WO2019216700A1 - 고체 분산체, 이의 제조 방법, 이를 이용한 사슬 연장된 폴리우레탄 및 이를 포함하는 에폭시 수지 조성물 - Google Patents

고체 분산체, 이의 제조 방법, 이를 이용한 사슬 연장된 폴리우레탄 및 이를 포함하는 에폭시 수지 조성물 Download PDF

Info

Publication number
WO2019216700A1
WO2019216700A1 PCT/KR2019/005643 KR2019005643W WO2019216700A1 WO 2019216700 A1 WO2019216700 A1 WO 2019216700A1 KR 2019005643 W KR2019005643 W KR 2019005643W WO 2019216700 A1 WO2019216700 A1 WO 2019216700A1
Authority
WO
WIPO (PCT)
Prior art keywords
dispersion
solid dispersion
epoxy resin
anhydride
dispersed
Prior art date
Application number
PCT/KR2019/005643
Other languages
English (en)
French (fr)
Inventor
송광석
류훈
임준섭
유승현
전원현
Original Assignee
주식회사 삼양사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180054295A external-priority patent/KR102129907B1/ko
Priority claimed from KR1020180057683A external-priority patent/KR102230451B1/ko
Priority claimed from KR1020180058790A external-priority patent/KR20190133865A/ko
Application filed by 주식회사 삼양사 filed Critical 주식회사 삼양사
Priority to EP19800062.2A priority Critical patent/EP3792298A4/en
Priority to JP2021513741A priority patent/JP2021523976A/ja
Priority to CN201980031828.4A priority patent/CN112105680A/zh
Priority to US17/054,286 priority patent/US20210238413A1/en
Publication of WO2019216700A1 publication Critical patent/WO2019216700A1/ko
Priority to JP2023015522A priority patent/JP2023058561A/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • C08L75/08Polyurethanes from polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4854Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0838Manufacture of polymers in the presence of non-reactive compounds
    • C08G18/0842Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents
    • C08G18/0861Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents in the presence of a dispersing phase for the polymers or a phase dispersed in the polymers
    • C08G18/0866Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents in the presence of a dispersing phase for the polymers or a phase dispersed in the polymers the dispersing or dispersed phase being an aqueous medium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • C08G18/7671Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups containing only one alkylene bisphenyl group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/09Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/09Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
    • C08J3/091Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids characterised by the chemical constitution of the organic liquid
    • C08J3/095Oxygen containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/053Polyhydroxylic alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1535Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3442Heterocyclic compounds having nitrogen in the ring having two nitrogen atoms in the ring
    • C08K5/3445Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • C09K23/002Inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • C08J2375/08Polyurethanes from polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2401/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2401/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2463/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2475/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2475/04Polyurethanes
    • C08J2475/08Polyurethanes from polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • C09K23/16Amines or polyamines

