WO2023085883A1 - 이소시아네이트 프리폴리머 조성물, 이 프리폴리머 조성물을 이용한 말단 캡핑된 이소시아네이트 프리폴리머 조성물 및 이를 포함하는 에폭시 수지용 접착 촉진제, 및 이 접착 촉진제를 포함하는 에폭시 수지 조성물 및 이를 포함하는 접착제 - Google Patents

이소시아네이트 프리폴리머 조성물, 이 프리폴리머 조성물을 이용한 말단 캡핑된 이소시아네이트 프리폴리머 조성물 및 이를 포함하는 에폭시 수지용 접착 촉진제, 및 이 접착 촉진제를 포함하는 에폭시 수지 조성물 및 이를 포함하는 접착제 Download PDF

Info

Publication number
WO2023085883A1
WO2023085883A1 PCT/KR2022/017881 KR2022017881W WO2023085883A1 WO 2023085883 A1 WO2023085883 A1 WO 2023085883A1 KR 2022017881 W KR2022017881 W KR 2022017881W WO 2023085883 A1 WO2023085883 A1 WO 2023085883A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
polyol component
epoxy resin
polyol
alcohol
Prior art date
Application number
PCT/KR2022/017881
Other languages
English (en)
French (fr)
Inventor
노재국
임준섭
송광석
유승현
장민정
Original Assignee
주식회사 삼양사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 삼양사 filed Critical 주식회사 삼양사
Publication of WO2023085883A1 publication Critical patent/WO2023085883A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/667Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6674Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3218Polyhydroxy compounds containing cyclic groups having at least one oxygen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • C08L75/08Polyurethanes from polyethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins

