WO2023085817A1 - 초고분자량 폴리올레핀 중합용 메탈로센 화합물 및 이를 이용한 초고분자량 폴리올레핀 중합체의 제조방법 - Google Patents

초고분자량 폴리올레핀 중합용 메탈로센 화합물 및 이를 이용한 초고분자량 폴리올레핀 중합체의 제조방법 Download PDF

Info

Publication number
WO2023085817A1
WO2023085817A1 PCT/KR2022/017668 KR2022017668W WO2023085817A1 WO 2023085817 A1 WO2023085817 A1 WO 2023085817A1 KR 2022017668 W KR2022017668 W KR 2022017668W WO 2023085817 A1 WO2023085817 A1 WO 2023085817A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
molecular weight
ultra
high molecular
weight polyolefin
Prior art date
Application number
PCT/KR2022/017668
Other languages
English (en)
French (fr)
Inventor
강민경
성우영
임규주
이유진
윤성균
남상훈
김영환
Original Assignee
주식회사 에스피씨아이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에스피씨아이 filed Critical 주식회사 에스피씨아이
Publication of WO2023085817A1 publication Critical patent/WO2023085817A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/01High molecular weight, e.g. >800,000 Da.
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/12Melt flow index or melt flow ratio

Definitions

  • the present invention relates to a novel metallocene compound for polyolefin polymerization and a method for producing a polyolefin polymer using the same, and more specifically, to a metallocene compound for ultra-high molecular weight polyolefin polymerization having a molecular weight of 1,000,000 g/mol or more and an ultra-high molecular weight polyolefin polymer using the same It is about the manufacturing method of.
  • a so-called Ziegler-Natta catalyst system composed of a main catalyst component of a titanium or vanadium compound and a cocatalyst component of an alkylaluminum compound has been conventionally used in the production of olefin polymers.
  • the Ziegler-Natta catalyst system is a multi-active point catalyst in which several active species are mixed, and is characterized by a wide molecular weight distribution of the polymer, but there is a limit to securing desired physical properties because the composition distribution of the comonomer is not uniform.
  • the metallocene catalyst system which consists of metallocene compounds of transition metals of group 4 of the periodic table such as titanium, zirconium, and hafnium, and methylaluminoxane as a cocatalyst, is a homogeneous catalyst with a single catalytically active site. -Compared to other catalyst systems, it has a narrow molecular weight distribution, a uniform composition distribution of comonomers, and the ability to change the properties of the polymer depending on the ligand structure of the catalyst.
  • metallocene catalysts are more expensive than conventional Ziegler-Natta catalysts, but have economic value due to their high activity.
  • Ultra-high molecular weight polyolefin is a type of polyolefin resin and means a polyolefin having a molecular weight of at least 1,000,000 g/mol or more. Since ultra-high molecular weight polyolefins have a very large molecular weight compared to general-purpose polyolefins, they have excellent properties such as stiffness, wear resistance, environmental stress uniformity, self-lubrication, chemical resistance, and electrical properties. Due to these excellent physical properties, ultra-high molecular weight polyolefin can be said to be a high-quality special material obtained from general-purpose raw materials.
  • Patent Document 0001 US Patent No. 4,962,167
  • Patent Document 0002 Korea Patent Registration No. 10-1049662
  • Patent Document 0003 Korea Patent Registration No. 10-1144513
  • the present invention is a metal for polymerization of ultra-high molecular weight polyolefin, which has excellent catalytic activity and can be used as a catalyst itself or a catalyst precursor to prepare an ultra-high molecular weight polyolefin polymer having a molecular weight of 1,000,000 g/mol or more. It is an object of the present invention to provide a rosene compound and a method for producing an ultra-high molecular weight polyolefin polymer using the same.
  • the present invention includes a metallocene compound for polymerization of ultra-high molecular weight polyolefins represented by Formula 1 below.
  • R 1 to R 10 are the same as or different from each other, and each independently hydrogen, halogen, linear or branched C 1 -C 20 alkyl group, C 2 -C 20 alkenyl group, C 1 - C 20 ether group, C 1 -C 20 alkoxy group, C 6 -C 20 aryl group, C 7 -C 20 alkylaryl group, C 7 -C 20 arylalkyl group or C 3 -C 20 unsaturated Or an aromatic ring, wherein M is a Group 3 transition metal, a Group 4 transition metal, a Group 5 transition metal, a lanthanide-based transition metal or an actanide-based transition metal, and B is carbon or an indenyl group 14 element.
  • a bridging group connecting groups wherein X 1 and X 2 are the same as or different from each other, and each independently represents hydrogen, boron, oxygen, halogen, linear or branched C 1 -C 20 alkyl, C 2 -C 20 An alkenyl group, a C 1 -C 20 ether group, a C 1 -C 20 alkoxy group, a C 6 -C 20 aryl group, a C 1 -C 20 sulfonate group, and combinations thereof.
  • Y 1 and Y 2 are the same as or different from each other, and each independently represents hydrogen, boron, oxygen, halogen, a linear or branched C 1 -C 20 alkyl group, a C 2 -C 20 alkenyl group, C 1 -C 20 ether group, C 1 -C 20 alkoxy group, C 6 -C 20 aryl group, C 7 -C 20 alkylaryl group, C 7 -C 20 arylalkyl group, C 3 -C It is any one selected from the group consisting of 20 unsaturated or aromatic rings and combinations thereof.
  • R 1 to R 10 are the same as or different from each other, and are each independently hydrogen, halogen, methyl, ethyl, propyl, isopropyl, n-butyl, tert-butyl, pentyl, hexyl, hep It may be a ethyl group, an octyl group, an ethylene group, a propylene group, a butylene group, a phenyl group, a benzyl group, a naphthyl group, a halogen group, an ether group, a methoxy group, or an ethoxy group.
  • M may be titanium (Ti), zirconium (Zr), hafnium (Hf), or rutherfordium (Rf).
  • X 1 and X 2 are the same as or different from each other, and each independently hydrogen, boron, oxygen, halogen, methyl, ethyl, propyl, isopropyl, n-butyl, tertbutyl, pentyl, penta
  • a dienyl group a hexyl group, a heptyl group, an octyl group, an ethylene group, a propylene group, a butylene group, a phenyl group, a benzyl group, a naphthyl group, a halogen group, an ether group, a methoxy group, an ethoxy group, and combinations thereof It may be any one selected.
  • Y 1 and Y 2 are the same as or different from each other, and each independently represents hydrogen, boron, oxygen, halogen, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, tertbutyl group, pentyl group, hex Any one selected from the group consisting of a real group, a heptyl group, an octyl group, an ethylene group, a propylene group, a butylene group, a phenyl group, a benzyl group, a naphthyl group, a halogen group, an ether group, a methoxy group, an ethoxy group, and combinations thereof can
  • the metallocene compound may be a metallocene compound for polymerization of ultra-high molecular weight polyolefin represented by Formula 2 below.
  • M is a Group 3 transition metal, a Group 4 transition metal, a Group 5 transition metal, a lanthanide-based transition metal or an actanide-based transition metal
  • B is carbon or a Group 14 element
  • the ultra-high molecular weight metallocene compound for polymerization of polyolefin may have a purity of 80.0 to 99.9% and a Li content of 50 to 450 ppm.
  • the method for preparing the ultra-high molecular weight polyolefin polymer of the present invention includes the step of polymerizing an olefin-based monomer in the presence of a metallocene compound for ultra-high molecular weight polyolefin polymerization represented by Formula 1 below.
  • R 1 to R 10 are the same as or different from each other, and each independently hydrogen, halogen, linear or branched C 1 -C 20 alkyl group, C 2 -C 20 alkenyl group, C 1 - C 20 ether group, C 1 -C 20 alkoxy group, C 6 -C 20 aryl group, C 7 -C 20 alkylaryl group, C 7 -C 20 arylalkyl group or C 3 -C 20 unsaturated Or an aromatic ring, wherein M is a Group 3 transition metal, a Group 4 transition metal, a Group 5 transition metal, a lanthanide-based transition metal or an actanide-based transition metal, and B is carbon or an indenyl group 14 element.
  • a bridging group connecting groups wherein X 1 and X 2 are the same as or different from each other, and each independently represents hydrogen, boron, oxygen, halogen, linear or branched C 1 -C 20 alkyl, C 2 -C 20 An alkenyl group, a C 1 -C 20 ether group, a C 1 -C 20 alkoxy group, a C 6 -C 20 aryl group, a C 1 -C 20 sulfonate group, and combinations thereof.
  • Y 1 and Y 2 are the same as or different from each other, and each independently represents hydrogen, boron, oxygen, halogen, a linear or branched C 1 -C 20 alkyl group, a C 2 -C 20 alkenyl group, C 1 -C 20 ether group, C 1 -C 20 alkoxy group, C 6 -C 20 aryl group, C 7 -C 20 alkylaryl group, C 7 -C 20 arylalkyl group, C 3 -C It is any one selected from the group consisting of 20 unsaturated or aromatic rings and combinations thereof.
  • the polymerization may be performed by a solution polymerization process, a slurry process, or a gas phase process.
  • the olefinic monomer is ethylene, propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1-octene, 1-decene, 1-undecene, 1- Dodecene, 1-tetradecene, 1-hexadecene, 1-icosene, norbornene, norbornadiene, ethylidenenorbornene, phenylnorbornene, vinylnorbornene, dicyclopentadiene, 1,4-butadiene, 1 It may be at least one selected from the group consisting of ,5-pentadiene, 1,6-hexadiene, styrene, alpha-methyl styrene, divinylbenzene, and 3-chloromethyl styrene.
  • the activity of the metallocene compound calculated as the ratio of the weight (kg) of the polyolefin polymer produced per unit weight content (g) of the metallocene compound used on the basis of unit time (h) is 3.0 kg/g Cat.hr or more can
  • the present invention discloses an ultra-high molecular weight polyolefin polymer prepared by the method for preparing the ultra-high molecular weight polyolefin polymer of the present invention.
  • the ultra-high molecular weight polyolefin polymer of the present invention may have a weight average molecular weight of 1,000,000 g/mol or more.
  • the ultrahigh molecular weight polyolefin polymer of the present invention may have a melt index of 0.1 to 20 g/10min (21.6 kg).
  • the ultra-high molecular weight polyolefin polymer of the present invention may have a melting point (Tm) of 130 to 170 °C.
  • the metallocene compound for polymerization of ultra-high molecular weight polyolefin according to the present invention according to the above has excellent catalytic activity, and when used as a catalyst itself or as a catalyst precursor, an ultra-high molecular weight polyolefin polymer having a molecular weight of 1,000,000 g/mol or more can be prepared.
  • the method for preparing the ultra-high molecular weight polyolefin polymer of the present invention can prepare the ultra-high molecular weight polyolefin polymer exhibiting high mechanical properties by using the metallocene compound for polymerization of the ultra-high molecular weight polyolefin of the present invention.
  • the present inventors have prepared an ultra-high molecular weight metallocene compound for polymerization of polyolefin, represented by Formula 1 below, and when the compound is used as a catalyst itself or a catalyst precursor, it exhibits mechanical properties and improved processability, and has a molecular weight of 1 million g/mol or more.
  • the present invention was completed by confirming that molecular weight polyolefins could be produced.
  • the term "ultra-high molecular weight” used herein means a molecular weight of 1 million g/mol or more.
  • the present specification discloses a metallocene compound for polymerization of ultra-high molecular weight polyolefin represented by Formula 1 below.
  • R 1 to R 10 are the same as or different from each other, and each independently hydrogen, halogen, linear or branched C 1 -C 20 alkyl group, C 2 -C 20 alkenyl group, C 1 -C 20 ether group, C 1 -C 20 alkoxy group, C 6 -C 20 aryl group, C 7 -C 20 alkylaryl group, C 7 -C 20 arylalkyl group or C 3 -C 20 unsaturated or An aromatic ring, wherein M is a Group 3 transition metal, a Group 4 transition metal, a Group 5 transition metal, a lanthanide-based transition metal or an actanide-based transition metal, and B is carbon or an indenyl group as a Group 14 element
  • a bridging group connecting X 1 and X 2 are the same as or different from each other, and each independently represents hydrogen, boron, oxygen, halogen, linear or branched C 1 -C 20 alkyl, C 2 -C 20 alkane Any one
  • R 1 to R 10 are the same as or different from each other, and each independently hydrogen, halogen, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, tert -It is preferably a butyl group, pentyl group, hexyl group, heptyl group, octyl group, ethylene group, propylene group, butylene group, phenyl group, benzyl group, naphthyl group, halogen group, ether group, methoxy group or ethoxy group. It is not limited.
  • M is preferably titanium (Ti), zirconium (Zr), hafnium (Hf) or rutherfordium (Rf), but is not limited thereto.
  • X 1 and X 2 are the same as or different from each other, and each independently hydrogen, boron, oxygen, halogen, methyl group, ethyl group, propyl group, isopropyl group, n- A butyl group, a tert-butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, an ethylene group, a propylene group, a butylene group, a phenyl group, a pentadienyl group, a benzyl group, a naphthyl group, a halogen group, an ether group, a methoxy group, It is preferably any one selected from the group consisting of an ethoxy group and combinations thereof, but is not limited thereto.
  • Y 1 and Y 2 are the same as or different from each other, and each independently hydrogen, boron, oxygen, halogen, methyl group, ethyl group, propyl group, isopropyl group, n- Butyl group, tert-butyl group, pentyl group, hexyl group, heptyl group, octyl group, ethylene group, propylene group, butylene group, phenyl group, benzyl group, naphthyl group, halogen group, ether group, methoxy group, ethoxy group and their It is preferably any one selected from the group consisting of combinations, but is not limited thereto.
  • the metallocene compound for polymerization of ultra-high molecular weight polyolefin of the present invention is preferably a metallocene compound for polymerization of ultra-high molecular weight polyolefin represented by Chemical Formula 2 below.
  • M is a Group 3 transition metal, a Group 4 transition metal, a Group 5 transition metal, a lanthanide-based transition metal or an actanide-based transition metal
  • B is carbon or an indenyl group 14 element.
  • a bridging group connecting groups wherein X 1 and X 2 are the same as or different from each other, and each independently represents hydrogen, boron, oxygen, halogen, linear or branched C 1 -C 20 alkyl, C 2 -C 20 An alkenyl group, a C 1 -C 20 ether group, a C 1 -C 20 alkoxy group, a C 6 -C 20 aryl group, a C 1 -C 20 sulfonate group, and combinations thereof.
  • Y 1 and Y 2 are the same as or different from each other, and each independently represents hydrogen, boron, oxygen, halogen, a linear or branched C 1 -C 20 alkyl group, a C 2 -C 20 alkenyl group, C 1 -C 20 ether group, C 1 -C 20 alkoxy group, C 6 -C 20 aryl group, C 7 -C 20 alkylaryl group, C 7 -C 20 arylalkyl group, C 3 -C It is any one selected from the group consisting of 20 unsaturated or aromatic rings and combinations thereof.
  • M is preferably titanium (Ti), zirconium (Zr), hafnium (Hf) or rutherfordium (Rf), but is not limited thereto.
  • X 1 and X 2 are the same as or different from each other, and each independently represent hydrogen, boron, oxygen, halogen, methyl, ethyl, propyl, isopropyl, n-butyl, tertbutyl group, pentyl group, pentadienyl group, hexyl group, heptyl group, octyl group, ethylene group, propylene group, butylene group, phenyl group, benzyl group, naphthyl group, halogen group, ether group, methoxy group, ethoxy group and these It is preferably any one selected from the group consisting of combinations, but is not limited thereto.
  • X 1 and X 2 are the same as or different from each other, and each independently Cl (halogene), Me (Methyl, CH 3 -), OMe (methoxy, OCH 3 -), Bz (benzyl , C 6 H 5 CH 2 -), BH 4 (borohydride), and piperylene (-C 5 H 8 ).
  • Y 1 and Y 2 are the same as or different from each other, and each independently hydrogen, boron, oxygen, halogen, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, tert butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, an ethylene group, a propylene group, a butylene group, a phenyl group, a benzyl group, a naphthyl group, a halogen group, an ether group, a methoxy group, an ethoxy group, and combinations thereof It is preferably any one selected from, but is not limited thereto.
  • the ligand corresponds to the same indenyl derivative, and more specifically, pentamethyltetrahydronaphthylindene.
  • the metallocene compound for ultra-high molecular weight polyolefin polymerization of the present invention preferably has a purity of 70.0% or more, more preferably 80.0 to 99.9%.
  • the metallocene compound for polymerization of ultra-high molecular weight polyolefin of the present invention preferably has a Li content of 500 ppm or less, more preferably 50 to 450 ppm.
  • the metallocene compound for ultra-high molecular weight polyolefin polymerization of the present invention may be used as a catalyst for ultra-high molecular weight polyolefin polymerization by itself or together with a cocatalyst as a catalyst precursor.