Definitions

  • the present invention relates to a solid dispersion, a method for preparing the same, a chain-extended polyurethane using the same, and an epoxy resin composition comprising the same, and more particularly, an isotropic and / or anisotropic material derived from an inorganic material or an organic material is used as a dispersoid.
  • a dispersion medium such as polyols and sugars that are solid at room temperature
  • Solid dispersions that can improve efficiency, reduce process costs, improve strength when applied to polyurethane, and can provide improved strength over conventional hardeners, methods for their preparation, chain extension using the same It relates to a polyurethane and an epoxy resin composition comprising the same.
  • Isotropic and / or anisotropic materials derived from inorganic or organic materials are light weight materials, hybrid materials, surface protective agents, conductive pastes, conductive inks, sensors, precision analysis devices, optical memories, liquid crystal display devices, nano magnets, thermoelectric media, and high performance fuel cells. It is used as a main material in applications such as catalysts, organic solar cells, nanoglass devices, abrasives, drug carriers, environmental catalysts, paints, printing inks, inkjet inks, color filter resists, and writing instrument inks.
  • the isotropic material and / or anisotropic material derived from the inorganic material or organic material are used to prepare a dispersion as fine particles in an aqueous dispersion medium or a non-aqueous dispersion medium, thereby efficiently improving processing characteristics, product characteristics and material properties, It is used industrially as a substance which contributes to quality stabilization and the yield improvement at the time of manufacture.
  • dispersant causes aggregation or sinking in the dispersion medium in a short time.
  • the problem of aggregation and sinking of dispersoids not only leads to lower productivity, lower processing characteristics, lower handling properties and lower product yield, but also lowers the properties, material properties, and quality of the final product.
  • it is known to cause undesirable phenomena such as deterioration of transparency, gloss and coloring power, color spots and cracks in appearance.
  • Dispersants have been used to suppress aggregation and sinking of such dispersoids and to achieve dispersion stabilization.
  • the biggest problem of the existing dispersion composition is that when the dispersion composition using water as a dispersion medium is applied to a polyurethane resin and an epoxy resin, etc., a process in which a master batch of water and polyol or a master batch of water and epoxy is additionally required There is a need for a surfactant to prevent aggregation of dispersoids.
  • dispersions and dispersion compositions that can prevent or improve the flocculation and sinking of the dispersoid, and a chain extender and dispersion for applying the dispersion to polyurethane, etc.
  • the development of an epoxy resin composition using a sieve as a curing agent is required.
  • the present invention by using an isotropic and / or anisotropic material derived from inorganic or organic material as a dispersoid, it is easy to store and use by dispersing it in a dispersion medium such as polyol and saccharides which are solid at room temperature.
  • a first aspect of the present invention is a solid dispersion comprising a dispersion and a dispersion medium in which the dispersion is dispersed, wherein the dispersion is an organic particle, an inorganic particle, or a mixture thereof. It provides a solid dispersion, the dispersion medium is a non-aqueous dispersion medium in the solid state at room temperature.
  • a dispersion composition comprising the solid dispersion.
  • the method comprising the steps of mixing the dispersoid and the dispersion medium; And melting the dispersion medium in the mixture, wherein the dispersion is an organic particle, an inorganic particle or a mixture thereof, and the dispersion medium is a non-aqueous dispersion medium in a solid state at room temperature.
  • a method for producing is provided.
  • a chain extended polyurethane which is prepared by the reaction of a polyurethane prepolymer with the solid dispersion.
  • step (1) adding to the polyurethane prepolymer, the solid dispersion; And (2) reacting the resultant mixture of step (1).
  • the epoxy resin As according to another aspect of the invention, the epoxy resin; And an epoxy resin composition comprising the solid dispersion.
  • an epoxy resin composition comprising the step of mixing the epoxy resin and the solid dispersion.
  • a cured product obtained by curing the epoxy resin composition is provided.
  • a molded article comprising the cured product.
  • the solid dispersion in which the isotropic materials and / or anisotropic materials derived from the inorganic or organic materials according to the present invention are dispersed can reduce or eliminate agglomeration when the product is stored, thereby reducing the process input time when using the product (solid dispersion). It is possible to reduce or eliminate the extra process or time to redistribute the aggregated products, and the work efficiency can be improved with little or no concern for the labor and safety of the workers.
  • the solid dispersion of the present invention is evenly dispersed in a large amount of dispersoid, when used as a chain extender of the polyurethane, it can provide an improved strength to the polyurethane compared to the conventional chain extender, When used as a curing agent, it is possible to provide the cured product of the epoxy resin with improved strength compared to conventional curing agents.
  • the present invention is a solid dispersion comprising a dispersion and a dispersion medium in which the dispersion is dispersed, wherein the dispersion is an organic particle, an inorganic particle or a mixture thereof, and the dispersion medium is a non-aqueous dispersion medium in a solid state at room temperature. It relates to a dispersion.
  • a dispersion composition comprising the solid dispersion.
  • the solid dispersion or dispersion composition of the present invention may be solid at room temperature.
  • the room temperature is a range of 20 ⁇ 5 ° C. as a normal temperature, and may be, for example, 25 ° C.
  • the solid dispersion of the present invention may be used as a room temperature solid dispersion for chain extension or a room temperature solid dispersion for curing.
  • the solid dispersion of the present invention includes a dispersoid dispersed in a dispersion medium.
  • the dispersoid contained in the solid dispersion is applied to the preparation of a polymer or the manufacture of a cured product (for example, the production of a polyurethane or the production of an epoxy cured product)
  • the polymer or the cured product prepared according to the type of the dispersion may serve to improve electrical, thermal and / or mechanical properties, but is not limited thereto.
  • the dispersoid particles dispersed in the dispersion medium of the present invention may be selected from inorganic particles, organic particles or mixtures thereof.
  • the inorganic particles include iron, aluminum, chromium, nickel, cobalt, zinc, tungsten, indium, tin, palladium, zirconium, titanium, copper, silver (for example, silver particles, silver nanowires, silver nanorods, etc.). ), Gold (eg, gold particles, gold nanowires, gold nanorods, etc.), platinum, alloys of two or more metals thereof, or a mixture of two or more thereof.
  • alkanes in order to stably extract the inorganic particles described above from the medium, alkanes, fatty acids, hydroxycarboxylic acids, alicyclic carboxylic acids, aromatic carboxylic acids, alkenyl succinic anhydrides, thiols, and phenol derivatives are derived. It may be coated with protective agents such as retention, amines, amphiphilic polymers, high molecular surfactants, and low molecular surfactants.
  • organic particles examples include azo compounds, diazo compounds, condensed azo compounds, thioindigo compounds, indanthrone compounds, quinacridone compounds, anthraquinone compounds, benzimidazolone compounds, perylene compounds, Organic pigments such as phthalocyanine compounds, anthrapyridine compounds or dioxazine compounds; Polyethylene resin, polypropylene resin, polyester resin, nylon resin, polyamide resin, aramid resin, acrylic resin, vinylon resin, urethane resin, melamine resin, polystyrene resin, polylactic acid, acetate fiber, cellulose (e.g.,
  • the dispersoid particles dispersed in the dispersion medium of the present invention may be a crystalline phase or an amorphous phase.
  • the dispersoid particles dispersed in the dispersion medium of the present invention may be isotropic particles, anisotropic particles, or fibrous.
  • the dispersoid particles dispersed in the dispersion medium of the present invention is preferably nano cellulose fibrils, nano cellulose crystals, graphene, graphite, carbon nanotubes, carbon nanofibers, silver particles, silver nanowires, silver nanorods, gold At least one selected from the group consisting of particles, gold nanowires, gold nanorods, or a combination thereof, but is not limited thereto.
  • dispersoid particles in the present invention those obtained by a known method can be used.
  • a method for preparing dispersoid fine particles a top-down method of mechanically crushing coarse particles and miniaturizing them, and generating a plurality of unit particles, and bottoming up the particles to form through aggregated cluster states.
  • bottom-up methods There are two types of (bottom-up) methods, but those prepared by either method can be preferably used.
  • fine-particles may be based on either of the wet method and the dry method.
  • the bottom-up system has a physical method and a chemical method, it may be based on either method.
  • a representative example of the physical method is an evaporation method in a gas in which bulk metals are evaporated in an inert gas and cooled and condensed by collision with the gas to produce nanoparticles.
  • the chemical method include a liquid phase reduction method for reducing metal ions in the presence of a protective agent in a liquid phase and stabilizing the generated zero-valent metal to a nano size, or thermal decomposition of a metal complex.
  • a chemical reduction method, an electrochemical reduction method, a photoreduction method, or a method combining a chemical reduction method and a light irradiation method can be used.
  • the dispersoid particles which can be preferably used in the present invention may be obtained by any of the top-down method and the bottom-up method, as described above, and they are produced under any of an aqueous liquid phase, a non-aqueous liquid phase, and a gaseous phase. It may be done.
  • Solid dispersions of the present invention include a dispersion medium for dispersing the dispersoid.
  • a dispersion medium for dispersing the dispersoid.
  • it may serve to extend the chain of the polyurethane, when applying the dispersion medium contained in the solid dispersion to the curing of the epoxy resin, It can serve to cure.
  • a non-aqueous dispersion medium that can be changed into a liquid phase when heated to a temperature above room temperature but solid at room temperature can be used.
  • dispersion stabilization can be achieved by preventing or improving the dispersion from agglomerating or disappearing.
  • the chain of polyurethane can be extended or the epoxy resin can be cured.
  • sugars, polyether polyols, polyester polyols, hydrogenated sugars, alkane diols, amine compounds, phenols One or more selected from the group consisting of a compound, an imidazole compound, an acid anhydride compound, anhydrosugar alcohol, or a combination thereof can be used.
  • saccharides examples include monosaccharides, disaccharides, and polysaccharides, and the type of the monosaccharides is not particularly limited, and may be used without limitation as long as it is converted into a liquid phase at elevated temperatures from room temperature to solid and above the melting point. , Glucose, fructose, galactose, ribose or mixtures thereof may be used.
  • the type of the disaccharide is not particularly limited, and may be used without limitation as long as it is converted into a liquid phase at a temperature higher than the melting point exceeding the solid temperature at room temperature, for example, maltose, sucrose, lactose or a mixture thereof. This can be used.
  • the type of the polysaccharide is not particularly limited, and may be used without limitation as long as it is converted into a liquid phase at a temperature higher than the melting point exceeding the solid temperature at room temperature.
  • oligosaccharides, cellulose, starch , Glycogen or a mixture thereof may be used.
  • the type of the polyether polyol is not particularly limited, and may be used without limitation as long as it is converted into a liquid phase at a temperature higher than the melting point exceeding the solid temperature at room temperature, for example, polypropylene glycol modified body, polytetramethylene Ether glycol (polytetrahydrofuran) or mixtures thereof and the like can be used.
  • the type of the polyester polyol is not particularly limited, and may be used without limitation as long as it is converted into a liquid phase at elevated temperatures above a melting point above room temperature and solid at room temperature.
  • butylene adipate diol, 1,6-hexane Adipate diols or mixtures thereof and the like can be used.
  • the type of the hydrogenated sugar is not particularly limited and may be used without limitation as long as it is converted into a liquid phase at elevated temperatures above the melting point of the solid at room temperature and higher than the room temperature, for example, tetratritol, pentitol, hexitol, heptitol or these And mixtures thereof may be used.
  • hexitol such as sorbitol, mannitol, iditol, galactitol or mixtures thereof, may be used.
  • the kind of the alkane diol is not particularly limited, and may be used without limitation as long as it is converted into a liquid phase at a temperature higher than the melting point of a solid at room temperature, for example, 1,4-butanediol or 1,6-hexanediol. , 1,9-nonanediol or a mixture thereof can be used.
  • anhydrosugar alcohols eg, monounsaturated alcohols, dianhydrosugar alcohols, or mixtures thereof
  • anhydrosugar alcohols eg, monounsaturated alcohols, dianhydrosugar alcohols, or mixtures thereof
  • the type of the amine compound is not particularly limited, and may be used without limitation as long as it is converted into a liquid phase at room temperature when the temperature is solid or higher than the melting point of room temperature.
  • poly (ethylene glycol) diamine Poly (ethylene glycol) ) diamine
  • (R)-(+)-1,1'-binafyl-2,2'-diamine [(R)-(+)-1,1'-Binaphthyl-2,2'-diamine]
  • (S)-(-)-1,1'-binafyl-2,2'-diamine [(S)-(-)-1,1'-Binaphthyl-2,2'-diamine] 1, 1′-binafphyl-2,2′-diamine [1,1′-Binaphthyl-2,2′-diamine]
  • 4-ethoxybenzene-1,2-diamine [4-ethoxybenzene-1,2-diamine ]
  • the type of the phenol-based compound is not particularly limited, and may be used without limitation as long as it is converted into a liquid phase at room temperature while being solid at room temperature or higher than the melting point.
  • the type of the imidazole compound is not particularly limited, and may be used without limitation as long as it is converted into a liquid phase at elevated temperature above a melting point above solid temperature at room temperature.
  • the kind of the acid anhydride-based compound is not particularly limited, and may be used without limitation as long as it is converted into a liquid phase at elevated temperature above a melting point above solid temperature at room temperature, for example, (2-dodecen-1-yl) Succinic anhydride [(2-Dodecen-1-yl) succinic anhydride], maleic anhydride [Maleic anhydride], succinic anhydride [Succinic anhydride], phthalic anhydride [Phthalic anhydride], glutaric anhydride [Glutaric anhydride], 3 , 4,5,6-tetrahydrophthalic anhydride [3,4,5,6-Tetrahydrophthalic anhydride], diglycolic anhydride [Diglycolic anhydride], itaconic anhydride, trans-1,2-cyclohexanedica Carboxylic acid anhydride [trans-1,2-Cyclohexanedicarboxylic anhydride], 2,3-dimethylmale
  • the type of monounsaturated alcohol is not particularly limited, and may be used without limitation as long as it is converted into a liquid phase at a temperature higher than the melting point of the solid at room temperature and higher than the room temperature.
  • tetratritan, pentitan, hextan, hep Titanium or mixtures thereof and the like can be used, preferably hexanes such as sorbitan, mannitan, iditan, galactitane or mixtures thereof can be used.
  • the type of the dianhydrosugar alcohol is not particularly limited, and may be used without limitation as long as it is converted into a liquid phase at a temperature higher than the melting point of the solid at room temperature and higher than the room temperature, and for example, dianhydrosugar hexitol may be used. May be selected from the group consisting of isosorbide, isomannide, isoidide or mixtures thereof.
  • the solid dispersion of the present invention is a room temperature solid dispersion for chain extension
  • one or more selected from the group consisting of anhydrosugar alcohols, hydrogenated sugars, alkane diols, or a combination thereof may be used as the dispersion medium.
  • the solid dispersion of the present invention when the solid dispersion of the present invention is a room temperature solid dispersion for curing, it is selected from the group consisting of an amine compound, a phenol compound, an imidazole compound, an acid anhydride compound, an anhydrosugar alcohol or a combination thereof as a dispersion medium.
  • anhydrosugar alcohols such as monounsaturated alcohol and dianhydrosugar alcohol may be used.
  • the content of the dispersoid may vary depending on the type of dispersant used, based on 100 parts by weight of the dispersion medium, 0.0001 parts by weight, 0.01 parts by weight, 0.05 parts by weight, 0.1 parts by weight or more , 0.5 part by weight or more, or 1 part by weight or more, 95 parts by weight or less, 90 parts by weight or less, 85 parts by weight or less, 80 parts by weight or less, 60 parts by weight or less, or 50 parts by weight or less, for example, 0.0001 parts by weight.
  • 95 parts by weight preferably 0.05 to 80 parts by weight, but is not limited thereto.
  • the strength improvement of the polyurethane to which the solid dispersion is applied may be insignificant, and the physical and electrical properties due to the dispersoid effect in the cured epoxy resin to which the solid dispersion is applied may be insignificant. If the content of the dispersoid is too high, the solid dispersion may not exist evenly dispersed in the solid dispersion, but the dispersoids may be present in an entangled state.
  • a method for producing is provided.
  • the mixture in the step of melting the dispersion medium in the mixture, the mixture may be melted while removing moisture by applying a vacuum at a temperature equal to or higher than the melting point of the dispersion medium.
  • the molten mixture may then be cooled to room temperature to obtain a solid dispersion.
  • each component described in the method for preparing the solid dispersion is the same as the components of the solid dispersion described above.
  • the polyurethane prepolymers can be obtained by reacting polyols with polyisocyanates, for example 12 to 36 at 50 to 100 ° C, preferably 70 to 90 ° C. After the polyol and the polyisocyanate, which have been sufficiently vacuum dried for a period of time, preferably 20 to 28 hours, were charged in a four-necked reactor, 0.1 to 5 while maintaining a temperature of 50 to 100 ° C., preferably 50 to 70 ° C. under a nitrogen atmosphere.
  • the polyurethane prepolymer can be prepared by reacting for a time, preferably 0.5 to 2 hours.
  • a polyether polyol can be used, for example, a polyethylene or a block copolymer of polyethyleneglycol, polypropylene glycol, polytetramethylene glycol, ethylene oxide, and propylene oxide. And random copolymers of ethylene oxide and butylene oxide, block copolymers and the like can be used.
  • the chain-extended polyurethane of the present invention after adding the solid dispersion for chain extension to the polyurethane prepolymer, they are put in a coated mold and then 80 to 200 ° C, preferably 100 to 150
  • the chain elongated polyurethane can be prepared by curing at 10 ° C. for 10 to 30 hours, preferably 15 to 25 hours.
  • the present invention provides a chain extended polyurethane, which is prepared by the reaction of a polyurethane prepolymer with the solid dispersion of the present invention.
  • each of the components described in the chain-extended polyurethane and the process for producing the chain-extended polyurethane are the same as those of the solid dispersion described above.
  • the epoxy resin As according to another aspect of the invention, the epoxy resin; And an epoxy resin composition comprising the solid dispersion.
  • the epoxy resin, bisphenol A- epichlorohydrin resin, epoxy novolac resin, alicyclic epoxy resin, aliphatic epoxy resin, dicyclic epoxy resin, glycidyl ester type epoxy resin, brominated epoxy resin, Bio-derived epoxy resin, epoxidized soybean oil (epoxidized soybean oil) or a combination thereof may be selected from, but is not limited thereto.
  • the epoxy resin may be a novolac epoxy resin such as a phenol novolac epoxy resin or a cresol novolac epoxy resin; Bisphenol-type epoxy resins such as bisphenol A-type epoxy resins and bisphenol F-type epoxy resins; Aromatic glycidylamine epoxy resins such as N, N-diglycidyl aniline, N, N-diglycidyl toluidine, diaminodiphenylmethane glycidylamine and aminophenol glycidylamine; Hydroquinone type epoxy resins; Biphenyl type epoxy resins; Stilbene type epoxy resin; Triphenol methane type epoxy resins; Triphenol propane type epoxy resins; Alkyl modified triphenol methane type epoxy resins; Triazine nucleus-containing epoxy resins; Dicyclopentadiene-modified phenol type epoxy resins; Naphthol type epoxy resins; Naphthalene type epoxy resins; Aralkyl type epoxy resins, such as a phenol novolac epoxy
  • epoxy resin bisphenol F type epoxy resin, cresol novolac type epoxy resin, phenol novolac type epoxy resin, biphenyl type epoxy resin, stilbene type epoxy resin, hydroquinone type epoxy resin, naphthalene skeleton Type epoxy resin, tetraphenylolethane type epoxy resin, diphenylphosphate (DPP) type epoxy resin, trishydroxyphenylmethane type epoxy resin, dicyclopentadiene phenol type epoxy resin, diglycidyl of bisphenol Aethylene oxide adduct Glycidyl ethers having one epoxy group, such as ethers, diglycidyl ethers of bisphenol A propylene oxide adducts, diglycidyl ethers of bisphenol A, phenylglycidyl ethers and cresyl glycidyl ethers, and these epoxys Although it is selected from the group consisting of nucleated hydrogenated epoxy resin or a combination thereof, which is a nucleated hydrogen
  • the content ratio of the epoxy resin and the solid dispersion has an equivalent ratio (equivalent of the solid dispersion / equivalent to the epoxy resin) of the solid dispersion to the epoxy resin, for example, in the range of 0.25 to 1.75. It may be to be, more specifically, the equivalent ratio may be to be in the range of 0.75 ⁇ 1.25, and more specifically, the equivalent ratio may be to be in the range of 0.95 ⁇ 1.05.
  • the equivalent of the solid dispersion to the equivalent of the epoxy resin is too small, there may be a problem that the mechanical strength is lowered and the physical properties in terms of thermal and adhesive strength, and on the contrary, the equivalent of the solid dispersion to the equivalent of the epoxy resin is excessive In many cases, there may be a problem in that physical properties are degraded in terms of mechanical strength, thermal and adhesive strength.
  • the epoxy resin composition of the present invention may further comprise a curing catalyst.
  • Amine compounds for example, tertiary amine
  • benzyl dimethylamine such as benzyl dimethylamine, a tris (dimethylaminomethyl) phenol, a dimethyl cyclohexylamine
  • Imidazole compounds such as 1-cyanoethyl-2-ethyl-4-methylimidazole, 2-ethyl-4-methylimidazole and 1-benzyl-2-methylimidazole
  • Organophosphorus compounds such as triphenylphosphine and triphenyl phosphite
  • Quaternary phosphonium salts such as tetraphenylphosphonium bromide and tetra-n-butylphosphonium bromide
  • Diazabicycloalkenes such as 1,8-diazabicyclo [5.4.0] undecene-7 and the organic acid salts thereof
  • Organometallic compounds such as zinc octylate, tin octylate
  • the curing catalyst may be selected from the group consisting of amine compounds, imidazole compounds, organophosphorus compounds, or a combination thereof.
  • the amount of the curing catalyst may be 0.01 part by weight to 1.0 part by weight, and more specifically 0.05 part by weight to 0.5 part by weight based on 100 parts by weight of the epoxy resin and the solid dispersion in total. It may be part by weight, and more specifically 0.08 part by weight to 0.2 part by weight, but is not limited thereto. If the amount of the curing catalyst is too small, there may be a problem that the curing reaction of the epoxy resin does not proceed sufficiently, the mechanical properties and thermal properties are lowered. On the contrary, if the amount of the curing catalyst is excessively large, the curing reaction is carried out even while storing the epoxy resin composition. Since this progresses slowly, there may be a problem that the viscosity rises.
  • the epoxy resin composition of the present invention may further include one or more additive components commonly used in the epoxy resin composition, if necessary.
  • additive components include, for example, antioxidants, UV absorbers, fillers, resin modifiers, silane coupling agents, diluents, colorants, defoamers, defoamers, dispersants, viscosity modifiers, gloss modifiers, wetting agents, conductivity giving agents or combinations thereof. It may be used selected from the group consisting of.
  • the antioxidant may be used to further improve the heat stability of the resulting cured product, and is not particularly limited.
  • a phenol-based antioxidant such as dibutyl hydroxytoluene
  • a sulfur-based antioxidant such as mercaptopropionic acid derivative
  • Phosphorus antioxidants 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide and the like
  • Content of antioxidant in a composition may be 0.01-10 weight part, 0.05-5 weight part, or 0.1-3 weight part with respect to a total of 100 weight part of the said epoxy resin and a solid dispersion.
  • UV absorber For example, Benzotriazole type UV absorbers represented by TINUBIN P and TINUVIN 234 by BASF Japan Ltd .; Triazine-based UV absorbers such as TINUVIN 1577ED; Hindered amine-based UV absorbers such as CHIMASSOLV 2020 FDL or combinations thereof may be used.
  • Content of a UV absorber in a composition may be 0.01-10 weight part, 0.05-5 weight part, or 0.1-3 weight part with respect to a total of 100 weight part of the said epoxy resin and a solid dispersion.
  • the filler is used for the main purpose of improving the mechanical properties of the cured product by blending with an epoxy resin or a curing agent, and in general, the mechanical properties are improved when the amount of the additive is increased.
  • extenders such as talc, sand, silica, talc, calcium carbonate, etc .
  • Reinforcing fillers such as mica, quartz and glass fibers; It has special uses such as quartz powder, graphite, alumina and aerosil (to give the thixotropic property), and the metallic material contributes to the coefficient of thermal expansion, abrasion resistance, thermal conductivity and adhesion of aluminum, aluminum oxide, iron, iron oxide and copper.
  • imparting flame retardancy such as antimony oxide (SB 2 O 3 ), and barium titanate, and organic materials include fillers for weight reduction such as fine plastic balls (phenol resin, urea resin, etc.).
  • various glass fibers and chemical fiber cloth as fillers having reinforcing properties can be treated as fillers in a broad sense in the manufacture of laminated articles.
  • Thixotropic Thixotropic or thixotropic means that the resin, which is attached or impregnated into the laminate by the vertical plane or immersion method, has a solid state property in a liquid state and a stationary state so that it does not flow down or is lost during curing. Fine particles having a large unit surface area are used. For example, colloidal silica (Aerosil) or bentonite-based clay is used.
  • the filler is not particularly limited, and for example, one selected from the group consisting of glass fibers, carbon fibers, titanium oxide, alumina, talc, mica, aluminum hydroxide, or a combination thereof may be used.
  • the content of the filler in the composition may be 0.01 to 80 parts by weight, 0.01 to 50 parts by weight, or 0.1 to 20 parts by weight based on 100 parts by weight of the total of the epoxy resin and the solid dispersion.
  • resin modifier Although it does not specifically limit as said resin modifier, for example, flexible imparting agents, such as a polypropylene glycidyl ether, a polymerized fatty acid polyglycidyl ether, polypropylene glycol, a urethane prepolymer, etc. are mentioned.
  • Content of the resin modifier in a composition may be 0.01-80 weight part, 0.01-50 weight part, or 0.1-20 weight part with respect to a total of 100 weight part of the said epoxy resin and a solid dispersion.
  • silane coupling agent for example, chloropropyl trimethoxysilane, vinyl trichlorosilane, (gamma)-methacryloxypropyl trimethoxysilane, (gamma) -aminopropyl triethoxysilane, etc. are mentioned.
  • Content of the silane coupling agent in a composition may be 0.01-20 weight part, 0.05-10 weight part, or 0.1-5 weight part with respect to a total of 100 weight part of the said epoxy resin and a solid dispersion.
  • the diluent is used for the purpose of lowering the viscosity by adding to the epoxy resin or the curing agent, and serves to effectively improve the flowability, defoaming properties, improvement of penetration, etc., or fillers in use. .
  • Diluents generally do not volatilize, unlike solvents, and remain in the cured product upon curing of the resin, and are divided into reactive and non-reactive diluents. Wherein the reactive diluent has one or more epoxy groups and participates in the reaction to enter the crosslinked structure in the cured product, while the non-reactive diluent is only physically mixed and dispersed in the cured product.
  • Non-reactive diluents commonly used are dibutyl phthalate (DiButylPhthalate, DBP), dioctylphthalate (DOP), nonyl-phenol, Hysol, and the like.
  • the diluent is not particularly limited but includes, for example, n-butylglycidyl ether, phenylglycidyl ether, glycidyl methacrylate, vinylcyclohexenedioxide, diglycidyl aniline, Glycerine triglycidyl ether or a combination thereof can be used.
  • Content of the diluent in a composition may be 0.01-80 weight part, 0.01-50 weight part, or 0.1-20 weight part with respect to a total of 100 weight part of the said epoxy resin and a solid dispersion.
  • Pigments or dyes are used as colorants for adding color to the resin.
  • Commonly used pigments include colorants such as titanium dioxide, cadmium red, shining green, carbon black, chrome green, chrome yellow, navigating blue, and shining blue.
  • antifoaming agent and defoamer used to remove air bubbles of resin dispersant for increasing dispersion effect of resin and pigment, wetting agent to improve adhesion between epoxy resin and material, viscosity regulator , A gloss regulator for adjusting the glossiness of the resin, an additive for improving adhesion, an additive for imparting electrical properties, and the like, and various additives may be used.
  • the hardening method of the epoxy resin composition of this invention is not specifically limited, For example, conventionally well-known hardening apparatuses, such as a closed hardening furnace and the tunnel furnace which can be hardened continuously, can be used.
  • the heating method used for the said hardening is not specifically limited, For example, it can carry out by a conventionally well-known method, such as hot air circulation, infrared heating, and high frequency heating.
  • Curing temperature and curing time may be in the range of 30 seconds to 10 hours at 80 °C ⁇ 250 °C. In one specific example, after performing the foreground-setting on the conditions of 80 degreeC-120 degreeC, 0.5 hour-5 hours, it can be post-cured on the conditions of 120 degreeC-180 degreeC, and 0.1 hour-5 hours. In one embodiment, the curing may be performed under conditions of 150 ° C to 250 ° C for 30 seconds to 30 minutes for short time curing.
  • an epoxy resin composition comprising the step of mixing the epoxy resin and the solid dispersion.
  • a cured product obtained by curing the epoxy resin composition is provided.
  • a molded article comprising the cured product.
  • Example 1-A1 Nano cellulose With fibrils Anhydrosugar Solids containing alcohol Dispersion
  • Example 1-A2 Solid Dispersion Containing Nanocellulose Fibrils and Hydrogenated Sugars
  • sorbitol (Samyang Corporation) and 100 g of aqueous solution in which nanocellulose fibrils were dispersed at 1% by weight (KB101, Asia Nanocellulose Co., Ltd.) were added and mixed uniformly. Thereafter, the mixture was melted while applying vacuum under a temperature condition of 100 ° C. which is equal to or higher than the melting point of sorbitol. The molten mixture was then cooled to room temperature to prepare sorbitol (solid dispersion) in which nanocellulose fibrils were dispersed.
  • Example 1-A3 Solid Dispersion Containing Nanocellulose Fibrils and Alkanediols
  • 1,4-butanediol (Sigma Aldrich) and 100 g of an aqueous solution in which nanocellulose fibrils were dispersed at 1% by weight (KB101, Asia Nanocellulose Co., Ltd.) were added and mixed uniformly. Thereafter, the mixture was melted while applying vacuum under a temperature condition of 40 ° C. which is equal to or higher than the melting point of 1,4-butanediol. The molten mixture was then cooled to room temperature to prepare 1,4-butanediol (solid dispersion) in which nanocellulose fibrils were dispersed.
  • Example 1-A4 Solid Dispersion Containing Graphene and Anhydrosugar Alcohol
  • Example 1-A5 Solid Dispersion Including Graphene and Hydrogenated Sugars
  • sorbitol (Samyang Corporation) and 100 g of an aqueous solution in which graphene was dispersed at 1.5 mg / mL (WDG, MexFlorer, Inc.) were added and mixed uniformly. Thereafter, the mixture was melted while applying vacuum under a temperature condition of 100 ° C. which is equal to or higher than the melting point of sorbitol. Subsequently, the molten mixture was cooled to room temperature to prepare sorbitol (solid dispersion) in which graphene was dispersed.
  • WDG MexFlorer, Inc.
  • Example 1-A6 Solid Dispersion Containing Graphene and Alkanediols
  • 1,4-butanediol (Sigma Aldrich) and 100 g of aqueous solution in which graphene was dispersed at 1.5 mg / mL (WDG, Mexplore Inc.) were added and mixed uniformly. Thereafter, the mixture was melted while applying vacuum under a temperature condition of 40 ° C. which is equal to or higher than the melting point of 1,4-butanediol. Subsequently, the molten mixture was cooled to room temperature to prepare 1,4-butanediol (solid dispersion) in which graphene was dispersed.
  • WDG aqueous solution in which graphene was dispersed at 1.5 mg / mL
  • Comparative example 1-A1 Nano cellulose With fibrils Liquid Dispersion Containing Polypropylene Glycol
  • liquid polypropylene glycol PPG-3000, Kumho Petrochemical
  • aqueous solution in which nano cellulose fibrils were dispersed at 1 wt% KB101, Asia Nanocellulose Co., Ltd.
  • water was removed under vacuum to prepare polypropylene glycol (liquid dispersion) in which nanocellulose fibrils were dispersed.
  • Comparative Example 1-A2 Liquid Dispersion Containing Graphene and Polypropylene Glycol
  • Example 1-B1 Nano cellulose With fibrils Anhydrosugar Solids containing alcohol Dispersion Preparation of Polyurethanes Used
  • Example 1-B2 Graphene and Anhydrosugar Solids containing alcohol Dispersion Preparation of Polyurethanes Used
  • Example 1-A4 isosorbide with graphene dispersed
  • Example 1-A1 isosorbide in which nanocellulose fibrils were dispersed
  • a chain-extended polyurethane was prepared in the same manner as in Example 1-B1 except that was used.
  • Example 1-B3 Nano cellulose With fibrils Alkanes Dior Containing solid Dispersion Preparation of Polyurethanes Used
  • Example 1-A3 As the chain extender, instead of the dispersion prepared in Example 1-A1 (isosorbide in which nanocellulose fibrils were dispersed), the dispersion prepared in Example 1-A3 (1 in which nanocellulose fibrils were dispersed) A chain-extended polyurethane was prepared in the same manner as in Example 1-B1 except that 4-butanediol) was used.
  • Example 1-B4 Graphene and Alkanes Dior Containing solid Dispersion Preparation of Polyurethanes Used
  • Example 1-A6 As a chain extender, instead of the dispersion prepared in Example 1-A1 (isosorbide with nanocellulose fibrils dispersed), the dispersion prepared in Example 1-A6 (1,4- having graphene dispersed therein). A chain-extended polyurethane was prepared in the same manner as in Example 1-B1 except that butanediol) was used.
  • Example 1-B5 Nano cellulose With fibrils Solids containing hydrogenated sugars Dispersion Preparation of Polyurethanes Used
  • Example 1-A2 sorbitol in which nanocellulose fibrils were dispersed
  • Example 1-A1 isosorbide in which nanocellulose fibrils were dispersed
  • a chain-extended polyurethane was prepared in the same manner as in Example 1-B1 except that was used.
  • Example 1-B6 Graphene and Solids containing hydrogenated sugars Dispersion Preparation of Polyurethanes Used
  • Example 1-A5 sorbitol in which graphene was dispersed
  • a chain-extended polyurethane was prepared in the same manner as in Example 1-B1.
  • Chain extension was performed in the same manner as in Example 1-B1, except that isosorbide was used instead of the dispersion prepared in Example 1-A1 (isosorbide in which nanocellulose fibrils were dispersed). Prepared polyurethanes.
  • Comparative example 1-B2 Anhydrosugar Use alcohol as chain extender, separate Nano cellulose Preparation of Polyurethane with Fibrils
  • Comparative example 1-B3 Anhydrosugar Use alcohol as chain extender, separate Graphene Preparation of Added Polyurethane
  • a chain-extended polyurethane was prepared in the same manner as in Comparative Example 1-B2 except that 0.146 g of graphene was added instead of 0.146 g of nanocellulose fibrils.
  • Comparative example 1-B4 Nano cellulose With fibrils Preparation of Polyurethane Using Liquid Dispersion Containing Polypropylene Glycol
  • Example 1-A1 isosorbide in which nanocellulose fibrils were dispersed
  • Comparative Example 1-A1 polypropylene in which nanocellulose fibrils were dispersed
  • a chain-extended polyurethane was prepared in the same manner as in Example 1-B1, except that glycol) was used.
  • Comparative example 1-B5 Graphene and Liquid phase containing polypropylene glycol Dispersion Preparation of Polyurethanes Used
  • Example 1-A2 polypropylene glycol dispersed in graphene
  • Example 1-A1 isosorbide in which nanocellulose fibrils were dispersed
  • a chain-extended polyurethane was prepared in the same manner as in Example 1-B1 except that was used.
  • the dispersion state of the dispersoid is the same state as compared with immediately after the preparation of the dispersion composition.
  • the dispersion state of a dispersoid is a state in which a small lump floats compared with just after manufacture of a dispersion composition.
  • the dispersion state of a dispersoid is a state in which a big lump is leaving compared with just after manufacture of a dispersion composition.
  • the dispersion was in a solid state at room temperature, so that the storage stability was excellent, thereby facilitating long-term storage and redispersibility This excellence was confirmed.
  • Example 2-A1 Nano cellulose With fibrils Anhydrosugar Curing Solid Dispersion Containing Alcohol
  • Example 2-A2 Solid Dispersion for Curing comprising Graphene and Anhydrosugar Alcohol
  • Example 2-A3 Nano cellulose With fibrils Amine Curing Solid Dispersion Containing Compound
  • Example 2-A4 Solid dispersion for curing comprising graphene and amine compound
  • Example 2-A5 Nano cellulose With fibrils Curing Solid Dispersion Containing Phenolic Compound
  • Example 2-A6 Solid Dispersion for Curing Containing Graphene and Phenolic Compounds
  • Example 2-A7 Nano cellulose With fibrils Curing solid dispersion containing imidazole compound
  • Example 2-A8 Solid dispersion for curing comprising graphene and imidazole compound
  • Example 2-A9 Nano cellulose With fibrils mountain Anhydride Curing Solid Dispersion Containing Compound
  • maleic anhydride (Sigma Aldrich), a dispersion medium, and 100 g of an aqueous solution in which nanocellulose fibrils were dispersed at 1 wt% (KB101, Asia Nanocellulose Co., Ltd.) were added and mixed uniformly. Thereafter, the mixture was melted under vacuum at a temperature of 80 ° C. above the melting point of maleic anhydride while removing moisture. The molten mixture was then cooled to room temperature to prepare maleic anhydride (solid dispersion for curing) in which nanocellulose fibrils were dispersed.
  • Example 2-A10 Solid dispersion for curing comprising graphene and acid anhydride compound
  • Comparative example 2-A1 Nano cellulose With fibrils Curing Agents Including Polypropylene Glycol
  • liquid polypropylene glycol PPG-3000, Kumho Petrochemical
  • aqueous solution in which nano cellulose fibrils were dispersed at 1 wt% KB101, Asia Nanocellulose Co., Ltd.
  • water was removed under vacuum to prepare polypropylene glycol (liquid curing agent) in which nanocellulose fibrils were dispersed.
  • Example 2-B1 Nano cellulose With fibrils Anhydrosugar Preparation of epoxy resin composition using solid dispersion for curing containing alcohol
  • Bifunctional epoxy resin of diglycidyl ether of bisphenol A (DGEBA) (YD-128, Kukdo Chemical, Epoxy equivalent weight (EEW): 187 g / eq, 1 equivalent)
  • isosorbide (Samyang Corporation, hydroxyl equivalent weight (HEW: 73 g / eq, 1 equivalent) in which the nanocellulose fibrils dispersed in Example 2-A1 were dispersed, and 100 parts by weight of the mixture
  • 0.1 parts by weight of N, N-dimethylbutylamine N, N-dimethylbutylamine, DMBA, Sigma aldrich
  • the epoxy resin composition was then placed in a mold coated with a Teflon film and cured stepwise at 100 ° C. for 1 hour, at 120 ° C. for 1 hour, at 150 ° C. for 3 hours, and at 180 ° C. for 1 hour.
  • Example 2-B2 Graphene and Anhydrosugar Curing Solids Containing Alcohol Dispersion Preparation of the Used Epoxy Resin Compositions
  • Graphene-dispersed isosorbide (Samyang, hydroxyl equivalent weight) instead of isosorbide in which the nanocellulose fibril prepared in Example 2-A1 was dispersed as a curing agent. , HEW: 73 g / eq, 1 equivalent), except that the epoxy resin composition was prepared in the same manner as in Example 2-B1, and then cured.
  • Example 2-B3 Nano cellulose With fibrils Amine Preparation of an epoxy resin composition using a solid dispersion for curing containing a compound
  • Example 2-A3 (1R, 2R) -N, N'- in which the nanocellulose fibrils prepared in Example 2-A3 were dispersed in place of the isosorbide in which the nanocellulose fibrils prepared in Example 2-A1 were dispersed as a curing agent.
  • An epoxy resin composition was prepared in the same manner as in Example 2-B1 except that dimethyl-1,2-diphenylethane-1,2-diamine was used and then cured.
  • Example 2-B4 Graphene and Amine Curing Solids Containing Compound Dispersion Preparation of the Used Epoxy Resin Compositions
  • Example 2-B5 Nano cellulose With fibrils Preparation of Epoxy Resin Composition Using Curing Solid Dispersion Containing Phenolic Compound
  • Example 2-A1 isosorbide in which the nanocellulose fibrils prepared in Example 2-A1 were dispersed as the curing agent, except that 2,3-xylenol in which the nanocellulose fibrils prepared in Example 2-A5 was dispersed was used.
  • Example 2-B1 2,3-xylenol in which the nanocellulose fibrils prepared in Example 2-A5 was dispersed was used.
  • Example 2-B6 Graphene and Curing Solids Containing Phenolic Compounds Dispersion Preparation of the Used Epoxy Resin Compositions
  • Example 2-A6 Except for using the graphene-dispersed 2,3-xylenol prepared in Example 2-A6 instead of the isosorbide in which the nanocellulose fibrils prepared in Example 2-A1 was dispersed as a curing agent, An epoxy resin composition was prepared in the same manner as in Example 2-B1, and then cured.
  • Example 2-B7 Nano cellulose With fibrils Preparation of Epoxy Resin Composition Using Curing Solid Dispersion Containing Imidazole Compound
  • Example 2-A7 were dispersed in the imidazole dispersed in the nanocellulose fibrils prepared in Example 2-A1 as a curing agent, except that An epoxy resin composition was prepared in the same manner as 2-B1, and then cured.
  • Example 2-B8 Graphene and Curing solids containing imidazole compounds Dispersion Preparation of the Used Epoxy Resin Compositions
  • Example 2- except that the graphene-dispersed imidazole prepared in Example 2-A8 was used instead of the isosorbide in which the nanocellulose fibrils prepared in Example 2-A1 was dispersed as a curing agent.
  • An epoxy resin composition was prepared in the same manner as in B1 and then cured.
  • Example 2-B9 Nano cellulose With fibrils mountain Anhydride Preparation of an epoxy resin composition using a solid dispersion for curing containing a compound
  • Example 2-B1 Except for the use of maleic anhydride in which the nanocellulose fibrils prepared in Example 2-A9 were dispersed in place of the isosorbide in which the nanocellulose fibrils prepared in Example 2-A1 were dispersed as a curing agent, An epoxy resin composition was produced in the same manner as in Example 2-B1, and then cured.
  • Example 2-B10 Graphene and mountain Anhydride Curing Solids Containing Compound Dispersion Preparation of the Used Epoxy Resin Compositions
  • Example 2 except that the graphene-dispersed maleic anhydride prepared in Example 2-A10 was used instead of the isosorbide in which the nanocellulose fibril prepared in Example 2-A1 was dispersed as a curing agent.
  • An epoxy resin composition was prepared in the same manner as -B1, and then cured.
  • isosorbide (Samyang, hydroxyl equivalent weight, HEW: 73 g / eq, 1 equivalent) instead of isosorbide in which the nanocellulose fibrils prepared in Example 2-A1 were dispersed as the curing agent. Except that, an epoxy resin composition was prepared in the same manner as in Example 2-B1, and then cured.
  • Comparative example 2-B2 Anhydrosugar Use alcohol as a hardener, and separate Nano cellulose Preparation of epoxy resin composition to which fibrils are added
  • Bifunctional epoxy resin of diglycidyl ether of bisphenol A (DGEBA) (YD-128, Kukdo Chemical, Epoxy equivalent weight (EEW): 187 g / eq, 1 equivalent)
  • Isosorbide (Samyang Corp., hydroxyl equivalent weight (HEW: 73 g / eq, 1 equivalent)
  • 0.73 g of nanocellulose fibrils are mixed, and 100 parts by weight of the mixture is treated with N, N- as a catalyst.
  • 0.1 parts by weight of dimethylbutylamine (N, N-dimethylbutylamine, DMBA, Sigma aldrich) was added to prepare an epoxy resin composition.
  • the epoxy resin composition was then placed in a mold coated with a Teflon film and cured stepwise at 100 ° C. for 1 hour, at 120 ° C. for 1 hour, at 150 ° C. for 3 hours, and at 180 ° C. for 1 hour.
  • Comparative example 2-B3 Anhydrosugar Use alcohol as a hardener, and separate Graphene Preparation of Added Epoxy Resin Composition
  • An epoxy resin composition was prepared in the same manner as in Comparative Example 2-B2, except that 0.73 g of graphene was added instead of 0.73 g of nanocellulose fibrils, and then cured.
  • Comparative example 2-B4 Nano cellulose With fibrils Preparation of Epoxy Resin Composition Using Curing Agent Containing Polypropylene Glycol
  • the curing agent instead of the curing agent prepared in Example 2-A1 (isosorbide in which nanocellulose fibrils were dispersed), the curing agent prepared in Comparative Example 2-A1 (polypropylene glycol in which nanocellulose fibrils were dispersed) was used. Except that, an epoxy resin composition was prepared in the same manner as in Example 2-B1, and then cured.
  • Comparative example 2-B5 Graphene and Preparation of Epoxy Resin Composition Using Curing Agent Containing Polypropylene Glycol
  • Example 2-A1 Except for using the curing agent (graphene-dispersed polypropylene glycol) prepared in Comparative Example 2-A2 instead of the curing agent (isosorbide in which nanocellulose fibrils are dispersed) prepared in Example 2-A1 as a curing agent. Then, the epoxy resin composition was produced in the same manner as in Example 2-B1, and then cured.
  • the curing agent graphene-dispersed polypropylene glycol
  • the dispersion state of the dispersoid is the same state as compared with immediately after the preparation of the solid dispersion for curing.
  • the dispersion state of a dispersoid is a state in which a small lump floats compared with just after manufacture of the solid dispersion for hardening.
  • the dispersion state of a dispersoid is a state in which a big lump floats compared with just after manufacture of the solid dispersion for hardening
  • Tensile stress was measured using a universal tensile tester according to ASTM D412 for the cured product specimens of the epoxy resin compositions prepared in Examples 2-B1 to 2-B10 and Comparative Examples 2-B1 to 2-B5. Five tensile stresses were measured for each specimen, and the average values of the five specimens are shown in Table 4 below.
  • the solid dispersion for curing is present in a solid state at room temperature, and thus has excellent storage stability. It was also confirmed that the redispersibility was excellent.
  • Examples 2-B1 to 2-B10 according to the present invention it is possible to use a solid dispersion for curing in which the dispersoid (nanocellulose fibril or graphene) is evenly dispersed. Accordingly, it can be confirmed that the tensile stress of the cured product of the epoxy resin composition is significantly improved to 68 Mpa or more.
  • Example 3-1 nano cellulose With fibrils Containing monosaccharides Dispersion Composition
  • glucose 100 g of glucose (Samyang Corporation) and 100 g of an aqueous solution in which 1% by weight of nano cellulose fibrils were dispersed (KB101, Asia Nanocellulose Co., Ltd.) were added to a rotary evaporator, and mixed uniformly. Thereafter, the mixture was melted while applying vacuum under a temperature condition of 150 ° C. which is equal to or higher than the melting point of glucose to remove moisture. The molten mixture was then cooled to room temperature to prepare glucose (solid dispersion composition) in which nano cellulose fibrils were dispersed.
  • Example 3-2 nano cellulose With fibrils Containing disaccharides Dispersion Composition
  • sucrose (Samyang Corporation) and 100 g of an aqueous solution in which nano cellulose fibrils were dispersed at 1% by weight (KB101, Asia Nanocellulose Co., Ltd.) were added and mixed uniformly. Thereafter, the mixture was melted under vacuum at 190 ° C. above the melting point of sucrose while removing water. The molten mixture was then cooled to room temperature to prepare sucrose (solid dispersion composition) in which nano cellulose fibrils were dispersed.
  • sucrose solid dispersion composition
  • Example 3-3 nano cellulose With fibrils Containing polysaccharides Dispersion Composition
  • Example 3-4 nano cellulose With fibrils Anhydrosugar Containing alcohol Dispersion Composition
  • Example 3-5 Nano cellulose With fibrils Hydrogenated sugars Dispersion Composition
  • sorbitol (Samyang Corporation) and 100 g of an aqueous solution in which nano cellulose fibrils were dispersed at 1% by weight (KB101, Asia Nanocellulose Co., Ltd.) were added and mixed uniformly. Thereafter, the mixture was melted under vacuum at a temperature of 100 ° C. above the melting point of sorbitol while removing water. The molten mixture was then cooled to room temperature to prepare sorbitol (solid dispersion composition) in which nano cellulose fibrils were dispersed.
  • Example 3-6 Nano cellulose With fibrils Containing polyether polyols Dispersion Composition
  • Example 3-7 Graphene and Containing monosaccharides Dispersion Composition
  • Example 3-8 Graphene and Containing disaccharides Dispersion Composition
  • sucrose (Samyang Corporation) and 100 g of aqueous solution in which graphene was dispersed at 1.5 mg / mL were added to a rotary concentrator, and mixed uniformly. Thereafter, the mixture was melted under vacuum at 190 ° C. above the melting point of sucrose while removing moisture. Subsequently, the molten mixture was cooled to room temperature, thereby preparing sucrose (solid dispersion composition) in which graphene was dispersed.
  • Example 3-9 Graphene and Containing polysaccharides Dispersion Composition
  • Example 3-10 Graphene and Anhydrosugar Containing alcohol Dispersion Composition
  • Example 3-11 Graphene and Hydrogenated sugars Dispersion Composition
  • sorbitol (Samyang Corporation) and 100 g of aqueous solution in which graphene was dispersed at 1.5 mg / mL (WDG, Mexplore Inc.) were added and mixed uniformly. Thereafter, the mixture was melted under vacuum at a temperature of 100 ° C. above the melting point of sorbitol while removing water. The molten mixture was then cooled to room temperature to prepare sorbitol (solid dispersion composition) in which graphene was dispersed.
  • WDG aqueous solution in which graphene was dispersed at 1.5 mg / mL
  • Example 3-12 Graphene and Containing polyether polyols Dispersion Composition
  • Comparative example 3-1 nano cellulose With fibrils Containing polypropylene glycol Dispersion Composition
  • liquid polypropylene glycol PPG-3000, Kumho Petrochemical
  • aqueous solution in which nano cellulose fibrils were dispersed at 1 wt% KB101, Asia Nanocellulose Co., Ltd.
  • vacuum was applied to remove moisture to prepare polypropylene glycol (liquid dispersion composition) in which nano cellulose fibrils were dispersed.
  • Comparative example 3-2 Graphene and Containing polypropylene glycol Dispersion Composition
  • the dispersion state of the dispersoid is the same state as compared with immediately after the preparation of the dispersion composition.
  • the dispersion state of a dispersoid is a state in which a small lump floats compared with just after manufacture of a dispersion composition.
  • the dispersion state of a dispersoid is a state in which a big lump floats compared with just after manufacture of a dispersion composition.
  • Examples 3-1 to 3-12 according to the present invention were excellent in storage stability because they existed in a solid state at room temperature, thereby facilitating long-term storage and excellent redispersibility. Confirmed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Epoxy Resins (AREA)
  • Colloid Chemistry (AREA)