Definitions

  • the present invention relates to an isocyanate prepolymer composition and its use, and more particularly, to anhydrous sugar alcohol composition comprising monohydrosugar alcohol, dianhydrosugar alcohol, polysaccharide alcohol, polysaccharide alcohol-derived anhydrosugar alcohol, and anhydrous sugar alcohol composition comprising one or more polymers thereof.
  • Anhydrous sugar alcohol-alkylene glycol composition to which alkylene oxide is added and a polyol composition including polyether polyol and polyisocyanate are prepared by urethane reaction, and an environmentally friendly, in particular, end-capped isocyanate prepolymer composition prepared using the same
  • An isocyanate prepolymer composition capable of improving tensile strength, T-peel strength and room temperature impact strength of an epoxy resin composition for adhesion applied as an adhesion promoter for epoxy resin, an isocyanate prepolymer composition end-capped using the prepolymer composition, and an epoxy resin containing the same It relates to an adhesion promoter for paper, an epoxy resin composition containing the adhesion promoter, and an adhesive containing the same.
  • Epoxy resins have excellent heat resistance, mechanical properties, electrical properties and adhesion. Epoxy resins take advantage of this characteristic and are used for sealing materials such as wiring boards, circuit boards, multilayered circuit boards, semiconductor chips, coils, and electric circuits. Alternatively, epoxy resin is also used as a resin for adhesives, paints, and fiber-reinforced resins.
  • Epoxy resins find widespread use as thermosets in many applications. They are used as a thermosetting matrix in prepregs composed of fibers incorporated in a thermosetting matrix. Also, because of their toughness, flexibility, adhesion and chemical resistance, they can be used as materials for surface coatings, for bonding, molding and laminating, all of which are used in aerospace, automotive, electronics, construction, furniture, green energy and sporting goods. Various applications can be found in a wide variety of industries such as industry.
  • epoxy resins are readily available and may be used depending on their reactivity required for a particular application.
  • resins can be solid, liquid or semi-solid, and can have a variety of reactivity depending on the application to which they are applied.
  • the reactivity of epoxy resins is often measured in terms of epoxy equivalent weight, which is the molecular weight of a resin containing a single reactive epoxy group. The lower the epoxy equivalent, the higher the reactivity of the epoxy resin. Different reactivity is required for different epoxy resin applications, depending on whether it is present as a matrix for fiber-reinforced prepregs, adhesive coatings, or structural adhesives.
  • epoxy resin itself is too brittle and has low strength, so its application range is limited, and rubber additives or thermoplastic polymer additives used to compensate for this are not able to form a chemical bond with the epoxy resin, thereby improving corrosion resistance.
  • an adhesion promoter capable of improving the strength (eg, tensile strength, T-peel strength, room temperature impact strength, etc.) of an epoxy resin while being environmentally friendly.
  • hydrogenated sugar also referred to as “sugar alcohol” refers to a compound obtained by adding hydrogen to a reducing end group of sugars, and is generally HOCH 2 (CHOH) n CH 2 OH (where n is 2 to 5 It has a chemical formula of (an integer of) and is classified according to carbon atoms into tetratol, pentitol, hexitol, and heptitol (4, 5, 6, and 7 carbon atoms, respectively).
  • hexitol having 6 carbon atoms includes sorbitol, mannitol, iditol, galactitol, and the like, and sorbitol and mannitol are particularly effective substances.
  • Anhydrous sugar alcohol is a substance formed by removing one or more water molecules from the inside of hydrogenated sugar. When one water molecule is removed, it has the form of tetraol with four hydroxyl groups in the molecule, and two water molecules In the case of removal, it has a diol form with two hydroxyl groups in the molecule, and can be prepared using hexitol derived from starch (e.g., Korean Patent Registration No. 10-1079518, Korean Patent Publication No. 10-2012-0066904). Since anhydrosugar alcohol is an environmentally friendly material derived from renewable natural resources, research on its manufacturing method has been conducted with great interest for a long time. Among these anhydrous sugar alcohols, isosorbide prepared from sorbitol currently has the widest range of industrial applications.
  • anhydrous sugar alcohol is very diverse, such as treatment of heart and blood vessel diseases, patch adhesives, pharmaceuticals such as mouthwashes, solvents for compositions in the cosmetics industry, and emulsifiers in the food industry.
  • it can raise the glass transition temperature of polymer materials such as polyester, PET, polycarbonate, polyurethane, and epoxy resin, and has the effect of improving the strength of these materials. useful.
  • it can be used as an environmentally friendly solvent for adhesives, eco-friendly plasticizers, biodegradable polymers, and water-soluble lacquers.
  • anhydrous sugar alcohol is receiving a lot of attention due to its various application possibilities, and its use in the actual industry is gradually increasing.
  • An object of the present invention is environmentally friendly because anhydrous sugar alcohol is used, and in particular, the tensile strength and T-peel strength of an epoxy resin composition for adhesion to which the end-capped isocyanate prepolymer composition prepared using the same is applied as an adhesion promoter for epoxy resin and an isocyanate prepolymer composition capable of improving impact strength at room temperature, an isocyanate prepolymer composition end-capped using the prepolymer composition and an adhesion promoter for epoxy resins including the same, and an epoxy resin composition including the adhesion promoter and an adhesive including the same is to provide
  • a first aspect of the present invention is an isocyanate prepolymer composition prepared by urethane-reacting a polyol composition comprising an anhydrous sugar alcohol-alkylene glycol composition and a polyether polyol and a polyisocyanate, wherein the anhydrosugar alcohol-alkylene glycol composition of the OH
  • the OH equivalent ratio of the polyether polyol to the equivalent weight is greater than 0.67 and less than 9.0, and the polyisocyanate relative to the total OH equivalent of the polyol composition
  • the total NCO equivalent ratio total NCO equivalents of polyisocyanate/total OH equivalents of polyol composition
  • the anhydrous sugar alcohol-alkylene glycol composition is prepared by addition reaction of anhydrosugar alcohol composition and alkylene oxide
  • the anhydrosugar-alcohol composition includes first to fifth
  • n is an integer from 0 to 4.
  • a second aspect of the present invention includes the step of urethane-reacting a polyol composition comprising an anhydrous sugar alcohol-alkylene glycol composition and a polyether polyol with a polyisocyanate, and the OH equivalent of the anhydrous sugar alcohol-alkylene glycol composition
  • the OH equivalent ratio of the polyether polyol is greater than 0.67 and less than 9.0, and the total NCO of the polyisocyanate relative to the total OH equivalent of the polyol composition
  • the equivalence ratio total NCO equivalents of polyisocyanate/total OH equivalents of polyol composition
  • the anhydrous sugar alcohol-alkylene glycol composition is prepared by addition reaction of anhydrosugar alcohol composition and alkylene oxide
  • the anhydrous sugar-alcohol composition includes first to fifth polyol components, wherein the first poly
  • a third aspect of the present invention provides an end-capped isocyanate prepolymer composition prepared by reacting the isocyanate prepolymer composition according to the first aspect of the present invention with an end capping agent.
  • a fourth aspect of the present invention provides an adhesion promoter for epoxy resin comprising the end-capped isocyanate prepolymer composition according to the third aspect of the present invention.
  • a fifth aspect of the present invention is an adhesion promoter for epoxy resins according to the fourth aspect of the present invention; It provides an epoxy resin composition comprising a; and an epoxy resin.
  • a sixth aspect of the present invention provides an adhesive comprising the epoxy resin composition according to the fifth aspect of the present invention.
  • the isocyanate prepolymer composition according to the present invention is environmentally friendly, and in particular, the tensile strength, T-peel strength and impact strength at room temperature of the epoxy resin composition for adhesion to which the end-capped isocyanate prepolymer composition prepared using the same is applied as an adhesion promoter for epoxy resin. can improve
  • the isocyanate prepolymer composition according to the present invention is prepared from an anhydrosugar alcohol composition, which is a polyol composition obtained by utilizing by-products obtained in the process of producing internal dehydration of hydrogenated sugars, economic feasibility is increased and eco-friendliness is achieved by solving by-product disposal problems. can improve
  • the isocyanate prepolymer composition of the present invention is prepared by urethane-reacting a polyol composition including an anhydrous sugar alcohol-alkylene glycol composition and a polyether polyol and a polyisocyanate, wherein the above for the OH equivalent of the anhydrosugar alcohol-alkylene glycol composition
  • the OH equivalent ratio of the polyether polyol is greater than 0.67 and less than 9.0
  • the total NCO equivalent ratio of the polyisocyanate to the total OH equivalent of the polyol composition total NCO equivalent of polyisocyanate/total OH equivalent of polyol composition
  • the anhydrous sugar alcohol-alkylene glycol composition is prepared by an addition reaction of anhydrosugar alcohol composition and alkylene oxide.
  • the anhydrosugar-alcohol composition includes first to fifth polyol components, wherein the first polyol component is monohydrosugar alcohol, the second polyol component is dianhydrosugar alcohol, and the third polyol component has the formula 1, the fourth polyol component is an anhydrous sugar alcohol formed by removing water molecules from the polysaccharide alcohol represented by the following formula (1), and the fifth polyol component is the first to fourth polyol components It is one or more polymers selected from
  • n is an integer from 0 to 4.
  • Anhydrous sugar alcohol which is the first polyol component included in the anhydrous sugar-alcohol composition of the present invention; dianhydrosugar alcohol as a second polyol component; a polysaccharide alcohol as a third polyol component; anhydrous sugar alcohol formed by removing water molecules from polysaccharide alcohol, which is the fourth polyol component; And at least one, preferably two or more, more preferably all of one or more polymers selected from the first to fourth polyol components that are the fifth polyol component, a glucose-containing saccharide composition (e.g., glucose , mannose, fructose, and maltose) by hydrogenation reaction to prepare a hydrogenated sugar composition, dehydration reaction by heating the obtained hydrogenated sugar composition under an acid catalyst, and the resulting dehydration reaction It can be obtained in the process of preparing by thin film distillation. More specifically, all of the first to fifth polyol components included in the anhydrous sugar alcohol composition of the present invention may be by-products remaining after obtaining
  • Monohydrosugar alcohol which is the first polyol component, is anhydrosugar alcohol formed by removing one water molecule from the inside of a hydrogenated sugar, and has a tetraol form with four hydroxyl groups in the molecule.
  • the type of monohydrosugar alcohol is not particularly limited, but may preferably be monohydrosugar hexitol, more specifically 1,4-anhydrohexitol, 3,6-anhydrohexitol , 2,5-anhydrohexitol, 1,5-anhydrohexitol, 2,6-anhydrohexitol, or a mixture of two or more thereof.
  • the second polyol component is anhydrosugar alcohol formed by removing two water molecules from the inside of hydrogenated sugar, and has a diol form with two hydroxyl groups in the molecule.
  • dianhydrosugar alcohol is anhydrosugar alcohol formed by removing two water molecules from the inside of hydrogenated sugar, and has a diol form with two hydroxyl groups in the molecule.
  • imudang alcohol is an eco-friendly material derived from renewable natural resources, research on its manufacturing method has been conducted with much interest for a long time.
  • isosorbide prepared from sorbitol currently has the widest range of industrial applications.
  • the type of dianhydrosugar alcohol is not particularly limited, but may be preferably dianhydrosugar hexitol, and more specifically, 1,4:3,6-dianhydrohexitol.
  • the 1,4:3,6-dianhydrohexitol may be isosorbide, isomannide, isoidide, or a mixture of two or more thereof.
  • the polysaccharide alcohol represented by Chemical Formula 1, which is the third polyol component may be prepared from a hydrogenation reaction of disaccharides or higher polysaccharides including maltose.
  • the anhydrous sugar alcohol formed by removing water molecules from the polysaccharide alcohol represented by Formula 1, which is the fourth polyol component, is a compound represented by Formula 2, a compound represented by Formula 3, or a mixture thereof.
  • a compound represented by Formula 2 a compound represented by Formula 3 or a mixture thereof.
  • n is each independently an integer of 0 to 4.
  • the at least one polymer selected from the first to fourth polyol components, which is the fifth polyol component includes at least one selected from the group consisting of condensation polymers prepared from the following polycondensation reaction. can do:
  • the number average molecular weight (Mn: unit g / mol) of the anhydrous sugar alcohol composition may be 193 or more, 195 or more, 200 or more, 202 or more, 205 or more or 208 or more, and also 1,589 or less, 1,560 or less , 1,550 or less, 1,520 or less, 1,500 or less, 1,490 or less, or 1,480 or less.
  • the number average molecular weight (Mn) of the anhydrous sugar alcohol composition may be 193 to 1,589, specifically 195 to 1,550, more specifically 200 to 1,520, and more specifically It may be 202 to 1,500, and more specifically, it may be 205 to 1,490.
  • the number average molecular weight of the anhydrous sugar alcohol composition is less than 193
  • the compatibility between the anhydrosugar alcohol-alkylene glycol composition and the polyisocyanate prepared therefrom may deteriorate, and conversely, the number average molecular weight of the anhydrosugar alcohol composition If this value exceeds 1,589, when the end-capped isocyanate prepolymer composition prepared using the same is used as an adhesion promoter for an epoxy resin, there is no additional physical property improvement effect, and economic efficiency decreases as the material cost increases.
  • the polydispersity index (PDI) of the anhydrous sugar alcohol composition may be 1.13 or more, 1.15 or more, 1.20 or more, 1.23 or more or 1.25 or more, and also 3.41 or less, 3.40 or less, 3.35 or less, 3.30 or less, 3.25 or less, 3.22 or less, or 3.19 or less.
  • the polydispersity index (PDI) of the anhydrous sugar alcohol composition may be 1.13 to 3.41, specifically 1.13 to 3.40, more specifically 1.15 to 3.35, and more specifically may be 1.20 to 3.25, and more specifically may be 1.23 to 3.22.
  • the polydispersity index of the anhydrous sugar alcohol composition is less than 1.13, the compatibility between the anhydrosugar alcohol-alkylene glycol composition and the polyisocyanate prepared therefrom may deteriorate, and conversely, the polydispersity index of the anhydrosugar alcohol composition When is greater than 3.41, when the end-capped isocyanate prepolymer composition prepared using the same is used as an adhesion promoter for epoxy resin, there is no additional physical property improvement effect, and economic efficiency decreases as the material cost increases.
  • the average number of -OH groups per molecule in the anhydrous sugar alcohol composition may be 2.54 or more, 2.60 or more, 2.65 or more, 2.70 or more, 2.75 or more, or 2.78 or more, and also 21.36 It may be less than or equal to 21.30, less than or equal to 21.0, less than or equal to 20.5, less than or equal to 20.0, less than or equal to 19.95 or less than or equal to 19.92.
  • the average number of —OH groups per molecule in the anhydrous sugar alcohol composition may be 2.54 to 21.36, more specifically 2.60 to 21.30, and more specifically 2.65 to 21.0 can In this embodiment, if the average number of -OH groups per molecule in the anhydrous sugar alcohol composition is less than 2.54, when the end-capped isocyanate prepolymer composition prepared using this is used as an adhesion promoter for epoxy resin, there is no additional physical property improvement effect, Economic efficiency decreases with the increase in cost, and conversely, when the average number of -OH groups per molecule in the anhydrous sugar alcohol composition exceeds 21.36, the compatibility between the anhydrosugar alcohol-alkylene glycol composition and the polyisocyanate prepared therefrom is can fall
  • the anhydrous sugar alcohol composition satisfies the following i) to iii):
  • the number average molecular weight (Mn) of the anhydrous sugar alcohol composition is 193 to 1,589 g/mol;
  • the polydispersity index (PDI) of the anhydrous sugar alcohol composition is 1.13 to 3.41;
  • the average number of -OH groups per molecule in the anhydrous sugar alcohol composition is 2.54 to 21.36.
  • the first polyol component is 0.1 to 20% by weight, specifically 0.6 to 20% by weight, more specifically 0.7 to 15% by weight
  • the second polyol component may be included in 0.1 to 28% by weight, specifically 1 to 25% by weight, more specifically 3 to 20% by weight
  • the third polyol component and the fourth polyol The total content of the components may be 0.1 to 6.5% by weight, specifically 0.5 to 6.4% by weight, more specifically 1 to 6.3% by weight
  • the fifth polyol component may be 55 to 90% by weight, specifically 60 to 6.3% by weight 89.9% by weight, more specifically may be included in 70 to 89.9% by weight, but is not particularly limited thereto.
  • the anhydrosugar alcohol composition is a glucose-containing saccharide composition (eg, glucose; mannose; fructose; and a saccharide composition comprising disaccharides or higher polysaccharides including maltose) by hydrogenation reaction to prepare a hydrogenated sugar composition
  • the obtained hydrogenated sugar composition may be dehydrated by heating under an acid catalyst, and the obtained dehydration reaction product may be prepared by thin film distillation, more specifically, thin film distillate obtained by thin film distillation of the obtained dehydration reaction product After that, it may be the remaining by-product.
  • a hydrogenation reaction is performed on the glucose-containing saccharide composition under hydrogen pressure conditions of 30 to 80 atm and heating conditions of 110 ° C to 135 ° C to prepare a hydrogenated sugar composition, and the obtained hydrogenated sugar composition is dehydrated.
  • the reaction is carried out under reduced pressure conditions of 1 mmHg to 100 mmHg and heating conditions of 105 ° C to 200 ° C to obtain a dehydration reaction product, and thin film distillation of the obtained dehydration reaction product is performed under reduced pressure conditions of 2 mbar or less and 150 ° C to 175 ° C It may be performed under heating conditions of, but is not limited thereto.
  • the glucose content of the glucose-containing saccharide composition may be 41% by weight or more, 42% by weight or more, 45% by weight or more, 47% by weight or more, or 50% by weight or more, based on the total weight of the saccharide composition.
  • 99 wt% or less, 98.5 wt% or less, 98 wt% or less, 97.5 wt% or less, or 97 wt% or less, such as 41 to 99.5 wt%, 45 to 98.5 wt%, or 50 to 98 wt%. may be %.
  • the glucose content in the saccharide composition is less than 41% by weight, the number average molecular weight (Mn) of the anhydrosugar alcohol composition is too high, and the end-capped isocyanate prepolymer composition prepared using this is used as an adhesion promoter for epoxy resin.
  • Mn number average molecular weight
  • Additional physical property improvement effect While there is no, economic feasibility may be reduced due to the increase in material cost, and when it exceeds 99.5% by weight, the number average molecular weight of the anhydrosugar alcohol composition is too low, resulting in poor strength characteristics of the end-capped isocyanate prepolymer composition prepared using it. can lose
  • the content of the polysaccharide alcohol (disaccharide or higher saccharide alcohol) contained in the hydrogenated sugar composition is the total dry weight of the hydrogenated sugar composition (here, the dry weight means the weight of solids remaining after water is removed from the hydrogenated sugar composition) Based on), it may be 0.8% by weight or more, 1% by weight or more, 2% by weight or 3% by weight or more, and 57% by weight or less, 55% by weight or less, 52% by weight or less, 50% by weight or less, or 48% by weight or less It may be, for example, 0.8 to 57% by weight, 1 to 55% by weight, or 3 to 50% by weight.
  • an isocyanate prepolymer composition is prepared by preparing an anhydrous sugar alcohol composition using the hydrogenated sugar alcohol composition and applying the anhydrous sugar alcohol composition, and using the same, an end-capped
  • an isocyanate prepolymer composition is prepared and used as an adhesion promoter for epoxy resin
  • the adhesive properties of the epoxy resin composition may be deteriorated, such as a decrease in adhesion to adherends and surface peeling, and when the content exceeds 57% by weight
  • the process of preparing an anhydrous sugar alcohol composition using such a hydrogenated sugar composition and preparing an isocyanate prepolymer composition or an end-capped isocyanate prepolymer composition using the hydrogenated sugar composition there is a problem in that the composition is cured or gelled.
  • the anhydrous sugar alcohol-alkylene glycol composition refers to a composition obtained by the addition reaction of the above-described anhydrous sugar alcohol composition and alkylene oxide, and accordingly, the anhydrosugar alcohol-alkylene glycol composition comprises the first to the first It includes an adduct obtained by reacting an alkylene oxide with a hydroxyl group at least one terminal of each of the polyol components of 5, and specifically, the anhydrosugar alcohol-alkylene glycol composition is an alkylene oxide adduct of the first polyol component (hereinafter “the 1 anhydrous sugar alcohol-alkylene glycol), an alkylene oxide adduct of the second polyol component (hereinafter referred to as “second anhydrous sugar alcohol-alkylene glycol”), and a third polyol component Alkylene oxide adducts (hereinafter referred to as "third anhydrous sugar alcohol-alkylene glycol”), alkylene oxide adducts of the fourth polyo
  • the alkylene oxide may be a C2-C8 linear or C3-C8 branched alkylene oxide, and more specifically, ethylene oxide, propylene oxide, or a combination thereof.
  • the amount of the alkylene oxide additionally reacted per 100 parts by weight of the anhydrous sugar alcohol composition may be 100 parts by weight to 500 parts by weight. If the added amount of alkylene oxide per 100 parts by weight of the anhydrous sugar alcohol composition is too low than the above level, the reactivity between the prepared anhydrosugar alcohol-alkylene glycol composition and polyisocyanate is reduced so that their reaction does not occur, and the isocyanate prepolymer composition On the contrary, if the added amount of alkylene oxide is excessively higher than the above level, mechanical properties ( For example, T-peel strength) may be deteriorated.
  • mechanical properties For example, T-peel strength
  • the amount of the alkylene oxide subjected to addition reaction per 100 parts by weight of the anhydrous sugar alcohol composition may be, for example, 100 parts by weight or more, 120 parts by weight or more, 150 parts by weight or more, 170 parts by weight or more, or 200 parts by weight or more , It may also be 500 parts by weight or less, 480 parts by weight or less, 450 parts by weight or less, 430 parts by weight or less, or 400 parts by weight or less, but is not limited thereto.
  • the addition reaction of the anhydrous sugar alcohol composition and the alkylene oxide is, for example, 100 °C or more, more specifically at a temperature of 100 °C to 140 °C, 1 hour or more, more specifically 1 hour to 1 hour It may be performed for 5 hours, but is not limited thereto.
  • the polyether polyol may include polyalkylene glycol, and more specifically, may include poly(C 1 -C 6 )alkylene glycol.
  • the polyalkylene glycol may be selected from the group consisting of polyethylene glycol, polypropylene glycol, polytetramethylene ether glycol, or a combination thereof.
  • the number average molecular weight (Mn: unit g / mol) of the polyether polyol may be 500 or more, 600 or more, 700 or more, 800 or more, 900 or more, or 1,000 or more, and also less than 4,000, 3,900 or less, 3,800 or less, 3,700 or less, 3,600 or less, 3,500 or less, 3,400 or less, 3,300 or less, 3,200 or less, 3,100 or less, or 3,000 or less, but is not limited thereto.
  • the number average molecular weight of the polyether polyol may be 500 or more to less than 4,000, or 1,000 to 3,000.
  • the polyol composition includes the previously described anhydrosugar alcohol-alkylene glycol composition and polyether polyol.
  • the OH equivalent ratio of the polyether polyol to the OH equivalent of the anhydrous sugar alcohol-alkylene glycol composition is greater than 0.67 to less than 9.0.
  • the OH equivalent ratio is 0.67 or less, the viscosity of the isocyanate prepolymer composition is too low and workability may be deteriorated.
  • the OH equivalent ratio is 9.0 or more, the number average molecular weight of the isocyanate prepolymer composition is rapidly increased, and workability may also be deteriorated. .
  • the ratio of OH equivalents of the polyether polyol to OH equivalents of the anhydrosugar alcohol-alkylene glycol composition is greater than 0.67, greater than 0.68, greater than 0.7, greater than 0.75, greater than 0.8, greater than 0.85, greater than 0.9, greater than 0.95. or greater than 1.0, less than 9.0, less than 8.9, less than 8.5, less than 8.0, less than 7.5, less than 7.0, less than 6.5, less than 6.0, less than 5.5, less than 5.0, less than 4.5, or less than 4.0, for example greater than 0.67 to less than 9.0, 0.7 to 8.0, 0.8 to 7.0, 0.9 to 6.0, 1 to 5.5 or 1 to 4.0.
  • the polyol composition may include 2.4 to 24.4 parts by weight of the anhydrosugar alcohol-alkylene glycol composition and 75.6 to 97.6 parts by weight of the polyether polyol, based on 100 parts by weight of the polyol composition.
  • the end-capped isocyanate prepolymer composition prepared using the same is used as an adhesion promoter for epoxy resin Epoxy resin composition
  • Mechanical properties (eg, shear strength and T-peel strength) of the cured product may be deteriorated.
  • the content of the anhydrosugar alcohol-alkylene glycol composition in the polyol composition is 2.4 parts by weight or more, 2.5 parts by weight or more, 3.0 parts by weight or more, 3.5 parts by weight or more, 4.0 parts by weight or more based on 100 parts by weight of the polyol composition.
  • the polyether polyol content in the polyol composition is 75.6 parts by weight or more, 76 parts by weight or more, 77 parts by weight or more, 78 parts by weight or more, 79 parts by weight or more, 80 parts by weight or more based on 100 parts by weight of the polyol composition. It may be 81 parts by weight or more, 82 parts by weight or more, or 82.2 parts by weight or more, and may be 97.6 parts by weight or less, 97 parts by weight or less, 96 parts by weight or less, 95 parts by weight or less, or 94.9 parts by weight or less.
  • the polyol composition may optionally further include a polyol component other than the anhydrosugar alcohol-alkylene glycol composition and polyether polyol.
  • the polyol component other than the anhydrosugar alcohol-alkylene glycol composition and polyether polyol is a polyester polyol, a polycaprolactone diol, a polymer polyol obtained by polymerizing these polyols and a vinyl compound, or a combination thereof
  • a vinyl compound or a combination thereof
  • the vinyl compound acrylonitrile, styrene, methyl methacrylonitrile, etc. are widely used, and acrylonitrile may be used alone or in combination with styrene.
  • the isocyanate prepolymer composition of the present invention is produced by subjecting the previously described polyol composition and polyisocyanate to a urethane reaction.
  • the ratio of total NCO equivalents of polyisocyanate to total OH equivalents of the polyisocyanate is greater than 1.4 to 2.0 is less than
  • NCO/OH index is 1.4 or less
  • the average molecular weight of the isocyanate prepolymer composition rapidly increases, resulting in poor workability.
  • the NCO/OH index is 2.0 or more
  • the viscosity of the isocyanate prepolymer composition is too low, resulting in poor workability. can fall
  • the NCO / OH index may be greater than 1.4, greater than 1.41, greater than 1.43, greater than 1.45, greater than 1.47, greater than 1.49, or greater than 1.5, less than 2.0, less than 1.99, less than 1.97, less than 1.95, less than 1.93, less than 1.91 It may be less than or equal to 1.9, and may be, for example, greater than 1.4 and less than 2.0, 1.45 to 1.95, 1.45 to 1.9, or 1.5 to 1.9.
  • the isocyanate prepolymer composition by adjusting the OH equivalent ratio between the OH equivalent of the polyether polyol used as the polyol component described above and the OH equivalent of the anhydrosugar alcohol-alkylene glycol composition, and the NCO / OH index to a specific range, the isocyanate prepolymer composition
  • the number average molecular weight can be adjusted within a specific range.
  • the number average molecular weight of the isocyanate prepolymer composition increases.
  • the NCO / OH index decreases, the number average molecular weight of the isocyanate prepolymer composition relatively increases, and conversely, when the NCO / OH index increases, the number average molecular weight of the isocyanate prepolymer composition relatively decreases.
  • the number average molecular weight (Mn: g/mol) of the isocyanate prepolymer composition may be 4,975 or more, 5,000 or more, 5,050 or more, 5,100 or more, 5,150 or more, or 5,167 or more, and 8,014 or less, 8,000 or less, 7,950 or less, 7,900 It may be 7,850 or less, 7,800 or less, or 7,780 or less, for example, 4,975 to 8,014, 5,000 to 8,000, 5,100 to 7,900, 5,150 to 7,800, or 5,167 to 7,780.
  • the present invention comprises the step of urethane-reacting a polyol composition and a polyisocyanate comprising an anhydrous sugar alcohol-alkylene glycol composition and a polyether polyol, and the anhydrosugar alcohol-alkylene glycol composition in OH equivalent
  • the OH equivalent ratio of the polyether polyol is greater than 0.67 and less than 9.0, and the total NCO of the polyisocyanate relative to the total OH equivalent of the polyol composition
  • the equivalence ratio total NCO equivalents of polyisocyanate/total OH equivalents of polyol composition
  • the anhydrous sugar alcohol-alkylene glycol composition is prepared by addition reaction of anhydrosugar alcohol composition and alkylene oxide
  • the anhydrosugar-alcohol composition includes first to fifth polyol components
  • n is an integer from 0 to 4.
  • anhydrosugar alcohol composition alkylene oxide, anhydrosugar alcohol-alkylene glycol composition and polyether polyol are described above.
  • the polyisocyanate may be used without particular limitation as long as it can be used for producing polyurethane.
  • polyisocyanates selected from the group consisting of aliphatic polyisocyanates, cycloaliphatic polyisocyanates, araliphatic polyisocyanates, aromatic polyisocyanates, heterocyclic polyisocyanates, or combinations thereof may be used, and unmodified polyisocyanates may also be used. Both isocyanates or modified polyisocyanates may be used.
  • examples of the polyisocyanate include methylenediphenyl diisocyanate (MDI) (eg, 2,4- or 4,4'-methylenediphenyl diisocyanate), xylylene diisocyanate (XDI), m- or p-tetramethylxylylene diisocyanate (TMXDI), toluene diisocyanate (TDI), di- or tetra-alkyldiphenylmethane diisocyanate, 3,3'-dimethyldiphenyl-4,4'-diisocyanate (TODI ), phenylene diisocyanate (e.g., 1,3-phenylene diisocyanate, 1,4-phenylene diisocyanate), naphthalene diisocyanate (NDI), or 4,4'-dibenzyl diisocyanate.
  • MDI methylenediphenyl diisocyanate
  • XDI xylylene di
  • Hydrogenated MDI H12MDI
  • 1-methyl-2,4-diisocyanatocyclohexane 1,12-diisocyanatododecane
  • 1,6-diisocyanato-2,2,4-trimethylhexane 1,6 -Diisocyanato-2,4,4-trimethylhexane
  • isophorone diisocyanate IPDI
  • hexamethylene diisocyanate HDI
  • dimer fatty acid diisocyanate dicyclohexylmethane diisocyanate
  • cyclohexane diisocyanate eg cyclohexane-1,4-diisocyanate
  • ethylene diisocyanate aliphatic polyisocyanates H12MDI
  • examples of the polyisocyanate include methylenediphenyl diisocyanate (MDI), ethylene diisocyanate, 1,4-tetramethylene diisocyanate, 1,6-hexamethylene diisocyanate, 1,12-dodecane diisocyanate Isocyanate, cyclobutane-1,3-diisocyanate, cyclohexane-1,3-diisocyanate, cyclohexane-1,4-diisocyanate, isophorone diisocyanate, 2,4-hexahydrotoluene diisocyanate, 2,6 -Hexahydrotoluene diisocyanate, dicyclohexylmethane-4,4'-diisocyanate (HMDI), 1,3-phenylene diisocyanate, 1,4-phenylene diisocyanate, 2,4-toluene diisocyanate, 2 ,6-toluen
  • the polyisocyanate may be methylenediphenyl diisocyanate (MDI), toluene diisocyanate (TDI), hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), or a combination thereof.
  • MDI methylenediphenyl diisocyanate
  • TDI toluene diisocyanate
  • HDI hexamethylene diisocyanate
  • IPDI isophorone diisocyanate
  • the urethane reaction may be performed in the presence of a catalyst, such as an amine catalyst, an organometallic catalyst, or a mixture thereof.
  • a catalyst such as an amine catalyst, an organometallic catalyst, or a mixture thereof.
  • the type of the amine catalyst is not particularly limited, but preferably one or a mixture of two or more selected from tertiary amine catalysts may be used, and more specifically, triethylene diamine and triethylamine , N-methyl morpholine, N-ethyl morpholine, or a combination thereof.
  • the type of the organometallic catalyst is also not particularly limited, but, for example, an organotin catalyst, more specifically, tin octylate, dibutyltin dilaurate (DBTDL), tin bis[2-ethylhexanoate], or a combination thereof. What is selected from the group consisting of can be used.
  • an organotin catalyst more specifically, tin octylate, dibutyltin dilaurate (DBTDL), tin bis[2-ethylhexanoate], or a combination thereof. What is selected from the group consisting of can be used.
  • the urethane reaction is performed under elevated temperature (eg, 50 to 100 ° C, preferably 50 to 70 ° C) for an appropriate time (eg, 0.1 to 5 hours, preferably 0.5 to 2 hours) It may be, but is not limited thereto.
  • the present invention also provides an end-capped isocyanate prepolymer composition prepared by reacting the above-described isocyanate prepolymer composition of the present invention with an end capping agent.
  • the present invention also provides an adhesion promoter for epoxy resins comprising the above-described end-capped isocyanate prepolymer composition.
  • the present invention also relates to an adhesion promoter for the above epoxy resin; It provides an epoxy resin composition comprising a; and an epoxy resin.
  • the present invention also provides an adhesive comprising the above epoxy resin composition.
  • the amount of the adhesion promoter for epoxy resin included in the epoxy resin composition of the present invention may be greater than 5 parts by weight and less than 35 parts by weight based on 100 parts by weight of the total epoxy resin composition. If the content of the adhesion promoter for the epoxy resin in 100 parts by weight of the epoxy resin composition is 5 parts by weight or less, surface peeling may occur in the cured product of the epoxy resin composition, and the impact strength at room temperature may be poor, and conversely, the adhesion for the epoxy resin may be deteriorated. If the content of the accelerator is 35 parts by weight or more, the T-peel strength and impact strength at room temperature of the cured product of the epoxy resin composition may be deteriorated.
  • the content of the adhesion promoter for the epoxy resin in 100 parts by weight of the epoxy resin composition is greater than 5 parts by weight, greater than 6 parts by weight, greater than 7 parts by weight, greater than 8 parts by weight, greater than 9 parts by weight, or greater than 10 parts by weight. It may also be less than 35 parts by weight, 34 parts by weight or less, 33 parts by weight or less, 32 parts by weight or less, 31 parts by weight or less, or 30 parts by weight or less.
  • the end-capping agent is one selected from the group consisting of phenol-based compounds, triazine-based compounds, alcohol compounds, amine compounds, benzene-based compounds, dicarboxylic acid ester-based compounds, novolac-based compounds, or combinations thereof More specifically, phenolic compounds (e.g., allylphenol, t-butylphenol, phenol, bisphenol A, bisphenol M, bisphenol F, 1,3-dihydroxybenzene, 1,4-dihydroxy Benzene, 1,2-dihydroxybenzene, phenolphthalein, o,o'-diallylbisphenol A, phenolphthalein, or combinations thereof), benzene-based compounds (e.g., fluoroglucinol, resorcinol, naphthorezo selected from the group consisting of ricinol, or combinations thereof), dicarboxylic acid ester compounds (eg, gallic acid esters, maleic acid esters, or combinations thereof), novolac compounds (eg,
  • the epoxy resins may be solid, liquid or semi-solid, and may have various reactivity depending on the application to which they are applied.
  • the reactivity of epoxy resins is often measured in terms of epoxy equivalent weight, which is the molecular weight of a resin containing a single reactive epoxy group. The lower the epoxy equivalent, the higher the reactivity of the epoxy resin.
  • the epoxy resin includes bisphenol A-epichlorohydrin resin, diglycidyl ether resin of bisphenol A, novolak-type epoxy resin, alicyclic epoxy resin, aliphatic epoxy resin, bi-dicyclic epoxy resin, It may be selected from the group consisting of glycidyl ester type epoxy resin, brominated epoxy resin, bio-derived epoxy resin, epoxidized soybean oil, or a combination thereof, but is not limited thereto.
  • the epoxy resin is a novolac-type epoxy resin such as a phenol novolac-type epoxy resin or a cresol novolac-type epoxy resin, a bisphenol-type epoxy resin such as a bisphenol A-type epoxy resin or a bisphenol F-type epoxy resin, Aromatic glycidylamine-type epoxy resins such as N,N-diglycidylaniline, N,N-diglycidyltoluidine, diaminodiphenylmethane-type glycidylamine, and aminophenol-type glycidylamine; Quinone type epoxy resin, biphenyl type epoxy resin, stilbene type epoxy resin, triphenolmethane type epoxy resin, triphenolpropane type epoxy resin, alkyl modified triphenolmethane type epoxy resin, triazine nucleus containing epoxy resin, dicyclopentadiene Modified phenol type epoxy resin, naphthol type epoxy resin, naphthalene type epoxy resin, phenol aralkyl type epoxy resin
  • aralkyl-type epoxy resins vinylcyclohexene dioxide, dicyclopentadiene oxide, aliphatic epoxy resins such as alicyclic epoxies such as alicyclic diepoxy-adipade, or combinations thereof, but may be selected from the group consisting of, Not limited to this.
  • the epoxy resin is a bisphenol F-type epoxy resin, a cresol novolac-type epoxy resin, a phenol novolak-type epoxy resin, a biphenyl-type epoxy resin, a stilbene-type epoxy resin, a hydroquinone-type epoxy resin, naphthalene Skeleton type epoxy resin, tetraphenylolethane type epoxy resin, diphenyl phosphate (DPP) type epoxy resin, trishydroxyphenylmethane type epoxy resin, dicyclopentadienephenol type epoxy resin, diglycy of bisphenol A ethylene oxide adduct Glycidyl ethers having one epoxy group such as diglycidyl ether, diglycidyl ether of bisphenol A propylene oxide adduct, diglycidyl ether of bisphenol A, phenyl glycidyl ether, and cresyl glycidyl ether; these Nuclear hydrogenated epoxy resins, which are nuclear hydrogenation products of epoxy resins
  • the reaction of the end-capped isocyanate prepolymer composition and the epoxy resin is a cyclization reaction of the end-capped isocyanate prepolymer composition and the epoxy resin, which is a catalyst, e.g., in the presence of a basic catalyst such as an organoammonium salt compound.
  • a catalyst e.g., in the presence of a basic catalyst such as an organoammonium salt compound.
  • Under, under elevated temperature eg, 100 to 200 ° C., preferably 120 to 180 ° C.
  • an appropriate time eg, 0.1 to 5 hours, preferably 0.5 to 2 hours, but is not limited thereto. .
  • the adhesion promoter for epoxy resins of the present invention may consist only of the end-capped isocyanate prepolymer composition of the present invention.
  • the adhesion promoter for epoxy resins of the present invention may further include an additional adhesion promoter component in addition to the end-capped isocyanate prepolymer composition of the present invention within the range capable of achieving the object of the present invention, ,
  • an adhesion promoter component usable for epoxy resins may be used.
  • a polyurethane-modified epoxy resin a polyurethane-modified silyl epoxy resin, or a combination thereof may be used, but is not limited thereto.
  • the epoxy resin composition of the present invention in addition to the above-described adhesion promoter for epoxy resin and the epoxy resin, may further include at least one selected from a curing agent, a curing accelerator, a filler, an impact modifier, or a combination thereof. .
  • curing agents commonly used in this field may be used alone or in combination of two or more, for example, amines such as benzyldimethylamine, tris(dimethylaminomethyl)phenol, and dimethylcyclohexylamine.
  • tertiary amines imidazole compounds such as 1-cyanoethyl-2-ethyl-4-methylimidazole, 2-ethyl-4-methylimidazole, and 1-benzyl-2-methylimidazole; organophosphorus compounds such as triphenylphosphine and triphenyl phosphite; quaternary phosphonium salts such as tetraphenylphosphonium bromide and tetra-n-butylphosphonium bromide; diazabicycloalkenes such as 1,8-diazabicyclo[5.4.0]undecene-7 and organic acid salts thereof; organometallic compounds such as zinc octylate, tin octylate and aluminum acetylacetone complex; quaternary ammonium salts such as tetraethylammonium bromide and tetrabutylammonium bromide; boron compounds such as
  • the curing agent one selected from the group consisting of an amine compound, an imidazole compound, an organic phosphorus compound, a latent curing agent, or a combination thereof may be used.
  • Room temperature curing of epoxy resin usually requires a temperature of 15 ° C or higher and a curing time of 24 hours or more, so fast curing and low-temperature curing are sometimes necessary.
  • the epoxy resin composition of the present invention may further include a curing accelerator.
  • the curing accelerator include urea-based compounds, thiourea-based compounds, Lewis acid-based compounds, or mixtures thereof, and specifically, butylated urea, butylated melamine, butylated thiourea, boron trifluoride, and the like. Examples include, but are not limited to.
  • the amount used may be 0.01 part by weight to 1.0 part by weight, more specifically 0.05 part by weight to 0.5 part by weight, based on 100 parts by weight of the total of the epoxy resin and the curing agent. It may be, and more specifically may be 0.08 parts by weight to 0.2 parts by weight, but is not limited thereto. If the amount of the curing accelerator is too small, the curing reaction of the epoxy resin may not sufficiently proceed, resulting in deterioration of mechanical and thermal properties. Since this progresses slowly, there may be a problem of increasing the viscosity.
  • the filler is used for the main purpose of improving the mechanical properties of a cured product by mixing it with an epoxy resin or a curing agent, and generally, mechanical properties are improved when the amount added is increased.
  • Inorganic fillers include extenders such as talc, sand, silica, talc, and calcium carbonate; reinforcing fillers such as mica, quartz, and glass fibers; There are those with special uses such as quartz powder, graphite, alumina, and aerosil (for the purpose of imparting thixotropic properties).
  • Metals include aluminum, aluminum oxide, iron, iron oxide, and copper, which contribute to thermal expansion coefficient, abrasion resistance, thermal conductivity, and adhesion.
  • thixotropic refers to the property of a liquid state when flowing and a solid state when stationary so that resin impregnated into a laminate or attached to a vertical plane or immersion method does not flow or lose during curing. refers to having), fine particles with a large unit surface area are used.
  • colloidal silica Alignment
  • bentonite-based clay is used.
  • the filler is not particularly limited, but for example, one selected from the group consisting of glass fiber, carbon fiber, titanium oxide, alumina, talc, mica, aluminum hydroxide, calcium carbonate, or combinations thereof may be used.
  • the content of the filler in the composition may be 0.01 to 80 parts by weight, or 0.01 to 60 parts by weight, or 0.1 to 50 parts by weight based on 100 parts by weight of the total of the epoxy resin and the curing agent.
  • the impact modifier is one of the modifiers used to improve the performance of the material and serves to improve physical properties such as impact strength and processability by being added during the preparation of the epoxy resin composition.
  • the impact modifier includes, for example, rubber-based impact modifiers such as carboxyl terminated butadiene acrylonitrile (CTBN) and amine terminated butadiene acrylonitrile (ATBN), poly Ethersulfone, polyetherimide, polycarbonate, polyimide, polyamide, Acrylonitrile butadiene styrene (ABS) and methacrylate butadiene styrene ( Methacrylate butadiene styrene, MBS), or a mixture thereof may be used.
  • CTBN carboxyl terminated butadiene acrylonitrile
  • ATBN amine terminated butadiene acrylonitrile
  • ABS Acrylonitrile butadiene styrene
  • MBS Methacrylate butadiene styrene
  • the epoxy resin composition of the present invention may further include one or more additive components commonly used in epoxy resin compositions, if necessary.
  • Such additive components include, for example, an antioxidant, a UV absorber, a resin modifier, a silane coupling agent, a diluent, a colorant, an antifoaming agent, a defoaming agent, a dispersing agent, a viscosity modifier, a gloss modifier, a wetting agent, a conductivity imparting agent, or combinations thereof. It can be used that is selected from.
  • the antioxidant may be used to further improve heat resistance stability of the cured product obtained, and is not particularly limited, but examples thereof include phenolic antioxidants (dibutylhydroxytoluene, etc.), sulfur-based antioxidants (mercaptopropionic acid derivatives, etc.) , phosphorus antioxidants (9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, etc.) or combinations thereof.
  • the content of the antioxidant in the composition may be 0.01 to 10 parts by weight, 0.05 to 5 parts by weight, or 0.1 to 3 parts by weight based on 100 parts by weight of the total of the epoxy resin and the curing agent.
  • the benzotriazole type UV absorber represented by BASF Japan Ltd. TINUBIN P and TINUVIN 234; triazine-based UV absorbers such as TINUVIN 1577ED; A hindered amine-based UV absorber such as CHIMASSOLV 2020FDL or a combination thereof may be used.
  • the content of the UV absorber in the composition may be 0.01 to 10 parts by weight, or 0.05 to 5 parts by weight, or 0.1 to 3 parts by weight based on 100 parts by weight of the total of the epoxy resin and the curing agent.
  • the resin modifier examples include, but are not particularly limited to, flexibility imparting agents such as polypropylene glycidyl ether, polymerized fatty acid polyglycidyl ether, polypropylene glycol, and urethane prepolymer.
  • the content of the resin modifier in the composition may be 0.01 to 80 parts by weight, or 0.01 to 50 parts by weight, or 0.1 to 20 parts by weight based on 100 parts by weight of the total of the epoxy resin and the curing agent.
  • the silane coupling agent is not particularly limited, and examples thereof include chloropropyltrimethoxysilane, vinyltrichlorosilane, ⁇ methacryloxypropyltrimethoxysilane, and ⁇ aminopropyltriethoxysilane. .
  • the content of the silane coupling agent in the composition may be 0.01 to 20 parts by weight, or 0.05 to 10 parts by weight, or 0.1 to 5 parts by weight based on 100 parts by weight of the total of the epoxy resin and the curing agent.
  • the diluent is used for the main purpose of reducing the viscosity by adding it to an epoxy resin or curing agent, and when used, it serves to improve flowability, defoaming property, improve penetration into details of parts, or to effectively add fillers. .
  • Diluents generally do not volatilize unlike solvents and remain in the cured product during resin curing, and are divided into reactive and non-reactive diluents.
  • the reactive diluent has one or more epoxy groups and participates in the reaction to form a cross-linked structure in the cured product, and the non-reactive diluent remains only physically mixed and dispersed in the cured product.
  • Commonly used reactive diluents include Butyl Glycidyl Ether (BGE), Phenyl Glycidyl Ether (PGE), and Aliphatic Glycidyl Ether (C12 -C14). , Modified-tert-Carboxylic Glycidyl Ester, etc.
  • Commonly used non-reactive diluents include dibutyl phthalate (DBP), dioctyl phthalate (DOP), nonyl-phenol, hysol, and the like.
  • the diluent is not particularly limited, but examples include n-butyl glycidyl ether, phenyl glycidyl ether, glycidyl methacrylate, vinylcyclohexene dioxide, diglycidyl aniline, Glycerin triglycidyl ether or one selected from the group consisting of combinations thereof may be used.
  • the content of the diluent in the composition may be 0.01 to 80 parts by weight, or 0.01 to 50 parts by weight, or 0.1 to 20 parts by weight based on 100 parts by weight of the total of the epoxy resin and the curing agent.
  • a pigment or dye is used as a colorant for adding color to the resin.
  • Commonly used pigments include colorants such as titanium dioxide, cadmium red, channing green, carbon black, chrome green, chrome yellow, navy blue, and channing blue.
  • antifoaming and defoaming agents used for the purpose of removing air bubbles in resins dispersing agents for increasing the dispersion effect of resins and pigments, wetting agents for improving adhesion between epoxy resins and materials, and viscosity modifiers , gloss control agents for adjusting the glossiness of resin, additives for improving adhesion, additives for imparting electrical properties, and the like, various additives can be used.
  • the curing method of the epoxy resin composition of the present invention is not particularly limited, and a conventionally known curing apparatus such as a closed curing furnace or a tunnel furnace capable of continuous curing can be used.
  • the heating method used for the curing is not particularly limited, but conventionally known methods such as hot air circulation, infrared heating, and high frequency heating can be used.
  • Curing temperature and curing time may be in the range of 30 seconds to 10 hours at 80 ° C. to 250 ° C. In one embodiment, after fore-curing under the conditions of 80 °C ⁇ 120 °C, 0.5 hours to 5 hours, it can be post-cured under the conditions of 120 °C ⁇ 180 °C, 0.1 hours to 5 hours. In one embodiment, it can be cured under conditions of 150 ° C. to 250 ° C., 30 seconds to 30 minutes for short-time curing.
  • the epoxy resin composition of the present invention is divided into two or more components, for example, a component including a curing agent and a component including an epoxy resin, and stored, and these may be combined before curing.
  • the epoxy resin composition of the present invention may be stored as a thermosetting composition in which each component is blended, and may be used for curing as it is. When stored as a thermosetting composition, it can be stored at low temperature (usually -40°C to 15°C).
  • 1,819 g of polysaccharide alcohol (% by weight and disaccharide or higher polysaccharide alcohol 3.1% by weight) was obtained, which was put into a batch reactor equipped with a stirrer and heated to 100 ° C. to concentrate, thereby obtaining 1,000 g of a concentrated hydrogenated sugar composition.
  • a reactor was charged with 1,000 g of the concentrated hydrogenated sugar composition and 9.6 g of sulfuric acid. Thereafter, the temperature inside the reactor was raised to about 135 ° C, and a dehydration reaction was performed under a reduced pressure of about 45 mmHg to convert to anhydrous sugar alcohol. After completion of the dehydration reaction, the temperature of the reaction product was cooled to 110 ° C or less, and about 15.7 g of 50% sodium hydroxide aqueous solution was added to neutralize the reaction product. Thereafter, the temperature was cooled to 100 ° C or lower and concentrated for 1 hour or more under a reduced pressure of 45 mmHg to remove residual moisture and low-boiling substances to obtain about 831 g of anhydrous sugar alcohol conversion solution.
  • isosorbide (dianhydrosugar alcohol) [second polyol component] 11.5% by weight, isomannide (dianhydrosugar alcohol) [second polyol component] 0.4% by weight, sorbitan (anhydrous sugar alcohol) 0.4% by weight alcohol) [first polyol component] 7.4% by weight, polysaccharide alcohol represented by Formula 1 [third polyol component] and anhydrosugar alcohol derived therefrom (ie, formed by removing water molecules from polysaccharide alcohol) [agent 4 polyol component] and 78.2% by weight of their polymer [fifth polyol component], the number average molecular weight of the composition is 208 g / mol, the polydispersity index of the composition is 1.25, the composition About 242 g of an anhydrous sugar alcohol composition having a hydroxyl value of 751 mg KOH/g and an average number of -OH groups per molecule of 2.78 in the composition was obtained.
  • Preparation Example 2 Anhydrosugar alcohol-alkylene glycol composition prepared by addition reaction of 300 parts by weight of propylene oxide per 100 parts by weight of the anhydrous sugar alcohol composition of Preparation Example 1
  • metal adsorbent (Ambosol MP20) was added to remove metals and by-products, the temperature inside the reactor was raised again, and the metal content was monitored while stirring at 100 ° C to 120 ° C for 1 to 5 hours, and then the metal was completely removed. If not detected, the temperature inside the reactor was cooled to 60°C to 90°C and filtered. Thereafter, 350 g of anhydrosugar alcohol-alkylene glycol composition was obtained by purifying the filtrate using an ion exchange resin (UPRM 200, Samyang Corporation).
  • UPRM 200 an ion exchange resin
  • the content of the anhydrosugar alcohol-alkylene glycol composition obtained in Preparation Example 2 was changed from 12.95 g to 10.36 g, and the content of polytetramethylene ether glycol (number average molecular weight: 2,000 g/mol, Sigma Aldrich (product))
  • An isocyanate prepolymer composition was prepared in the same manner as in Example A1, except that the amount was changed from 60 g to 72 g, and allyl phenol (Sigma Aldrich (product) was replaced with t-butyl phenol (Sigma Aldrich (product)) as an end capping agent. )) to obtain 90 g of an end-capped isocyanate prepolymer composition in the same manner as in Example A1, except that 1.4 equivalents of NCO were used.
  • the content of the anhydrosugar alcohol-alkylene glycol composition obtained in Preparation Example 2 was changed from 12.95 g to 5.18 g, and the content of polytetramethylene ether glycol (number average molecular weight: 2,000 g/mol, Sigma Aldrich (product)) was changed.
  • An isocyanate prepolymer composition was prepared in the same manner as in Example A1, except that the amount was changed from 60 g to 96 g, and 90 g of an end-capped isocyanate prepolymer composition was obtained in the same manner as in Example A1.
  • the content of the anhydrosugar alcohol-alkylene glycol composition obtained in Preparation Example 2 was changed from 12.95 g to 10.36 g, and the content of polytetramethylene ether glycol (number average molecular weight: 2,000 g/mol, Sigma Aldrich (product))
  • An isocyanate prepolymer composition was prepared in the same manner as in Example A1, except that the amount of isophorone diisocyanate was changed from 60 g to 72 g, and the content of isophorone diisocyanate was changed from 22.67 g to 20.01 g. 90 g of a capped isocyanate prepolymer composition was obtained.
  • the content of the anhydrosugar alcohol-alkylene glycol composition obtained in Preparation Example 2 was changed from 12.95 g to 10.36 g, and the content of polytetramethylene ether glycol (number average molecular weight: 2,000 g/mol, Sigma Aldrich (product))
  • An isocyanate prepolymer composition was prepared in the same manner as in Example A1, except that the amount of isophorone diisocyanate was changed from 60 g to 72 g, and the content of isophorone diisocyanate was changed from 22.67 g to 25.34 g. 90 g of a capped isocyanate prepolymer composition was obtained.
  • the content of the anhydrosugar alcohol-alkylene glycol composition obtained in Preparation Example 2 was changed from 12.95 g to 15.54 g, and the content of polytetramethylene ether glycol (number average molecular weight: 2,000 g/mol, Sigma Aldrich (product)) Except for changing from 60 g to 48 g, an isocyanate prepolymer composition was prepared in the same manner as in Example A1, and 100 g of an end-capped isocyanate prepolymer composition was obtained in the same manner as in Example A1.
  • the content of the anhydrous sugar alcohol-alkylene glycol composition obtained in Preparation Example 2 was changed from 12.95 g to 2.59 g, and the content of polytetramethylene ether glycol (number average molecular weight: 2,000 g/mol, Sigma Aldrich (product)) Except for changing from 60 g to 108 g, an isocyanate prepolymer composition was prepared in the same manner as in Example A1, and 100 g of an end-capped isocyanate prepolymer composition was obtained in the same manner as in Example A1.
  • the content of the anhydrosugar alcohol-alkylene glycol composition obtained in Preparation Example 2 was changed from 12.95 g to 10.36 g, and the content of polytetramethylene ether glycol (number average molecular weight: 2,000 g/mol, Sigma Aldrich (product))
  • An isocyanate prepolymer composition was prepared in the same manner as in Example A1, except that the amount of isophorone diisocyanate was changed from 60 g to 72 g, and the content of isophorone diisocyanate was changed from 22.67 g to 18.67 g. 100 g of the capped isocyanate prepolymer composition was obtained.
  • the content of the anhydrosugar alcohol-alkylene glycol composition obtained in Preparation Example 2 was changed from 12.95 g to 10.36 g, and the content of polytetramethylene ether glycol (number average molecular weight: 2,000 g/mol, Sigma Aldrich (product))
  • An isocyanate prepolymer composition was prepared in the same manner as in Example A1, except that the amount of isophorone diisocyanate was changed from 60 g to 72 g, and the content of isophorone diisocyanate was changed from 22.67 g to 26.68 g. 100 g of the capped isocyanate prepolymer composition was obtained.
  • composition and number average molecular weight of the isocyanate prepolymer compositions prepared in Examples A1 to A5 and Comparative Examples A1 to A4 are shown in Table 1 below.
  • an epoxy resin a diglycidyl ether of bisphenol A (DGEBA)-based epoxy resin (YD-128, Kukdo Chemical Co., Ltd.), a hardener for epoxy resin (dicyandiamide (DICY ), Evonik (manufactured by), Dicyanex 1400F) and a urea derivative (Evonik (manufactured), Amicure UR-D) as a curing accelerator for epoxy resin, calcium carbonate (CaCO 3 , OMYA Co.
  • DGEBA diglycidyl ether of bisphenol A
  • DIY dicyandiamide
  • Evonik manufactured by
  • Dicyanex 1400F Dicyanex 1400F
  • a urea derivative Evonik (manufactured)
  • Amicure UR-D as a curing accelerator for epoxy resin
  • CaCO 3 calcium carbonate
  • Epoxy resin compositions of Examples C1 to C7 and Comparative Examples C1 to C5 were prepared by mixing an epoxy resin, a curing agent, a curing accelerator, a filler, a septum reinforcing agent, and an adhesion promoter according to the compositions shown in Table 2 below. At this time, the sum of parts by weight of all components was 100 parts by weight in total.
  • epoxy resin, impact modifier, adhesion promoter, curing agent, curing accelerator and filler were put into a 200 mL paste mixer PE bottle with upper and lower parts separated, and mixed for 10 minutes using a paste mixer (THINKY), followed by 1 minute
  • An epoxy resin composition was prepared by performing defoaming and mixing during the process.
  • T-peel strength was measured according to the ASTM D-1876 standard. Specifically, a cold-rolled steel sheet having a length of 150 mm ⁇ a width of 25 mm ⁇ a thickness of 1 mm was bent at right angles, and at this time, the lengths of each side were 70 mm and 80 mm after bending. Each of the epoxy resin compositions obtained in Examples C1 to C7 and Comparative Examples C1 to C5 was applied as an adhesive to a surface of 80 mm in length ⁇ 25 mm in width, and then a small amount of microbeads were laminated thereon to maintain a constant adhesive thickness. . After that, another cold-rolled steel sheet was covered and fixed thereon, and cured at 180° C. for 30 minutes.
  • the T-peel strength was measured using a universal tester for the adhesive specimen cooled to 23 ° C. At this time, the measurement of the T-peel strength was performed while applying a load in the direction of 180 degrees at a tensile rate of 50 mm/min. At this time, the T-peel strength was measured 5 times for each adhesive specimen, and the average value is shown in Table 3 below.
  • Room temperature impact strength was measured according to the ISO 11343 standard. Specifically, a steel specimen having a size of 90 mm in length x 20 mm in width x 1 mm in thickness, with a 30 mm end portion used as an adhesive surface and a non-bonded end portion in the shape of a tuning fork, was used. Each of the epoxy resin compositions obtained in Examples C1 to C7 and Comparative Examples C1 to C5 was applied to the adhesive surface of the 30 mm end, and then a small amount of microbeads were laminated thereon to maintain a constant adhesive thickness. After that, another steel specimen was covered and fixed thereon, and cured at 180° C. for 30 minutes.
  • the room temperature impact strength was measured using a drop impact tester for the adhesive specimen cooled to room temperature (25 ° C). At this time, the room temperature impact strength was tested so that the wedge jig passed through the adhesive part of the adhesive part, and the impact speed was It was carried out at 2 m / s to 3 m / s At this time, room temperature impact strength was measured 5 times for each adhesive specimen, and the average value is shown in Table 3 below.
  • the adhesive specimens of Examples C1 to C7 according to the present invention exhibited a T-peel strength of 309.5 N / 25 mm or more and an impact strength at room temperature of 38.1 N / mm or more, thereby implementing excellent adhesive properties in various aspects confirmed.
  • the adhesive specimens of Comparative Examples C1 to C4 had very poor T-peel strength of 205.1 N/25 mm or less, or very poor impact strength of 24.5 N/mm or less at room temperature, or surface peeling occurred, resulting in T-peel strength.
  • the room temperature impact strength could not be measured because it could not be measured or because unstable cracks were generated.
  • the adhesive specimen of Comparative Example C5 could not measure both T-peel strength and room temperature impact strength because surface peeling and unstable cracks occurred.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