  • the catalyst for polymerization of ultra-high molecular weight polyolefin may be a catalyst supported on a carrier.
  • the support is not particularly limited since a carrier conventional in the art to which the present invention pertains may be used, but preferably one or more carriers selected from the group consisting of silica, silica-alumina and silica-magnesia may be used.
  • silica carrier such as silica
  • the silica carrier and the functional group of the metallocene compound for ultra-high molecular weight polyolefin polymerization of the present invention are chemically bonded and supported, there is almost no catalyst released from the surface in the polyolefin polymerization process, resulting in slurry or When producing polyolefin by gas phase polymerization, there is no fouling on the walls of the reactor or polymer particles sticking together.
  • the ultra-high molecular weight polyolefin prepared in the presence of a catalyst containing such a silica carrier has an excellent polymer particle shape and apparent density, and thus can be suitably used in a conventional slurry or gas phase polymerization process. Therefore, it is preferable to use a carrier that is dried at a high temperature and has a highly reactive siloxane group on its surface. More specifically, silica, silica-alumina, etc. dried at high temperature may be used, and these are usually oxides, carbonates, sulfates, nitrates, such as Na 2 O, K 2 CO 3 , BaSO 4 , Mg(NO 3 ) 2 , etc. may contain this.
  • the catalyst for polymerization of ultra-high molecular weight polyolefins may further include a cocatalyst composed of alkylaluminoxane.
  • a substituent (X) bound to a metal element (M) of a metallocene compound may be used as a catalyst in which a substituent (X) is substituted with an alkyl group having 1 to 20 carbon atoms.
  • the cocatalyst may also be used in the art to which the present invention belongs, it is not particularly limited, but preferably, one or more cocatalysts selected from the group consisting of silica, silica-alumina, and organoaluminum compounds may be used.
  • the metallocene compound for ultra-high molecular weight polyolefin polymerization of the present invention is basically a catalyst itself or a catalyst precursor capable of producing ultra-high molecular weight polyolefin with a molecular weight of 1 million g/mol or more, and by controlling the amount of hydrogen used as a molecular weight regulator, It is possible to mass-produce polyolefins having a wide molecular weight distribution from molecular weight to low molecular weight.
  • the present specification further discloses a method for preparing an ultra-high molecular weight polyolefin polymer comprising polymerizing an olefin-based monomer in the presence of a metallocene compound for polymerization of an ultra-high molecular weight polyolefin according to the present invention.
  • the method for preparing an ultrahigh molecular weight polyolefin polymer of the present invention includes polymerizing an olefinic monomer in the presence of a metallocene compound for polymerization of ultrahigh molecular weight polyolefin represented by Formula 1 below.
  • R 1 to R 10 are the same as or different from each other, and each independently hydrogen, halogen, linear or branched C 1 -C 20 alkyl group, C 2 -C 20 alkenyl group, C 1 -C 20 ether group, C 1 -C 20 alkoxy group, C 6 -C 20 aryl group, C 7 -C 20 alkylaryl group, C 7 -C 20 arylalkyl group or C 3 -C 20 unsaturated or An aromatic ring, wherein M is a Group 3 transition metal, a Group 4 transition metal, a Group 5 transition metal, a lanthanide-based transition metal or an actanide-based transition metal, and B is carbon or an indenyl group as a Group 14 element
  • a bridging group connecting X 1 and X 2 are the same as or different from each other, and each independently represents hydrogen, boron, oxygen, halogen, linear or branched C 1 -C 20 alkyl, C 2 -C 20 alkane Any one
  • the polymerization is preferably performed by a solution polymerization process, a slurry process, or a gas phase process, but is not limited thereto.
  • the olefinic monomers are ethylene, propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1-octene, 1- Decene, 1-undecene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-eicosene, norbornene, norbornadiene, ethylidenenorbornene, phenylnorbornene, vinylnorbornene, dicyclopenta It is preferably at least one selected from the group consisting of diene, 1,4-butadiene, 1,5-pentadiene, 1,6-hexadiene, styrene, alpha-methyl styrene, divinylbenzene, and 3-chloromethyl styrene.
  • diene 1,4-butadiene, 1,5-pentadiene, 1,6-hexadiene, s
  • the polymerization reaction may be performed at a temperature of 25 to 500 °C and a pressure of 1 to 100 kgf/cm 2 for 1 to 24 hours.
  • the temperature of the polymerization reaction is preferably 25 to 200 ° C, more preferably 50 to 100 ° C.
  • the pressure of the polymerization reaction is preferably 1 to 70 kgf/cm 2 , and more preferably 5 to 40 kgf/cm 2 .
  • the polymerization reaction time is preferably 1 to 5 hours.
  • the metallocene compound calculated as the ratio of the weight (kg) of the polyolefin polymer produced per unit weight content (g) of the metallocene compound used per unit time (h) in the method for producing an ultra-high molecular weight polyolefin polymer of the present invention
  • the activity can be 1.0 kg/gCat.hr or more or 1.0 to 10 kg/gCat.hr or more, preferably 3.0 kg/gCat.hr or more.
  • the molecular weight range of the finally produced polymer product can be adjusted according to the injected amount of hydrogen.
  • high molecular weight or ultra-high molecular weight polyolefins can be produced under conditions where hydrogen is not added or a very small amount is added, and when hydrogen is added, low molecular weight polyolefins can be produced even with a small amount of hydrogen added.
  • the hydrogen content added to the polymerization reaction is within the range of 0 to 500 ml under the reactor condition of 1 atm, or supplied at a pressure of 0 to 1.0 bar, or the range of hydrogen mole content relative to the olefin monomer may be supplied at 0.1 to 4,000 ppm. there is.
  • ultra-high molecular weight polyolefin can be effectively produced.
  • the present specification further discloses an ultra-high molecular weight polyolefin polymer prepared by the method for preparing the ultra-high molecular weight polyolefin polymer of the present invention.
  • the ultra-high molecular weight polyolefin polymer of the present invention prepared using the metallocene compound for polymerization of the ultra-high molecular weight polyolefin of the present invention has a weight average molecular weight of 800,000 g/mol or more, preferably 1,000,000 under conditions where no hydrogen is added or a very small amount is added. g/mol or greater.
  • the ultra-high molecular weight polyolefin polymer of the present invention prepared using the metallocene compound for polymerization of the ultra-high molecular weight polyolefin of the present invention may have a molecular weight distribution (Mw/Mn) of 3.5 or less, preferably 0.5 to 3.3, but is limited thereto. it is not going to be
  • the ultrahigh molecular weight polyolefin polymer of the present invention may have a melt index of 1.2 to 20 g/10min (21.6 kg), more preferably 0.5 to 15 g/10min (21.6 kg), but is not limited thereto.
  • the ultra-high molecular weight polyolefin polymer of the present invention may have a stereoregularity (XI) of 80% or more, preferably 90% or more, and more preferably 95% or more.
  • XI stereoregularity
  • the stereoregularity (XI) of the ultra-high molecular weight polyolefin is a value calculated according to Equation 1 below.
  • the ultra-high molecular weight polyolefin polymer of the present invention can significantly improve the melting point (Tm) of the polyolefin polymer along with the improvement in stereoregularity (XI) as described above, and the melting point of the ultra-high molecular weight polyolefin polymer is 130 ° C. or higher. , preferably 130 to 170 ° C.
  • the ultrahigh molecular weight polyolefin polymer of the present invention may have a crystallization temperature (Tc) of 80 °C or higher, preferably 100 to 130 °C.
  • a metallocene compound for polymerization of ultra-high molecular weight polyolefin represented by Chemical Formula 3 and a metallocene catalyst for polymerization of ultra-high molecular weight polyolefin containing the same were prepared according to the following method.
  • a metallocene compound for polymerization of ultra-high molecular weight polyolefin represented by Chemical Formula 4 and a metallocene catalyst for polymerization of ultra-high molecular weight polyolefin including the same were prepared according to the following method.
  • the metallocene compound of Example 2 was prepared in the same manner as in the preparation of the supported catalyst of Example 1, except that the metallocene compound of Example 2 was used instead of the metallocene compound of Example 1. 5 g of a silica-supported metallocene catalyst in the form of solid particles containing
  • a metallocene compound for polymerization of ultra-high molecular weight polyolefin represented by Chemical Formula 5 and a metallocene catalyst for polymerization of ultra-high molecular weight polyolefin containing the same were prepared according to the following method.
  • the metallocene compound of Example 3 was prepared in the same manner as in the preparation of the supported catalyst of Example 1, except that the metallocene compound of Example 3 was used instead of the metallocene compound of Example 1. 5 g of a silica-supported metallocene catalyst in the form of solid particles containing
  • a metallocene compound for polyolefin polymerization represented by Chemical Formula 6 and a metallocene catalyst for polyolefin polymerization including the same were prepared.
  • the metallocene compound of Comparative Example 1 was prepared in the same manner as in the preparation of the supported catalyst of Example 1, except that the metallocene compound of Comparative Example 1 was used instead of the metallocene compound of Example 1. 5 g of a silica-supported metallocene catalyst in the form of solid particles containing
  • a metallocene compound for polyolefin polymerization represented by Chemical Formula 7 and a metallocene catalyst for polyolefin polymerization including the same were prepared according to the following method.
  • the metallocene compound of Comparative Example 2 was prepared in the same manner as in the preparation of the supported catalyst of Example 1, except that the metallocene compound of Comparative Example 2 was used instead of the metallocene compound of Example 1. 5 g of a silica-supported metallocene catalyst in the form of solid particles containing
  • polypropylene polymers were prepared according to the following method.
  • a 2 L stainless reactor was vacuum-dried at 65 °C, cooled, and 1.5 mmol of triethylaluminum was added at room temperature, followed by 1.5 L of propylene.
  • 0.019 g of the metallocene catalysts prepared in Examples 1 to 3 and Comparative Examples 1 and 2 were respectively introduced into the reactor under nitrogen pressure.
  • a very small amount of hydrogen gas was introduced together with the metallocene catalyst.
  • the temperature of the reactor was gradually raised to 70 °C, followed by polymerization for 1 hour. After completion of the reaction, unreacted propylene was vented.
  • Catalyst purity (%) Based on the methoxy proton (3.7 ppm, 9H) of the internal-standard (1,3,5-trimethoxybenzene) used for quantitative analysis, the integrated intensity of the main peak of the catalyst is compared to the internal-standard It was analyzed using the quantitative analysis method of the sample to calculate the proton hydrogen ratio of the contrast catalyst.
  • Catalyst purity % (Number of moles of standard material x Proton ratio of catalyst / Proton ratio of standard material)/Number of moles of sample x 100)
  • Li content (ppm) of the catalyst Among the inorganic analysis methods in ppm units remaining in the metallocene catalyst, lithium or metal analysis is the most commonly used method for catalysts pretreated by quantitative analysis using ICP-OES equipment Quantitative analysis was performed with a black line according to the dilution factor of the sample.
  • Catalyst activity calculated as the ratio of the weight of the polymer produced (kg PP) per catalyst content (mmol and g of catalyst) used per unit time (h).
  • Tm Melting point of the polymer: The melting point of the polymer was measured using a differential scanning calorimeter (DSC, device name: DSC 2920, manufacturer: TA instrument). Specifically, after heating the polymer to 220 ° C., the temperature was maintained for 5 minutes, then lowered to 20 ° C., and then the temperature was increased again. At this time, the rate of rise and fall of the temperature was adjusted to 10 ° C./min, respectively.
  • DSC differential scanning calorimeter
  • Crystallization temperature (Tc) of the polymer The crystallization temperature was determined from the curve shown while decreasing the temperature under the same conditions as the melting point using DSC.
  • Stereoregularity (XI) of the polymer The polymer was added to boiling ortho-Xylene and converted to a weight ratio (%) of the polymer that was not extracted after 1 hour. Specifically, after preparing 200 mL o-xylene in a flask, 200 mm No. 4 Filtered with extraction paper. The aluminum pan was dried in an oven at 150 °C for 30 minutes, cooled in a desiccator, and the mass was measured. Next, 100 mL of filtered o-xylene was collected with a pipette, transferred to an aluminum pan, and heated to 145 to 150° C. to evaporate all o-xylene. Then, the aluminum pan was vacuum dried for 1 hour at a temperature of 100 ⁇ 5° C. and a pressure of 13.3 kPa for 1 hr. After cooling the aluminum pan in a desiccator and repeating the above process twice, a blank test of only o-xylene was completed within a weight error of 0.0002 g.
  • the resultant solution in which a precipitate was formed was 200 mm No. Filtered repeatedly until clear with the extraction paper of 4. After drying at 150 ° C. for 30 minutes, after cooling in a desiccator, 100 mL of the filtered resultant solution was added to a pre-weighed aluminum pan, and o-xylene was evaporated by heating the aluminum pan to 145 to 150 ° C. The evaporated aluminum pan was vacuum-dried for 1 hour at a temperature of 70 ⁇ 5 ° C and a pressure of 13.3 kPa, and the process of cooling in a desiccator was repeated twice, and the weight was measured within an error of 0.0002 g.
  • melt index The melt index was measured under the condition of 230°C/21.6 kg (kg) according to ASTM D-1238.
  • Table 1 shows the results of measuring physical properties and polymerization reaction (polymerization process) conditions of polypropylene prepared using metallocene catalysts containing the metallocene compounds of Examples 1 to 3 and Comparative Examples 1 and 2.
  • the metallocene catalysts including the metallocene compound for ultra-high molecular weight polyolefin polymerization according to an embodiment of the present invention had catalyst purities of 94.5%, 90.1% and 95.2%, and Comparative Example It can be confirmed that the purity is higher than that of the metallocene catalysts 1 and 2.
  • the metallocene catalyst including the metallocene compound for ultra-high molecular weight polyolefin polymerization according to an embodiment of the present invention has catalytic activities of 8 kg/g Cat hr, 6.4 kg/g Cat hr and 6.6 kg/g Cat hr. , and it can be confirmed that it exhibits higher activity than the metallocene catalysts of Comparative Examples 1 and 2.
  • a metallocene catalyst containing a metallocene compound for polymerization of ultra-high molecular weight polyolefin according to an embodiment of the present invention and a metallocene catalyst containing a metallocene compound according to a comparative example of the present invention are used to obtain polypropylene, respectively.
  • the metallocene compound for polymerization of ultra-high molecular weight polyolefin according to the present invention according to the above has excellent catalytic activity, and when used as a catalyst itself or as a catalyst precursor, an ultra-high molecular weight polyolefin polymer having a molecular weight of 1,000,000 g/mol or more can be prepared.
  • the method for preparing the ultra-high molecular weight polyolefin polymer of the present invention can prepare the ultra-high molecular weight polyolefin polymer exhibiting high mechanical properties by using the metallocene compound for polymerization of the ultra-high molecular weight polyolefin of the present invention.
  • the metallocene compound for polymerization of ultra-high molecular weight polyolefin according to the present invention according to the above has excellent catalytic activity, and when used as a catalyst itself or as a catalyst precursor, an ultra-high molecular weight polyolefin polymer having a molecular weight of 1,000,000 g/mol or more can be prepared.
  • the method for preparing the ultra-high molecular weight polyolefin polymer of the present invention can prepare the ultra-high molecular weight polyolefin polymer exhibiting high mechanical properties by using the metallocene compound for polymerization of the ultra-high molecular weight polyolefin of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