Abstract

본 발명은 고체 분산체, 이의 제조 방법, 이를 이용한 사슬 연장된 폴리우레탄 및 이를 포함하는 에폭시 수지 조성물에 관한 것으로, 더욱 상세하게는, 무기물 유래 또는 유기물 유래의 등방성 및/또는 이방성 재료를 분산질로서 이용하여 이를 상온에서 고상인 폴리올 및 당류 등의 분산매에 분산시킴으로써, 보관 및 사용이 용이하고, 운송 비용이 절감되며, 제품 보관 시에 발생하는 응집 및 가라 앉음 현상을 방지 내지 개선할 수 있어, 작업 효율을 향상시키고, 공정 비용을 절감할 수 있으며, 폴리우레탄에 적용 시 강도를 향상시킬 수 있고, 종래의 경화제에 비해 향상된 강도를 제공할 수 있는 고체 분산체, 이의 제조 방법, 이를 이용한 사슬 연장된 폴리우레탄 및 이를 포함하는 에폭시 수지 조성물에 관한 것이다.

Description

고체 분산체, 이의 제조 방법, 이를 이용한 사슬 연장된 폴리우레탄 및 이를 포함하는 에폭시 수지 조성물
본 발명은 고체 분산체, 이의 제조 방법, 이를 이용한 사슬 연장된 폴리우레탄 및 이를 포함하는 에폭시 수지 조성물에 관한 것으로, 더욱 상세하게는, 무기물 유래 또는 유기물 유래의 등방성 및/또는 이방성 재료를 분산질로서 이용하여 이를 상온에서 고상인 폴리올 및 당류 등의 분산매에 분산시킴으로써, 보관 및 사용이 용이하고, 운송 비용이 절감되며, 제품 보관 시에 발생하는 응집 및 가라 앉음 현상을 방지 내지 개선할 수 있어, 작업 효율을 향상시키고, 공정 비용을 절감할 수 있으며, 폴리우레탄에 적용 시 강도를 향상시킬 수 있고, 종래의 경화제에 비해 향상된 강도를 제공할 수 있는 고체 분산체, 이의 제조 방법, 이를 이용한 사슬 연장된 폴리우레탄 및 이를 포함하는 에폭시 수지 조성물에 관한 것이다.
무기물 유래 또는 유기물 유래의 등방성 및/또는 이방성 재료는 경량화 재료, 하이브리드 재료, 표면 보호제, 도전 페이스트, 도전성 잉크, 센서, 정밀 분석 소자, 광메모리, 액정 표시 소자, 나노 자석, 열전매체, 연료전지용 고기능 촉매, 유기 태양전지, 나노 글래스 디바이스, 연마제, 약물 담체, 환경 촉매, 도료, 인쇄 잉크, 잉크젯용 잉크, 컬러 필터용 레지스트, 필기 도구용 잉크 등의 용도 분야에서 주체 재료로서 사용되고 있다. 이때, 상기 무기물 유래 또는 유기물 유래의 등방성 재료 및/또는 이방성 재료는 수성 분산매나 비수성 분산매 중에서 미소 입자로서 분산체를 조제하여 이용하는 것에 의해, 효율적으로 가공 특성, 제품 특성 및 소재 물성을 향상시키고, 품질 안정화나 제조 시의 수율 향상에 기여하는 물질로서 산업상 이용되고 있다.
그러나 분산질의 소재 변경, 입자 사이즈의 미소화 또는 입자 형상 제어를 지향함에 따라 분산질의 안정 분산화가 어려워져, 분산질이 분산매 중에서 단시간에 응집을 일으키거나 가라앉는 문제점이 있다. 분산질의 응집 및 가라앉음 문제는 분산체의 제조에 있어서, 생산성 저하, 가공 특성 저하, 핸들링성 저하 및 제품 수율 저하를 초래할 뿐만 아니라, 최종 제품의 특성, 소재 물성 및 품질의 저하를 일으킨다. 그밖에 외관적으로 투명성, 광택 및 착색력의 저하, 색얼룩 및 크랙 발생 등 바람직하지 못한 현상을 발생시키는 것으로 알려져 있다. 이와 같은 분산질의 응집 및 가라 앉음을 억제하고, 분산 안정화를 달성하기 위해 분산제가 사용되고 있다.
기존에는 대한민국 공개특허공보 제10-2013-0023254호나 제10-2013-0096307호에 개시된 바와 같이 분산제를 이용하여 분산체의 응집을 억제하여 안정적인 분산체 조성물을 얻기 위한 검토가 이루어지고 있지만, 분산매 및 분산질의 다양화, 분산질의 입자 사이즈의 미소화, 입자 형상의 다양화, 최종 제품의 고품질화, 생산성 향상, 가공 특성의 고도 요구 등의 점에서, 기존에 제안된 분산제는 요구 특성을 충분히 충족할 수 없다.
기존 분산체 조성물의 가장 큰 문제점은 분산매로서 물을 사용한 분산체 조성물을 폴리우레탄 수지 및 에폭시 수지 등에 적용 할 경우, 물과 폴리올의 마스터 배치 또는 물과 에폭시의 마스터 배치를 제조해야 하는 공정이 추가로 필요하며, 분산질의 응집을 막기 위한 계면활성제가 필요한 문제점이 있었다.
이에 별도의 분산제 또는 계면활성제의 사용 없이도, 분산질의 응집 및 가라 앉음을 방지 내지 개선할 수 있는 분산체 및 분산체 조성물의 개발과, 상기 분산체를 폴리우레탄 등에 적용하기 위한 사슬 연장제 및 상기 분산체를 경화제로 이용한 에폭시 수지 조성물의 개발이 필요한 실정이다.
상기와 같은 문제점을 해결하기 위하여 본 발명은, 무기물 유래 또는 유기물 유래의 등방성 및/또는 이방성 재료를 분산질로서 이용하여 이를 상온에서 고상인 폴리올 및 당류 등의 분산매에 분산시킴으로써, 보관 및 사용이 용이하고, 운송 비용이 절감되며, 제품 보관 시에 발생하는 응집 및 가라 앉음 현상을 방지 내지 개선할 수 있어, 작업 효율을 향상시키고, 공정 비용을 절감할 수 있으며, 폴리우레탄에 적용 시 강도를 향상시킬 수 있고, 종래의 경화제에 비해 향상된 강도를 제공할 수 있는 고체 분산체, 이의 제조 방법, 이를 이용한 사슬 연장된 폴리우레탄 및 이를 포함하는 에폭시 수지 조성물을 제공하는 것을 목적으로 한다.
상기한 기술적 과제를 해결하고자 본 발명의 제1 측면은, 분산질 및 상기 분산질이 분산되어 있는 분산매를 포함하는 고체 분산체로서, 상기 분산질이 유기물 입자, 무기물 입자 또는 이들의 혼합물이고, 상기 분산매가 상온에서 고체 상태의 비수성 분산매인, 고체 분산체를 제공한다.
본 발명의 다른 측면에 따르면, 상기 고체 분산체를 포함하는 분산체 조성물이 제공된다.
본 발명의 또 다른 측면에 따르면, 분산질 및 분산매를 혼합하는 단계; 및 혼합물 중 분산매를 용융시키는 단계를 포함하는 고체 분산체의 제조 방법으로서, 상기 분산질이 유기물 입자, 무기물 입자 또는 이들의 혼합물이고, 상기 분산매가 상온에서 고체 상태의 비수성 분산매인, 고체 분산체의 제조 방법이 제공된다.
본 발명의 또 다른 측면에 따르면, 폴리우레탄 예비 중합체와, 상기 고체 분산체의 반응에 의하여 제조된 것인, 사슬 연장된 폴리우레탄이 제공된다.
본 발명의 또 다른 측면에 따르면, (1) 폴리우레탄 예비 중합체에, 상기 고체 분산체를 첨가하는 단계; 및 (2) 상기 (1) 단계의 결과 혼합물을 반응시키는 단계를 포함하는, 사슬 연장된 폴리우레탄의 제조 방법이 제공된다.
본 발명의 또 다른 측면에 따르면, 에폭시 수지; 및 상기 고체 분산체를 포함하는 에폭시 수지 조성물이 제공된다.
본 발명의 또 다른 측면에 따르면, 에폭시 수지 및 상기 고체 분산체를 혼합하는 단계를 포함하는 에폭시 수지 조성물의 제조 방법이 제공된다.
본 발명의 또 다른 측면에 따르면, 상기 에폭시 수지 조성물을 경화시켜 얻어지는 경화물이 제공된다.
본 발명의 또 다른 측면에 따르면, 상기 경화물을 포함하는 성형품이 제공된다.
본 발명에 따른 무기물 또는 유기물 유래의 등방성 재료 및/또는 이방성 재료가 분산되어 있는 고체 분산체는 제품 보관시 뭉침 현상을 줄이거나 없앨 수 있고, 이를 통해 제품(고체 분산체) 사용시 공정 투입 시간 단축이 가능하며, 뭉쳐진 제품을 재분산시키기 위한 별도의 추가 공정 내지 시간을 줄이거나 없앨 수 있으며, 그러한 추가 작업 시 작업자의 노동 및 안전에 대한 우려가 적거나 없어 작업 효율을 향상시킬 수 있다. 또한, 본 발명의 고체 분산체는 다량의 분산질이 골고루 분산되어 있어, 이를 폴리우레탄의 사슬 연장제로 사용 시, 종래의 사슬 연장제에 비해 향상된 강도를 폴리우레탄에 제공할 수 있으며, 에폭시 수지의 경화제로 사용 시, 종래의 경화제에 비해 향상된 강도를 에폭시 수지의 경화물에 제공할 수 있다.
이하에서 본 발명을 상세히 설명한다.
본 발명은 분산질 및 상기 분산질이 분산되어 있는 분산매를 포함하는 고체 분산체로서, 상기 분산질이 유기물 입자, 무기물 입자 또는 이들의 혼합물이고, 상기 분산매가 상온에서 고체 상태의 비수성 분산매인 고체 분산체에 관한 것이다.
또한, 본 발명의 다른 측면에 따르면, 상기 고체 분산체를 포함하는 분산체 조성물이 제공된다.
본 발명의 고체 분산체 또는 분산체 조성물은 상온에서 고체일 수 있다. 본 명세서에서 상온이란 평상의 온도로서 20±5℃의 범위이며, 예컨대 25℃일 수 있다. 특별히 한정하지 않으나, 본 발명의 고체 분산체는 사슬 연장용 상온 고체 분산체 또는 경화용 상온 고체 분산체로 사용될 수 있다.
본 발명의 고체 분산체는 분산매 중에 분산되어 있는 분산질을 포함한다. 상기 고체 분산체에 포함된 분산질을 고분자 제조 또는 경화물 제조(예를 들면, 폴리우레탄의 제조 또는 에폭시 경화물의 제조)에 적용 시, 그 분산질의 종류에 따라 제조된 고분자 또는 경화물(예를 들면, 폴리우레탄 또는 에폭시 경화물)의 전기적 물성, 열적 물성 및/또는 기계적 물성 등을 향상시키는 역할을 수행할 수 있으나, 이에 한정하지 않는다.
본 발명의 분산매 중에 분산되어 있는 분산질 입자는 무기물 입자, 유기물 입자 또는 이들의 혼합물로부터 선택될 수 있다.
예를 들면, 무기물 입자로서는, 철, 알루미늄, 크롬, 니켈, 코발트, 아연, 텅스텐, 인듐, 주석, 팔라듐, 지르코늄, 티탄, 구리, 은(예를 들면 실버 파티클, 실버 나노와이어, 실버 나노로드 등), 금(예를 들면, 골드 파티클, 골드 나노 와이어, 골드 나노로드 등), 백금, 이들 중 2종 이상의 금속의 합금, 또는 이들 중 2종 이상의 혼합물을 사용할 수 있다. 그때, 앞서 서술한 무기물 입자를 매체로부터 안정하게 취출하기 위해, 알칸산류나 지방산류, 히드록시카르복실산류, 지환족 카르복실산류, 방향족 카르복실산류, 알케닐 숙신산 무수물류, 티올류, 페놀 유도체류, 아민류, 양친매성 폴리머, 고분자 계면활성제, 저분자 계면활성제 등의 보호제로 피복되어 있어도 좋다.
그밖에, 카올린, 클레이, 탈크, 마이카, 벤토나이트, 돌로마이트, 규산칼슘, 규산마그네슘, 석면, 탄산칼슘, 탄산마그네슘, 탄산바륨, 황산칼슘, 황산바륨, 황산알루미늄, 수산화알루미늄, 수산화철, 규산알루미늄, 산화지르코늄, 산화마그네슘, 산화알루미늄, 산화티탄, 산화철, 산화아연, 삼산화안티몬, 산화인듐, 산화인듐주석, 탄화규소, 질화규소, 질화붕소, 티탄산바륨, 규조토, 카본블랙, 흑연, 암면, 글래스울, 유리섬유, 그래핀, 그래파이트, 탄소섬유, 탄소나노섬유 또는 탄소나노튜브(단일벽 탄소나노튜브, 이중벽 탄소나노튜브 또는 다중벽 탄소나노튜브 등) 등이 무기물 입자로서 사용될 수 있고, 또한 전술한 무기물 입자 중에서 2종 이상의 혼합물이 사용될 수 있으나, 이에 제한되지 않는다.
또한, 유기물 입자로서는, 아조계 화합물, 디아조계 화합물, 축합 아조계 화합물, 티오인디고계 화합물, 인단트론계 화합물, 퀴나크린돈계 화합물, 안트라퀴논계 화합물, 벤즈이미다졸론계 화합물, 페릴렌계 화합물, 프탈로시아닌계 화합물, 안트라피리딘계 화합물 또는 디옥사진계 화합물 등의 유기 안료; 폴리에틸렌 수지, 폴리프로필렌 수지, 폴리에스테르 수지, 나일론 수지, 폴리아미드 수지, 아라미드 수지, 아크릴 수지, 비닐론 수지, 우레탄 수지, 멜라민 수지, 폴리스티렌 수지, 폴리유산, 아세테이트 섬유, 셀룰로오스(예를 들면, 나노 셀룰로오스 피브릴, 나노 셀룰로오스 크리스탈 등), 헤미셀룰로오스, 리그닌, 키틴, 키토산, 전분, 폴리아세탈, 폴리카보네이트, 폴리페닐렌에테르, 폴리에테르에테르케톤, 폴리에테르케톤, 폴리부틸렌테레프탈레이트, 폴리에틸렌나프탈레이트, 폴리부틸렌나프탈레이트, 폴리술폰, 폴리페닐렌설파이드 또는 폴리이미드 등의 고분자 수지; 또는 이들의 2종 이상의 혼합물을 사용할 수 있으나, 이에 제한되지 않는다.
본 발명의 분산매 중에 분산되어 있는 상기 분산질 입자는 결정상일 수도 있고, 비결정상일 수도 있다. 또한, 본 발명의 분산매 중에 분산되어 있는 상기 분산질 입자는 등방성 입자일 수도 있고, 이방성 입자일 수도 있으며, 또는 섬유상일 수도 있다.
본 발명의 분산매 중에 분산되어 있는 상기 분산질 입자는 바람직하게는 나노 셀룰로오스 피브릴, 나노 셀룰로오스 크리스탈, 그래핀, 그래파이트, 탄소나노튜브, 탄소나노섬유, 실버 파티클, 실버 나노와이어, 실버 나노로드, 골드 파티클, 골드 나노와이어, 골드 나노로드 또는 이들의 조합으로 이루어진 그룹으로부터 선택된 하나 이상일 수 있으나, 이에 한정되지 않는다.
본 발명에서 상기 분산질 입자는, 공지의 방법으로 얻은 것을 사용할 수 있다. 분산질 미립자의 조제 방법으로서는, 조대 입자를 기계적으로 파쇄한 후, 미세화시키는 탑다운(top-down) 방식과, 여러 개의 단위 입자를 생성시켜, 그것이 응집된 클러스터 상태를 거쳐 입자가 형성되는 바텀업(bottom-up) 방식의 2가지 방식이 있지만, 어느 방법으로 조제된 것이어도 바람직하게 사용할 수 있다. 또한, 미립자의 조제 방법으로는 습식법 및 건식법 중의 어느 방법에 의한 것이어도 좋다. 또한, 바텀업 방식에는, 물리적 방법과 화학적 방법이 있지만, 어느 방법에 의한 것이어도 좋다.
바텀업 방식을 더욱 구체적으로 설명하기 위해, 상기 분산질 입자 중, 금속 나노 입자의 조제법을 예시한다. 바텀업 방식 중, 물리적 방법의 대표 예로서는 벌크 금속을 불활성 가스 중에서 증발시켜, 가스와의 충돌에 의해 냉각 응축시켜 나노 입자를 생성하는 가스 중 증발법이 있다. 또한, 화학적 방법에는, 액상 중에서 보호제의 존재 하에서 금속 이온을 환원하고, 생성된 0가의 금속을 나노 사이즈로 안정화시키는 액상 환원법이나 금속 착체의 열분해법 등이 있다. 액상 환원법으로서는, 화학적 환원법, 전기화학적 환원법, 광환원법, 또는 화학적 환원법과 광조사법을 조합한 방법 등을 이용할 수 있다.
또한, 본 발명에서 바람직하게 사용할 수 있는 분산질 입자는, 상기한 바와 같이, 탑다운 방식 및 바텀업 방식 중의 어느 방법으로 얻은 것이어도 좋고, 그들은 수계 액상, 비수계 액상 및 기상 중의 어느 환경 하에서 제조된 것이어도 좋다.
본 발명의 고체 분산체는 분산질을 분산시키는 분산매를 포함한다. 상기 고체 분산체에 포함된 분산매를 폴리우레탄 제조에 적용 시, 폴리우레탄의 사슬을 연장시키는 역할을 수행할 수 있으며, 상기 고체 분산체에 포함된 분산매를 에폭시 수지의 경화에 적용 시, 에폭시 수지를 경화시키는 역할을 수행할 수 있다.
본 발명에서 사용할 수 있는 분산매로는 상온에서는 고상이지만, 상온을 초과하는 온도로 승온시켰을 때 액상으로 변할 수 있는 비수계 분산매가 사용될 수 있다. 이러한 비수계 분산매를 사용함으로써, 상온에서 고체 분산체 보관 시, 분산질이 응집되거나 가라 않는 것을 방지 내지 개선하여 분산 안정화를 달성할 수 있다.
상기 비수계 분산매로는 폴리우레탄의 사슬을 연장시키거나 에폭시 수지를 경화시킬 수 있는 것이 바람직하며, 예를 들면, 당류, 폴리에테르 폴리올, 폴리에스테르 폴리올, 수소화 당, 알칸 디올, 아민계 화합물, 페놀계 화합물, 이미다졸계 화합물, 산 무수물계 화합물, 무수당 알코올 또는 이들의 조합으로 이루어진 군으로부터 선택되는 하나 이상을 사용할 수 있다.
당류로는 단당류, 이당류 및 다당류가 있으며, 상기 단당류의 종류는 특별히 한정되지 않고, 상온에서 고체이면서 상온을 초과하는 융점 이상으로 승온 시에는 액상으로 전환되는 것이라면, 제한 없이 사용 가능하며, 예를 들면, 글루코오스, 푸룩토오스, 갈락토오스, 리보오스 또는 이들의 혼합물 등이 사용될 수 있다.
상기 이당류의 종류는 특별히 한정되지 않고, 상온에서 고체이면서 상온을 초과하는 융점 이상으로 승온 시에는 액상으로 전환되는 것이라면, 제한 없이 사용 가능하며, 예를 들면, 말토오스, 수크로오스, 락토오스 또는 이들의 혼합물 등이 사용될 수 있다.
상기 다당류의 종류는 특별히 한정되지 않고, 상온에서 고체이면서 상온을 초과하는 융점 이상으로 승온 시에는 액상으로 전환되는 것이라면 제한 없이 사용 가능하며, 예를 들면, 올리고당, 셀룰로오스(cellulose), 전분(starch), 글리코겐(glycogen) 또는 이들의 혼합물 등이 사용될 수 있다.
상기 폴리에테르 폴리올의 종류는 특별히 한정되지 않고, 상온에서 고체이면서 상온을 초과하는 융점 이상으로 승온 시에는 액상으로 전환되는 것이라면 제한 없이 사용 가능하며, 예를 들면, 폴리프로필렌글리콜 변성체, 폴리테트라메틸렌 에테르 글리콜(폴리테트라하이드로푸란) 또는 이들의 혼합물 등이 사용될 수 있다.
상기 폴리에스테르 폴리올의 종류는 특별히 한정되지 않고, 상온에서 고체이면서 상온 초과의 융점 이상으로 승온 시 액상으로 전환되는 것이라면 제한 없이 사용 가능하며, 예를 들면, 부틸렌아디페이트 디올, 1,6-헥산아디페이트 디올 또는 이들의 혼합물 등이 사용될 수 있다.
상기 수소화 당의 종류는 특별히 한정되지 않고, 상온에서 고체이면서 상온 초과의 융점 이상으로 승온 시 액상으로 전환되는 것이라면 제한 없이 사용 가능하며, 예를 들면, 테트리톨, 펜티톨, 헥시톨, 헵티톨 또는 이들의 혼합물 등이 사용될 수 있으며, 바람직하게는 헥시톨, 예컨대 소르비톨, 만니톨, 이디톨, 갈락티톨 또는 이들의 혼합물로 이루어진 군으로부터 선택되는 것을 사용할 수 있다.
상기 알칸 디올의 종류는 특별히 한정되지 않고, 상온에서 고체이면서 상온 초과의 융점 이상으로 승온 시 액상으로 전환되는 것이라면 제한 없이 사용 가능하며, 예를 들면, 1,4-부탄디올, 1,6-헥산디올, 1,9-노난디올 또는 이들의 혼합물로 이루어진 군으로부터 선택되는 것을 사용할 수 있다.
다만 화학적 분산매를 이용한 경우 환경 문제가 이슈될 수 있다. 예를 들면 페놀계 화합물을 사용할 경우, 경화 후 소량의 프리 페놀이 검출되는 문제가 있으며, 아민계 화합물을 사용한 경우, 냄새로 인한 작업의 제한이 있다.
일 구체예에 따라, 본 발명의 비수성 분산매로서 무수당 알코올(예를 들면, 일무수당 알코올, 이무수당 알코올 또는 이들의 혼합물 등)을 사용하는 것이 바람직할 수 있다. 이 경우, 냄새로 인한 작업의 제한 및 경화 후 화학적 물질이 용출되는 문제점 등이 없다.
상기 아민계 화합물의 종류는 특별히 한정되지 않고, 상온에서 고체이면서 상온 초과의 융점 이상으로 승온 시 액상으로 전환되는 것이라면 제한 없이 사용 가능하며, 예를 들면, 폴리(에틸렌글리콜)디아민[Poly(ethylene glycol)diamine], (R)-(+)-1,1′-바이나프틸-2,2’-디아민[(R)-(+)-1,1′-Binaphthyl-2,2′-diamine], (S)-(―)-1,1′-바이나프틸-2,2’-디아민[(S)-(―)-1,1′-Binaphthyl-2,2′-diamine], 1,1′-바이나프틸-2,2′-디아민[1,1′-Binaphthyl-2,2′-diamine], 4-에톡시벤젠-1,2-디아민[4-ethoxybenzene-1,2-diamine], Diamido-dPEG®-diamine, (1R,2R)-N,N’-디메틸-1,2-디페닐에탄-1,2-디아민[(1R,2R)-N,N’-dimethyl-1,2-diphenylethane-1,2-diamine], N,N-비스(4-부틸페닐)벤젠-1,4-디아민[N,N-Bis(4-butylphenyl)benzene-1,4-diamine] 또는 이들의 혼합물로부터 이루어진 군으로부터 선택되는 것을 사용할 수 있다.
상기 페놀계 화합물의 종류는 특별히 한정되지 않고, 상온에서 고체이면서 상온 초과의 융점 이상으로 승온 시 액상으로 전환되는 것이라면 제한 없이 사용 가능하며, 예를 들면, 2,3-자이레놀[2,3-Xylenol], 2,4-자이레놀[2,4-Xylenol], 2,5-자이레놀[2,5-Xylenol], 2,6-자이레놀[2,6-Xylenol], 3,4-자이레놀[3,4-Xylenol], 3,5-자이레놀[3,5-Xylenol], 2.5-디메틸페놀[2.5-Dimethylphenol], 2.3-디메틸페놀[2.3-Dimethylphenol] 또는 이들의 혼합물로 이루어진 군으로부터 선택되는 것을 사용할 수 있다.
상기 이미다졸계 화합물의 종류는 특별히 한정되지 않고, 상온에서 고체이면서 상온 초과의 융점 이상으로 승온 시 액상으로 전환되는 것이라면 제한 없이 사용 가능하며, 예를 들면, 이미다졸[Imidazole], 1-(2-하이드록시에틸)이미다졸[1-(2-hydroxyethyl)imidazole], 이미다졸 트리플루오로메탄설포네이트 [imidazole trifluoromethanesulfonate], 이미다졸-2-카르복실산[imidazole-2-carboxylic acid], 4-브로모-1H-이미다졸 [4-bromo-1H-imidazole], N-벤질-2-니트로-1H-이미다졸-1-아세트아미드 [N-Benzyl-2-nitro-1H-imidazole-1-acetamide], 2-클로로-1H-이미다졸 [2-Chloro-1H-imidazole], 이미다졸-d[Imidazole-d], 이미다졸-N[Imidazole-N], 이미다졸-2-C,N[Imidazole-2-C,N] 또는 이들의 혼합물로 이루어진 군으로부터 선택되는 것을 사용할 수 있다.