본 발명은 이소시아네이트 프리폴리머 조성물 및 그 용도에 관한 것으로서, 보다 구체적으로는, 일무수당 알코올, 이무수당 알코올, 다당류 알코올, 다당류 알코올 유래 무수당 알코올, 및 이들 중 하나 이상의 중합체를 포함하는 무수당 알코올 조성물에 알킬렌 옥사이드를 부가한 무수당 알코올-알킬렌 글리콜 조성물 및 폴리에테르 폴리올을 포함하는 폴리올 조성물과 폴리이소시아네이트를 우레탄 반응시켜 제조되며, 친환경적이고, 특히, 이를 활용하여 제조된 말단 캡핑된 이소시아네이트 프리폴리머 조성물이 에폭시 수지용 접착 촉진제로서 적용된 접착용 에폭시 수지 조성물의 인장 강도, T-박리강도 및 상온 충격 강도를 향상시킬 수 있는 이소시아네이트 프리폴리머 조성물, 이 프리폴리머 조성물을 이용한 말단 캡핑된 이소시아네이트 프리폴리머 조성물 및 이를 포함하는 에폭시 수지용 접착 촉진제, 및 이 접착 촉진제를 포함하는 에폭시 수지 조성물 및 이를 포함하는 접착제에 관한 것이다.

