discharge curves of the sodium battery in Example 8.
  • Fig. 16 is a graph showing the charge and discharge curves of the sodium battery in Example 9.
  • Fig. 17 is a graph showing charge and discharge curves of the sodium battery in Example 12.
  • Fig. 18 is a graph showing charge and discharge curves of the sodium battery in Example 13.
  • the synthesis steps of the micron-scale porous sodium ferrous sulfate/carbon composite cathode material used in the present invention are as follows: Weigh 0.02g graphene oxide dry powder and disperse it in 20mL deionized water (1mg/mL), then add 10mL ethylene glycol, and stir for 1h , sonicated for 15 min to form a graphene oxide dispersion.
  • the above turbid suspension was centrifuged (centrifugation speed was 8500r/min, centrifugation time was 3min), the obtained solid was frozen by liquid nitrogen, and then freeze-dried for 36h to obtain the precursor.
  • transfer it to a porcelain cup place it in a tube furnace with an argon atmosphere, raise the temperature to 200°C for 2 hours at a heating rate of 3°C/min, and then adjust the heating rate to 1°C/min , the temperature was raised to 350° C. for 12 h to obtain a micron-sized porous sodium ferrous sulfate/carbon composite positive electrode material.
  • Figure 1 is the X-ray diffraction (XRD) pattern of micron-scale porous sodium ferrous sulfate/carbon composite positive electrode material, and the standard card of Alluaudite type Na 2+2x Fe 2-x (SO 4 ) 3 (PDF#21-1360 ) correspondingly, and the crystallinity is good.
  • Figure 2 is the SEM image of the precursor, showing a relatively regular polyhedral shape.
  • Figure 3 is the SEM image of the micron-scale porous sodium ferrous sulfate/carbon composite positive electrode material, the particles of the composite material are dispersed and not aggregated.
  • the particle side length of the sodium ferrous sulfate/carbon composite material is about 5-7 ⁇ m, in which small particles are piled up with each other to form a block structure with abundant pores.
  • Graphene is a thin layer with a length of 1-8 ⁇ m, which is wrapped on the surface of the secondary particle of sodium ferrous sulfate.
  • Figure 4 is a high-resolution SEM image of the micron-scale porous sodium ferrous sulfate/carbon composite positive electrode material, the primary particle size distribution of sodium ferrous sulfate is uniform, the size is 80-200nm, and the amorphous carbon is uniformly coated on the ferrous sulfate Sodium once granulated. Wherein, the total amount of graphene/carbon is 12.3% of the mass of the sodium ferrous sulfate composite material.
  • the prepared micron-scale porous sodium ferrous sulfate/carbon composite positive electrode material is used as the positive electrode active material, and the positive electrode material is mixed with acetylene black and polyvinylidene fluoride in a mass ratio of 70:20:10, and 1-methyl-2-pyrrolidone is used to As a dispersant, mix the above mixture evenly to make a slurry and apply it on the aluminum foil.
  • the positive electrode piece with a diameter of 13mm was cut, the sodium metal sheet was used as the negative electrode (16mm in diameter), the glass fiber membrane (Whatman GF/D) was used as the separator, and 1M NaClO 4 was used to dissolve in EC:PC (vol.
  • the ratio is 1:1) (5wt.% FEC additive) is the electrolyte.
  • the stainless steel shell is used as the shell and assembled into a CR2025 button battery.
  • the sodium battery assembled in the above process was charged and discharged in the potential range of 2.0-4.5V at room temperature, and its charge and discharge curve, rate performance and cycle performance are shown in Figure 5, Figure 6 and Figure 7.
  • micron-scale porous sodium ferrous sulfate/carbon composite cathode material in this example is the same as that in Example 1.
  • the prepared micron-scale porous sodium ferrous sulfate/carbon composite positive electrode material is used as the positive electrode active material, commercial hard carbon is used as the negative electrode active material, and the positive electrode active material is mixed with acetylene black and polyvinylidene fluoride in a mass ratio of 70:20:10 , using 1-methyl-2-pyrrolidone as a dispersant; the negative active material is mixed with acetylene black and sodium carboxymethylcellulose (CMC) in a mass ratio of 80:10:10, and deionized water is used as a dispersant; the above The mixture was evenly mixed to form a slurry, which was coated on the aluminum foil and the copper foil respectively, and dried and cut in vacuum at 120°C to obtain the corresponding positive electrode sheet and negative electrode sheet.
  • CMC carboxymethylcellulose
  • micron-scale porous sodium ferrous sulfate/carbon composite cathode material in this example is the same as that in Example 1.
  • the prepared micron-scale porous sodium ferrous sulfate/carbon composite positive electrode material is used as the positive electrode active material, and the ferrous sulfide/carbon composite material is used as the negative electrode active material.
  • Mass ratio mixing using 1-methyl-2-pyrrolidone as a dispersant; negative electrode active material, acetylene black, and sodium carboxymethylcellulose (CMC) in a mass ratio of 80:10:10, using deionized water as a dispersant ; Mix the above mixture evenly to make a slurry and apply it on the aluminum foil and copper foil respectively, dry and cut in vacuum at 120°C to obtain the corresponding positive electrode sheet and negative electrode sheet.
  • micron-scale porous sodium ferrous sulfate/carbon composite cathode material in this example is the same as that in Example 1.
  • the micron-scale porous sodium ferrous sulfate/carbon composite positive electrode material prepared in Example 1 is used as the positive electrode active material, and the positive electrode material is mixed with acetylene black and polyvinylidene fluoride in a mass ratio of 70:20:10, and 1-methyl- 2-Pyrrolidone is used as a dispersant, and the above mixture is mixed evenly to make a slurry and coated on the aluminum foil.
  • the positive electrode piece with a diameter of 13mm was cut, the sodium metal sheet was used as the negative electrode (16mm in diameter), the glass fiber membrane (Whatman GF/D) was used as the separator, and 1M NaClO 4 was used to dissolve in EC:PC (vol.
  • the ratio is 1:1) as the electrolyte.
  • the stainless steel shell is used as the shell and assembled into a CR2025 button battery.
  • the sodium battery assembled in the above process was charged and discharged in the potential range of 2.0-4.5V at room temperature, and its charge and discharge curve is shown in FIG. 10 .
  • the discharge platform is around 3.8V at 0.05C, and its discharge specific capacity can reach 73mAh/g.
  • the preparation method of micron-scale porous sodium ferrous sulfate/carbon composite positive electrode material is as follows: Weigh 0.01g graphene oxide dry powder and disperse it in 20mL deionized water (0.5mg/mL), then add 10mL ethylene glycol, stir for 1h, and sonicate 1h, a graphene oxide dispersion liquid is formed. Another weighed 1.112g ferrous sulfate heptahydrate (FeSO 4 7H 2 O), 0.5682g anhydrous sodium sulfate (Na 2 SO 4 ), 0.2g citric acid monohydrate, 0.02g ascorbic acid, dissolved in the above graphene oxide Dispersions. Stir at room temperature (25 °C) for 1 h.
  • Figure 11 is the SEM image of the micron-scale porous sodium ferrous sulfate/carbon composite positive electrode material prepared in this example. There are abundant pores in the composite material particles, and the graphene thin layer is obviously covered on the surface of the secondary sodium ferrous sulfate particle.
  • the micron-scale porous sodium ferrous sulfate/carbon composite positive electrode material prepared in this example was used as the positive electrode material, and metallic sodium was used as the negative electrode.
  • the preparation of the battery is the same as in Example 1.
  • the assembled sodium battery was charged and discharged in the potential range of 2.0-4.5V at room temperature, and its charge and discharge curve is shown in FIG. 12 .
  • the discharge platform is around 3.8V at 0.05C, and its discharge specific capacity can reach 78mAh/g.
  • the preparation method of micron-scale porous sodium ferrous sulfate/carbon composite positive electrode material is as follows: Weigh 0.02g graphene oxide dry powder and disperse it in 20mL deionized water (1mg/mL), then add 5mL ethylene glycol, stir for 30min, and sonicate for 1h , forming a graphene oxide dispersion. Another weighed 1.112g ferrous sulfate heptahydrate (FeSO 4 7H 2 O), 0.5682g anhydrous sodium sulfate (Na 2 SO 4 ), 0.2g citric acid monohydrate, 0.02g ascorbic acid, dissolved in the above graphene oxide Dispersions. Stir at room temperature (25 °C) for 1 h.
  • the micron-scale porous sodium ferrous sulfate/carbon composite positive electrode material prepared in this example was used as the positive electrode material, and metallic sodium was used as the negative electrode.