상기 산 무수물계 화합물의 종류는 특별히 한정되지 않고, 상온에서 고체이면서 상온 초과의 융점 이상으로 승온 시 액상으로 전환되는 것이라면 제한 없이 사용 가능하며, 예를 들면, (2-도데센-1-일)석신산 무수물[(2-Dodecen-1-yl)succinic anhydride], 말레산 무수물[Maleic anhydride], 석신산 무수물[Succinic anhydride], 프탈산 무수물[Phthalic anhydride], 글루타르산 무수물[Glutaric anhydride], 3,4,5,6-테트라하이드로프탈산 무수물[3,4,5,6-Tetrahydrophthalic anhydride], 디글리콜산 무수물[Diglycolic anhydride], 이타콘산 무수물[Itaconic anhydride], 트랜스-1,2-사이클로헥산디카르복실산 무수물[trans-1,2-Cyclohexanedicarboxylic anhydride], 2,3-디메틸말레산 무수물[2,3-Dimethylmaleic anhydride], 3,3-테트라메틸렌글루타르산 무수물[3,3-Tetramethyleneglutaric anhydride], 스테아르산 무수물[Stearic anhydride], 시스-아코니트산 무수물[cis-Aconitic anhydride], 트리멜리트산 무수물 클로라이드[Trimellitic anhydride chloride], 페닐석신산 무수물[Phenylsuccinic anhydride], 3,3-디메틸글루타르산 무수물[3,3-Dimethylglutaric anhydride], 메틸석신산 무수물[Methylsuccinic anhydride] 또는 이들의 혼합물로 이루어진 군으로부터 선택되는 것을 사용할 수 있다.
상기 일무수당 알코올의 종류는 특별히 한정되지 않고, 상온에서 고체이면서 상온 초과의 융점 이상으로 승온 시 액상으로 전환되는 것이라면 제한 없이 사용 가능하며, 예를 들면, 테트리탄, 펜티탄, 헥시탄, 헵티탄 또는 이들의 혼합물 등이 사용될 수 있고, 바람직하게는 헥시탄, 예컨대 소르비탄, 만니탄, 이디탄, 갈락티탄 또는 이들의 혼합물로 이루어진 군으로부터 선택되는 것을 사용할 수 있다.
상기 이무수당 알코올의 종류는 특별히 한정되지 않고, 상온에서 고체이면서 상온 초과의 융점 이상으로 승온 시 액상으로 전환되는 것이라면 제한 없이 사용 가능하며, 예를 들면 이무수당 헥시톨 등이 사용될 수 있고, 바람직하게는 이소소르비드, 이소만니드, 이소이디드 또는 이들의 혼합물로 이루어진 군으로부터 선택되는 것을 사용할 수 있다.
일 구체예에서, 본 발명의 고체 분산체가 사슬 연장용 상온 고체 분산체인 경우, 분산매로서 무수당 알코올, 수소화 당, 알칸 디올 또는 이들의 조합으로 이루어진 군으로부터 선택되는 하나 이상을 사용할 수 있다.
일 구체예에서, 본 발명의 고체 분산체가 경화용 상온 고체 분산체인 경우, 분산매로서 아민계 화합물, 페놀계 화합물, 이미다졸계 화합물, 산 무수물계 화합물, 무수당 알코올 또는 이들의 조합으로 이루어진 군으로부터 선택되는 하나 이상을 사용할 수 있고, 바람직하게는 일무수당 알코올 및 이무수당 알코올 등의 무수당 알코올 중에서 선택되는 1종 또는 2종 이상의 혼합물을 사용할 수 있다.
본 발명의 고체 분산체에 있어서, 분산질의 함량은 사용되는 분산질의 종류에 따라 다를 수 있으나, 분산매 100 중량부 기준으로, 0.0001 중량부 이상, 0.01 중량부 이상, 0.05 중량부 이상, 0.1 중량부 이상, 0.5 중량부 이상, 또는 1 중량부 이상일 수 있고, 95 중량부 이하, 90 중량부 이하, 85 중량부 이하, 80 중량부 이하, 60 중량부 이하 또는 50 중량부 이하일 수 있으며, 예컨대 0.0001 중량부 내지 95 중량부, 바람직하게는 0.05 중량부 내지 80 중량부일 수 있으나, 이에 한정되지 않는다. 상기 분산질의 함량이 너무 소량일 경우, 고체 분산체를 적용한 폴리우레탄의 강도 개선이 미약할 수 있고, 고체 분산체를 적용한 에폭시 수지 경화물에서의 분산질 효과에 의한 물리적, 전기적 특성 등이 미약할 수 있으며, 상기 분산질의 함량이 너무 많을 경우, 고체 분산체 내에 골고루 분산된 상태로 존재하지 않고, 분산질끼리 서로 엉켜 있는 상태로 존재할 수 있다.
본 발명은 다른 측면에 따르면, 분산질 및 분산매를 혼합하는 단계; 및 혼합물 중 분산매를 용융시키는 단계를 포함하는 고체 분산체의 제조 방법으로서, 상기 분산질이 유기물 입자, 무기물 입자 또는 이들의 혼합물이고, 상기 분산매가 상온에서 고체 상태의 비수성 분산매인, 고체 분산체의 제조 방법이 제공된다.
특별히 한정하지 않으나, 상기 혼합물 중 분산매를 용융시키는 단계에서는, 분산매의 융점 이상의 온도에서 진공을 걸어 수분을 제거하면서 상기 혼합물을 용융시킬 수 있다. 또한, 이어서 상기 용융된 혼합물을 상온으로 냉각시켜 고체 분산체를 얻을 수 있다.
본 명세서에서, 상기 고체 분산체의 제조 방법에 기재된 각 성분들은 전술한 고체 분산체의 성분들과 동일하다.
본 발명은 또 다른 측면에 따르면, (1) 폴리우레탄 예비 중합체에, 상기 본 발명의 고체 분산체를 첨가하는 단계; 및 (2) 상기 (1) 단계의 결과 혼합물을 반응시키는 단계를 포함하는, 사슬 연장된 폴리우레탄의 제조 방법이 제공된다.
본 발명의 사슬 연장된 폴리우레탄의 제조 방법에서, 상기 폴리우레탄 예비 중합체는 폴리올과 폴리이소시아네이트를 반응시켜서 얻어질 수 있으며, 예를 들면 50 내지 100℃, 바람직하게는 70 내지 90℃에서 12 내지 36시간, 바람직하게는 20 내지 28 시간 동안 충분히 진공 건조시킨 폴리올과 폴리이소시아네이트를 4구 반응기에서 투입한 후, 질소 분위기 하에서 50 내지 100℃, 바람직하게는 50 내지 70℃의 온도를 유지하면서 0.1 내지 5시간, 바람직하게는 0.5 시간 내지 2 시간 동안 반응시켜 폴리우레탄 예비 중합체를 제조할 수 있다.
본 발명에서 사용할 수 있는 폴리올로서는 특별히 한정하지 않으나 폴리에테르 폴리올을 사용할 수 있으며, 예를 들어 폴리에틸렌글리콜, 폴리프로필렌글리콜, 폴리테트라메틸렌글리콜, 에틸렌옥시드와 프로필렌옥시드의 랜덤 공중합체나 블록 공중합체, 에틸렌옥시드와 부틸렌옥시드의 랜덤 공중합체나 블록 공중합체 등을 사용할 수 있다.
본 발명에서 사용할 수 있는 폴리이소시아네이트 화합물로서는 특별히 제한되지 않지만, 구체적으로는 1,3-페닐렌디이소시아네이트, 1,4-페닐렌디이소시아네이트, 2,4-톨릴렌디이소시아네이트(TDI), 2,6-톨릴렌디이소시아네이트, 4,4'-디페닐렌메탄디이소시아네이트(MDI), 2,4-디페닐메탄디이소시아네이트, 4,4'-디이소시아네이토비페닐, 3,3'-디메틸-4,4'-디이소시아네이토비페닐, 3,3'-디메틸-4,4'-디이소시아네이토디페닐메탄, 1,5-나프틸렌디이소시아네이트, 4,4',4''-트리페닐메탄트리이소시아네이트, m-이소시아네이토페닐술포닐이소시아네이트, p-이소시아네이토페닐술포닐이소시아네이트 등의 방향족 폴리이소시아네이트 화합물; 에틸렌디이소시아네이트, 테트라메틸렌디이소시아네이트, 헥사메틸렌디이소시아네이트(HDI), 도데카메틸렌디이소시아네이트, 1,6,11-운데칸트리이소시아네이트, 2,2,4-트리메틸헥사메틸렌디이소시아네이트, 리신디이소시아네이트, 2,6-디이소시아네이토메틸카프로에이트, 비스(2-이소시아네이토에틸)푸마레이트, 비스(2-이소시아네이토에틸)카르보네이트, 2-이소시아네이토에틸-2,6-디이소시아네이토헥사노에이트 등의 지방족 폴리이소시아네이트 화합물; 이소포론디이소시아네이트(IPDI), 4,4'-디시클로헥실메탄디이소시아네이트(수소 첨가 MDI), 시클로헥실렌디이소시아네이트, 메틸시클로헥실렌디이소시아네이트(수소 첨가 TDI), 비스(2-이소시아네이토에틸)-4-시클로헥센-1,2-디카르복실레이트, 2,5-노르보르난디이소시아네이트, 2,6-노르보르난디이소시아네이트 등의 지환식 폴리이소시아네이트 화합물 등을 들 수 있다. 이들 폴리이소시아네이트 화합물은 1종을 단독 사용할 수도 있고, 2종 이상을 조합해서 사용할 수도 있다.
본 발명의 사슬 연장된 폴리우레탄의 제조 방법에서, 상기 폴리우레탄 예비 중합체에 사슬 연장용 고체 분산체를 첨가한 후, 이들을 코팅 처리된 몰드 내에 투입한 후 80 내지 200℃, 바람직하게는 100 내지 150℃에서 10 내지 30 시간, 바람직하게는 15 내지 25 시간 동안 경화시켜, 사슬 연장된 폴리우레탄을 제조할 수 있다.
본 발명은 또 다른 측면에 따르면, 폴리우레탄 예비 중합체와, 상기 본 발명의 고체 분산체의 반응에 의하여 제조된 것인, 사슬 연장된 폴리우레탄이 제공된다.
본 명세서에서, 상기 사슬 연장된 폴리우레탄 및 사슬 연장된 폴리우레탄의 제조 방법에 기재된 각 성분들은 전술한 고체 분산체의 성분들과 동일하다.
본 발명의 또 다른 측면에 따르면, 에폭시 수지; 및 상기 고체 분산체를 포함하는 에폭시 수지 조성물이 제공된다.
일 구체예에서, 에폭시 수지로는, 비스페놀 A-에피클로로하이드린 수지, 에폭시노볼락 수지, 지환식 에폭시 수지, 지방족 에폭시 수지, 이절환형 에폭시 수지, 글리시딜에스테르형 에폭시 수지, 브롬화 에폭시 수지, 바이오 유래 에폭시 수지, 에폭시화 대두유(epoxidized soybean oil) 또는 이들의 조합으로 이루어진 군으로부터 선택되는 것을 들 수 있으나, 이에 한정되지 않는다.
다른 구체예에서, 에폭시 수지로는, 페놀노볼락형 에폭시 수지, 크레졸노볼락형 에폭시 수지 등의 노볼락형 에폭시 수지; 비스페놀 A형 에폭시 수지, 비스페놀 F형 에폭시 수지 등의 비스페놀형 에폭시 수지; N,N-디글리시딜아닐린, N,N-디글리시딜톨루이딘, 디아미노디페닐메탄형 글리시딜아민, 아미노페놀형 글리시딜아민 등의 방향족 글리시딜아민형 에폭시 수지; 하이드로퀴논형 에폭시 수지; 비페닐형 에폭시 수지; 스틸벤형 에폭시 수지; 트리페놀메탄형 에폭시 수지; 트리페놀프로판형 에폭시 수지; 알킬 변성 트리페놀메탄형 에폭시 수지; 트리아진 핵 함유 에폭시 수지; 디사이클로펜타디엔 변성 페놀형 에폭시 수지; 나프톨형 에폭시 수지; 나프탈렌형 에폭시 수지; 페닐렌 및/또는 비페닐렌 골격을 갖는 페놀아랄킬형 에폭시 수지, 페닐렌 및/또는 비페닐렌 골격을 갖는 나프톨아랄킬형 에폭시 수지 등의 아랄킬형 에폭시 수지; 비닐사이클로헥센디옥사이드, 디사이클로펜타디엔옥사이드, 알리사이클릭디에폭시-아디페이드 등의 지환식 에폭시 등의 지방족 에폭시 수지 또는 이들의 조합으로 이루어진 군으로부터 선택되는 것을 들 수 있으나, 이에 한정되지 않는다.
또 다른 구체예에서, 에폭시 수지로는, 비스페놀F형 에폭시 수지, 크레졸노볼락형 에폭시 수지, 페놀노볼락형 에폭시 수지, 비페닐형 에폭시 수지, 스틸벤형 에폭시 수지, 하이드로퀴논형 에폭시 수지, 나프탈렌골격형 에폭시 수지, 테트라페닐올에탄형 에폭시 수지, 디페닐포스페이트(DPP)형 에폭시 수지, 트리스하이드록시페닐메탄형 에폭시 수지, 디시클로펜타디엔페놀형 에폭시 수지, 비스페놀A에틸렌옥사이드부가물의 디글리시딜에테르, 비스페놀A프로필렌옥사이드부가물의 디글리시딜에테르, 비스페놀A의 디글리시딜 에테르, 페닐글리시딜에테르, 크레질글리시딜에테르 등의 에폭시기를 1개를 갖는 글리시딜에테르, 이들 에폭시 수지의 핵수첨화물인 핵수첨화 에폭시 수지 또는 이들의 조합으로 이루어진 군으로부터 선택되는 것을 들 수 있으나, 이에 한정되지 않는다.
본 발명의 에폭시 수지 조성물에 있어서, 에폭시 수지와 고체 분산체의 함유 비율은, 에폭시 수지에 대한 고체 분산체의 당량비(고체 분산체의 당량/에폭시 수지의 당량)가, 예컨대, 0.25~1.75의 범위가 되도록 하는 것일 수 있고, 보다 구체적으로는 상기 당량비가 0.75~1.25의 범위가 되도록 하는 것일 수 있으며, 보다 더 구체적으로는 상기 당량비가 0.95~1.05의 범위가 되도록 하는 것일 수 있다. 에폭시 수지의 당량에 대한 고체 분산체의 당량이 지나치게 적으면 기계적 강도가 저하되고 열적 및 접착 강도 측면에서 물성이 저하되는 문제가 있을 수 있고, 반대로 에폭시 수지의 당량에 대한 고체 분산체의 당량이 지나치게 많은 경우도 기계적 강도, 열적 및 접착 강도 측면에서 물성이 저하되는 문제가 있을 수 있다.
경화 촉진 효과를 위하여, 본 발명의 에폭시 수지 조성물은 경화 촉매를 추가로 포함할 수 있다.
본 발명에서 사용 가능한 경화 촉매로는, 예를 들어, 벤질디메틸아민, 트리스(디메틸아미노메틸)페놀, 디메틸시클로헥실아민 등의 아민 화합물 (예컨대, 3급아민); 1-시아노에틸-2-에틸-4-메틸이미다졸, 2-에틸-4-메틸이미다졸, 1-벤질-2-메틸이미다졸 등의 이미다졸 화합물; 트리페닐포스핀, 아인산트리페닐 등의 유기인 화합물; 테트라페닐포스포늄브로마이드, 테트라-n-부틸포스포늄브로마이드 등의 4급포스포늄염; 1,8-디아자비시클로[5.4.0]운데센-7 등이나 그 유기산염 등의 디아자비시클로알켄; 옥틸산아연, 옥틸산주석이나 알루미늄아세틸아세톤 착체 등의 유기금속 화합물; 테트라에틸암모늄브로마이드, 테트라부틸암모늄브로마이드 등의 4급 암모늄염; 삼불화붕소, 트리페닐보레이트 등의 붕소 화합물; 염화아연, 염화제이주석 등의 금속할로겐화물; 잠재성 경화 촉매(예컨대, 디시안디아미드, 아민을 에폭시 수지 등에 부가한 고융점분산형 잠재성 아민 부가물; 이미다졸계, 인계, 포스핀계 촉진제의 표면을 폴리머로 피복한 마이크로캅셀형 잠재성 촉매; 아민염형 잠재성 촉매; 루이스산염, 브뢴스테드산염 등의 고온해리형의 열양이온 중합형의 잠재성 촉매 등) 또는 이들의 조합으로 이루어진 군으로부터 선택되는 것을 들 수 있으나, 이에 한정되지 않는다.
일 구체예에서, 경화 촉매로는 아민 화합물, 이미다졸 화합물, 유기인 화합물 또는 이들의 조합으로 이루어진 군으로부터 선택되는 것을 사용할 수 있다.
본 발명의 에폭시 수지 조성물에 경화 촉매가 포함되는 경우, 그 사용량은 상기 에폭시 수지 및 고체 분산체의 합계 100 중량부에 대하여 0.01 중량부 내지 1.0 중량부일 수 있고, 보다 구체적으로는 0.05 중량부 내지 0.5 중량부일 수 있으며, 보다 더 구체적으로는 0.08 중량부 내지 0.2 중량부일 수 있으나, 이에 한정되지 않는다. 경화 촉매의 사용량이 지나치게 적으면 에폭시 수지의 경화 반응이 충분히 진행되지 못하여 기계적 물성 및 열적 물성이 저하되는 문제가 있을 수 있고, 반대로 경화 촉매의 사용량이 지나치게 많으면 에폭시 수지 조성물을 보관하는 동안에도 경화 반응이 서서히 진행되기 때문에 점도가 상승하는 문제가 있을 수 있다.
본 발명의 에폭시 수지 조성물에는 필요에 따라 에폭시 수지 조성물에 통상 사용되는 첨가제 성분이 하나 이상 더 포함될 수 있다.
이러한 첨가제 성분으로는, 예컨대, 산화 방지제, UV 흡수제, 충진제, 수지 개질제, 실란 커플링제, 희석제, 착색제, 소포제, 탈포제, 분산제, 점도 조절제, 광택 조절제, 습윤제, 전도성 부여제 또는 이들의 조합으로 이루어진 군으로부터 선택되는 것을 사용할 수 있다.
상기 산화방지제는 얻어지는 경화물의 내열 안정성을 더욱 향상시키기 위하여 사용될 수 있으며, 특별히 한정되지 않지만, 예를 들어, 페놀계 산화방지제(디부틸하이드록시톨루엔 등), 황계 산화방지제 (메르캅토프로피온산유도체 등), 인계 산화방지제(9,10-디하이드로-9-옥사-10-포스파페난트렌-10-옥사이드 등) 또는 이들의 조합으로 이루어진 군으로부터 선택되는 것을 사용할 수 있다. 조성물 내의 산화방지제의 함유량은, 상기 에폭시 수지 및 고체 분산체의 합계 100 중량부에 대하여, 0.01~10 중량부, 또는 0.05~5 중량부, 또는 0.1~3 중량부일 수 있다.
상기 UV 흡수제로는, 특별히 한정되지 않지만, 예를 들어, BASF Japan Ltd.제 TINUBIN P나 TINUVIN 234로 대표되는 벤조트리아졸계 UV 흡수제; TINUVIN 1577ED와 같은 트리아진계 UV 흡수제; CHIMASSOLV 2020FDL과 같은 힌더드아민계 UV 흡수제 또는 이들의 조합으로 이루어진 군으로부터 선택되는 것을 사용할 수 있다. 조성물 내의 UV 흡수제의 함유량은, 상기 에폭시 수지 및 고체 분산체의 합계 100 중량부에 대하여, 0.01~10 중량부, 또는 0.05~5 중량부, 또는 0.1~3 중량부일 수 있다.
상기 충진제는 에폭시 수지나 경화제에 배합하여 경화물의 기계적 특성을 향상시키는 것을 주 목적으로 하여 사용되며, 일반적으로 첨가량이 증가하면 기계적 특성은 향상된다. 무기질 충진제로는 활석, 모래, 실리카, 탈크, 탄산칼슘, 등의 증량제; 마이카, 석영, 유리섬유(Glass fiber) 등의 보강성 충진제; 석영분, 그라파이트, 알루미나, Aerosil(칙소성 부여하는 목적) 등의 특수한 용도를 지닌 것이 있고, 금속질로는 알루미늄, 산화알루미늄, 철, 산화철, 구리 등의 열팽창계수, 내마모성, 열전도성, 접착성에 기여하는 것이나, 산화안티몬(SB2O3)등의 난연성을 부여하는 것, 티탄산 바륨, 유기물로는 미세한 플라스틱구(페놀수지, 요소수지 등)과 같은 경량화용 충진제 등이 있다. 이외에 보강성을 지닌 충진제로서 각종 유리섬유나 화학섬유포는 적층품의 제조에 있어서 넓은 의미의 충진제로서 취급할 수 있다. 수지에 요변성(Thixotropic: 칙소성 또는 요변성이란 수직면이나 침지법으로 부착 또는 적층재에 함침시킨 수지가 경화 중에 흘러내리거나 유실되는 경우가 없도록 유동하고 있을 때는 액상, 정지 상태에서는 고상의 성질을 갖는 것을 말한다)을 부여하기 위해 단위 표면적이 넓은 미세한 입자를 사용한다. 예를 들면, 콜로이드상의 실리카(Aerosil)나 벤토나이트 계열의 점토질이 사용된다.
일 구체예에서, 충진제로는, 특별히 한정되지 않지만, 예를 들어, 유리섬유, 탄소섬유, 산화티탄, 알루미나, 탈크, 마이카, 수산화알루미늄 또는 이들의 조합으로 이루어진 군으로부터 선택되는 것을 사용할 수 있다. 조성물 내의 충진제의 함유량은, 상기 에폭시 수지 및 고체 분산체의 합계 100 중량부에 대하여, 0.01~80 중량부, 또는 0.01~50 중량부, 또는 0.1~20 중량부일 수 있다.
상기 수지 개질제로는, 특별히 한정되지 않지만, 예를 들어, 폴리프로필렌글리시딜에테르, 중합지방산폴리글리시딜에테르, 폴리프로필렌글리콜, 우레탄프리폴리머 등의 가요성부여제 등을 들 수 있다. 조성물 내의 수지 개질제의 함유량은, 상기 에폭시 수지 및 고체 분산체의 합계 100 중량부에 대하여, 0.01~80 중량부, 또는 0.01~50 중량부, 또는 0.1~20 중량부일 수 있다.
상기 실란커플링제로는, 특별히 한정되지 않지만, 예를 들어, 클로로프로필트리메톡시실란, 비닐트리클로로실란, γ-메타크릴록시프로필트리메톡시실란, γ-아미노프로필트리에톡시실란 등을 들 수 있다. 조성물 내의 실란커플링제의 함유량은, 상기 에폭시 수지 및 고체 분산체의 합계 100 중량부에 대하여, 0.01~20 중량부, 또는 0.05~10 중량부, 또는 0.1~5 중량부일 수 있다.
상기 희석제는 에폭시 수지나 경화제에 첨가하여 점도를 저하시키는 것을 주 목적으로 하여 사용되며, 사용시 흐름성, 탈포성의 개선, 부품 세부에 침투의 개선 등 또는 충진제를 효과적으로 첨가할 수 있도록 하는 역할을 한다. 희석제는 일반적으로 용제와는 달리 휘발하지 않고, 수지 경화시에 경화물에 잔존하는 것으로 반응성과 비반응성의 희석제로 나뉜다. 여기서 반응성의 희석제는 에폭시기를 한 개 또는 그 이상을 가지고 있고 반응에 참여하여 경화물에 가교 구조로 들어가고, 비반응성 희석제는 단지 경화물 속에 물리적으로 혼합 및 분산만 되어 있는 상태로 있다. 일반적으로 많이 사용되는 반응성 희석제로는 부틸 글리시딜 에테르(Butyl Glycidyl Ether, BGE), 페닐 글리시딜 에테르(Phenyl Glycidyl Ether, PGE), 지방족 글리시딜 에테르(Aliphatic Glycidyl Ether(C12 -C14)), 개질 t-카복실 글리시딜 에스테르(Modified-tert-Carboxylic Glycidyl Ester) 등 여러 가지가 있다. 일반적으로 사용되는 비반응성 희석제로는 디부틸프탈레이트(DiButylPhthalate, DBP), 디옥틸프탈레이트(DiOctylPhthalate, DOP), 노닐페놀(Nonyl-Phenol), 하이솔(Hysol) 등이 사용된다.
일 구체예에서, 희석제로는, 특별히 한정되지 않지만, 예를 들어, n-부틸글리시딜에테르, 페닐글리시딜에테르, 글리시딜메타크릴레이트, 비닐시클로헥센디옥사이드, 디글리시딜아닐린, 글리세린트리글리시딜에테르 또는 이들의 조합으로 이루어진 군으로부터 선택되는 것을 사용할 수 있다. 조성물 내의 희석제의 함유량은, 상기 에폭시 수지 및 고체 분산체의 합계 100 중량부에 대하여, 0.01~80 중량부, 또는 0.01~50 중량부, 또는 0.1~20 중량부일 수 있다.
수지에 색을 넣기 위한 착색제로는 안료나 염료가 사용된다. 일반적으로 사용되는 안료로는 이산화티타늄, 카드뮴 레드, 샤닝 그린, 카본 블랙, 크롬 그린, 크롬 옐로우, 네비 블루, 샤닝 블루, 등의 착색제가 사용된다.
그밖에, 수지의 기포를 제거하기 위한 목적으로 사용되는 소포제 및 탈포제, 수지와 안료와의 분산 효과를 증대시키기 위한 분산제, 에폭시 수지와 소재와의 밀착성을 좋게 하기 위한 습윤(Wetting)제, 점도 조절제, 수지의 광택도 조절을 위한 광택 조절제, 접착력을 향상시키기 위한 첨가제, 전기적 성질을 부여하기 위한 첨가제, 등등 다양한 첨가제들이 사용 가능하다.
본 발명의 에폭시 수지 조성물의 경화 방법은, 특별히 한정되지 않고, 예를 들어, 밀폐식 경화로나 연속경화가 가능한 터널로 등의 종래 공지의 경화장치를 사용할 수 있다. 해당 경화에 이용하는 가열방법은, 특별히 한정되지 않지만, 예를 들어, 열풍순환, 적외선가열, 고주파가열 등, 종래 공지의 방법으로 행할 수 있다.