본 발명은 분자량 100만 g/mol 이상의 초고분자량 폴리올레핀 중합용 메탈로센 화합물 및 이를 이용한 초고분자량 폴리올레핀 중합체의 제조방법에 관한 것이다. 본 발명의 초고분자량 폴리올레핀 중합용 메탈로센 화합물은 촉매 활성이 우수하고, 이를 촉매 자체 또는 촉매 전구체로 사용하는 경우 분자량 100만 g/mol 이상의 초고분자량 폴리올레핀 중합체를 제조할 수 있다.

Description

초고분자량 폴리올레핀 중합용 메탈로센 화합물 및 이를 이용한 초고분자량 폴리올레핀 중합체의 제조방법
본 발명은 신규한 폴리올레핀 중합용 메탈로센 화합물 및 이를 이용한 폴리올레핀 중합체의 제조방법에 관한 것으로, 보다 구체적으로 분자량 100만 g/mol 이상의 초고분자량 폴리올레핀 중합용 메탈로센 화합물 및 이를 이용한 초고분자량 폴리올레핀 중합체의 제조방법에 관한 것이다.
종래에 올레핀 중합체 제조에는 일반적으로 티타늄 또는 바나듐 화합물의 주촉매 성분과 알킬알루미늄 화합물의 조촉매 성분으로 구성되는 이른바 지글러-나타 촉매계가 사용되어 왔다. 그런데 지글러-나타 촉매계는 활성종이 여러 개 혼재하는 다활성점 촉매로서 중합체의 분자량 분포가 넓게 나타나는 특징이 있으나, 공단량체의 조성 분포가 균일하지 않아 원하는 물성 확보에 한계가 존재한다.
티타늄, 지르코늄, 하프늄 등 주기율표 4족 전이금속의 메탈로센 화합물과 조촉매인 메틸알루미녹산(methylaluminoxane)으로 구성되는 메탈로센 촉매계는 단일 종의 촉매활성점을 갖는 균일계 촉매이기 때문에 기존의 지글러-나타 촉매계에 비하여 중합체의 분자량 분포가 좁고 공단량체의 조성 분포가 균일하고 촉매의 리간드 구조 변형 등에 따라 중합체의 특성을 변화시킬 수 있는 특징을 가지고 있다.
한편, 메탈로센 촉매는 기존의 지글러-나타 촉매에 비해 가격이 비싸지만 활성이 높아서 경제적인 가치가 있는데, 특히 공단량체에 대한 반응성이 좋으므로 적은 양의 공단량체의 투입으로도 공단량체가 많이 들어간 중합체를 높은 활성으로 얻을 수 있는 이점이 있다. 동일한 공단량체 양을 사용하더라도 보다 균일한 조성 분포를 가진 높은 분자량의 중합체를 만들 수 있어 이를 이용하여 좋은 물성을 가진 필름이나 탄성체로서 응용이 가능하다.
나아가, 이러한 메탈로센 촉매를 이용하여 초고분자량 폴리에틸렌, 초고분자량 폴리프로필렌 등과 같은 초고분자량 폴리올레핀을 중합하기 위한 연구가 활발히 진행되고 있다. 초고분자량 폴리올레핀은 폴리올레핀 수지의 한 종류로서 분자량이 최소 100만 g/mol 이상인 폴리올레핀을 의미한다. 초고분자량 폴리올레핀은 범용 폴리올레핀에 비해 분자량이 굉장히 크기 때문에, 강성, 내마모성, 내환경응력 균일성, 자기 윤활성, 내화학 약품성, 전기적 물성 등이 뛰어난 특징을 갖고 있다. 이와 같은 우수한 물성들로 인하여 초고분자량 폴리올레핀은 범용 원료로부터 얻어지는 고품질의 특수 소재라 할 수 있다.
종래 기술로는, 마그네슘을 포함하고 티타늄에 기초를 둔 초고분자량 폴리에틸렌 제조용 촉매 및 촉매 제조공정이 보고되어 왔다. 특히, 겉보기 밀도가 높은 올레핀 중합촉매를 얻기 위해 마그네슘 용액을 이용한 방법이 알려져 있는데, 미국등록특허 제4,962,167호에서는 마그네슘 할라이드 화합물과 티타늄알콕사이드 화합물의 반응물과, 알루미늄 할라이드와 실리콘 알콕사이드 화합물의 반응물을 반응시켜 얻은 촉매 제조 공정을 공개하고 있다. 다만, 이와 같이 제조된 촉매는 비교적 높은 겉보기 밀도를 제공하나, 촉매의 활성이 상대적으로 낮은 문제점이 존재한다.
이러한 촉매 개발에도 불구하고 당 업계에서는 보다 향상된 중합 성능과 높은 촉매 활성을 나타내는 촉매로서 특히, 초고분자량 폴리올레핀 중합을 위한 메탈로센 촉매의 제조와 더불어 이러한 촉매를 이용하는 초고분자량 폴리올레핀 중합 방법의 개발을 요구하고 있다.
[선행기술문헌]
[특허문헌]
(특허문헌 0001) 미국등록특허 제4,962,167호
(특허문헌 0002) 한국등록특허 제10-1049662호
(특허문헌 0003) 한국등록특허 제10-1144513호
상술한 바와 같은 문제점을 해결하기 위하여, 본 발명은 촉매 활성이 우수하고, 이를 촉매 자체 또는 촉매 전구체로 사용하여 분자량 100만 g/mol 이상의 초고분자량 폴리올레핀 중합체를 제조할 수 있는 초고분자량 폴리올레핀 중합용 메탈로센 화합물 및 이를 이용한 초고분자량 폴리올레핀 중합체의 제조방법을 제공하는 것을 목적으로 한다.
상기와 같은 목적을 달성하기 위하여 본 발명은 하기 화학식 1로 표시되는, 초고분자량 폴리올레핀 중합용 메탈로센 화합물을 포함한다.
[화학식 1]
Figure PCTKR2022017668-appb-img-000001
(상기 화학식 1에서, R1 내지 R10은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, 선형 또는 분지형의 C1-C20의 알킬기, C2-C20의 알케닐기, C1-C20의 에테르기, C1-C20의 알콕시기, C6-C20의 아릴기, C7-C20의 알킬아릴기, C7-C20의 아릴알킬기 또는 C3-C20의 불포화 또는 방향족 고리이고, 상기 M은 3족 전이금속, 4족 전이금속, 5족 전이금속, 란타나이드 계열의 전이금속 또는 악타나이드 계열의 전이금속이고, 상기 B는 탄소 또는 14족의 원소로서 인데닐기를 연결하는 브릿지 그룹이고, 상기 X1 및 X2는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 붕소, 산소, 할로겐, 선형 또는 분지형의 C1-C20의 알킬, C2-C20의 알케닐기, C1-C20의 에테르기, C1-C20의 알콕시기, C6-C20의 아릴기, C1-C20의 설포네이트기 및 이들의 조합들로 이루어진 군에서 선택되는 어느 하나이고, 상기 Y1 및 Y2는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 붕소, 산소, 할로겐, 선형 또는 분지형의 C1-C20의 알킬기, C2-C20의 알케닐기, C1-C20의 에테르기, C1-C20의 알콕시기, C6-C20의 아릴기, C7-C20의 알킬아릴기, C7-C20의 아릴알킬기, C3-C20의 불포화 또는 방향족 고리 및 이들의 조합들로 이루어진 군에서 선택되는 어느 하나이다.)
여기서, 상기 R1 내지 R10은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, 메틸기, 에틸기, 프로필기, 이소프로필기, n-부틸기, tert-부틸기, 펜틸기, 헥실기, 헵틸기, 옥틸기, 에틸렌기, 프로필렌기, 부틸렌기, 페닐기, 벤질기, 나프틸기, 할로겐기, 에테르기, 메톡시기 또는 에톡시기일 수 있다.
여기서, 상기 M은 티타늄(Ti), 지르코늄(Zr), 하프늄(Hf) 또는 러더포듐(Rf)일 수 있다.
여기서, 상기 X1 및 X2는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 붕소, 산소, 할로겐, 메틸기, 에틸기, 프로필기, 이소프로필기, n-부틸기, tert부틸기, 펜틸기, 펜타다이에닐기, 헥실기, 헵틸기, 옥틸기, 에틸렌기, 프로필렌기, 부틸렌기, 페닐기, 벤질기, 나프틸기, 할로겐기, 에테르기, 메톡시기, 에톡시기 및 이들의 조합들로 이루어진 군에서 선택되는 어느 하나일 수 있다.
여기서, 상기 Y1 및 Y2는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 붕소, 산소, 할로겐, 메틸기, 에틸기, 프로필기, 이소프로필기, n-부틸기, tert부틸기, 펜틸기, 헥실기, 헵틸기, 옥틸기, 에틸렌기, 프로필렌기, 부틸렌기, 페닐기, 벤질기, 나프틸기, 할로겐기, 에테르기, 메톡시기, 에톡시기 및 이들의 조합들로 이루어진 군에서 선택되는 어느 하나일 수 있다.
여기서, 상기 메탈로센 화합물은 하기 화학식 2로 표시되는, 초고분자량 폴리올레핀 중합용 메탈로센 화합물일 수 있다.
[화학식 2]
Figure PCTKR2022017668-appb-img-000002
(상기 화학식 2에서, 상기 M은 3족 전이금속, 4족 전이금속, 5족 전이금속, 란타나이드 계열의 전이금속 또는 악타나이드 계열의 전이금속이고, 상기 B는 탄소 또는 14족의 원소로서 인데닐기를 연결하는 브릿지 그룹이고, 상기 X1 및 X2는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 붕소, 산소, 할로겐, 선형 또는 분지형의 C1-C20의 알킬, C2-C20의 알케닐기, C1-C20의 에테르기, C1-C20의 알콕시기, C6-C20의 아릴기, C1-C20의 설포네이트기 및 이들의 조합들로 이루어진 군에서 선택되는 어느 하나이고, 상기 Y1 및 Y2는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 붕소, 산소, 할로겐, 선형 또는 분지형의 C1-C20의 알킬기, C2-C20의 알케닐기, C1-C20의 에테르기, C1-C20의 알콕시기, C6-C20의 아릴기, C7-C20의 알킬아릴기, C7-C20의 아릴알킬기, C3-C20의 불포화 또는 방향족 고리 및 이들의 조합들로 이루어진 군에서 선택되는 어느 하나이다.)
여기서, 상기 초고분자량 폴리올레핀 중합용 메탈로센 화합물은 순도가 80.0 내지 99.9%의 범위 이내이고, Li 함량이 50 내지 450 ppm의 범위 이내일 수 있다.
또한, 본 발명의 초고분자량 폴리올레핀 중합체의 제조방법은 하기 화학식 1로 표시되는, 초고분자량 폴리올레핀 중합용 메탈로센 화합물의 존재 하에 올레핀계 단량체를 중합하는 단계를 포함한다.
[화학식 1]
Figure PCTKR2022017668-appb-img-000003
(상기 화학식 1에서, R1 내지 R10은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, 선형 또는 분지형의 C1-C20의 알킬기, C2-C20의 알케닐기, C1-C20의 에테르기, C1-C20의 알콕시기, C6-C20의 아릴기, C7-C20의 알킬아릴기, C7-C20의 아릴알킬기 또는 C3-C20의 불포화 또는 방향족 고리이고, 상기 M은 3족 전이금속, 4족 전이금속, 5족 전이금속, 란타나이드 계열의 전이금속 또는 악타나이드 계열의 전이금속이고, 상기 B는 탄소 또는 14족의 원소로서 인데닐기를 연결하는 브릿지 그룹이고, 상기 X1 및 X2는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 붕소, 산소, 할로겐, 선형 또는 분지형의 C1-C20의 알킬, C2-C20의 알케닐기, C1-C20의 에테르기, C1-C20의 알콕시기, C6-C20의 아릴기, C1-C20의 설포네이트기 및 이들의 조합들로 이루어진 군에서 선택되는 어느 하나이고, 상기 Y1 및 Y2는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 붕소, 산소, 할로겐, 선형 또는 분지형의 C1-C20의 알킬기, C2-C20의 알케닐기, C1-C20의 에테르기, C1-C20의 알콕시기, C6-C20의 아릴기, C7-C20의 알킬아릴기, C7-C20의 아릴알킬기, C3-C20의 불포화 또는 방향족 고리 및 이들의 조합들로 이루어진 군에서 선택되는 어느 하나이다.)
여기서, 상기 중합은 용액 중합 공정, 슬러리 공정 또는 기상 공정에 의하여 수행될 수 있다.
여기서, 상기 올레핀계 단량체는 에틸렌, 프로필렌, 1-부텐, 1-펜텐, 4-메틸-1-펜텐, 1-헥센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센, 1-헥사데센, 1-아이코센, 노보넨, 노보나디엔, 에틸리덴노보넨, 페닐노보넨, 비닐노보넨, 디사이클로펜타디엔, 1,4-부타디엔, 1,5-펜타디엔, 1,6-헥사디엔, 스티렌, 알파-메틸 스티렌, 디비닐벤젠, 및 3-클로로메틸스티렌으로 이루어진 군으로부터 선택되는 1종 이상일 수 있다.
여기서, 단위 시간(h)을 기준으로 사용된 메탈로센 화합물 단위 중량 함량(g)당 생성된 폴리올레핀 중합체의 중량(kg)의 비로 계산한 메탈로센 화합물의 활성이 3.0 kg/gCatㆍhr 이상일 수 있다.
한편, 본 발명은 본 발명의 초고분자량 폴리올레핀 중합체의 제조방법에 의하여 제조되는, 초고분자량 폴리올레핀 중합체를 개시한다.
여기서, 본 발명의 초고분자량 폴리올레핀 중합체는 중량 평균분자량이 1,000,000 g/mol 이상 일 수 있다.
여기서, 본 발명의 초고분자량 폴리올레핀 중합체는 용융지수가 0.1 내지 20 g/10min (21.6 kg)일 수 있다.
여기서, 본 발명의 초고분자량 폴리올레핀 중합체는 녹는점(Tm)이 130 내지 170 ℃일 수 있다.
상술한 바에 따른 본 발명의 초고분자량 폴리올레핀 중합용 메탈로센 화합물은 촉매 활성이 우수하고, 이를 촉매 자체 또는 촉매 전구체로 사용하는 경우 분자량 100만 g/mol 이상의 초고분자량 폴리올레핀 중합체를 제조할 수 있다.
또한, 본 발명의 초고분자량 폴리올레핀 중합체의 제조방법은 본 발명의 초고분자량 폴리올레핀 중합용 메탈로센 화합물을 이용하여 제조함에 따라 높은 기계적 물성을 나타내는 초고분자량 폴리올레핀 중합체를 제조할 수 있다.
본 출원에서 사용하는 용어는 단지 특정한 예시를 설명하기 위하여 사용되는 것이다. 때문에 가령 단수의 표현은 문맥상 명백하게 단수여야만 하는 것이 아닌 한, 복수의 표현을 포함한다. 덧붙여, 본 출원에서 사용되는 “포함하다” 또는 “구비하다”등의 용어는 명세서 상에 기재된 특징, 단계, 기능, 구성요소 또는 이들을 조합한 것이 존재함을 명확히 지칭하기 위하여 사용되는 것이지, 다른 특징들이나 단계, 기능, 구성요소 또는 이들을 조합한 것의 존재를 예비적으로 배제하고자 사용되는 것이 아님에 유의해야 한다.
한편, 다르게 정의되지 않는 한, 본 명세서에서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진 것으로 보아야 한다. 따라서, 본 명세서에서 명확하게 정의하지 않는 한, 특정 용어가 과도하게 이상적이거나 형식적인 의미로 해석되어서는 안 된다.
본 발명자들은 하기 화학식 1로 표시되는, 초고분자량 폴리올레핀 중합용 메탈로센 화합물을 제조하였고, 상기 화합물을 촉매 자체 또는 촉매 전구체로 사용하는 경우 기계적 물성 및 향상된 가공성을 나타내는 분자량 100만 g/mol 이상의 초고분자량 폴리올레핀을 제조할 수 있음을 확인하여 본 발명을 완성하였다. 한편, 본 명세서에서 사용하는 용어인 “초고분자량”이란 분자량 100만 g/mol 이상을 의미한다.