  • the preparation of the battery is the same as in Example 1.
  • the assembled sodium battery was charged and discharged in the potential range of 2.0-4.5V at room temperature, and its charge and discharge curves are shown in FIG. 13 .
  • the discharge platform is around 3.8V at 0.05C, and its discharge specific capacity can reach 70mAh/g.
  • the preparation method of micron-scale porous sodium ferrous sulfate/carbon composite positive electrode material is as follows: Weigh 0.02g graphene oxide dry powder and disperse it in 20mL deionized water (1mg/mL), then add 10mL ethylene glycol, stir for 15min, and sonicate for 1h , forming a graphene oxide dispersion. Another weighed 1.112g ferrous sulfate heptahydrate (FeSO 4 7H 2 O), 0.5682g anhydrous sodium sulfate (Na 2 SO 4 ), 0.1g citric acid monohydrate, 0.02g ascorbic acid, dissolved in the above graphene oxide Dispersions. Stir at room temperature (25 °C) for 1 h.
  • the micron-scale porous sodium ferrous sulfate/carbon composite positive electrode material prepared in this example was used as the positive electrode material, and metallic sodium was used as the negative electrode.
  • the preparation of the battery is the same as in Example 1.
  • the assembled sodium battery was charged and discharged in the potential range of 2.0-4.5V at room temperature, and its charge and discharge curves are shown in FIG. 14 .
  • the discharge platform is around 3.8V at 0.05C, and its discharge specific capacity can reach 80mAh/g.
  • the preparation method of micron-scale porous sodium ferrous sulfate/carbon composite positive electrode material is as follows: Weigh 0.02g graphene oxide dry powder and disperse it in 20mL deionized water (1mg/mL), then add 10mL ethylene glycol, stir for 30min, and sonicate for 1h , forming a graphene oxide dispersion. Another weighed 1.112g ferrous sulfate heptahydrate (FeSO 4 7H 2 O), 0.5682g anhydrous sodium sulfate (Na 2 SO 4 ), 0.2g citric acid monohydrate, 0.02g pyrrole, dissolved in the above graphene oxide Dispersions. Stir at room temperature (25 °C) for 1 h.
  • the micron-scale porous sodium ferrous sulfate/carbon composite positive electrode material prepared in this example was used as the positive electrode material, and metallic sodium was used as the negative electrode.
  • the preparation of the battery is the same as in Example 11.
  • the assembled sodium battery was charged and discharged in the potential range of 2.0-4.5V at room temperature, and its charge and discharge curves are shown in FIG. 15 .
  • the discharge platform is around 3.8V at 0.05C, and its discharge specific capacity can reach 82mAh/g.
  • the preparation method of micron-scale porous sodium ferrous sulfate/carbon composite positive electrode material is as follows: Weigh 0.02g graphene oxide dry powder and disperse it in 20mL deionized water (1mg/mL), then add 10mL ethylene glycol, stir for 15min, and sonicate for 1h , forming a graphene oxide dispersion. Another weighed 1.112g ferrous sulfate heptahydrate (FeSO 4 7H 2 O), 0.5682g anhydrous sodium sulfate (Na 2 SO 4 ), 0.2g citric acid monohydrate, 0.02g ascorbic acid, dissolved in the above graphene oxide Dispersions. Stir at room temperature (25 °C) for 1 h.
  • micron-scale porous sodium ferrous sulfate/carbon composite positive electrode material prepared in this example was used as the positive electrode material, and metallic sodium was used as the negative electrode.
  • the preparation of the battery is the same as in Example 4.
  • the assembled sodium battery was charged and discharged in the potential range of 2.0-4.5V at room temperature, and its charge and discharge curve is shown in Figure 16.
  • the discharge platform is around 3.8V at 0.05C, and its discharge specific capacity can reach 79mAh/g.
  • the preparation method of micron-scale porous sodium ferrous sulfate/carbon composite positive electrode material is as follows: Weigh 0.02g graphene oxide dry powder and disperse it in 20mL deionized water (1mg/mL), then add 10mL ethylene glycol, stir for 1h, and sonicate for 1h , forming a graphene oxide dispersion. Another weighed 1.112g ferrous sulfate heptahydrate (FeSO 4 7H 2 O), 0.5682g anhydrous sodium sulfate (Na 2 SO 4 ), 0.2g polyethylene glycol, 0.02g ascorbic acid, dissolved in the above graphene oxide Dispersions. Stir at room temperature (25 °C) for 1 h.
  • the micron-scale porous sodium ferrous sulfate/carbon composite positive electrode material prepared in this example was used as the positive electrode material, and metallic sodium was used as the negative electrode.
  • the preparation of the battery is the same as in Example 1.
  • the assembled sodium battery is charged and discharged at room temperature within the potential range of 2.0-4.5V.
  • the discharge platform is around 3.7V at 0.05C, and its discharge specific capacity can reach 74mAh/g.
  • the preparation method of micron-scale porous sodium ferrous sulfate/carbon composite positive electrode material is as follows: Weigh 0.02g graphene oxide dry powder and disperse it in 20mL deionized water (1mg/mL), then add 10mL ethylene glycol, stir for 1h, and sonicate for 1h , forming a graphene oxide dispersion. Another weighed 1.112g ferrous sulfate heptahydrate (FeSO 4 7H 2 O), 0.5682g anhydrous sodium sulfate (Na 2 SO 4 ), 0.2g polyethylene glycol, 0.02g ascorbic acid, dissolved in the above graphene oxide Dispersions. Stir at room temperature (25 °C) for 1 h.
  • the micron-scale porous sodium ferrous sulfate/carbon composite positive electrode material prepared in this example was used as the positive electrode material, and metallic sodium was used as the negative electrode.
  • the preparation of the battery is the same as in Example 1.
  • the assembled sodium battery is charged and discharged at room temperature within the potential range of 2.0-4.5V.
  • the discharge platform is around 3.6V at 0.05C, and its discharge specific capacity can reach 80mAh/g.
  • micron-scale porous aluminum-doped sodium ferrous sulfate/carbon composite positive electrode material is as follows: Weigh 0.02g graphene oxide dry powder and disperse it in 20mL deionized water (1mg/mL), then add 10mL ethylene glycol and stir for 1h , sonicated for 1 h to form a graphene oxide dispersion.
  • the above turbid suspension was subjected to centrifugation (centrifugation speed: 9000r/min, centrifugation time: 3min), the obtained solid was frozen by liquid nitrogen, and then freeze-dried for 36h to obtain the precursor.
  • centrifugation speed: 9000r/min, centrifugation time: 3min After grinding the precursor evenly, transfer it to a porcelain cup, place it in a tube furnace with an argon atmosphere, raise the temperature to 200°C for 2 hours at a heating rate of 3°C/min, and then adjust the heating rate to 1°C/min , the temperature was raised to 350° C. for 12 h to obtain a micron-sized porous sodium ferrous sulfate/carbon composite positive electrode material.
  • the micron-scale porous aluminum-doped sodium ferrous sulfate/carbon composite positive electrode material prepared in this example was used as the positive electrode material, and metal sodium was used as the negative electrode.
  • the preparation of the battery is the same as in Example 1.
  • the assembled sodium battery was charged and discharged in the potential range of 2.0-4.5V at room temperature. Its charge-discharge curve is shown in Figure 17. After 30 cycles at 0.1C, the discharge specific capacity reaches 74mAh/g, and the discharge platform is around 3.5V.
  • micron-scale porous copper-doped sodium ferrous sulfate/carbon composite positive electrode material is as follows: Weigh 0.02g graphene oxide dry powder and disperse it in 20mL deionized water (1mg/mL), then add 10mL ethylene glycol and stir for 1h , sonicated for 1 h to form a graphene oxide dispersion.
  • the above turbid suspension was subjected to centrifugation (centrifugation speed: 9000r/min, centrifugation time: 3min), the obtained solid was frozen by liquid nitrogen, and then freeze-dried for 36h to obtain the precursor.
  • centrifugation speed: 9000r/min, centrifugation time: 3min After grinding the precursor evenly, transfer it to a porcelain cup, place it in a tube furnace with an argon atmosphere, raise the temperature to 200°C for 2 hours at a heating rate of 3°C/min, and then adjust the heating rate to 1°C/min , the temperature was raised to 350° C. for 12 h to obtain a micron-sized porous sodium ferrous sulfate/carbon composite positive electrode material.
  • the micron-scale porous copper-doped sodium ferrous sulfate/carbon composite positive electrode material prepared in this example was used as the positive electrode material, and metal sodium was used as the negative electrode.
  • the preparation of the battery is the same as in Example 1.
  • the assembled sodium battery was charged and discharged in the potential range of 2.0-4.5V at room temperature. Its charge-discharge curve is shown in Figure 18. After 30 cycles at 0.1C, the discharge specific capacity reaches 67mAh/g, and the discharge platform is around 3.6V.