경화온도 및 경화시간은, 80℃~250℃에서 30초~10시간의 범위일 수 있다. 일 구체예에서는, 80℃~120℃, 0.5시간~5시간의 조건으로 전경화한 후, 120℃~180℃, 0.1시간~5시간의 조건으로 후경화할 수 있다. 일 구체예에서는, 단시간 경화를 위하여 150℃~250℃, 30초~30분의 조건으로 경화할 수 있다.
본 발명의 또 다른 측면에 따르면, 에폭시 수지 및 상기 고체 분산체를 혼합하는 단계를 포함하는 에폭시 수지 조성물의 제조 방법이 제공된다.
본 발명의 또 다른 측면에 따르면, 상기 에폭시 수지 조성물을 경화시켜 얻어지는 경화물이 제공된다.
본 발명의 또 다른 측면에 따르면, 상기 경화물을 포함하는 성형품이 제공된다.
이하, 실시예 및 비교예를 통하여 본 발명을 보다 상세하게 설명한다. 그러나, 본 발명의 범위가 이들로 한정되는 것은 아니다.
[실시예]
1. 사슬 연장용 고체 분산체 및 사슬 연장된 폴리우레탄의 제조
<사슬 연장용 고체 분산체의 제조>
실시예 1-A1: 나노셀룰로오스 피브릴과 무수당 알코올을 포함하는 고체 분산체
로터리 농축기에 이소소르비드 100g (삼양사)과 나노셀룰로오스 피브릴이 1 중량%로 분산된 수용액 100g (KB101, 아시아 나노셀룰로오스 주식회사)을 투입하고, 균일하게 혼합하였다. 그 후, 이소소르비드의 융점 이상인 80℃의 온도 조건 하에서, 진공을 걸어 수분을 제거하면서 상기 혼합물을 용융시켰다. 이어서 상기 용융된 혼합물을 상온으로 냉각시켜, 나노셀룰로오스 피브릴이 분산된 이소소르비드(고체 분산체)를 제조하였다.
실시예 1-A2 : 나노셀룰로오스 피브릴과 수소화 당을 포함하는 고체 분산체
로터리 농축기에 솔비톨 100g (삼양사)과 나노셀룰로오스 피브릴이 1 중량%로 분산된 수용액 100g (KB101, 아시아 나노셀룰로오스 주식회사)을 투입하고, 균일하게 혼합하였다. 그 후, 솔비톨의 융점 이상인 100℃의 온도 조건 하에서, 진공을 걸어 수분을 제거하면서 상기 혼합물을 용융시켰다. 이어서 상기 용융된 혼합물을 상온으로 냉각시켜, 나노셀룰로오스 피브릴이 분산된 솔비톨(고체 분산체)을 제조하였다.
실시예 1-A3: 나노셀룰로오스 피브릴과 알칸 디올을 포함하는 고체 분산체
로터리 농축기에 1,4-부탄디올 100g (시그마 알드리치)과 나노셀룰로오스 피브릴이 1 중량%로 분산된 수용액 100g (KB101, 아시아 나노셀룰로오스 주식회사)을 투입하고, 균일하게 혼합하였다. 그 후, 1,4-부탄디올의 융점 이상인 40℃의 온도 조건 하에서, 진공을 걸어 수분을 제거하면서 상기 혼합물을 용융시켰다. 이어서 상기 용융된 혼합물을 상온으로 냉각시켜, 나노셀룰로오스 피브릴이 분산된 1,4-부탄디올(고체 분산체)을 제조하였다.
실시예 1-A4: 그래핀과 무수당 알코올을 포함하는 고체 분산체
로터리 농축기에 이소소르비드 100g (삼양사)과 그래핀이 1.5mg/mL로 분산된 수용액 100g (WDG, ㈜멕스플로러)을 투입하고, 균일하게 혼합하였다. 그 후, 이소소르비드의 융점 이상인 80℃의 온도 조건 하에서, 진공을 걸어 수분을 제거하면서 상기 혼합물을 용융시켰다. 이어서 상기 용융된 혼합물을 상온으로 냉각시켜, 그래핀이 분산된 이소소르비드(고체 분산체)를 제조하였다.
실시예 1-A5: 그래핀과 수소화 당을 포함하는 고체 분산체
로터리 농축기에 솔비톨 100g (삼양사)과 그래핀이 1.5mg/mL로 분산된 수용액 100g (WDG, ㈜멕스플로러)을 투입하고, 균일하게 혼합하였다. 그 후, 솔비톨의 융점 이상인 100℃의 온도 조건 하에서, 진공을 걸어 수분을 제거하면서 상기 혼합물을 용융시켰다. 이어서 상기 용융된 혼합물을 상온으로 냉각시켜, 그래핀이 분산된 솔비톨(고체 분산체)을 제조하였다.
실시예 1-A6: 그래핀과 알칸 디올을 포함하는 고체 분산체
로터리 농축기에 1,4-부탄디올 100g (시그마 알드리치)과 그래핀이 1.5mg/mL로 분산된 수용액 100g (WDG, ㈜멕스플로러)을 투입하고, 균일하게 혼합하였다. 그 후, 1,4-부탄디올의 융점 이상인 40℃의 온도 조건 하에서, 진공을 걸어 수분을 제거하면서 상기 혼합물을 용융시켰다. 이어서 상기 용융된 혼합물을 상온으로 냉각시켜, 그래핀이 분산된 1,4-부탄디올(고체 분산체)을 제조하였다.
비교예 1-A1: 나노셀룰로오스 피브릴과 폴리프로필렌 글리콜을 포함하는 액상 분산체
로터리 농축기에 상온에서 액상인 폴리프로필렌 글리콜 100g (PPG-3000, 금호석유화학)과 나노 셀룰로오스 피브릴이 1 중량%로 분산된 수용액 100g (KB101, 아시아 나노셀룰로오스 주식회사)을 투입하고, 균일하게 혼합하였다. 그 후, 진공을 걸어 수분을 제거하여 나노셀룰로오스 피브릴이 분산된 폴리프로필렌글리콜(액상 분산체)을 제조하였다.
비교예 1-A2: 그래핀과 폴리프로필렌 글리콜을 포함하는 액상 분산체
로터리 농축기에 상온에서 액상인 폴리프로필렌 글리콜 100g (PPG-3000, 금호석유화학)과 그래핀이 1.5mg/mL로 분산된 수용액 100g (WDG, ㈜멕스플로러)을 투입하고, 균일하게 혼합하였다. 그 후, 진공을 걸어 수분을 제거하여 그래핀이 분산된 폴리프로필렌글리콜(액상 분산체)을 제조하였다.
<사슬 연장된 폴리우레탄의 제조>
실시예 1-B1: 나노셀룰로오스 피브릴과 무수당 알코올을 포함하는 고체 분산체를 이용한 폴리우레탄의 제조
80℃에서 24 시간 동안 충분히 진공 건조시킨 폴리(테트라메틸렌에테르 글리콜)(PTMEG, 분자량: 1,000) 100g(0.1 mol)과 4,4’-메틸렌 디페닐 디이소시아네이트(MDI) 50.5g(0.2 mol)을 4구 반응기에서 투입한 후, 질소 분위기 하에서 60℃의 온도를 유지하면서 1 시간 동안 반응시켜 폴리우레탄 예비 중합체를 제조하였다. 이어서 폴리우레탄 예비 중합체의 NCO%를 측정하여 이론적인 NCO%에 도달하였을 때, 상기 실시예 1-A1에서 제조된 나노셀룰로오스 피브릴이 분산된 이소소르비드를 사슬 연장제로서 14.6g 투입하고, 이들을 코팅 처리된 몰드 내에 투입한 후 110℃에서 16 시간 동안 경화시켜, 사슬 연장된 폴리우레탄을 제조하였다.
실시예 1-B2: 그래핀과 무수당 알코올을 포함하는 고체 분산체를 이용한 폴리우레탄의 제조
사슬 연장제로서 상기 실시예 1-A1에서 제조된 분산체(나노셀룰로오스 피브릴이 분산된 이소소르비드) 대신에 상기 실시예 1-A4에서 제조된 분산체(그래핀이 분산된 이소소르비드)를 사용한 것을 제외하고는, 실시예 1-B1과 동일한 방법으로 사슬 연장된 폴리우레탄을 제조하였다.
실시예 1-B3: 나노셀룰로오스 피브릴과 알칸 디올을 포함하는 고체 분산체를 이용한 폴리우레탄의 제조
사슬 연장제로서 상기 실시예 1-A1에서 제조된 분산체(나노셀룰로오스 피브릴이 분산된 이소소르비드) 대신에 상기 실시예 1-A3에서 제조된 분산체(나노셀룰로오스 피브릴이 분산된 1,4-부탄디올)를 사용한 것을 제외하고는, 실시예 1-B1과 동일한 방법으로 사슬 연장된 폴리우레탄을 제조하였다.
실시예 1-B4: 그래핀과 알칸 디올을 포함하는 고체 분산체를 이용한 폴리우레탄의 제조
사슬 연장제로서 상기 실시예 1-A1에서 제조된 분산체(나노셀룰로오스 피브릴이 분산된 이소소르비드) 대신에 상기 실시예 1-A6에서 제조된 분산체(그래핀이 분산된 1,4-부탄디올)를 사용한 것을 제외하고는, 실시예 1-B1과 동일한 방법으로 사슬 연장된 폴리우레탄을 제조하였다.
실시예 1-B5: 나노셀룰로오스 피브릴과 수소화 당을 포함하는 고체 분산체를 이용한 폴리우레탄의 제조
사슬 연장제로서 상기 실시예 1-A1에서 제조된 분산체(나노셀룰로오스 피브릴이 분산된 이소소르비드) 대신에 상기 실시예 1-A2에서 제조된 분산체(나노셀룰로오스 피브릴이 분산된 솔비톨)를 사용한 것을 제외하고는, 실시예 1-B1과 동일한 방법으로 사슬 연장된 폴리우레탄을 제조하였다.
실시예 1-B6: 그래핀과 수소화 당을 포함하는 고체 분산체를 이용한 폴리우레탄의 제조
사슬 연장제로서 상기 실시예 1-A1에서 제조된 분산체(나노셀룰로오스 피브릴이 분산된 이소소르비드) 대신에 상기 실시예 1-A5에서 제조된 분산체(그래핀이 분산된 솔비톨)를 사용한 것을 제외하고는, 실시예 1-B1과 동일한 방법으로 사슬 연장된 폴리우레탄을 제조하였다.
비교예 1-B1: 무수당 알코올을 사슬 연장제로 이용한 폴리우레탄의 제조
사슬 연장제로서 상기 실시예 1-A1에서 제조된 분산체(나노셀룰로오스 피브릴이 분산된 이소소르비드) 대신에 이소소르비드를 사용한 것을 제외하고는, 실시예 1-B1과 동일한 방법으로 사슬 연장된 폴리우레탄을 제조하였다.
비교예 1-B2: 무수당 알코올을 사슬 연장제로 이용하고, 별도의 나노셀룰로오스 피브릴을 첨가한 폴리우레탄의 제조
80℃에서 24 시간 동안 충분히 진공 건조시킨 폴리(테트라메틸렌에테르 글리콜)(PTMEG, 분자량: 1,000) 100g(0.1 mol)과 나노셀룰로오스 피브릴 0.146g을 4구 반응기에 투입한 후, 질소 분위기 하에서 서서히 교반하였다. 이어서 질소 분위기 하에서 4,4’-메틸렌 디페닐 디이소시아네이트(MDI) 50.5g(0.2 mol)을 4구 반응기에서 투입한 후, 60℃의 온도를 유지하면서 1 시간 동안 반응시켜 폴리우레탄 예비 중합체를 제조하였다. 이어서 폴리우레탄 예비 중합체의 NCO%를 측정하여 이론적인 NCO%에 도달하였을 때, 이소소르비드를 사슬 연장제로서 14.6g 투입하고, 이들을 코팅 처리된 몰드 내에 투입한 후 110℃에서 16 시간 동안 경화시켜, 사슬 연장된 폴리우레탄을 제조하였다.
비교예 1-B3: 무수당 알코올을 사슬 연장제로 이용하고, 별도의 그래핀을 첨가한 폴리우레탄의 제조
나노셀룰로오스 피브릴 0.146g 대신에 그래핀 0.146g을 첨가한 것을 제외하고는, 비교예 1-B2와 동일한 방법으로 사슬 연장된 폴리우레탄을 제조하였다.
비교예 1-B4: 나노셀룰로오스 피브릴과 폴리프로필렌 글리콜을 포함하는 액상 분산체를 이용한 폴리우레탄의 제조
사슬 연장제로서 상기 실시예 1-A1에서 제조된 분산체(나노셀룰로오스 피브릴이 분산된 이소소르비드) 대신에 상기 비교예 1-A1에서 제조된 분산체(나노셀룰로오스 피브릴이 분산된 폴리프로필렌 글리콜)을 사용한 것을 제외하고는, 실시예 1-B1과 동일한 방법으로 사슬 연장된 폴리우레탄을 제조하였다.
비교예 1-B5: 그래핀과 폴리프로필렌 글리콜을 포함하는 액상 분산체를 이용한 폴리우레탄의 제조
사슬 연장제로서 상기 실시예 1-A1에서 제조된 분산체(나노셀룰로오스 피브릴이 분산된 이소소르비드) 대신에 상기 비교예 1-A2에서 제조된 분산체(그래핀이 분산된 폴리프로필렌 글리콜)을 사용한 것을 제외하고는, 실시예 1-B1과 동일한 방법으로 사슬 연장된 폴리우레탄을 제조하였다.
<물성 측정 방법>
[재분산성 평가 방법]
상기 실시예 1-A1 내지 1-A6 및 비교예 1-A1 내지 1-A2에서 제조된 분산체를 24 시간 동안 상온 보관 후, 각 분산체의 10g을 15㎖의 물이 들어 있는 바이알에 넣고, 마그네틱 바를 이용하여 1 시간 동안 교반함으로써, 시료를 제조하였다. 이어서 상기 제조된 시료 내의 분산질의 분산된 정도를 육안으로 관찰하였으며, 그 결과를 하기 표 1에 나타내었다.
○○: 분산질의 분산 상태가 분산체 조성물의 제조 직후와 비교하여 동일한 상태임
○: 분산질의 분산 상태가 분산체 조성물의 제조 직후와 비교하여 작은 덩어리가 떠다니는 상태임
×: 분산질의 분산 상태가 분산체 조성물의 제조 직후와 비교하여 큰 덩어리가 떠나니는 상태임
××: 분산질이 물에 녹지 않는 상태임
[저장 안정성 평가 방법]
상기 재분산성 평가 방법에서 기재된 바와 동일한 방법으로 시료를 제조하였다. 이어서제조된 시료 각각을 상온에서 1시간 동안 보관한 후, 분산질의 응집 및 가라 앉음 정도를 육안으로 관찰하였으며, 그 결과를 하기 표 1에 나타내었다.
○○: 분산질이 응집되지 않고, 가라 앉지 않음
○: 분산질이 소량 응집되고, 가라 앉음
×: 분산질의 대부분이 응집되고, 가라 앉음
[인장 응력의 평가 방법]
상기 실시예 1-B1 내지 1-B6 및 비교예 1-B1 내지 1-B5에서 제조된 폴리우레탄 시편에 대하여 ASTM D412에 따라 만능 인장시험기를 이용하여 인장 응력(tensile stress)을 측정하였으며, 그 결과를 하기 표 2에 나타내었다.
[표 1]
Figure PCTKR2019005643-appb-I000001
[표 2]
Figure PCTKR2019005643-appb-I000002
상기 표 1에 기재된 바와 같이, 본 발명에 따른 실시예 1-A1 내지 1-A6의 경우, 분산체가 상온에서 고체 상태로 존재하여 저장 안정성이 우수하였으며, 이로 인해 장기간 보관이 용이하고, 또한 재분산성이 우수함을 확인하였다.
그러나 분산매가 상온에서 액체 상태로 존재하는 분산체의 경우(비교예 1-A1 및 1-A2), 분산질이 서로 엉켜서 작은 덩어리 형태의 응집이 발생하였고, 이로 인해 재분산성이 떨어졌으며, 또한 상온에서 장기간 보관 시 응집 및 가라 앉음이 발생하여 저장 안정성이 열악함을 확인하였다.
또한 상기 표 2에 기재된 바와 같이, 본 발명에 따른 실시예 1-B1 내지 1-B6의 경우, 분산질(나노셀룰로오스 피브릴 또는 그래핀)이 골고루 잘 분산되어 있는 분산체를 사용함에 따라, 사슬 연장된 폴리우레탄의 인장 응력이 30 Mpa 이상으로 현저히 향상되었음을 확인할 수 있다.
그러나 단순히 무수당 알코올이 단독으로 사슬 연장제로 사용된 비교예 1-B1의 경우, 실시예 대비 인장 응력이 현저히 열악하였고, 무수당 알코올을 단독으로 사슬 연장제로 사용하면서, 첨가제(나노셀룰로오스 피브릴 또는 그래핀)를 예비 중합체의 폴리올과 혼합 사용한 비교예 1-B2 및 1-B3의 경우, 첨가제가 골고루 분산되지 않고, 이를 적용한 폴리우레탄의 경우 응집이 발생하여 인장 응력 자체를 측정할 수 없었다.
또한, 분산질이 분산되어 있되, 상온에서 액상으로 존재하는 분산체를 사용한 비교예 1-B4 및 1-B5의 경우, 분산질이 서로 엉켜서 작은 덩어리 형태로 응집되고 가라 앉는 현상이 발생하였는바, 시료를 사용하기 전에 교반하는 추가 공정을 수행해야 하고, 장기간 보관할 경우 분산질이 응집되어 교반에 의해서도 잘 분산되지 않는 문제점이 있었다.
2. 경화용 고체 분산체 및 에폭시 수지 조성물의 제조
<경화용 고체 분산체의 제조>
실시예 2-A1: 나노셀룰로오스 피브릴과 무수당 알코올을 포함하는 경화용 고체 분산체
로터리 농축기(rotary evaporator)에 분산매인 이소소르비드 100g (삼양사)과 나노셀룰로오스 피브릴이 1 중량%로 분산된 수용액 100g (KB101, 아시아 나노셀룰로오스 주식회사)을 투입하고, 균일하게 혼합하였다. 그 후, 이소소르비드의 융점 이상인 80℃의 온도 조건 하에서, 진공을 걸어 수분을 제거하면서 상기 혼합물을 용융시켰다. 이어서 상기 용융된 혼합물을 상온으로 냉각시켜, 나노셀룰로오스 피브릴이 분산된 이소소르비드(경화용 고체 분산체)를 제조하였다.
실시예 2-A2: 그래핀과 무수당 알코올을 포함하는 경화용 고체 분산체
로터리 농축기에 분산매인 이소소르비드 100g (삼양사)과 그래핀이 1.5mg/mL로 분산된 수용액 100g (WDG, ㈜멕스플로러)을 투입하고, 균일하게 혼합하였다. 그 후, 이소소르비드의 융점 이상인 80℃의 온도 조건 하에서, 진공을 걸어 수분을 제거하면서 상기 혼합물을 용융시켰다. 이어서 상기 용융된 혼합물을 상온으로 냉각시켜, 그래핀이 분산된 이소소르비드(경화용 고체 분산체)를 제조하였다.
실시예 2-A3: 나노셀룰로오스 피브릴과 아민계 화합물을 포함하는 경화용 고체 분산체
로터리 농축기에 분산매인 (1R,2R)-N,N’-디메틸-1,2-디페닐에탄-1,2-디아민 10g (시그마 알드리치)과 나노셀룰로오스 피브릴이 1 중량%로 분산된 수용액 10g (KB101, 아시아 나노셀룰로오스 주식회사)을 투입하고, 균일하게 혼합하였다. 그 후, (1R,2R)-N,N’-디메틸-1,2-디페닐에탄-1,2-디아민의 융점 이상인 80℃의 온도 조건 하에서, 진공을 걸어 수분을 제거하면서 상기 혼합물을 용융시켰다. 이어서 상기 용융된 혼합물을 상온으로 냉각시켜, 나노셀룰로오스 피브릴이 분산된 (1R,2R)-N,N’-디메틸-1,2-디페닐에탄-1,2-디아민(경화용 고체 분산체)을 제조하였다.
실시예 2-A4: 그래핀과 아민계 화합물을 포함하는 경화용 고체 분산체
로터리 농축기에 분산매인 (1R,2R)-N,N’-디메틸-1,2-디페닐에탄-1,2-디아민 10g (시그마 알드리치)과 그래핀이 1.5mg/mL로 분산된 수용액 10g (WDG, ㈜멕스플로러)을 투입하고, 균일하게 혼합하였다. 그 후, (1R,2R)-N,N’-디메틸-1,2-디페닐에탄-1,2-디아민의 융점 이상인 80℃의 온도 조건 하에서, 진공을 걸어 수분을 제거하면서 상기 혼합물을 용융시켰다. 이어서 상기 용융된 혼합물을 상온으로 냉각시켜, 그래핀이 분산된 (1R,2R)-N,N’-디메틸-1,2-디페닐에탄-1,2-디아민(경화용 고체 분산체)을 제조하였다.
실시예 2-A5: 나노셀룰로오스 피브릴과 페놀계 화합물을 포함하는 경화용 고체 분산체
로터리 농축기에 분산매인 2,3-자이레놀 10g (시그마 알드리치)과 나노셀룰로오스 피브릴이 1 중량%로 분산된 수용액 10g (KB101, 아시아 나노셀룰로오스 주식회사)을 투입하고, 균일하게 혼합하였다. 그 후, 2,3-자이레놀의 융점 이상인 80℃의 온도 조건 하에서, 진공을 걸어 수분을 제거하면서 상기 혼합물을 용융시켰다. 이어서 상기 용융된 혼합물을 상온으로 냉각시켜, 나노셀룰로오스 피브릴이 분산된 2,3-자이레놀(경화용 고체 분산체)를 제조하였다.
실시예 2-A6: 그래핀과 페놀계 화합물을 포함하는 경화용 고체 분산체
로터리 농축기에 분산매인 2,3-자이레놀 10g (시그마 알드리치)과 그래핀이 1.5mg/mL로 분산된 수용액 10g (WDG, ㈜멕스플로러)을 투입하고, 균일하게 혼합하였다. 그 후, 2,3-자이레놀 의 융점 이상인 80℃의 온도 조건 하에서, 진공을 걸어 수분을 제거하면서 상기 혼합물을 용융시켰다. 이어서 상기 용융된 혼합물을 상온으로 냉각시켜, 그래핀이 분산된 2,3-자이레놀 (경화용 고체 분산체)를 제조하였다.
실시예 2-A7: 나노셀룰로오스 피브릴과 이미다졸계 화합물을 포함하는 경화용 고체 분산체
로터리 농축기에 분산매인 이미다졸 10g (시그마 알드리치)과 나노셀룰로오스 피브릴이 1 중량%로 분산된 수용액 10g (KB101, 아시아 나노셀룰로오스 주식회사)을 투입하고, 균일하게 혼합하였다. 그 후, 이미다졸의 융점 이상인 100℃의 온도 조건 하에서, 진공을 걸어 수분을 제거하면서 상기 혼합물을 용융시켰다. 이어서 상기 용융된 혼합물을 상온으로 냉각시켜, 나노셀룰로오스 피브릴이 분산된 이미다졸(경화용 고체 분산체)를 제조하였다.
실시예 2-A8: 그래핀과 이미다졸계 화합물을 포함하는 경화용 고체 분산체
로터리 농축기에 분산매인 이미다졸 10g (시그마 알드리치)과 그래핀이 1.5mg/mL로 분산된 수용액 100g (WDG, ㈜멕스플로러)을 투입하고, 균일하게 혼합하였다. 그 후, 이미다졸의 융점 이상인 100℃의 온도 조건 하에서, 진공을 걸어 수분을 제거하면서 상기 혼합물을 용융시켰다. 이어서 상기 용융된 혼합물을 상온으로 냉각시켜, 그래핀이 분산된 이미다졸(경화용 고체 분산체)를 제조하였다.
실시예 2-A9: 나노셀룰로오스 피브릴과 무수물계 화합물을 포함하는 경화용 고체 분산체
로터리 농축기에 분산매인 말레산 무수물 100g (시그마 알드리치)과 나노셀룰로오스 피브릴이 1 중량%로 분산된 수용액 100g (KB101, 아시아 나노셀룰로오스 주식회사)을 투입하고, 균일하게 혼합하였다. 그 후, 말레산 무수물의 융점 이상인 80℃의 온도 조건 하에서, 진공을 걸어 수분을 제거하면서 상기 혼합물을 용융시켰다. 이어서 상기 용융된 혼합물을 상온으로 냉각시켜, 나노셀룰로오스 피브릴이 분산된 말레산 무수물(경화용 고체 분산체)를 제조하였다.
실시예 2-A10: 그래핀과 산 무수물계 화합물을 포함하는 경화용 고체 분산체
로터리 농축기에 분산매인 말레산 무수물 100g (시그마 알드리치)과 그래핀이 1.5mg/mL로 분산된 수용액 100g (WDG, ㈜멕스플로러)을 투입하고, 균일하게 혼합하였다. 그 후, 말레산 무수물의 융점 이상인 80℃의 온도 조건 하에서, 진공을 걸어 수분을 제거하면서 상기 혼합물을 용융시켰다. 이어서 상기 용융된 혼합물을 상온으로 냉각시켜, 그래핀이 분산된 말레산 무수물(경화용 고체 분산체)를 제조하였다.
비교예 2-A1: 나노셀룰로오스 피브릴과 폴리프로필렌 글리콜을 포함하는 경화제
로터리 농축기에 상온에서 액상인 폴리프로필렌 글리콜 100g (PPG-3000, 금호석유화학)과 나노 셀룰로오스 피브릴이 1 중량%로 분산된 수용액 100g (KB101, 아시아 나노셀룰로오스 주식회사)을 투입하고, 균일하게 혼합하였다. 그 후, 진공을 걸어 수분을 제거하여 나노셀룰로오스 피브릴이 분산된 폴리프로필렌글리콜(액상 경화제)을 제조하였다.
비교예 2-A2: 그래핀과 폴리프로필렌 글리콜을 포함하는 경화제
로터리 농축기에 상온에서 액상인 폴리프로필렌 글리콜 100g (PPG-3000, 금호석유화학)과 그래핀이 1.5mg/mL로 분산된 수용액 100g (WDG, ㈜멕스플로러)을 투입하고, 균일하게 혼합하였다. 그 후, 진공을 걸어 수분을 제거하여 그래핀이 분산된 폴리프로필렌글리콜(액상 경화제)을 제조하였다.
<에폭시 수지 조성물의 제조>
실시예 2-B1: 나노셀룰로오스 피브릴과 무수당 알코올을 포함하는 경화용 고체 분산체를 이용한 에폭시 수지 조성물의 제조