<초고분자량 폴리올레핀 중합용 메탈로센 화합물>
본 발명자들은 상술한 과제를 해결하기 위하여 연구한 결과, 하기와 같은 발명을 안출하기에 이르렀다. 본 명세서는 하기 화학식 1로 표시되는, 초고분자량 폴리올레핀 중합용 메탈로센 화합물을 개시한다.
[화학식 1]
Figure PCTKR2022017668-appb-img-000004
상기 화학식 1에서, R1 내지 R10은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, 선형 또는 분지형의 C1-C20의 알킬기, C2-C20의 알케닐기, C1-C20의 에테르기, C1-C20의 알콕시기, C6-C20의 아릴기, C7-C20의 알킬아릴기, C7-C20의 아릴알킬기 또는 C3-C20의 불포화 또는 방향족 고리이고, 상기 M은 3족 전이금속, 4족 전이금속, 5족 전이금속, 란타나이드 계열의 전이금속 또는 악타나이드 계열의 전이금속이고, 상기 B는 탄소 또는 14족의 원소로서 인데닐기를 연결하는 브릿지 그룹이고, 상기 X1 및 X2는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 붕소, 산소, 할로겐, 선형 또는 분지형의 C1-C20의 알킬, C2-C20의 알케닐기, C1-C20의 에테르기, C1-C20의 알콕시기, C6-C20의 아릴기, C1-C20의 설포네이트기 및 이들의 조합들로 이루어진 군에서 선택되는 어느 하나이고, 상기 Y1 및 Y2는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 붕소, 산소, 할로겐, 선형 또는 분지형의 C1-C20의 알킬기, C2-C20의 알케닐기, C1-C20의 에테르기, C1-C20의 알콕시기, C6-C20의 아릴기, C7-C20의 알킬아릴기, C7-C20의 아릴알킬기, C3-C20의 불포화 또는 방향족 고리 및 이들의 조합들로 이루어진 군에서 선택되는 어느 하나이다.
본 발명의 초고분자량 폴리올레핀 중합용 메탈로센 화합물에서 상기 R1 내지 R10은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, 메틸기, 에틸기, 프로필기, 이소프로필기, n-부틸기, tert-부틸기, 펜틸기, 헥실기, 헵틸기, 옥틸기, 에틸렌기, 프로필렌기, 부틸렌기, 페닐기, 벤질기, 나프틸기, 할로겐기, 에테르기, 메톡시기 또는 에톡시기인 것이 바람직하나, 이에 한정되는 것은 아니다.
본 발명의 초고분자량 폴리올레핀 중합용 메탈로센 화합물에서 상기 M은 티타늄(Ti), 지르코늄(Zr), 하프늄(Hf) 또는 러더포듐(Rf)인 것이 바람직하나, 이에 한정되는 것은 아니다.
본 발명의 초고분자량 폴리올레핀 중합용 메탈로센 화합물에서 상기 X1 및 X2는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 붕소, 산소, 할로겐, 메틸기, 에틸기, 프로필기, 이소프로필기, n-부틸기, tert부틸기, 펜틸기, 헥실기, 헵틸기, 옥틸기, 에틸렌기, 프로필렌기, 부틸렌기, 페닐기, 펜타다이에닐기, 벤질기, 나프틸기, 할로겐기, 에테르기, 메톡시기, 에톡시기 및 이들의 조합들로 이루어진 군에서 선택되는 어느 하나인 것이 바람직하나, 이에 한정되는 것은 아니다.
본 발명의 초고분자량 폴리올레핀 중합용 메탈로센 화합물에서 상기 Y1 및 Y2는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 붕소, 산소, 할로겐, 메틸기, 에틸기, 프로필기, 이소프로필기, n-부틸기, tert부틸기, 펜틸기, 헥실기, 헵틸기, 옥틸기, 에틸렌기, 프로필렌기, 부틸렌기, 페닐기, 벤질기, 나프틸기, 할로겐기, 에테르기, 메톡시기, 에톡시기 및 이들의 조합들로 이루어진 군에서 선택되는 어느 하나인 것이 바람직하나, 이에 한정되는 것은 아니다.
또한, 본 발명의 초고분자량 폴리올레핀 중합용 메탈로센 화합물은 하기 화학식 2로 표시되는, 초고분자량 폴리올레핀 중합용 메탈로센 화합물인 것이 바람직하다.
[화학식 2]
Figure PCTKR2022017668-appb-img-000005
상기 화학식 2에서, 상기 M은 3족 전이금속, 4족 전이금속, 5족 전이금속, 란타나이드 계열의 전이금속 또는 악타나이드 계열의 전이금속이고, 상기 B는 탄소 또는 14족의 원소로서 인데닐기를 연결하는 브릿지 그룹이고, 상기 X1 및 X2는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 붕소, 산소, 할로겐, 선형 또는 분지형의 C1-C20의 알킬, C2-C20의 알케닐기, C1-C20의 에테르기, C1-C20의 알콕시기, C6-C20의 아릴기, C1-C20의 설포네이트기 및 이들의 조합들로 이루어진 군에서 선택되는 어느 하나이고, 상기 Y1 및 Y2는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 붕소, 산소, 할로겐, 선형 또는 분지형의 C1-C20의 알킬기, C2-C20의 알케닐기, C1-C20의 에테르기, C1-C20의 알콕시기, C6-C20의 아릴기, C7-C20의 알킬아릴기, C7-C20의 아릴알킬기, C3-C20의 불포화 또는 방향족 고리 및 이들의 조합들로 이루어진 군에서 선택되는 어느 하나이다.
보다 구체적으로, 상기 화학식 2에서 상기 M은 티타늄(Ti), 지르코늄(Zr), 하프늄(Hf) 또는 러더포듐(Rf)인 것이 바람직하나, 이에 한정되는 것은 아니다.
보다 구체적으로, 상기 화학식 2에서 상기 X1 및 X2는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 붕소, 산소, 할로겐, 메틸기, 에틸기, 프로필기, 이소프로필기, n-부틸기, tert부틸기, 펜틸기, 펜타다이에닐기, 헥실기, 헵틸기, 옥틸기, 에틸렌기, 프로필렌기, 부틸렌기, 페닐기, 벤질기, 나프틸기, 할로겐기, 에테르기, 메톡시기, 에톡시기 및 이들의 조합들로 이루어진 군에서 선택되는 어느 하나인 것이 바람직하나, 이에 한정되는 것은 아니다. 예를 들어, 상기 화학식 2에서 상기 X1 및 X2는 서로 동일하거나 상이하고, 각각 독립적으로 Cl(halogene), Me(Methyl, CH3-), OMe(methoxy, OCH3-), Bz(benzyl, C6H5CH2-) 및 BH4(borohydride), piperylene(-C5H8)으로 이루어진 군으로부터 선택되는 어느 하나일 수 있다.
보다 구체적으로, 상기 화학식 2에서 상기 Y1 및 Y2는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 붕소, 산소, 할로겐, 메틸기, 에틸기, 프로필기, 이소프로필기, n-부틸기, tert부틸기, 펜틸기, 헥실기, 헵틸기, 옥틸기, 에틸렌기, 프로필렌기, 부틸렌기, 페닐기, 벤질기, 나프틸기, 할로겐기, 에테르기, 메톡시기, 에톡시기 및 이들의 조합들로 이루어진 군에서 선택되는 어느 하나인 것이 바람직하나, 이에 한정되는 것은 아니다.
한편, 상기 화학식 2로 표시되는 초고분자량 폴리올레핀 중합용 메탈로센 화합물에서 리간드는 서로 동일한 인데닐 유도체에 해당하고, 보다 구체적으로 펜타메틸테트라하이드로나프틸인덴 (Pentamethyltetrahydronaphthylindene)이다.
본 발명의 초고분자량 폴리올레핀 중합용 메탈로센 화합물은 순도가 70.0 % 이상인 것이 바람직하고, 80.0 내지 99.9 %인 것이 더욱 바람직하다.
또한, 본 발명의 초고분자량 폴리올레핀 중합용 메탈로센 화합물은 Li 함량이 500 ppm 이하인 것이 바람직하고, 50 내지 450 ppm인 것이 더욱 바람직하다.
본 발명의 초고분자량 폴리올레핀 중합용 메탈로센 화합물은 그 자체로 또는 촉매 전구체로 조촉매와 함께 초고분자량 폴리올레핀 중합용 촉매로 사용될 수 있다. 이 때, 상기 초고분자량 폴리올레핀 중합용 촉매는 담체에 담지된 촉매일 수 있다. 상기 담체는 본 발명이 속하는 기술분야에서 통상적인 것이 사용될 수 있으므로 특별히 한정되지 않으나, 바람직하게는 실리카, 실리카-알루미나 및 실리카-마그네시아로 이루어진 군에서 선택되는 1 종 이상의 담체가 사용될 수 있다. 한편, 실리카와 같은 담체에 담지될 때에는 실리카 담체와 본 발명의 초고분자량 폴리올레핀 중합용 메탈로센 화합물의 작용기가 화학적으로 결합하여 담지되므로, 폴리올레핀 중합공정에서 표면으로부터 유리되어 나오는 촉매가 거의 없어서 슬러리 또는 기상 중합으로 폴리올레핀을 제조할 때 반응기 벽면이나 중합체 입자끼리 엉겨 붙는 파울링이 없다.
또한, 이와 같은 실리카 담체를 포함하는 촉매의 존재 하에 제조되는 초고분자량 폴리올레핀은 폴리머의 입자 형태 및 겉보기 밀도가 우수하여 종래의 슬러리 또는 기상 중합 공정에 적합하게 사용 가능하다. 따라서, 바람직하게는 고온에서 건조되어 표면에 반응성이 큰 실록산기를 가지고 있는 담체를 사용할 수 있다. 보다 구체적으로, 고온에서 건조된 실리카, 실리카-알루미나 등이 사용될 수 있고, 이들은 통상적으로 Na2O, K2CO3, BaSO4, Mg(NO3)2 등의 산화물, 탄산염, 황산염, 질산염 성분이 함유될 수 있다.
또한, 초고분자량 폴리올레핀 중합용 촉매는 알킬알루미녹산으로 구성된 조촉매를 더욱 포함할 수 있다. 이러한 조촉매를 사용할 경우에, 메탈로센 화합물의 금속 원소(M)에 결합된 치환기(X)가 알킬기, 예컨대, 탄소수 1 내지 20의 알킬기로 치환된 형태의 촉매로 사용될 수 있다. 상기 조촉매 또한 본 발명이 속하는 기술분야에서 통상적인 것이 사용될 수 있으므로 특별히 한정되지 않으나, 바람직하게는 실리카, 실리카-알루미나, 유기알루미늄 화합물로 이루어진 군에서 선택되는 1종 이상의 조촉매가 사용될 수 있다.
본 발명의 초고분자량 폴리올레핀 중합용 메탈로센 화합물은 기본적으로 분자량 100만 g/mol 이상의 초고분자량 폴리올레핀을 제조할 수 있는 촉매 그 자체 또는 촉매 전구체이며, 분자량 조절제로 사용되는 수소의 양을 조절하여 초고분자량에서부터 저분자량까지 넓은 분자량 분포를 갖는 폴리올레핀을 대량 양산할 수 있다.
<초고분자량 폴리올레핀 중합체 및 그 제조방법>
한편, 본 명세서는 본 발명에 따른 초고분자량 폴리올레핀 중합용 메탈로센 화합물의 존재 하에 올레핀계 단량체를 중합하는 단계를 포함하는 초고분자량 폴리올레핀 중합체의 제조방법을 추가로 개시한다.
본 발명의 초고분자량 폴리올레핀 중합체의 제조방법은 하기 화학식 1로 표시되는, 초고분자량 폴리올레핀 중합용 메탈로센 화합물의 존재 하에 올레핀계 단량체를 중합하는 단계를 포함한다.
[화학식 1]
Figure PCTKR2022017668-appb-img-000006
상기 화학식 1에서, R1 내지 R10은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, 선형 또는 분지형의 C1-C20의 알킬기, C2-C20의 알케닐기, C1-C20의 에테르기, C1-C20의 알콕시기, C6-C20의 아릴기, C7-C20의 알킬아릴기, C7-C20의 아릴알킬기 또는 C3-C20의 불포화 또는 방향족 고리이고, 상기 M은 3족 전이금속, 4족 전이금속, 5족 전이금속, 란타나이드 계열의 전이금속 또는 악타나이드 계열의 전이금속이고, 상기 B는 탄소 또는 14족의 원소로서 인데닐기를 연결하는 브릿지 그룹이고, 상기 X1 및 X2는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 붕소, 산소, 할로겐, 선형 또는 분지형의 C1-C20의 알킬, C2-C20의 알케닐기, C1-C20의 에테르기, C1-C20의 알콕시기, C6-C20의 아릴기, C1-C20의 설포네이트기 및 이들의 조합들로 이루어진 군에서 선택되는 어느 하나이고, 상기 Y1 및 Y2는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 붕소, 산소, 할로겐, 선형 또는 분지형의 C1-C20의 알킬기, C2-C20의 알케닐기, C1-C20의 에테르기, C1-C20의 알콕시기, C6-C20의 아릴기, C7-C20의 알킬아릴기, C7-C20의 아릴알킬기, C3-C20의 불포화 또는 방향족 고리 및 이들의 조합들로 이루어진 군에서 선택되는 어느 하나이다.
본 발명의 초고분자량 폴리올레핀 중합체의 제조방법에서 상기 중합은 용액 중합 공정, 슬러리 공정 또는 기상 공정에 의하여 수행되는 것이 바람직하나, 이에 한정되는 것은 아니다.
본 발명의 초고분자량 폴리올레핀 중합체의 제조방법에서 상기 올레핀계 단량체는 에틸렌, 프로필렌, 1-부텐, 1-펜텐, 4-메틸-1-펜텐, 1-헥센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센, 1-헥사데센, 1-아이코센, 노보넨, 노보나디엔, 에틸리덴노보넨, 페닐노보넨, 비닐노보넨, 디사이클로펜타디엔, 1,4-부타디엔, 1,5-펜타디엔, 1,6-헥사디엔, 스티렌, 알파-메틸 스티렌, 디비닐벤젠, 및 3-클로로메틸스티렌으로 이루어진 군으로부터 선택되는 1종 이상인 것이 바람직하나, 이에 한정되는 것은 아니다.
본 발명의 초고분자량 폴리올레핀 중합체의 제조방법에서 중합 반응은 25 내지 500 ℃의 온도 및 1 내지 100 kgf/cm2의 압력 하에서 1 내지 24 시간 동안 반응시켜 수행될 수 있다. 이때, 상기 중합 반응의 온도는 25 내지 200 ℃가 바람직하고, 50 내지 100 ℃가 보다 바람직하다. 또한, 상기 중합 반응의 압력은 1 내지 70 kgf/cm2가 바람직하고, 5 내지 40 kgf/cm2가 보다 바람직하다. 상기 중합 반응 시간은 1 내지 5 시간이 바람직하다.
본 발명의 초고분자량 폴리올레핀 중합체의 제조방법에서 단위 시간(h)을 기준으로 사용된 메탈로센 화합물 단위 중량 함량(g)당 생성된 폴리올레핀 중합체의 중량(kg)의 비로 계산한 메탈로센 화합물의 활성이 1.0 kg/gCatㆍhr 이상 또는 1. 0 내지 10 kg/gCatㆍhr, 바람직하게는 3.0 kg/gCatㆍhr 이상이 될 수 있다.