Abstract

本发明公开了一种微米级多孔硫酸亚铁钠/碳复合正极材料及其制备的钠离子电池或钠电池。本发明的复合材料为包括含和/或不含金属掺杂元素的硫酸亚铁钠/碳复合材料,使用共沉淀及固相煅烧法制备而成,颗粒粒径为2-30μm,具有多孔结构,由80-200nm的被无定形碳紧密包覆的一次颗粒紧密堆积而成,微米颗粒表层被还原石墨烯薄层覆盖,形成三维立体导电网络;微米级颗粒正极材料具有较高的振实密度,有助于提升电池的体积能量密度,该材料作为钠离子电池或钠电池正极,具有原料丰富、成本低、工作电压高、倍率性能佳和循环稳定性好的优点,且该材料的制备工艺简单;本发明的钠离子电池或钠电池具有高能量密度的优势,有广阔的市场应用前景。

Description

微米级多孔硫酸亚铁钠/碳复合正极材料及其制备的钠离子电池或钠电池 技术领域
本发明涉及钠离子电池正极材料的技术领域,尤其涉及可充放钠离子的微米级多孔硫酸亚铁钠/碳复合正极材料及包含该材料的高电压、高功率钠离子电池或钠电池。
背景技术
钠离子电池作为可再生能源和大规模储能系统之间能量传输的媒介,以其资源储量丰富、低成本等优点,被看作是最有前景的下一代储能系统之一。然而面向大规模储能电站和新能源电车等领域需求,现有的钠离子电池技术并不能满足新技术应用要求,尤其是正极成本和能量密度。因此发展具有低成本、高能量密度、高功率密度和长循环寿命的钠离子电池成为目前的迫切需求。
钠离子电池体系中,正极材料在很大程度上决定了电池器件的能量密度的循环稳定性。相比于磷酸铁钠、普鲁士蓝类正极、三元层状氧化物正极,Alluaudite型Na 2+2xFe 2-x(SO 4) 3材料元素储量高、成本低、具有高的工作电压平台,能够提供高的能量密度,是具有较好大规模应用前景的钠离子电池正极材料之一。但是它的动力学特性差,在较大倍率下极化严重,放电比容量较低,循环稳定性差。
已有文献主要通过调节纳米颗粒结构及其与碳材料的复合解决以上问题。但高比表面积的纳米材料降低正极的压实密度,同时在嵌入/脱出钠离子过程中容易产生结构团聚,损害电池的长循环稳定性。
发明内容
针对上述的技术问题,本发明提出一种微米级多孔硫酸亚铁钠/碳复合正极材料及其制备的钠离子电池或钠电池。采用共沉淀及固相煅烧法制备 出微米级多孔硫酸亚铁钠/碳复合材料颗粒,具有优异的结构稳定性、离子电导性和提升的正极压实密度。该硫酸亚铁钠/碳复合材料可进一步掺杂金属元素进行材料改性,所组装的可充电钠离子电池或钠电池表现出优异的倍率性能和长循环稳定性。
实现本发明的技术方案如下:
一种微米级多孔硫酸亚铁钠/碳复合正极材料,所述微米级多孔硫酸亚铁钠/碳复合正极材料的颗粒粒径为2-30μm,所述颗粒具有多孔结构,由80-200nm的一次纳米颗粒紧密堆积而成;所述一次纳米颗粒被无定形碳紧密包覆,颗粒表层被还原石墨烯薄层覆盖,在微米级多孔硫酸亚铁钠/碳复合正极材料中,石墨烯/碳的总质量为硫酸亚铁钠/碳复合正极材料质量的4%-18.5%。
进一步的,硫酸亚铁钠/碳复合正极材料内可掺杂金属元素,所述掺杂的金属元素为Co、Ni、Mn、Cu或Al。
一种微米级多孔硫酸亚铁钠/碳复合正极材料的制备方法,包括如下步骤:
(1)采用共沉淀法制备前驱体:将一定比例的乙二醇、氧化石墨烯粉末分散到去离子水中,超声15-120min,然后加入一定比例的无水硫酸钠、七水合硫酸亚铁、抗氧化剂和有机碳源,搅拌30-120min后,逐滴加入有机醇,搅拌10-120min后,将得到的混浊溶液离心,冷冻干燥,获得前驱体;或将一定比例的乙二醇、氧化石墨烯粉末分散到去离子水中,超声15-120min,然后加入一定比例的无水硫酸钠、七水合硫酸亚铁、抗氧化剂、有机碳源和金属掺杂剂,搅拌30-120min后,逐滴加入有机醇,搅拌10-120min后,将得到的混浊溶液离心,冷冻干燥,获得前驱体。
(2)采用固相煅烧法制备复合正极材料:将步骤(1)得到的前驱体研磨均匀后,置于惰性气氛的管式炉中预烧,然后升温至300-450℃煅烧8-48h,得到微米级多孔硫酸亚铁钠/碳复合正极材料。
微米级多孔硫酸亚铁钠/碳复合正极材料是通过共沉淀及固相煅烧法制备的,滴加的有机醇作为沉淀剂促进前驱体混合物的共相沉淀,同时乙二醇的高粘度及高表面张力作用抑制了沉淀颗粒的生长;所得到的复合正极材料的颗粒粒径为2-30μm,具有多孔结构,由80-200nm的一次颗粒紧密堆积而成;添加的有机碳源在共沉淀过程中以小分子结构均匀地包覆在沉淀的纳米前驱体颗粒表面,在随后的固相煅烧过程中形成连续的碳包覆层,抑制硫酸亚铁钠晶体颗粒生长;同时,有机碳源热解产生的气体有助于在微米颗粒内部原位构筑三维多孔结构;而不溶的氧化石墨烯片层可以提供丰富的沉淀位点,并在持续的搅拌过程中附着或包覆在微米级前驱体颗粒表层,随后被热还原;复合正极材料颗粒表层被还原石墨烯薄层均匀地包裹,内部的一次颗粒被无定形碳紧密包覆,其中石墨烯/碳的总质量为硫酸亚铁钠/碳复合正极材料质量的4%-18.5%。
进一步的,步骤(1)中去离子水、乙二醇和氧化石墨烯的质量比为1000:(200-750):(0.1-1),无水硫酸钠、七水合硫酸亚铁、有机碳源和抗氧化剂的摩尔比为1:1:(0-0.4):(0.01-0.05),所述有机碳源为一水合柠檬酸、葡萄糖、聚乙二醇中的一种或几种,所述金属掺杂剂为含有金属离子的硫酸盐,包括硫酸锰,硫酸镍,硫酸钴,硫酸铜,硫酸铝及它们的水合物中的一种或几种;或步骤(1)中去离子水、乙二醇和氧化石墨烯的质量比为1000:(200-750):(0.1-1);无水硫酸钠、七水合硫酸亚铁、有机碳源、抗氧化剂与金属掺杂剂的摩尔比为1:(0.9-1):(0-0.4):(0.01-0.05):(0-0.1),有机碳源为一水合柠檬酸、葡萄糖、聚乙二醇中的一种或几种;所述的金属掺杂剂为 含有金属离子的硫酸盐,包括硫酸锰,硫酸镍,硫酸钴,硫酸铜,硫酸铝及它们的水合物中的一种或几种。
进一步的,步骤(1)中,抗氧化剂为抗坏血酸、吡咯、对苯二酚中的一种或几种;所述有机醇与去离子水的体积比为(1.5-5.0):1;有机醇为异丙醇、无水乙醇、正丁醇、叔丁醇、丙三醇、三乙二醇中的一种或几种;离心的速率为6000-9500r/min,离心的时间为1-10min,冷冻干燥时间为12-36h。
进一步的,步骤(2)中,惰性气氛为氮气、氩气或氩氢混合气;预烧过程为以1-5℃/min的升温速率升温到100-300℃,恒温0.5-3h;煅烧过程为以1-3℃/min的升温速率升温到350-400℃,恒温8-48h。
一种微米级多孔硫酸亚铁钠/碳复合正极材料制备的钠离子电池或钠电池,由正极片、负极片、电解液、隔膜以及外壳构成,所述微米级多孔硫酸亚铁钠/碳复合正极材料为正极,可嵌/脱钠离子活性材料作为钠离子电池负极或金属钠作为钠电池负极,隔膜为改性醋酸纤维素隔膜、聚乙烯、聚丙烯微孔膜、玻璃纤维隔膜或它们的复合隔膜,电解液为可溶性钠盐有机溶液。
进一步的,钠电池正极片是通过正极材料与导电剂、粘结剂和分散剂均匀混合后所得到的浆料填涂到集流体而得到,集流体为铝箔;所述钠离子电池正极片通过正极材料与导电剂、粘结剂和分散剂均匀混合后所得到的浆料填涂到集流体而得到,负极片通过负极材料与导电剂、粘结剂和分散剂均匀混合后所得到的浆料填涂到集流体而得到,集流体为铝箔或铜箔。
进一步的,钠离子电池或钠电池的导电剂是乙炔黑、Super P或石墨中的一种或几种;钠离子电池或钠电池的粘结剂为聚四氟乙烯、聚偏氟乙烯或丁苯橡胶的一种或几种;钠离子电池或钠电池的分散剂为无水乙醇、异丙醇或1-甲基-2-吡咯烷酮的一种或几种。
进一步的,钠离子电池负极为可嵌/脱钠离子活性材料,包括碳材料、金属硫化物、金属氧化物、合金化合物;所述可溶性钠盐有机溶液为钠盐溶于有机溶剂中得到,钠盐为六氟磷酸钠、高氯酸钠、三氟甲基磺酸钠的一种或几种,有机溶剂为碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、氟代碳酸乙烯酯(FEC)、碳酸二甲酯、碳酸二乙酯、二甘醇二甲醚、1,3-环戊二醇、乙二醇二甲醚和三甘醇二甲醚中的一种或几种。
优选的,钠离子电池或钠电池的外壳采用有机塑料、铝壳、铝塑膜、不锈钢或它们的复合材料。
优选的,钠离子电池或钠电池的形状可以是扣式、柱状或方形。
本发明的有益效果:
1.本发明的微米级多孔硫酸亚铁钠/碳复合正极材料具有新奇独特的形貌特征:微米级多孔硫酸亚铁钠/碳复合正极材料,包括含和/或不含金属掺杂元素的硫酸亚铁钠/碳复合材料,具有微米级尺寸、多孔的颗粒结构,稳定的微米级块体和有效的碳包覆结构加强了复合材料的结构稳定性;硫酸亚铁钠/碳复合材料的微米级颗粒是由纳米级硫酸亚铁钠一次纳米颗粒有序组装而成,纳米级颗粒缩短了Na+传输的路径,降低了浓差极化,成功提升了材料的离子扩散率;无定形碳的均匀包覆和石墨烯的高度分散所构建的多级导电网络,增强复合材料的电子导电性;正极材料掺杂合适的金属阳离子,有助于改善正极材料表面的稳定性。因而,微米级多孔硫酸亚铁钠/碳复合正极材料具有电极成本低、原料储量丰富、工作电压高、倍率性能佳和循环稳定性好的优点,包含该材料的可充放钠离子电池或钠电池具有高能量密度和高功率密度。
2.本发明采用微米级多孔硫酸亚铁钠/碳复合正极材料作为钠离子电池或钠电池正极,有助于提升正极的振实密度和电池的体积能量密度。该硫酸亚铁钠/碳复合正极材料颗粒粒径2-30μm,具有多孔结构,由80-200nm 的一次颗粒堆积而成;无定形碳紧密地包覆在内部的一次纳米颗粒上,石墨烯薄层覆盖在微米颗粒表层,三维立体的导电网络能显著提高复合材料的电子和离子扩散速率,增强电化学稳定性。所得到的复合正极材料成本低、原料丰富、工作电压高、倍率性能佳和循环稳定性好,且制备工艺简单、易于放大、绿色环保。包含该材料的可充放钠离子的钠离子电池或钠电池具有低成本、高能量密度与功率密度、长循环稳定性,展现出广阔的市场应用前景。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是实施例1制备的微米级多孔硫酸亚铁钠/碳复合正极材料的X-射线衍射(XRD)图。
图2是实施例1制备的前驱体的扫描电子显微镜(SEM)图。
图3是实施例1制备的微米级多孔硫酸亚铁钠/碳复合正极材料的SEM图。
图4是实施例1制备的微米级多孔硫酸亚铁钠/碳复合正极材料的高分辨SEM图。
图5是实施例1中钠电池充放电曲线图。
图6是实施例1中钠电池倍率性能图。
图7是实施例1中钠电池循环性能图。
图8是实施例2中钠离子电池充放电曲线图。
图9是实施例3中钠离子电池充放电曲线图。
图10是实施例4中钠电池充放电曲线图。
图11是实施例5制备的微米级多孔硫酸亚铁钠/碳复合正极材料的SEM图。
图12是实施例5中钠电池充放电曲线图。
图13是实施例6中钠电池充放电曲线图。
图14是实施例7中钠电池充放电曲线图。
图15是实施例8中钠电池充放电曲线图。
图16是实施例9中钠电池充放电曲线图。
图17是实施例12中钠电池充放电曲线图。
图18是实施例13中钠电池充放电曲线图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
本发明所用的微米级多孔硫酸亚铁钠/碳复合正极材料的合成步骤如下:称取0.02g氧化石墨烯干粉分散于20mL去离子水中(1mg/mL),再加入10mL乙二醇,搅拌1h,超声处理15min,形成氧化石墨烯分散液。另称取1.112g七水合硫酸亚铁(FeSO 4·7H 2O),0.5682g无水硫酸钠(Na 2SO 4),0.2g一水合柠檬酸,0.02g抗坏血酸,溶于上述的氧化石墨烯分散液,在室温(25℃)下搅拌1h。取40mL的异丙醇,滴加至上述溶液中,得到浑浊悬浮液。滴加完成后,再搅拌1h。对上述的浑浊悬浮液进行离心处理(离心速率为8500r/min,离心时间为3min),得到的固体经液氮 冷冻后,再冷冻干燥处理36h,得到前驱体。将该前驱体研磨均匀后,转移至瓷盅中,置于氩气气氛的管式炉中以3℃/min的升温速率升温至200℃预烧2h后,再调节升温速率为1℃/min,升温至350℃煅烧12h,得到微米级多孔硫酸亚铁钠/碳复合正极材料。
图1为微米级多孔硫酸亚铁钠/碳复合正极材料的X-射线衍射(XRD)图,与Alluaudite型Na 2+2xFe 2-x(SO 4) 3的标准卡片(PDF#21-1360)相对应,且结晶度良好。衍射峰(2theta=32°)表现出最高强度,表明(240)晶面为硫酸亚铁钠晶体优势晶面。图2为前驱体的SEM图,显示出比较规整的多面体形状。图3为微米级多孔硫酸亚铁钠/碳复合正极材料的SEM图,复合材料颗粒粒块分散、不聚集。该硫酸亚铁钠/碳复合材料颗粒边长约为5-7μm,在其中小颗粒相互堆积,形成具有丰富多孔的块体结构。石墨烯为1-8μm长的薄层,包裹在硫酸亚铁钠二次颗粒表层。图4为微米级多孔硫酸亚铁钠/碳复合正极材料的高分辨SEM图,硫酸亚铁钠一次颗粒粒径分布均匀,尺寸在80-200nm,且无定形碳均匀地包覆在硫酸亚铁钠一次颗粒上。其中,石墨烯/碳的总量为硫酸亚铁钠复合材料质量的12.3%。
将所制备的微米级多孔硫酸亚铁钠/碳复合正极材料作为正极活性材料,正极材料与乙炔黑、聚偏氟乙烯以70:20:10质量比混合,采用1-甲基-2-吡咯烷酮为分散剂,将上述混合物混合均匀调成浆料涂至铝箔上。在120℃真空烘干后剪裁得到直径为13mm正极极片,钠金属片为负极(直径为16mm),玻璃纤维膜(Whatman GF/D)作为隔膜,使用1M NaClO 4溶于EC:PC(体积比为1:1)(5wt.%FEC添加剂)为电解液。不锈钢钢壳作为外壳,组装成CR2025式纽扣电池。上述过程所组装的钠电池在室温下,2.0-4.5V的电位范围内进行充放电测试,其充放电曲线、倍率性能和循环性能如图5、图6和图7所示。0.05C下放电平台在3.8V左右,比容量达到89mAh/g,电池放电能量密度达到320Wh/kg(基于正极活性物质质量)。 在10C的倍率下,其放电比容量能达到64mAh/g,0.5C倍率下200周循环后正极仍保持了70mAh/g的比容量(1C=120mA/g)。
实施例2
本实施例微米级多孔硫酸亚铁钠/碳复合正极材料的制备同实施例1。
将所制备的微米级多孔硫酸亚铁钠/碳复合正极材料作为正极活性材料,商业化硬碳作为负极活性材料,正极活性材料与乙炔黑、聚偏氟乙烯以70:20:10质量比混合,采用1-甲基-2-吡咯烷酮为分散剂;负极活性材料与乙炔黑、羧甲基纤维素钠(CMC)以80:10:10质量比混合,采用去离子水为分散剂;将上述混合物混合均匀调成浆料分别涂至铝箔和铜箔上,在120℃真空烘干剪裁后得到相应的正极极片和负极极片。将正负极采用玻璃纤维膜(Whatman GF/D)隔开,使用1M NaClO 4溶于EC:PC(体积比为1:1)(5wt.%FEC添加剂)为电解液,铝塑膜作为外壳,组装成方形软包电池。上述过程所组装的钠离子电池在室温下,1.0-4.0V的电位范围内进行恒流充放电测试,其充放电曲线如图8所示。0.05C下放电平台在2.8V左右,其放电比容量能达到65mAh/g。
实施例3
本实施例微米级多孔硫酸亚铁钠/碳复合正极材料的制备同实施例1。
将所制备的微米级多孔硫酸亚铁钠/碳复合正极材料作为正极活性材料,硫化亚铁/碳复合材料为负极活性材料,正极活性材料与乙炔黑、聚偏氟乙烯以70:20:10质量比混合,采用1-甲基-2-吡咯烷酮为分散剂;负极活性材料与乙炔黑、羧甲基纤维素钠(CMC)以80:10:10质量比混合,采用去离子水为分散剂;将上述混合物混合均匀调成浆料分别涂至铝箔和铜箔上,在120℃真空烘干剪裁后得到相应的正极极片和负极极片。将正负极采用玻璃纤维膜(Whatman GF/D)隔开,使用1M NaClO 4溶于EC:PC(体积比为1:1)(5wt.%FEC添加剂)为电解液,铝塑膜作为外壳,组装成方 形软包电池。上述过程所组装的钠离子电池在室温下,1.0-4.0V的电位范围内进行恒流充放电测试,其充放电曲线如图9所示。0.05C下放电平台在2.6V左右,其放电比容量能达到72mAh/g。
实施例4
本实施例微米级多孔硫酸亚铁钠/碳复合正极材料的制备同实施例1。
将实施例1所制备的微米级多孔硫酸亚铁钠/碳复合正极材料作为正极活性材料,正极材料与乙炔黑、聚偏氟乙烯以70:20:10质量比混合,采用1-甲基-2-吡咯烷酮为分散剂,将上述混合物混合均匀调成浆料涂至铝箔上。在120℃真空烘干后剪裁得到直径为13mm正极极片,钠金属片为负极(直径为16mm),玻璃纤维膜(Whatman GF/D)作为隔膜,使用1M NaClO 4溶于EC:PC(体积比为1:1)为电解液。不锈钢钢壳作为外壳,组装成CR2025式纽扣电池。上述过程所组装的钠电池在室温下,2.0-4.5V的电位范围内进行充放电测试,其充放电曲线如图10所示。0.05C下放电平台在3.8V左右,其放电比容量能达到73mAh/g。
实施例5
微米级多孔硫酸亚铁钠/碳复合正极材料的制备方法如下:称取0.01g氧化石墨烯干粉分散于20mL去离子水中(0.5mg/mL),再加入10mL乙二醇,搅拌1h,超声处理1h,形成氧化石墨烯分散液。另称取1.112g七水合硫酸亚铁(FeSO 4·7H 2O),0.5682g无水硫酸钠(Na 2SO 4),0.2g一水合柠檬酸,0.02g抗坏血酸,溶于上述的氧化石墨烯分散液。在室温(25℃)下搅拌1h。取40mL的异丙醇,滴加至上述溶液中,得到浑浊悬浮液。滴加完成后,再搅拌1h。对上述的浑浊悬浮液进行离心处理(离心速率为9000r/min,离心时间为3min),得到的固体经液氮冷冻后,再冷冻干燥处理36h,得到前驱体。将该前驱体研磨均匀后,转移至瓷盅中,置于氩气气氛的管式炉中以3℃/min的升温速率升温至200℃预烧2h后,再调节升温速 率为1℃/min,升温至350℃煅烧12h,得到微米级多孔硫酸亚铁钠/碳复合正极材料。