Description

이소시아네이트 프리폴리머 조성물, 이 프리폴리머 조성물을 이용한 말단 캡핑된 이소시아네이트 프리폴리머 조성물 및 이를 포함하는 에폭시 수지용 접착 촉진제, 및 이 접착 촉진제를 포함하는 에폭시 수지 조성물 및 이를 포함하는 접착제
본 발명은 이소시아네이트 프리폴리머 조성물 및 그 용도에 관한 것으로서, 보다 구체적으로는, 일무수당 알코올, 이무수당 알코올, 다당류 알코올, 다당류 알코올 유래 무수당 알코올, 및 이들 중 하나 이상의 중합체를 포함하는 무수당 알코올 조성물에 알킬렌 옥사이드를 부가한 무수당 알코올-알킬렌 글리콜 조성물 및 폴리에테르 폴리올을 포함하는 폴리올 조성물과 폴리이소시아네이트를 우레탄 반응시켜 제조되며, 친환경적이고, 특히, 이를 활용하여 제조된 말단 캡핑된 이소시아네이트 프리폴리머 조성물이 에폭시 수지용 접착 촉진제로서 적용된 접착용 에폭시 수지 조성물의 인장 강도, T-박리강도 및 상온 충격 강도를 향상시킬 수 있는 이소시아네이트 프리폴리머 조성물, 이 프리폴리머 조성물을 이용한 말단 캡핑된 이소시아네이트 프리폴리머 조성물 및 이를 포함하는 에폭시 수지용 접착 촉진제, 및 이 접착 촉진제를 포함하는 에폭시 수지 조성물 및 이를 포함하는 접착제에 관한 것이다.
에폭시 수지는 우수한 내열성, 기계 특성, 전기 특성 및 접착성을 가진다. 에폭시 수지는, 이 특성을 살려, 배선 기판, 회로 기판이나 이들을 다층화한 회로판, 반도체 칩, 코일, 전기 회로 등의 봉지 재료에 사용된다. 또는 에폭시 수지는 접착제, 도료, 섬유 강화 수지용의 수지로도 사용된다.
에폭시 수지는 많은 적용에서 열경화성 수지로서의 광범위한 용도를 찾을 수 있다. 이들은 열경화성 매트릭스에 포함된 섬유로 이루어지는 프리프레그에서 열경화성 매트릭스로서 이용된다. 또한 이들은 인성, 가요성, 접착성 및 화학적 내성으로 인하여 표면 코팅용 재료로, 접착, 성형 및 라미네이트화용으로 사용될 수 있으며, 이들 모두는 우주 항공, 자동차, 전자, 건설, 가구, 녹색 에너지 및 스포츠 용품 산업과 같은 광범위한 다양한 산업 분야에서 다양한 응용을 찾아볼 수 있다.
광범위한 에폭시 수지가 용이하게 사용될 수 있으며, 특정 적용에 필요한 이들의 반응성에 따라 사용될 수 있다. 예를 들어, 수지는 고체, 액체 또는 반고체일 수 있으며, 이들이 적용될 용도에 따라 다양한 반응성을 가질 수 있다. 에폭시 수지의 반응성은 단일 반응성 에폭시기를 함유하는 수지의 분자량인 에폭시 당량의 관점에서 종종 측정된다. 에폭시 당량이 낮을수록 에폭시 수지의 반응성은 더 높다. 다양한 에폭시 수지 용도에 다양한 반응성이 필요하지만, 섬유 보강 프리프레그, 접착 코팅, 구조적 접착제의 매트릭스로서 존재하는지의 여부에 따라 달라진다.
그러나, 에폭시 수지는 그 자체로는 너무 취성(brittle)이고 강도가 약하여 그 적용 범위에 제한을 받으며, 이를 보완하기 위하여 사용되는 고무 첨가제 내지 열가소성 고분자 첨가제는 에폭시 수지와 화학적 결합을 형성하지 못해 내식성을 떨어뜨리며, 친환경성이 떨어지는 문제가 있다. 따라서, 친환경적이면서도, 에폭시 수지의 강도(예컨대, 인장 강도, T-박리강도, 상온 충격 강도 등)를 향상시킬 수 있는 접착 촉진제의 개발이 요청되고 있다.
한편, 수소화 당(“당 알코올”이라고도 함)은 당류가 갖는 환원성 말단기에 수소를 부가하여 얻어지는 화합물을 의미하는 것으로, 일반적으로 HOCH2(CHOH)nCH2OH (여기서, n은 2 내지 5의 정수)의 화학식을 가지며, 탄소수에 따라 테트리톨, 펜티톨, 헥시톨 및 헵티톨(각각, 탄소수 4, 5, 6 및 7)로 분류된다. 그 중에서 탄소수가 6개인 헥시톨에는 소르비톨, 만니톨, 이디톨, 갈락티톨 등이 포함되며, 소르비톨과 만니톨은 특히 효용성이 큰 물질이다.
무수당 알코올은 수소화 당의 내부로부터 물 분자가 1개 이상 제거되어 형성되는 물질로서, 물 분자가 1개 제거되는 경우에는 분자 내 하이드록시기가 4개인 테트라올(tetraol) 형태를 가지고, 물 분자가 2개 제거되는 경우에는 분자 내 하이드록시기가 두 개인 디올(diol) 형태를 가지며, 전분에서 유래하는 헥시톨을 활용하여 제조할 수 있다(예컨대, 한국등록특허 제10-1079518호, 한국공개특허공보 제10-2012-0066904호). 무수당 알코올은 재생가능한 천연자원으로부터 유래한 친환경 물질이라는 점에서 오래 전부터 많은 관심과 함께 그 제조방법에 관한 연구가 진행되어 오고 있다. 이러한 무수당 알코올 중에서 솔비톨로부터 제조된 이소소르비드가 현재 산업적 응용범위가 가장 넓다.
무수당 알코올의 용도는 심장 및 혈관 질환 치료, 패치의 접착제, 구강 청정제 등의 약제, 화장품 산업에서 조성물의 용매, 식품산업에서는 유화제 등 매우 다양하다. 또한, 폴리에스테르, PET, 폴리카보네이트, 폴리우레탄, 에폭시 수지 등 고분자 물질의 유리전이온도를 올릴 수 있고, 이들 물질의 강도 개선효과가 있으며, 천연물 유래의 친환경소재이기 때문에 바이오 플라스틱 등 플라스틱 산업에서도 매우 유용하다. 또한, 접착제, 친환경 가소제, 생분해성 고분자, 수용성 락카의 친환경 용매로도 사용될 수 있는 것으로 알려져 있다.
이렇듯 무수당 알코올은 그 다양한 활용 가능성으로 인해 많은 관심을 받고 있으며, 실제 산업에의 이용도도 점차 증가하고 있다.
이에 반해 종래에는 수소화 당을 탈수 반응시켜 무수당 알코올을 제조하는 과정에서 수득되는 부산물에 대해서 단순히 점결제 용도로 사용하는 등 특별한 용도를 고려하지 않았다.
따라서 포도당으로부터 수소화 당을 제조하고, 수소화 당으로부터 무수당 알코올을 제조하는 과정에서 수득되는 부산물에 대한 유용한 용도에 대한 개발이 요구되고 있다.
본 발명의 목적은, 무수당 알코올을 이용하기 때문에 친환경적이고, 특히, 이를 활용하여 제조된 말단 캡핑된 이소시아네이트 프리폴리머 조성물이 에폭시 수지용 접착 촉진제로서 적용된 접착용 에폭시 수지 조성물의 인장 강도, T-박리강도 및 상온 충격 강도를 향상시킬 수 있는, 이소시아네이트 프리폴리머 조성물, 이 프리폴리머 조성물을 이용한 말단 캡핑된 이소시아네이트 프리폴리머 조성물 및 이를 포함하는 에폭시 수지용 접착 촉진제, 및 이 접착 촉진제를 포함하는 에폭시 수지 조성물 및 이를 포함하는 접착제를 제공하는 것이다.
본 발명의 제1 측면은, 무수당 알코올-알킬렌 글리콜 조성물 및 폴리에테르 폴리올을 포함하는 폴리올 조성물과 폴리이소시아네이트를 우레탄 반응시켜 제조되는 이소시아네이트 프리폴리머 조성물로서, 상기 무수당 알코올-알킬렌 글리콜 조성물의 OH 당량에 대한 상기 폴리에테르 폴리올의 OH 당량비(폴리에테르 폴리올의 OH 당량/무수당 알코올-알킬렌 글리콜 조성물의 OH 당량)가 0.67 초과 내지 9.0 미만이고, 상기 폴리올 조성물의 전체 OH 당량에 대한 폴리이소시아네이트의 전체 NCO 당량비(폴리이소시아네이트의 전체 NCO 당량/폴리올 조성물의 전체 OH 당량)가 1.4 초과 내지 2.0 미만이며, 상기 무수당 알코올-알킬렌 글리콜 조성물은 무수당 알코올 조성물과 알킬렌 옥사이드를 부가 반응시켜 제조된 것이고, 상기 무수당 알코올 조성물은 제1 내지 제5의 폴리올 성분을 포함하며, 여기서, 제1의 폴리올 성분이 일무수당 알코올이고, 제2의 폴리올 성분이 이무수당 알코올이며, 제3의 폴리올 성분이 하기 화학식 1로 표시되는 다당류 알코올이고, 제4의 폴리올 성분이 하기 화학식 1로 표시되는 다당류 알코올로부터 물 분자를 제거하여 형성된 무수당 알코올이며, 제5의 폴리올 성분이 상기 제1 내지 제4의 폴리올 성분들 중에서 선택되는 하나 이상의 중합체인, 이소시아네이트 프리폴리머 조성물을 제공한다:
[화학식 1]
Figure PCTKR2022017881-appb-img-000001
상기 화학식 1에서, n은 0 내지 4의 정수이다.
본 발명의 제2 측면은, 무수당 알코올-알킬렌 글리콜 조성물 및 폴리에테르 폴리올을 포함하는 폴리올 조성물과 폴리이소시아네이트를 우레탄 반응시키는 단계를 포함하며, 상기 무수당 알코올-알킬렌 글리콜 조성물의 OH 당량에 대한 상기 폴리에테르 폴리올의 OH 당량비(폴리에테르 폴리올의 OH 당량/무수당 알코올-알킬렌 글리콜 조성물의 OH 당량)가 0.67 초과 내지 9.0 미만이고, 상기 폴리올 조성물의 전체 OH 당량에 대한 폴리이소시아네이트의 전체 NCO 당량비(폴리이소시아네이트의 전체 NCO 당량/폴리올 조성물의 전체 OH 당량)가 1.4 초과 내지 2.0 미만이며, 상기 무수당 알코올-알킬렌 글리콜 조성물은 무수당 알코올 조성물과 알킬렌 옥사이드를 부가 반응시켜 제조된 것이고, 상기 무수당 알코올 조성물은 제1 내지 제5의 폴리올 성분을 포함하며, 여기서, 제1의 폴리올 성분이 일무수당 알코올이고, 제2의 폴리올 성분이 이무수당 알코올이며, 제3의 폴리올 성분이 상기 화학식 1로 표시되는 다당류 알코올이고, 제4의 폴리올 성분이 상기 화학식 1로 표시되는 다당류 알코올로부터 물 분자를 제거하여 형성된 무수당 알코올이며, 제5의 폴리올 성분이 상기 제1 내지 제4의 폴리올 성분들 중에서 선택되는 하나 이상의 중합체인, 이소시아네이트 프리폴리머 조성물의 제조 방법을 제공한다.
본 발명의 제3 측면은, 본 발명의 제1 측면에 따른 이소시아네이트 프리폴리머 조성물과 말단 캡핑제를 반응시켜 제조되는, 말단-캡핑된 이소시아네이트 프리폴리머 조성물을 제공한다.
본 발명의 제4 측면은, 본 발명의 제3 측면에 따른 말단-캡핑된 이소시아네이트 프리폴리머 조성물을 포함하는 에폭시 수지용 접착 촉진제를 제공한다.
본 발명의 제5 측면은, 본 발명의 제4 측면에 따른 에폭시 수지용 접착 촉진제; 및 에폭시 수지;를 포함하는, 에폭시 수지 조성물을 제공한다.
본 발명의 제6 측면은, 본 발명의 제5 측면에 따른 에폭시 수지 조성물을 포함하는 접착제를 제공한다.
본 발명에 따른 이소시아네이트 프리폴리머 조성물은 친환경적이고, 특히, 이를 활용하여 제조된 말단-캡핑된 이소시아네이트 프리폴리머 조성물이 에폭시 수지용 접착 촉진제로서 적용된 접착용 에폭시 수지 조성물의 인장 강도, T-박리강도 및 상온 충격 강도를 향상시킬 수 있다.
또한 본 발명에 따른 이소시아네이트 프리폴리머 조성물은 수소화 당의 내부 탈수물을 제조하는 과정에서 수득되는 부산물을 활용하여 얻어지는 폴리올 조성물인 무수당 알코올 조성물로부터 제조되기 때문에, 경제성을 높이는 동시에 부산물 처리 문제 해소에 따른 친환경성을 향상시킬 수 있다.
이하, 본 발명을 보다 상세하게 설명한다.
[이소시아네이트 프리폴리머 조성물 및 그 제조 방법]
본 발명의 이소시아네이트 프리폴리머 조성물은 무수당 알코올-알킬렌 글리콜 조성물 및 폴리에테르 폴리올을 포함하는 폴리올 조성물과 폴리이소시아네이트를 우레탄 반응시켜 제조되며, 여기서 상기 무수당 알코올-알킬렌 글리콜 조성물의 OH 당량에 대한 상기 폴리에테르 폴리올의 OH 당량비(폴리에테르 폴리올의 OH 당량/무수당 알코올-알킬렌 글리콜 조성물의 OH 당량)가 0.67 초과 내지 9.0 미만이고, 상기 폴리올 조성물의 전체 OH 당량에 대한 폴리이소시아네이트의 전체 NCO 당량비(폴리이소시아네이트의 전체 NCO 당량/폴리올 조성물의 전체 OH 당량)가 1.4 초과 내지 2.0 미만이며, 상기 무수당 알코올-알킬렌 글리콜 조성물은 무수당 알코올 조성물과 알킬렌 옥사이드를 부가 반응시켜 제조된 것이다.
무수당 알코올 조성물
상기 무수당 알코올 조성물은 제1 내지 제5의 폴리올 성분을 포함하며, 여기서, 제1의 폴리올 성분이 일무수당 알코올이고, 제2의 폴리올 성분이 이무수당 알코올이며, 제3의 폴리올 성분이 하기 화학식 1로 표시되는 다당류 알코올이고, 제4의 폴리올 성분이 하기 화학식 1로 표시되는 다당류 알코올로부터 물 분자를 제거하여 형성된 무수당 알코올이며, 제5의 폴리올 성분이 상기 제1 내지 제4의 폴리올 성분들 중에서 선택되는 하나 이상의 중합체이다.
[화학식 1]
Figure PCTKR2022017881-appb-img-000002
상기 화학식 1에서, n은 0 내지 4의 정수이다.
본 발명의 무수당 알코올 조성물에 포함되는 제1의 폴리올 성분인 일무수당 알코올; 제2의 폴리올 성분인 이무수당 알코올; 제3의 폴리올 성분인 다당류 알코올; 제4의 폴리올 성분인 다당류 알코올로부터 물 분자를 제거하여 형성된 무수당 알코올; 및 제5의 폴리올 성분인 제1 내지 제4의 폴리올 성분들 중에서 선택되는 하나 이상의 중합체 중 하나 이상, 바람직하게는 둘 이상, 보다 바람직하게는 이들 모두는, 포도당 함유 당류 조성물(예를 들면, 포도당, 만노오스, 과당 및 말토오스를 비롯한 이당류 이상의 다당류를 포함하는 당류 조성물)을 수소 첨가 반응시켜 수소화 당 조성물을 제조하고, 수득된 수소화 당 조성물을 산 촉매 하에 서 가열하여 탈수 반응시키며, 수득된 탈수 반응 결과물을 박막 증류하여 제조하는 과정에서 수득될 수 있다. 보다 구체적으로는 본 발명의 무수당 알코올 조성물에 포함되는 제1 내지 제5의 폴리올 성분들 모두는 상기 수득된 탈수 반응 결과물을 박막 증류하여 박막 증류액을 얻은 후 남은 부산물일 수 있다.
상기 제1의 폴리올 성분인 일무수당 알코올은 수소화 당의 내부로부터 물 분자 1개가 제거되어 형성되는 무수당 알코올로서, 분자 내 하이드록시기가 네 개인 테트라올(tetraol) 형태를 가진다. 본 발명에 있어서, 상기 일무수당 알코올의 종류는 특별히 한정되지 않지만, 바람직하게는 일무수당 헥시톨일 수 있으며, 보다 구체적으로는 1,4-언하이드로헥시톨, 3,6-언하이드로헥시톨, 2,5-언하이드로헥시톨, 1,5-언하이드로헥시톨, 2,6-언하이드로헥시톨 또는 이들 중 2 이상의 혼합물일 수 있다.
상기 제2의 폴리올 성분인 이무수당 알코올은 수소화 당의 내부로부터 물 분자 2개가 제거되어 형성되는 무수당 알코올로서, 분자 내 하이드록시기가 두 개인 디올(diol) 형태를 가지며, 전분에서 유래하는 헥시톨을 활용하여 제조할 수 있다. 이무수당 알코올은 재생 가능한 천연자원으로부터 유래한 친환경 물질이라는 점에서 오래 전부터 많은 관심과 함께 그 제조방법에 관한 연구가 진행되어 오고 있다. 이러한 이무수당 알코올 중에서 솔비톨로부터 제조된 이소소르비드가 현재 산업적 응용범위가 가장 넓다.
본 발명에 있어서, 상기 이무수당 알코올의 종류는 특별히 한정되지 않지만, 바람직하게는 이무수당 헥시톨일 수 있으며, 보다 구체적으로는 1,4:3,6-디언하이드로헥시톨일 수 있다. 상기 1,4:3,6-디언하이드로헥시톨은 이소소르비드, 이소만니드, 이소이디드 또는 이들 중 2 이상의 혼합물일 수 있다.
일 구체예에서, 상기 제3의 폴리올 성분인 상기 화학식 1로 표시되는 다당류 알코올은, 말토오스를 비롯한 이당류 이상의 다당류의 수소 첨가 반응으로부터 제조될 수 있다.
일 구체예에서, 상기 제4의 폴리올 성분인 화학식 1로 표시되는 다당류 알코올로부터 물 분자를 제거하여 형성된 무수당 알코올은, 하기 화학식 2로 표시되는 화합물, 하기 화학식 3으로 표시되는 화합물 또는 이들의 혼합물로부터 선택될 수 있다:
[화학식 2]
Figure PCTKR2022017881-appb-img-000003
[화학식 3]
Figure PCTKR2022017881-appb-img-000004
상기 화학식 2 및 3에서,
n은 각각 독립적으로, 0 내지 4의 정수이다.
일 구체예에서, 상기 제5의 폴리올 성분인 상기 제1 내지 제4의 폴리올 성분들 중에서 선택되는 하나 이상의 중합체는, 하기의 축중합 반응으로부터 제조되는 축합 중합체로 이루어진 군으로부터 선택되는 하나 이상을 포함할 수 있다:
- 제1의 폴리올 성분의 축중합 반응,
- 제2의 폴리올 성분의 축중합 반응,
- 제3의 폴리올 성분의 축중합 반응,
- 제4의 폴리올 성분의 축중합 반응,
- 제1의 폴리올 성분과 제2의 폴리올 성분의 축중합 반응,
- 제1의 폴리올 성분과 제3의 폴리올 성분의 축중합 반응,
- 제1의 폴리올 성분과 제4의 폴리올 성분의 축중합 반응,
- 제2의 폴리올 성분과 제3의 폴리올 성분의 축중합 반응,
- 제2의 폴리올 성분과 제4의 폴리올 성분의 축중합 반응,
- 제3의 폴리올 성분과 제4의 폴리올 성분의 축중합 반응,
- 제1의 폴리올 성분, 제2의 폴리올 성분 및 제3의 폴리올 성분의 축중합 반응,
- 제1의 폴리올 성분, 제2의 폴리올 성분 및 제4의 폴리올 성분의 축중합 반응,
- 제1의 폴리올 성분, 제3의 폴리올 성분 및 제4의 폴리올 성분의 축중합 반응,
- 제2의 폴리올 성분, 제3의 폴리올 성분 및 제4의 폴리올 성분의 축중합 반응, 또는
- 제1의 폴리올 성분, 제2의 폴리올 성분, 제3의 폴리올 성분 및 제4의 폴리올 성분의 축중합 반응.
일 구체예에서, 상기 무수당 알코올 조성물의 수평균분자량(Mn: 단위 g/mol)은 193 이상, 195 이상, 200 이상, 202 이상, 205 이상 또는 208 이상일 수 있고, 또한, 1,589 이하, 1,560 이하, 1,550 이하, 1,520 이하, 1,500 이하, 1,490 이하 또는 1,480 이하일 수 있다.
일 구체예에서, 상기 무수당 알코올 조성물의 수평균분자량(Mn)은 193 내지 1,589일 수 있고, 구체적으로 195 내지 1,550일 수 있으며, 보다 구체적으로는 200 내지 1,520일 수 있고, 보다 더 구체적으로는 202 내지 1,500일 수 있으며, 더욱 더 구체적으로는 205 내지 1,490일 수 있다. 이러한 구체예에서 무수당 알코올 조성물의 수평균분자량이 193 미만이면, 이로부터 제조된 무수당 알코올-알킬렌 글리콜 조성물과 폴리이소시아네이트 간의 상용성이 떨어질 수 있고, 반대로, 무수당 알코올 조성물의 수평균분자량이 1,589을 초과하면, 이를 활용하여 제조된 말단 캡핑된 이소시아네이트 프리폴리머 조성물을 에폭시 수지용 접착 촉진제로 사용시 추가적인 물성 향상 효과는 없으면서, 재료 원가 상승에 따라 경제성이 저하된다.
일 구체예에서, 상기 무수당 알코올 조성물의 다분산 지수(PDI)는 1.13 이상, 1.15 이상, 1.20 이상, 1.23 이상 또는 1.25 이상일 수 있고, 또한, 3.41 이하, 3.40 이하, 3.35 이하, 3.30 이하, 3.25 이하, 3.22 이하 또는 3.19 이하일 수 있다.
일 구체예에서, 상기 무수당 알코올 조성물의 다분산 지수(PDI)는 1.13 내지 3.41일 수 있고, 구체적으로는 1.13 내지 3.40일 수 있으며, 보다 구체적으로는 1.15 내지 3.35일 수 있으며, 보다 더 구체적으로는 1.20 내지 3.25일 수 있고, 더욱 더 구체적으로는 1.23 내지 3.22일 수 있다. 이러한 구체예에서 무수당 알코올 조성물의 다분산 지수가 1.13 미만이면, 이로부터 제조된 무수당 알코올-알킬렌 글리콜 조성물과 폴리이소시아네이트 간의 상용성이 떨어질 수 있고, 반대로, 무수당 알코올 조성물의 다분산 지수가 3.41을 초과하면, 이를 활용하여 제조된 말단 캡핑된 이소시아네이트 프리폴리머 조성물을 에폭시 수지용 접착 촉진제로 사용시 추가적인 물성 향상 효과는 없으면서, 재료 원가 상승에 따라 경제성이 저하된다.
일 구체예에서, 상기 무수당 알코올 조성물 내의 분자당 -OH 기의 평균 개수는 2.54개 이상, 2.60개 이상, 2.65개 이상, 2.70개 이상, 2.75개 이상 또는 2.78개 이상일 수 있고, 또한, 21.36개 이하, 21.30개 이하, 21.0개, 20.5개 이하, 20.0개 이하, 19.95개 이하 또는 19.92개 이하일 수 있다.
일 구체예에서, 상기 무수당 알코올 조성물 내의 분자당 -OH 기의 평균 개수는 2.54개 내지 21.36개일 수 있고, 보다 구체적으로는 2.60개 내지 21.30개일 수 있으며, 보다 더 구체적으로는 2.65개 내지 21.0개일 수 있다. 이러한 구체예에서 무수당 알코올 조성물 내의 분자당 -OH 기의 평균 개수가 2.54개 미만이면, 이를 활용하여 제조된 말단 캡핑된 이소시아네이트 프리폴리머 조성물을 에폭시 수지용 접착 촉진제로 사용시 추가적인 물성 향상 효과는 없으면서, 재료 원가 상승에 따라 경제성이 저하되고, 반대로, 무수당 알코올 조성물 내의 분자당 -OH 기의 평균 개수가 21.36개를 초과하면, 이로부터 제조된 무수당 알코올-알킬렌 글리콜 조성물과 폴리이소시아네이트 간의 상용성이 떨어질 수 있다.
바람직한 일 구체예에서, 상기 무수당 알코올 조성물은 하기 i) 내지 iii)을 만족하는 것이다:
i) 무수당 알코올 조성물의 수평균분자량(Mn)이 193 내지 1,589 g/mol이고;
ii) 무수당 알코올 조성물의 다분산 지수(PDI)가 1.13 내지 3.41이며;
iii) 무수당 알코올 조성물 내의 분자당 -OH기의 평균 개수가 2.54 개 내지 21.36개이다.
일 구체예에서, 상기 무수당 알코올 조성물에는, 조성물 총 중량 기준으로, 예컨대, 제1의 폴리올 성분이 0.1 내지 20 중량%, 구체적으로는 0.6 내지 20 중량%, 보다 구체적으로는 0.7 내지 15 중량%로 포함될 수 있고, 제2의 폴리올 성분이 0.1 내지 28 중량%, 구체적으로는 1 내지 25 중량%, 보다 구체적으로는 3 내지 20 중량%로 포함될 수 있으며, 제3의 폴리올 성분 및 제4의 폴리올 성분의 합계 함량이 0.1 내지 6.5 중량%, 구체적으로는 0.5 내지 6.4 중량%, 보다 구체적으로는 1 내지 6.3 중량%일 수 있으며, 제5의 폴리올 성분이 55 내지 90 중량%, 구체적으로는 60 내지 89.9 중량%, 보다 구체적으로는 70 내지 89.9 중량%로 포함될 수 있으나, 이에 특별히 제한되지 않는다.
일 구체예에서, 상기 무수당 알코올 조성물은 포도당 함유 당류 조성물(예를 들면, 포도당; 만노오스; 과당; 및 말토오스를 비롯한 이당류 이상의 다당류를 포함하는 당류 조성물)을 수소 첨가 반응시켜 수소화 당 조성물을 제조하고, 수득된 수소화 당 조성물을 산 촉매 하에서 가열하여 탈수 반응시키며, 수득된 탈수 반응 결과물을 박막 증류하여 제조된 것일 수 있고, 보다 구체적으로는 상기 수득된 탈수 반응 결과물을 박막 증류하여 박막 증류액을 얻은 후, 그 남은 부산물일 수 있다.
보다 구체적으로, 상기 포도당 함유 당류 조성물에 대하여 수소 첨가 반응이 30 기압 내지 80 기압의 수소 압력 조건 및 110 ℃내지 135 ℃의 가열 조건 하에서 수행되어 수소화 당 조성물을 제조하고, 수득된 수소화 당 조성물의 탈수 반응이 1 mmHg 내지 100 mmHg 의 감압 조건 및 105℃내지 200℃의 가열 조건 하에서 수행되어 탈수 반응 결과물을 수득하며, 수득된 탈수 반응 결과물의 박막 증류가 2 mbar 이하의 감압 조건 및 150℃내지 175℃의 가열 조건 하에서 수행될 수 있으나, 이에 한정되는 것은 아니다.
일 구체예에서, 상기 포도당 함유 당류 조성물의 포도당 함량은 상기 당류 조성물 총 중량 기준으로, 41 중량% 이상, 42 중량% 이상, 45 중량% 이상, 47 중량% 이상 또는 50 중량% 이상일 수 있고, 99.5 중량% 이하, 99 중량% 이하, 98.5 중량% 이하, 98 중량% 이하, 97.5 중량% 이하 또는 97 중량% 이하일 수 있으며, 예를 들면 41 내지 99.5 중량%, 45 내지 98.5 중량% 또는 50 내지 98 중량%일 수 있다.
상기 당류 조성물 내의 포도당 함량이 41 중량% 미만인 경우 무수당 알코올 조성물의 수평균분자량(Mn)이 너무 높아져, 이를 활용하여 제조된 말단 캡핑된 이소시아네이트 프리폴리머 조성물을 에폭시 수지용 접착 촉진제로 사용시 추가적인 물성 향상 효과는 없으면서, 재료 원가 상승에 따라 경제성이 저하될 수 있고, 99.5 중량%를 초과하는 경우 무수당 알코올 조성물의 수평균분자량이 너무 낮아져 이를 활용하여 제조된 말단 캡핑된 이소시아네이트 프리폴리머 조성물의 강도 특성이 열악해 질 수 있다.
일 구체예에서, 상기 수소화 당 조성물에 포함되는 다당류 알코올(이당류 이상의 당류 알코올)의 함량은, 수소화 당 조성물의 총 건조 중량(여기서, 건조 중량은 수소화 당 조성물에서 수분을 제거한 후 남은 고형분 중량을 의미한다) 기준으로, 0.8 중량% 이상, 1 중량% 이상, 2 중량% 또는 3 중량% 이상일 수 있고, 57 중량% 이하, 55 중량% 이하, 52 중량% 이하, 50 중량% 이하 또는 48 중량% 이하일 수 있으며, 예를 들면 0.8 내지 57 중량%, 1 내지 55 중량% 또는 3 내지 50 중량%일 수 있다.
상기 수소화 당 조성물 내의 다당류 알코올의 함량이 0.8 중량% 미만인 경우, 다당류 알코올과 이로부터 유래된 무수당 알코올로 인한 유동성의 증가 효과가 미미하여, 이무수당 알코올(예를 들면, 이소소르비드)의 증류 수율이 낮아질 수 있으며, 57 중량%를 초과하는 경우 수소화 당 조성물의 탈수 반응 결과물을 박막 증류하였을 때 이무수당 알코올의 증류 수율이 현저히 낮아지는 문제가 있다.
또한 수소화 당 조성물 내의 다당류 알코올 함량이 0.8 중량% 미만일 경우, 이러한 수소화 당 조성물을 이용하여 무수당 알코올 조성물을 제조하고 이러한 무수당 알코올 조성물을 적용하여 이소시아네이트 프리폴리머 조성물을 제조하고, 이를 이용하여 말단 캡핑된 이소시아네이트 프리폴리머 조성물을 제조하며, 이를 에폭시 수지용 접착 촉진제로 이용 시에 에폭시 수지 조성물의 피착재에 대한 접착력 저하 및 표면 박리가 발생하는 등의 접착 특성이 열악해질 수 있고, 57 중량%를 초과할 경우에는 이러한 수소화 당 조성물을 이용하여 무수당 알코올 조성물을 제조하고, 이를 이용하여 이소시아네이트 프리폴리머 조성물을 제조하거나 말단 캡핑된 이소시아네이트 프리폴리머 조성물을 제조하는 과정에서 조성물이 경화 또는 젤화되는 문제점이 있다.
알킬렌 옥사이드 및 무수당 알코올 조성물과의 부가 반응
본 발명에 있어서, 무수당 알코올-알킬렌 글리콜 조성물은 전술한 무수당 알코올 조성물과 알킬렌 옥사이드를 부가 반응시켜 수득되는 조성물을 의미하며, 이에 따라 무수당 알코올-알킬렌 글리콜 조성물은 제1 내지 제5의 폴리올 성분 각각의 일 말단 이상의 히드록시기와 알킬렌 옥사이드를 반응시켜 얻어지는 부가물을 포함하고, 구체적으로 무수당 알코올-알킬렌 글리콜 조성물은 제1의 폴리올 성분의 알킬렌 옥사이드 부가물(이하 “제1의 무수당 알코올-알킬렌 글리콜”이라 칭함), 제2의 폴리올 성분의 알킬렌 옥사이드 부가물(이하, “제2의 무수당 알코올-알킬렌 글리콜”이라 칭함), 제3의 폴리올 성분의 알킬렌 옥사이드 부가물(이하, “제3의 무수당 알코올-알킬렌 글리콜”이라 칭함), 제4의 폴리올 성분의 알킬렌 옥사이드 부가물(이하, “제4의 무수당 알코올-알킬렌 글리콜”이라 칭함) 및 제5의 폴리올 성분의 알킬렌 옥사이드 부가물(이하, “제5의 무수당 알코올-알킬렌 글리콜”이라 칭함)을 포함한다.
일 구체예에서, 상기 알킬렌 옥사이드는 탄소수 2 내지 8의 선형 또는 탄소수 3 내지 8의 분지형 알킬렌 옥사이드일 수 있고, 보다 구체적으로는, 에틸렌 옥사이드, 프로필렌 옥사이드 또는 이의 조합일 수 있다.
일 구체예에서, 상기 무수당 알코올 조성물 100 중량부당 부가 반응하는 상기 알킬렌 옥사이드의 양은 100 중량부 내지 500 중량부일 수 있다. 상기 무수당 알코올 조성물 100 중량부 당 알킬렌 옥사이드 부가량이 상기 수준보다 지나치게 낮으면, 제조된 무수당 알코올-알킬렌 글리콜 조성물과 폴리이소시아네이트 간의 반응성이 감소하여 이들의 반응이 일어나지 않아, 이소시아네이트 프리폴리머 조성물을 제공하지 못할 수 있고, 반대로 알킬렌 옥사이드 부가량이 상기 수준보다 지나치게 높으면, 제조된 무수당 알코올-알킬렌 글리콜 조성물을 활용하여 제조된 말단 캡핑된 이소시아네이트 프리폴리머 조성물을 에폭시 수지용 접착 촉진제로 사용시 기계적 물성(예컨대, T-박리강도)이 열악해질 수 있다.