한편, 상기 중합 반응은 수소 주입량에 따라 최종적으로 생성되는 폴리머 제품의 분자량 범위를 조절할 수 있다. 특히, 수소를 첨가하지 않거나 극미량을 첨가하는 조건 하에서는 고분자량 또는 초고분자량의 폴리올레핀을 제조할 수 있으며, 수소를 첨가하면 적은 양의 수소 첨가로도 저분자량의 폴리올레핀을 제조할 수 있다. 이 때, 상기 중합 반응에 첨가되는 수소 함량은 반응기 조건 1 기압 하에서 0 내지 500ml 범위 이내이거나, 또는 0 내지 1.0 bar의 압력으로 공급되거나 올레핀 단량체 대비 수소 몰 함량 범위가 0.1 내지 4,000 ppm으로 공급될 수 있다.
이와 같이, 본 발명의 초고분자량 폴리올레핀 중합용 메탈로센 화합물을 사용하여 중합 반응시 분자량 조절제인 수소의 첨가량을 조절함으로써, 초고분자량 폴리올레핀을 효과적으로 제조할 수 있다.
한편, 본 명세서는 본 발명의 초고분자량 폴리올레핀 중합체의 제조방법에 의하여 제조되는, 초고분자량 폴리올레핀 중합체을 추가로 개시한다.
본 발명의 초고분자량 폴리올레핀 중합용 메탈로센 화합물을 사용하여 제조된 본 발명의 초고분자량 폴리올레핀 중합체는 수소를 첨가하지 않거나 극미량을 첨가하는 조건 하에서 중량 평균분자량이 800,000 g/mol 이상, 바람직하게는 1,000,000 g/mol 이상 일 수 있다.
또한, 본 발명의 초고분자량 폴리올레핀 중합용 메탈로센 화합물을 사용하여 제조된 본 발명의 초고분자량 폴리올레핀 중합체는 분자량 분포(Mw/Mn)가 3.5 이하, 바람직하게는 0.5 내지 3.3일 수 있으나, 이에 한정되는 것은 아니다.
또한, 본 발명의 초고분자량 폴리올레핀 중합체는 용융지수가 1.2 내지 20 g/10min (21.6 kg), 보다 바람직하게는 0.5 내지 15 g/10min (21.6 kg)일 수 있으나, 이에 한정되는 것은 아니다.
또한, 본 발명의 초고분자량 폴리올레핀 중합체는 입체규칙도(XI)가 80% 이상, 바람직하게는 90% 이상, 보다 바람직하게는 95% 이상이 될 수 있다. 이때, 초고분자량 폴리올레핀의 입체규칙도(XI)는 하기의 수학식 1에 따라 계산된 값이다.
[수학식 1]
Figure PCTKR2022017668-appb-img-000007
상기 수학식 1에서, Xs = 중합체 중 자일렌에 녹은 부분(중량%), Vb0 = 초기 자일렌의 부피(mL), Vb1 = 자일렌에 녹은 중합체 중 채취한 부피(mL), Vb2 = 공 테스트시 사용한 채취한 자일렌의 부피(mL), W2 = 알루미늄팬과 자일렌을 증발시킨 후 알루미늄 팬에 남은 중합체 무게의 합(g), W1 = 알루미늄팬의 무게(g), W0 = 초기 중합체의 무게(g), B = 공 테스트시 알루미늄팬에 남은 잔분의 평균값(g)이다.
나아가, 본 발명의 초고분자량 폴리올레핀 중합체는 상술한 바와 같은 입체규칙도(XI) 향상과 함께 폴리올레핀 중합체의 녹는점(Tm) 또한 현저히 향상시킬 수 있으며, 상기 초고분자량 폴리올레핀 중합체의 녹는점은 130 ℃ 이상, 바람직하게는 130 내지 170 ℃ 일 수 있다.
또한, 본 발명의 초고분자량 폴리올레핀 중합체의 결정화 온도(Tc)는 80 ℃ 이상, 바람직하게는 100 내지 130 ℃ 일 수 있다.
이하, 첨부한 도면 및 실시예들을 참조하여 본 명세서가 청구하는 바에 대하여 더욱 자세히 설명한다. 다만, 본 명세서에서 제시하고 있는 도면 내지 실시예 등은 통상의 기술자에게 의하여 다양한 방식으로 변형되어 여러 가지 형태를 가질 수 있는 바, 본 명세서의 기재사항은 본 발명을 특정 개시 형태에 한정되는 것이 아니고 본 발명의 사상 및 기술 범위에 포함되는 모든 균등물 내지 대체물을 포함하고 있는 것으로 보아야 한다. 또한, 첨부된 도면은 본 발명을 통상의 기술자로 하여금 더욱 정확하게 이해할 수 있도록 돕기 위하여 제시되는 것으로서 실제보다 과장되거나 축소되어 도시될 수 있다.
{실시예 및 평가}
실시예 1.
하기 방법에 따라 하기 화학식 3의 초고분자량 폴리올레핀 중합용 메탈로센 화합물 및 이를 포함하는 초고분자량 폴리올레핀 중합용 메탈로센 촉매를 제조하였다.
[화학식 3]
Figure PCTKR2022017668-appb-img-000008
1) 메탈로센 화합물의 제조
[반응식 1]
Figure PCTKR2022017668-appb-img-000009
단계 1) 상기 반응식 1에 따른 비스(5,6,7,8-테트라하이드로-2,5,5,8,8-펜타메틸시클로나프틸)디메틸실란의 제조
3L의 쉬링크 플라스크(Schlenk flask)에 5,6,7,8-테트라하이드로-2,5,5,8,8-펜타메틸시클로나프탈렌 120g을 넣고, 테트라하이드로퓨란 450ml 용액을 넣어 상온에서 용해시켰다. 상기 용액을 -20oC 로 냉각시킨 후에 n-부틸리튬 용액 (n-BuLi, 2.5M in hexane) 200ml를 서서히 적가하고 상온에서 약 12시간 동안 교반하였다. 그 후에, 반응액을 -20oC 로 냉각시킨 다음, 디클로로디메틸실란 30ml를 서서히 적가하였다. 반응액을 상온으로 승온시킨 후, 약 12시간 동안 교반하고, 물 450ml를 첨가하였다. 그 후에, 유기층을 분리하고, MgSO4로 탈수 및 여과 처리하였다. 여액을 감압 증류하여 갈색 오일 형태로 133g을 얻었다.
1H NMR (300 MHz, CDCl3, 7.26 ppm) : - 0.31 - - 0.21 (3H, m) , 1.26 - 1.32 (12H, m) , 1.69 (4H, s), 2.17(3H, s), 3.51 (1H, s), 6.53 (1H, s), 7.26 - 7.29 (2H, m)
[반응식 2]
Figure PCTKR2022017668-appb-img-000010
단계 2) 상기 반응식 2에 따른 rac-디메틸실릴-비스(5,6,7,8-테트라하이드로-2,5,5,8,8-펜타메틸시클로나프틸)지르코늄 디클로라이드의 제조
3L의 쉬링크 플라스크(Schlenk flask)에 앞서 제조한 비스(5,6,7,8-테트라하이드로-2,5,5,8,8-펜타메틸시클로나프틸)디메틸실란 40g을 넣고, 테트라하이드로퓨란 400ml를 넣어 상온에서 용해시켰다. 상기 용액을 -20oC 로 냉각시킨 후, n-부틸리튬 용액 (n-BuLi, 2.5M in hexane) 60ml를 서서히 적가하고 상온에서 약 12시간 동안 교반하였다. 그 후에, 반응액을 -20oC 로 냉각시킨 다음, 지르코늄 테트라클로라이드 17g을 톨루엔 슬러리로 넣었다. 반응 용액을 상온으로 승온시킨 후 약 12시간 동안 교반하고, 용매를 감압하에서 제거하였다. 이렇게 반응 용매를 모두 감압 증류하고 디클로로메탄 약 1L를 넣은 다음, 녹지 않은 LiCl 및 무기염 등을 여과하여 제거하였다. 여액을 감압 건조하고, 다시 디클로로메탄 300ml를 넣고 결정을 석출 시켰다. 석출된 결정을 여과 및 건조하여 rac-디메틸실릴-비스(5,6,7,8-테트라하이드로-2,5,5,8,8-펜타메틸시클로나프틸)지르코늄 디클로라이드 10g을 얻었다. (yield 20% , only rac).
1H NMR (300 MHz, CDCl3, 7.26 ppm) : 1.22 - 1.31 (12H, m), 1.39 (3H, s), 1.68 (4H, s), 2.20(3H, s), 6.65 (1H, s), 7.47 (1H, s), 7.56 (1H, s)
2) 담지 촉매의 제조
실리카 3 g을 쉬링크 플라스크에 미리 칭량한 후 메틸알루미녹산(MAO) 52 mmol을 넣어 90 ℃에서 24 시간 동안 반응시켰다. 침전 후 상층부는 제거하고 톨루엔으로 2회에 걸쳐 세척하였다. 상기 합성한 실시예 1의 메탈로센 화합물 240 μmol을 톨루엔에 녹인 후, 40 ℃에서 5 시간 동안 반응시켰다. 반응 종료 후 침전이 끝나면, 상층부 용액은 제거하고 남은 반응 생성물을 톨루엔으로 세척한 후 헥산으로 재차 세척한 후 진공 건조하여 실시예 1의 메탈로센 화합물을 포함하는 고체 입자 형태의 실리카 담지 메탈로센 촉매 5 g을 얻었다.
실시예 2.
하기 방법에 따라 하기 화학식 4의 초고분자량 폴리올레핀 중합용 메탈로센 화합물 및 이를 포함하는 초고분자량 폴리올레핀 중합용 메탈로센 촉매를 제조하였다.
[화학식 4]
Figure PCTKR2022017668-appb-img-000011
1) 메탈로센 화합물의 제조
단계 1) 상기 반응식 1에 따른 비스(5,6,7,8-테트라하이드로-2,5,5,8,8-펜타메틸시클로나프틸)디메틸실란의 제조
상기 실시예 1과 동일한 방법으로 비스(5,6,7,8-테트라하이드로-2,5,5,8,8-펜타메틸시클로나프틸)디메틸실란을 제조하였다.
[반응식 3]
Figure PCTKR2022017668-appb-img-000012
단계 2)상기 반응식 3에 따른 rac-디메틸실릴-비스(5,6,7,8-테트라하이드로-2,5,5,8,8-펜타메틸시클로나프틸)하프늄 디클로라이드의 제조
3L의 쉬링크 플라스크(Schlenk flask)에 앞서 제조한 비스(5,6,7,8-테트라하이드로-2,5,5,8,8-펜타메틸시클로나프틸)디메틸실란 40g을 넣고, 테트라하이드로퓨란 300ml를 넣어 상온에서 용해시켰다. 상기 용액을 -20oC 로 냉각시킨 후, n-부틸리튬 용액 (n-BuLi, 2.5M in hexane) 60ml를 서서히 적가하고 상온에서 약 12시간 동안 교반하였다. 그 후에, 반응액을 -20oC로 냉각시킨 다음, 하프늄 테트라클로라이드 24g을 톨루엔 슬러리로 넣었다. 반응 용액을 상온으로 승온시킨 후 약 12시간 동안 교반하고, 용매를 감압하에서 제거하였다. 이렇게 반응 용매를 모두 감압 증류하고 디클로로메탄 약 800ml를 넣은 다음, 녹지 않은 LiCl 및 무기염 등을 여과하여 제거하였다. 여액을 감압 건조하고, 다시 디클로로메탄 150ml를 넣고 결정을 석출 시켰다. 석출된 결정을 여과 및 건조하여 rac-디메틸실릴-비스(5,6,7,8-테트라하이드로-2,5,5,8,8-펜타메틸시클로나프틸)하프늄 디클로라이드 11.6g을 얻었다. (yield 20% , only rac).
1H NMR (300 MHz, CDCl3, 7.26 ppm) : 1.25 - 1.29 (12H, m) , 1.39 (3H, s), 1.69(4H, s), 2.29 (3H, s), 6.55(1H, s), 7.45 (1H, s), 7.60 (1H, s)
2) 담지 촉매의 제조
실시예 1의 메탈로센 화합물 대신에 실시예 2의 메탈로센 화합물을 사용한 점을 제외하고는, 상기 실시예 1의 담지 촉매의 제조와 동일한 방법으로 제조하여 실시예 2의 메탈로센 화합물을 포함하는 고체 입자 형태의 실리카 담지 메탈로센 촉매 5 g을 얻었다.
실시예 3.
하기 방법에 따라 하기 화학식 5의 초고분자량 폴리올레핀 중합용 메탈로센 화합물 및 이를 포함하는 초고분자량 폴리올레핀 중합용 메탈로센 촉매를 제조하였다.
[화학식 5]
Figure PCTKR2022017668-appb-img-000013
1) 메탈로센 화합물의 제조
단계 1) 상기 반응식 1에 따른 비스(5,6,7,8-테트라하이드로-2,5,5,8,8-펜타메틸시클로나프틸)디메틸실란의 제조
상기 실시예 1과 동일한 방법으로 비스(5,6,7,8-테트라하이드로-2,5,5,8,8-펜타메틸시클로나프틸)디메틸실란을 제조하였다.
[반응식 4]
Figure PCTKR2022017668-appb-img-000014
단계 2)상기 반응식 4에 따른 rac-디메틸실릴-비스(5,6,7,8-테트라하이드로-2,5,5,8,8-펜타메틸시클로나프틸)티타늄 디클로라이드의 제조
3L의 쉬링크 플라스크(Schlenk flask)에 앞서 제조한 비스(5,6,7,8-테트라하이드로-2,5,5,8,8-펜타메틸시클로나프틸)디메틸실란 40g을 넣고, 테트라하이드로퓨란 300ml를 넣어 상온에서 용해시켰다. 상기 용액을 -20oC 로 냉각시킨 후, n-부틸리튬 용액 (n-BuLi, 2.5M in hexane) 60ml를 서서히 적가하고 상온에서 약 12시간 동안 교반하였다. 그 후에, 반응액을 -20oC로 냉각시킨 다음, 티타늄 테트라클로라이드 14g을 톨루엔 용액으로 넣었다. 반응 용액을 상온으로 승온시킨 후 약 12시간 동안 교반하고, 용매를 감압하에서 제거하였다. 이렇게 반응 용매를 모두 감압 증류하고 디클로로메탄 약 800ml를 넣은 다음, 녹지 않은 LiCl 및 무기염 등을 여과하여 제거하였다. 여액을 감압 건조하고, 다시 디클로로메탄 150ml를 넣고 결정을 석출 시켰다. 석출된 결정을 여과 및 건조하여 rac-디메틸실릴-비스(5,6,7,8-테트라하이드로-2,5,5,8,8-펜타메틸시클로나프틸)티타늄 디클로라이드 9.7g을 얻었다. (yield 20% , only rac).
1H NMR (300 MHz, CDCl3, 7.26 ppm) : 1.19 - 1.27 (12H, m) , 1.34 (3H, s), 1.59(4H, s), 2.15 (3H, s), 6.35(1H, s), 7.37 (1H, s), 7.48 (1H, s)
2) 담지 촉매의 제조
실시예 1의 메탈로센 화합물 대신에 실시예 3의 메탈로센 화합물을 사용한 점을 제외하고는, 상기 실시예 1의 담지 촉매의 제조와 동일한 방법으로 제조하여 실시예 3의 메탈로센 화합물을 포함하는 고체 입자 형태의 실리카 담지 메탈로센 촉매 5 g을 얻었다.
비교예 1.
하기 방법에 따라 하기 화학식 6의 폴리올레핀 중합용 메탈로센 화합물 및 이를 포함하는 폴리올레핀 중합용 메탈로센 촉매를 제조하였다.
[화학식 6]
Figure PCTKR2022017668-appb-img-000015
1) 메탈로센 화합물의 제조
단계 1) 디메틸비스(2-메틸-4페닐인데닐)실란의 제조
2L의 쉬링크 플라스크(Schlenk flask)에 2-메틸-4-페닐인덴 150g을 톨루엔/테트라하이드로퓨란 = 10 : 1 용액 800ml에 n-부틸리튬 용액(2.5 M, 헥산 용매) 290 mL를 0 ℃에서 천천히 적가하고 상온에서 12hr 동안 교반 하였다. 그 후, 0 ℃ 이하에서 디클로로메틸실란 44 mL를 천천히 적가하고, 상온에서 12hr 동안 교반 하였다. 그 뒤 물을 가하여 유기층을 분리한 뒤 진공 건조하여 끈끈한 노란색 오일을 160g을 얻었다.
1H NMR(300 MHz, CDCl3, 7.26 ppm): -0.12(6H, s), 2.21(3H, s), 2.23 (3H, s) 2.40 (2H, s), 3.85 (2H, s) 6.87(2H, t), 7.23 - 7.75(21H, m)
단계 2) [디메틸실란디일비스(2-메틸-4-페닐인데닐)] 지르코늄 디클로라이드의 제조