图11为本实施例制备的微米级多孔硫酸亚铁钠/碳复合正极材料的SEM图,复合材料颗粒内有丰富孔洞存在,石墨烯薄层明显的覆盖在硫酸亚铁钠二次颗粒表面。利用本实施例制备的微米级多孔硫酸亚铁钠/碳复合正极材料作为正极材料,以金属钠作为负极。电池的制备同实施例1。所组装的钠电池在室温下,2.0-4.5V的电位范围内进行充放电测试,其充放电曲线如图12所示。0.05C下放电平台在3.8V左右,其放电比容量能达到78mAh/g。
实施例6
微米级多孔硫酸亚铁钠/碳复合正极材料的制备方法如下:称取0.02g氧化石墨烯干粉分散于20mL去离子水中(1mg/mL),再加入5mL乙二醇,搅拌30min,超声处理1h,形成氧化石墨烯分散液。另称取1.112g七水合硫酸亚铁(FeSO 4·7H 2O),0.5682g无水硫酸钠(Na 2SO 4),0.2g一水合柠檬酸,0.02g抗坏血酸,溶于上述的氧化石墨烯分散液。在室温(25℃)下搅拌1h。取40mL的异丙醇,滴加至上述溶液中,得到浑浊悬浮液。滴加完成后,再搅拌1h。对上述的浑浊悬浮液进行离心处理(离心速率为8500r/min,离心时间为3min),得到的固体经液氮冷冻后,再冷冻干燥处理36h,得到前驱体。将该前驱体研磨均匀后,转移至瓷盅中,置于氩气气氛的管式炉中以3℃/min的升温速率升温至200℃预烧2h后,再调节升温速率为1℃/min,升温至350℃煅烧12h,得到微米级多孔硫酸亚铁钠/碳复合正极材料。
利用本实施例制备的微米级多孔硫酸亚铁钠/碳复合正极材料作为正极材料,以金属钠作为负极。电池的制备同实施例1。所组装的钠电池在室温下,2.0-4.5V的电位范围内进行充放电测试,其充放电曲线如图13所示。 0.05C下放电平台在3.8V左右,其放电比容量能达到70mAh/g。
实施例7
微米级多孔硫酸亚铁钠/碳复合正极材料的制备方法如下:称取0.02g氧化石墨烯干粉分散于20mL去离子水中(1mg/mL),再加入10mL乙二醇,搅拌15min,超声处理1h,形成氧化石墨烯分散液。另称取1.112g七水合硫酸亚铁(FeSO 4·7H 2O),0.5682g无水硫酸钠(Na 2SO 4),0.1g一水合柠檬酸,0.02g抗坏血酸,溶于上述的氧化石墨烯分散液。在室温(25℃)下搅拌1h。取40mL的异丙醇,滴加至上述溶液中,得到浑浊悬浮液。滴加完成后,再搅拌1h。对上述的浑浊悬浮液进行离心处理(离心速率为8500r/min,离心时间为3min),得到的固体经液氮冷冻后,再冷冻干燥处理36h,得到前驱体。将该前驱体研磨均匀后,转移至瓷盅中,置于氩气气氛的管式炉中以3℃/min的升温速率升温至200℃预烧2h后,再调节升温速率为1℃/min,升温至350℃煅烧12h,得到微米级多孔硫酸亚铁钠/碳复合正极材料。
利用本实施例制备的微米级多孔硫酸亚铁钠/碳复合正极材料作为正极材料,以金属钠作为负极。电池的制备同实施例1。所组装的钠电池在室温下,2.0-4.5V的电位范围内进行充放电测试,其充放电曲线如图14所示。0.05C下放电平台在3.8V左右,其放电比容量能达到80mAh/g。
实施例8
微米级多孔硫酸亚铁钠/碳复合正极材料的制备方法如下:称取0.02g氧化石墨烯干粉分散于20mL去离子水中(1mg/mL),再加入10mL乙二醇,搅拌30min,超声处理1h,形成氧化石墨烯分散液。另称取1.112g七水合硫酸亚铁(FeSO 4·7H 2O),0.5682g无水硫酸钠(Na 2SO 4),0.2g一水合柠檬酸,0.02g吡咯,溶于上述的氧化石墨烯分散液。在室温(25℃)下搅拌1h。取40mL的异丙醇,滴加至上述溶液中,得到浑浊悬浮液。滴 加完成后,再搅拌1h。对上述的浑浊悬浮液进行离心处理(离心速率为9000r/min,离心时间为3min),得到的固体经液氮冷冻后,再冷冻干燥处理36h,得到前驱体。将该前驱体研磨均匀后,转移至瓷盅中,置于氩气气氛的管式炉中以3℃/min的升温速率升温至200℃预烧2h后,再调节升温速率为1℃/min,升温至350℃煅烧12h,得到微米级多孔硫酸亚铁钠/碳复合正极材料。
利用本实施例制备的微米级多孔硫酸亚铁钠/碳复合正极材料作为正极材料,以金属钠作为负极。电池的制备同实施例11。所组装的钠电池在室温下,2.0-4.5V的电位范围内进行充放电测试,其充放电曲线如图15所示。0.05C下放电平台在3.8V左右,其放电比容量能达到82mAh/g。
实施例9
微米级多孔硫酸亚铁钠/碳复合正极材料的制备方法如下:称取0.02g氧化石墨烯干粉分散于20mL去离子水中(1mg/mL),再加入10mL乙二醇,搅拌15min,超声处理1h,形成氧化石墨烯分散液。另称取1.112g七水合硫酸亚铁(FeSO 4·7H 2O),0.5682g无水硫酸钠(Na 2SO 4),0.2g一水合柠檬酸,0.02g抗坏血酸,溶于上述的氧化石墨烯分散液。在室温(25℃)下搅拌1h。取40mL的异丙醇,滴加至上述溶液中,得到浑浊悬浮液。滴加完成后,再搅拌1h。对上述的浑浊悬浮液进行离心处理(离心速率为9000r/min,离心时间为3min),得到的固体经液氮冷冻后,再冷冻干燥处理36h,得到前驱体。将该前驱体研磨均匀后,转移至瓷盅中,置于氩气气氛的管式炉中以1℃/min的升温速率升温至200℃预烧2h后,再调节升温速率为1℃/min,升温至350℃煅烧24h,得到微米级多孔硫酸亚铁钠/碳复合正极材料。
利用本实施例制备的微米级多孔硫酸亚铁钠/碳复合正极材料作为正极材料,以金属钠作为负极。电池的制备同实施例4。所组装的钠电池在室温 下,2.0-4.5V的电位范围内进行充放电测试,其充放电曲线如图16所示。0.05C下放电平台在3.8V左右,其放电比容量能达到79mAh/g。
实施例10
微米级多孔硫酸亚铁钠/碳复合正极材料的制备方法如下:称取0.02g氧化石墨烯干粉分散于20mL去离子水中(1mg/mL),再加入10mL乙二醇,搅拌1h,超声处理1h,形成氧化石墨烯分散液。另称取1.112g七水合硫酸亚铁(FeSO 4·7H 2O),0.5682g无水硫酸钠(Na 2SO 4),0.2g聚乙二醇,0.02g抗坏血酸,溶于上述的氧化石墨烯分散液。在室温(25℃)下搅拌1h。取40mL的异丙醇,滴加至上述溶液中,得到浑浊悬浮液。滴加完成后,再搅拌1h。对上述的浑浊悬浮液进行离心处理(离心速率为9000r/min,离心时间为5min),得到的固体经液氮冷冻后,再冷冻干燥处理36h,得到前驱体。将该前驱体研磨均匀后,转移至瓷盅中,置于氩气气氛的管式炉中以3℃/min的升温速率升温至200℃预烧2h后,再调节升温速率为1℃/min,升温至350℃煅烧12h,得到微米级多孔硫酸亚铁钠/碳复合正极材料。
利用本实施例制备的微米级多孔硫酸亚铁钠/碳复合正极材料作为正极材料,以金属钠作为负极。电池的制备同实施例1。所组装的钠电池在室温下,2.0-4.5V的电位范围内进行充放电测试,0.05C下放电平台在3.7V左右,其放电比容量能达到74mAh/g。
实施例11
微米级多孔硫酸亚铁钠/碳复合正极材料的制备方法如下:称取0.02g氧化石墨烯干粉分散于20mL去离子水中(1mg/mL),再加入10mL乙二醇,搅拌1h,超声处理1h,形成氧化石墨烯分散液。另称取1.112g七水合硫酸亚铁(FeSO 4·7H 2O),0.5682g无水硫酸钠(Na 2SO 4),0.2g聚乙二醇,0.02g抗坏血酸,溶于上述的氧化石墨烯分散液。在室温(25℃)下 搅拌1h。取40mL的正丁醇,滴加至上述溶液中,得到浑浊悬浮液。滴加完成后,再搅拌1h。对上述的浑浊悬浮液进行离心处理(离心速率为9000r/min,离心时间为3min),得到的固体经液氮冷冻后,再冷冻干燥处理36h,得到前驱体。将该前驱体研磨均匀后,转移至瓷盅中,置于氩气气氛的管式炉中以3℃/min的升温速率升温至200℃预烧2h后,再调节升温速率为1℃/min,升温至350℃煅烧12h,得到微米级多孔硫酸亚铁钠/碳复合正极材料。
利用本实施例制备的微米级多孔硫酸亚铁钠/碳复合正极材料作为正极材料,以金属钠作为负极。电池的制备同实施例1。所组装的钠电池在室温下,2.0-4.5V的电位范围内进行充放电测试,0.05C下放电平台在3.6V左右,其放电比容量能达到80mAh/g。