비스페놀 A의 디글리시딜 에테르(Diglycidyl ether of bisphenol A, DGEBA)계의 이관능성 에폭시 수지(YD-128, 국도화학㈜, 에폭시 당량(Epoxy equivalent weight, EEW): 187 g/eq, 1당량)와 상기 실시예 2-A1에서 제조된 나노셀룰로오스 피브릴이 분산된 이소소르비드(삼양사, 히드록시 당량(hydroxyl equivalent weight, HEW: 73 g/eq, 1당량)를 혼합하고, 상기 혼합물 100 중량부에 대하여, 촉매로서 N,N-디메틸부틸아민(N,N-dimethylbutylamine, DMBA, Sigma aldrich) 0.1 중량부를 첨가하여 에폭시 수지 조성물을 제조하였다.
이어서 테프론 필름으로 코팅된 몰드에 상기 에폭시 수지 조성물을 넣고, 100℃에서 1시간 동안, 120℃에서 1시간 동안, 150℃에서 3시간 동안, 그리고 180℃에서 1시간 동안 단계적으로 경화시켰다.
실시예 2-B2: 그래핀과 무수당 알코올을 포함하는 경화용 고체 분산체를 이용한 에폭시 수지 조성물의 제조
경화제로서 상기 실시예 2-A1에서 제조된 나노셀룰로오스 피브릴이 분산된 이소소르비드 대신에 상기 실시예 2-A2에서 제조된 그래핀이 분산된 이소소르비드(삼양사, 히드록시 당량(hydroxyl equivalent weight, HEW: 73 g/eq, 1당량)를 사용한 것을 제외하고는, 실시예 2-B1과 동일한 방법으로 에폭시 수지 조성물을 제조한 후, 경화시켰다.
실시예 2-B3: 나노셀룰로오스 피브릴과 아민계 화합물을 포함하는 경화용 고체 분산체를 이용한 에폭시 수지 조성물의 제조
경화제로서 상기 실시예 2-A1에서 제조된 나노셀룰로오스 피브릴이 분산된 이소소르비드 대신에 상기 실시예 2-A3에서 제조된 나노셀룰로오스 피브릴이 분산된 (1R,2R)-N,N’-디메틸-1,2-디페닐에탄-1,2-디아민을 사용한 것을 제외하고는, 실시예 2-B1과 동일한 방법으로 에폭시 수지 조성물을 제조한 후, 경화시켰다.
실시예 2-B4: 그래핀과 아민계 화합물을 포함하는 경화용 고체 분산체를 이용한 에폭시 수지 조성물의 제조
경화제로서 상기 실시예 2-A1에서 제조된 나노셀룰로오스 피브릴이 분산된 이소소르비드 대신에 상기 실시예 2-A4에서 제조된 그래핀이 분산된 (1R,2R)-N,N’-디메틸-1,2-디페닐에탄-1,2-디아민을 사용한 것을 제외하고는, 실시예 2-B1과 동일한 방법으로 에폭시 수지 조성물을 제조한 후, 경화시켰다.
실시예 2-B5: 나노셀룰로오스 피브릴과 페놀계 화합물을 포함하는 경화용 고체 분산체를 이용한 에폭시 수지 조성물의 제조
경화제로서 상기 실시예 2-A1에서 제조된 나노셀룰로오스 피브릴이 분산된 이소소르비드 대신에 상기 실시예 2-A5에서 제조된 나노셀룰로오스 피브릴이 분산된 2,3-자이레놀을 사용한 것을 제외하고는, 실시예 2-B1과 동일한 방법으로 에폭시 수지 조성물을 제조한 후, 경화시켰다.
실시예 2-B6: 그래핀과 페놀계 화합물을 포함하는 경화용 고체 분산체를 이용한 에폭시 수지 조성물의 제조
경화제로서 상기 실시예 2-A1에서 제조된 나노셀룰로오스 피브릴이 분산된 이소소르비드 대신에 상기 실시예 2-A6에서 제조된 그래핀이 분산된 2,3-자이레놀을 사용한 것을 제외하고는, 실시예 2-B1과 동일한 방법으로 에폭시 수지 조성물을 제조한 후, 경화시켰다.
실시예 2-B7: 나노셀룰로오스 피브릴과 이미다졸계 화합물을 포함하는 경화용 고체 분산체를 이용한 에폭시 수지 조성물의 제조
경화제로서 상기 실시예 2-A1에서 제조된 나노셀룰로오스 피브릴이 분산된 이소소르비드 대신에 상기 실시예 2-A7에서 제조된 나노셀룰로오스 피브릴이 분산된 이미다졸을 사용한 것을 제외하고는, 실시예 2-B1과 동일한 방법으로 에폭시 수지 조성물을 제조한 후, 경화시켰다.
실시예 2-B8: 그래핀과 이미다졸계 화합물을 포함하는 경화용 고체 분산체를 이용한 에폭시 수지 조성물의 제조
경화제로서 상기 실시예 2-A1에서 제조된 나노셀룰로오스 피브릴이 분산된 이소소르비드 대신에 상기 실시예 2-A8에서 제조된 그래핀이 분산된 이미다졸을 사용한 것을 제외하고는, 실시예 2-B1과 동일한 방법으로 에폭시 수지 조성물을 제조한 후, 경화시켰다.
실시예 2-B9: 나노셀룰로오스 피브릴과 무수물계 화합물을 포함하는 경화용 고체 분산체를 이용한 에폭시 수지 조성물의 제조
경화제로서 상기 실시예 2-A1에서 제조된 나노셀룰로오스 피브릴이 분산된 이소소르비드 대신에 상기 실시예 2-A9에서 제조된 나노셀룰로오스 피브릴이 분산된 말레산 무수물을 사용한 것을 제외하고는, 실시예 2-B1과 동일한 방법으로 에폭시 수지 조성물을 제조한 후, 경화시켰다.
실시예 2-B10: 그래핀과 무수물계 화합물을 포함하는 경화용 고체 분산체를 이용한 에폭시 수지 조성물의 제조
경화제로서 상기 실시예 2-A1에서 제조된 나노셀룰로오스 피브릴이 분산된 이소소르비드 대신에 상기 실시예 2-A10에서 제조된 그래핀이 분산된 말레산 무수물을 사용한 것을 제외하고는, 실시예 2-B1과 동일한 방법으로 에폭시 수지 조성물을 제조한 후, 경화시켰다.
비교예 2-B1: 무수당 알코올을 경화제로 이용한 에폭시 수지 조성물의 제조
경화제로서 상기 상기 실시예 2-A1에서 제조된 나노셀룰로오스 피브릴이 분산된 이소소르비드 대신에 이소소르비드(삼양사, 히드록시 당량(hydroxyl equivalent weight, HEW: 73 g/eq, 1당량)를 사용한 것을 제외하고는, 실시예 2-B1과 동일한 방법으로 에폭시 수지 조성물을 제조한 후, 경화시켰다.
비교예 2-B2: 무수당 알코올을 경화제로 이용하고, 별도의 나노셀룰로오스 피브릴을 첨가한 에폭시 수지 조성물의 제조
비스페놀 A의 디글리시딜 에테르(Diglycidyl ether of bisphenol A, DGEBA)계의 이관능성 에폭시 수지(YD-128, 국도화학㈜, 에폭시 당량(Epoxy equivalent weight, EEW): 187 g/eq, 1당량), 이소소르비드(삼양사, 히드록시 당량(hydroxyl equivalent weight, HEW: 73 g/eq, 1당량) 및 나노셀룰로오스 피브릴 0.73g을 혼합하고, 상기 혼합물 100 중량부에 대하여, 촉매로서 N,N-디메틸부틸아민(N,N-dimethylbutylamine, DMBA, Sigma aldrich) 0.1 중량부를 첨가하여 에폭시 수지 조성물을 제조하였다.
이어서 테프론 필름으로 코팅된 몰드에 상기 에폭시 수지 조성물을 넣고, 100℃에서 1시간 동안, 120℃에서 1시간 동안, 150℃에서 3시간 동안, 그리고 180℃에서 1시간 동안 단계적으로 경화시켰다.
비교예 2-B3: 무수당 알코올을 경화제로 이용하고, 별도의 그래핀을 첨가한 에폭시 수지 조성물의 제조
나노셀룰로오스 피브릴 0.73g 대신에 그래핀 0.73g을 첨가한 것을 제외하고는, 비교예 2-B2와 동일한 방법으로 에폭시 수지 조성물을 제조한 후, 경화시켰다.
비교예 2-B4: 나노셀룰로오스 피브릴과 폴리프로필렌 글리콜을 포함하는 경화제를 이용한 에폭시 수지 조성물의 제조
경화제로서 상기 실시예 2-A1에서 제조된 경화제(나노셀룰로오스 피브릴이 분산된 이소소르비드) 대신에 상기 비교예 2-A1에서 제조된 경화제(나노셀룰로오스 피브릴이 분산된 폴리프로필렌 글리콜)을 사용한 것을 제외하고는, 실시예 2-B1과 동일한 방법으로 에폭시 수지 조성물을 제조한 후, 경화시켰다.
비교예 2-B5: 그래핀과 폴리프로필렌 글리콜을 포함하는 경화제를 이용한 에폭시 수지 조성물의 제조
경화제로서 상기 실시예 2-A1에서 제조된 경화제(나노셀룰로오스 피브릴이 분산된 이소소르비드) 대신에 상기 비교예 2-A2에서 제조된 경화제(그래핀이 분산된 폴리프로필렌 글리콜)을 사용한 것을 제외하고는, 실시예 2-B1과 동일한 방법으로 에폭시 수지 조성물을 제조한 후, 경화시켰다.
<물성 측정 방법>
[재분산성 평가 방법]
상기 실시예 2-A1 내지 2-A10 및 비교예 2-A1 내지 2-A2에서 제조된 경화용 고체 분산체를 24 시간 동안 상온 보관 후, 각 경화용 고체 분산체의 10g을 15㎖의 물이 들어 있는 바이알에 넣고, 마그네틱 바를 이용하여 1 시간 동안 교반함으로써, 시료를 제조하였다. 이어서 상기 제조된 시료 내의 분산질의 분산된 정도를 육안으로 관찰하였으며, 그 결과를 하기 표 3에 나타내었다.
○○: 분산질의 분산 상태가 경화용 고체 분산체의 제조 직후와 비교하여 동일한 상태임
○: 분산질의 분산 상태가 경화용 고체 분산체의 제조 직후와 비교하여 작은 덩어리가 떠다니는 상태임
×: 분산질의 분산 상태가 경화용 고체 분산체의 제조 직후와 비교하여 큰 덩어리가 떠다니는 상태임
××: 분산질이 물에 녹지 않는 상태임
[저장 안정성 평가 방법]
상기 재분산성 평가 방법에서 기재된 바와 동일한 방법으로 시료를 제조하였다. 이어서제조된 시료 각각을 상온에서 1시간 동안 보관한 후, 분산질의 응집 및 가라 앉음 정도를 육안으로 관찰하였으며, 그 결과를 하기 표 3에 나타내었다.
○○: 분산질이 응집되지 않고, 가라 앉지 않음
○: 분산질이 소량 응집되고, 가라 앉음
×: 분산질의 대부분이 응집되고, 가라 앉음
[인장 응력의 평가 방법]
상기 실시예 2-B1 내지 2-B10 및 비교예 2-B1 내지 2-B5에서 제조된 에폭시 수지 조성물의 경화물 시편에 대하여 ASTM D412에 따라 만능 인장시험기를 이용하여 인장 응력(tensile stress)을 측정하였으며, 각 시편에 대해 5회의 인장 응력을 측정하고 그 5회의 평균값을 하기 표 4에 나타내었다.
[표 3]
Figure PCTKR2019005643-appb-I000003
[표 4]
Figure PCTKR2019005643-appb-I000004
상기 표 3에 기재된 바와 같이, 본 발명에 따른 실시예 2-A1 내지 2-A10의 경우, 경화용 고체 분산체가 상온에서 고체 상태로 존재하여 저장 안정성이 우수하였으며, 이로 인해 장기간 보관이 용이하고, 또한 재분산성이 우수함을 확인하였다.
그러나 분산매가 상온에서 액체 상태로 존재하는 액상 분산체의 경우(비교예 2-A1 및 2-A2)의 경우, 분산질이 서로 엉켜서 작은 덩어리 형태의 응집이 발생하였고, 이로 인해 재분산성이 떨어졌으며, 또한 상온에서 장기간 보관 시 응집 및 가라 앉음이 발생하여 저장 안정성이 열악함을 확인하였다.
또한 상기 표 4에 기재된 바와 같이, 본 발명에 따른 실시예 2-B1 내지 2-B10의 경우, 분산질(나노셀룰로오스 피브릴 또는 그래핀)이 골고루 잘 분산되어 있는 경화용 고체 분산체를 사용함에 따라, 에폭시 수지 조성물의 경화물의 인장 응력이 68 Mpa 이상으로 현저히 향상되었음을 확인할 수 있다.
그러나 단순히 분산매(무수당 알코올)가 단독으로 경화제로 사용된 비교예 2-B1의 경우, 실시예 대비 인장 응력이 열악하였고, 분산매(무수당 알코올)를 단독으로 경화제로 사용하면서, 첨가제(나노셀룰로오스 피브릴 또는 그래핀)를 사전 분산 없이 혼합 사용한 비교예 2-B2 및 2-B3의 경우, 첨가제가 골고루 분산되지 않고, 이를 적용한 에폭시 수지 조성물의 경화물의 경우 응집이 발생하여 인장 응력 자체를 측정할 수 없었다.
또한 분산질이 분산되어 있되, 상온에서 액상으로 존재하는 액상 분산체를 사용한 비교예 2-B4 및 2-B5의 경우, 분산질이 서로 엉켜서 작은 덩어리 형태로 응집되고 가라 앉는 현상이 발생하였는바, 각 시편의 5회 인장 응력 측정 중 2회는 응집으로 인해 측정이 불가능하여, 그 인장 응력 5회 평균값이 실시예 대비 현저히 열악하였고, 이 경우 경화제를 사용하기 전에 교반하는 추가 공정을 수행해야 하는 번거로움이 있고, 장기간 보관할 경우 분산질이 응집되어 교반에 의해서도 잘 분산되지 않는 문제점이 있었다.
3. 분산체 조성물의 제조
< 분산체 조성물의 제조>
실시예 3-1: 나노 셀룰로오스 피브릴과 단당류를 포함하는 분산체 조성물
로터리 농축기(rotary evaporator)에 글루코오스 100g (삼양사)과 나노 셀룰로오스 피브릴이 1 중량%로 분산된 수용액 100g (KB101, 아시아 나노셀룰로오스 주식회사)을 투입하고, 균일하게 혼합하였다. 그 후, 글루코오스의 융점 이상인 150℃의 온도 조건 하에서, 진공을 걸어 수분을 제거하면서, 상기 혼합물을 용융시켰다. 이어서 상기 용융된 혼합물을 상온으로 냉각시켜, 나노 셀룰로오스 피브릴이 분산된 글루코오스(고상 분산체 조성물)를 제조하였다.
실시예 3-2: 나노 셀룰로오스 피브릴과 이당류를 포함하는 분산체 조성물
로터리 농축기에 수크로오스 100g (삼양사)과 나노 셀룰로오스 피브릴이 1 중량%로 분산된 수용액 100g (KB101, 아시아 나노셀룰로오스 주식회사)을 투입하고, 균일하게 혼합하였다. 그 후, 수크로오스의 융점 이상인 190℃의 온도 조건 하에서, 진공을 걸어 수분을 제거하면서 상기 혼합물을 용융시켰다. 이어서 상기 용융된 혼합물을 상온으로 냉각시켜, 나노 셀룰로오스 피브릴이 분산된 수크로오스(고상 분산체 조성물)를 제조하였다.
실시예 3-3: 나노 셀룰로오스 피브릴과 다당류를 포함하는 분산체 조성물
로터리 농축기에 전분 100g (삼양사)과 나노 셀룰로오스 피브릴이 1 중량%로 분산된 수용액 100g (KB101, 아시아 나노셀룰로오스 주식회사)을 투입하고, 균일하게 혼합하였다. 그 후, 전분의 융점 이상인 220℃의 온도 조건 하에서, 진공을 걸어 수분을 제거하면서 상기 혼합물을 용융시켰다. 이어서 상기 용융된 혼합물을 상온으로 냉각시켜, 나노 셀룰로오스 피브릴이 분산된 전분(고상 분산체 조성물)을 제조하였다.
실시예 3-4: 나노 셀룰로오스 피브릴과 무수당 알코올을 포함하는 분산체 조성물
로터리 농축기에 이소소르비드 100g (삼양사)과 나노 셀룰로오스 피브릴이 1 중량%로 분산된 수용액 100g (KB101, 아시아 나노셀룰로오스 주식회사)을 투입하고, 균일하게 혼합하였다. 그 후, 이소소르비드의 융점 이상인 80℃의 온도 조건 하에서, 진공을 걸어 수분을 제거하면서 상기 혼합물을 용융시켰다. 이어서 상기 용융된 혼합물을 상온으로 냉각시켜, 나노 셀룰로오스 피브릴이 분산된 이소소르비드(고상 분산체 조성물)을 제조하였다.
실시예 3-5: 나노 셀룰로오스 피브릴과 수소화 당을 포함하는 분산체 조성물
로터리 농축기에 소르비톨 100g (삼양사)과 나노 셀룰로오스 피브릴이 1 중량%로 분산된 수용액 100g (KB101, 아시아 나노셀룰로오스 주식회사)을 투입하고, 균일하게 혼합하였다. 그 후, 소르비톨의 융점 이상인 100℃의 온도 조건 하에서, 진공을 걸어 수분을 제거하면서 상기 혼합물을 용융시켰다. 이어서 상기 용융된 혼합물을 상온으로 냉각시켜, 나노 셀룰로오스 피브릴이 분산된 소르비톨(고상 분산체 조성물)을 제조하였다.
실시예 3-6 : 나노 셀룰로오스 피브릴과 폴리에테르 폴리올을 포함하는 분산체 조성물
로터리 농축기에 폴리테트라하이드로푸란 100g (중량평균분자량: 1000 g/mol, 시그마 알드리치)과 나노 셀룰로오스 피브릴이 1 중량%로 분산된 수용액 100g (KB101, 아시아 나노셀룰로오스 주식회사)을 투입하고, 균일하게 혼합하였다. 그 후, 폴리테트라하이드로푸란의 융점 이상인 80℃의 온도 조건 하에서, 진공을 걸어 수분을 제거하면서 상기 혼합물을 용융시켰다. 이어서 상기 용융된 혼합물을 상온으로 냉각시켜, 나노 셀룰로오스 피브릴이 분산된 폴리테트라하이드로푸란(고상 분산체 조성물)을 제조하였다.
실시예 3-7: 그래핀과 단당류를 포함하는 분산체 조성물
로터리 농축기에 글루코오스 100g (삼양사)과 그래핀이 1.5mg/mL로 분산된 수용액 100g (WDG, ㈜멕스플로러)을 투입하고, 균일하게 혼합하였다. 그 후, 글루코오스의 융점 이상인 150℃의 온도 조건 하에서, 진공을 걸어 수분을 제거하면서, 상기 혼합물을 용융시켰다. 이어서 상기 용융된 혼합물을 상온으로 냉각시켜, 그래핀이 분산된 글루코오스(고상 분산체 조성물)를 제조하였다.
실시예 3-8: 그래핀과 이당류를 포함하는 분산체 조성물
로터리 농축기에 수크로오스 100g (삼양사)과 그래핀이 1.5mg/mL로 분산된 수용액 100g (WDG, ㈜멕스플로러)을 투입하고, 균일하게 혼합하였다. 그 후, 수크로오스의 융점 이상인 190℃의 온도 조건 하에서, 진공을 걸어 수분을 제거하면서, 상기 혼합물을 용융시켰다. 이어서 상기 용융된 혼합물을 상온으로 냉각시켜, 그래핀이 분산된 수크로오스(고상 분산체 조성물)를 제조하였다.
실시예 3-9: 그래핀과 다당류를 포함하는 분산체 조성물
로터리 농축기에 전분 100g (삼양사)과 그래핀이 1.5mg/mL로 분산된 수용액 100g (WDG, ㈜멕스플로러)을 투입하고, 균일하게 혼합하였다. 그 후, 전분의 융점 이상인 220℃의 온도 조건 하에서, 진공을 걸어 수분을 제거하면서 상기 혼합물을 용융시켰다. 이어서 상기 용융된 혼합물을 상온으로 냉각시켜, 그래핀이 분산된 전분(고상 분산체 조성물)을 제조하였다.
실시예 3-10: 그래핀과 무수당 알코올을 포함하는 분산체 조성물
로터리 농축기에 이소소르비드 100g (삼양사)과 그래핀이 1.5mg/mL로 분산된 수용액 100g (WDG, ㈜멕스플로러)을 투입하고, 균일하게 혼합하였다. 그 후, 이소소르비드의 융점 이상인 80℃의 온도 조건 하에서, 진공을 걸어 수분을 제거하면서 상기 혼합물을 용융시켰다. 이어서 상기 용융된 혼합물을 상온으로 냉각시켜, 그래핀이 분산된 이소소르비드(고상 분산체 조성물)을 제조하였다.
실시예 3-11 : 그래핀과 수소화 당을 포함하는 분산체 조성물
로터리 농축기에 소르비톨 100g (삼양사)과 그래핀이 1.5mg/mL로 분산된 수용액 100g (WDG, ㈜멕스플로러)을 투입하고, 균일하게 혼합하였다. 그 후, 소르비톨의 융점 이상인 100℃의 온도 조건 하에서, 진공을 걸어 수분을 제거하면서 상기 혼합물을 용융시켰다. 이어서 상기 용융된 혼합물을 상온으로 냉각시켜, 그래핀이 분산된 소르비톨(고상 분산체 조성물)을 제조하였다.
실시예 3-12: 그래핀과 폴리에테르 폴리올을 포함하는 분산체 조성물
로터리 농축기에 폴리테트라하이드로푸란 100g (중량평균분자량: 1000 g/mol, 시그마 알드리치)과 그래핀이 1.5mg/mL로 분산된 수용액 100g (WDG, ㈜멕스플로러)을 투입하고, 균일하게 혼합하였다. 그 후, 폴리테트라하이드로푸란의 융점 이상인 80℃ 온도 조건 하에서, 진공을 걸어 수분을 제거하면서 상기 혼합물을 용융시켰다. 이어서 상기 용융된 혼합물을 상온으로 냉각시켜, 그래핀이 분산된 폴리테트라하이드로푸란(고상 분산체 조성물)을 제조하였다.
비교예 3-1: 나노 셀룰로오스 피브릴과 폴리프로필렌 글리콜을 포함하는 분산체 조성물
로터리 농축기에 상온에서 액상인 폴리프로필렌 글리콜 100g (PPG-3000, 금호석유화학)과 나노 셀룰로오스 피브릴이 1 중량%로 분산된 수용액 100g (KB101, 아시아 나노셀룰로오스 주식회사)을 투입하고, 균일하게 혼합하였다. 그 후, 진공을 걸어 수분을 제거하여 나노 셀룰로오스 피브릴이 분산된 폴리프로필렌글리콜(액상 분산체 조성물)을 제조하였다.
비교예 3-2: 그래핀과 폴리프로필렌 글리콜을 포함하는 분산체 조성물
로터리 농축기에 상온에서 액상인 폴리프로필렌 글리콜 100g (PPG-3000, 금호석유화학)과 그래핀이 1.5mg/mL로 분산된 수용액 100g (WDG, ㈜멕스플로러)을 투입하고, 균일하게 혼합하였다. 그 후, 진공을 걸어 수분을 제거하여 그래핀이 분산된 폴리프로필렌글리콜(액상 분산체 조성물)을 제조하였다.
상기 실시예 3-1 내지 3-12 및 비교예 3-1 및 3-2에서 제조된 분산체 조성물에 대하여 하기와 같은 방법으로 재분산성 및 저장 안정성을 평가하였으며, 그 결과를 하기 표 5에 기재하였다.
[재분산성 평가 방법]
상기 실시예 3-1 내지 3-12 및 비교예 3-1 및 3-2에서 제조된 분산체 조성물을 24 시간 동안 상온 보관 후, 각 분산체 조성물의 10g을 15㎖의 물이 들어 있는 바이알에 넣고, 마그네틱 바를 이용하여 1 시간 동안 교반함으로써, 시료를 제조하였다. 이어서 상기 제조된 시료 내의 분산질의 분산된 정도를 육안으로 관찰하였다.
○○: 분산질의 분산 상태가 분산체 조성물의 제조 직후와 비교하여 동일한 상태임
○: 분산질의 분산 상태가 분산체 조성물의 제조 직후와 비교하여 작은 덩어리가 떠다니는 상태임
×: 분산질의 분산 상태가 분산체 조성물의 제조 직후와 비교하여 큰 덩어리가 떠다니는 상태임
××: 분산질이 물에 녹지 않는 상태임
[저장 안정성 평가 방법]
상기 재분산성 평가 방법에서 기재된 바와 동일한 방법으로 시료를 제조하였다. 이어서제조된 시료 각각을 상온에서 1시간 동안 보관한 후, 분산질의 응집 및 가라 앉음 정도를 육안으로 관찰하였다.
○○: 분산질이 응집되지 않고, 가라 앉지 않음
○: 분산질이 소량 응집되고, 가라 앉음
×: 분산질의 대부분이 응집되고, 가라 앉음
[표 5]
Figure PCTKR2019005643-appb-I000005
표 5에 나타난 바와 같이, 본 발명에 따른 실시예 3-1 내지 3-12의 경우, 상온에서 고체 상태로 존재하여 저장 안정성이 우수하였으며, 이로 인해 장기간 보관이 용이하고, 또한 재분산성이 우수함을 확인하였다.
그러나 분산매가 상온에서 액체 상태로 존재하는 비교예 3-1 및 3-2의 경우, 분산질이 서로 엉켜서 작은 덩어리 형태의 응집이 발생하였고, 이로 인해 재분산성이 떨어졌으며, 또한 상온에서 장기간 보관 시 응집 및 가라 앉음이 발생하여 저장 안정성이 열악함을 확인하였다.