2L의 쉬링크 플라스크(Schlenk flask)에 디메틸비스(2-메틸-4-페닐인데닐)실란 100g을 에테르/헥산=1 : 1 600ml에 n-부틸리튬 용액(2.5 M in 헥산) 171 mL를 -20 ℃에서 천천히 적가하였다. 지르코늄 테트라클로라이드 50g을 헥산 슬러리로 -20 ℃에서 천천히 적가한 뒤 상온에서 12hr 동안 교반 후 용매를 감압하에서 제거하였다. 이렇게 반응 용매를 모두 감압 증류하고 디클로로메탄 약 2000ml를 넣은 다음, 녹지 않은 LiCl 및 무기염 등을 여과하여 제거하였다. 여액을 감압 건조하고, 다시 디클로로메탄 300ml를 넣고 결정을 석출 시켰다. 이후 여과하고 진공 건조하여 오렌지색 고체 성분의 촉매 33g을 얻었다 (yield 25% , only rac).
1H NMR(300 MHz, CDCl3, 7.26 ppm): 1.32(6H, s), 2.24(6H, s), 6.93(2H, s), 7.10(2H, t), 7.32 - 7.53(8H, m), 7.60 - 7.64(6H, m)
2) 담지 촉매의 제조
실시예 1의 메탈로센 화합물 대신에 비교예 1의 메탈로센 화합물을 사용한 점을 제외하고는, 상기 실시예 1의 담지 촉매의 제조와 동일한 방법으로 제조하여 비교예 1의 메탈로센 화합물을 포함하는 고체 입자 형태의 실리카 담지 메탈로센 촉매 5 g을 얻었다.
비교예 2.
하기 방법에 따라 하기 화학식 7의 폴리올레핀 중합용 메탈로센 화합물 및 이를 포함하는 폴리올레핀 중합용 메탈로센 촉매를 제조하였다.
[화학식 7]
Figure PCTKR2022017668-appb-img-000016
1) 메탈로센 화합물의 제조
단계 1) 디메틸비스(2-메틸인데닐)실란의 제조
2L의 쉬링크 플라스크(Schlenk flask)에 2-메틸인덴 50g을 넣고, 테트라하이드로퓨란 300ml 용액을 넣어 상온에서 용해시켰다. 상기 용액을 -20oC 로 냉각시킨 후에 n-부틸리튬 용액 (n-BuLi, 2.5M in hexane) 153ml를 서서히 적가하고 상온에서 약 12시간 동안 교반하였다. 그 후에, 반응액을 -20oC 로 냉각시킨 다음, 디클로로디메틸실란 23ml를 서서히 적가하였다. 반응액을 상온으로 승온시킨 후, 약 12시간 동안 교반하고, 물 500ml를 첨가하였다. 그 후에, 유기층을 분리하고, MgSO4로 탈수 및 여과 처리하였다. 여액을 감압 증류하여 노란색 오일 형태로 57g을 얻었다.
1H NMR(300 MHz, CDCl3, 7.26 ppm): -0.19(6H, s), 1.52(3H, s), 1.71 (3H, s) 2.01 (2H, s), 3.54(2H, s) 6.33(2H, t), 6.92 - 7.54(11H, m)
단계 2) [디메틸실란디일비스(2-메틸인데닐)] 지르코늄 디클로라이드의 제조
2L의 쉬링크 플라스크(Schlenk flask)에 2-메틸인덴 50g을 넣고, 테트라하이드로퓨란 400ml 용액을 넣어 상온에서 용해시켰다. 상기 용액을 -20oC 로 냉각시킨 후에 n-부틸리튬 용액 (n-BuLi, 2.5M in hexane) 127ml를 서서히 적가하고 상온에서 약 12시간 동안 교반하였다. 지르코늄 테트라클로라이드 36g을 헥산 슬러리로 -20 ℃에서 천천히 적가한 뒤 상온에서 12hr 동안 교반 후 용매를 감압하에서 제거하였다. 이렇게 반응 용매를 모두 감압 증류하고 디클로로메탄 약 1500ml를 넣은 다음, 녹지 않은 LiCl 및 무기염 등을 여과하여 제거하였다. 여액을 감압 건조하고, 다시 디클로로메탄 200ml를 넣고 결정을 석출 시켰다. 이후 여과하고 진공 건조하여 노란색 고체 성분의 촉매 14g을 얻었다 (yield 19% , only rac).
1H NMR(300 MHz, CDCl3, 7.26 ppm): 0.54(6H, s), 5.774(2H, d), 6.80(2H, d), 6.86(2H, t), 7.14(2H, t), 7.22(2H, d), 7.33(2H, d)
2) 담지 촉매의 제조
실시예 1의 메탈로센 화합물 대신에 비교예 2의 메탈로센 화합물을 사용한 점을 제외하고는, 상기 실시예 1의 담지 촉매의 제조와 동일한 방법으로 제조하여 비교예 2의 메탈로센 화합물을 포함하는 고체 입자 형태의 실리카 담지 메탈로센 촉매 5 g을 얻었다.
실험예 1. 폴리프로필렌 중합체의 제조 및 물성 측정
실시예 1 내지 3과 비교예 1 및 2를 통해 제조한 메탈로센 촉매를 이용하여, 하기 방법에 따라 각각 폴리프로필렌 중합체를 제조하였다.
폴리프로필렌 중합
2 L 스테인레스 반응기를 65 ℃에서 진공건조한 후 냉각하고, 실온에서 트리에틸알루미늄 1.5 mmol을 넣고, 1.5 L의 프로필렌을 순차적으로 투입하였다. 이후 10 분 동안 교반한 후, 실시예 1 내지 3과 비교예 1 및 2를 통해 제조한 메탈로센 촉매 0.019 g을 각각 질소 압력으로 반응기에 투입하였다. 이 때, 상기 메탈로센 촉매와 함께 수소 기체 극미량을 투입하였다. 이후 반응기 온도를 70 ℃까지 서서히 승온한 후 1 시간 동안 중합하였다. 반응 종료후 미반응된 프로필렌은 벤트하였다.
이때, 사용된 촉매 함량, 촉매 활성, 및 중합체의 물성을 측정하여 하기 표 1에 나타내었다.
메탈로센 촉매의 물성 측정 방법
(1) 촉매 순도(%): 정량 분석에 사용 되는 Internal-standard(1,3,5-trimethoxybenzene) 의 methoxy proton(3.7 ppm, 9H)을 기준으로 촉매 main peak의 적분 강도를 비교하여 internal-standard 대비 촉매의 proton의 수소비를 계산하는 시료의 정량 분석 방법을 사용하여 분석 하였다.
[수학식 2]
촉매 순도 %= (표준물질 몰수 x 촉매의 proton 비 / 표준물질 proton 비)/시료 몰수x100)
(2) 촉매의 Li 함량(ppm) : 메탈로센 촉매 내 잔류하고 있는 ppm 단위의 무기물 분석법 중, 리튬 또는 메탈 분석법으로 가장 많이 사용하고 있는 방법이 ICP-OES 장비를 이용하는 정량 분석법으로 전처리한 촉매 샘플의 희석배수에 따른 검정선으로 정량 분석였다.
(3) 촉매 활성: 단위 시간(h)을 기준으로 사용된 촉매 함량(촉매의 mmol 및 g)당 생성된 중합체의 무게(kg PP)의 비로 계산하였다.
폴리프로필렌 중합체의 물성 측정 방법
(1) 중합체의 녹는점(Tm): 시차주사열량계(Differential Scanning Calorimeter, DSC, 장치명: DSC 2920, 제조사: TA instrument)를 이용하여 중합체의 녹는점을 측정하였다. 구체적으로 중합체를 220 ℃까지 가열한 후 5 분 동안 그 온도를 유지하였고, 다시 20 ℃까지 내린 후 다시 온도를 증가시켰으며, 이때 온도의 상승속도와 하강속도는 각각 10 ℃/min으로 조절하였다.
(2) 중합체의 결정화 온도(Tc): DSC를 이용하여 용융점과 같은 조건에서 온도를 감소시키면서 나타나는 곡선으로부터 결정화 온도로 하였다.
(3) 중합체의 입체 규칙도(XI): 중합체를 끓는 o-자일렌(ortho-Xylene)에 첨가하여 1 시간 경과 후에 추출되지 않는 중합체의 무게비(%)로 환산하였다. 구체적으로, 먼저 플라스크에 200 mL o-자일렌을 준비한 후 200 mm No. 4 추출 종이로 필터링하였다. 알루미늄 팬을 30 분, 150 ℃ 오븐에서 건조한 후 데시케이터(desicator)에서 냉각시키고, 질량을 측정하였다. 다음으로 여과된 o-자일렌 100 mL를 피펫으로 채취하여 알루미늄 팬에 옮기고, 145 내지 150 ℃로 가열하여 o-자일렌을 모두 증발시켰다. 이후 알루미늄 팬을 100±5 ℃의 온도 및 1 hr, 13.3 kPa의 압력 하에서 1 시간 동안 진공 건조시켰다. 이후 알루미늄 팬을 데시케이터에서 냉각후 상기 과정을 2회 반복함으로써, 무게 오차 0.0002 g 이내로 o-자일렌만의 공측정 테스트(blank test)를 마쳤다.
다음으로, 상기 폴리프로필렌 중합 공정을 통해 얻어진 중합체를 건조(70 ℃, 13.3 kPa, 60 분, 진공 건조)한 후, 데시케이터에서 냉각시킨 중합체 샘플 2g±0.0001 g을 500 mL의 플라스크에 넣고 여기에 200 mL o-자일렌을 투입하였다. 이 플라스크에는 질소와 냉각수를 연결하였으며 1 시간 동안 플라스크를 가열하여 o-자일렌을 계속 환류시켰다. 이후 플라스크를 5 분간 공기 중에 두어 100 ℃ 이하로 냉각시킨 후, 플라스크를 흔들고 항온조(25±0.5 ℃)에 30분간 넣어 불용물을 침전시켰다. 침전이 형성된 결과액은 200 mm No. 4의 추출 종이로 깨끗해질 때까지 반복하여 여과하였다. 150 ℃에서 30분간 건조한 후 데시케이터에서 냉각후 미리 무게를 측정해둔 알루미늄 팬에 깨끗이 여과된 결과액 100 mL를 가하고, 145 내지 150 ℃로 알루미늄 팬을 가열하여 o-자일렌을 증발시켰다. 증발이 끝난 알루미늄 팬은 70±5 ℃의 온도 및 13.3 kPa의 압력 하에서 1 시간 동안 진공 건조시키고, 데시케이터에서 냉각시키는 과정을 2회 반복하여 오차 0.0002 g 이내로 무게를 측정하였다.
상기 수학식 1에 의하여 중합체 중 o-자일렌에 녹은 부분의 중량%(Xs)를 구하고, 이로부터 o-자일렌에 추출되지 않은 중합체의 무게 비(=100-Xs)를 구한 뒤, 이를 입체 규칙도(XI)라 하였다.
(4) 중합체의 분자량 분포(PDI, polydispersity index) 및 중량평균 분자량(Mw): 겔 투과 크로마토그래피(GPC: gel permeation chromatography, Waters사 제조)를 이용하여 중합체의 중량평균 분자량(Mw)과 수평균 분자량(Mn)을 측정하였고, 중량평균 분자량을 수평균 분자량으로 나누어 분자량 분포(PDI)를 계산하였다. 이때, 분석 온도는 160 ℃로 사용하고, 용매는 트리클로로벤젠을 사용하였으며, 폴리스티렌으로 표준화하여 분자량을 측정하였다.
(5) 용융지수: 용융 지수 측정은 ASTM D-1238에 따라서 조건 230℃/21.6킬로그램(kg)으로 측정하였다.
(6) 가공성: 압출기의 토크 측정은 압출기에 장치된 토츠 측정기 (로드셀 기기를 이용한 측정 방법)로 측정하였다.
메탈로센 촉매 따른 폴리프로필렌 중합체의 물성 측정 결과
실시예 1 내지 3과 비교예 1 및 2의 메탈로센 화합물을 포함하는 메탈로센 촉매를 사용하여 제조한 폴리프로필렌의 물성 측정 결과와 중합 반응(중합 공정) 조건을 하기 표 1에 나타내었다.
구분 실시예 1 실시예 2 실시예 3 비교예 1 비교예 2
프로필렌(L) 5 5 5 5 5
촉매량(μmol) 1.9 1.73 2.29 3.45 2.62
촉매순도(%) 94.5 90.1 95.2 84.6 82.7
중합방법 벌크중합 벌크중합 벌크중합 벌크중합 벌크중합
중합온도(℃) 70 70 70 70 70
수소(ml) 5 5 5 5 5
활성
(kg/gCat·hr)
8 6.4 6.6 1.9 1.55
Tm(℃) 156.6 153.4 146.4 152.7 135.4
Tc(℃) 128.7 120.4 122.1 112.8 107.0
XI(%) 98.69 95.47 96.67 94.39 96.67
MI(g/10min(21.6 kg)) 1.3 1.7 2.8 20.1 24.5
가공성(압출기토크, N·m) 28 26 25 22 19
Mw 1,480,000 1,350,000 1,119,000 940,000 880,000
MI 2.68 3.10 2.86 1.98 2.10
상기 표 1을 참조하면, 본 발명의 일 실시예에 따른 초고분자량 폴리올레핀 중합용 메탈로센 화합물을 포함하는 메탈로센 촉매는 촉매 순도가 94.5 %, 90.1 % 및 95.2 %로 나타났으며, 비교예 1 및 2의 메탈로센 촉매에 비하여 높은 순도를 나타내는 것을 확인할 수 있다. 마찬가지로, 본 발명의 일 실시예에 따른 초고분자량 폴리올레핀 중합용 메탈로센 화합물을 포함하는 메탈로센 촉매는 촉매 활성이 8 kg/gCat·hr, 6.4 kg/gCat·hr 및 6.6 kg/gCat·hr로 나타났으며, 비교예 1 및 2의 메탈로센 촉매에 비하여 높은 활성을 나타내는 것을 확인할 수 있다. 본 발명의 일 실시예에 따른 초고분자량 폴리올레핀 중합용 메탈로센 화합물을 포함하는 메탈로센 촉매와 본 발명의 일 비교예에 따른 메탈로센 화합물을 포함하는 메탈로센 촉매를 사용하여 각각 폴리프로필렌 중합체를 제조한 결과를 비교하면, 동일한 중합 공정 조건 하에서 실시예 1 내지 3에 따른 메탈로센 촉매를 사용한 경우 분자량 100만 g/mol 이상의 초고분자량 폴리프로필렌 중합체가 제조되는 반면에, 비교예 1 및 2에 따른 메탈로센 촉매를 사용한 경우 분자량 100만 g/mol 미만의 폴리프로필렌 중합체가 제조되는 것을 확인할 수 있다.
또한, 제조된 폴리프로필렌 중합체의 물성을 비교하는 경우 본 발명의 일 실시예에 따른 초고분자량 폴리올레핀 중합용 메탈로센 화합물을 포함하는 메탈로센 촉매를 사용하여 제조된 초고분자량 폴리프로필렌 중합체의 경우 본 발명의 일 비교예에 따른 메탈로센 화합물을 포함하는 메탈로센 촉매를 사용하여 제조된 폴리프로필렌 중합체보다 상대적으로 녹는점(Tc)과 결정화 온도(Tc)가 더 높고, 용융지수가 더 낮은 것을 확인할 수 있다.
상술한 바에 따른 본 발명의 초고분자량 폴리올레핀 중합용 메탈로센 화합물은 촉매 활성이 우수하고, 이를 촉매 자체 또는 촉매 전구체로 사용하는 경우 분자량 100만 g/mol 이상의 초고분자량 폴리올레핀 중합체를 제조할 수 있다.
또한, 본 발명의 초고분자량 폴리올레핀 중합체의 제조방법은 본 발명의 초고분자량 폴리올레핀 중합용 메탈로센 화합물을 이용하여 제조함에 따라 높은 기계적 물성을 나타내는 초고분자량 폴리올레핀 중합체를 제조할 수 있다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다.
따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
상술한 바에 따른 본 발명의 초고분자량 폴리올레핀 중합용 메탈로센 화합물은 촉매 활성이 우수하고, 이를 촉매 자체 또는 촉매 전구체로 사용하는 경우 분자량 100만 g/mol 이상의 초고분자량 폴리올레핀 중합체를 제조할 수 있다.
또한, 본 발명의 초고분자량 폴리올레핀 중합체의 제조방법은 본 발명의 초고분자량 폴리올레핀 중합용 메탈로센 화합물을 이용하여 제조함에 따라 높은 기계적 물성을 나타내는 초고분자량 폴리올레핀 중합체를 제조할 수 있다.