实施例12
微米级多孔铝掺杂的硫酸亚铁钠/碳复合正极材料的制备方法如下:称取0.02g氧化石墨烯干粉分散于20mL去离子水中(1mg/mL),再加入10mL乙二醇,搅拌1h,超声处理1h,形成氧化石墨烯分散液。另称取1.0564g七水合硫酸亚铁(FeSO 4·7H 2O),0.0889g十八水合硫酸铝,0.5682g无水硫酸钠(Na 2SO 4),0.2g聚乙二醇,0.02g抗坏血酸,溶于上述的氧化石墨烯分散液。在室温(25℃)下搅拌1h。取40mL的正丁醇,滴加至上述溶液中,得到浑浊悬浮液。滴加完成后,再搅拌1h。对上述的浑浊悬浮液进行离心处理(离心速率为9000r/min,离心时间为3min),得到的固体经液氮冷冻后,再冷冻干燥处理36h,得到前驱体。将该前驱体研磨均匀后,转移至瓷盅中,置于氩气气氛的管式炉中以3℃/min的升温速率升温至200℃预烧2h后,再调节升温速率为1℃/min,升温至350℃煅烧12h,得到微米级多孔硫酸亚铁钠/碳复合正极材料。
利用本实施例制备的微米级多孔铝掺杂的硫酸亚铁钠/碳复合正极材料 作为正极材料,以金属钠作为负极。电池的制备同实施例1。所组装的钠电池在室温下,2.0-4.5V的电位范围内进行充放电测试。其充放电曲线如图17所示,在0.1C下循环30周后,其放电比容量达到74mAh/g,放电平台在3.5V左右。
实施例13
微米级多孔铜掺杂的硫酸亚铁钠/碳复合正极材料的制备方法如下:称取0.02g氧化石墨烯干粉分散于20mL去离子水中(1mg/mL),再加入10mL乙二醇,搅拌1h,超声处理1h,形成氧化石墨烯分散液。另称取1.0564g七水合硫酸亚铁(FeSO 4·7H 2O),0.0499g五水硫酸铜,0.5682g无水硫酸钠(Na 2SO 4),0.2g聚乙二醇,0.02g抗坏血酸,溶于上述的氧化石墨烯分散液。在室温(25℃)下搅拌1h。取40mL的正丁醇,滴加至上述溶液中,得到浑浊悬浮液。滴加完成后,再搅拌1h。对上述的浑浊悬浮液进行离心处理(离心速率为9000r/min,离心时间为3min),得到的固体经液氮冷冻后,再冷冻干燥处理36h,得到前驱体。将该前驱体研磨均匀后,转移至瓷盅中,置于氩气气氛的管式炉中以3℃/min的升温速率升温至200℃预烧2h后,再调节升温速率为1℃/min,升温至350℃煅烧12h,得到微米级多孔硫酸亚铁钠/碳复合正极材料。
利用本实施例制备的微米级多孔铜掺杂的硫酸亚铁钠/碳复合正极材料作为正极材料,以金属钠作为负极。电池的制备同实施例1。所组装的钠电池在室温下,2.0-4.5V的电位范围内进行充放电测试。其充放电曲线如图18所示,在0.1C下循环30周后,其放电比容量达到67mAh/g,放电平台在3.6V左右。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种微米级多孔硫酸亚铁钠/碳复合正极材料,其特征在于:所述微米级多孔硫酸亚铁钠/碳复合正极材料的颗粒粒径为2-30μm,所述颗粒具有多孔结构,由80-200nm的一次纳米颗粒紧密堆积而成;所述一次纳米颗粒被无定形碳紧密包覆,颗粒表层被还原石墨烯薄层覆盖,在微米级多孔硫酸亚铁钠/碳复合正极材料中,石墨烯/碳的总质量为硫酸亚铁钠/碳复合正极材料质量的4%-18.5%。
  2. 根据权利要求1所述的微米级多孔硫酸亚铁钠/碳复合正极材料,其特征在于,所述硫酸亚铁钠/碳复合正极材料内可掺杂金属元素,所述掺杂的金属元素为Co、Ni、Mn、Cu或Al。
  3. 根据权利要求1或2所述的微米级多孔硫酸亚铁钠/碳复合正极材料的制备方法,其特征在于,包括如下步骤:
    (1)采用共沉淀法制备前驱体:将一定比例的乙二醇、氧化石墨烯粉末分散到去离子水中,超声15-120min,然后加入一定比例的无水硫酸钠、七水合硫酸亚铁、抗氧化剂和有机碳源,搅拌30-120min后,逐滴加入有机醇,搅拌10-120min后,将得到的混浊溶液离心,冷冻干燥,获得前驱体;或将一定比例的乙二醇、氧化石墨烯粉末分散到去离子水中,超声15-120min,然后加入一定比例的无水硫酸钠、七水合硫酸亚铁、抗氧化剂、有机碳源和金属掺杂剂,搅拌30-120min后,逐滴加入有机醇,搅拌10-120min后,将得到的混浊溶液离心,冷冻干燥,获得前驱体。
    (2)采用固相煅烧法制备复合正极材料:将步骤(1)得到的前驱体研磨均匀后,置于惰性气氛的管式炉中预烧,然后升温至300-450℃煅烧8-48h,得到微米级多孔硫酸亚铁钠/碳复合正极材料。
  4. 根据权利要求3所述的微米级多孔硫酸亚铁钠/碳复合正极材料的制备方法,其特征在于:所述步骤(1)中去离子水、乙二醇和氧化石墨烯的质量比为1000:(200-750):(0.1-1),无水硫酸钠、七水合硫酸亚铁、有机碳源 和抗氧化剂的摩尔比为1:1:(0-0.4):(0.01-0.05),所述有机碳源为一水合柠檬酸、葡萄糖、聚乙二醇中的一种或几种,所述金属掺杂剂为含有金属离子的硫酸盐,包括硫酸锰,硫酸镍,硫酸钴,硫酸铜,硫酸铝及它们的水合物中的一种或几种;或步骤(1)中去离子水、乙二醇和氧化石墨烯的质量比为1000:(200-750):(0.1-1);无水硫酸钠、七水合硫酸亚铁、有机碳源、抗氧化剂与金属掺杂剂的摩尔比为1:(0.9-1):(0-0.4):(0.01-0.05):(0-0.1),有机碳源为一水合柠檬酸、葡萄糖、聚乙二醇中的一种或几种;所述的金属掺杂剂为含有金属离子的硫酸盐,包括硫酸锰,硫酸镍,硫酸钴,硫酸铜,硫酸铝及它们的水合物中的一种或几种。
  5. 根据权利要求3所述的微米级多孔硫酸亚铁钠/碳复合正极材料,其特征在于:所述步骤(1)中,抗氧化剂为抗坏血酸、吡咯、对苯二酚中的一种或几种;所述有机醇与去离子水的体积比为(1.5-5.0):1;有机醇为异丙醇、无水乙醇、正丁醇、叔丁醇、丙三醇、三乙二醇中的一种或几种;离心的速率为6000-9500r/min,离心的时间为1-10min,冷冻干燥时间为12-36h。
  6. 根据权利要求3所述的微米级多孔硫酸亚铁钠/碳复合正极材料,其特征在于:所述步骤(2)中,惰性气氛为氮气、氩气或氩氢混合气;预烧过程为以1-5℃/min的升温速率升温到100-300℃,恒温0.5-3h;煅烧过程为以1-3℃/min的升温速率升温到350-400℃,恒温8-48h。
  7. 权利要求1或2所述的微米级多孔硫酸亚铁钠/碳复合正极材料制备的钠离子电池或钠电池,由正极片、负极片、电解液、隔膜以及外壳构成,其特征在于:所述微米级多孔硫酸亚铁钠/碳复合正极材料为正极,可嵌/脱钠离子活性材料作为钠离子电池负极或金属钠作为钠电池负极,隔膜为改性醋酸纤维素隔膜、聚乙烯、聚丙烯微孔膜、玻璃纤维隔膜或它们的复合隔膜,电解液为可溶性钠盐有机溶液。
  8. 根据权利要求7所述的钠离子电池或钠电池,其特征在于:所述钠电池正极片是通过正极材料与导电剂、粘结剂和分散剂均匀混合后所得到的浆料填涂到集流体而得到,集流体为铝箔;所述钠离子电池正极片通过正极材料与导电剂、粘结剂和分散剂均匀混合后所得到的浆料填涂到集流体而得到,负极片通过负极材料与导电剂、粘结剂和分散剂均匀混合后所得到的浆料填涂到集流体而得到,集流体为铝箔或铜箔。
  9. 根据权利要求9所述的钠离子电池或钠电池,其特征在于:所述钠离子电池或钠电池的导电剂是乙炔黑、Super P或石墨中的一种或几种;钠离子电池或钠电池的粘结剂为聚四氟乙烯、聚偏氟乙烯或丁苯橡胶的一种或几种;钠离子电池或钠电池的分散剂为无水乙醇、异丙醇或1-甲基-2-吡咯烷酮的一种或几种。
  10. 根据权利要求7所述的钠离子电池或钠电池,其特征在于:所述可嵌/脱钠离子活性材料,包括碳材料、金属硫化物、金属氧化物、合金化合物;所述可溶性钠盐有机溶液为钠盐溶于有机溶剂中得到,钠盐为六氟磷酸钠、高氯酸钠、三氟甲基磺酸钠的一种或几种,有机溶剂为碳酸乙烯酯、碳酸丙烯酯、氟代碳酸乙烯酯、碳酸二甲酯、碳酸二乙酯、二甘醇二甲醚、1,3-环戊二醇、乙二醇二甲醚和三甘醇二甲醚中的一种或几种。
PCT/CN2021/140464 2021-11-16 2021-12-22 微米级多孔硫酸亚铁钠/碳复合正极材料及其制备的钠离子电池或钠电池 WO2023087485A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111356573.4A CN114050246B (zh) 2021-11-16 2021-11-16 微米级多孔硫酸亚铁钠/碳复合正极材料及其制备的钠离子电池或钠电池
CN202111356573.4 2021-11-16