Claims (19)

  1. 분산질 및 상기 분산질이 분산되어 있는 분산매를 포함하는 고체 분산체로서,
    상기 분산질이 유기물 입자, 무기물 입자 또는 이들의 혼합물이고,
    상기 분산매가 상온에서 고체 상태의 비수성 분산매인,
    고체 분산체.
  2. 제1항에 있어서, 무기물 입자는 철, 알루미늄, 크롬, 니켈, 코발트, 아연, 텅스텐, 인듐, 주석, 팔라듐, 지르코늄, 티탄, 구리, 은, 금, 백금, 카올린, 클레이, 탈크, 마이카, 벤토나이트, 돌로마이트, 규산칼슘, 규산마그네슘, 석면, 탄산칼슘, 탄산마그네슘, 탄산바륨, 황산칼슘, 황산바륨, 황산알루미늄, 수산화알루미늄, 수산화철, 규산알루미늄, 산화지르코늄, 산화마그네슘, 산화알루미늄, 산화티탄, 산화철, 산화아연, 삼산화안티몬, 산화인듐, 산화인듐주석, 탄화규소, 질화규소, 질화붕소, 티탄산바륨, 규조토, 카본블랙, 흑연, 암면, 글래스울, 유리섬유, 그래핀, 그래파이트, 탄소섬유, 탄소나노섬유, 탄소나노튜브, 이들 중 2종 이상의 금속의 합금, 또는 이들 중 2종 이상의 혼합물로 이루어진 그룹으로부터 선택되는 것인, 고체 분산체.
  3. 제1항에 있어서, 유기물 입자는 아조계 화합물, 디아조계 화합물, 축합 아조계 화합물, 티오인디고계 화합물, 인단트론계 화합물, 퀴나크린돈계 화합물, 안트라퀴논계 화합물, 벤즈이미다졸론계 화합물, 페릴렌계 화합물, 프탈로시아닌계 화합물, 안트라피리딘계 화합물, 디옥사진계 화합물, 폴리에틸렌 수지, 폴리프로필렌 수지, 폴리에스테르 수지, 나일론 수지, 폴리아미드 수지, 아라미드 수지, 아크릴 수지, 비닐론 수지, 우레탄 수지, 멜라민 수지, 폴리스티렌 수지, 폴리유산, 아세테이트 섬유, 셀룰로오스, 헤미셀룰로오스, 리그닌, 키틴, 키토산, 전분, 폴리아세탈, 폴리카보네이트, 폴리페닐렌에테르, 폴리에테르에테르케톤, 폴리에테르케톤, 폴리부틸렌테레프탈레이트, 폴리에틸렌나프탈레이트, 폴리부틸렌나프탈레이트, 폴리술폰, 폴리페닐렌설파이드, 폴리이미드 또는 이들의 혼합물로 이루어진 그룹으로부터 선택되는 것인, 고체 분산체.
  4. 제1항에 있어서, 분산매는 당류, 폴리에테르 폴리올, 폴리에스테르 폴리올, 수소화 당, 알칸 디올, 아민계 화합물, 페놀계 화합물, 이미다졸계 화합물, 산 무수물계 화합물, 무수당 알코올 또는 이들의 조합으로 이루어진 군으로부터 선택되는 하나 이상인, 고체 분산체.
  5. 제4항에 있어서, 분산매는
    글루코오스, 푸룩토오스, 갈락토오스, 리보오스, 말토오스, 수크로오스, 락토오스, 올리고당, 셀룰로오스, 전분, 글리코겐, 테트리탄, 펜티탄, 헵티탄, 소르비탄, 만니탄, 이디탄, 갈락티탄, 이소소르비드, 이소만니드, 이소이디드, 테트리톨, 펜티톨, 헵티톨, 소르비톨, 만니톨, 이디톨, 갈락티톨, 폴리프로필렌글리콜 변성체, 폴리테트라메틸렌 에테르 글리콜, 부틸렌아디페이트 디올, 1,6-헥산아디페이트 디올,
    1,4-부탄디올, 1,6-헥산디올, 1,9-노난디올,
    폴리(에틸렌글리콜)디아민, (R)-(+)-1,1′-바이나프틸-2,2’-디아민, (S)-(―)-1,1′-바이나프틸-2,2’-디아민, 1,1′-바이나프틸-2,2′-디아민, 4-에톡시벤젠-1,2-디아민, (1R,2R)-N,N’-디메틸-1,2-디페닐에탄 -1,2-디아민, N,N-비스(4-부틸페닐)벤젠-1,4-디아민, 2,3-자이레놀, 2,4-자이레놀, 2,5-자이레놀, 2,6-자이레놀, 3,4-자이레놀, 3,5-자이레놀, 2.5-디메틸페놀, 2.3-디메틸페놀, 이미다졸, 1-(2-하이드록시에틸)이미다졸, 이미다졸 트리플루오로메탄설포네이트, 이미다졸-2-카르복실산, 4-브로모-1H-이미다졸, N-벤질-2-니트로-1H-이미다졸-1-아세트아미드, 2-클로로-1H-이미다졸, 이미다졸-d, 이미다졸-N, 이미다졸-2-C,N, (2-도데센-1-일)석신산 무수물, 말레산 무수물, 석신산 무수물, 프탈산 무수물, 글루타르산 무수물, 3,4,5,6-테트라하이드로프탈산 무수물, 디글리콜산 무수물, 이타콘산 무수물, 트랜스-1,2-사이클로헥산디카르복실산 무수물, 2,3-디메틸말레산 무수물, 3,3-테트라메틸렌글루타르산 무수물, 스테아르산 무수물, 시스-아코니트산 무수물, 트리멜리트산 무수물 클로라이드, 페닐석신산 무수물, 3,3-디메틸글루타르산 무수물, 메틸석신산 무수물
    또는 이들의 조합으로 이루어진 군으로부터 선택되는 하나 이상인, 고체 분산체.
  6. 제1항에 있어서, 분산질의 함량은 분산매 100 중량부 기준으로, 0.0001 중량부 내지 95 중량부인, 고체 분산체.
  7. 제1항에 있어서, 사슬 연장용 상온 고체 분산체인, 고체 분산체.
  8. 제1항에 있어서, 경화용 상온 고체 분산체인, 고체 분산체.
  9. 제1항 내지 제8항 중 어느 한 항의 고체 분산체를 포함하는 분산체 조성물.
  10. 분산질 및 분산매를 혼합하는 단계; 및
    혼합물 중 분산매를 용융시키는 단계를 포함하는 고체 분산체의 제조 방법으로서,
    상기 분산질이 유기물 입자, 무기물 입자 또는 이들의 혼합물이고,
    상기 분산매가 상온에서 고체 상태의 비수성 분산매인,
    고체 분산체의 제조 방법.
  11. 제10항에 있어서, 상기 혼합물 중 분산매를 용융시키는 단계는, 분산매의 융점 이상의 온도에서 진공을 걸어 수분을 제거하면서 혼합물을 용융시키는 것인, 고체 분산체의 제조 방법.
  12. 폴리우레탄 예비 중합체와,
    제7항의 고체 분산체의 반응에 의하여 제조된 것인,
    사슬 연장된 폴리우레탄.
  13. (1) 폴리우레탄 예비 중합체에, 제7항의 고체 분산체를 첨가하는 단계; 및
    (2) 상기 (1) 단계의 결과 혼합물을 반응시키는 단계를 포함하는, 사슬 연장된 폴리우레탄의 제조 방법.
  14. 제13항에 있어서, 폴리우레탄 예비 중합체는,
    50 내지 100℃에서 12 내지 36시간 동안 진공 건조시킨 폴리올과 폴리이소시아네이트를 질소 분위기 하에서 50 내지 100℃의 온도에서 0.1 내지 5시간 동안 반응시켜 얻어지는 것인,
    사슬 연장된 폴리우레탄의 제조 방법.
  15. 제13항에 있어서, 상기 (1) 단계의 결과 혼합물을 반응시키는 단계는,
    80 내지 200℃에서 10 내지 30 시간 동안 경화시켜 수행되는 것인,
    사슬 연장된 폴리우레탄의 제조 방법.
  16. 에폭시 수지; 및 제8항의 고체 분산체를 포함하는 에폭시 수지 조성물.
  17. 에폭시 수지 및 제8항의 고체 분산체를 혼합하는 단계를 포함하는 에폭시 수지 조성물의 제조 방법.
  18. 제16항의 에폭시 수지 조성물을 경화시켜 얻어지는 경화물.
  19. 제18항의 경화물을 포함하는 성형품.
PCT/KR2019/005643 2018-05-11 2019-05-10 고체 분산체, 이의 제조 방법, 이를 이용한 사슬 연장된 폴리우레탄 및 이를 포함하는 에폭시 수지 조성물 WO2019216700A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19800062.2A EP3792298A4 (en) 2018-05-11 2019-05-10 SOLID DISPERSION, METHOD FOR THE PREPARATION THEREOF, EXTENDED CHAIN POLYURETHANE USING THE SAME, AND EPOXY RESIN COMPOSITION COMPRISING THE SAME
JP2021513741A JP2021523976A (ja) 2018-05-11 2019-05-10 固体分散体、その製造方法、それを用いる鎖延長ポリウレタン及びそれを含むエポキシ樹脂組成物
CN201980031828.4A CN112105680A (zh) 2018-05-11 2019-05-10 固体分散体、其制备方法、使用其的扩链聚氨酯和包含其的环氧树脂组合物
US17/054,286 US20210238413A1 (en) 2018-05-11 2019-05-10 Solid dispersion, preparation method therefor, chain-extended polyurethane using same, and epoxy resin composition comprising same
JP2023015522A JP2023058561A (ja) 2018-05-11 2023-02-03 固体分散体、その製造方法、それを用いる鎖延長ポリウレタン及びそれを含むエポキシ樹脂組成物