Claims (15)

  1. 하기 화학식 1로 표시되는, 초고분자량 폴리올레핀 중합용 메탈로센 화합물:
    [화학식 1]
    Figure PCTKR2022017668-appb-img-000017
    상기 화학식 1에서,
    R1 내지 R10은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, 선형 또는 분지형의 C1-C20의 알킬기, C2-C20의 알케닐기, C1-C20의 에테르기, C1-C20의 알콕시기, C6-C20의 아릴기, C7-C20의 알킬아릴기, C7-C20의 아릴알킬기 또는 C3-C20의 불포화 또는 방향족 고리이고,
    상기 M은 3족 전이금속, 4족 전이금속, 5족 전이금속, 란타나이드 계열의 전이금속 또는 악타나이드 계열의 전이금속이고,
    상기 B는 탄소 또는 14족의 원소로서 인데닐기를 연결하는 브릿지 그룹이고,
    상기 X1 및 X2는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 붕소, 산소, 할로겐, 선형 또는 분지형의 C1-C20의 알킬, C2-C20의 알케닐기, C1-C20의 에테르기, C1-C20의 알콕시기, C6-C20의 아릴기, C1-C20의 설포네이트기 및 이들의 조합들로 이루어진 군에서 선택되는 어느 하나이고,
    상기 Y1 및 Y2는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 붕소, 산소, 할로겐, 선형 또는 분지형의 C1-C20의 알킬기, C2-C20의 알케닐기, C1-C20의 에테르기, C1-C20의 알콕시기, C6-C20의 아릴기, C7-C20의 알킬아릴기, C7-C20의 아릴알킬기, C3-C20의 불포화 또는 방향족 고리 및 이들의 조합들로 이루어진 군에서 선택되는 어느 하나이다.
  2. 제1항에 있어서,
    상기 R1 내지 R10은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, 메틸기, 에틸기, 프로필기, 이소프로필기, n-부틸기, tert-부틸기, 펜틸기, 헥실기, 헵틸기, 옥틸기, 에틸렌기, 프로필렌기, 부틸렌기, 페닐기, 벤질기, 나프틸기, 할로겐기, 에테르기, 메톡시기 또는 에톡시기인 것을 특징으로 하는, 초고분자량 폴리올레핀 중합용 메탈로센 화합물.
  3. 제1항에 있어서,
    상기 M은 티타늄(Ti), 지르코늄(Zr), 하프늄(Hf) 또는 러더포듐(Rf)인 것을 특징으로 하는, 초고분자량 폴리올레핀 중합용 메탈로센 화합물.
  4. 제1항에 있어서,
    상기 X1 및 X2는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 붕소, 산소, 할로겐, 메틸기, 에틸기, 프로필기, 이소프로필기, n-부틸기, tert부틸기, 펜틸기, 펜타다이에닐기, 헥실기, 헵틸기, 옥틸기, 에틸렌기, 프로필렌기, 부틸렌기, 페닐기, 벤질기, 나프틸기, 할로겐기, 에테르기, 메톡시기, 에톡시기 및 이들의 조합들로 이루어진 군에서 선택되는 어느 하나인 것을 특징으로 하는, 초고분자량 폴리올레핀 중합용 메탈로센 화합물.
  5. 제1항에 있어서,
    상기 Y1 및 Y2는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 붕소, 산소, 할로겐, 메틸기, 에틸기, 프로필기, 이소프로필기, n-부틸기, tert부틸기, 펜틸기, 헥실기, 헵틸기, 옥틸기, 에틸렌기, 프로필렌기, 부틸렌기, 페닐기, 벤질기, 나프틸기, 할로겐기, 에테르기, 메톡시기, 에톡시기 및 이들의 조합들로 이루어진 군에서 선택되는 어느 하나인 것을 특징으로 하는, 초고분자량 폴리올레핀 중합용 메탈로센 화합물.
  6. 제1항에 있어서,
    상기 메탈로센 화합물은 하기 화학식 2로 표시되는, 초고분자량 폴리올레핀 중합용 메탈로센 화합물.
    [화학식 2]
    Figure PCTKR2022017668-appb-img-000018
    상기 화학식 2에서,
    상기 M은 3족 전이금속, 4족 전이금속, 5족 전이금속, 란타나이드 계열의 전이금속 또는 악타나이드 계열의 전이금속이고,
    상기 B는 탄소 또는 14족의 원소로서 인데닐기를 연결하는 브릿지 그룹이고,
    상기 X1 및 X2는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 붕소, 산소, 할로겐, 선형 또는 분지형의 C1-C20의 알킬, C2-C20의 알케닐기, C1-C20의 에테르기, C1-C20의 알콕시기, C6-C20의 아릴기, C1-C20의 설포네이트기 및 이들의 조합들로 이루어진 군에서 선택되는 어느 하나이고,
    상기 Y1 및 Y2는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 붕소, 산소, 할로겐, 선형 또는 분지형의 C1-C20의 알킬기, C2-C20의 알케닐기, C1-C20의 에테르기, C1-C20의 알콕시기, C6-C20의 아릴기, C7-C20의 알킬아릴기, C7-C20의 아릴알킬기, C3-C20의 불포화 또는 방향족 고리 및 이들의 조합들로 이루어진 군에서 선택되는 어느 하나이다.
  7. 제1항에 있어서,
    순도가 80.0 내지 99.9 %의 범위 이내이고, Li 함량이 50 내지 450 ppm의 범위 이내인 것을 특징으로 하는, 초고분자량 폴리올레핀 중합용 메탈로센 화합물.
  8. 초고분자량 폴리올레핀 중합체의 제조방법으로서,
    상기 제조방법은 하기 화학식 1로 표시되는, 초고분자량 폴리올레핀 중합용 메탈로센 화합물의 존재 하에 올레핀계 단량체를 중합하는 단계를 포함하는, 초고분자량 폴리올레핀 중합체의 제조방법.
    [화학식 1]
    Figure PCTKR2022017668-appb-img-000019
    상기 화학식 1에서,
    R1 내지 R10은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, 선형 또는 분지형의 C1-C20의 알킬기, C2-C20의 알케닐기, C1-C20의 에테르기, C1-C20의 알콕시기, C6-C20의 아릴기, C7-C20의 알킬아릴기, C7-C20의 아릴알킬기 또는 C3-C20의 불포화 또는 방향족 고리이고,
    상기 M은 3족 전이금속, 4족 전이금속, 5족 전이금속, 란타나이드 계열의 전이금속 또는 악타나이드 계열의 전이금속이고,
    상기 B는 탄소 또는 14족의 원소로서 인데닐기를 연결하는 브릿지 그룹이고,
    상기 X1 및 X2는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 붕소, 산소, 할로겐, 선형 또는 분지형의 C1-C20의 알킬, C2-C20의 알케닐기, C1-C20의 에테르기, C1-C20의 알콕시기, C6-C20의 아릴기, C1-C20의 설포네이트기 및 이들의 조합들로 이루어진 군에서 선택되는 어느 하나이고,
    상기 Y1 및 Y2는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 붕소, 산소, 할로겐, 선형 또는 분지형의 C1-C20의 알킬기, C2-C20의 알케닐기, C1-C20의 에테르기, C1-C20의 알콕시기, C6-C20의 아릴기, C7-C20의 알킬아릴기, C7-C20의 아릴알킬기, C3-C20의 불포화 또는 방향족 고리 및 이들의 조합들로 이루어진 군에서 선택되는 어느 하나이다.
  9. 제8항에 있어서,
    상기 중합은 용액 중합 공정, 슬러리 공정 또는 기상 공정에 의하여 수행되는 것을 특징으로 하는, 초고분자량 폴리올레핀 중합체의 제조방법.
  10. 제8항에 있어서,
    상기 올레핀계 단량체는 에틸렌, 프로필렌, 1-부텐, 1-펜텐, 4-메틸-1-펜텐, 1-헥센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센, 1-헥사데센, 1-아이코센, 노보넨, 노보나디엔, 에틸리덴노보넨, 페닐노보넨, 비닐노보넨, 디사이클로펜타디엔, 1,4-부타디엔, 1,5-펜타디엔, 1,6-헥사디엔, 스티렌, 알파-메틸 스티렌, 디비닐벤젠, 및 3-클로로메틸스티렌으로 이루어진 군으로부터 선택되는 1종 이상인 것을 특징으로 하는, 초고분자량 폴리올레핀 중합체의 제조방법.
  11. 제8항에 있어서,
    단위 시간(h)을 기준으로 사용된 메탈로센 화합물 단위 중량 함량(g)당 생성된 폴리올레핀 중합체의 중량(kg)의 비로 계산한 메탈로센 화합물의 활성이 3.0 kg/gCatㆍhr 이상인 것을 특징으로 하는, 초고분자량 폴리올레핀 중합체의 제조방법.
  12. 제8항에 따른 제조방법에 의하여 제조되는, 초고분자량 폴리올레핀 중합체.
  13. 제12항에 있어서,
    중량 평균분자량이 1,000,000g/mol 이상 인 것을 특징으로 하는, 초고분자량 폴리올레핀 중합체.
  14. 제12항에 있어서,
    용융지수가 1.2 내지 20g/10min (21.6 kg)인 것을 특징으로 하는, 초고분자량 폴리올레핀 중합체.
  15. 제12항에 있어서,
    녹는점(Tm)이 130 내지 170 ℃인 것을 특징으로 하는, 초고분자량 폴리올레핀 중합체.
PCT/KR2022/017668 2021-11-12 2022-11-10 초고분자량 폴리올레핀 중합용 메탈로센 화합물 및 이를 이용한 초고분자량 폴리올레핀 중합체의 제조방법 WO2023085817A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0155803 2021-11-12
KR1020210155803A KR20230069618A (ko) 2021-11-12 2021-11-12 초고분자량 폴리올레핀 중합용 메탈로센 화합물 및 이를 이용한 초고분자량 폴리올레핀 중합체의 제조방법