Publications (1)

Publication Number Publication Date
WO2023087485A1 true WO2023087485A1 (zh) 2023-05-25

Family

ID=80209517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/140464 WO2023087485A1 (zh) 2021-11-16 2021-12-22 微米级多孔硫酸亚铁钠/碳复合正极材料及其制备的钠离子电池或钠电池

Country Status (2)

Country Link
CN (1) CN114050246B (zh)
WO (1) WO2023087485A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116404144A (zh) * 2023-06-09 2023-07-07 华大钠电(北京)科技有限公司 一种钠离子电池
CN116613300A (zh) * 2023-07-18 2023-08-18 成都锂能科技有限公司 一种煤基炭化的钠电池负极材料、其制备方法、包含其的钠离子电池
CN117038940A (zh) * 2023-10-09 2023-11-10 深圳中芯能科技有限公司 钠离子电池正极材料前驱体及其制备方法
CN117239138A (zh) * 2023-11-15 2023-12-15 华北电力大学 钠离子电池正极材料、其制备方法及钠离子电池
CN117326595A (zh) * 2023-09-15 2024-01-02 广东钠壹新能源科技有限公司 一种硫酸铁钠正极材料及其制备方法和应用
CN117352710A (zh) * 2023-12-05 2024-01-05 瑞浦兰钧能源股份有限公司 一种铋碳负极复合材料及其制备方法和应用
CN117410475A (zh) * 2023-12-04 2024-01-16 湖南科舰能源发展有限公司 一种三维多孔负极材料及其制备方法、锂电池
CN117673647A (zh) * 2024-02-02 2024-03-08 吉林大学 一种离子导体涂层修饰的隔膜、制备方法及其应用
CN117410475B (zh) * 2023-12-04 2024-05-03 湖南科舰能源发展有限公司 一种三维多孔负极材料及其制备方法、锂电池

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114597365B (zh) * 2022-03-11 2024-04-19 星恒电源股份有限公司 钠离子电池用正极材料及其制备方法
CN115159581A (zh) * 2022-08-01 2022-10-11 江苏智纬电子科技有限公司 Na2Fe(SO4)2/C作为钠离子电池复合正极材料的制备方法
CN115520850B (zh) * 2022-08-30 2024-01-26 河南师范大学 一种钛白副产硫酸亚铁和废旧石墨负极材料综合资源化回收再利用方法
CN115312782B (zh) * 2022-10-10 2022-12-27 苏州大学 一种钠离子电池正极材料及其制备方法以及钠离子电池
CN115849454B (zh) * 2022-11-22 2023-07-11 湖北万润新能源科技股份有限公司 硫酸亚铁钠正极材料的制备方法
CN116344824B (zh) * 2023-04-28 2024-02-02 中国科学院深圳先进技术研究院 一种硫酸铁钠正极材料及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105355886A (zh) * 2015-11-27 2016-02-24 中南大学 一种钠离子电池正极Na2+2xFe2-x(SO4)3@碳复合材料及其制备方法
CN108682827A (zh) * 2018-06-08 2018-10-19 苏州大学 一种碳复合钠离子正极材料及其制备方法
CN109192982A (zh) * 2018-09-05 2019-01-11 四川大学 硫酸铁钠正极材料的合成方法
CN110336021A (zh) * 2019-07-24 2019-10-15 郑州大学 石墨烯和/或乙炔黑复合的Na2Fe(SO4)2/C电极材料、制备方法及制备的电池