보다 구체적으로, 상기 무수당 알코올 조성물 100 중량부당 부가 반응하는 상기 알킬렌 옥사이드의 양은, 예컨대, 100 중량부 이상, 120 중량부 이상, 150 중량부 이상, 170 중량부 이상 또는 200 중량부 이상일 수 있으며, 또한 500 중량부 이하, 480 중량부 이하, 450 중량부 이하, 430 중량부 이하 또는 400 중량부 이하일 수 있으나, 이에 한정되지 않는다.
일 구체예에서, 상기 무수당 알코올 조성물과 상기 알킬렌 옥사이드의 부가 반응은, 예컨대, 100℃ 이상, 보다 구체적으로는 100℃ 내지 140℃의 온도에서, 1시간 이상, 보다 구체적으로는 1시간 내지 5시간 동안 수행될 수 있으나, 이에 한정되지 않는다.
폴리에테르 폴리올
일 구체예에서, 상기 폴리에테르 폴리올은 폴리알킬렌 글리콜을 포함할 수 있고, 보다 구체적으로는, 폴리(C1-C6)알킬렌 글리콜을 포함할 수 있다.
일 구체예에서, 상기 폴리알킬렌 글리콜은 폴리에틸렌 글리콜, 폴리프로필렌 글리콜, 폴리테트라메틸렌 에테르 글리콜, 또는 이들의 조합으로 이루어진 군으로부터 선택된 것일 수 있다.
일 구체예에서, 상기 폴리에테르 폴리올의 수평균분자량(Mn: 단위 g/mol)은 500 이상, 600 이상, 700 이상, 800 이상, 900 이상 또는 1,000 이상일 수 있고, 또한, 4,000 미만, 3,900 이하, 3,800 이하, 3,700 이하, 3,600 이하, 3,500 이하, 3,400 이하, 3,300 이하, 3,200 이하, 3,100 이하 또는 3,000 이하일 수 있으나, 이에 한정되지 않는다. 바람직하게는, 상기 폴리에테르 폴리올의 수평균분자량이 500 이상 내지 4,000 미만, 또는 1,000 내지 3,000일 수 있다. 상기 폴리에테르 폴리올의 수평균분자량이 상기 수준보다 너무 낮으면 폴리이소시아네이트와 반응이 진행되지 않을 수 있고, 반대로 상기 수준보다 너무 높으면 추가적인 물성 향상 효과는 없으면서, 재료 원가 상승에 따라 경제성이 저하될 수 있는 문제점이 있을 수 있다.
폴리올 조성물
상기 폴리올 조성물은 앞서 설명한 무수당 알코올-알킬렌 글리콜 조성물과 폴리에테르 폴리올을 포함한다.
본 발명에 있어서, 상기 무수당 알코올-알킬렌 글리콜 조성물의 OH 당량에 대한 상기 폴리에테르 폴리올의 OH 당량비(폴리에테르 폴리올의 OH 당량/무수당 알코올-알킬렌 글리콜 조성물의 OH 당량)가 0.67 초과 내지 9.0 미만이다. 상기 OH 당량비가 0.67 이하이면, 이소시아네이트 프리폴리머 조성물의 점도가 너무 낮아져 작업성이 떨어질 수 있고, 반대로 상기 OH 당량비가 9.0 이상이면, 이소시아네이트 프리폴리머 조성물의 수평균분자량이 급격히 상승하여 역시 작업성이 떨어질 수 있다.
일 구체예에서, 상기 무수당 알코올-알킬렌 글리콜 조성물의 OH 당량에 대한 상기 폴리에테르 폴리올의 OH 당량비는 0.67 초과, 0.68 이상, 0.7 이상, 0.75 이상, 0.8 이상, 0.85 이상, 0.9 이상, 0.95 이상 또는 1.0 이상일 수 있고, 9.0 미만, 8.9 이하, 8.5 이하, 8.0 이하, 7.5 이하, 7.0 이하, 6.5 이하, 6.0 이하, 5.5 이하, 5.0 이하, 4.5 이하 또는 4.0 이하일 수 있으며, 예를 들어 0.67 초과 내지 9.0 미만, 0.7 내지 8.0, 0.8 내지 7.0, 0.9 내지 6.0, 1 내지 5.5 또는 1 내지 4.0일 수 있다.
일 구체예에서, 상기 폴리올 조성물은, 폴리올 조성물 100 중량부 기준으로, 상기 무수당 알코올-알킬렌 글리콜 조성물 2.4 내지 24.4 중량부 및 상기 폴리에테르 폴리올 75.6 내지 97.6 중량부를 포함할 수 있다. 폴리올 조성물 내의 상기 무수당 알코올-알킬렌 글리콜 조성물 및 상기 폴리에테르 폴리올의 함량이 각각 상기한 범위를 벗어나면, 이를 활용하여 제조된 말단 캡핑된 이소시아네이트 프리폴리머 조성물을 에폭시 수지용 접착 촉진제로 사용시 에폭시 수지 조성물의 경화물의 기계적 물성(예컨대, 전단 강도 및 T-박리강도)이 열악해질 수 있다.
보다 구체적으로, 상기 폴리올 조성물 내의 무수당 알코올-알킬렌 글리콜 조성물 함량은, 폴리올 조성물 100 중량부 기준으로, 2.4 중량부 이상, 2.5 중량부 이상, 3.0 중량부 이상, 3.5 중량부 이상, 4.0 중량부 이상, 4.5 중량부 이상, 5.0 중량부 이상 또는 5.1 중량부 이상일 수 있으며, 또한 24.4 중량부 이하, 24 중량부 이하, 23.5 중량부 이하, 23 중량부 이하, 22.5 중량부 이하, 22 중량부 이하, 21.5 중량부 이하, 21 중량부 이하, 20.5 중량부 이하, 20 중량부 이하, 19.5 중량부 이하, 19 중량부 이하, 18.5 중량부 이하, 18 중량부 이하 또는 17.8 중량부 이하일 수 있다.
또한, 보다 구체적으로, 상기 폴리올 조성물 내의 폴리에테르 폴리올 함량은, 폴리올 조성물 100 중량부 기준으로, 75.6 중량부 이상, 76 중량부 이상, 77 중량부 이상, 78 중량부 이상, 79 중량부 이상, 80 중량부 이상, 81 중량부 이상, 82 중량부 이상 또는 82.2 중량부 이상일 수 있으며, 또한 97.6 중량부 이하, 97 중량부 이하, 96 중량부 이하, 95 중량부 이하 또는 94.9 중량부 이하일 수 있다.
일 구체예에서, 상기 폴리올 조성물은 임의로, 상기 무수당 알코올-알킬렌 글리콜 조성물 및 폴리에테르 폴리올 이외의 폴리올 성분을 추가로 포함할 수 있다.
일 구체예에서, 상기 무수당 알코올-알킬렌 글리콜 조성물 및 폴리에테르 폴리올 이외의 폴리올 성분으로는 폴리에스테르 폴리올, 폴리카프로락톤 디올, 이들 폴리올과 비닐 화합물을 중합시켜서 얻어지는 폴리머 폴리올, 또는 이들의 조합으로 이루어진 군으로부터 선택된 것을 사용할 수 있다. 상기 비닐 화합물로는 아크릴로니트릴, 스티렌, 메틸메타크릴로니트릴 등이 많이 사용되고 통상, 아크릴니트릴이 단독으로 또는 스티렌과 혼합되어 사용될 수 있다.
폴리이소시아네이트 및 폴리올 조성물과의 우레탄 반응
본 발명의 이소시아네이트 프리폴리머 조성물은, 앞서 설명한 폴리올 조성물과 폴리이소시아네이트를 우레탄 반응시켜 제조되는 것이다.
본 발명에 있어서, 상기 폴리올 조성물의 전체 OH 당량에 대한 폴리이소시아네이트의 전체 NCO 당량비(폴리이소시아네이트의 전체 NCO 당량/폴리올 조성물의 전체 OH 당량, 이하 “NCO/OH 인덱스”라고도 함)가 1.4 초과 내지 2.0 미만이다. 상기 NCO/OH 인덱스가 1.4 이하이면, 이소시아네이트 프리폴리머 조성물의 평균분자량이 급격히 상승하여 작업성이 떨어질 수 있고, 반대로 상기 NCO/OH 인덱스가 2.0 이상이면, 이소시아네이트 프리폴리머 조성물의 점도가 너무 낮아져 역시 작업성이 떨어질 수 있다.
일 구체예에서, 상기 NCO/OH 인덱스는 1.4 초과, 1.41 이상, 1.43 이상, 1.45 이상, 1.47 이상, 1.49 이상 또는 1.5 이상일 수 있고, 2.0 미만, 1.99 이하, 1.97 이하, 1.95 이하, 1.93 이하, 1.91 이하 또는 1.9 이하일 수 있으며, 예를 들어 1.4 초과 내지 2.0 미만, 1.45 내지 1.95, 1.45 내지 1.9 또는 1.5 내지 1.9일 수 있다.
본 발명에서는, 앞서 설명한 폴리올 성분으로 사용되는 폴리에테르 폴리올의 OH 당량과 무수당 알코올-알킬렌 글리콜 조성물의 OH 당량 간의 OH 당량비, 및 상기 NCO/OH 인덱스를 특정 범위로 조절함으로써, 이소시아네이트 프리폴리머 조성물의 수평균분자량을 특정 범위 내로 조절할 수 있다.
즉, 폴리올 성분 내의 폴리에테르 폴리올(예컨대, 폴리테트라메틸렌 에테르 글리콜(PTMEG))의 양이 증가하고 무수당 알코올-알킬렌 글리콜 조성물의 양이 감소하게 되면 이소시아네이트 프리폴리머 조성물의 수평균분자량이 증가한다. 또한, 상기 NCO/OH 인덱스가 낮아지면 이소시아네이트 프리폴리머 조성물의 수평균분자량이 상대적으로 증가하고, 반대로 상기 NCO/OH 인덱스가 높아지면 이소시아네이트 프리폴리머 조성물의 수평균분자량이 상대적으로 감소한다.
일 구체예에서, 상기 이소시아네이트 프리폴리머 조성물의 수평균분자량(Mn)은 4,975 g/mol 내지 8,014 g/mol일 수 있다. 이소시아네이트 프리폴리머 조성물의 수평균분자량이 상기 수준보다 지나치게 작거나 반대로 상기 수준보다 지나치게 크면 작업성이 떨어질 수 있다. 또한 수평균분자량이 상기 수준보다 지나치게 작으면, 상기 이소시아네이트 프리폴리머 조성물을 포함하는 에폭시 수지 조성물의 점도가 낮아져서 에폭시 수지 조성물의 경화 시, 접착제 로스(loss)가 발생할 수 있고, 수평균분자량이 상기 수준보다 지나치게 크면 상기 이소시아네이트 프리폴리머 조성물을 포함하는 에폭시 수지 조성물을 접착제로 적용 시에 접착 단면 내에 고르게 접착되지 않을 수 있다.
보다 구체적으로, 상기 이소시아네이트 프리폴리머 조성물의 수평균분자량(Mn: g/mol)은 4,975 이상, 5,000 이상, 5,050 이상, 5,100 이상, 5,150 이상 또는 5,167 이상일 수 있고, 8,014 이하, 8,000 이하, 7,950 이하, 7,900 이하, 7,850 이하, 7,800 이하 또는 7,780 이하일 수 있으며, 예를 들어 4,975 내지 8,014, 5,000 내지 8,000, 5,100 내지 7,900, 5,150 내지 7,800 또는 5,167 내지 7,780일 수 있다.
본 발명의 다른 측면에 따르면, 무수당 알코올-알킬렌 글리콜 조성물 및 폴리에테르 폴리올을 포함하는 폴리올 조성물과 폴리이소시아네이트를 우레탄 반응시키는 단계를 포함하며, 상기 무수당 알코올-알킬렌 글리콜 조성물의 OH 당량에 대한 상기 폴리에테르 폴리올의 OH 당량비(폴리에테르 폴리올의 OH 당량/무수당 알코올-알킬렌 글리콜 조성물의 OH 당량)가 0.67 초과 내지 9.0 미만이고, 상기 폴리올 조성물의 전체 OH 당량에 대한 폴리이소시아네이트의 전체 NCO 당량비(폴리이소시아네이트의 전체 NCO 당량/폴리올 조성물의 전체 OH 당량)가 1.4 초과 내지 2.0 미만이며, 상기 무수당 알코올-알킬렌 글리콜 조성물은 무수당 알코올 조성물과 알킬렌 옥사이드를 부가 반응시켜 제조된 것이고, 상기 무수당 알코올 조성물은 제1 내지 제5의 폴리올 성분을 포함하며, 여기서, 제1의 폴리올 성분이 일무수당 알코올이고, 제2의 폴리올 성분이 이무수당 알코올이며, 제3의 폴리올 성분이 하기 화학식 1로 표시되는 다당류 알코올이고, 제4의 폴리올 성분이 하기 화학식 1로 표시되는 다당류 알코올로부터 물 분자를 제거하여 형성된 무수당 알코올이며, 제5의 폴리올 성분이 상기 제1 내지 제4의 폴리올 성분들 중에서 선택되는 하나 이상의 중합체인, 이소시아네이트 프리폴리머 조성물의 제조 방법이 제공된다:
[화학식 1]
Figure PCTKR2022017881-appb-img-000005
상기 화학식 1에서, n은 0 내지 4의 정수이다.
본 발명에 따른 이소시아네이트 프리폴리머 조성물의 제조 방법에 있어서, 무수당 알코올 조성물, 알킬렌 옥사이드, 무수당 알코올-알킬렌 글리콜 조성물 및 폴리에테르 폴리올에 관한 설명은 전술한 바와 같다.
본 발명에 있어서, 상기 폴리이소시아네이트는 폴리우레탄 제조에 사용될 수 있는 것이라면 특별한 제한 없이 사용될 수 있다. 예를 들면, 지방족 폴리이소시아네이트, 시클로지방족 폴리이소시아네이트, 아르지방족 폴리이소시아네이트, 방향족 폴리이소시아네이트, 헤테로사이클릭 폴리이소시아네이트 또는 이 들의 조합으로 이루어진 군으로부터 선택되는 폴리이소시아네이트가 사용될 수 있으며, 또한, 개질되지 않은 폴리이소시아네이트 또는 개질된 폴리이소시아네이트가 모두 사용될 수 있다.
일 구체예에서, 상기 폴리이소시아네이트의 예는, 메틸렌디페닐 디이소시아네이트(MDI)(예컨대, 2,4- 또는 4,4'-메틸렌디페닐 디이소시아네이트), 자일릴렌 디이소시아네이트(XDI), m- 또는 p-테트라메틸자일릴렌 디이소시아네이트(TMXDI), 톨루엔 디이소시아네이트(TDI), 디- 또는 테트라-알킬디페닐메탄 디이소시아네이트, 3,3'-디메틸디페닐-4,4'-디이소시아네이트(TODI), 페닐렌 디이소시아네이트(예컨대, 1,3-페닐렌 디이소시아네이트, 1,4-페닐렌 디이소시아네이트), 나프탈렌 디이소시아네이트(naphthalene diisocyanate, NDI), 또는 4,4'-디벤질디이소시아네이트 등과 같은 방향족 폴리이소시아네이트; 수소화 MDI(H12MDI), 1-메틸-2,4-디이소시아나토시클로헥산, 1,12-디이소시아나토도데칸, 1,6-디이소시아나토-2,2,4-트리메틸헥산, 1,6-디이소시아나토-2,4,4-트리메틸헥산, 이소포론 디이소시아네이트(isophorone diisocyanate, IPDI), 테트라메톡시부탄-1,4-디이소시아네이트, 부탄-1,4-디이소시아네이트, 헥사메틸렌 디이소시아네이트(HDI)(예컨대, 1,6-헥사메틸렌 디이소시아네이트), 이량체 지방산 디이소시아네이트, 디시클로헥실메탄 디이소시아네이트, 시클로헥산 디이소시아네이트(예컨대, 시클로헥산-1,4-디이소시아네이트) 또는 에틸렌 디이소시아네이트 등과 같은 지방족 폴리이소시아네이트; 또는 이들의 조합일 수 있으나, 이에 제한되지 않는다.
다른 구체예에서, 상기 폴리이소시아네이트의 예는, 메틸렌디페닐 디이소시아네이트(MDI), 에틸렌 디이소시아네이트, 1,4-테트라메틸렌 디이소시아네이트, 1,6-헥사메틸렌 디이소시아네이트, 1,12-도데칸 디이소시아네이트, 시클로부탄-1,3-디이소시아네이트, 시클로헥산-1,3-디이소시아네이트, 시클로헥산-1,4-디이소시아네이트, 이소포론 디이소시아네이트, 2,4-헥사히드로톨루엔 디이소시아네이트, 2,6-헥사히드로톨루엔 디이소시아네이트, 디시클로헥실메탄-4,4'-디이소시아네이트(HMDI), 1,3-페닐렌 디이소시아네이트, 1,4-페닐렌 디이소시아네이트, 2,4-톨루엔 디이소시아네이트, 2,6-톨루엔 디이소시아네이트, 2,4-톨루엔 디이소시아네이트와 2,6-톨루엔 디이소시아네이트가 혼합된 톨루엔 디이소시아네이트(2,4-/2,6-이성질체비=80/20), 디페닐메탄-2,4'-디이소시아네이트, 디페닐메탄-4,4'-디이소시아네이트, 폴리디페닐메탄 디이소시아네이트(PMDI), 나프탈렌-1,5-디이소시아네이트 또는 이들의 조합일 수 있으나, 이에 제한되지 않는다.
보다 구체적으로, 상기 폴리이소시아네이트는 메틸렌디페닐 디이소시아네이트(MDI), 톨루엔 디이소시아네이트(TDI), 헥사메틸렌 디이소시아네이트(HDI), 이소포론 디이소시아네이트(IPDI), 또는 이들의 조합일 수 있다.
일 구체예에서, 상기 우레탄 반응은 촉매, 예컨대, 아민 촉매, 유기금속 촉매 또는 이들의 혼합물의 존재하에 수행될 수 있다.
상기 아민 촉매의 종류는 특별히 한정되지 않지만, 바람직하게는 3급 아민 촉매 중에서 선택된 1종 또는 2종 이상의 혼합물을 사용할 수 있고, 보다 구체적으로는 트리에틸렌디아민(Triethylene diamine), 트리에틸아민 (Triethylamine), N-메틸몰포린(N-Methyl morpholine), N-에틸몰포린(N-Ethyl morpholine) 또는 이들의 조합으로 이루어진 군으로부터 선택되는 것을 사용할 수 있다.
상기 유기 금속 촉매의 종류 또한 특별히 한정되지 않지만, 예컨대, 유기주석 촉매, 보다 구체적으로 옥틸산주석, 디부틸틴 디라우레이트(DBTDL), 틴 비스[2-에틸헥사노에이트] 또는 이들의 조합으로 이루어진 군으로부터 선택되는 것을 사용할 수 있다.
일 구체예에서, 상기 우레탄 반응은, 승온 하에(예컨대, 50 내지 100℃, 바람직하게는 50 내지 70℃에서) 적정 시간(예컨대, 0.1 내지 5시간, 바람직하게는 0.5 시간 내지 2시간) 동안 수행될 수 있으나, 이에 한정되지 않는다.
[말단 캡핑된 이소시아네이트 프리폴리머 조성물, 에폭시 수지용 접착 촉진제, 에폭시 수지 조성물, 및 접착제]
본 발명은 또한, 상기한 본 발명의 이소시아네이트 프리폴리머 조성물과 말단 캡핑제를 반응시켜 제조되는, 말단-캡핑된 이소시아네이트 프리폴리머 조성물을 제공한다.
본 발명은 또한, 상기한 말단-캡핑된 이소시아네이트 프리폴리머 조성물을 포함하는 에폭시 수지용 접착 촉진제를 제공한다.
본 발명은 또한, 상기한 에폭시 수지용 접착 촉진제; 및 에폭시 수지;를 포함하는, 에폭시 수지 조성물을 제공한다.
본 발명은 또한, 상기한 에폭시 수지 조성물을 포함하는 접착제를 제공한다.
일 구체예에서, 본 발명의 에폭시 수지 조성물에 포함되는 상기 에폭시 수지용 접착 촉진제의 양은, 에폭시 수지 조성물 총 100 중량부를 기준으로, 5 중량부 초과 내지 35 중량부 미만일 수 있다. 에폭시 수지 조성물 100 중량부 내의 상기 에폭시 수지용 접착 촉진제 함량이 5 중량부 이하이면, 에폭시 수지 조성물의 경화물에 표면 박리가 발생하고, 상온 충격 강도가 열악해 질 수 있고, 반대로 상기 에폭시 수지용 접착 촉진제 함량이 35 중량부 이상이면, 에폭시 수지 조성물의 경화물의 T-박리강도 및 상온 충격 강도가 열악해질 수 있다
보다 구체적으로, 상기 에폭시 수지 조성물 100 중량부 내의 상기 에폭시 수지용 접착 촉진제 함량은, 5 중량부 초과, 6 중량부 이상, 7 중량부 이상, 8 중량부 이상, 9 중량부 이상 또는 10 중량부 이상일 수 있으며, 또한 35 중량부 미만, 34 중량부 이하, 33 중량부 이하, 32 중량부 이하, 31 중량부 이하 또는 30 중량부 이하일 수 있다.
일 구체예에서, 상기 말단 캡핑제는 페놀계 화합물, 트리아진계 화합물, 알코올류 화합물, 아민류 화합물, 벤젠계 화합물, 디카복실산 에스테르계 화합물, 노볼락계 화합물 또는 이들의 조합으로 이루어진 군으로부터 선택되는 하나 이상일 수 있고, 보다 구체적으로는, 페놀계 화합물(예컨대, 알릴페놀, t-부틸페놀, 페놀, 비스페놀 A, 비스페놀 M, 비스페놀 F, 1,3-디히드록시벤젠, 1,4-디히드록시벤젠, 1,2-디히드록시벤젠, 페놀프탈레인, o,o'-디알릴비스페놀 A, 페놀프탈레인, 또는 이들의 조합), 벤젠계 화합물(에컨대, 플루오로글루시놀, 레조르시놀, 나프토레조르시놀, 또는 이들의 조합), 디카복실산 에스테르계 화합물(예컨대, 갈릭산 에스테르, 말레인산 에스테르, 또는 이들의 조합), 노볼락계 화합물(예컨대, 크레졸 노볼락) 또는 이들의 조합으로 이루어진 군으로부터 선택되는 하나 이상일 수 있으며, 더욱 더 구체적으로는, 페놀계 화합물일 수 있다.
상기 에폭시 수지는 고체, 액체 또는 반고체일 수 있으며, 이들이 적용될 용도에 따라 다양한 반응성을 가질 수 있다. 에폭시 수지의 반응성은 단일 반응성 에폭시기를 함유하는 수지의 분자량인 에폭시 당량의 관점에서 종종 측정된다. 에폭시 당량이 낮을 수록 에폭시 수지의 반응성은 더 높다.
일 구체예에서, 상기 에폭시 수지로는, 비스페놀 A-에피클로로하이드린 수지, 비스페놀A의 디글리시딜 에테르 수지, 노볼락형 에폭시 수지, 지환식 에폭시 수지, 지방족 에폭시 수지, 이절환형 에폭시 수지, 글리시딜에스테르형 에폭시 수지, 브롬화 에폭시 수지, 바이오 유래 에폭시 수지, 에폭시화 대두유(epoxidized soybean oil) 또는 이들의 조합으로 이루어진 군으로부터 선택되는 것을 들 수 있으나, 이에 한정되지 않는다.
다른 구체예에서, 상기 에폭시 수지로는, 페놀노볼락형 에폭시 수지, 크레졸노볼락형 에폭시 수지 등의 노볼락형 에폭시 수지, 비스페놀 A형 에폭시 수지, 비스페놀 F형 에폭시 수지 등의 비스페놀형 에폭시 수지, N,N-디글리시딜아닐린, N,N-디글리시딜톨루이딘, 디아미노디페닐메탄형 글리시딜아민, 아미노페놀형 글리시딜아민 등의 방향족 글리시딜아민형 에폭시 수지, 하이드로퀴논형 에폭시 수지, 비페닐형 에폭시 수지, 스틸벤형 에폭시 수지, 트리페놀메탄형 에폭시 수지, 트리페놀프로판형 에폭시 수지, 알킬 변성 트리페놀메탄형 에폭시 수지, 트리아진 핵 함유 에폭시 수지, 디사이클로펜타디엔 변성 페놀형 에폭시 수지, 나프톨형 에폭시 수지, 나프탈렌형 에폭시 수지, 페닐렌 및/또는 비페닐렌 골격을 갖는 페놀아랄킬형 에폭시 수지, 페닐렌 및/또는 비페닐렌 골격을 갖는 나프톨아랄킬형 에폭시 수지 등의 아랄킬형 에폭시 수지, 비닐사이클로헥센디옥사이드, 디사이클로펜타디엔옥사이드, 알리사이클릭디에폭시-아디페이드 등의 지환식 에폭시 등의 지방족 에폭시 수지 또는 이들의 조합으로 이루어진 군으로부터 선택되는 것을 들 수 있으나, 이에 한정되지 않는다.
또 다른 구체예에서, 상기 에폭시 수지로는, 비스페놀F형 에폭시 수지, 크레졸노볼락형 에폭시 수지, 페놀노볼락형 에폭시 수지, 비페닐형 에폭시 수지, 스틸벤형 에폭시 수지, 하이드로퀴논형 에폭시 수지, 나프탈렌골격형 에폭시 수지, 테트라페닐올에탄형 에폭시 수지, 디페닐포스페이트(DPP)형 에폭시 수지, 트리스하이드록시페닐메탄형 에폭시 수지, 디시클로펜타디엔페놀형 에폭시 수지, 비스페놀A에틸렌옥사이드부가물의 디글리시딜에테르, 비스페놀A프로필렌옥사이드부가물의 디글리시딜에테르, 비스페놀A의 디글리시딜 에테르, 페닐글리시딜에테르, 크레질글리시딜에테르 등의 에폭시기를 1개를 갖는 글리시딜에테르, 이들 에폭시 수지의 핵수첨화물인 핵수첨화 에폭시 수지 또는 이들의 조합으로 이루어진 군으로부터 선택되는 것을 들 수 있으나, 이에 한정되지 않는다.
일 구체예에서, 상기 말단-캡핑된 이소시아네이트 프리폴리머 조성물과 에폭시 수지의 반응은 말단-캡핑된 이소시아네이트 프리폴리머 조성물과 에폭시 수지와의 고리화 반응이며, 이는 촉매, 예컨대, 유기암모늄염 화합물과 같은 염기성 촉매의 존재하에, 승온 하에(예컨대, 100 내지 200℃, 바람직하게는 120 내지 180℃에서) 적정 시간(예컨대, 0.1 내지 5시간, 바람직하게는 0.5 시간 내지 2시간) 동안 수행될 수 있으나, 이에 한정되지 않는다.
일 구체예에서, 본 발명의 에폭시 수지용 접착 촉진제는 본 발명의 말단-캡핑된 이소시아네이트 프리폴리머 조성물만으로 이루어질 수 있다.
다른 구체예에서, 본 발명의 에폭시 수지용 접착 촉진제는, 본 발명의 목적을 달성할 수 있는 범위 내에서, 본 발명의 말단-캡핑된 이소시아네이트 프리폴리머 조성물 이외에 추가의 접착 촉진제 성분을 더 포함할 수 있으며, 이러한 추가의 접착 촉진제 성분으로는 에폭시 수지용으로 사용 가능한 접착 촉진제 성분이 사용될 수 있다.
일 구체예에서, 상기 추가의 접착 촉진제 성분으로는 폴리우레탄 변성 에폭시 수지, 폴리우레탄 변성 실릴 에폭시 수지, 또는 이들의 조합이 사용될 수 있으나 이에 한정되지 않는다.
일 구체예에서, 본 발명의 에폭시 수지 조성물은, 상기한 에폭시 수지용 접착 촉진제 및 에폭시 수지 이외에, 경화제, 경화 촉진제, 충전제, 충격 보강제 또는 이들의 조합으로부터 선택되는 하나 이상을 추가로 포함할 수 있다.
상기 경화제로는 이 분야에서 통상적으로 사용되는 경화제를 1종 단독으로 또는 2종 이상 병용하여 사용할 수 있으며, 예를 들면, 벤질디메틸아민, 트리스(디메틸아미노메틸)페놀, 디메틸시클로헥실아민 등의 아민 화합물 (예컨대, 3급아민); 1-시아노에틸-2-에틸-4-메틸이미다졸, 2-에틸-4-메틸이미다졸, 1-벤질-2-메틸이미다졸 등의 이미다졸 화합물; 트리페닐포스핀, 아인산트리페닐 등의 유기인 화합물; 테트라페닐포스포늄브로마이드, 테트라-n-부틸포스포늄브로마이드 등의 4급포스포늄염; 1,8-디아자비시클로[5.4.0]운데센-7 등이나 그 유기산염 등의 디아자비시클로알켄; 옥틸산아연, 옥틸산주석이나 알루미늄아세틸아세톤 착체 등의 유기금속 화합물; 테트라에틸암모늄브로마이드, 테트라부틸암모늄브로마이드 등의 4급 암모늄염; 삼불화붕소, 트리페닐보레이트 등의 붕소 화합물; 염화아연, 염화제이주석 등의 금속할로겐화물; 잠재성 경화제(예컨대, 디시안디아미드, 아민을 에폭시 수지 등에 부가한 고융점분산형 잠재성 아민 부가물; 이미다졸계, 인계, 포스핀계 촉진제의 표면을 폴리머로 피복한 마이크로캅셀형 잠재성 경화제; 아민염형 잠재성 경화제; 루이스산염, 브뢴스테드산염 등의 고온해리형의 열양이온 중합형의 잠재성 경화제 등) 또는 이들의 조합으로 이루어진 군으로부터 선택되는 것을 들 수 있으나, 이에 한정되지 않는다.
일 구체예에서, 상기 경화제로는 아민 화합물, 이미다졸 화합물, 유기인 화합물, 잠재성 경화제 또는 이들의 조합으로 이루어진 군으로부터 선택되는 것을 사용할 수 있다.
에폭시 수지의 상온 경화는 보통 15℃이상의 온도를 요하고 경화 시간은 24시간 또는 그 이상을 필요로 하기 때문에 속경화 및 저온 경화가 필요할 때가 있다.
따라서, 경화 촉진 효과를 위하여, 본 발명의 에폭시 수지 조성물은 경화 촉진제를 추가로 포함할 수 있다. 상기 경화 촉진제로는 예를 들면 우레아계 화합물, 티오우레아계 화합물, 루이스산계 화합물 또는 이들의 혼합물 등을 들 수 있고, 구체적으로 부틸화 우레아, 부틸화 멜라민, 부틸화 티오우레아, 3 불화붕소 등을 들 수 있으나, 이에 한정되지 않는다.
본 발명의 에폭시 수지 조성물에 경화 촉진제가 포함되는 경우, 그 사용량은 상기 에폭시 수지 및 경화제의 합계 100 중량부에 대하여 0.01 중량부 내지 1.0 중량부일 수 있고, 보다 구체적으로는 0.05 중량부 내지 0.5 중량부일 수 있으며, 보다 더 구체적으로는 0.08 중량부 내지 0.2 중량부일 수 있으나, 이에 한정되지 않는다. 경화 촉진제의 사용량이 지나치게 적으면 에폭시 수지의 경화 반응이 충분히 진행되지 못하여 기계적 물성 및 열적 물성이 저하되는 문제가 있을 수 있고, 반대로 경화 촉진제의 사용량이 지나치게 많으면 에폭시 수지 조성물을 보관하는 동안에도 경화 반응이 서서히 진행되기 때문에 점도가 상승하는 문제가 있을 수 있다.
상기 충전제는 에폭시 수지나 경화제에 배합하여 경화물의 기계적 특성을 향상시키는 것을 주 목적으로 하여 사용되며, 일반적으로 첨가량이 증가하면 기계적 특성은 향상된다. 무기질 충전제로는 활석, 모래, 실리카, 탈크, 탄산칼슘 등의 증량제; 마이카, 석영, 유리섬유(Glass fiber) 등의 보강성 충진제; 석영분, 그라파이트, 알루미나, Aerosil(칙소성 부여하는 목적) 등의 특수한 용도를 지닌 것이 있고, 금속질로는 알루미늄, 산화알루미늄, 철, 산화철, 구리 등의 열팽창계수, 내마모성, 열전도성, 접착성에 기여하는 것이나, 산화안티몬(SB2O3)등의 난연성을 부여하는 것, 티탄산 바륨, 유기물로는 미세한 플라스틱구(페놀수지, 요소수지 등)과 같은 경량화용 충전제 등이 있다. 이외에 보강성을 지닌 충전제로서 각종 유리섬유나 화학 섬유포는 적층품의 제조에 있어서 넓은 의미의 충전제로서 취급할 수 있다. 수지에 요변성(Thixotropic: 칙소성 또는 요변성이란 수직면이나 침지법으로 부착 또는 적층재에 함침시킨 수지가 경화 중에 흘러내리거나 유실되는 경우가 없도록 유동하고 있을 때는 액상, 정지 상태에서는 고상의 성질을 갖는 것을 말한다)을 부여하기 위해 단위 표면적이 넓은 미세한 입자를 사용한다. 예를 들면, 콜로이드상의 실리카(Aerosil)나 벤토나이트 계열의 점토질이 사용된다.
일 구체예에서, 충전제로는, 특별히 한정되지 않지만, 예를 들어, 유리섬유, 탄소섬유, 산화티탄, 알루미나, 탈크, 마이카, 수산화알루미늄, 탄산칼슘 또는 이들의 조합으로 이루어진 군으로부터 선택되는 것을 사용할 수 있다. 조성물 내의 충전제의 함유량은, 상기 에폭시 수지 및 경화제의 합계 100 중량부에 대하여, 0.01~80 중량부, 또는 0.01~60 중량부, 또는 0.1~50 중량부일 수 있다.
상기 충격 보강제는 재료의 성능을 개선하기 위해 사용되는 개질제 중 하나로서 에폭시 수지 조성물의 제조 시에 첨가되어 충격 강도 및 가공성 등의 물성을 향상시켜주는 역할을 한다.