Publications (1)

Publication Number Publication Date
WO2023085817A1 true WO2023085817A1 (ko) 2023-05-19

Family

ID=86336169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/017668 WO2023085817A1 (ko) 2021-11-12 2022-11-10 초고분자량 폴리올레핀 중합용 메탈로센 화합물 및 이를 이용한 초고분자량 폴리올레핀 중합체의 제조방법

Country Status (2)

Country Link
KR (1) KR20230069618A (ko)
WO (1) WO2023085817A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010041790A (ko) * 1998-03-11 2001-05-25 그래햄 이. 테일러 디엔 착체의 일괄 제조방법
US20030229188A1 (en) * 2002-05-31 2003-12-11 Sandor Nagy High-temperature solution process for polyolefin manufacture
KR20070039930A (ko) * 2004-07-08 2007-04-13 엑손모빌 케미칼 패턴츠 인코포레이티드 초임계 조건에서 중합체의 제조방법
US20090023873A1 (en) * 2005-03-23 2009-01-22 Basell Polyolefine Gmbh Process for the polymerization of olefins
KR101139268B1 (ko) * 2003-12-10 2012-07-05 바젤 폴리올레핀 게엠베하 유기금속 전이 금속 화합물, 비스시클로펜타디에닐 리간드계, 촉매 계 및 폴리올레핀 제조

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0717709B2 (ja) 1987-11-13 1995-03-01 日本石油株式会社 超高分子量ポリエチレンの製造方法
KR101144513B1 (ko) 2007-01-04 2012-05-11 주식회사 엘지화학 초고분자량 폴리에틸렌 중합용 촉매, 이의 제조방법 및이를 이용한 초고분자량 폴리에틸렌 중합 방법
KR101049662B1 (ko) 2008-02-13 2011-07-14 삼성토탈 주식회사 초고분자량 폴리에틸렌 중합용 촉매 및 그를 이용한초고분자량 폴리에틸렌의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010041790A (ko) * 1998-03-11 2001-05-25 그래햄 이. 테일러 디엔 착체의 일괄 제조방법
US20030229188A1 (en) * 2002-05-31 2003-12-11 Sandor Nagy High-temperature solution process for polyolefin manufacture
KR101139268B1 (ko) * 2003-12-10 2012-07-05 바젤 폴리올레핀 게엠베하 유기금속 전이 금속 화합물, 비스시클로펜타디에닐 리간드계, 촉매 계 및 폴리올레핀 제조
KR20070039930A (ko) * 2004-07-08 2007-04-13 엑손모빌 케미칼 패턴츠 인코포레이티드 초임계 조건에서 중합체의 제조방법
US20090023873A1 (en) * 2005-03-23 2009-01-22 Basell Polyolefine Gmbh Process for the polymerization of olefins

Also Published As

Publication number Publication date
KR20230069618A (ko) 2023-05-19

Similar Documents

Publication Publication Date Title
WO2017188602A1 (ko) 혼성 담지 메탈로센 촉매 및 이를 이용한 가공성이 우수한 폴리올레핀 수지
WO2017155149A1 (ko) 혼성 촉매 조성물, 이의 제조방법, 및 이를 이용하여 제조된 폴리올레핀
WO2019125050A1 (ko) 올레핀계 중합체
EP2545084A2 (en) Supported metallocene catalyst, method for preparing the same and method for preparing polyolefin using the same
WO2017099491A1 (ko) 올레핀계 중합체
WO2017176074A1 (ko) 용융 장력이 우수한 프로필렌-디엔 공중합체 수지
WO2018110915A1 (ko) 혼성 담지 메탈로센 촉매를 이용한 고가공성 고밀도 에틸렌계 중합체 및 제조방법
WO2015057001A1 (ko) 헤테로 원자를 갖는 전이금속 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 중합체의 제조방법
WO2017003261A1 (ko) 전이금속 화합물 및 이를 포함하는 촉매 조성물
WO2019093630A1 (ko) 고용융장력 폴리프로필렌 수지 제조방법
WO2018097468A1 (ko) 폴리올레핀 촉매 및 이를 이용한 폴리올레핀 제조방법
WO2021075788A1 (ko) 올레핀 중합용 혼성 촉매의 제조방법, 올레핀 중합용 혼성 촉매 및 올레핀계 중합체
WO2020130719A1 (ko) 폴리올레핀
WO2020130720A1 (ko) 폴리올레핀
WO2023191519A1 (ko) 올레핀 중합 촉매용 전이금속 화합물, 이를 포함하는 올레핀 중합 촉매 및 이를 이용하여 중합된 폴리올레핀
WO2022108233A1 (ko) 올레핀계 중합체, 그로부터 제조된 필름 및 그 제조방법
WO2023085817A1 (ko) 초고분자량 폴리올레핀 중합용 메탈로센 화합물 및 이를 이용한 초고분자량 폴리올레핀 중합체의 제조방법
WO2017111553A1 (ko) 신규한 전이금속 화합물을 포함하는 촉매 조성물
WO2020122561A1 (ko) 폴리에틸렌 및 이의 염소화 폴리에틸렌
WO2018106029A1 (ko) 올레핀 중합 촉매용 전이금속 화합물, 이를 포함하는 올레핀 중합 촉매 및 이를 이용하여 중합된 폴리올레핀
WO2019182290A1 (ko) 올레핀 중합 촉매용 전이금속 화합물, 이를 포함하는 올레핀 중합 촉매 및 이를 이용하여 중합된 폴리올레핀
WO2020122563A1 (ko) 폴리에틸렌 및 이의 염소화 폴리에틸렌
WO2022005257A1 (ko) 올레핀계 중합체
WO2021118103A1 (ko) 폴리올레핀
WO2023096341A1 (ko) 분지쇄 함량이 조절된 에틸렌 알파-올레핀계 공중합체, 그 제조방법 및 상기 올레핀계 공중합체를 포함하는 수지 조성물 및 성형품

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22893236

Country of ref document: EP

Kind code of ref document: A1