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103348511B (zh) * 2011-02-15 2016-08-31 住友化学株式会社 钠二次电池电极及钠二次电池
JPWO2015125840A1 (ja) * 2014-02-21 2017-03-30 住友化学株式会社 ナトリウム二次電池
CN105140489B (zh) * 2015-09-25 2018-01-02 中南大学 一种钛掺杂的碳包覆磷酸铁钠材料及其制备方法
CN107148697A (zh) * 2015-12-30 2017-09-08 深圳先进技术研究院 一种新型钠离子电池及其制备方法
CN105938904B (zh) * 2016-05-31 2018-09-18 中南大学 一种钠离子电池用复合正极材料及其制备方法
CN106058249A (zh) * 2016-07-21 2016-10-26 天津大学 一种溶剂热制备碳包覆纳米棒状氟磷酸亚铁钠材料的方法
CN106058251B (zh) * 2016-08-12 2018-05-25 中南大学 一种钠离子电池正极Na2Fe2(SO4)3@氧化铝复合材料及其制备方法
CN106684369B (zh) * 2017-02-16 2019-10-15 长沙理工大学 一种钠快离子导体镶嵌包覆的钠离子电池正极材料及其合成方法
CN106848236B (zh) * 2017-02-20 2019-04-09 中南大学 一种用于钠离子电池的硫酸亚铁钠/石墨烯复合正极材料及其制备方法
CN110326136B (zh) * 2017-09-13 2022-07-08 辽宁星空钠电电池有限公司 一种新型高电位多层碳包覆聚阴离子型钠离子电池正极材料及其制备方法
CN108736005A (zh) * 2018-06-05 2018-11-02 赣州有色冶金研究所 一种掺锰的碳包覆钠离子电池正极材料及其制备方法
CN111326715B (zh) * 2018-12-13 2021-07-27 华中科技大学 一种电池正极材料及其制备方法与应用
CN111354924B (zh) * 2018-12-20 2021-08-24 深圳先进技术研究院 钠离子电池正极活性材料、钠离子电池正极材料、钠离子电池正极和钠离子电池及制备方法
CN110931784B (zh) * 2019-12-09 2020-11-24 苏州大学 铁基钠离子电池正极材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105355886A (zh) * 2015-11-27 2016-02-24 中南大学 一种钠离子电池正极Na2+2xFe2-x(SO4)3@碳复合材料及其制备方法
CN108682827A (zh) * 2018-06-08 2018-10-19 苏州大学 一种碳复合钠离子正极材料及其制备方法
CN109192982A (zh) * 2018-09-05 2019-01-11 四川大学 硫酸铁钠正极材料的合成方法
CN110336021A (zh) * 2019-07-24 2019-10-15 郑州大学 石墨烯和/或乙炔黑复合的Na2Fe(SO4)2/C电极材料、制备方法及制备的电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU XIAOHAO; TANG LINBIN; XU QUNJIE; LIU HAIMEI; WANG YONGGANG: "Ultrafast and ultrastable high voltage cathode of Na2+2xFe2-x(SO4)3microsphere scaffolded by graphene for sodium ion batteries", ELECTROCHIMICA ACTA, ELSEVIER, AMSTERDAM, NL, vol. 296, 2019, AMSTERDAM, NL , pages 345 - 354, XP085573349, ISSN: 0013-4686, DOI: 10.1016/j.electacta.2018.11.064 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116404144B (zh) * 2023-06-09 2023-08-15 华大钠电(北京)科技有限公司 一种钠离子电池
CN116404144A (zh) * 2023-06-09 2023-07-07 华大钠电(北京)科技有限公司 一种钠离子电池
CN116613300A (zh) * 2023-07-18 2023-08-18 成都锂能科技有限公司 一种煤基炭化的钠电池负极材料、其制备方法、包含其的钠离子电池
CN116613300B (zh) * 2023-07-18 2023-09-22 成都锂能科技有限公司 一种煤基炭化的钠电池负极材料、其制备方法、包含其的钠离子电池
CN117326595B (zh) * 2023-09-15 2024-04-19 广东钠壹新能源科技有限公司 一种硫酸铁钠正极材料及其制备方法和应用
CN117326595A (zh) * 2023-09-15 2024-01-02 广东钠壹新能源科技有限公司 一种硫酸铁钠正极材料及其制备方法和应用
CN117038940A (zh) * 2023-10-09 2023-11-10 深圳中芯能科技有限公司 钠离子电池正极材料前驱体及其制备方法
CN117038940B (zh) * 2023-10-09 2023-12-12 深圳中芯能科技有限公司 钠离子电池正极材料前驱体及其制备方法
CN117239138A (zh) * 2023-11-15 2023-12-15 华北电力大学 钠离子电池正极材料、其制备方法及钠离子电池
CN117239138B (zh) * 2023-11-15 2024-01-23 华北电力大学 钠离子电池正极材料、其制备方法及钠离子电池
CN117410475A (zh) * 2023-12-04 2024-01-16 湖南科舰能源发展有限公司 一种三维多孔负极材料及其制备方法、锂电池
CN117410475B (zh) * 2023-12-04 2024-05-03 湖南科舰能源发展有限公司 一种三维多孔负极材料及其制备方法、锂电池
CN117352710A (zh) * 2023-12-05 2024-01-05 瑞浦兰钧能源股份有限公司 一种铋碳负极复合材料及其制备方法和应用
CN117352710B (zh) * 2023-12-05 2024-02-13 瑞浦兰钧能源股份有限公司 一种铋碳负极复合材料及其制备方法和应用
CN117673647A (zh) * 2024-02-02 2024-03-08 吉林大学 一种离子导体涂层修饰的隔膜、制备方法及其应用
CN117673647B (zh) * 2024-02-02 2024-04-23 吉林大学 一种离子导体涂层修饰的隔膜、制备方法及其应用

Also Published As

Publication number Publication date
CN114050246A (zh) 2022-02-15
CN114050246B (zh) 2023-02-07

Similar Documents

Publication Publication Date Title
WO2023087485A1 (zh) 微米级多孔硫酸亚铁钠/碳复合正极材料及其制备的钠离子电池或钠电池
Jiang et al. Honeycomb-like nitrogen and sulfur dual-doped hierarchical porous biomass carbon bifunctional interlayer for advanced lithium-sulfur batteries
Li et al. An advanced CoSe embedded within porous carbon polyhedra hybrid for high performance lithium-ion and sodium-ion batteries
Liu et al. 1D porous MnO@ N-doped carbon nanotubes with improved Li-storage properties as advanced anode material for lithium-ion batteries
Zhang et al. A facile synthesis of 3D flower-like NiCo2O4@ MnO2 composites as an anode material for Li-ion batteries
Cheng et al. Controllable fabrication of C/Sn and C/SnO/Sn composites as anode materials for high-performance lithium-ion batteries
Courtel et al. ZnMn2O4 nanoparticles synthesized by a hydrothermal method as an anode material for Li-ion batteries
Fu et al. Nickel ferrite–graphene heteroarchitectures: toward high-performance anode materials for lithium-ion batteries
Abbas et al. Synthesis of carbon nanotubes anchored with mesoporous Co3O4 nanoparticles as anode material for lithium-ion batteries
Zhang et al. Preparation and electrochemical properties of sulfur–acetylene black composites as cathode materials
Zhao et al. Cobalt carbonate dumbbells for high-capacity lithium storage: A slight doping of ascorbic acid and an enhancement in electrochemical performances
Niu et al. Hierarchically porous CuCo2O4 microflowers: a superior anode material for Li-ion batteries and a stable cathode electrocatalyst for Li-O2 batteries
Yang et al. High-performance aqueous asymmetric supercapacitor based on spinel LiMn2O4 and nitrogen-doped graphene/porous carbon composite
Yao et al. Nanoparticles-constructed spinel ZnFe2O4 anode material with superior lithium storage performance boosted by pseudocapacitance
CN111435740A (zh) 正极活性材料、正极片及钠离子电池
Ihsan et al. V2O5/mesoporous carbon composite as a cathode material for lithium-ion batteries
Jin et al. Fe-based metal-organic framework and its derivatives for reversible lithium storage
Guo et al. A mixed microporous/low-range mesoporous composite with high sulfur loading from hierarchically-structured carbon for lithium sulfur batteries
Idris et al. Effects of polypyrrole on the performance of nickel oxide anode materials for rechargeable lithium-ion batteries
TWI761365B (zh) 負極活性物質、混合負極活性物質材料、及負極活性物質的製造方法
JP2018166060A (ja) 電極活物質、蓄電デバイス用電極、蓄電デバイス及び電極活物質の製造方法
Zhao et al. Nano-sized FeSe2 decorated rGO as a potential anode material with enhanced lithium-ion storage
Li et al. High efficiency immobilization of sulfur on Ce-doped carbon aerogel for high performance lithium-sulfur batteries
Huang et al. Advanced Li-rich cathode collaborated with graphite/silicon anode for high performance Li-ion batteries in half and full cells
CN103137965A (zh) 一种多元金属硫化物复合负极材料及其制备方法和用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21964274

Country of ref document: EP

Kind code of ref document: A1