일 구체예에서, 충격 보강제로는, 예를 들면 카르복실 말단 부타디엔 아크릴로 니트릴 (carboxyl terminated butadiene acrylonitrile, CTBN) 및 아민 말단 부타디엔 아크릴로 니트릴 (amine terminated butadiene acrylonitrile, ATBN) 등의 고무계 충격 보강제, 폴리에테르설폰 (polyethersulfone), 폴리에테르이미드 (polyetherimide), 폴리카보네이트 (polycarbonate), 폴리이미드 (polyimide), 폴리아미드 (polyamide), 아크릴로니트릴 부타디엔 스티렌 (Acrylonitrile butadiene styene, ABS) 및 메타크릴레이트 부타디엔 스티렌 (Methacrylate butadiene styrene, MBS) 등의 열가소성 고분자계 충격 보강제, 또는 이들의 혼합물을 사용할 수 있다.
본 발명의 에폭시 수지 조성물에 충격 보강제가 포함되는 경우, 조성물 내의 충격 보강제의 함량은, 상기 에폭시 수지 및 경화제의 합계 100 중량부에 대하여 2 중량부 내지 40 중량부일 수 있고, 보다 구체적으로는 5 중량부 내지 35 중량부일 수 있으며, 보다 더 구체적으로는 10 중량부 내지 30 중량부일 수 있으나, 이에 한정되지 않는다. 충격 보강제의 함량이 상기 수준보다 지나치게 적으면 에폭시 수지 조성물의 경화물의 강인성이 충분하지 않아 기계적 물성 및 열적 물성이 저하될 수 있고, 반대로 충격 보강제의 함량이 상기 수준보다 지나치게 많으면 에폭시 수지 조성물 내의 상용성이 열악해지고, 에폭시 수지 조성물의 경화 수준이 열악해지며, 에폭시 수지 조성물의 제조 비용이 증가하고, 에폭시 수지 조성물의 점도가 상승하는 문제가 있다.
본 발명의 에폭시 수지 조성물에는 필요에 따라 에폭시 수지 조성물에 통상 사용되는 첨가제 성분이 하나 이상 더 포함될 수 있다.
이러한 첨가제 성분으로는, 예컨대, 산화 방지제, UV 흡수제, 수지 개질제, 실란 커플링제, 희석제, 착색제, 소포제, 탈포제, 분산제, 점도 조절제, 광택 조절제, 습윤제, 전도성 부여제 또는 이들의 조합으로 이루어진 군으로부터 선택되는 것을 사용할 수 있다.
상기 산화방지제는 얻어지는 경화물의 내열 안정성을 더욱 향상시키기 위하여 사용될 수 있으며, 특별히 한정되지 않지만, 예를 들어, 페놀계 산화방지제(디부틸하이드록시톨루엔 등), 황계 산화방지제 (메르캅토프로피온산유도체 등), 인계 산화방지제(9,10-디하이드로-9-옥사-10-포스파페난트렌-10-옥사이드 등) 또는 이들의 조합으로 이루어진 군으로부터 선택되는 것을 사용할 수 있다. 조성물 내의 산화방지제의 함유량은, 상기 에폭시 수지 및 경화제의 합계 100 중량부에 대하여, 0.01~10 중량부, 또는 0.05~5 중량부, 또는 0.1~3 중량부일 수 있다.
상기 UV 흡수제로는, 특별히 한정되지 않지만, 예를 들어, BASF Japan Ltd.제 TINUBIN P나 TINUVIN 234로 대표되는 벤조트리아졸계 UV 흡수제; TINUVIN 1577ED와 같은 트리아진계 UV 흡수제; CHIMASSOLV 2020FDL과 같은 힌더드아민계 UV 흡수제 또는 이들의 조합으로 이루어진 군으로부터 선택되는 것을 사용할 수 있다. 조성물 내의 UV 흡수제의 함유량은, 상기 에폭시 수지 및 경화제의 합계 100 중량부에 대하여, 0.01~10 중량부, 또는 0.05~5 중량부, 또는 0.1~3 중량부일 수 있다.
상기 수지 개질제로는, 특별히 한정되지 않지만, 예를 들어, 폴리프로필렌글리시딜에테르, 중합지방산폴리글리시딜에테르, 폴리프로필렌글리콜, 우레탄프리폴리머 등의 가요성부여제 등을 들 수 있다. 조성물 내의 수지 개질제의 함유량은, 상기 에폭시 수지 및 경화제의 합계 100 중량부에 대하여, 0.01~80 중량부, 또는 0.01~50 중량부, 또는 0.1~20 중량부일 수 있다.
상기 실란 커플링제로는, 특별히 한정되지 않지만, 예를 들어, 클로로프로필트리메톡시실란, 비닐트리클로로실란, γ메타크릴록시프로필트리메톡시실란, γ아미노프로필트리에톡시실란 등을 들 수 있다. 조성물 내의 실란커플링제의 함유량은, 상기 에폭시 수지 및 경화제의 합계 100 중량부에 대하여, 0.01~20 중량부, 또는 0.05~10 중량부, 또는 0.1~5 중량부일 수 있다.
상기 희석제는 에폭시 수지나 경화제에 첨가하여 점도를 저하시키는 것을 주 목적으로 하여 사용되며, 사용시 흐름성, 탈포성의 개선, 부품 세부에 침투의 개선 등 또는 충진제를 효과적으로 첨가할 수 있도록 하는 역할을 한다. 희석제는 일반적으로 용제와는 달리 휘발하지 않고, 수지 경화시에 경화물에 잔존하는 것으로 반응성과 비반응성의 희석제로 나뉜다. 여기서 반응성의 희석제는 에폭시기를 한 개 또는 그 이상을 가지고 있고 반응에 참여하여 경화물에 가교 구조로 들어가고, 비반응성 희석제는 단지 경화물 속에 물리적으로 혼합 및 분산만 되어 있는 상태로 있다. 일반적으로 많이 사용되는 반응성 희석제로는 부틸 글리시딜 에테르(Butyl Glycidyl Ether, BGE), 페닐 글리시딜 에테르(Phenyl Glycidyl Ether, PGE), 지방족 글리시딜 에테르(Aliphatic Glycidyl Ether(C12 -C14)), 개질 t-카복실 글리시딜 에스테르(Modified-tert-Carboxylic Glycidyl Ester) 등 여러 가지가 있다. 일반적으로 사용되는 비반응성 희석제로는 디부틸프탈레이트(DiButylPhthalate, DBP), 디옥틸프탈레이트(DiOctylPhthalate, DOP), 노닐페놀(Nonyl-Phenol), 하이솔(Hysol) 등이 사용된다. 일 구체예에서, 희석제로는, 특별히 한정되지 않지만, 예를 들어, n-부틸글리시딜에테르, 페닐글리시딜에테르, 글리시딜메타크릴레이트, 비닐시클로헥센디옥사이드, 디글리시딜아닐린, 글리세린트리글리시딜에테르 또는 이들의 조합으로 이루어진 군으로부터 선택되는 것을 사용할 수 있다. 조성물 내의 희석제의 함유량은, 상기 에폭시 수지 및 경화제의 합계 100 중량부에 대하여, 0.01~80 중량부, 또는 0.01~50 중량부, 또는 0.1~20 중량부일 수 있다.
수지에 색을 넣기 위한 착색제로는 안료나 염료가 사용된다. 일반적으로 사용되는 안료로는 이산화티타늄, 카드뮴 레드, 샤닝 그린, 카본 블랙, 크롬 그린, 크롬 옐로우, 네비 블루, 샤닝 블루, 등의 착색제가 사용된다.
그밖에, 수지의 기포를 제거하기 위한 목적으로 사용되는 소포제 및 탈포제, 수지와 안료와의 분산효과를 증대시키기 위한 분산제, 에폭시 수지와 소재와의 밀착성을 좋게 하기 위한 습윤(Wetting)제, 점도 조절제, 수지의 광택도 조절을 위한 광택 조절제, 접착력을 향상시키기 위한 첨가제, 전기적 성질을 부여하기 위한 첨가제, 등등 다양한 첨가제들이 사용 가능하다.
본 발명의 에폭시 수지 조성물의 경화 방법은, 특별히 한정되지 않고, 예를 들어, 밀폐식 경화로나 연속경화가 가능한 터널로 등의 종래 공지의 경화장치를 사용할 수 있다. 해당 경화에 이용하는 가열방법은, 특별히 한정되지 않지만, 예를 들어, 열풍순환, 적외선가열, 고주파가열 등, 종래 공지의 방법으로 행할 수 있다.
경화온도 및 경화시간은, 80℃~250℃에서 30초~10시간의 범위일 수 있다. 일 구체예에서는, 80℃~120℃, 0.5시간~5시간의 조건으로 전경화한 후, 120℃~180℃, 0.1시간~5시간의 조건으로 후경화할 수 있다. 일 구체예에서는, 단시간 경화를 위하여 150℃~250℃, 30초~30분의 조건으로 경화할 수 있다.
일 구체예에서, 본 발명의 에폭시 수지 조성물은, 2개 이상의 성분, 예를 들어, 경화제를 포함한 성분과 에폭시 수지를 포함한 성분으로 나누어 보존해두고, 경화 전에 이들을 조합할 수도 있다. 다른 구체예에서, 본 발명의 에폭시 수지 조성물은, 각 성분을 배합한 열경화성 조성물로서 보존하고, 그대로 경화에 제공할 수도 있다. 열경화성 조성물로서 보존하는 경우에는, 저온(통상 -40℃~15℃에서 보존할 수 있다.
이하, 실시예 및 비교예를 통하여 본 발명을 보다 상세하게 설명한다. 그러나, 본 발명의 범위가 이들로 한정되는 것은 아니다.
[실시예]
<제1 내지 제5의 폴리올 성분들을 포함하는 무수당 알코올 조성물의 제조>
제조예 1: 97 중량% 함량의 포도당을 이용한 무수당 알코올 조성물의 제조
니켈 촉매의 존재 및 125°C의 온도 및 60 기압의 수소 압력 하에서 97%의 순도를 갖는 포도당 제품을 수첨 반응시켜 농도가 55 중량%인 액상의 수소화 당 조성물 (고형분 기준 소르비톨 96 중량%, 만니톨 0.9 중량% 및 이당류 이상의 다당류 알코올 3.1 중량%) 1,819g을 얻었고, 이를 교반기가 부착된 회분식 반응기에 넣고 100°C로 가열하여 농축시킴으로써, 농축된 수소화 당 조성물 1,000g을 얻었다.
반응기에 상기 농축된 수소화 당 조성물 1,000g 및 황산 9.6g을 투입하였다. 이후 반응기 내부 온도를 약 135°C로 승온하고 약 45 mmHg의 감압 조건 하에서 탈수 반응을 진행하여 무수당 알코올로 전환하였다. 탈수 반응 완료 후 반응 결과물의 온도를 110°C이하로 냉각하고, 50% 수산화나트륨 수용액 약 15.7g을 투입하여 반응 결과물을 중화시켰다. 이후 온도를 100°C 이하로 냉각하고 45 mmHg의 감압 조건에서 1시간 이상 농축하여 잔류 수분과 저비점 물질을 제거함으로써 무수당 알코올 전환액 약 831g을 수득하였다. 수득된 무수당 알코올 전환액을 가스 크로마토그래피로 분석한 결과, 이소소르비드로의 전환 함량은 71.9 중량%이었고, 이를 통해 소르비톨로부터 이소소르비드로의 몰 전환율은 77.6%로 계산되었다.
상기 수득된 무수당 알코올 전환액 831g을 박막 증류기(SPD)에 투입하여 증류를 진행하였다. 이때, 증류는 160°C의 온도 및 1 mbar의 진공 압력 하에서 진행하였으며, 증류액 약 589g을 수득하였다(증류 수율: 약 70.9%). 이때 증류액 내의 이소소르비드의 순도는 96.8%로 측정되었고, 이로부터 계산된 이소소르비드의 증류 수율은 95.3%이었다. 증류액을 분리한 후, 이소소르비드(이무수당 알코올) [제2의 폴리올 성분] 11.5 중량%, 이소만니드(이무수당 알코올) [제2의 폴리올 성분] 0.4 중량%, 소르비탄 (일무수당 알코올) [제1의 폴리올 성분] 7.4 중량%, 상기 화학식 1로 표시되는 다당류 알코올 [제3의 폴리올 성분] 및 그로부터 유래된 (즉, 다당류 알코올로부터 물 분자를 제거하여 형성된) 무수당 알코올 [제4의 폴리올 성분]의 합계 2.5 중량% 및 이들의 중합체 [제5의 폴리올 성분] 78.2 중량%를 포함하고, 조성물의 수평균 분자량이 208 g/mol이며, 조성물의 다분산 지수가 1.25이고, 조성물의 수산기 값이 751 mg KOH/g이며, 조성물 내의 한 분자당 -OH기의 평균 갯수가 2.78개인 무수당 알코올 조성물 약 242g을 수득하였다.
<무수당 알코올-알킬렌 글리콜 조성물의 제조>
제조예 2: 제조예 1의 무수당 알코올 조성물 100 중량부 당 프로필렌 옥사이드 300 중량부를 부가 반응시켜 제조된 무수당 알코올-알킬렌 글리콜 조성물
상기 제조예 1에서 수득된 무수당 알코올 조성물 100 중량부(100g)와 KOH 1 중량부(1.0g)를 가압 반응기 안에 넣고, 질소로 가압 및 배기 과정을 3회 반복 실시하였다. 이후 반응기 내부 온도를 100℃까지 승온하여 수분을 제거해주고, 수분이 모두 제거된 후 프로필렌 옥사이드 300 중량부(300g)를 서서히 주입하며 100℃내지 140℃에서 반응시켰다. 이후 금속 및 부산물들을 제거하기 위해 금속 흡착제(Ambosol MP20) 4g을 넣고, 다시 반응기 내부 온도를 올려 100℃내지 120℃에서 1시간 내지 5시간 동안 교반하면서 금속 함량을 모니터링 한 뒤, 금속이 완전히 제거되어 검출되지 않으면 반응기 내부 온도를 60℃내지 90℃로 냉각하고 여과하였다. 그 후 이온교환수지(UPRM 200, 삼양사)를 이용하여 상기 여과액을 정제함으로써 무수당 알코올-알킬렌 글리콜 조성물 350g을 수득하였다.
<이소시아네이트 프리폴리머 조성물 및 말단-캡핑된 이소시아네이트 프리폴리머 조성물의 제조>
실시예 A1: 무수당 알코올-알킬렌 글리콜 조성물 및 폴리에테르 폴리올을 포함하는 폴리올 조성물(폴리에테르 폴리올의 OH 당량/무수당 알코올-알킬렌 글리콜 조성물의 OH 당량=1)과 폴리이시아네이트를 이용한 이소시아네이트 프리폴리머 조성물(폴리이소시아네이트의 전체 NCO 당량/폴리올 조성물의 전체 OH 당량=1.7)의 제조 및 t-부틸 페놀을 이용한 말단-캡핑된 이소시아네이트 프리폴리머 조성물의 제조
질소 가스관, 교반기, 온도계 및 히터를 장착한 250ml 4구 유리 반응기에, 제조예 2에서 수득된 무수당 알코올-알킬렌 글리콜 조성물 12.95g, 폴리테트라메틸렌 에테르 글리콜(수평균분자량: 2,000 g/mol, 시그마 알드리치(제)) 60g, 이소포론 이소시아네이트 22.67g 및 촉매로서 디-n-부틸틴 디라우레이트 0.5g을 넣고, 반응기의 내부 온도를 천천히 75℃내지 80℃로 승온시킨 후, 3 시간 동안 질소 분위기 하에서 교반하며 우레탄 반응을 진행함으로써, 이소시아네이트 프리폴리머 조성물을 제조하였다. 이어서 반응기 내부 온도를 60℃로 조절하였다. 상기 제조된 이소시아네이트 프리폴리머 조성물의 이소시아네이트(NCO) 함량을 측정 후, NCO 1 당량 대비 1.4 당량의 t-부틸 페놀(시그마 알드리치(제))을 상기 반응기에 넣고 질소 분위기 하에서 혼합하면서 말단-캡핑 반응을 진행하였다. 상기 반응을 진행하면서, FT-IR 스펙트럼을 이용하여 2,300cm-1 부근의 NCO 피크가 사라지는 시점에 반응을 종료하였다. 반응 완료 후, 반응 생성물을 상온으로 냉각함으로써, 말단-캡핑된 이소시아네이트 프리폴리머 조성물 100g을 수득하였다.
실시예 A2: 무수당 알코올-알킬렌 글리콜 조성물 및 폴리에테르 폴리올을 포함하는 폴리올 조성물(폴리에테르 폴리올의 OH 당량/무수당 알코올-알킬렌 글리콜 조성물의 OH 당량=1.5)과 폴리이시아네이트를 이용한 이소시아네이트 프리폴리머 조성물(폴리이소시아네이트의 NCO 당량/폴리올 조성물의 전체 OH 당량=1.7)의 제조 및 알릴 페놀을 이용한 말단-캡핑된 이소시아네이트 프리폴리머 조성물의 제조
제조예 2에서 수득된 무수당 알코올-알킬렌 글리콜 조성물의 함량을 12.95g에서 10.36g으로 변경하고, 폴리테트라메틸렌 에테르 글리콜(수평균분자량: 2,000 g/mol, 시그마 알드리치(제))의 함량을 60g에서 72g으로 변경한 것을 제외하고는, 실시예 A1과 동일한 방법으로 이소시아네이트 프리폴리머 조성물을 제조하였고, 말단 캡핑제로서 t-부틸 페놀(시그마 알드리치(제))을 대신하여 알릴 페놀(시그마 알드리치(제))을 NCO 1 당량 대비 1.4 당량 사용한 것을 제외하고는, 실시예 A1과 동일한 방법으로 말단-캡핑된 이소시아네이트 프리폴리머 조성물 90g을 수득하였다.
실시예 A3: 무수당 알코올-알킬렌 글리콜 조성물 및 폴리에테르 폴리올을 포함하는 폴리올 조성물(폴리에테르 폴리올의 OH 당량/무수당 알코올-알킬렌 글리콜 조성물의 OH 당량=4)과 폴리이시아네이트를 이용한 이소시아네이트 프리폴리머 조성물(폴리이소시아네이트의 NCO 당량/폴리올 조성물의 전체 OH 당량=1.7)의 제조 및 t-부틸 페놀을 이용한 말단-캡핑된 이소시아네이트 프리폴리머 조성물의 제조
제조예 2에서 수득된 무수당 알코올-알킬렌 글리콜 조성물의 함량을 12.95g에서 5.18g으로 변경하고, 폴리테트라메틸렌 에테르 글리콜(수평균분자량: 2,000 g/mol, 시그마 알드리치(제))의 함량을 60g에서 96g으로 변경한 것을 제외하고는, 실시예 A1과 동일한 방법으로 이소시아네이트 프리폴리머 조성물을 제조하였고, 실시예 A1과 동일한 방법으로 말단-캡핑된 이소시아네이트 프리폴리머 조성물 90g을 수득하였다.
실시예 A4: 무수당 알코올-알킬렌 글리콜 조성물 및 폴리에테르 폴리올을 포함하는 폴리올 조성물(폴리에테르 폴리올의 OH 당량/무수당 알코올-알킬렌 글리콜 조성물의 OH 당량=1.5)과 폴리이시아네이트를 이용한 이소시아네이트 프리폴리머 조성물(폴리이소시아네이트의 NCO 당량/폴리올 조성물의 전체 OH 당량=1.5)의 제조 및 t-부틸 페놀을 이용한 말단-캡핑된 이소시아네이트 프리폴리머 조성물의 제조
제조예 2에서 수득된 무수당 알코올-알킬렌 글리콜 조성물의 함량을 12.95g에서 10.36g으로 변경하고, 폴리테트라메틸렌 에테르 글리콜(수평균분자량: 2,000 g/mol, 시그마 알드리치(제))의 함량을 60g에서 72g으로 변경하며, 이소포론 디이소시아네이트의 함량을 22.67g에서 20.01g으로 변경한 것을 제외하고는, 실시예 A1과 동일한 방법으로 이소시아네이트 프리폴리머 조성물을 제조하였고, 실시예 A1과 동일한 방법으로 말단-캡핑된 이소시아네이트 프리폴리머 조성물 90g을 수득하였다.
실시예 A5: 무수당 알코올-알킬렌 글리콜 조성물 및 폴리에테르 폴리올을 포함하는 폴리올 조성물(폴리에테르 폴리올의 OH 당량/무수당 알코올-알킬렌 글리콜 조성물의 OH 당량=1.5)과 폴리이시아네이트를 이용한 이소시아네이트 프리폴리머 조성물(폴리이소시아네이트의 NCO 당량/폴리올 조성물의 전체 OH 당량=1.9)의 제조 및 t-부틸 페놀을 이용한 말단-캡핑된 이소시아네이트 프리폴리머 조성물의 제조
제조예 2에서 수득된 무수당 알코올-알킬렌 글리콜 조성물의 함량을 12.95g에서 10.36g으로 변경하고, 폴리테트라메틸렌 에테르 글리콜(수평균분자량: 2,000 g/mol, 시그마 알드리치(제))의 함량을 60g에서 72g으로 변경하며, 이소포론 디이소시아네이트의 함량을 22.67g에서 25.34g으로 변경한 것을 제외하고는, 실시예 A1과 동일한 방법으로 이소시아네이트 프리폴리머 조성물을 제조하였고, 실시예 A1과 동일한 방법으로 말단-캡핑된 이소시아네이트 프리폴리머 조성물 90g을 수득하였다.
비교예 A1: 무수당 알코올-알킬렌 글리콜 조성물 및 폴리에테르 폴리올을 포함하는 폴리올 조성물(폴리에테르 폴리올의 OH 당량/무수당 알코올-알킬렌 글리콜 조성물의 OH 당량=0.67)과 폴리이시아네이트를 이용한 이소시아네이트 프리폴리머 조성물(폴리이소시아네이트의 NCO 당량/폴리올 조성물의 전체 OH 당량=1.7)의 제조 및 t-부틸 페놀을 이용한 말단-캡핑된 이소시아네이트 프리폴리머 조성물의 제조
제조예 2에서 수득된 무수당 알코올-알킬렌 글리콜 조성물의 함량을 12.95g에서 15.54g으로 변경하고, 폴리테트라메틸렌 에테르 글리콜(수평균분자량: 2,000 g/mol, 시그마 알드리치(제))의 함량을 60g에서 48g으로 변경한 것을 제외하고는, 실시예 A1과 동일한 방법으로 이소시아네이트 프리폴리머 조성물을 제조하였고, 실시예 A1과 동일한 방법으로 말단-캡핑된 이소시아네이트 프리폴리머 조성물 100g을 수득하였다.
비교예 A2: 무수당 알코올-알킬렌 글리콜 조성물 및 폴리에테르 폴리올을 포함하는 폴리올 조성물(폴리에테르 폴리올의 OH 당량/무수당 알코올-알킬렌 글리콜 조성물의 OH 당량=9)과 폴리이시아네이트를 이용한 이소시아네이트 프리폴리머 조성물(폴리이소시아네이트의 NCO 당량/폴리올 조성물의 전체 OH 당량=1.7)의 제조 및 t-부틸 페놀을 이용한 말단-캡핑된 이소시아네이트 프리폴리머 조성물의 제조
제조예 2에서 수득된 무수당 알코올-알킬렌 글리콜 조성물의 함량을 12.95g에서 2.59g으로 변경하고, 폴리테트라메틸렌 에테르 글리콜(수평균분자량: 2,000 g/mol, 시그마 알드리치(제))의 함량을 60g에서 108g으로 변경한 것을 제외하고는, 실시예 A1과 동일한 방법으로 이소시아네이트 프리폴리머 조성물을 제조하였고, 실시예 A1과 동일한 방법으로 말단-캡핑된 이소시아네이트 프리폴리머 조성물 100g을 수득하였다.
비교예 A3: 무수당 알코올-알킬렌 글리콜 조성물 및 폴리에테르 폴리올을 포함하는 폴리올 조성물(폴리에테르 폴리올의 OH 당량/무수당 알코올-알킬렌 글리콜 조성물의 OH 당량=1.5)과 폴리이시아네이트를 이용한 이소시아네이트 프리폴리머 조성물(폴리이소시아네이트의 NCO 당량/폴리올 조성물의 전체 OH 당량=1.4)의 제조 및 t-부틸 페놀을 이용한 말단-캡핑된 이소시아네이트 프리폴리머 조성물의 제조
제조예 2에서 수득된 무수당 알코올-알킬렌 글리콜 조성물의 함량을 12.95g에서 10.36g으로 변경하고, 폴리테트라메틸렌 에테르 글리콜(수평균분자량: 2,000 g/mol, 시그마 알드리치(제))의 함량을 60g에서 72g으로 변경하며, 이소포론 디이소시아네이트의 함량을 22.67g에서 18.67g으로 변경한 것을 제외하고는, 실시예 A1과 동일한 방법으로 이소시아네이트 프리폴리머 조성물을 제조하였고, 실시예 A1과 동일한 방법으로 말단-캡핑된 이소시아네이트 프리폴리머 조성물 100g을 수득하였다.
비교예 A4: 무수당 알코올-알킬렌 글리콜 조성물 및 폴리에테르 폴리올을 포함하는 폴리올 조성물(폴리에테르 폴리올의 OH 당량/무수당 알코올-알킬렌 글리콜 조성물의 OH 당량=1.5)과 폴리이시아네이트를 이용한 이소시아네이트 프리폴리머 조성물(폴리이소시아네이트의 NCO 당량/폴리올 조성물의 전체 OH 당량=2.0)의 제조 및 t-부틸 페놀을 이용한 말단-캡핑된 이소시아네이트 프리폴리머 조성물의 제조
제조예 2에서 수득된 무수당 알코올-알킬렌 글리콜 조성물의 함량을 12.95g에서 10.36g으로 변경하고, 폴리테트라메틸렌 에테르 글리콜(수평균분자량: 2,000 g/mol, 시그마 알드리치(제))의 함량을 60g에서 72g으로 변경하며, 이소포론 디이소시아네이트의 함량을 22.67g에서 26.68g으로 변경한 것을 제외하고는, 실시예 A1과 동일한 방법으로 이소시아네이트 프리폴리머 조성물을 제조하였고, 실시예 A1과 동일한 방법으로 말단-캡핑된 이소시아네이트 프리폴리머 조성물 100g을 수득하였다.
상기 실시예 A1 내지 A5 및 비교예 A1 내지 A4에서 제조된 이소시아네이트 프리폴리머 조성물의 조성 및 수평균분자량을 하기 표 1에 나타내었다.
[수평균분자량(Mn, 단위: g/mol)의 측정]
상기 실시예 A1 내지 A5 및 비교예 A1 내지 A4에서 수득된 이소시아네이트 프리폴리머 조성물 각각을 테트라하이드로퓨란(THF)에 1 내지 3 중량부로 용해시킨 후, 겔 투과 크로마토그래피 장치(Agilent사(제))를 이용하여 수평균분자량(Mn)을 측정하였다. 이 때 사용된 컬럼은 Mixed-D 칼럼(Agilent 社)이고, 컬럼 온도는 40℃이며, 사용된 전개 용매는 테트라하이드로퓨란(THF)으로서, 0.5ml/min의 속도로 흘려서 사용하였으며, 표준 물질로는 폴리스티렌(Aldrich사(제))을 사용하였다.
Figure PCTKR2022017881-appb-img-000006
<에폭시 수지 조성물의 제조>
실시예 C1 내지 C7 및 비교예 C1 내지 C5: 에폭시 수지 조성물의 제조
에폭시 수지로서, 비스페놀 A의 디글리시딜 에테르(DGEBA)계 에폭시 수지(YD-128, 국도화학(제)), 상온에서 안정하고 고온에서 경화 반응을 유도하기 위한 에폭시 수지용 경화제(dicyandiamide(DICY), Evonik사 (제), Dicyanex 1400F) 및 에폭시 수지용 경화 촉진제로서, 우레아 유도체(Evonik사 (제), Amicure UR-D), 충전제로서, 21~33 μm의 입자 크기를 갖는 칼슘 카보네이트(CaCO3, OMYA사 (제), OMYACARB 30-CN), 충격 보강제로서 코어-쉘 러버(KANEKA사 (제), MX-154), 및 에폭시 수지용 접착 촉진제로서, 상기 실시예 A1 내지 A5 및 비교예 A1 내지 A4에서 수득된 말단-캡핑된 이소시아네이트 프리폴리머 조성물 각각을 사용하였다.
에폭시 수지, 경화제, 경화 촉진제, 충전제, 중격 보강제 및 접착 촉진제를 하기 표 2에 기재된 조성으로 혼합하여 실시예 C1 내지 C7 및 비교예 C1 내지 C5의 에폭시 수지 조성물을 제조하였다. 이때, 모든 성분의 중량부 합계는 총 100 중량부이었다.
구체적으로, 상하부가 분리되어 있는 200 mL paste mixer PE bottle에 에폭시 수지, 충격 보강제, 접착 촉진제, 경화제, 경화 촉진제 및 충전제를 넣고 paste mixer(THINKY 社)를 이용하여 10분 동안 혼합하였고, 이어서 1분 동안 탈포(defoaming) 믹싱을 진행함으로써, 에폭시 수지 조성물을 제조하였다.
Figure PCTKR2022017881-appb-img-000007
Figure PCTKR2022017881-appb-img-000008
<에폭시 수지 조성물의 물성 평가>
실시예 C1 내지 C7 및 비교예 C1 내지 C5에서 제조된 에폭시 수지 조성물을 접착제로서 이용하여 하기와 같은 방법으로 물성을 측정하고, 그 결과를 하기 표 3에 나타내었다.
(1) T-박리 강도(T-peel strength, 단위: N/25 mm) 평가
T-박리 강도는 ASTM D-1876 규격에 의거하여 측정하였다. 구체적으로, 길이 150 mm × 폭 25 mm × 두께 1 mm 크기의 냉간 압연 강판을 직각으로 절곡하였으며, 이때 구부린 후 각 면의 길이가 70 mm 및 80 mm가 되도록 하였다. 길이 80 mm × 폭 25 mm의 면에 접착제로서 상기 실시예 C1 내지 C7 및 비교예 C1 내지 C5에서 수득된 에폭시 수지 조성물 각각을 도포한 후 그 위에 소량의 마이크로 비즈를 적층시켜 일정한 접착 두께를 유지시켰다. 그후 다른 냉각 압연 강판을 그 위에 덮고 고정시킨 후 180℃에서 30분 동안 경화시켰다. 경화 이후 23℃로 냉각된 접착 시편에 대하여 만능재료 시험기를 이용하여 T-박리 강도를 측정하였다. 이때 T-박리 강도의 측정은 50 mm/min의 인장 속도로 180도 방향으로 하중을 가하면서 수행되었다. 이때 각 접착 시편에 대해 5회씩 T-박리 강도를 측정하였고, 그 평균 값을 하기 표 3에 나타내었다.
(2) 상온 충격 강도(단위: N/mm) 평가
상온 충격 강도는 ISO 11343 규격에 의거하여 측정하였다. 구체적으로, 길이 90 mm x 폭 20 mm x 두께 1 mm 크기의 스틸로서, 말단 30 mm 부분이 접착면으로 사용되고, 접착하지 않은 끝부분은 소리 굽쇠 모양인 스틸 시편을 사용하였다. 상기 말단 30 mm의 접착면에 상기 실시예 C1 내지 C7 및 비교예 C1 내지 C5에서 수득된 에폭시 수지 조성물 각각을 도포한 후, 그 위에 소량의 마이크로 비즈를 적층시켜 일정한 접착 두께를 유지시켰다. 그 후 다른 스틸 시편을 그 위에 덮고 고정시킨 후 180℃에서 30분 동안 경화시켰다. 경화 이후, 상온(25℃으로 냉각된 접착 시편에 대해 낙하 충격 시험기를 이용하여 상온 충격강도를 측정하였다. 이때 상온 충격강도의 측정은 웨지 치구가 접착 부분의 접착부를 지나도록 시험하였고, 충격 속도는 2m/s 내지 3 m/s로 실시하였다. 이때 각 접착 시편에 대해 5회씩 상온 충격강도를 측정하였고, 그 평균 값을 하기 표 3에 나타내었다.
Figure PCTKR2022017881-appb-img-000009
상기 표 3에 나타난 바와 같이, 본 발명에 따른 실시예 C1 내지 C7의 접착 시편은 309.5 N/25mm 이상의 T-박리 강도 및 38.1 N/mm 이상의 상온 충격 강도를 나타내어 여러 측면에서 우수한 접착 특성을 구현하였음을 확인하였다.
반면, 비교예 C1 내지 C4의 접착 시편은 T-박리 강도가 205.1 N/25mm 이하로 매우 열악하거나, 상온 충격 강도가 24.5 N/mm 이하로 매우 열악하거나, 표면 박리가 발생하여 T-박리 강도를 측정할 수 없거나, unstable crack이 발생하여 상온 충격 강도를 측정할 수 없었다. 또한 비교예 C5의 접착 시편은 표면 박리 및 unstable crack이 발생하여 T-박리 강도 및 상온 충격 강도를 모두 측정할 수 없었다.