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR1020180054295A KR102129907B1 (ko) 2018-05-11 2018-05-11 사슬 연장용 고체 분산체, 이를 이용한 사슬 연장된 폴리우레탄 및 사슬 연장된 폴리우레탄의 제조방법
KR10-2018-0054295 2018-05-11
KR10-2018-0057683 2018-05-21
KR1020180057683A KR102230451B1 (ko) 2018-05-21 2018-05-21 분산체 조성물 및 이의 제조방법
KR10-2018-0058790 2018-05-24
KR1020180058790A KR20190133865A (ko) 2018-05-24 2018-05-24 에폭시 경화용 고체 분산체, 분산체를 포함하는 에폭시 수지 조성물 및 이의 경화물

Publications (1)

Publication Number Publication Date
WO2019216700A1 true WO2019216700A1 (ko) 2019-11-14

Family

ID=68468095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/005643 WO2019216700A1 (ko) 2018-05-11 2019-05-10 고체 분산체, 이의 제조 방법, 이를 이용한 사슬 연장된 폴리우레탄 및 이를 포함하는 에폭시 수지 조성물

Country Status (5)

Country Link
US (1) US20210238413A1 (ko)
EP (1) EP3792298A4 (ko)
JP (2) JP2021523976A (ko)
CN (1) CN112105680A (ko)
WO (1) WO2019216700A1 (ko)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111269536A (zh) * 2020-04-16 2020-06-12 扬州金霞塑胶有限公司 纳米纤维素/铜复合材料改性树脂及其制备方法
CN111944346A (zh) * 2020-08-24 2020-11-17 天长市嘉丰美术用品有限公司 一种不伤手可洗型广告画颜料及其生产工艺
CN112724771A (zh) * 2020-12-26 2021-04-30 安徽酉阳防水科技有限公司 一种快干耐水外露型防水涂料
CN112951482A (zh) * 2021-02-26 2021-06-11 无锡帝科电子材料股份有限公司 一种电子元器件浆料及加工工艺
US20220010050A1 (en) * 2020-07-13 2022-01-13 Taiwan Textile Research Institute Functional resin material, manufacturing method thereof, and moisture-sensed shrinking fabric
CN114213952A (zh) * 2021-12-28 2022-03-22 广东美涂士建材股份有限公司 一种环保水性涂料及其制备方法
CN114316195A (zh) * 2021-12-14 2022-04-12 福建汇得新材料有限公司 一种透气透湿水性聚氨酯树脂及其制备方法
US11952459B2 (en) 2020-12-23 2024-04-09 Kintra Fibers, Inc. Polyester polymer nanocomposites

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113025185A (zh) * 2021-03-17 2021-06-25 成都诺比侃科技有限公司 一种石墨烯超疏水防腐涂料及其制备方法
CN116041945B (zh) * 2023-01-30 2024-01-26 湖州高裕家居科技有限公司 一种聚氨酯材料及其制备方法
CN116219828A (zh) * 2023-03-23 2023-06-06 河北天佑体育设施有限公司 一种耐磨塑胶跑道制备工艺

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990073761A (ko) * 1998-03-03 1999-10-05 윤재승 세푸록심 악세틸의 경구용 고체 분산체 조성물
JP2001049187A (ja) * 1999-08-09 2001-02-20 Ge Toshiba Silicones Co Ltd 固形プライマー及び接着方法
JP2004066235A (ja) * 2002-08-07 2004-03-04 Byk Chem Gmbh グラジエントコポリマーを含有する顔料その他の固体用分散剤
JP2006007491A (ja) * 2004-06-23 2006-01-12 Oji Paper Co Ltd 多色可逆性記録体
KR100622336B1 (ko) * 2001-12-18 2006-09-18 아사히 가세이 가부시키가이샤 금속 산화물 분산체, 그를 이용한 금속 박막 및 금속 박막의 제조방법
KR20130023254A (ko) 2010-05-26 2013-03-07 다이이치 고교 세이야쿠 가부시키가이샤 분산제 및 분산체 조성물
KR20130096307A (ko) 2010-12-22 2013-08-29 다이이치 고교 세이야쿠 가부시키가이샤 분산제 및 분산체 조성물
KR20140026304A (ko) * 2012-08-24 2014-03-05 다이이치 고교 세이야쿠 가부시키가이샤 비수계 분산매용 분산제 및 분산체
JP2015113426A (ja) * 2013-12-12 2015-06-22 旭化成イーマテリアルズ株式会社 エポキシ樹脂用硬化剤、及びエポキシ樹脂組成物
KR20170082565A (ko) * 2014-11-05 2017-07-14 클라리언트 플라스틱스 앤드 코팅즈 리미티드 중합체성 쇄 연장을 위한 농축 조성물

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4113684A (en) * 1976-12-10 1978-09-12 Westinghouse Electric Corp. Low temperature cure epoxy-amine adhesive compositions
JP2005232372A (ja) * 2004-02-20 2005-09-02 Dainichiseika Color & Chem Mfg Co Ltd 微粒子アルミナ分散親水性ポリウレタン樹脂組成物及びその製造方法
CA2651665C (en) * 2006-06-06 2010-04-27 Tibotec Pharmaceuticals Ltd. Process for preparing spray dried formulations of tmc125
WO2008077118A2 (en) * 2006-12-19 2008-06-26 Dow Global Technologies Inc. An ultra-high solid content polyurethane dispersion and a continuous process for producing ultra-high solid content polyurethane dispersions
DE102009001595A1 (de) * 2009-03-17 2010-09-23 Evonik Goldschmidt Gmbh Kompatibilisierungsmittel zur Verbesserung der Lagerstabilität von Polyolmischungen
JP6617105B2 (ja) * 2015-04-01 2019-12-04 サムヤン コーポレイション ポリウレタン、その製造方法及び用途
US9943487B2 (en) * 2015-05-26 2018-04-17 The Board Of Trustees Of The University Of Illinois Polydopamine-coated capsules
US11530292B2 (en) * 2016-11-09 2022-12-20 Basf Se Polyurethane comprising graphene nano structure
JP2019151693A (ja) * 2018-03-01 2019-09-12 日信工業株式会社 ポリウレタン複合材料及びアンビルカバー

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990073761A (ko) * 1998-03-03 1999-10-05 윤재승 세푸록심 악세틸의 경구용 고체 분산체 조성물
JP2001049187A (ja) * 1999-08-09 2001-02-20 Ge Toshiba Silicones Co Ltd 固形プライマー及び接着方法
KR100622336B1 (ko) * 2001-12-18 2006-09-18 아사히 가세이 가부시키가이샤 금속 산화물 분산체, 그를 이용한 금속 박막 및 금속 박막의 제조방법
JP2004066235A (ja) * 2002-08-07 2004-03-04 Byk Chem Gmbh グラジエントコポリマーを含有する顔料その他の固体用分散剤
JP2006007491A (ja) * 2004-06-23 2006-01-12 Oji Paper Co Ltd 多色可逆性記録体
KR20130023254A (ko) 2010-05-26 2013-03-07 다이이치 고교 세이야쿠 가부시키가이샤 분산제 및 분산체 조성물
KR20130096307A (ko) 2010-12-22 2013-08-29 다이이치 고교 세이야쿠 가부시키가이샤 분산제 및 분산체 조성물
KR20140026304A (ko) * 2012-08-24 2014-03-05 다이이치 고교 세이야쿠 가부시키가이샤 비수계 분산매용 분산제 및 분산체
JP2015113426A (ja) * 2013-12-12 2015-06-22 旭化成イーマテリアルズ株式会社 エポキシ樹脂用硬化剤、及びエポキシ樹脂組成物
KR20170082565A (ko) * 2014-11-05 2017-07-14 클라리언트 플라스틱스 앤드 코팅즈 리미티드 중합체성 쇄 연장을 위한 농축 조성물

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111269536A (zh) * 2020-04-16 2020-06-12 扬州金霞塑胶有限公司 纳米纤维素/铜复合材料改性树脂及其制备方法
US20220010050A1 (en) * 2020-07-13 2022-01-13 Taiwan Textile Research Institute Functional resin material, manufacturing method thereof, and moisture-sensed shrinking fabric
US11993674B2 (en) * 2020-07-13 2024-05-28 Taiwan Textile Research Institute Functional resin material, manufacturing method thereof, and moisture-sensed shrinking fabric
CN111944346A (zh) * 2020-08-24 2020-11-17 天长市嘉丰美术用品有限公司 一种不伤手可洗型广告画颜料及其生产工艺
US11952459B2 (en) 2020-12-23 2024-04-09 Kintra Fibers, Inc. Polyester polymer nanocomposites
CN112724771A (zh) * 2020-12-26 2021-04-30 安徽酉阳防水科技有限公司 一种快干耐水外露型防水涂料
CN112951482A (zh) * 2021-02-26 2021-06-11 无锡帝科电子材料股份有限公司 一种电子元器件浆料及加工工艺
CN114316195A (zh) * 2021-12-14 2022-04-12 福建汇得新材料有限公司 一种透气透湿水性聚氨酯树脂及其制备方法
CN114316195B (zh) * 2021-12-14 2023-04-14 福建汇得新材料有限公司 一种透气透湿水性聚氨酯树脂及其制备方法
CN114213952A (zh) * 2021-12-28 2022-03-22 广东美涂士建材股份有限公司 一种环保水性涂料及其制备方法

Also Published As

Publication number Publication date
JP2021523976A (ja) 2021-09-09
CN112105680A (zh) 2020-12-18
JP2023058561A (ja) 2023-04-25
EP3792298A4 (en) 2022-03-09
US20210238413A1 (en) 2021-08-05
EP3792298A1 (en) 2021-03-17

Similar Documents

Publication Publication Date Title
WO2019216700A1 (ko) 고체 분산체, 이의 제조 방법, 이를 이용한 사슬 연장된 폴리우레탄 및 이를 포함하는 에폭시 수지 조성물
WO2013100502A1 (ko) Mccl용 절연 접착제 조성물, 이를 이용한 도장 금속판 및 그 제조방법
WO2020159085A1 (ko) 폴리아미드 수지 필름 및 이를 이용한 수지 적층체
WO2016032299A1 (ko) 단량체 염을 이용한 폴리이미드 제조방법
WO2017160016A1 (ko) 이중 경화가 가능한 저온가교형 블록이소시아네이트 및 이를 포함하는 조성물
WO2018236192A1 (ko) 친환경 폴리우레탄 폼 형성용 조성물 및 폴리우레탄 폼의 제조 방법
WO2022010252A1 (ko) 알킬렌 옥사이드 부가된 폴리올 조성물, 이를 이용한 폴리우레탄 및 이를 포함하는 핫멜트 접착제
WO2013055158A2 (ko) 편광판용 접착제 및 이를 포함하는 편광판
WO2010076990A2 (ko) 이방 전도성 필름 조성물 및 이를 이용한 이방 전도성 필름
WO2022108331A1 (ko) 무수당 알코올-알킬렌 글리콜 조성물을 이용한 이소시아네이트 프리폴리머 조성물, 이 프리폴리머 조성물을 이용한 말단 캡핑된 이소시아네이트 프리폴리머 조성물 및 이를 포함하는 에폭시 수지용 접착 촉진제, 및 이 접착 촉진제를 포함하는 에폭시 수지 조성물 및 이를 포함하는 접착제
WO2020046059A2 (ko) 먼지 생성을 억제하는 방법, 토양안정제 조성물, 및 이를 포함하는 분무 장치
KR102373002B1 (ko) 에폭시 경화용 고체 분산체, 분산체를 포함하는 에폭시 수지 조성물 및 이의 경화물
WO2021034102A1 (ko) 수지 조성물
WO2022071667A1 (ko) 경화성 조성물
WO2022019677A1 (ko) 광경화형 조성물, 이의 경화물을 포함하는 코팅층 및 반도체 공정용 기재
WO2023167505A1 (ko) 무수당 알코올-알킬렌 글리콜 조성물로부터 유래된 에폭시 수지 조성물 및 그 제조 방법, 및 이를 포함하는 경화성 에폭시 수지 조성물 및 이의 경화물
WO2021194071A1 (ko) 보호필름용 점착제 조성물, 이를 포함한 점착제 및 이를 이용한 점착시트
WO2021049860A1 (ko) 경화성 조성물
WO2015152674A1 (ko) 시아네이트계 수지에 대한 분산성이 우수한 실리카졸 조성물 및 이의 제조 방법
WO2022055235A1 (ko) 폴리이미드계 수지 필름 및 이를 이용한 디스플레이 장치용 기판, 및 광학 장치
WO2021010654A1 (ko) 무수당 알코올-알킬렌 글리콜 조성물, 무수당 알코올 기반 우레탄 변성 폴리올 조성물, 및 에폭시 수지 조성물을 위한 이들의 용도
WO2023085883A1 (ko) 이소시아네이트 프리폴리머 조성물, 이 프리폴리머 조성물을 이용한 말단 캡핑된 이소시아네이트 프리폴리머 조성물 및 이를 포함하는 에폭시 수지용 접착 촉진제, 및 이 접착 촉진제를 포함하는 에폭시 수지 조성물 및 이를 포함하는 접착제
KR20190133865A (ko) 에폭시 경화용 고체 분산체, 분산체를 포함하는 에폭시 수지 조성물 및 이의 경화물
WO2023140644A1 (ko) 반도체 소자 봉지용 변성 에폭시 수지, 이의 제조 방법 및 이를 포함하는 낮은 휨을 나타내는 반도체 소자 봉지용 액상 수지 조성물
WO2011096687A2 (ko) 회로 접속용 도전 접착제 조성물, 회로 접속재료, 회로 접속구조체 및 회로 접속구조체의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19800062

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021513741

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019800062

Country of ref document: EP