Claims (20)

  1. 무수당 알코올-알킬렌 글리콜 조성물 및 폴리에테르 폴리올을 포함하는 폴리올 조성물과 폴리이소시아네이트를 우레탄 반응시켜 제조되는 이소시아네이트 프리폴리머 조성물로서,
    상기 무수당 알코올-알킬렌 글리콜 조성물의 OH 당량에 대한 상기 폴리에테르 폴리올의 OH 당량비(폴리에테르 폴리올의 OH 당량/무수당 알코올-알킬렌 글리콜 조성물의 OH 당량)가 0.67 초과 내지 9.0 미만이고,
    상기 폴리올 조성물의 전체 OH 당량에 대한 폴리이소시아네이트의 전체 NCO 당량비(폴리이소시아네이트의 전체 NCO 당량/폴리올 조성물의 전체 OH 당량)가 1.4 초과 내지 2.0 미만이며,
    상기 무수당 알코올-알킬렌 글리콜 조성물은 무수당 알코올 조성물과 알킬렌 옥사이드를 부가 반응시켜 제조된 것이고,
    상기 무수당 알코올 조성물은 제1 내지 제5의 폴리올 성분을 포함하며,
    여기서,
    제1의 폴리올 성분이 일무수당 알코올이고,
    제2의 폴리올 성분이 이무수당 알코올이며,
    제3의 폴리올 성분이 하기 화학식 1로 표시되는 다당류 알코올이고,
    제4의 폴리올 성분이 하기 화학식 1로 표시되는 다당류 알코올로부터 물 분자를 제거하여 형성된 무수당 알코올이며,
    제5의 폴리올 성분이 상기 제1 내지 제4의 폴리올 성분들 중에서 선택되는 하나 이상의 중합체인,
    이소시아네이트 프리폴리머 조성물:
    [화학식 1]
    Figure PCTKR2022017881-appb-img-000010
    상기 화학식 1에서, n은 0 내지 4의 정수이다.
  2. 제1항에 있어서, 제1의 폴리올 성분이 일무수당 헥시톨이고; 제2의 폴리올 성분이 이무수당 헥시톨이며; 제4의 폴리올 성분이 하기 화학식 2로 표시되는 화합물, 하기 화학식 3으로 표시되는 화합물 또는 이들의 혼합물로부터 선택된 것인, 이소시아네이트 프리폴리머 조성물:
    [화학식 2]
    Figure PCTKR2022017881-appb-img-000011
    [화학식 3]
    Figure PCTKR2022017881-appb-img-000012
    상기 화학식 2 및 3에서,
    n은 각각 독립적으로, 0 내지 4의 정수이다.
  3. 제1항에 있어서, 제5의 폴리올 성분이 하기의 축중합 반응으로부터 제조되는 축합 중합체로 이루어진 군으로부터 선택되는 하나 이상을 포함하는, 이소시아네이트 프리폴리머 조성물:
    - 제1의 폴리올 성분의 축중합 반응,
    - 제2의 폴리올 성분의 축중합 반응,
    - 제3의 폴리올 성분의 축중합 반응,
    - 제4의 폴리올 성분의 축중합 반응,
    - 제1의 폴리올 성분과 제2의 폴리올 성분의 축중합 반응,
    - 제1의 폴리올 성분과 제3의 폴리올 성분의 축중합 반응,
    - 제1의 폴리올 성분과 제4의 폴리올 성분의 축중합 반응,
    - 제2의 폴리올 성분과 제3의 폴리올 성분의 축중합 반응,
    - 제2의 폴리올 성분과 제4의 폴리올 성분의 축중합 반응,
    - 제3의 폴리올 성분과 제4의 폴리올 성분의 축중합 반응,
    - 제1의 폴리올 성분, 제2의 폴리올 성분 및 제3의 폴리올 성분의 축중합 반응,
    - 제1의 폴리올 성분, 제2의 폴리올 성분 및 제4의 폴리올 성분의 축중합 반응,
    - 제1의 폴리올 성분, 제3의 폴리올 성분 및 제4의 폴리올 성분의 축중합 반응,
    - 제2의 폴리올 성분, 제3의 폴리올 성분 및 제4의 폴리올 성분의 축중합 반응, 또는
    - 제1의 폴리올 성분, 제2의 폴리올 성분, 제3의 폴리올 성분 및 제4의 폴리올 성분의 축중합 반응.
  4. 제1항에 있어서, 무수당 알코올 조성물이 하기 i) 내지 iii)을 만족하는 것인, 이소시아네이트 프리폴리머 조성물:
    i) 무수당 알코올 조성물의 수평균분자량(Mn)이 193 내지 1,589 g/mol이고;
    ii) 무수당 알코올 조성물의 다분산 지수(PDI)가 1.13 내지 3.41이며;
    iii) 무수당 알코올 조성물 내의 분자당 -OH기의 평균 개수가 2.54 개 내지 21.36개이다.
  5. 제1항에 있어서, 무수당 알코올 조성물이 포도당 함유 당류 조성물을 수소 첨가 반응시켜 수소화 당 조성물을 제조하고, 상기 수득된 수소화 당 조성물을 산 촉매 하에서 가열하여 탈수 반응시키며, 상기 수득된 탈수 반응 결과물을 박막 증류하여 제조된 것인, 이소시아네이트 프리폴리머 조성물.
  6. 제5항에 있어서, 포도당 함유 당류 조성물이 상기 당류 조성물 총 중량 기준으로, 41 중량% 내지 99.5 중량%의 포도당을 함유하는, 이소시아네이트 프리폴리머 조성물.
  7. 제1항에 있어서, 상기 무수당 알코올-알킬렌 글리콜 조성물은 무수당 알코올 조성물 100 중량부당 알킬렌 옥사이드 100 중량부 내지 500 중량부를 부가 반응시켜 제조된 것인, 이소시아네이트 프리폴리머 조성물.
  8. 제1항에 있어서, 이소시아네이트 프리폴리머 조성물의 수평균분자량이 4,975 g/mol 내지 8,014 g/mol인, 이소시아네이트 프리폴리머 조성물.
  9. 제1항에 있어서, 폴리에테르 폴리올은 폴리알킬렌 글리콜을 포함하는, 이소시아네이트 프리폴리머 조성물.
  10. 무수당 알코올-알킬렌 글리콜 조성물 및 폴리에테르 폴리올을 포함하는 폴리올 조성물과 폴리이소시아네이트를 우레탄 반응시키는 단계를 포함하며,
    상기 무수당 알코올-알킬렌 글리콜 조성물의 OH 당량에 대한 상기 폴리에테르 폴리올의 OH 당량비(폴리에테르 폴리올의 OH 당량/무수당 알코올-알킬렌 글리콜 조성물의 OH 당량)가 0.67 초과 내지 9.0 미만이고,
    상기 폴리올 조성물의 전체 OH 당량에 대한 폴리이소시아네이트의 전체 NCO 당량비(폴리이소시아네이트의 전체 NCO 당량/폴리올 조성물의 전체 OH 당량)가 1.4 초과 내지 2.0 미만이며,
    상기 무수당 알코올-알킬렌 글리콜 조성물은 무수당 알코올 조성물과 알킬렌 옥사이드를 부가 반응시켜 제조된 것이고,
    상기 무수당 알코올 조성물은 제1 내지 제5의 폴리올 성분을 포함하며,
    여기서,
    제1의 폴리올 성분이 일무수당 알코올이고,
    제2의 폴리올 성분이 이무수당 알코올이며,
    제3의 폴리올 성분이 하기 화학식 1로 표시되는 다당류 알코올이고,
    제4의 폴리올 성분이 하기 화학식 1로 표시되는 다당류 알코올로부터 물 분자를 제거하여 형성된 무수당 알코올이며,
    제5의 폴리올 성분이 상기 제1 내지 제4의 폴리올 성분들 중에서 선택되는 하나 이상의 중합체인,
    이소시아네이트 프리폴리머 조성물의 제조 방법:
    [화학식 1]
    Figure PCTKR2022017881-appb-img-000013
    상기 화학식 1에서, n은 0 내지 4의 정수이다.
  11. 제10항에 있어서, 무수당 알코올 조성물이 하기 i) 내지 iii)을 만족하는 것인, 이소시아네이트 프리폴리머 조성물의 제조 방법:
    i) 무수당 알코올 조성물의 수평균분자량(Mn)이 193 내지 1,589 g/mol이고;
    ii) 무수당 알코올 조성물의 다분산 지수(PDI)가 1.13 내지 3.41이며;
    iii) 무수당 알코올 조성물 내의 분자당 -OH기의 평균 개수가 2.54 개 내지 21.36개이다.
  12. 제1항 내지 제9항 중 어느 한 항의 이소시아네이트 프리폴리머 조성물과 말단 캡핑제를 반응시켜 제조되는, 말단-캡핑된 이소시아네이트 프리폴리머 조성물.
  13. 제12항에 있어서, 말단 캡핑제가 페놀계 화합물, 트리아진계 화합물, 알코올류 화합물, 아민류 화합물, 벤젠계 화합물, 디카복실산 에스테르계 화합물, 노볼락계 화합물 또는 이들의 조합으로 이루어진 군으로부터 선택되는 하나 이상인, 말단-캡핑된 이소시아네이트 프리폴리머 조성물.
  14. 제12항의 말단-캡핑된 이소시아네이트 프리폴리머 조성물을 포함하는 에폭시 수지용 접착 촉진제.
  15. 제14항의 에폭시 수지용 접착 촉진제; 및 에폭시 수지;를 포함하는, 에폭시 수지 조성물.
  16. 제15항에 있어서, 에폭시 수지 조성물 총 100 중량부를 기준으로, 에폭시 수지용 접착 촉진제를 5 중량부 초과 내지 35 중량부 미만의 양으로 포함하는, 에폭시 수지 조성물.
  17. 제15항에 있어서, 에폭시 수지가 비스페놀 A-에피클로로하이드린 수지, 비스페놀 A의 디글리시딜 에테르 수지, 노볼락형 에폭시 수지, 지환식 에폭시 수지, 지방족 에폭시 수지, 이절환형 에폭시 수지, 글리시딜 에스테르형 에폭시 수지, 브롬화 에폭시 수지, 바이오 유래 에폭시 수지, 에폭시화 대두유 또는 이들의 조합으로 이루어진 군으로부터 선택되는, 에폭시 수지 조성물.
  18. 제15항에 있어서, 경화제, 경화 촉진제, 충전제, 충격 보강제 또는 이들의 조합으로부터 선택되는 하나 이상을 추가로 포함하는, 에폭시 수지 조성물.
  19. 제15항에 있어서, 산화 방지제, UV 흡수제, 수지 개질제, 실란 커플링제, 희석제, 착색제, 소포제, 탈포제, 분산제, 점도 조절제, 광택 조절제, 습윤제, 전도성 부여제 또는 이들의 조합으로 이루어진 군으로부터 선택되는 첨가제를 추가로 포함하는, 에폭시 수지 조성물.
  20. 제15항의 에폭시 수지 조성물을 포함하는 접착제.
PCT/KR2022/017881 2021-11-15 2022-11-14 이소시아네이트 프리폴리머 조성물, 이 프리폴리머 조성물을 이용한 말단 캡핑된 이소시아네이트 프리폴리머 조성물 및 이를 포함하는 에폭시 수지용 접착 촉진제, 및 이 접착 촉진제를 포함하는 에폭시 수지 조성물 및 이를 포함하는 접착제 WO2023085883A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210156758A KR20230070798A (ko) 2021-11-15 2021-11-15 이소시아네이트 프리폴리머 조성물, 이 프리폴리머 조성물을 이용한 말단 캡핑된 이소시아네이트 프리폴리머 조성물 및 이를 포함하는 에폭시 수지용 접착 촉진제, 및 이 접착 촉진제를 포함하는 에폭시 수지 조성물 및 이를 포함하는 접착제
KR10-2021-0156758 2021-11-15

Publications (1)

Publication Number Publication Date
WO2023085883A1 true WO2023085883A1 (ko) 2023-05-19

Family

ID=86336419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/017881 WO2023085883A1 (ko) 2021-11-15 2022-11-14 이소시아네이트 프리폴리머 조성물, 이 프리폴리머 조성물을 이용한 말단 캡핑된 이소시아네이트 프리폴리머 조성물 및 이를 포함하는 에폭시 수지용 접착 촉진제, 및 이 접착 촉진제를 포함하는 에폭시 수지 조성물 및 이를 포함하는 접착제

Country Status (2)

Country Link
KR (1) KR20230070798A (ko)
WO (1) WO2023085883A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09194588A (ja) * 1996-01-18 1997-07-29 Mitsui Toatsu Chem Inc ポリエーテルポリオール及びその製造方法
JP2009046652A (ja) * 2006-12-05 2009-03-05 Bekku Kk ポリオール組成物
JP2013142128A (ja) * 2012-01-11 2013-07-22 Dai Ichi Kogyo Seiyaku Co Ltd 水性ポリウレタン樹脂組成物及びその製造方法
KR20140080749A (ko) * 2012-12-14 2014-07-01 주식회사 삼양제넥스 하이드롤을 이용한 무수당 알코올의 제조방법
KR102161451B1 (ko) * 2019-07-12 2020-10-06 주식회사 삼양사 무수당 알코올 기반 우레탄 변성 폴리올 조성물 및 이를 포함하는 에폭시 수지용 강인화제, 및 이 강인화제를 포함하는 에폭시 수지 조성물

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09194588A (ja) * 1996-01-18 1997-07-29 Mitsui Toatsu Chem Inc ポリエーテルポリオール及びその製造方法
JP2009046652A (ja) * 2006-12-05 2009-03-05 Bekku Kk ポリオール組成物
JP2013142128A (ja) * 2012-01-11 2013-07-22 Dai Ichi Kogyo Seiyaku Co Ltd 水性ポリウレタン樹脂組成物及びその製造方法
KR20140080749A (ko) * 2012-12-14 2014-07-01 주식회사 삼양제넥스 하이드롤을 이용한 무수당 알코올의 제조방법
KR102161451B1 (ko) * 2019-07-12 2020-10-06 주식회사 삼양사 무수당 알코올 기반 우레탄 변성 폴리올 조성물 및 이를 포함하는 에폭시 수지용 강인화제, 및 이 강인화제를 포함하는 에폭시 수지 조성물

Also Published As

Publication number Publication date
KR20230070798A (ko) 2023-05-23

Similar Documents

Publication Publication Date Title
KR102161451B1 (ko) 무수당 알코올 기반 우레탄 변성 폴리올 조성물 및 이를 포함하는 에폭시 수지용 강인화제, 및 이 강인화제를 포함하는 에폭시 수지 조성물
WO2019216700A1 (ko) 고체 분산체, 이의 제조 방법, 이를 이용한 사슬 연장된 폴리우레탄 및 이를 포함하는 에폭시 수지 조성물
KR102520657B1 (ko) 무수당 알코올-알킬렌 글리콜 조성물 유래의 이소시아네이트 프리폴리머 조성물, 이 프리폴리머 조성물을 이용한 폴리우레탄 변성 에폭시 수지 조성물 및 이를 포함하는 에폭시 수지용 강인화제, 및 이 강인화제를 포함하는 에폭시 수지 조성물 및 이를 포함하는 접착제
KR20210090137A (ko) 친환경 경화제를 함유하는 에폭시 수지 조성물 및 이의 경화물
KR102548181B1 (ko) 접착성 및 내충격성이 향상된 접착제를 제공할 수 있는 말단-캡핑된 이소시아네이트 프리폴리머 조성물 및 이를 포함하는 에폭시 수지용 접착 촉진제, 및 이 접착 촉진제를 포함하는 에폭시 수지 조성물 및 이를 포함하는 접착제
WO2022108331A1 (ko) 무수당 알코올-알킬렌 글리콜 조성물을 이용한 이소시아네이트 프리폴리머 조성물, 이 프리폴리머 조성물을 이용한 말단 캡핑된 이소시아네이트 프리폴리머 조성물 및 이를 포함하는 에폭시 수지용 접착 촉진제, 및 이 접착 촉진제를 포함하는 에폭시 수지 조성물 및 이를 포함하는 접착제
WO2023085883A1 (ko) 이소시아네이트 프리폴리머 조성물, 이 프리폴리머 조성물을 이용한 말단 캡핑된 이소시아네이트 프리폴리머 조성물 및 이를 포함하는 에폭시 수지용 접착 촉진제, 및 이 접착 촉진제를 포함하는 에폭시 수지 조성물 및 이를 포함하는 접착제
KR102513599B1 (ko) 무수당 알코올-알킬렌 글리콜 조성물을 이용한 이소시아네이트 프리폴리머 조성물, 이 프리폴리머 조성물을 이용한 폴리우레탄 변성 에폭시 수지 조성물 및 이를 포함하는 에폭시 수지용 강인화제, 및 이 강인화제를 포함하는 에폭시 수지 조성물 및 이를 포함하는 접착제
WO2021010654A1 (ko) 무수당 알코올-알킬렌 글리콜 조성물, 무수당 알코올 기반 우레탄 변성 폴리올 조성물, 및 에폭시 수지 조성물을 위한 이들의 용도
KR102259555B1 (ko) 히드록시-말단 프리폴리머 및 이를 포함하는 잠재성 경화제, 및 이 경화제를 포함하는 에폭시 수지 조성물
WO2023167513A1 (ko) 무수당 알코올 조성물로부터 유래된 에폭시 수지 조성물 및 그 제조 방법, 및 이를 포함하는 경화성 에폭시 수지 조성물 및 이의 경화물
KR102099795B1 (ko) 무수당 알코올 핵을 갖는 화합물 및 이의 제조 방법
KR20220157117A (ko) 신규한 글리시딜 산 무수물기반 폴리올 화합물, 이로부터 제조된 개질된 폴리우레탄 공중합체와 이를 포함하는 접착제 조성물 및 이로부터 제조된 경화물
KR102618551B1 (ko) 글리시딜 산 무수물기반 폴리우레탄 공중합체와 이를 포함하는 이액형 에폭시 접착제 조성물
WO2023167505A1 (ko) 무수당 알코올-알킬렌 글리콜 조성물로부터 유래된 에폭시 수지 조성물 및 그 제조 방법, 및 이를 포함하는 경화성 에폭시 수지 조성물 및 이의 경화물
KR102161127B1 (ko) 무수당 알코올-알킬렌 글리콜 조성물 및 이를 포함하는 에폭시 수지용 경화제, 및 이 경화제를 포함하는 에폭시 수지 조성물
KR102411510B1 (ko) 우레탄계 변성 에폭시 화합물을 포함하는 접착제 조성물 및 이로부터 제조된 경화물
KR20230083044A (ko) 에폭시 화합물로 가교된 무수당 알코올 조성물에 알킬렌 옥사이드를 부가시켜 제조된 폴리올 조성물을 포함하는 에폭시 수지용 경화제, 및 이를 포함하는 에폭시 수지 조성물 및 이의 경화물
KR102602066B1 (ko) 비스페놀-z 폴리우레탄을 포함하는 이액형 접착제 조성물
KR20240051645A (ko) 비스페놀-z기반 폴리우레탄을 포함하는 일액형 에폭시 접착제 조성물
KR102594971B1 (ko) 우레탄계 강인화제를 포함하는 에폭시 수지 조성물 및 이의 제조방법
KR20230083047A (ko) 디카복실산의 디에스테르로 사슬-연장된 폴리올 조성물을 포함하는 에폭시 수지용 경화제, 및 이를 포함하는 에폭시 수지 조성물 및 이의 경화물
KR20230083048A (ko) 락톤계 화합물로 사슬-연장된 폴리올 조성물을 포함하는 에폭시 수지용 경화제, 및 이를 포함하는 에폭시 수지 조성물 및 이의 경화물
KR20230083046A (ko) 사슬-연장된 폴리올 조성물을 포함하는 에폭시 수지용 경화제, 및 이를 포함하는 에폭시 수지 조성물 및 이의 경화물
KR20230083045A (ko) 고무로 변성된 에폭시 화합물로 가교된 무수당 알코올 조성물에 알킬렌 옥사이드를 부가시켜 제조된 폴리올 조성물을 포함하는 에폭시 수지용 경화제, 및 이를 포함하는 에폭시 수지 조성물 및 이의 경화물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22893302

Country of ref document: EP

Kind code of ref document: A1